WO2017183110A1 - Biogas production method and device - Google Patents

Biogas production method and device Download PDF

Info

Publication number
WO2017183110A1
WO2017183110A1 PCT/JP2016/062383 JP2016062383W WO2017183110A1 WO 2017183110 A1 WO2017183110 A1 WO 2017183110A1 JP 2016062383 W JP2016062383 W JP 2016062383W WO 2017183110 A1 WO2017183110 A1 WO 2017183110A1
Authority
WO
WIPO (PCT)
Prior art keywords
life cycle
biogas
carbon source
yeast
wickerhamomyces
Prior art date
Application number
PCT/JP2016/062383
Other languages
French (fr)
Japanese (ja)
Inventor
栄城 米澤
Original Assignee
株式会社ヨネクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨネクニ filed Critical 株式会社ヨネクニ
Priority to JP2018512683A priority Critical patent/JP6579534B2/en
Priority to PCT/JP2016/062383 priority patent/WO2017183110A1/en
Publication of WO2017183110A1 publication Critical patent/WO2017183110A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method for producing biogas from plant biomass using fungi.
  • the present invention relates to an apparatus and method for producing biogas from plant biomass using imperfect bacteria belonging to the genus Wickerhamomyces.
  • ethanol is obtained in a cycle as shown in the upper diagram of FIG.
  • a 1st process the delignification process is performed with respect to woody with a physical and chemical method with a solid phase, and the cellulose which is easy to process is obtained.
  • a 2nd process a strong acid is added and hydrolyzed with respect to a cellulose, and glucose is obtained. Since the hydrolysis is performed by adding a strong acid, the treatment state becomes a liquid phase at this stage.
  • yeast is seeded using liquid phase glucose as a base material and subjected to alcohol fermentation to obtain an alcohol-containing fermentation broth. This state also remains a liquid phase.
  • ethanol is obtained in a cycle as shown in the lower diagram of FIG.
  • the delignification process is performed with respect to woody with a physical and chemical method with a solid phase, and the cellulose which is easy to process is obtained.
  • cellulose ⁇ -1,4-glucan
  • cellulose is further decomposed by adding physical / chemical treatment to cellulose.
  • there can be various methods such as a method of applying ozone water, a method of applying supercritical water, and a method of explosion. It becomes a liquid phase at this stage.
  • glucose is obtained using cellulase, which is a kind of enzyme, using treated cellulose ( ⁇ -1,4-glucan) as a base material.
  • Cellulase is an enzyme that hydrolyzes the glycosidic bond of cellulose ( ⁇ -1,4-glucan) and can obtain glucose.
  • This stage also remains in the liquid phase.
  • yeast is seed
  • ethanol production efficiency can be further increased by further fermenting basidiomycetes belonging to the genus Phlebia together with a carbon source and performing ethanol fermentation using the carbon source as a substrate. Disclosure.
  • the conventional acid hydrolysis and enzymatic saccharification methods require multiple physical and chemical processes, as well as biodegradation processes of enzymes and yeast fermentation processes. It was known as a method for obtaining bioethanol from wood. In addition, there are few reports on how to obtain bioethanol from woody materials such as thinned wood using fungi.
  • the acid hydrolysis method for producing ethanol using the lignocellulosic biomass resource as a raw material the enzymatic saccharification method, and the method disclosed in WO2012 / 2164990 in the above-mentioned conventional technology have the following problems. there were.
  • the conventional acid hydrolysis method has the following problems.
  • the conventional acid hydrolysis method it is necessary to subject the wood to delignification by a physical / chemical method as the first step.
  • this delignification treatment is not easy and costly. It requires energy for chemical and chemical treatment.
  • the conventional acid hydrolysis method as a second step, it is necessary to add a strong acid to the cellulose to hydrolyze.
  • the hydrolysis by the addition of the strong acid is costly, and physical / chemical The process requires energy, and physical and chemical costs are required to treat the strong acid after the reaction.
  • glucose may be decomposed with a strong acid.
  • the conventional enzymatic saccharification method has the following problems.
  • the conventional enzymatic saccharification method as a first step, it is necessary to perform delignification treatment on wood by a physical / chemical method.
  • this delignification treatment is not easy and costly. And requires energy for physical and chemical treatment.
  • the conventional enzymatic saccharification method as a second step, it is necessary to add a physical / chemical treatment to cellulose to obtain a cellulose that has been further decomposed. Both the method of acting and the method of blasting require physical and chemical costs, and the reaction kettle and processing equipment are special and the manufacturing equipment is also expensive.
  • the method described in WO2012 / 2164990 which obtains bioethanol directly from a woody material using basidiomycetes belonging to the genus Phlebia, has the following problems.
