WO2017183367A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2017183367A1
WO2017183367A1 PCT/JP2017/010498 JP2017010498W WO2017183367A1 WO 2017183367 A1 WO2017183367 A1 WO 2017183367A1 JP 2017010498 W JP2017010498 W JP 2017010498W WO 2017183367 A1 WO2017183367 A1 WO 2017183367A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
flow passage
flow
muffler
rotary compressor
Prior art date
Application number
PCT/JP2017/010498
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 薬師寺
郁男 江崎
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN201780007733.XA priority Critical patent/CN108496009A/en
Priority to EP17785709.1A priority patent/EP3399193A4/en
Publication of WO2017183367A1 publication Critical patent/WO2017183367A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing

Definitions

  • the present invention relates to a rotary compressor provided with a rotary compression mechanism and a discharge muffler.
  • a rotary compressor includes a rotary shaft, a piston rotor provided on the rotary shaft, a rotary compression mechanism having a cylinder, a muffler for suppressing noise caused by pulsation (pressure fluctuation) of compressed refrigerant gas, a housing, and (E.g., Patent Document 1).
  • the refrigerant gas compressed by the rotary type compression mechanism is discharged to the inside of the muffler through the discharge port formed in the member closing the opening of the cylinder, and is passed through the gap between the reduced diameter portion of the muffler and the rotation shaft. It is discharged into the space in the housing.
  • the gap (the outlet of the muffler) formed on the outer periphery of the rotation shaft is in a symmetrical position with the discharge port (the inlet of the muffler) from the inside of the cylinder around the rotation shaft. Pulsation of the refrigerant gas discharged inward is reduced by the muffler.
  • the muffler mainly reduces pulsation of a specific frequency component, it is difficult to sufficiently reduce pulsation of other frequency components. Pulsations that are not sufficiently reduced even by the muffler are discharged to the outside of the muffler, and resonating in the space in the housing leads to noise.
  • an object of this invention is to provide the rotary compressor which can also reduce the pulsation which is not fully reduced inside a muffler.
  • the rotary compressor according to the present invention comprises a rotary compression mechanism having a rotary shaft, a piston rotor provided on the rotary shaft, and a cylinder on which the piston rotor is disposed, and a muffler disposed around the rotary shaft.
  • the muffler is provided along the axial direction of the rotation axis between the muffler body that receives the fluid compressed by the compression mechanism inward and the bearing portion positioned around the rotation axis or the axis of the rotation axis.
  • a flow passage wall forming a discharge flow passage of a predetermined length for discharging the fluid to the outside, and the discharge flow passage includes a first flow passage portion positioned in a part of the circumferential direction of the rotation shaft; A second flow passage portion adjacent to the first flow passage portion in the direction and having a larger dimension in the radial direction of the rotation axis than the first flow passage portion and a larger cross-sectional area than the first flow passage portion; It is characterized by
  • the flow velocity of the fluid flowing through each of the first flow path portion and the second flow path portion is different due to the difference in cross sectional area between the first flow path portion and the second flow path portion. Therefore, the phase of the pressure fluctuation of the fluid flowing into each of the first flow channel unit and the second flow channel unit is shifted, and the pressure fluctuation of the fluid flowing out of each of the first flow channel unit and the second flow channel unit interferes I will cancel each other.
  • the discharge flow passage preferably has a plurality of second flow passage portions.
  • the cross-sectional areas of the plurality of second flow path portions are different from each other.
  • the discharge flow path is formed over the entire circumference around the axis of the rotation shaft, and the plurality of first flow path portions and the plurality of second flow paths alternately arranged in the circumferential direction It is preferable to have a part.
  • a portion of the flow path wall forming the second flow path portion is formed in a substantially C-shaped cross section or a substantially V-shaped cross section.
  • the rotary compressor according to the present invention comprises a rotary compression mechanism having a rotary shaft, a piston rotor provided on the rotary shaft, and a cylinder on which the piston rotor is disposed, and a muffler disposed around the rotary shaft.
  • the muffler is provided along the axial direction of the rotation axis between the muffler body that receives the fluid compressed by the compression mechanism inward and the bearing portion positioned around the rotation axis or the axis of the rotation axis.
  • a flow passage wall forming a discharge flow passage of a predetermined length for discharging the fluid to the outside, the discharge flow passage being a first flow passage portion positioned in a part of the circumferential direction of the rotation shaft; And a second flow passage portion having a cross-sectional area larger than that of the first flow passage portion, and the first flow passage portion protrudes radially outward from the second flow passage portion.
  • the length of the discharge channel x 0, the flow velocity of the fluid in the first flow path part v 1, the flow velocity ratio v 1 of the flow velocity of the fluid in the second flow path part alpha, predetermined Assuming that the frequency of f is f, it is preferable that ⁇ n (v 1 / 2fx 0 ) +1, where n is a natural number.
  • the noise caused by the pulsation can be suppressed.
  • FIG. 1 It is a longitudinal section of a rotary compressor concerning a 1st embodiment.
  • A is a figure which expands and shows a part of rotary compressor shown in FIG.
  • B is a figure which shows the discharge flow path of a muffler.
  • It is a top view of a muffler shown in Drawing 2 (a).
  • A) is a figure which shows the pulsation of the fluid which flows through the 1st flow-path part of the discharge flow path of a muffler
  • (b) shows the pulsation of the fluid which flows through the 2nd flow-path part of the discharge flow path of a muffler.
  • FIG. It is a top view of the muffler with which the rotary compressor concerning a 2nd embodiment was equipped.
  • the compressor 1 shown in FIG. 1 sucks the gas refrigerant in an accumulator (gas-liquid separator) (not shown) through the pipes 8 and 9 and compresses it by the compression mechanism 4.
  • the compressor 1 and the accumulator constitute a refrigeration cycle apparatus such as an air conditioner or a refrigerator, and are connected to a not-shown refrigerant circuit through which the refrigerant circulates.
  • the compressor 1 is driven by a motor 2 as a motive power source, a rotary shaft 3 (crankshaft) rotated by a rotary drive force output from the motor 2, and a rotary drive force transmitted via the rotary shaft 3.
  • the rotary compression mechanism 4, the mufflers 10 and 20 disposed around the axis of the rotary shaft 3, and the housing 5.
  • the mufflers 10 and 20 suppress noise due to pulsation of the refrigerant compressed by the compression mechanism 4.
  • the housing 5 accommodates the motor 2, the rotary shaft 3, the compression mechanism 4, and the mufflers 10 and 20 and is formed in a cylindrical shape.
  • the motor 2 includes a stator 2A fixed to the inner peripheral portion of the housing 5 and a rotor 2B disposed inside the stator 2A.
  • the rotor 2B rotates with respect to the stator 2A by energization to a coil 2C provided on the stator 2A.
  • the rotating shaft 3 is coupled to the rotor 2B and protrudes downward below the rotor 2B, the upper crank pin 3B eccentric to the axis of the main shaft 3A, and the axis of the main shaft 3A. And an eccentric lower crank pin 3C.
  • the lower crank pin 3C is decentered with respect to the axial center of the rotating shaft 3 in a direction opposite to the upper crank pin 3B (180 °).
  • the upper crank pin 3 B is disposed in the upper cylinder 412 of the compression mechanism 4
  • the lower crank pin 3 C is disposed in the lower cylinder 422 of the compression mechanism 4.
  • the compression mechanism 4 (FIG. 1) will be described.
  • the so-called twin rotary type compression mechanism 4 includes an upper compression mechanism 41, a lower compression mechanism 42, a partition plate 4A, and an upper bearing 6 and a lower bearing 7 that rotatably support the rotary shaft 3.
  • the partition plate 4A partitions the inside of the cylinder 412 of the upper compression mechanism 41 and the inside of the cylinder 422 of the lower compression mechanism 42.
  • the upper compression mechanism 41 includes an upper piston rotor 411 provided on the upper crank pin 3B, an upper cylinder 412 on which the upper piston rotor 411 is disposed, and an upper muffler 10 disposed around the axis of the main shaft portion 3A. It is done.
  • the upper piston rotor 411 is fitted to the outer peripheral portion of the upper crank pin 3 B, and is pivoted within the upper cylinder 412 as the upper piston rotor 411 rotates.
  • the refrigerant is drawn into the upper cylinder 412 through the pipe 8.
  • the upper bearing 6 has a butting portion 6A that is butted against the upper end surface of the upper cylinder 412, and a cylindrical bearing portion that protrudes upward from the butting portion 6A and is positioned around the axis of the rotary shaft 3 (main shaft portion 3A) And 6B.
  • the abutment portion 6A is fixed to the inner circumferential portion of the housing 5.
  • An upper cylinder 412, an upper muffler 10, a lower cylinder 422, and a lower muffler 20 are integrally assembled to the upper bearing 6 by bolts 11B.
  • the refrigerant drawn into the upper cylinder 412 is compressed in a space forward in the rotational direction of a blade (not shown) pressed against the outer peripheral portion of the revolving upper piston rotor 411.
  • the compressed refrigerant is discharged into the upper muffler 10 through the discharge port (not shown) formed in the abutting portion 6A of the upper bearing 6, and further, through the discharge flow path 100 between the upper muffler 10 and the bearing portion 6B. It is discharged into the space below the motor 2 in the housing 5.
  • the lower compression mechanism 42 is disposed around the lower piston rotor 421 provided on the lower crankpin 3C, the lower cylinder 422 in which the lower piston rotor 421 is disposed, and the main shaft 3A.
  • the lower muffler 20 is included. Gas refrigerant is drawn into the lower cylinder 422 through the pipe 9.
  • the lower bearing 7 has a butt portion 7A that is butted against the lower end surface of the lower cylinder 422, and a cylindrical bearing portion that protrudes downward from the butt portion 7A and is positioned around the axis of the rotary shaft 3 (spindle portion 3A) And 7B.
  • the refrigerant drawn into the lower cylinder 422 is compressed as the lower piston rotor 421 turns and is discharged into the lower muffler 20 through a discharge port (not shown) formed in the abutting portion 7A of the lower bearing 7.
  • the refrigerant discharged into the lower muffler 20 is discharged to the internal space of the housing 5 through the discharge flow passage 200 between the lower muffler 20 and the bearing portion 7B, and is further formed in the abutting portion 6A of the upper bearing 6.
  • the air passes through the notches 61A and a hole (not shown), and is discharged into the space in the housing 5 below the motor 2.
  • the refrigerant compressed by the upper compression mechanism 41 and the lower compression mechanism 42 is discharged into the space in the housing 5 below the motor 2.
  • the refrigerant flows to a space above the motor 2 through the notches provided in the stator 2A and the rotor 2B, and is discharged into the refrigerant circuit through the discharge pipe 5A provided in the upper part of the housing 5.
  • the upper compression mechanism 41 and the lower compression mechanism 42 respectively discharge the refrigerant from the discharge port with pressure fluctuation (pulsation) according to the swing cycle of the piston rotors 411 and 421.
  • the pulsations of the compressed refrigerant ejected respectively to the mufflers 10 and 20 through the discharge ports by the upper compression mechanism 41 and the lower compression mechanism 42 are reduced in the mufflers 10 and 20, respectively.
  • pulsations that are not sufficiently reduced even by the mufflers 10 and 20 are discharged to the outside of the mufflers 10 and 20, and if resonating in the space below the motor 2 in the housing 5, it leads to noise.
  • the compressor 1 of the present embodiment also discharges the discharge flow of the refrigerant flowing out of the mufflers 10 and 20 to the outside of the mufflers 10 and 20 in order to reduce pulsations that are not sufficiently reduced inside the mufflers 10 and 20.
  • the features are in the paths 100 and 200.
  • the muffler 10 As shown in FIG. 2 (a), the muffler 10 is formed between the muffler main body 11 forming a space with the abutment portion 6A of the upper bearing 6 and the bearing portion 6B of the upper bearing 6 A flow passage wall 12 is provided which forms a discharge flow passage 100 through which the refrigerant flows out to the outside.
  • the flow path wall 12 is a peripheral portion of the opening 10 ⁇ / b> A formed in the planar central portion of the muffler 10.
  • the bearing portion 6B of the upper bearing 6 is passed through the opening 10A.
  • the muffler main body 11 and the flow path wall 12 are integrally formed, for example, by deep drawing from a metal material such as an aluminum alloy.
  • the muffler main body 11 receives the compressed refrigerant compressed in the upper cylinder 412 and ejected from the discharge port (not shown) to the inside, and reduces the pulsation of the compressed refrigerant.
  • the space inside the muffler main body 11 acts as a resistance according to the space volume for the refrigerant ejected into the muffler main body 11, so the pulsation of the refrigerant is attenuated by the muffler 10.
  • the muffler main body 11 extends radially outward of the flow path wall 12 with a predetermined diameter, and is formed in a circular shape in a plan view. Radially outer end portions of the muffler main body 11 are fastened to the upper bearing 6 by bolts 11B at a plurality of circumferential positions. The bolt 11B is omitted in FIG.
  • the inner peripheral end 111 of the muffler main body 11 is located above the abutting portion 6A and is continuous with the flow path wall 12.
  • the inner peripheral end 111 of the muffler main body 11 is continuous with the flow path wall 12 via the curved portion 112
  • the inner peripheral end 111 may be directly continuous with the flow path wall 12.
  • the curved portion 112 is curved so as to be convex upward from the inner peripheral end 111.
  • the size and volume of the muffler main body 11 are appropriately determined so as to be compatible with the main frequency component of the pulsation of the compressed refrigerant.
  • the main frequency components are, for example, in the middle frequency band of 500 Hz to 1 kHz, which is susceptible to noise.
  • An inner space of the muffler main body 11 may be divided into an inner compartment which primarily receives the refrigerant ejected from the discharge port, and an outer compartment which secondarily receives the refrigerant from the compartment. Even with such a two-stage muffler, the same effects as the muffler 10 of the present embodiment can be obtained by configuring the discharge flow path 100 that causes the refrigerant to flow out of the outer section to the outside of the muffler as described below. Can.
  • the flow path wall 12 is connected to the muffler main body 11 via the curved portion 112.
  • the flow path wall 12 rises in the axial direction of the bearing portion 6B from the same height over the entire circumference.
  • the height of the upper end of the flow path wall 12 is constant over the entire circumference.
  • a discharge flow path 100 having a length corresponding to the height of the flow path wall 12 is rotated. It is formed along the axial direction of the axis 3.
  • the flow path wall 12 may face the outer peripheral portion of the rotation shaft 3 instead of the bearing portion 6B.
  • the discharge flow passage 100 is formed between the inner circumferential portion of the flow passage wall 12 and the outer circumferential portion of the rotary shaft 3.
  • the lower muffler 20 (FIG. 1) is configured to have substantially the same shape as the upper muffler 10, and is disposed around the axis of the lower bearing 7 in a direction that is inverted in the vertical direction from the upper muffler 10.
  • the lower muffler 20 is provided with a flow passage wall 22 between the muffler main body 21 and the bearing portion 7B of the lower bearing 7 for forming a discharge flow passage 200 for allowing the refrigerant to flow out of the muffler 20.
  • FIG. 3 shows a discharge flow passage 100 formed with a predetermined flow passage length x 0 between the bearing portion 6B of the upper bearing 6 positioned around the axis of the rotary shaft 3 and the flow passage wall 12 of the upper muffler 10. It shows.
  • the dimension of the discharge flow passage 100 in the radial direction of the rotation shaft 3 changes in the circumferential direction D1 of the rotation shaft 3.
  • the flow path length x 0 (FIG. 2B) of the discharge flow path 100 is the same over the entire circumference.
  • the cross-sectional area of the entire discharge flow channel 100 that is, the area of the discharge flow channel 100 projected in the axial direction of the rotary shaft 3 is determined in consideration of both the performance of the compressor 1 and the pulsation reduction effect by the muffler 10. ing.
  • the discharge flow channel 200 can be configured similarly to the discharge flow channel 100.
  • the discharge flow passage 100 has a first flow passage portion 101 located in a part of the circumferential direction D1 of the rotation shaft 3 and a second flow passage portion 102 adjacent to the first flow passage portion 101 in the circumferential direction D1.