  • the method of directly obtaining bioethanol from wood using basidiomycetes belonging to the genus Phlebia does not involve physical and chemical treatments that are essential procedures for conventional acid hydrolysis and enzymatic saccharification methods. Is a remarkable technology.
  • the method of obtaining bioethanol directly from wood using basidiomycetes belonging to the genus Phlebia is that the phase in which basidiomycetes produce bioethanol is a liquid phase. Ethanol is highly hydrophilic, and once it is in a liquid phase, it cannot be isolated without a physical distillation step. The distillation process caused an increase in cost and energy.
  • the problem of isolating ethanol from liquid-phase bioethanol is a problem common to the acid hydrolysis method and enzymatic saccharification method described above.
  • basidiomycete which belongs to Phlebia genus, and the combination of the wood which can be utilized.
  • saccharides that can be used as a carbon source include hexoses such as glucose, mannose, galactose and fructose, monosaccharides such as pentoses such as xylose and arabinose, and disaccharides such as cellobiose.
  • the plant biomass material is not particularly limited.
  • basidiomycetes are so-called mushrooms, and it is widely known that mushrooms grow by type and the types of parasitic wood are limited.
  • Mushrooms are cultivated in raw wood cultivation using compatible wood logs or in fungus bed cultivation using a fungus bed and rice bran mixed with nutrient sources such as bran and rice bran Therefore, it is considered that compatibility with so-called trees and fungus beds which are pulverized products is good.
  • mushrooms are parasitic on well-matched trees, in general, only a few mushrooms are said to grow in bamboo, cedar and cypress forests. In recent years, invasion of bamboo into economic forests has become a problem, but bamboo is said to be incompatible with basidiomycetes.
  • the bioethanol production method using plant biomass using basidiomycetes belonging to the genus Phlebia as a raw material may limit the types of plant biomass that can be used.
  • Non-Patent Document 1 discloses bioethanol production using Wickerhamomyces anomalus. From the viewpoint of the disclosed production process, as a first process, a carbon source is hydrolyzed to convert cellulose and the like into glucose. It is premised on the process of decomposing, and enormous amounts of energy and chemicals are required, and the process is in the liquid phase.
  • Non-Patent Document 1 is a method in which Wickerhamomyces anomalus is seeded on glucose and fermented with ethanol. The process of producing ethanol from glucose is known as a fermentation means using other bacteria such as yeast, and the use of Wickerhamomyces anomalus in Non-Patent Document 1 is only an alternative means of producing ethanol from glucose. There is nothing.
  • the nonpatent literature 1 presupposes the hydrolysis process of the carbon source in a liquid phase
  • the utilization stage of Wickerhamomyces anomalus is also a liquid phase.
  • Ethanol is highly hydrophilic, and once it is in a liquid phase, it cannot be isolated without a physical distillation step. The distillation process increases costs and energy.
  • Non-Patent Document 2 the overall purpose is ethanol fermentation from wheat straw, but the part where Wickerhamomyces is involved is how to preserve the carbon source of wheat straw that can be harvested in large quantities before the winter season. It is a preservation process, and it is not involved at all in the fermentation process for producing ethanol from wheat straw as a carbon source.
  • winter preservation using Wickerhamomyces anomalus called ISP treatment is performed, but in the spring, Wickerhamomyces anomalus is separated and removed before ethanol fermentation.
  • Ethanol fermentation itself consists of acid treatment, It is fermentation by decomposition treatment and DUET enzyme seeding in liquid phase, Wickerhamomyces anomalus is not involved in fermentation, and fermentation itself is fermentation in liquid phase.
  • the present invention has been made in view of the above problems, and is a plant biomass that is used as a raw material in a form that does not involve physical and chemical treatment, which is an essential procedure in conventional acid hydrolysis methods and enzymatic saccharification methods.
  • the objective is to obtain biogas such as ethanol and ethyl acetate directly from
  • the present invention aims at generating biogas from plant biomass and recovering it from the solid phase in the gas phase, and in the liquid phase as in the conventional acid hydrolysis method, enzymatic saccharification method and non-patent literature.
  • the purpose is to reduce the recovery cost by recovering the biogas in the gas phase directly from the solid-state carbon source.
  • the inventor of the genus Wickerhamomyces has not only cellulose-degrading ability, lignin-degrading ability, and polysaccharide saccharification ability, but also ability to produce ethanol from sugar, and further produces ethyl acetate via ethanol. I found that I have the ability to do. In general, this incomplete bacterium of the genus Wickerhamomyces is known to rot processed foods, and various studies and reports have been made on control methods for suppressing growth. However, the present inventor has developed and constructed for the first time a technology that makes effective use of this bacterium, generates a useful biogas in various phases using solid biomass, and easily recovers it.
  • the biogas production method of the present invention is a biogas production method including a biogas production step of producing biogas by culturing an incomplete bacterium belonging to the genus Wickerhamomyces together with a carbon source, and belongs to the genus Wickerhamomyces
  • An incomplete bacterium transitions between a life cycle of a filamentous fungus basidiomycetous life cycle and a life cycle different from a yeast-like life cycle, and the biogas generation step converts the incomplete bacterium belonging to the genus Wickerhamomyces to a filamentous fungus basidiomycetes
  • the glucose in the solid state generated from the carbon source in the solid state is decomposed to produce methanol, ethanol, any of their esters, or
  • a second step of generating a biogas wherein the filamentous basidiomycetous life cycle and the yeast-like life cycle of the incomplete bacterium belonging to the genus Wickerhamomyces are transitioned in the first step and the second step.
  • Biogas is generated by using the carbon source as a material through the first step and the second step, and further, the first step and the second step are continuously repeated alternately. In the process, the biogas in the gas phase can be produced directly from the carbon source in the solid phase without going through the liquid phase.
  • the condition for transition from the first step to the second step is a yeast-like life cycle activity condition for activating the yeast-like life cycle of an incomplete bacterium belonging to the genus Wickerhamomyces
  • the condition for transition from the step 2 to the first step is a filamentous fungus basidiomycetous life cycle activation condition for activating the filamentous fungus basidiomycetous life cycle of the incomplete bacterium belonging to the genus Wickerhamomyces
  • the yeast-like life cycle activity conditions are normal temperature and anaerobic conditions
  • the filamentous fungi-like life cycle activity conditions are normal temperature and aerobic conditions.
  • the above biogas production method realizes solid phase fermentation.
  • Solid-phase fermentation is a process in which the carbon source is a powder or crushed solid phase, and the biogas generation step generates biogas in a gas phase from a solid-state carbon source. It is a fermentation that generates biogas directly from a carbon source.
  • Various technical effects can be obtained by realizing the solid-phase fermentation technique using incomplete bacteria belonging to the genus Wickerhamomyces.
  • the first technical effect of the solid-phase fermentation technology is the elimination of adverse effects on the fermentation cycle caused by alcohol components produced during the production process, which can be an inhibiting factor of the fermentation cycle.
  • the alcohol component produced in the production process has a high bactericidal power.
  • the alcohol component dissolves in the liquid due to its high hydrophilicity and is present in the system. Therefore, if the alcohol concentration exceeds the growth limit of the bacteria, the growth of the bacteria may be suppressed. .
  • alcohols harmful to the bacteria do not move to the liquid phase, but volatilize directly from the solid phase carbon source and are discharged out of the system as a gas phase. It is not a factor that inhibits the fermentation of fungi.
  • the second technical effect of the solid phase fermentation technique is a reduction in the recovery cost of the alcohol component and ester component.
  • the upper limit of the concentration of alcohol that can be produced is about 15%, and a concentration step such as distillation is essential for industrial use.
  • the solid state fermentation technique of the present invention is used, the fermentation product is produced in a gaseous state, so that it can be directly concentrated and liquefied easily by an aggregating device such as a cooling trap.
  • an aggregating device such as a cooling trap.
  • the cooling temperature even if the biogas is produced in the mixed state of alcohol component and ester component, the advantage is that it can be easily selectively concentrated for each target component by setting the temperature of the aggregator such as a cooling trap. There is also.
  • the incomplete bacterium belonging to the genus Wickerhamomyces is a bacterium that exists in nature, but no solid-phase fermentation of alcohols and esters from a carbon source as in the present invention has been reported.
  • incomplete bacteria belonging to the genus Wickerhamomyces basically have a slow growth rate, but they cannot catch up with the growth of lactic acid bacteria, which are universal resident bacteria.
  • the growth rate is inevitably inferior, and the incomplete bacteria belonging to the genus Wickerhamomyces are inhibited by fermentation products such as lactic acid, so the potential of the incomplete bacteria belonging to the genus Wickerhamomyces is fully active. It is thought that it was not made.
  • imperfect bacteria belonging to the genus Wickerhamomyces can fully exert glucose production reactions and alcohol / ester production reactions while transitioning between the filamentous fungi-like life cycle and the yeast-like life cycle.
  • the conditions and environment did not match naturally.