  • the cross-sectional area of the second flow passage portion 102 is relatively large between both the first flow passage portion 101 and the second flow passage portion 102.
  • the compressed refrigerant that has been compressed and discharged into the muffler 10 flows through the first flow passage portion 101 and the second flow passage portion 102 and flows out of the muffler 10 with pulsation.
  • the pressure fluctuation of the refrigerant flowing out of the first flow passage portion 101 and the pressure fluctuation of the refrigerant flowing out of the second flow passage portion 102 interfere with each other and are reduced.
  • the discharge flow channel 100 preferably includes a plurality of first flow channel portions 101 and a plurality of second flow channel portions 102.
  • the discharge flow channel 100 of the present embodiment has three first flow channel portions 101 and three second flow channel portions 102.
  • the discharge flow path 100 is formed over the entire circumference around the axis of the rotation shaft 3, and the first flow path portion 101 and the second flow path portion 102 are alternately arranged in the circumferential direction D 1 of the rotation axis 3. Preferably, they are arranged alternately. It is preferable that the second flow passage portions 102 be arranged substantially equally in the circumferential direction D1.
  • the flow path wall 12 forms a second flow path portion 102 between the first wall portion 121 forming the first flow path portion 101 between the outer peripheral portion of the bearing portion 6B and the outer peripheral portion of the bearing portion 6B. And a second wall 122.
  • the first wall portion 121 is present in the same number as the first flow path portion 101
  • the second wall portion 122 is present in the same number as the second flow path portion 102.
  • the first flow passage portion 101 is formed in a circular arc shape in cross section concentric with the rotation shaft 3 and the bearing portion 6B. The same is true for the first wall 121.
  • the first wall 121 is disposed along the outer peripheral surface (cylindrical surface) of the bearing 6B at a predetermined distance from the outer peripheral surface.
  • the distance between the first wall portion 121 and the outer peripheral surface of the bearing portion 6B, that is, the width of the first flow passage portion 101 is, for example, less than 1 mm.
  • the second flow passage portion 102 is shaped so as to expand radially outward with respect to the outer peripheral surface of the bearing portion 6B.
  • the dimension of the second flow passage portion 102 in the radial direction of the rotation shaft 3 is larger than that of the first flow passage portion 101.
  • the cross-sectional shape of the second wall 122 corresponding to the second flow passage 102 can be appropriately determined, for example, C-shaped (or U-shaped), V-shaped, or the like.
  • the end 122A of the second wall 122 connected to the first wall 121 passes the most expanded top 122B so that the flow path loss of the flow passing through the second flow path 102 is reduced.
  • the second wall portions 122 in the present embodiment are each formed in a substantially C-shaped cross section symmetrically with respect to the center line CL passing through the center in the circumferential direction D1.
  • the second wall 122 may be formed in a substantially V shape so as to extend from the top 122B to both sides in the circumferential direction D1.
  • the cross-sectional shapes of the first flow passage portion 101 and the second flow passage portion 102 are constant in the axial direction of the rotation shaft 3 orthogonal to the paper surface of FIG. 3, but is not limited thereto.
  • the discharge flow path 100 is divided into a narrow first flow path portion 101 and a second flow path portion 102 in which the width of the flow path is enlarged with respect to the first flow path portion 101 in the circumferential direction D1.
  • a boundary line (for example, L1 and L2) is drawn between the first flow passage portion 101 and the second flow passage portion 102 along the radial direction of the rotary shaft 3, and the first flow is performed at the boundary line.
  • the cross-sectional area of each of the passage portion 101 and the second flow passage portion 102 can be assumed.
  • the cross-sectional area of the first flow passage portion 101 is smaller than the cross-sectional area of the second flow passage portion 102. Therefore, the flow velocity of the refrigerant flowing through the first flow passage portion 101 is faster than the flow velocity of the refrigerant flowing through the second flow passage portion 102.
  • FIG. 4 shows the pulsation (a) of the refrigerant flowing into the first flow passage portion 101 from the inside of the muffler main body 11 and the pulsation (b) of the refrigerant flowing into the second flow passage portion 102 from the inside of the muffler main body 11.
  • the horizontal axis indicates the distance x in the longitudinal direction of the flow path. Since the first flow path portion 101 at a flow rate of a relatively small cross-sectional area is high, the waveform of the pressure fluctuation p 1 of the first flow path portion 101 shown in FIG. 4 (a), second shown in FIG. 4 (b) compared with waveforms of pressure fluctuations p 2 of the flow path portion 102, it is stretched in the horizontal axis (x) direction.
  • the amplitudes of the pressure fluctuations p 1 and p 2 of the refrigerant flowing through the passage portions 101 and 102 can be regarded as the same.
  • the wave numbers of the pressure fluctuations p 1 and p 2 shown in FIG. 4 are an example.
  • the pressure waves become opposite in phase with each other at the end of the first and second flow path portions 101 and 102 and cancel each other. depending on the frequency f, it sets the channel length x 0, and a first, a flow rate ratio of the second channel portion 101 and 102 alpha.
  • the flow velocity ratio ⁇ is a flow velocity based on relatively fast v 1 among the flow velocity v 1 of the refrigerant flowing in the first flow passage portion 101 and the flow velocity v 2 of the refrigerant flowing in the second flow passage portion 102 It is a ratio (v 2 / v 1 ).
  • equation equivalent to equation (I) can also be set by the flow velocity ratio 1 / ⁇ based on the flow velocity of the second flow passage 102. It is also permissible to design the first and second flow path portions 101 and 102 using the equation.
  • Equation (I ') is obtained by modifying this equation.
  • (v 1 / 2fx 0 ) +1 (I ')
  • Equations (I) and (I ′) show the relationship between x 0 and ⁇ , in which the pressure waves cancel each other.
  • ⁇ (v 2 / v 1 ) An example of designing the flow velocity ratio ⁇ (v 2 / v 1 ) using the formula (I ′) is shown.
  • the range of the frequency f is approximately 50 Hz to 1 kHz (1000 Hz), and the frequency of the pressure fluctuation component that needs to be reduced is selected.
  • x 0 can be set to about 10 mm (0.01 m).
  • v 1 is 0.1 m / s to 200 m / s from the volume velocity obtained from the displacement amount and rotation speed of the compression mechanism 41 and the entire cross-sectional area of the discharge flow path 100.
  • the cross-sectional area of each of the first and second flow channel portions 101 and 102 can be derived from the selected flow velocity ratio ⁇ and the cross-sectional area of the entire discharge flow channel 100.
  • the muffler 10 may be shaped so as to give an appropriate cross-sectional area between the bearing 6B and the first wall 121 and between the bearing 6B and the second wall 122, respectively.
  • the flow velocity ratio ⁇ is derived for the discharge flow channel 200 of the lower muffler 20 using the same formula (I) or formula (I ′)
  • the muffler 20 may be shaped such that a suitable cross-sectional area is given to the first flow passage portion 101 and the second flow passage portion 102, respectively.
  • the first flow path portion 101 and the second flow path portion 102 it is preferable that the refrigerant streams flowing out from the ends of the first and second flow path portions 101 and 102 join immediately after the outflow and the respective pressure waves interfere with each other.
  • the plurality of first flow path portions 101 and the plurality of second flow path portions 102 exist in the discharge flow path 100, and further, the first, Advantageously, the second flow path portions 101 and 102 are alternately arranged over the entire circumference of the rotation shaft 3.
  • the places where the first flow path unit 101 and the second flow path unit 102 are adjacent to each other in the circumferential direction D1 are distributed over the entire circumference of the rotation shaft 3 and any one of them is adjacent to each other. 1. Since the pressure waves interfere immediately after the outflow of the refrigerant flow that has flowed out of the first and second flow path portions 101 and 102, the pulsation is efficiently reduced.
  • the pulsation reduction effect is achieved. Can be obtained at locations on both sides of the single second flow passage portion 102. That is, as in the present embodiment, the portions where the first flow passage portion 101 and the second flow passage portion 102 are adjacent are distributed in the circumferential direction D1 of the rotation shaft 3, so that a wide range in the circumferential direction D1 is obtained. As pressure waves interfere with each other, pulsation can be efficiently reduced.
  • the discharge flow paths 100 and 200 including the first and second flow path portions having different cross-sectional areas are respectively set for both the mufflers 10 and 20.
  • the pulsations propagating to it can be reduced more sufficiently.
  • the discharge flow path including the first and second flow path portions is set only for one of the mufflers 10 and 20, and the other discharge flow path has, for example, an annular shape around the axis of the rotation shaft 3. It is also acceptable to be formed in
  • the discharge flow path 300 formed between the muffler 30 and the bearing portion 6B according to the second embodiment includes a plurality of second flow path portions 302A, 302B, and 302C, as shown in FIG.
  • the muffler 30 can be applied to any of the muffler (10 in FIG. 1) constituting the upper compression mechanism 41 and the muffler (20 in FIG. 1) constituting the lower compression mechanism 42 (FIG. 1).
  • the second flow path portions 302A, 302B, and 302C have different cross-sectional areas.
  • the cross-sectional area of each of the second flow path portions 302A, 302B, 302C is determined in consideration of the frequency of the pulsation component that needs to be reduced.
  • the second flow passage portion 302A corresponds to 800 Hz
  • the second flow passage portion 302B corresponds to 900 Hz
  • the third flow passage portion 302C corresponds to 1 kHz.
  • the cross-sectional area of any of the second flow channel portions 302A to 302C is set by deriving the flow velocity ratio ⁇ with the adjacent first flow channel portion 101 using the above-mentioned equation (I) or (I ′) There is.
  • the second embodiment it is possible to cope with pulsation in a wide frequency range compared to the first embodiment.
  • the second flow path portions 302A to 302C are alternately arranged with the first flow path portion 101 in the circumferential direction D1 of the rotary shaft 3, so the first flow path portion 101 and the second flow path The pulsation can be efficiently reduced at each of the places where the portions 302A to 302C are adjacent to each other.
  • FIG. 6 shows a muffler 50 according to a variant of the invention.
  • the discharge flow path 500 formed between the muffler 50 and the bearing portion 6B is formed in a petal shape including a large number of flow path portions as compared with the first embodiment and the second embodiment.
  • eight first flow path portions 501 having an arc-shaped cross section and eight second flow path portions 502 are included in the discharge flow path 500.
  • the muffler 50 is applicable to any of the muffler (10 in FIG. 1) constituting the upper compression mechanism 41 and the muffler (20 in FIG. 1) constituting the lower compression mechanism 42.
  • the cross-sectional areas of the first flow passage portion 501 and the second flow passage portion 502 can be respectively determined using the above-described formulas (I) and (I ').
  • the number of first flow path portions 501 and the number of second flow path portions 502 are large, the number of portions where the first flow path portion 501 and the second flow path portion 502 are adjacent in the circumferential direction D1 is also large. Therefore, according to the present embodiment, it is possible to efficiently reduce the pulsation due to the interference of the pressure waves of the refrigerant flowing out and joining the first and second flow path portions 501 and 502, respectively.
  • second flow path portions 502 (A) and 502 (B) having different cross-sectional areas.
  • the cross-sectional area of these 2nd flow-path part 502 (A), 502 (B) can each be defined by Formula (I), (I ') mentioned above corresponding to a different frequency.
  • FIG. 7 shows a muffler 60 according to another variant of the invention.
  • the muffler 60 includes a muffler main body 11 and a cylindrical flow path wall 62 concentric with the rotation shaft 3.
  • a plurality of grooves 6 ⁇ / b> C extending in the axial direction are formed to be recessed in the outer peripheral portion of the bearing portion 6 ⁇ / b> B. Due to the presence of these grooves 6C, the discharge flow passage 600 between the bearing portion 6B and the flow passage wall 62 has a relatively large cross-sectional area with the plurality of first flow passage portions 601 having a relatively small cross-sectional area.
  • a plurality of second flow path portions 602 are provided.
  • the cross-sectional areas of the first flow passage portion 601 and the second flow passage portion 602 can be respectively determined using the above-described formulas (I) and (I '). By changing the depths and widths of the plurality of grooves 6C, the cross-sectional areas of the plurality of second flow path portions 602 can be made different from one another to cope with pulsation components of a plurality of frequencies.
  • FIG. 8 shows a muffler 70 according to yet another variant of the invention.
  • the muffler 70 includes a muffler main body 11, a substantially cylindrical flow path wall 72 concentric with the rotation shaft 3, and a discharge flow path 700 between the flow path wall 72 and the bearing portion 6B.
  • the flow path wall 72 has a protruding portion 721 protruding radially outward in a part of the circumferential direction, and an arc portion 722 which is a portion other than the protruding portion 721.
  • a plurality of protrusions 721 and a plurality of arcs 722 are alternately arranged in the circumferential direction of the flow path wall 72.
  • the first flow path portion 701 of the discharge flow path 700 exists inside the projecting portion 721 which is formed so as to be folded back in a state in which the walls 721A and 721B facing each other are close to each other.
  • the second flow passage portion 702 of the discharge flow passage 700 is present between the inner circumferential portion of the arc portion 722 and the outer circumferential portion of the bearing portion 6B. Since the distance between the arc portion 722 and the bearing portion 6B is wider than the distance between the first wall portion 121 and the bearing portion 6B in the first embodiment, the cross-sectional area of the second flow path portion 702 is And the cross-sectional area of the first channel portion 701.
  • the flow out from the first and second flow channel portions 701 and 702 respectively can be efficiently reduced by the interference of the pressure waves of the joining refrigerant.
  • the cross-sectional areas of the plurality of second flow path portions 702 are made different from each other by changing the protruding lengths of the plurality of protruding portions 721 and the distance between the walls 721A and 721B, and the pulsating components of the plurality of frequencies are handled. can do.
  • the first flow passage portion of the discharge flow passage in the present invention does not necessarily have to be formed in an arc shape concentric with the rotation shaft 3.
  • the cross-sectional area may be different among the plurality of first flow path portions. It is sufficient for the first flow passage portion to form a narrow gap with the rotation shaft 3 or the bearing portion 6B as compared to the second flow passage portion.
  • a second flow passage portion 502B having a cross-sectional area different from that of the second flow passage portion 502A is located next to the second flow passage portion 502A.
  • each of the first flow path portion and the second flow path portion of the discharge flow path are the frequency f to be reduced, the flow path length x 0 , the performance of the compressor, and the pulsation reduction effect Accordingly, it can be set appropriately using formulas (I) and (I ').
  • the discharge flow path in the present invention does not necessarily have to be continuous over the entire circumference of the rotation shaft 3 in the circumferential direction D1.
  • the flow passage wall 12 of the muffler may be in contact with the outer peripheral portion of the bearing portion 6B in a part of the circumferential direction D1.
  • a partition may be arrange
  • the first flow passage portion and the second flow passage portion are adjacent to each other via the partition.
  • the cross-sectional area of each of the first and second flow path sections divided by the partition can be determined using the formulas (I) and (I '). In particular, in the case where the number of second flow path portions is large as in the configuration shown in FIG.
  • the compression mechanism mounted on the compressor of the present invention is not limited to the twin rotary compression mechanism 4 but may be a single rotary compression mechanism having a pair of cylinders and piston rotors and a muffler. Moreover, as a power source of the compressor of the present invention, for example, an engine or the like other than a motor is acceptable.

Abstract

This rotary compressor 1 is provided with a rotating shaft 3, a rotary-type compression mechanism 4, and a muffler 10 which is disposed around the axis of the rotating shaft 3. The muffler 10 is provided with: a muffler body 11 for receiving a compressed refrigerant therein; and a flow passage wall 12 for forming a discharge flow passage 100 between the flow passage wall 12 and the rotating shaft 3 or a bearing section 6B, the discharge flow passage 100 having a predetermined length and allowing the refrigerant to flow to the outside of the muffler 10 in the axial direction of the rotating shaft 3. The discharge flow passage 100 has: a first flow passage section 101 located at a part in the circumferential direction D1 of the rotating shaft 3; and a second flow passage section 102 which is adjacent to the first flow passage section 101 in the circumferential direction D1, has a greater dimension in the radial direction of the rotating shaft 3 than the first flow passage section 101, and has a greater cross-sectional area than the first flow passage section 101.

Description

ロータリー圧縮機Rotary compressor
 本発明は、ロータリー式圧縮機構および吐出マフラを備えたロータリー圧縮機に関する。 The present invention relates to a rotary compressor provided with a rotary compression mechanism and a discharge muffler.
 ロータリー圧縮機は、回転軸と、回転軸に設けられるピストンロータ、およびシリンダを有するロータリー式圧縮機構と、圧縮された冷媒ガスの脈動(圧力変動)に起因する騒音を抑制するマフラと、ハウジングとを備えている(例えば、特許文献1)。
 ロータリー式の圧縮機構により圧縮された冷媒ガスは、シリンダの開口を塞ぐ部材に形成された吐出ポートを通ってマフラの内側に吐出され、マフラの縮径した部分と回転軸との間の隙間を通じてハウジング内の空間へと吐出される。
 特許文献1では、回転軸の外周に形成された隙間(マフラの出口)が、回転軸を中心として、シリンダ内からの吐出ポート(マフラの入口)とは対称な位置にあり、シリンダ内からマフラ内へと吐出された冷媒ガスの脈動がマフラにより低減される。
A rotary compressor includes a rotary shaft, a piston rotor provided on the rotary shaft, a rotary compression mechanism having a cylinder, a muffler for suppressing noise caused by pulsation (pressure fluctuation) of compressed refrigerant gas, a housing, and (E.g., Patent Document 1).
The refrigerant gas compressed by the rotary type compression mechanism is discharged to the inside of the muffler through the discharge port formed in the member closing the opening of the cylinder, and is passed through the gap between the reduced diameter portion of the muffler and the rotation shaft. It is discharged into the space in the housing.
In Patent Document 1, the gap (the outlet of the muffler) formed on the outer periphery of the rotation shaft is in a symmetrical position with the discharge port (the inlet of the muffler) from the inside of the cylinder around the rotation shaft. Pulsation of the refrigerant gas discharged inward is reduced by the muffler.
特許第3941809号Patent No. 3941809
 マフラにより、主に特定の周波数成分の脈動を低減することができても、他の周波数成分の脈動を十分に低減することは難しい。
 マフラによっても十分に低減されない脈動がマフラの外部へと吐出されてしまい、ハウジング内の空間で共鳴すると、騒音に繋がってしまう。
Although the muffler mainly reduces pulsation of a specific frequency component, it is difficult to sufficiently reduce pulsation of other frequency components.
Pulsations that are not sufficiently reduced even by the muffler are discharged to the outside of the muffler, and resonating in the space in the housing leads to noise.
 そこで、本発明は、マフラの内側で十分には低減されない脈動をも低減することが可能なロータリー圧縮機を提供することを目的とする。 Then, an object of this invention is to provide the rotary compressor which can also reduce the pulsation which is not fully reduced inside a muffler.
 本発明のロータリー圧縮機は、回転される回転軸と、回転軸に設けられるピストンロータおよびピストンロータが配置されるシリンダを有するロータリー式の圧縮機構と、回転軸の軸周りに配置されるマフラと、を備え、マフラは、圧縮機構により圧縮された流体を内側に受け入れるマフラ本体と、回転軸または回転軸の軸周りに位置する軸受部との間に、回転軸の軸方向に沿ってマフラの外部へと流体を流出させる所定の長さの吐出流路を形成する流路壁と、を備え、吐出流路は、回転軸の周方向の一部に位置する第1流路部と、周方向において第1流路部に隣接し、かつ、回転軸の径方向における寸法が第1流路部よりも大きく、第1流路部よりも断面積が大きい第2流路部と、を有することを特徴とする。 The rotary compressor according to the present invention comprises a rotary compression mechanism having a rotary shaft, a piston rotor provided on the rotary shaft, and a cylinder on which the piston rotor is disposed, and a muffler disposed around the rotary shaft. The muffler is provided along the axial direction of the rotation axis between the muffler body that receives the fluid compressed by the compression mechanism inward and the bearing portion positioned around the rotation axis or the axis of the rotation axis. And a flow passage wall forming a discharge flow passage of a predetermined length for discharging the fluid to the outside, and the discharge flow passage includes a first flow passage portion positioned in a part of the circumferential direction of the rotation shaft; A second flow passage portion adjacent to the first flow passage portion in the direction and having a larger dimension in the radial direction of the rotation axis than the first flow passage portion and a larger cross-sectional area than the first flow passage portion; It is characterized by
 第1流路部と第2流路部との断面積の相違により、第1流路部および第2流路部をそれぞれ流れる流体の流速が相違する。そのため、第1流路部および第2流路部へとそれぞれ流入した流体の圧力変動の位相がシフトし、第1流路部および第2流路部からそれぞれ流出した流体の圧力変動が干渉して打ち消し合う。 The flow velocity of the fluid flowing through each of the first flow path portion and the second flow path portion is different due to the difference in cross sectional area between the first flow path portion and the second flow path portion. Therefore, the phase of the pressure fluctuation of the fluid flowing into each of the first flow channel unit and the second flow channel unit is shifted, and the pressure fluctuation of the fluid flowing out of each of the first flow channel unit and the second flow channel unit interferes I will cancel each other.
 本発明のロータリー圧縮機において、吐出流路は、複数の第2流路部を有することが好ましい。 In the rotary compressor of the present invention, the discharge flow passage preferably has a plurality of second flow passage portions.
 本発明のロータリー圧縮機において、複数の第2流路部の各々の断面積が互いに相違していることが好ましい。 Preferably, in the rotary compressor of the present invention, the cross-sectional areas of the plurality of second flow path portions are different from each other.
 本発明のロータリー圧縮機において、吐出流路は、回転軸の軸周りの全周に亘り形成されており、周方向において交互に配置される複数の第1流路部と複数の第2流路部とを有することが好ましい。 In the rotary compressor of the present invention, the discharge flow path is formed over the entire circumference around the axis of the rotation shaft, and the plurality of first flow path portions and the plurality of second flow paths alternately arranged in the circumferential direction It is preferable to have a part.
 本発明のロータリー圧縮機において、第2流路部を形成する流路壁の部分は、断面略C字状または断面略V字状に形成されていることが好ましい。 In the rotary compressor of the present invention, it is preferable that a portion of the flow path wall forming the second flow path portion is formed in a substantially C-shaped cross section or a substantially V-shaped cross section.
 本発明のロータリー圧縮機は、回転される回転軸と、回転軸に設けられるピストンロータおよびピストンロータが配置されるシリンダを有するロータリー式の圧縮機構と、回転軸の軸周りに配置されるマフラと、を備え、マフラは、圧縮機構により圧縮された流体を内側に受け入れるマフラ本体と、回転軸または回転軸の軸周りに位置する軸受部との間に、回転軸の軸方向に沿ってマフラの外部へと流体を流出させる所定の長さの吐出流路を形成する流路壁と、を備え、吐出流路は、回転軸の周方向の一部に位置する第1流路部と、第1流路部よりも断面積が大きい第2流路部と、を有し、第1流路部が、第2流路部から径方向外側に突出していることを特徴とする。 The rotary compressor according to the present invention comprises a rotary compression mechanism having a rotary shaft, a piston rotor provided on the rotary shaft, and a cylinder on which the piston rotor is disposed, and a muffler disposed around the rotary shaft. The muffler is provided along the axial direction of the rotation axis between the muffler body that receives the fluid compressed by the compression mechanism inward and the bearing portion positioned around the rotation axis or the axis of the rotation axis. And a flow passage wall forming a discharge flow passage of a predetermined length for discharging the fluid to the outside, the discharge flow passage being a first flow passage portion positioned in a part of the circumferential direction of the rotation shaft; And a second flow passage portion having a cross-sectional area larger than that of the first flow passage portion, and the first flow passage portion protrudes radially outward from the second flow passage portion.
 本発明のロータリー圧縮機において、吐出流路の長さをx、第1流路部における流体の流速をv、第2流路部における流体の流速のvに対する流速比をα、所定の周波数をf、と置くと、nが自然数であるとして、α=n(v/2fx)+1 が成立することが好ましい。 In the rotary compressor of the present invention, the length of the discharge channel x 0, the flow velocity of the fluid in the first flow path part v 1, the flow velocity ratio v 1 of the flow velocity of the fluid in the second flow path part alpha, predetermined Assuming that the frequency of f is f, it is preferable that α = n (v 1 / 2fx 0 ) +1, where n is a natural number.
 本発明のロータリー圧縮機によれば、マフラの内側では十分に低減されない脈動をも低減することができるので、脈動に起因する騒音を抑制することができる。 According to the rotary compressor of the present invention, since the pulsation which is not sufficiently reduced inside the muffler can be reduced, the noise caused by the pulsation can be suppressed.
第1実施形態に係るロータリー圧縮機の縦断面図である。It is a longitudinal section of a rotary compressor concerning a 1st embodiment. (a)は、図1に示すロータリー圧縮機の一部を拡大して示す図である。(b)は、マフラの吐出流路を示す図である。(A) is a figure which expands and shows a part of rotary compressor shown in FIG. (B) is a figure which shows the discharge flow path of a muffler. 図2(a)に示すマフラの平面図である。It is a top view of a muffler shown in Drawing 2 (a). (a)は、マフラの吐出流路の第1流路部を流れる流体の脈動を示す図であり、(b)は、マフラの吐出流路の第2流路部を流れる流体の脈動を示す図である。(A) is a figure which shows the pulsation of the fluid which flows through the 1st flow-path part of the discharge flow path of a muffler, (b) shows the pulsation of the fluid which flows through the 2nd flow-path part of the discharge flow path of a muffler. FIG. 第2実施形態に係るロータリー圧縮機に備えられたマフラの平面図である。It is a top view of the muffler with which the rotary compressor concerning a 2nd embodiment was equipped. 本発明の変形例に係るロータリー圧縮機に備えられたマフラの平面図である。It is a top view of the muffler with which the rotary compressor concerning the modification of the present invention was equipped. 本発明の別の変形例に係るロータリー圧縮機に備えられたマフラの平面図である。It is a top view of the muffler with which the rotary compressor concerning another modification of the present invention was equipped. 本発明の変形例に係るロータリー圧縮機に備えられたマフラの平面図である。It is a top view of the muffler with which the rotary compressor concerning the modification of the present invention was equipped.
 以下、添付図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
〔第1実施形態〕
 図1に示す圧縮機1は、図示しないアキュムレータ(気液分離器)内のガス冷媒を配管8,9を通じて吸入し、圧縮機構4により圧縮する。
 圧縮機1およびアキュムレータは、空気調和機、冷凍機等の冷凍サイクル装置を構成しており、冷媒が循環する図示しない冷媒回路に接続されている。
First Embodiment
The compressor 1 shown in FIG. 1 sucks the gas refrigerant in an accumulator (gas-liquid separator) (not shown) through the pipes 8 and 9 and compresses it by the compression mechanism 4.
The compressor 1 and the accumulator constitute a refrigeration cycle apparatus such as an air conditioner or a refrigerator, and are connected to a not-shown refrigerant circuit through which the refrigerant circulates.
 圧縮機1は、動力源であるモータ2と、モータ2から出力される回転駆動力により回転される回転軸3(クランクシャフト)と、回転軸3を介して伝達される回転駆動力により駆動されるロータリー式の圧縮機構4と、回転軸3の軸周りに配置されるマフラ10,20と、ハウジング5とを備えている。
 マフラ10,20は、圧縮機構4により圧縮された冷媒の脈動に起因する騒音を抑制する。
The compressor 1 is driven by a motor 2 as a motive power source, a rotary shaft 3 (crankshaft) rotated by a rotary drive force output from the motor 2, and a rotary drive force transmitted via the rotary shaft 3. The rotary compression mechanism 4, the mufflers 10 and 20 disposed around the axis of the rotary shaft 3, and the housing 5.
The mufflers 10 and 20 suppress noise due to pulsation of the refrigerant compressed by the compression mechanism 4.
 ハウジング5は、モータ2、回転軸3、圧縮機構4、およびマフラ10,20を収容しており、円筒状に形成されている。
 モータ2は、ハウジング5の内周部に固定されるステータ2Aと、ステータ2Aの内側に配置されるロータ2Bとを備えている。ロータ2Bは、ステータ2Aに設けられたコイル2Cへの通電によりステータ2Aに対して回転する。
The housing 5 accommodates the motor 2, the rotary shaft 3, the compression mechanism 4, and the mufflers 10 and 20 and is formed in a cylindrical shape.
The motor 2 includes a stator 2A fixed to the inner peripheral portion of the housing 5 and a rotor 2B disposed inside the stator 2A. The rotor 2B rotates with respect to the stator 2A by energization to a coil 2C provided on the stator 2A.
 回転軸3は、ロータ2Bに結合されてロータ2Bよりも下方に突出する主軸部3Aと、主軸部3Aの軸心に対して偏心した上部クランクピン3Bと、同じく主軸部3Aの軸心に対して偏心した下部クランクピン3Cとを備えている。下部クランクピン3Cは、回転軸3の軸心に対して、上部クランクピン3Bとは逆位相(180°)となる向きに偏心している。
 上部クランクピン3Bは、圧縮機構4の上部シリンダ412内に配置され、下部クランクピン3Cは、圧縮機構4の下部シリンダ422内に配置されている。
The rotating shaft 3 is coupled to the rotor 2B and protrudes downward below the rotor 2B, the upper crank pin 3B eccentric to the axis of the main shaft 3A, and the axis of the main shaft 3A. And an eccentric lower crank pin 3C. The lower crank pin 3C is decentered with respect to the axial center of the rotating shaft 3 in a direction opposite to the upper crank pin 3B (180 °).
The upper crank pin 3 B is disposed in the upper cylinder 412 of the compression mechanism 4, and the lower crank pin 3 C is disposed in the lower cylinder 422 of the compression mechanism 4.
 圧縮機構4(図1)について説明する。
 所謂ツインロータリー式である圧縮機構4は、上部圧縮機構41と、下部圧縮機構42と、仕切板4Aと、回転軸3を回転可能に支持する上部軸受6および下部軸受7とを備えている。
 仕切板4Aは、上部圧縮機構41のシリンダ412の内部と下部圧縮機構42のシリンダ422の内部とを仕切っている。
The compression mechanism 4 (FIG. 1) will be described.
The so-called twin rotary type compression mechanism 4 includes an upper compression mechanism 41, a lower compression mechanism 42, a partition plate 4A, and an upper bearing 6 and a lower bearing 7 that rotatably support the rotary shaft 3.
The partition plate 4A partitions the inside of the cylinder 412 of the upper compression mechanism 41 and the inside of the cylinder 422 of the lower compression mechanism 42.
 上部圧縮機構41は、上部クランクピン3Bに設けられる上部ピストンロータ411と、上部ピストンロータ411が配置される上部シリンダ412と、主軸部3Aの軸周りに配置される上部マフラ10とを含んで構成されている。
 上部ピストンロータ411は、上部クランクピン3Bの外周部に嵌合され、上部ピストンロータ411の回転に伴って上部シリンダ412内で旋回される。
 上部シリンダ412内には、配管8を通じて冷媒が吸入される。
The upper compression mechanism 41 includes an upper piston rotor 411 provided on the upper crank pin 3B, an upper cylinder 412 on which the upper piston rotor 411 is disposed, and an upper muffler 10 disposed around the axis of the main shaft portion 3A. It is done.
The upper piston rotor 411 is fitted to the outer peripheral portion of the upper crank pin 3 B, and is pivoted within the upper cylinder 412 as the upper piston rotor 411 rotates.
The refrigerant is drawn into the upper cylinder 412 through the pipe 8.
 上部軸受6は、上部シリンダ412の上端面に突き当てられる突当て部6Aと、突当て部6Aから上方へと突出し、回転軸3(主軸部3A)の軸周りに位置する円筒状の軸受部6Bとを有している。突当て部6Aは、ハウジング5の内周部に固定されている。
 上部軸受6には、上部シリンダ412、上部マフラ10、下部シリンダ422、および下部マフラ20がボルト11Bにより一体に組み付けられている。
The upper bearing 6 has a butting portion 6A that is butted against the upper end surface of the upper cylinder 412, and a cylindrical bearing portion that protrudes upward from the butting portion 6A and is positioned around the axis of the rotary shaft 3 (main shaft portion 3A) And 6B. The abutment portion 6A is fixed to the inner circumferential portion of the housing 5.
An upper cylinder 412, an upper muffler 10, a lower cylinder 422, and a lower muffler 20 are integrally assembled to the upper bearing 6 by bolts 11B.
 上部シリンダ412内に吸入された冷媒は、旋回する上部ピストンロータ411の外周部に押圧される図示しないブレードよりも回転方向前方の空間にて圧縮される。圧縮された冷媒は、上部軸受6の突当て部6Aに形成された図示しない吐出ポートを通じて上部マフラ10内へと吐出され、さらに、上部マフラ10と軸受部6Bとの間の吐出流路100を通じてハウジング5内におけるモータ2よりも下方の空間へと吐出される。 The refrigerant drawn into the upper cylinder 412 is compressed in a space forward in the rotational direction of a blade (not shown) pressed against the outer peripheral portion of the revolving upper piston rotor 411. The compressed refrigerant is discharged into the upper muffler 10 through the discharge port (not shown) formed in the abutting portion 6A of the upper bearing 6, and further, through the discharge flow path 100 between the upper muffler 10 and the bearing portion 6B. It is discharged into the space below the motor 2 in the housing 5.