  • imperfect bacteria belonging to the genus Wickerhamomyces overcome lactic acid bacteria and proliferate predominately under a certain carbon source, the fungal basidiomycetous life cycle under aerobic conditions in the atmosphere After glucosylation of cellulose, there is no natural switching to anaerobic conditions, and imperfect bacteria belonging to the genus Wickerhamomyces do not transition to the yeast-like life cycle. This is probably because the portion changed to glucose was not further decomposed, or the change proceeded only very slowly.
  • the first first step may be started from an aerobic condition similarly to the first step repeatedly appearing thereafter, but there may be a device that starts from an anaerobic condition instead of starting from an aerobic condition. It is a device that artificially prevents lactic acid bacteria having a wide antibacterial spectrum mixed in a carbon source from proliferating predominately. That is, in the alternating repetition of the first step and the second step described above, in the first first step, the culture condition is not changed to the filamentous fungus-like basidiomycetous life cycle activity condition.
  • the yeast-like life cycle activity conditions are normal temperature and anaerobic conditions, suppress the growth of lactic acid bacteria mixed in the carbon source, and incomplete bacteria belonging to the genus Wickerhamomyces produce glucose from cellulose as the carbon source.
  • the life cycle is controlled to naturally transit to the yeast-like life cycle and to transit to the second step.
  • the filamentous fungus basidiomycetous life cycle at the time of transition to the first step thereafter Even under active conditions, that is, aerobic conditions, imperfect bacteria belonging to the genus Wickerhamomyces are sufficiently dominant, and fermentation can be continued without losing lactic acid bacteria.
  • switching from the first step to the second step is performed at an arbitrary timing after the rate of change of the cellulosic surface of the carbon source to glucose has passed the peak.
  • the switching from the second step to the first step may be performed at an arbitrary timing after the rate of change from glucose to biogas which is ethanol, ethyl acetate, or a mixture thereof passes the peak.
  • the carbon source in the biogas production apparatus of the present invention can widely use plant biomass materials including wood, rice straw, bamboo and the like. Lignocellulose-based plant biomass materials can be widely used. As will be described later, the inventor of the present invention uses the biogas production method of the present invention, so that biogas in a solid phase using bamboo flour, which is generally considered difficult to be fermented among plant biomass materials, as a carbon source. Generated successfully.
  • the biogas produced in the biogas production method of the present invention may include any of alcohols and esters thereof, volatile organic acids and esters thereof, or any combination thereof.
  • alcohols include methyl alcohol and ethyl alcohol.
  • caproic acid, caprylic acid, capric acid and the like can be generated as other alcohols such as butyl alcohol and amyl alcohol and volatile organic acids.
  • Esters may include the above-described alcohol esters and volatile organic acid esters.
  • ethanol has already attracted attention as a bioethanol fuel, and ethyl acetate gas is also in great demand as various industrial raw materials.
  • the present inventor as a material for realizing the biogas production method of the present invention, generates biogas from a carbon source, which includes imperfect bacteria belonging to the genus Wickerhamomyces and a carrier carrying the imperfect bacteria belonging to the genus Wickerhamomyces We have also succeeded in producing an inoculum for this purpose.
  • the biogas generating apparatus of the present invention is preferably an apparatus that can be controlled so as to maintain the culture conditions of the incomplete bacteria belonging to the genus Wickerhamomyces described above.
  • a culture tank for culturing the carbon source and the incomplete bacteria belonging to the genus Wickerhamomyces sowed on the carbon source and the culture conditions of the culture tank are the yeast-like life cycle activity condition and the filamentous fungus basidiomycete It is assumed that culture condition setting means that can be switched under the fungus-like life cycle activity conditions and biogas recovery means that recovers the generated biogas are provided.
  • a configuration with a carbon source stirring device is also preferred.
  • an incomplete bacterium belonging to the genus Wickerhamomyces is effectively used, and various biomass is used to decompose and ferment useful biogas in a solid phase, Can be generated and easily recovered. Since it decomposes and ferments in the solid phase, the carbon source is used as a solid phase carbon source such as powder or crushed material, and the biogas generation process generates biogas in the gas phase directly from the solid state carbon source. Therefore, it is possible to generate a biogas in a gas phase directly from a carbon source in a solid phase without going through a liquid phase.
  • Solid-phase fermentation eliminates adverse effects on the fermentation cycle caused by alcohol components generated in the biogas production process, and even when biogas is produced in a mixed state of alcohol and ester components, agglomerates such as cooling traps Selective concentration can be easily performed for each target component by setting the temperature of the apparatus.
  • the present invention controls the activity of imperfect bacteria belonging to the genus Wickerhamomyces, controls the transition of the different life cycles of the filamentous fungi-like life cycle and the yeast-like life cycle, and performs solid-state fermentation using a carbon source as a raw material. It is possible to produce biogas containing alcohols and esters.