 上部圧縮機構41と同様に、下部圧縮機構42は、下部クランクピン3Cに設けられる下部ピストンロータ421と、下部ピストンロータ421が配置される下部シリンダ422と、主軸部3Aの軸周りに配置される下部マフラ20とを含んで構成されている。
 下部シリンダ422内には、配管9を通じてガス冷媒が吸入される。
Similar to the upper compression mechanism 41, the lower compression mechanism 42 is disposed around the lower piston rotor 421 provided on the lower crankpin 3C, the lower cylinder 422 in which the lower piston rotor 421 is disposed, and the main shaft 3A. The lower muffler 20 is included.
Gas refrigerant is drawn into the lower cylinder 422 through the pipe 9.
 下部軸受7は、下部シリンダ422の下端面に突き当てられる突当て部7Aと、突当て部7Aから下方へと突出し、回転軸3(主軸部3A)の軸周りに位置する円筒状の軸受部7Bとを有している。 The lower bearing 7 has a butt portion 7A that is butted against the lower end surface of the lower cylinder 422, and a cylindrical bearing portion that protrudes downward from the butt portion 7A and is positioned around the axis of the rotary shaft 3 (spindle portion 3A) And 7B.
 下部シリンダ422内に吸入された冷媒は、下部ピストンロータ421の旋回に伴って圧縮され、下部軸受7の突当て部7Aに形成された図示しない吐出ポートを通じて下部マフラ20内へと吐出される。下部マフラ20内へと吐出された冷媒は、下部マフラ20と軸受部7Bとの間の吐出流路200を通じてハウジング5の内部空間へと吐出され、さらに、上部軸受6の突当て部6Aに形成された切欠61Aや図示しない孔を通り抜け、ハウジング5内におけるモータ2よりも下方の空間へと吐出される。 The refrigerant drawn into the lower cylinder 422 is compressed as the lower piston rotor 421 turns and is discharged into the lower muffler 20 through a discharge port (not shown) formed in the abutting portion 7A of the lower bearing 7. The refrigerant discharged into the lower muffler 20 is discharged to the internal space of the housing 5 through the discharge flow passage 200 between the lower muffler 20 and the bearing portion 7B, and is further formed in the abutting portion 6A of the upper bearing 6. The air passes through the notches 61A and a hole (not shown), and is discharged into the space in the housing 5 below the motor 2.
 上述のように、ハウジング5内におけるモータ2よりも下方の空間に、上部圧縮機構41および下部圧縮機構42によりそれぞれ圧縮された冷媒が吐出される。その冷媒は、ステータ2Aやロータ2Bに設けられた切欠を通じてモータ2よりも上方の空間へと流れ、ハウジング5の上部に設けられた吐出管5Aを通じて冷媒回路へと吐出される。 As described above, the refrigerant compressed by the upper compression mechanism 41 and the lower compression mechanism 42 is discharged into the space in the housing 5 below the motor 2. The refrigerant flows to a space above the motor 2 through the notches provided in the stator 2A and the rotor 2B, and is discharged into the refrigerant circuit through the discharge pipe 5A provided in the upper part of the housing 5.
 上部圧縮機構41および下部圧縮機構42はそれぞれ、ピストンロータ411,421の旋回周期に応じて、吐出ポートから圧力変動(脈動)を伴って冷媒を吐出する。上部圧縮機構41および下部圧縮機構42により吐出ポートを通じてマフラ10,20へとそれぞれ噴出した圧縮冷媒の脈動は、マフラ10,20内でそれぞれ低減される。
 ここで、マフラ10,20によっても十分に低減されない脈動がマフラ10,20の外部へと吐出されてしまい、ハウジング5内におけるモータ2よりも下方の空間で共鳴すると、騒音に繋がってしまう。
 そこで、本実施形態の圧縮機1は、マフラ10,20の内側で十分には低減されない脈動をも低減するため、マフラ10,20内からそれぞれマフラ10,20の外部へと流れ出る冷媒の吐出流路100,200に特徴を有する。
The upper compression mechanism 41 and the lower compression mechanism 42 respectively discharge the refrigerant from the discharge port with pressure fluctuation (pulsation) according to the swing cycle of the piston rotors 411 and 421. The pulsations of the compressed refrigerant ejected respectively to the mufflers 10 and 20 through the discharge ports by the upper compression mechanism 41 and the lower compression mechanism 42 are reduced in the mufflers 10 and 20, respectively.
Here, pulsations that are not sufficiently reduced even by the mufflers 10 and 20 are discharged to the outside of the mufflers 10 and 20, and if resonating in the space below the motor 2 in the housing 5, it leads to noise.
Therefore, the compressor 1 of the present embodiment also discharges the discharge flow of the refrigerant flowing out of the mufflers 10 and 20 to the outside of the mufflers 10 and 20 in order to reduce pulsations that are not sufficiently reduced inside the mufflers 10 and 20. The features are in the paths 100 and 200.
 まず、上部マフラ10(以下、マフラ10)の構成を説明する。
 図2(a)に示すように、マフラ10は、上部軸受6の突当て部6Aとの間に空間を形成するマフラ本体11と、上部軸受6の軸受部6Bとの間に、マフラ10の外部へと冷媒を流出させる吐出流路100を形成する流路壁12とを備えている。流路壁12は、マフラ10の平面中央部に形成された開口10Aの周縁部である。その開口10Aに、上部軸受6の軸受部6Bが通される。
 マフラ本体11と、流路壁12とは、アルミニウム合金等の金属材料から、例えば、深絞り加工によって一体に形成されている。
First, the configuration of the upper muffler 10 (hereinafter, the muffler 10) will be described.
As shown in FIG. 2 (a), the muffler 10 is formed between the muffler main body 11 forming a space with the abutment portion 6A of the upper bearing 6 and the bearing portion 6B of the upper bearing 6 A flow passage wall 12 is provided which forms a discharge flow passage 100 through which the refrigerant flows out to the outside. The flow path wall 12 is a peripheral portion of the opening 10 </ b> A formed in the planar central portion of the muffler 10. The bearing portion 6B of the upper bearing 6 is passed through the opening 10A.
The muffler main body 11 and the flow path wall 12 are integrally formed, for example, by deep drawing from a metal material such as an aluminum alloy.
 マフラ本体11は、上部シリンダ412内で圧縮され図示しない吐出ポートから噴出した圧縮冷媒を内側に受け入れ、圧縮冷媒の脈動を低減する。マフラ本体11の内側の空間は、マフラ本体11内に噴出された冷媒にとって、空間体積に応じた抵抗として働くので、マフラ10により冷媒の脈動が減衰する。
 マフラ本体11は、流路壁12よりも径方向外側に所定の直径で延在しており、平面視円形状に形成されている。マフラ本体11の径方向外側の端部は、周方向の複数の箇所で、ボルト11Bにより上部軸受6に締結されている。ボルト11Bは、図3では省略している。
The muffler main body 11 receives the compressed refrigerant compressed in the upper cylinder 412 and ejected from the discharge port (not shown) to the inside, and reduces the pulsation of the compressed refrigerant. The space inside the muffler main body 11 acts as a resistance according to the space volume for the refrigerant ejected into the muffler main body 11, so the pulsation of the refrigerant is attenuated by the muffler 10.
The muffler main body 11 extends radially outward of the flow path wall 12 with a predetermined diameter, and is formed in a circular shape in a plan view. Radially outer end portions of the muffler main body 11 are fastened to the upper bearing 6 by bolts 11B at a plurality of circumferential positions. The bolt 11B is omitted in FIG.
 マフラ本体11の内周端111は、突当て部6Aよりも上方に位置し、流路壁12へと連続している。ここでは、マフラ本体11の内周端111は、湾曲部112を介して流路壁12に連続しているが、内周端111が流路壁12に直接連続していてもよい。湾曲部112は、内周端111よりも上方に向けて凸となるように湾曲している。
 マフラ本体11の寸法や体積は、圧縮冷媒の脈動の主な周波数成分に適合するように適宜に定められている。主な周波数成分は、例えば、騒音に繋がり易い500Hz~1kHzの中周波数帯域にある。
The inner peripheral end 111 of the muffler main body 11 is located above the abutting portion 6A and is continuous with the flow path wall 12. Here, although the inner peripheral end 111 of the muffler main body 11 is continuous with the flow path wall 12 via the curved portion 112, the inner peripheral end 111 may be directly continuous with the flow path wall 12. The curved portion 112 is curved so as to be convex upward from the inner peripheral end 111.
The size and volume of the muffler main body 11 are appropriately determined so as to be compatible with the main frequency component of the pulsation of the compressed refrigerant. The main frequency components are, for example, in the middle frequency band of 500 Hz to 1 kHz, which is susceptible to noise.
 マフラ本体11の内側の空間が、吐出ポートから噴出された冷媒を一次的に受け入れる内側の区画と、その区画から冷媒を二次的に受け入れる外側の区画とに仕切られていてもよい。そういった二段マフラであっても、外側の区画からマフラの外部へと冷媒を流出させる吐出流路100を以下で述べるように構成することにより、本実施形態のマフラ10と同様の効果を得ることができる。 An inner space of the muffler main body 11 may be divided into an inner compartment which primarily receives the refrigerant ejected from the discharge port, and an outer compartment which secondarily receives the refrigerant from the compartment. Even with such a two-stage muffler, the same effects as the muffler 10 of the present embodiment can be obtained by configuring the discharge flow path 100 that causes the refrigerant to flow out of the outer section to the outside of the muffler as described below. Can.
 流路壁12は、湾曲部112を介してマフラ本体11に連なっている。流路壁12は、全周に亘り同じ高さから、軸受部6Bの軸方向に沿って立ち上がっている。流路壁12の上端の高さは、全周に亘り一定である。
 流路壁12の内周部と軸受部6Bの外周部との間には、図2(b)に示すように、流路壁12の高さに相当する長さの吐出流路100が回転軸3の軸方向に沿って形成されている。
The flow path wall 12 is connected to the muffler main body 11 via the curved portion 112. The flow path wall 12 rises in the axial direction of the bearing portion 6B from the same height over the entire circumference. The height of the upper end of the flow path wall 12 is constant over the entire circumference.
Between the inner peripheral portion of the flow path wall 12 and the outer peripheral portion of the bearing portion 6B, as shown in FIG. 2B, a discharge flow path 100 having a length corresponding to the height of the flow path wall 12 is rotated. It is formed along the axial direction of the axis 3.
 マフラ10全体の高さによっては、流路壁12が軸受部6Bにではなく回転軸3の外周部に対向していることもありうる。その場合は、流路壁12の内周部と回転軸3の外周部との間に吐出流路100が形成されることになる。 Depending on the height of the entire muffler 10, the flow path wall 12 may face the outer peripheral portion of the rotation shaft 3 instead of the bearing portion 6B. In such a case, the discharge flow passage 100 is formed between the inner circumferential portion of the flow passage wall 12 and the outer circumferential portion of the rotary shaft 3.
 下部マフラ20(図1)は、上部マフラ10とほぼ同様の形状に構成され、上部マフラ10とは上下方向に反転する向きで、下部軸受7の軸周りに配置されている。
 下部マフラ20は、マフラ本体21と、下部軸受7の軸受部7Bとの間に、マフラ20の外部へと冷媒を流出させる吐出流路200を形成する流路壁22とを備えている。
The lower muffler 20 (FIG. 1) is configured to have substantially the same shape as the upper muffler 10, and is disposed around the axis of the lower bearing 7 in a direction that is inverted in the vertical direction from the upper muffler 10.
The lower muffler 20 is provided with a flow passage wall 22 between the muffler main body 21 and the bearing portion 7B of the lower bearing 7 for forming a discharge flow passage 200 for allowing the refrigerant to flow out of the muffler 20.
 以下、吐出流路100,200の構成について説明する。
 図3は、回転軸3の軸周りに位置する上部軸受6の軸受部6Bと、上部マフラ10の流路壁12との間に所定の流路長xで形成された吐出流路100を示している。
 回転軸3の径方向における吐出流路100の寸法は、回転軸3の周方向D1において変化している。
 吐出流路100の流路長x(図2(b))は、全周に亘り同一である。
 吐出流路100全体の断面積、すなわち、吐出流路100を回転軸3の軸方向に投影した面積は、圧縮機1の性能と、マフラ10による脈動低減効果との両者を考慮して定められている。
Hereinafter, the configuration of the discharge flow channels 100 and 200 will be described.
FIG. 3 shows a discharge flow passage 100 formed with a predetermined flow passage length x 0 between the bearing portion 6B of the upper bearing 6 positioned around the axis of the rotary shaft 3 and the flow passage wall 12 of the upper muffler 10. It shows.
The dimension of the discharge flow passage 100 in the radial direction of the rotation shaft 3 changes in the circumferential direction D1 of the rotation shaft 3.
The flow path length x 0 (FIG. 2B) of the discharge flow path 100 is the same over the entire circumference.
The cross-sectional area of the entire discharge flow channel 100, that is, the area of the discharge flow channel 100 projected in the axial direction of the rotary shaft 3 is determined in consideration of both the performance of the compressor 1 and the pulsation reduction effect by the muffler 10. ing.
 下部マフラ20に関し、吐出流路200の平面視の図は省略するが、吐出流路200も、吐出流路100と同様に構成することができる。 Although the plan view of the discharge flow channel 200 is omitted regarding the lower muffler 20, the discharge flow channel 200 can be configured similarly to the discharge flow channel 100.
 以下、吐出流路100の構成を詳しく説明する。
 吐出流路100は、回転軸3の周方向D1の一部に位置する第1流路部101と、周方向D1において第1流路部101に隣接する第2流路部102とを有する。第1流路部101および第2流路部102の両者の間で相対的に、第2流路部102の断面積が大きい。
Hereinafter, the configuration of the discharge flow path 100 will be described in detail.
The discharge flow passage 100 has a first flow passage portion 101 located in a part of the circumferential direction D1 of the rotation shaft 3 and a second flow passage portion 102 adjacent to the first flow passage portion 101 in the circumferential direction D1. The cross-sectional area of the second flow passage portion 102 is relatively large between both the first flow passage portion 101 and the second flow passage portion 102.
 圧縮されてマフラ10内へと吐出された圧縮冷媒は、脈動を伴いながら、第1流路部101および第2流路部102をそれぞれ流れてマフラ10の外部へと流出する。第1流路部101から流出した冷媒の圧力変動と、第2流路部102から流出した冷媒の圧力変動とが互いに干渉して低減される。 The compressed refrigerant that has been compressed and discharged into the muffler 10 flows through the first flow passage portion 101 and the second flow passage portion 102 and flows out of the muffler 10 with pulsation. The pressure fluctuation of the refrigerant flowing out of the first flow passage portion 101 and the pressure fluctuation of the refrigerant flowing out of the second flow passage portion 102 interfere with each other and are reduced.
 吐出流路100は、複数の第1流路部101と、複数の第2流路部102とを有していることが好ましい。本実施形態の吐出流路100は、3つの第1流路部101と、3つの第2流路部102とを有している。
 吐出流路100は、回転軸3の軸周りの全周に亘り形成されており、第1流路部101と第2流路部102とが、回転軸3の周方向D1において1つ置きに交互に配置されていることが好ましい。
 第2流路部102は、周方向D1においてほぼ均等に配置されていることが好ましい。
The discharge flow channel 100 preferably includes a plurality of first flow channel portions 101 and a plurality of second flow channel portions 102. The discharge flow channel 100 of the present embodiment has three first flow channel portions 101 and three second flow channel portions 102.
The discharge flow path 100 is formed over the entire circumference around the axis of the rotation shaft 3, and the first flow path portion 101 and the second flow path portion 102 are alternately arranged in the circumferential direction D 1 of the rotation axis 3. Preferably, they are arranged alternately.
It is preferable that the second flow passage portions 102 be arranged substantially equally in the circumferential direction D1.
 流路壁12は、軸受部6Bの外周部との間に第1流路部101を形成する第1壁部121と、軸受部6Bの外周部との間に第2流路部102を形成する第2壁部122とを備えている。第1壁部121は、第1流路部101と同数だけ存在し、第2壁部122は、第2流路部102と同数だけ存在する。 The flow path wall 12 forms a second flow path portion 102 between the first wall portion 121 forming the first flow path portion 101 between the outer peripheral portion of the bearing portion 6B and the outer peripheral portion of the bearing portion 6B. And a second wall 122. The first wall portion 121 is present in the same number as the first flow path portion 101, and the second wall portion 122 is present in the same number as the second flow path portion 102.
 第1流路部101は、回転軸3および軸受部6Bと同心円の断面円弧状に形成されている。第1壁部121も同様である。
 第1壁部121は、軸受部6Bの外周面(円筒面)に沿って、当該外周面に対して所定の間隔をおいて配置されている。第1壁部121と軸受部6Bの外周面との間の間隔、つまり、第1流路部101の幅は、例えば、1mm未満である。
The first flow passage portion 101 is formed in a circular arc shape in cross section concentric with the rotation shaft 3 and the bearing portion 6B. The same is true for the first wall 121.
The first wall 121 is disposed along the outer peripheral surface (cylindrical surface) of the bearing 6B at a predetermined distance from the outer peripheral surface. The distance between the first wall portion 121 and the outer peripheral surface of the bearing portion 6B, that is, the width of the first flow passage portion 101 is, for example, less than 1 mm.
 第2流路部102は、軸受部6Bの外周面に対して径方向外側に向けて膨らんだ形状をしている。第2壁部122も同様である。
 第2流路部102は、回転軸3の径方向における寸法が第1流路部101よりも大きい。
 第2流路部102に対応する第2壁部122の断面形状は、例えば、C字状(あるいはU字状)、V字状等、適宜に定めることができる。第2流路部102を通る流れの流路損失が小さくなるように、第1壁部121に連なる第2壁部122の一端122Aから、最も膨らんだ頂部122Bを経て、第2壁部122の他端122Cに至るまでを滑らかな形状に形成することが好ましい。
 一例として、本実施形態の第2壁部122は、それぞれ、周方向D1における中心を通る中心線CLに対して対称に、断面略C字状に形成されている。頂部122Bから周方向D1の両側に拡がるように、略V字状に第2壁部122を形成することもできる。
The second flow passage portion 102 is shaped so as to expand radially outward with respect to the outer peripheral surface of the bearing portion 6B. The same applies to the second wall 122.
The dimension of the second flow passage portion 102 in the radial direction of the rotation shaft 3 is larger than that of the first flow passage portion 101.