  • the incomplete bacterium belonging to the genus Wickerhamomyces used in the present invention can undergo the following solid-state fermentation cycle by transitioning between a life cycle of a filamentous fungus-like basidiomycetous life cycle and a yeast-like life cycle.
  • FIG. 1 illustrates the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces used in the biogas production method of the present invention.
  • the filamentous basidiomycete-like life cycle is easily expressed in a cellulose-rich state under aerobic conditions in the progress of decomposition of the carbon source, and the progress from cellulose to glucose to alcohols is promoted.
  • the life cycle tends to be expressed in a glucose-rich state under anaerobic conditions, and progresses from glucose to alcohols to esters.
  • the inventor has invented a method of transitioning between two life cycles of incomplete bacteria belonging to the genus Wickerhamomyces to advance the decomposition rate of the carbon source.
  • the generation of biogas should start from the filamentous basidiomycetous life cycle, as long as the decomposition of cellulose into glucose by the fungal basidiomycetous life cycle and the production of glucose to biogas by the yeast-like life cycle is performed. Biogas production can be seen when transitioning to a yeast-like life cycle.
  • the transition control from the filamentous basidiomycetous life cycle to the yeast-like life cycle and the transition control from the yeast-like life cycle to the filamentous basidiomycetous life cycle are artificially manipulated.
  • FIG. 2 simply shows the biogas production apparatus according to the first embodiment and the biogas production method of the present invention performed in the apparatus.
  • FIG. 2A simply shows the configuration of the biogas production apparatus 100 used in the present invention according to the first embodiment.
  • a solid phase carbon source can be appropriately charged by a carbon source charging means 120 with a culture tank 110 as a center.
  • the culture condition setting means 130 is provided and the culture conditions in the culture tank 110 can be controlled.
  • the culture condition is controlled by switching between the anaerobic condition and the aerobic condition, and the culture condition setting means 130 controls the valve 141 of the nitrogen supply means 140.
  • the biogas recovery means 160 is a device that receives the biogas such as methanol, ethanol, ethyl acetate, etc. in the gas phase generated from the cellulose through glucose through the culture tank 110, and recovers it in the gas phase. is there.
  • FIG. 2B shows how the first step and the second step are performed as the biogas production method of the present invention.
  • the first step is a step of culturing incomplete bacteria belonging to the genus Wickerhamomyces together with a solid-state carbon source to produce glucose from the carbon source cellulose.
  • incomplete bacteria belonging to the genus Wickerhamomyces are cultured to decompose the solid-phase glucose produced in the first step to decompose gas phase methanol and ethanol.
  • Producing biogas which is any of ethyl acetate or a mixture thereof.
  • the yeast-like life cycle activity condition that is, the inside of the culture tank 110 is maintained at room temperature and anaerobic conditions, so that nitrogen is supplied as necessary. Control of opening the valve 141 of the means 140 is performed to maintain an appropriate anaerobic condition.
  • the first first step is an example starting from anaerobic conditions. This is because lactic acid bacteria mixed in the carbon source may proliferate predominantly under aerobic conditions. Even under anaerobic conditions, an incomplete bacterium belonging to the genus Wickerhamomyces is producing yeast from cellulose as a carbon source, but it is a yeast-like life cycle activity condition, so that the filamentous basidiomycetous life cycle will eventually become yeast. It will naturally transition to the life cycle, and will transition to the second step.
  • FIG. 3 is a diagram showing a configuration of a laboratory instrument for verifying the biogas production method.
  • the flask for solid phase fermentation assumes a culture tank 110.
  • the flask for solid-phase fermentation encloses bamboo powder as a carbon source, nitrogen-distilled at 70 ° C. for 1 week, and seeded with imperfect bacteria belonging to the genus Wickerhamomyces.
  • the culture condition setting means 130 was omitted by manually operating the experimental instrument.
  • the oxygen cylinder imitates the oxygen supply means 150, and the nitrogen cylinder imitates the nitrogen supply means 140.
  • the oxygen cylinder used in the latter stage of the demonstration experiment is used when the inside of the flask for solid-phase fermentation assumed to be a culture tank is in an aerobic condition, but even an air cylinder into which sterilized air is introduced. good. Anaerobic conditions are maintained by supplying nitrogen gas from a nitrogen cylinder at 2 ml / min. Aerobic conditions are maintained by supplying oxygen gas or air from an oxygen or air cylinder at 2 ml / min.
  • the biogas recovery device 160 was replaced with a cool trap device.
  • the cool trap device is pre-cooled at ⁇ 20 ° C. in which a glass ball is put in a gas trap bottle and piped.
  • DGGE denaturing gradient gel electrophoresis
  • DNA was extracted from the excised band, and the DNA type was analyzed while confirming the purity of the band by performing DGGE again using the product amplified by PCR using this as a template.
  • the 7-band 28S rDNA partial base sequence and the 1-band 16S rDNA partial base sequence obtained by DGGE analysis were determined, and a simple lineage analysis was performed based on these results to determine the belonging taxon of the bacterial group derived from each band.
  • Cycle sequence Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, CA, USA) Primer used: DGGE band sequencing kit for analysis of the bacterial v3 region (DS-0001) (TechnoSuruga Laboratory Co., Ltd, Shizuoka) Lac1, Lac3, Lac2 (for Lactobacillales eye amplification) Lac1, Lac 3 are mixed in equal amounts Sequence: ABI 3130xl Genetic Analyzer System (Applied Biosystems, CA, USA) Sequencing: ChromasPro 1.4 (Technelysium Pty Ltd., Tewantin, AUS) Homology search and simple molecular phylogenetic analysis: Software Apollon 3.0 (Techno Suruga Lab, Shizuoka) Database: International nucleotide sequence database (GenBank / DDBJ / EMBL) Apollon DB-BA10.0 (Techno Suruga Lab Shizuoka) Apollon DB-FU (D1 / D2) 8.0 (Techno Suruga Lab Shizuoka
  • Test 1 Apollon DB-FU (D1 / D2) 8.0 search results for the homology between the base sequence and the top 15 strains
  • Test 1 Homology between base sequence and top 15 strains Apollon DB-FU (D1 / D2) 8.0 search results
  • the incomplete bacteria belonging to the genus Wickerhamomyces used in the present invention belong to the genus Wickerhamomyces, and when cultured with a carbon source under solid-phase culture conditions, the filamentous fungi-like life cycle and yeast-like life cycle are different. It is not particularly limited as long as it is a bacterium that changes the life cycle and generates a biogas containing alcohols and esters thereof, volatile organic acids and esters thereof by solid phase fermentation using a carbon source as a raw material.
  • the inventor used the identified strain of the same strain as that of the incomplete strain belonging to the genus Wickerhamomyces.
  • the plant biomass material includes lignocellulosic biomass and the like, and may be a tree biomass material or a grass biomass material.
  • the woody biomass material include woods (including building waste materials, thinned woods, etc.) derived from trees such as conifers, broadleaf trees, gymnosperms, or their bark, sawdust, leaves, mushroom waste fungus beds, and the like.
  • grass-based biomass materials include materials derived from rice, wheat, corn, sugarcane, bamboo, Japanese pampas grass, and the like, for example, residues generated during harvesting and processing of agricultural products.
  • Plant biomass materials including lignocellulosic biomass such as hardwood wood, rice straw, bamboo, etc. are composed of hemicellulose consisting of pentoses such as xylose and hexoses such as glucose, and glucose. Contains a lot of cellulose. That is, as the carbon source of the biogas production method of the present invention, cellulose and hemicellulose can be used, but of course, saccharides that have been further decomposed, that is, hexoses such as starch, glucose, mannose, galactose, and fructose, xylose Monosaccharides such as pentose such as arabinose and disaccharides such as cellobiose can also be used as the carbon source.
  • the carbon source is directly used as a material in the solid phase, and gas phase biogas is generated. Therefore, the physical treatment and chemical treatment required for the use of the conventional lignocellulose-based carbon source are used. Is unnecessary.
  • the following demonstration experiment was conducted using bamboo powder, which is considered to be relatively difficult to use biomass.
  • FIG. 4 is an enlarged photograph of a sample of bamboo powder used in the demonstration experiment.
  • the solid state of the carbon source or powdered body and the anaerobic conditions in addition to the activity of natural lactic acid bacteria already mixed in the carbon source
  • lactic acid bacteria are aerobic bacteria, so if the experiment is conducted in consideration of the activation being inhibited,
  • the above-mentioned culture conditions satisfy the culture conditions in the solid phase.
  • bamboo As a carbon source, bamboo was used as a granular or powder solid phase.
  • the material may be only a carbon source, but it is not excluded to contain it together with necessary components such as a nitrogen source and inorganic salts as necessary. Inoculation with bacteria is performed by inoculating an appropriate medium in a solid phase with incomplete bacteria belonging to the genus Wickerhamomyces. Here, bacteria such as lactic acid bacteria, other filamentous fungi, basidiomycetes, and yeasts are prevented from being mixed.
  • the culture temperature of the fungus is preferably an ordinary temperature of 25 ° C. to 35 ° C., and the culture time can be about 24 hours to 2000 hours. In the demonstration experiment, the culture temperature was 30 ° C. and the culture time was 1440 hours (60 days).