The cross-sectional shape of the second wall 122 corresponding to the second flow passage 102 can be appropriately determined, for example, C-shaped (or U-shaped), V-shaped, or the like. In the second wall 122, the end 122A of the second wall 122 connected to the first wall 121 passes the most expanded top 122B so that the flow path loss of the flow passing through the second flow path 102 is reduced. It is preferable to form a smooth shape up to the other end 122C.
As an example, the second wall portions 122 in the present embodiment are each formed in a substantially C-shaped cross section symmetrically with respect to the center line CL passing through the center in the circumferential direction D1. The second wall 122 may be formed in a substantially V shape so as to extend from the top 122B to both sides in the circumferential direction D1.
 第1流路部101および第2流路部102の断面形状は、図3の紙面に直交する回転軸3の軸方向において一定であるが、これに限られない。 The cross-sectional shapes of the first flow passage portion 101 and the second flow passage portion 102 are constant in the axial direction of the rotation shaft 3 orthogonal to the paper surface of FIG. 3, but is not limited thereto.
 吐出流路100は、周方向D1において、狭隘な第1流路部101と、第1流路部101に対して流路の幅が拡大されている第2流路部102とに区分されている。これらの第1流路部101と第2流路部102との間に回転軸3の径方向に沿って境界線(例えば、L1,L2)を引き、その境界線を境に、第1流路部101および第2流路部102の各々の断面積を想定することができる。
 第1流路部101の断面積は、第2流路部102の断面積よりも小さい。そのため、第1流路部101を流れる冷媒の流速は、第2流路部102を流れる冷媒の流速よりも速い。
The discharge flow path 100 is divided into a narrow first flow path portion 101 and a second flow path portion 102 in which the width of the flow path is enlarged with respect to the first flow path portion 101 in the circumferential direction D1. There is. A boundary line (for example, L1 and L2) is drawn between the first flow passage portion 101 and the second flow passage portion 102 along the radial direction of the rotary shaft 3, and the first flow is performed at the boundary line. The cross-sectional area of each of the passage portion 101 and the second flow passage portion 102 can be assumed.
The cross-sectional area of the first flow passage portion 101 is smaller than the cross-sectional area of the second flow passage portion 102. Therefore, the flow velocity of the refrigerant flowing through the first flow passage portion 101 is faster than the flow velocity of the refrigerant flowing through the second flow passage portion 102.
 図4は、マフラ本体11の内側から第1流路部101へと流入した冷媒の脈動(a)と、マフラ本体11の内側から第2流路部102へと流入した冷媒の脈動(b)とをそれぞれ示している。ここで、横軸は、流路の長さ方向の距離xを示している。
 相対的に断面積が小さい第1流路部101では流速が速いため、図4(a)に示す第1流路部101の圧力変動pの波形は、図4(b)に示す第2流路部102の圧力変動pの波形と比べて、横軸(x)方向に引き伸ばされる。
FIG. 4 shows the pulsation (a) of the refrigerant flowing into the first flow passage portion 101 from the inside of the muffler main body 11 and the pulsation (b) of the refrigerant flowing into the second flow passage portion 102 from the inside of the muffler main body 11. And respectively. Here, the horizontal axis indicates the distance x in the longitudinal direction of the flow path.
Since the first flow path portion 101 at a flow rate of a relatively small cross-sectional area is high, the waveform of the pressure fluctuation p 1 of the first flow path portion 101 shown in FIG. 4 (a), second shown in FIG. 4 (b) compared with waveforms of pressure fluctuations p 2 of the flow path portion 102, it is stretched in the horizontal axis (x) direction.
 マフラ本体11内に噴射された冷媒は、第1、第2流路部101,102へとそれぞれ流入し、第1、第2流路部101,102の始端(x=0)から所定の流路長xを第1、第2流路部101,102の各々の断面積に応じた速度で流れ、第1、第2流路部101,102の終端(x=x)でハウジング5内へと流出する。 The refrigerant injected into the muffler main body 11 flows into the first and second flow path portions 101 and 102, respectively, and flows from the beginning (x = 0) of the first and second flow path portions 101 and 102 to a predetermined flow. pathlength x 0 the first flow at a speed corresponding to the cross-sectional area of each of the second channel portion 101 and 102, the housing 5 in a first, terminal end of the second flow path 101 and 102 (x = x 0) It leaks into the inside.
 マフラ本体11内の冷媒は、同じ位相で、第1、第2流路部101,102の各々の始端(x=0)へとそれぞれ流入するとみなすことができ、また、第1、第2流路部101,102をそれぞれ流れる冷媒の圧力変動p,pの振幅は同一とみなすことができる。
 第1、第2流路部101,102をそれぞれ流れる冷媒の流速の違いにより、始端(x=0)から終端(x=x)までの圧力変動p,pの波数が相違する。そうすると、第1、第2流路部101,102への流入時には同じであった位相が、第1、第2流路部101,102の終端(x=x)ではシフトしている。
 したがって、第1、第2流路部101,102から流出した冷媒のそれぞれの圧力波が干渉し合って減衰することにより、マフラ10の外部への圧力変動の流出が十分に抑制される。干渉により圧力波が十分に打ち消し合うように、第1、第2流路部101,102の終端(x=x)において圧力波形の位相が180°(π)相違する、つまり逆位相となることが好ましい。
 なお、図4に示した、圧力変動p,pの波数は一例である。
The refrigerant in the muffler main body 11 can be considered to flow into the beginning (x = 0) of each of the first and second flow path portions 101 and 102 in the same phase, and the first and second flows The amplitudes of the pressure fluctuations p 1 and p 2 of the refrigerant flowing through the passage portions 101 and 102 can be regarded as the same.
The wave numbers of pressure fluctuations p 1 and p 2 from the start end (x = 0) to the end (x = x 0 ) differ depending on the difference in the flow velocity of the refrigerant flowing through the first and second flow path portions 101 and 102 respectively. As a result, the phase that was the same when flowing into the first and second flow path portions 101 and 102 is shifted at the end (x = x 0 ) of the first and second flow path portions 101 and 102.
Therefore, the pressure waves of the refrigerant flowing out of the first and second flow path portions 101 and 102 interfere with each other and attenuate, whereby the outflow of the pressure fluctuation to the outside of the muffler 10 is sufficiently suppressed. The phases of the pressure waveform differ by 180 ° (π) at the ends (x = x 0 ) of the first and second flow path portions 101 and 102 so that the pressure waves sufficiently cancel each other due to interference, that is, they are opposite phases. Is preferred.
The wave numbers of the pressure fluctuations p 1 and p 2 shown in FIG. 4 are an example.
 以上より、本実施形態では、第1、第2流路部101,102の終端で逆位相となって圧力波同士が打ち消し合うように、次の式(I)に示すように、圧力変動の周波数fに応じて、流路長xと、第1、第2流路部101,102の流速比αとを設定する。 As described above, in the present embodiment, as shown in the following equation (I), the pressure waves become opposite in phase with each other at the end of the first and second flow path portions 101 and 102 and cancel each other. depending on the frequency f, it sets the channel length x 0, and a first, a flow rate ratio of the second channel portion 101 and 102 alpha.
 α=n(v/2fx)+1 ・・・(I)
 nは自然数(1,2,3・・・)
 ここで、流速比αは、第1流路部101を流れる冷媒の流速vと、第2流路部102を流れる冷媒の流速vのうち、相対的に速いvを基準とした流速比(v/v)である。
α = n (v 1 / 2fx 0 ) +1 (I)
n is a natural number (1, 2, 3 ...)
Here, the flow velocity ratio α is a flow velocity based on relatively fast v 1 among the flow velocity v 1 of the refrigerant flowing in the first flow passage portion 101 and the flow velocity v 2 of the refrigerant flowing in the second flow passage portion 102 It is a ratio (v 2 / v 1 ).
 第2流路102の流速を基準とした流速比1/αにより、式(I)と等価な式を設定することもできる。その式を用いて、第1、第2流路部101,102を設計することも許容される。 An equation equivalent to equation (I) can also be set by the flow velocity ratio 1 / α based on the flow velocity of the second flow passage 102. It is also permissible to design the first and second flow path portions 101 and 102 using the equation.
 以下、上記の式(I)を得るプロセスについて説明する。
 第1、第2流路部101,102への流入時の位相が同一、および振幅が同一の条件より、圧力変動p,pの波は式(i)により表される。tは時間、Pは圧力波の振幅、k,kは波数、ωは角周波数を示す。圧力変動p,pは、波数k,kのみが相違する。
 p(x,t)=Psin(kx-ωt)
 p(x,t)=Psin(kx-ωt)   ・・・(i)
Hereinafter, the process for obtaining the above formula (I) will be described.
Under the conditions that the phases when flowing into the first and second flow path portions 101 and 102 are the same and the amplitudes are the same, the waves of the pressure fluctuations p 1 and p 2 are represented by equation (i). t represents time, P represents the pressure wave amplitude, k 1 and k 2 represent the wave number, and ω represents the angular frequency. The pressure fluctuations p 1 and p 2 differ only in the wavenumbers k 1 and k 2 .
p 1 (x, t) = P sin (k 1 x-ωt)
p 2 (x, t) = P sin (k 2 x-ωt) (i)
 ここで、第1流路部101における冷媒の流速をv、第2流路部102における冷媒の流速をvと置くと、
 v=ω/k   v=ω/k     ・・・(ii)
 v,vのうち相対的に速いvを基準とした流速比をαと置いて、
 v=αv   (α>1)
 式(ii)より、
 k=αk     ・・・(iii)
Here, when the flow velocity of the refrigerant in the first flow passage portion 101 is v 1 and the flow velocity of the refrigerant in the second flow passage portion 102 is v 2 ,
v 1 = ω / k 1 v 2 = ω / k 2 (ii)
Assuming that the flow velocity ratio based on v 1 which is relatively faster among v 1 and v 2 is α,
v 1 = αv 2 (α> 1)
From equation (ii),
k 2 = α k 1 (iii)
 第1、第2流路部101,102の終端からの合流時に合成される圧力変動p(x=x,t)を解く。式(iii)を参照する。
 p(x=x,t)
 =p+p=Psin(k-ωt)+Psin(k-ωt)
 =2Psin{(1+α/2)k-ωt}cos{(1-α/2)k} ・・・(iv)
The pressure fluctuation p (x = x 0 , t) synthesized at the time of merging from the end of the first and second flow path portions 101 and 102 is solved. Reference is made to formula (iii).
p (x = x 0 , t)
= P 1 + p 2 = P sin (k 1 x 0- ωt) + P sin (k 2 x 0- ωt)
= 2 P sin {(1 + α / 2) k 1 x 0- ω t} cos {(1-α / 2) k 1 x 0 } (iv)
 式(iv)より、cos{(1-α/2)k}の項が0であると、圧力波同士が干渉(合成)により打ち消し合う。
 y=cosθの波は、θ=n(π/2)のときに0となるから(n=1,2,3・・・)、
From equation (iv), if the term of cos {(1−α / 2) k 1 x 0 } is 0, the pressure waves cancel each other due to interference (synthesis).
Because a wave of y = cos θ is 0 when θ = n (π / 2) (n = 1, 2, 3 ...),
Figure JPOXMLDOC01-appb-M000001
 このとき、p(x,t)が0となる。
 ここで、αは小さい方が、吐出流路を実現し易い。そこで、最小のαによる脈動低減を実現することを考えると、n=1であるから、
Figure JPOXMLDOC01-appb-M000001
At this time, p (x 0 , t) becomes zero.
Here, the smaller the value of α, the easier it is to realize the discharge flow path. Then, considering that the pulsation reduction by the minimum α is to be realized, since n = 1,
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(v´)、(ii)およびω=2πfより、 From equations (v '), (ii) and ω = 2πf,
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 これを式変形すると、式(I´)が得られる。
 α=(v/2fx)+1   ・・・(I´)
 式(I´)は、上述した式(I)においてn=1の場合である。
 式(I)や(I´)は、圧力波同士が打ち消し合う、xとαとの関係を示している。
Equation (I ') is obtained by modifying this equation.
α = (v 1 / 2fx 0 ) +1 (I ')
Formula (I ') is a case where n = 1 in the above-mentioned formula (I).
Equations (I) and (I ′) show the relationship between x 0 and α, in which the pressure waves cancel each other.
 式(I´)を用いて、流速比α(v/v)を設計する例を示す。
 ここで、周波数fの範囲は、概ね、50Hz~1kHz(1000Hz)であり、低減する必要のある圧力変動成分の周波数を選定する。
 xは、例えば、10mm(0.01m)程度に定めることができる。
 vは、例えば、圧縮機構41の押し退け量および回転数より求められる体積速度と、吐出流路100の全体の断面積から、0.1m/s~200m/sであるものとする。
An example of designing the flow velocity ratio α (v 2 / v 1 ) using the formula (I ′) is shown.
Here, the range of the frequency f is approximately 50 Hz to 1 kHz (1000 Hz), and the frequency of the pressure fluctuation component that needs to be reduced is selected.
For example, x 0 can be set to about 10 mm (0.01 m).
For example, v 1 is 0.1 m / s to 200 m / s from the volume velocity obtained from the displacement amount and rotation speed of the compression mechanism 41 and the entire cross-sectional area of the discharge flow path 100.
 上記のパラメータの値を式(I´)にあてはめる。
 上記の値の条件から、αが最小になる場合として、f=1000Hzおよびv=0.1m/sを適用すると、5×10-1+1が得られ、αが最大になる場合として、f=500Hzおよびv=200m/sを適用すると、20+1が得られる。
The values of the above parameters are applied to equation (I ').
From the condition of the above values, if f = 1000 Hz and v 1 = 0.1 m / s are applied as if α is minimized, then 5 × 10 −1 +1 is obtained and if α is maximized, f Applying = 500 Hz and v 1 = 200 m / s yields 20 + 1.
 低減する必要のある圧力変動成分の周波数fに応じて、適切な流速比αを選定することにより、第1、第2流路部101,102から流出して合流する圧力波同士が打ち消し合う。その結果、マフラ10の外部へと流出する圧力変動を低減することができる。したがって、モータ2よりも下方の空間において共鳴が起こることを避け、騒音を抑制することができる。
 選定した流速比α、そして吐出流路100全体の断面積から、第1、第2流路部101,102の各々の断面積を導くことができる。そして、軸受部6Bと第1壁部121との間、および軸受部6Bと第2壁部122との間にそれぞれ適切な断面積が与えられるようにマフラ10を成形するとよい。
By selecting an appropriate flow velocity ratio α in accordance with the frequency f of the pressure fluctuation component that needs to be reduced, the pressure waves that flow out from the first and second flow path portions 101 and 102 and are merged cancel each other. As a result, the pressure fluctuation flowing out of the muffler 10 can be reduced. Accordingly, the occurrence of resonance in the space below the motor 2 can be avoided, and noise can be suppressed.
The cross-sectional area of each of the first and second flow channel portions 101 and 102 can be derived from the selected flow velocity ratio α and the cross-sectional area of the entire discharge flow channel 100. Then, the muffler 10 may be shaped so as to give an appropriate cross-sectional area between the bearing 6B and the first wall 121 and between the bearing 6B and the second wall 122, respectively.
 以上では、上部マフラ10の吐出流路100を例にとって説明したが、下部マフラ20の吐出流路200についても、同様の式(I)や式(I´)を用いて流速比αを導き、適合する断面積が第1流路部101および第2流路部102にそれぞれ与えられるようにマフラ20を成形するとよい。 Although the discharge flow channel 100 of the upper muffler 10 has been described above as an example, the flow velocity ratio α is derived for the discharge flow channel 200 of the lower muffler 20 using the same formula (I) or formula (I ′) The muffler 20 may be shaped such that a suitable cross-sectional area is given to the first flow passage portion 101 and the second flow passage portion 102, respectively.
 以上で説明したように、第1、第2流路部101,102を流れることで位相がシフトした圧力波同士を合流時に打ち消すにあたっては、第1流路部101と第2流路部102とが隣り合っており、第1、第2流路部101,102の終端から流出した冷媒流が流出直後に合流してそれぞれの圧力波が干渉することが好ましい。
 この点、本実施形態では、図3に示すように、吐出流路100に、複数の第1流路部101と、複数の第2流路部102とが存在し、しかもこれらの第1、第2流路部101,102が、回転軸3の全周に亘り交互に配置されているため、有利である。つまり、第1流路部101と第2流路部102とが周方向D1において隣り合う箇所が、回転軸3の全周に亘り分布しており、それらが隣り合う箇所のいずれにおいても、第1、第2流路部101,102から流出した冷媒流の流出直後に圧力波が干渉するので効率よく脈動が低減される。
As described above, when canceling pressure waves whose phases are shifted by flowing through the first and second flow path portions 101 and 102 at the time of merging, the first flow path portion 101 and the second flow path portion 102 It is preferable that the refrigerant streams flowing out from the ends of the first and second flow path portions 101 and 102 join immediately after the outflow and the respective pressure waves interfere with each other.
In this respect, in the present embodiment, as shown in FIG. 3, the plurality of first flow path portions 101 and the plurality of second flow path portions 102 exist in the discharge flow path 100, and further, the first, Advantageously, the second flow path portions 101 and 102 are alternately arranged over the entire circumference of the rotation shaft 3. That is, the places where the first flow path unit 101 and the second flow path unit 102 are adjacent to each other in the circumferential direction D1 are distributed over the entire circumference of the rotation shaft 3 and any one of them is adjacent to each other. 1. Since the pressure waves interfere immediately after the outflow of the refrigerant flow that has flowed out of the first and second flow path portions 101 and 102, the pulsation is efficiently reduced.
 仮に、吐出流路100に、1つの第2流路部102のみ(例えば、102A)が存在しており、吐出流路100の残りは第1流路部101であるとすれば、脈動低減効果を得ることができるのは、単一の第2流路部102の両隣の箇所に留まる。
 つまり、本実施形態のように、第1流路部101と第2流路部102とが隣り合う箇所が回転軸3の周方向D1に分布していることにより、周方向D1の広範囲に亘って圧力波の干渉が起こるので、効率よく脈動を低減させることができる。
If it is assumed that only one second flow path portion 102 (for example, 102A) exists in the discharge flow path 100 and the rest of the discharge flow path 100 is the first flow path portion 101, the pulsation reduction effect is achieved. Can be obtained at locations on both sides of the single second flow passage portion 102.