  • the culture of the bacteria shall be anaerobic culture.
  • anaerobic culture refers to culturing a medium inoculated with imperfect bacteria belonging to the genus Wickerhamomyces without substantially aeration with the outside air.
  • anaerobic conditions refer to culture conditions that are substantially free of free enzyme.
  • imperfect bacteria belonging to the genus Wickerhamomyces and a medium are contained in a container, and the atmosphere in the container is filled with nitrogen gas or the like. Examples include culture conditions in which the enzyme is not substantially contained by substitution or the like, and the culture is performed in a state where the inside of the container and the outside air are not substantially vented.
  • the biogas production method of the present invention controls to inhibit the activation of natural lactic acid bacteria mixed in the carbon source by culturing under anaerobic conditions.
  • Lactic acid bacteria are aerobic bacteria, and under aerobic conditions, the fertility is superior to incomplete bacteria belonging to the genus Wickerhamomyces, and the reproduction of incomplete bacteria belonging to the genus Wickerhamomyces is suppressed. Therefore, in the present invention, the growth of lactic acid bacteria is suppressed by maintaining anaerobic conditions, and the incomplete bacteria belonging to the genus Wickerhamomyces are controlled so as to be advantageously maintained.
  • the aerobic condition specifically refers to culturing a medium inoculated with imperfect bacteria belonging to the genus Wickerhamomyces in a state of being substantially aerated with the outside air.
  • FIG. 5 shows the result of biogas recovery in the demonstration experiment.
  • FIG. 5 shows the results of GC-MS measurement of biogas released around the third day from the start of culture. The type of gas was identified by GC-MS (Gas Chromatography Mass Spectrometry).
  • GC-MS measurement results were analyzed.
  • the peak of 2.53 minutes clearly detected is methanol, and the peak of 2.92 minutes is ethanol.
  • These are considered to be biogas generated in the flask for solid phase fermentation assuming the biogas generation unit 110. Others are not considered to be biogas.
  • a large peak near 2 minutes and a peak at 8.5 minutes are considered to be acetone-derived peaks used as a solvent for the trap solution.
  • the two peaks at 18.04 are presumed to originate from the material contaminated with the plasticizer peak of the plastic. Many other small peaks are considered non-reproducible noise.
  • FIG. 6 is a diagram showing a time-series change in the type of generated biogas observed through the number of days of culture.
  • the culture days are plotted on the horizontal axis, and the biogas production concentration (mg / l) is plotted on the vertical axis.
  • the biogas production concentration mg / l
  • the ester concentration increased. You can see that That is, it can be read that the alcohol concentration is first improved by the culture, and the ester concentration is gradually improved so as to be delayed. That is, it can be seen that ethanol fermentation first proceeds, and ester fermentation subsequently occurs.
  • FIG. 7A shows a state near the bottom surface of the flask for solid phase fermentation assuming the biogas generation unit 110 immediately after the end of the experiment.
  • Fig.7 (a) the inside of the flask for solid phase fermentation remained a solid phase, and the liquid pool was not seen.
  • Methanol and ethanol captured by the cool trap reach the cool trap device assuming the biogas recovery device 130 in a gas phase state, so that gas phase biogas is generated from the solid phase fermentation without going through the liquid phase. It can be seen that solid-phase fermentation progressed in the cycle.
  • the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces at the time when the production of biogas in the second step was completed was confirmed.
  • the life cycle was confirmed by culture using a medium.
  • 25 g of the sample was dispersed and left in 500 ml of sterilized water, and the supernatant was collected and extracted.
  • As the type of medium potato dextrose medium and YPD medium were used.
  • the potato dextrose medium is suitable for the propagation of incomplete bacteria belonging to the genus Wickerhamomyces in the filamentous fungus-like life cycle. It can be estimated that it was a life cycle.
  • the YPD medium is suitable for the propagation of bacteria in the yeast-like life cycle, and if the YPD medium is highly propagated, it can be estimated that the life cycle of the bacteria was a yeast-like life cycle.
  • the culture conditions were such that 200 ⁇ L of the extract was seeded on the surface of the medium, sealed with a sealing tape, and then allowed to stand at 29 ° C. for 3 days.
  • the left figure of FIG.7 (b) is the culture result using a potato dextrin culture medium. It can be seen that the growth of imperfect bacteria belonging to the genus Wickerhamomyces sowed is relatively limited, although it can be seen.