That is, as in the present embodiment, the portions where the first flow passage portion 101 and the second flow passage portion 102 are adjacent are distributed in the circumferential direction D1 of the rotation shaft 3, so that a wide range in the circumferential direction D1 is obtained. As pressure waves interfere with each other, pulsation can be efficiently reduced.
 本実施形態では、マフラ10,20の両方について、断面積の異なる第1、第2流路部を含む吐出流路100,200がそれぞれ設定されているので、マフラ10,20内からハウジング5内へと伝搬する脈動をより十分に低減することができる。
 但し、マフラ10,20のいずれか一方についてのみ、第1、第2流路部を含む吐出流路が設定されており、他方の吐出流路は、例えば、回転軸3の軸周りに円環状に形成されていることも許容される。
In the present embodiment, the discharge flow paths 100 and 200 including the first and second flow path portions having different cross-sectional areas are respectively set for both the mufflers 10 and 20. The pulsations propagating to it can be reduced more sufficiently.
However, the discharge flow path including the first and second flow path portions is set only for one of the mufflers 10 and 20, and the other discharge flow path has, for example, an annular shape around the axis of the rotation shaft 3. It is also acceptable to be formed in
〔第2実施形態〕
 次に、図5を参照し、本発明の第2実施形態について説明する。
 以下では、第1実施形態と相違する事項を中心に説明する。第1実施形態と同様の構成には同じ符号を付している。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG.
In the following, matters different from the first embodiment will be mainly described. The same components as those of the first embodiment are denoted by the same reference numerals.
 第2実施形態に係るマフラ30と軸受部6Bとの間に形成される吐出流路300は、図5に示すように、複数の第2流路部302A,302B,302Cを備えている。
 マフラ30は、上部圧縮機構41を構成するマフラ(図1の10)、および下部圧縮機構42(図1)を構成するマフラ(図1の20)のいずれにも適用することができる。
The discharge flow path 300 formed between the muffler 30 and the bearing portion 6B according to the second embodiment includes a plurality of second flow path portions 302A, 302B, and 302C, as shown in FIG.
The muffler 30 can be applied to any of the muffler (10 in FIG. 1) constituting the upper compression mechanism 41 and the muffler (20 in FIG. 1) constituting the lower compression mechanism 42 (FIG. 1).
 第2流路部302A,302B,302Cは、互いに断面積が相違している。第2流路部302A,302B,302Cの各々の断面積は、低減する必要のある脈動成分の周波数を考慮して定められている。
 例えば、第2流路部302Aは、800Hzに対応し、第2流路部302Bは、900Hzに対応し、第3流路部302Cは、1kHzに対応している。
 第2流路部302A~302Cのいずれの断面積も、上述の式(I)あるいは(I´)を用いて、隣り合う第1流路部101との流速比αを導くことで設定されている。
The second flow path portions 302A, 302B, and 302C have different cross-sectional areas. The cross-sectional area of each of the second flow path portions 302A, 302B, 302C is determined in consideration of the frequency of the pulsation component that needs to be reduced.
For example, the second flow passage portion 302A corresponds to 800 Hz, the second flow passage portion 302B corresponds to 900 Hz, and the third flow passage portion 302C corresponds to 1 kHz.
The cross-sectional area of any of the second flow channel portions 302A to 302C is set by deriving the flow velocity ratio α with the adjacent first flow channel portion 101 using the above-mentioned equation (I) or (I ′) There is.
 第2実施形態によれば、第1実施形態と比べて広範な周波数域の脈動に対応することができる。
 吐出流路300において、第2流路部302A~302Cが、回転軸3の周方向D1において第1流路部101と交互に配置されているので、第1流路部101と第2流路部302A~302Cとが隣り合う箇所のそれぞれにおいて、効率よく脈動を低減することができる。
According to the second embodiment, it is possible to cope with pulsation in a wide frequency range compared to the first embodiment.
In the discharge flow path 300, the second flow path portions 302A to 302C are alternately arranged with the first flow path portion 101 in the circumferential direction D1 of the rotary shaft 3, so the first flow path portion 101 and the second flow path The pulsation can be efficiently reduced at each of the places where the portions 302A to 302C are adjacent to each other.
 図6は、本発明の変形例に係るマフラ50を示している。
 マフラ50と軸受部6Bとの間に形成される吐出流路500は、第1実施形態や第2実施形態と比べて多くの流路部を含んで花弁状に形成されている。ここでは、断面円弧状の8つの第1流路部501と、8つの第2流路部502とが吐出流路500に含まれている。
 マフラ50は、上部圧縮機構41を構成するマフラ(図1の10)、および下部圧縮機構42を構成するマフラ(図1の20)のいずれにも適用可能である。
FIG. 6 shows a muffler 50 according to a variant of the invention.
The discharge flow path 500 formed between the muffler 50 and the bearing portion 6B is formed in a petal shape including a large number of flow path portions as compared with the first embodiment and the second embodiment. Here, eight first flow path portions 501 having an arc-shaped cross section and eight second flow path portions 502 are included in the discharge flow path 500.
The muffler 50 is applicable to any of the muffler (10 in FIG. 1) constituting the upper compression mechanism 41 and the muffler (20 in FIG. 1) constituting the lower compression mechanism 42.
 第1流路部501および第2流路部502の断面積は、上述した式(I),(I´)を用いてそれぞれ定めることができる。 The cross-sectional areas of the first flow passage portion 501 and the second flow passage portion 502 can be respectively determined using the above-described formulas (I) and (I ').
 第1流路部501の数および第2流路部502の数が多いので、第1流路部501と第2流路部502とが周方向D1に隣り合う箇所の数も多い。そのため、本例によれば、第1、第2流路部501,502からそれぞれ流出して合流する冷媒の圧力波の干渉により、効率よく脈動を低減することができる。 Since the number of first flow path portions 501 and the number of second flow path portions 502 are large, the number of portions where the first flow path portion 501 and the second flow path portion 502 are adjacent in the circumferential direction D1 is also large. Therefore, according to the present embodiment, it is possible to efficiently reduce the pulsation due to the interference of the pressure waves of the refrigerant flowing out and joining the first and second flow path portions 501 and 502, respectively.
 本例では、断面積の異なる2種類の第2流路部502(A),502(B)が存在する。これら第2流路部502(A),502(B)の断面積は、異なる周波数に対応して、上述した式(I),(I´)によりそれぞれ定めることができる。 In this example, there are two types of second flow path portions 502 (A) and 502 (B) having different cross-sectional areas. The cross-sectional area of these 2nd flow-path part 502 (A), 502 (B) can each be defined by Formula (I), (I ') mentioned above corresponding to a different frequency.
 図7は、本発明の別の変形例に係るマフラ60を示している。
 マフラ60は、マフラ本体11と、回転軸3と同心円の円筒状の流路壁62とを備えている。軸受部6Bの外周部には、軸方向に延びる複数の溝6Cが窪んで形成されている。これらの溝6Cの存在により、軸受部6Bと流路壁62との間の吐出流路600は、相対的に断面積が小さい複数の第1流路部601と、相対的に断面積が大きい複数の第2流路部602とを有している。
 第1流路部601および第2流路部602の断面積は、上述した式(I),(I´)を用いてそれぞれ定めることができる。
 複数の溝6Cの深さや幅を変えることにより、複数の第2流路部602の相互の間で断面積を異ならせて、複数の周波数の脈動成分に対応することができる。
FIG. 7 shows a muffler 60 according to another variant of the invention.
The muffler 60 includes a muffler main body 11 and a cylindrical flow path wall 62 concentric with the rotation shaft 3. A plurality of grooves 6 </ b> C extending in the axial direction are formed to be recessed in the outer peripheral portion of the bearing portion 6 </ b> B. Due to the presence of these grooves 6C, the discharge flow passage 600 between the bearing portion 6B and the flow passage wall 62 has a relatively large cross-sectional area with the plurality of first flow passage portions 601 having a relatively small cross-sectional area. A plurality of second flow path portions 602 are provided.
The cross-sectional areas of the first flow passage portion 601 and the second flow passage portion 602 can be respectively determined using the above-described formulas (I) and (I ').
By changing the depths and widths of the plurality of grooves 6C, the cross-sectional areas of the plurality of second flow path portions 602 can be made different from one another to cope with pulsation components of a plurality of frequencies.
 図8は、本発明のさらに別の変形例に係るマフラ70を示している。
 マフラ70は、マフラ本体11と、回転軸3と同心円の略円筒状の流路壁72と、流路壁72と軸受部6Bとの間の吐出流路700とを備えている。流路壁72は、周方向の一部において径方向外側に突出している突出部721と、突出部721以外の部分である円弧部722とを有している。複数の突出部721と、複数の円弧部722とが流路壁72の周方向において交互に配置されている。
 互いに対向する壁721A,721Bが近接した状態で折り返すように形成されている突出部721の内側に、吐出流路700の第1流路部701が存在する。
 円弧部722の内周部と軸受部6Bの外周部との間に、吐出流路700の第2流路部702が存在する。
 円弧部722と軸受部6Bとの間の間隔が、第1実施形態の第1壁部121と軸受部6Bとの間の間隔よりも広いため、第2流路部702の断面積の方が、第1流路部701の断面積よりも大きい。
 上述した式(I),(I´)を用いて第1流路部701および第2流路部702の断面積をそれぞれ定めることにより、第1、第2流路部701,702からそれぞれ流出して合流する冷媒の圧力波の干渉により、効率よく脈動を低減することができる。
 複数の突出部721の突出する長さや、壁721A,721Bの間隔を変えることにより、複数の第2流路部702の相互の間で断面積を異ならせて、複数の周波数の脈動成分に対応することができる。
FIG. 8 shows a muffler 70 according to yet another variant of the invention.
The muffler 70 includes a muffler main body 11, a substantially cylindrical flow path wall 72 concentric with the rotation shaft 3, and a discharge flow path 700 between the flow path wall 72 and the bearing portion 6B. The flow path wall 72 has a protruding portion 721 protruding radially outward in a part of the circumferential direction, and an arc portion 722 which is a portion other than the protruding portion 721. A plurality of protrusions 721 and a plurality of arcs 722 are alternately arranged in the circumferential direction of the flow path wall 72.
The first flow path portion 701 of the discharge flow path 700 exists inside the projecting portion 721 which is formed so as to be folded back in a state in which the walls 721A and 721B facing each other are close to each other.
The second flow passage portion 702 of the discharge flow passage 700 is present between the inner circumferential portion of the arc portion 722 and the outer circumferential portion of the bearing portion 6B.
Since the distance between the arc portion 722 and the bearing portion 6B is wider than the distance between the first wall portion 121 and the bearing portion 6B in the first embodiment, the cross-sectional area of the second flow path portion 702 is And the cross-sectional area of the first channel portion 701.
By respectively determining the cross-sectional areas of the first flow channel portion 701 and the second flow channel portion 702 using the formulas (I) and (I ') described above, the flow out from the first and second flow channel portions 701 and 702 respectively The pulsations can be efficiently reduced by the interference of the pressure waves of the joining refrigerant.
The cross-sectional areas of the plurality of second flow path portions 702 are made different from each other by changing the protruding lengths of the plurality of protruding portions 721 and the distance between the walls 721A and 721B, and the pulsating components of the plurality of frequencies are handled. can do.
 上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。 In addition to the above, the configurations described in the above embodiment can be selected or changed to other configurations as appropriate without departing from the spirit of the present invention.
 本発明における吐出流路の第1流路部は、必ずしも、回転軸3と同心円の円弧状に形成されている必要はない。また、複数の第1流路部の相互の間で、断面積が異なっていてもよい。第1流路部は、回転軸3あるいは軸受部6Bとの間に、第2流路部に比べて狭い隙間を形成していれば足りる。
 また、回転軸3の周方向D1において、第1流路部と第2流路部とが必ずしも交互に配置されている必要はない。例えば、図6に示す構成において、第2流路部502Aの隣に、第2流路部502Aとは断面積の異なる第2流路部502Bが位置していることも許容される。
 その他、吐出流路の第1流路部および第2流路部の各々の断面積や配置等は、低減させたい周波数f、流路長x、圧縮機の性能、および脈動低減効果等に応じて、式(I),(I´)を用いて適宜に設定することができる。
The first flow passage portion of the discharge flow passage in the present invention does not necessarily have to be formed in an arc shape concentric with the rotation shaft 3. In addition, the cross-sectional area may be different among the plurality of first flow path portions. It is sufficient for the first flow passage portion to form a narrow gap with the rotation shaft 3 or the bearing portion 6B as compared to the second flow passage portion.
Moreover, in the circumferential direction D1 of the rotating shaft 3, it is not necessary to necessarily arrange the first flow passage portion and the second flow passage portion alternately. For example, in the configuration shown in FIG. 6, it is also allowed that a second flow passage portion 502B having a cross-sectional area different from that of the second flow passage portion 502A is located next to the second flow passage portion 502A.
In addition, the cross-sectional area and arrangement of each of the first flow path portion and the second flow path portion of the discharge flow path are the frequency f to be reduced, the flow path length x 0 , the performance of the compressor, and the pulsation reduction effect Accordingly, it can be set appropriately using formulas (I) and (I ').
 本発明における吐出流路は、必ずしも、回転軸3の周方向D1の全周に亘り連続している必要はない。マフラの流路壁12は、周方向D1の一部で軸受部6Bの外周部に接触していてもよい。
 また、第1流路部と第2流路部との境界に仕切りが配置されていてもよい。この場合、第1流路部と第2流路部とが仕切りを介して隣接している。この場合も、仕切りにより区分される第1、第2流路部の各々の断面積を式(I),(I´)を用いて定めることができる。
 特に、図6に示す構成のように第2流路部の数が多い場合には、仕切りを設けると成形が容易となる。
The discharge flow path in the present invention does not necessarily have to be continuous over the entire circumference of the rotation shaft 3 in the circumferential direction D1. The flow passage wall 12 of the muffler may be in contact with the outer peripheral portion of the bearing portion 6B in a part of the circumferential direction D1.
Moreover, a partition may be arrange | positioned in the boundary of a 1st flow-path part and a 2nd flow-path part. In this case, the first flow passage portion and the second flow passage portion are adjacent to each other via the partition. Also in this case, the cross-sectional area of each of the first and second flow path sections divided by the partition can be determined using the formulas (I) and (I ').
In particular, in the case where the number of second flow path portions is large as in the configuration shown in FIG.
 本発明の圧縮機に搭載される圧縮機構は、ツインロータリー式の圧縮機構4には限らず、1組のシリンダおよびピストンロータ、並びにマフラを有するシングルロータリー式の圧縮機構であってもよい。
 また、本発明の圧縮機の動力源としては、モータ以外、例えば、エンジン等も許容される。
The compression mechanism mounted on the compressor of the present invention is not limited to the twin rotary compression mechanism 4 but may be a single rotary compression mechanism having a pair of cylinders and piston rotors and a muffler.
Moreover, as a power source of the compressor of the present invention, for example, an engine or the like other than a motor is acceptable.
1    圧縮機
2    モータ
2A   ステータ
2B   ロータ
2C   コイル
3    回転軸
3A   主軸部
3B   上部クランクピン
3C   下部クランクピン
4    圧縮機構
4A   仕切板
5    ハウジング
5A   吐出管
6    上部軸受
6A   突当て部
6B   軸受部
6C   溝
7    下部軸受
7A   突当て部
7B   軸受部
8,9  配管
10   上部マフラ
10A  開口
11   マフラ本体
11B  ボルト
12   流路壁
20   下部マフラ
21   マフラ本体
22   流路壁
30   マフラ
302A,302B,302C   第2流路部
41   上部圧縮機構
42   下部圧縮機構
50   マフラ
501  第1流路部
502,502A,502B   第2流路部
60   マフラ
62   流路壁
70   マフラ
72   流路壁
100  吐出流路
101  第1流路部
102  第2流路部
111  内周端
112  湾曲部
121  第1壁部
122  第2壁部
122A 一端
122B 頂部
122C 他端
200  吐出流路
411  上部ピストンロータ
412  上部シリンダ
421  下部ピストンロータ
422  下部シリンダ
500  吐出流路
600  吐出流路
601  第1流路部
602  第2流路部
700  吐出流路
701  第1流路部
702  第2流路部
721  突出部
722  円弧部
D1   回転軸の周方向
DESCRIPTION OF SYMBOLS 1 compressor 2 motor 2A stator 2B rotor 2C coil 3 rotating shaft 3A spindle part 3B upper crank pin 3C lower crank pin 4 compression mechanism 4A partition plate 5 housing 5A discharge pipe 6 upper bearing 6A abutment part 6B bearing part 6C groove 7 lower part Bearing 7A Abutment portion 7B Bearing portion 8, 9 Piping 10 Upper muffler 10A Opening 11 Muffler main body 11B Bolt 12 Flow path wall 20 Lower muffler 21 Muffler main body 22 Flow path wall 30 Muffler 302A, 302B, 302C Second flow path portion 41 Upper part Compression mechanism 42 Lower compression mechanism 50 muffler 501 first flow passage portion 502, 502A, 502B second flow passage portion 60 muffler 62 flow passage wall 70 muffler 72 flow passage wall 100 discharge flow passage 101 first flow passage portion 102 second flow Road portion 111 Inner circumferential end 112 Curved portion 121 first wall 122 second wall 122A one end 122B top 122C other end 200 discharge passage 411 upper piston rotor 412 upper cylinder 421 lower piston rotor 422 lower cylinder 500 discharge passage 600 discharge passage 601 first passage portion 602 Second flow path portion 700 Discharge flow path 701 First flow path portion 702 Second flow path portion 721 Protrusive portion 722 Arc portion D1 Circumferential direction of rotation shaft

Claims (12)

  1.  回転される回転軸と、
     前記回転軸に設けられるピストンロータおよび前記ピストンロータが配置されるシリンダを有するロータリー式の圧縮機構と、
     前記回転軸の軸周りに配置されるマフラと、を備え、
     前記マフラは、
     前記圧縮機構により圧縮された流体を内側に受け入れるマフラ本体と、
     前記回転軸または前記回転軸の軸周りに位置する軸受部との間に、前記回転軸の軸方向に沿って前記マフラの外部へと前記流体を流出させる所定の長さの吐出流路を形成する流路壁と、を備え、
     前記吐出流路は、
     前記回転軸の周方向の一部に位置する第1流路部と、
     前記周方向において前記第1流路部に隣接し、かつ、前記回転軸の径方向における寸法が前記第1流路部よりも大きく、前記第1流路部よりも断面積が大きい第2流路部と、を有する、
    ことを特徴とするロータリー圧縮機。
    A rotating shaft that is rotated,
    A rotary type compression mechanism having a piston rotor provided on the rotary shaft and a cylinder on which the piston rotor is disposed;
    And a muffler disposed around the axis of the rotation axis,
    The muffler is
    A muffler body for receiving the fluid compressed by the compression mechanism inside;
    Between the rotary shaft or a bearing portion positioned around the rotary shaft, a discharge flow passage of a predetermined length is formed to allow the fluid to flow out of the muffler along the axial direction of the rotary shaft. A flow passage wall, and
    The discharge channel is
    A first flow passage portion positioned in a part of a circumferential direction of the rotation shaft;
    A second flow adjacent to the first flow passage in the circumferential direction and having a dimension in the radial direction of the rotation axis larger than that of the first flow passage and larger in cross-sectional area than the first flow passage And a road section,
    A rotary compressor characterized by
  2.  前記吐出流路は、複数の前記第2流路部を有する、
    ことを特徴とする請求項1に記載のロータリー圧縮機。
    The discharge flow path includes a plurality of the second flow path portions.
    The rotary compressor according to claim 1, characterized in that:
  3.  複数の前記第2流路部の各々の断面積は、互いに相違している、
    ことを特徴とする請求項2に記載のロータリー圧縮機。
    The cross-sectional area of each of the plurality of second flow path portions is different from each other,
    The rotary compressor according to claim 2, characterized in that:
  4.  前記吐出流路は、
     前記回転軸の軸周りの全周に亘り形成されており、
     前記周方向において交互に配置される複数の前記第1流路部と複数の前記第2流路部とを有する、
    ことを特徴とする請求項2に記載のロータリー圧縮機。
    The discharge channel is
    It is formed over the entire circumference around the axis of the rotation axis,
    The plurality of first flow path portions and the plurality of second flow path portions alternately arranged in the circumferential direction
    The rotary compressor according to claim 2, characterized in that:
  5.  前記吐出流路は、
     前記回転軸の軸周りの全周に亘り形成されており、
     前記周方向において交互に配置される複数の前記第1流路部と複数の前記第2流路部とを有する、
    ことを特徴とする請求項3に記載のロータリー圧縮機。
    The discharge channel is
    It is formed over the entire circumference around the axis of the rotation axis,
    The plurality of first flow path portions and the plurality of second flow path portions alternately arranged in the circumferential direction
    The rotary compressor according to claim 3, characterized in that:
  6.  前記第2流路部を形成する前記流路壁の部分は、断面略C字状または断面略V字状に形成されている、
    ことを特徴とする請求項1から5のいずれか一項に記載のロータリー圧縮機。
    The portion of the flow path wall that forms the second flow path portion is formed to have a substantially C-shaped cross section or a substantially V-shaped cross section.
    The rotary compressor according to any one of claims 1 to 5, characterized in that.
  7.  回転される回転軸と、
     前記回転軸に設けられるピストンロータおよび前記ピストンロータが配置されるシリンダを有するロータリー式の圧縮機構と、
     前記回転軸の軸周りに配置されるマフラと、を備え、
     前記マフラは、
     前記圧縮機構により圧縮された流体を内側に受け入れるマフラ本体と、
     前記回転軸または前記回転軸の軸周りに位置する軸受部との間に、前記回転軸の軸方向に沿って前記マフラの外部へと前記流体を流出させる所定の長さの吐出流路を形成する流路壁と、を備え、
     前記吐出流路は、
     前記回転軸の周方向の一部に位置する第1流路部と、
     前記第1流路部よりも断面積が大きい第2流路部と、を有し、
     前記第1流路部が、前記第2流路部から径方向外側に突出している、
    ことを特徴とするロータリー圧縮機。
    A rotating shaft that is rotated,
    A rotary type compression mechanism having a piston rotor provided on the rotary shaft and a cylinder on which the piston rotor is disposed;
    And a muffler disposed around the axis of the rotation axis,
    The muffler is
    A muffler body for receiving the fluid compressed by the compression mechanism inside;
    Between the rotary shaft or a bearing portion positioned around the rotary shaft, a discharge flow passage of a predetermined length is formed to allow the fluid to flow out of the muffler along the axial direction of the rotary shaft. A flow passage wall, and
    The discharge channel is
    A first flow passage portion positioned in a part of a circumferential direction of the rotation shaft;
    And a second flow passage portion having a cross-sectional area larger than that of the first flow passage portion,
    The first channel portion protrudes radially outward from the second channel portion.
    A rotary compressor characterized by
  8.  前記吐出流路の長さをx
     前記第1流路部における前記流体の流速をv
     前記第2流路部における前記流体の流速のvに対する流速比をα、
     所定の周波数をf、と置くと、
     nが自然数であるとして、
     α=n(v/2fx)+1
    が成立する、
    ことを特徴とする請求項1から5、7のいずれか一項に記載のロータリー圧縮機。
    The length of the discharge channel is x 0 ,
    The flow velocity of the fluid in the first channel portion is v 1 ,
    The flow velocity ratio of the flow velocity of the fluid in the second flow passage to v 1 is α,
    If you set the predetermined frequency f,
    Assuming that n is a natural number,
    α = n (v 1 / 2fx 0 ) +1
    Is established,
    The rotary compressor according to any one of claims 1 to 5, 7 characterized in that.
  9.  前記吐出流路の長さをx
     前記第1流路部における前記流体の流速をv
     前記第2流路部における前記流体の流速のvに対する流速比をα、
     所定の周波数をf、と置くと、
     nが自然数であるとして、
     α=n(v/2fx)+1
    が成立する、
    ことを特徴とする請求項6に記載のロータリー圧縮機。
    The length of the discharge channel is x 0 ,
    The flow velocity of the fluid in the first channel portion is v 1 ,
    The flow velocity ratio of the flow velocity of the fluid in the second flow passage to v 1 is α,
    If you set the predetermined frequency f,
    Assuming that n is a natural number,
    α = n (v 1 / 2fx 0 ) +1
    Is established,
    The rotary compressor according to claim 6, characterized in that:
  10.  前記第1流路部および前記第2流路部からそれぞれ流出した前記流体の圧力変動が干渉して打ち消し合う、
    ことを特徴とする請求項1から5、7のいずれか一項に記載のロータリー圧縮機。
    Pressure fluctuations of the fluid respectively flowing out from the first flow path portion and the second flow path portion interfere and cancel each other,
    The rotary compressor according to any one of claims 1 to 5, 7 characterized in that.
  11.  前記第1流路部および前記第2流路部からそれぞれ流出した前記流体の圧力変動が干渉して打ち消し合う、
    ことを特徴とする請求項6に記載のロータリー圧縮機。
    Pressure fluctuations of the fluid respectively flowing out from the first flow path portion and the second flow path portion interfere and cancel each other,
    The rotary compressor according to claim 6, characterized in that:
  12.  前記第1流路部および前記第2流路部からそれぞれ流出した前記流体の圧力変動が干渉して打ち消し合う、
    ことを特徴とする請求項9に記載のロータリー圧縮機。
    Pressure fluctuations of the fluid respectively flowing out from the first flow path portion and the second flow path portion interfere and cancel each other,
    The rotary compressor according to claim 9, characterized in that:
PCT/JP2017/010498 2016-04-21 2017-03-15 Rotary compressor WO2017183367A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780007733.XA CN108496009A (en) 2016-04-21 2017-03-15 Rotary compressor
EP17785709.1A EP3399193A4 (en) 2016-04-21 2017-03-15 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-084924 2016-04-21
JP2016084924A JP6683532B2 (en) 2016-04-21 2016-04-21 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2017183367A1 true WO2017183367A1 (en) 2017-10-26