  • the right figure of FIG.7 (b) is a culture result using a YPD culture medium. It can be seen that the inoculated bacteria belonging to the genus Wickerhamomyces sowed have large growth and are actively breeding. From the above, it was confirmed that the life cycle of the incomplete bacteria belonging to the genus Wickerhamomyces at the time when the production of the biogas in the second step was completed was changed to a yeast-like life cycle.
  • the solid-phase fermentation cycle using imperfect bacteria belonging to the genus Wickerhamomyces is performed by transitioning between different life cycles of the filamentous fungi-like life cycle and the yeast-like life cycle.
  • the first reaction is the reaction that occurs at the beginning of the solid-phase fermentation cycle.
  • the carbon source is in a cellulose-rich and glucose-deficient state, such as bamboo flour.
  • the incomplete bacteria belonging to the genus Wickerhamomyces Cellulose is decomposed in a filamentous fungus-like basidiomycetous life cycle to produce glucose.
  • the imperfect bacteria belonging to the genus Wickerhamomyces gradually change their life cycle to “Family fungus basidiomycetous life cycle”.
  • Yeast-like life cycle In other words, by placing the carbon source under glucose-rich conditions, the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces is transitioned to the “yeast-like life cycle” and activated, and glucose is decomposed into alcohols (ethanol). Furthermore, the production of esters (ethyl acetate) is promoted.
  • Both the first reaction and the second reaction described above are performed in a solid phase and never go through a liquid phase. Since the released alcohols and esters are released as a gas phase, it has been verified that a gas phase biogas is generated from a solid state carbon source.
  • Example 2 the first step and the second step are alternately and continuously repeated to produce a biogas in a gas phase directly from a solid phase carbon source without passing through a liquid phase. It is a manufacturing method.
  • FIG. 8 is a diagram simply illustrating the biogas production apparatus of the present invention according to Example 2 and the biogas production method of the present invention performed in the apparatus.
  • the oxygen supply means 150 may be an industrial oxygen cylinder or the like.
  • the aerobic condition in the present invention may be the same oxygen concentration as that of air in the atmosphere, a pump for sending air in the atmosphere or a ventilation of the atmosphere. It can be ventilation.
  • FIG. 8B shows a state in which the first step and the second step are repeated. By repeating this first step and the second step alternately and continuously, it is a step of continuously producing biogas in the gas phase directly from the carbon source in the solid phase without going through the liquid phase. Yes.
  • the conditions in the first step are different from the conditions in the first step after the first time.
  • the method for generating the biogas by passing through the first first step to the second step is the same as that of the first embodiment, and thus the description thereof is omitted here.
  • the process continues from the second process to the first process again.
  • FIG. 9 simply shows that the first step goes through the second step and then returns to the first step.
  • the culture condition setting means 130 closes the valve 141 of the nitrogen supply means 140 and opens the valve 151 of the oxygen supply means 150 to supply oxygen into the culture tank 110. Is an aerobic condition.
  • the oxygen supply means 150 may be a pump that sends out air in the atmosphere, a ventilation that ventilates the atmosphere, an industrial oxygen cylinder, or the like.
  • FIG. 9B shows the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces obtained after one week of culture.
  • the confirmation of the life cycle was confirmed by culture using a medium as in the previous confirmation.
  • 25 g of the sample was dispersed and left in 500 ml of sterilized water, and the supernatant was collected and extracted.
  • the type of medium potato dextrose medium and YPD medium were used.
  • the culture conditions were such that 200 ⁇ L of the extract was seeded on the surface of the medium, sealed with a sealing tape, and then allowed to stand at 29 ° C. for 3 days.
  • the left figure of FIG.9 (b) is the culture result using a potato dextrin culture medium. It can be seen that the inoculated bacteria belonging to the genus Wickerhamomyces sowed have large growth and are actively breeding.
  • the right figure of FIG.9 (b) is the culture result using a YPD culture medium. It can be seen that the inoculated bacteria belonging to the genus Wickerhamomyces sowed have large growth and are actively breeding. From the above, by making the aerobic condition after the second step, some imperfect bacteria belonging to the genus Wickerhamomyces re-transitioned from the yeast-like life cycle to the filamentous basidiomycetous life cycle. I was able to confirm. In other words, it was confirmed that the process could return from the second process to the first process.
  • FIG. 10 simply shows the transition from the state returned to the first step to the second step as shown in FIG.
  • the culture condition setting means 130 closes the valve 151 of the oxygen supply means 150 and opens the valve 141 of the nitrogen supply means 140 to supply nitrogen into the culture tank 110.
  • the inside of 110 is an anaerobic condition.
  • the inside of the fermentation flask was replaced with nitrogen from a nitrogen cylinder in the experimental instrument configuration shown in FIG. Other laboratory instrument configurations can be left as they are. This experiment was the same