Family

ID=60116029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010498 WO2017183367A1 (en) 2016-04-21 2017-03-15 Rotary compressor

Country Status (4)

Country Link
EP (1) EP3399193A4 (en)
JP (1) JP6683532B2 (en)
CN (1) CN108496009A (en)
WO (1) WO2017183367A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176691A (en) * 1996-12-17 1998-06-30 Daikin Ind Ltd Rotary compressor
JP2006214376A (en) * 2005-02-04 2006-08-17 Daikin Ind Ltd Muffler structure for compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202001312U (en) * 2011-04-19 2011-10-05 上海日立电器有限公司 Silencer for rotary compressor
JP6148993B2 (en) * 2014-02-21 2017-06-14 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176691A (en) * 1996-12-17 1998-06-30 Daikin Ind Ltd Rotary compressor
JP2006214376A (en) * 2005-02-04 2006-08-17 Daikin Ind Ltd Muffler structure for compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399193A4 *

Also Published As

Publication number Publication date
JP6683532B2 (en) 2020-04-22
CN108496009A (en) 2018-09-04
EP3399193A4 (en) 2018-12-12
EP3399193A1 (en) 2018-11-07
JP2017194016A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2018037906A1 (en) Compressor
WO2022092290A1 (en) Rotary compressor
JP6147605B2 (en) Compressor
JPH0581758B2 (en)
WO2017183367A1 (en) Rotary compressor
JP6130642B2 (en) Compressor
KR102083966B1 (en) A compressor
WO2017073019A1 (en) Rotary compressor
JP2007056680A (en) Rotary compressor
JP6130748B2 (en) Scroll compressor
JP6974769B2 (en) Compressor
JP4438886B2 (en) Rotary fluid machine
JP2014214736A (en) Scroll fluid machine
WO2022259358A1 (en) Scroll compressor
JP4911147B2 (en) Muffler member and compressor provided with the muffler member
JP2007056860A (en) Rotary compressor
JP4745044B2 (en) Gas compressor
JP2009191845A (en) Compressor
JP5664380B2 (en) Rotary compressor
JP2007016681A (en) Rotary compressor
JP2007056859A (en) Rotary compressor
JP2007016771A (en) Rotary compressor
JP2000199488A (en) Gas compressor
JP2007016772A (en) Rotary compressor
JPH06147176A (en) Closed motor compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017785709

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017785709

Country of ref document: EP

Effective date: 20180803

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE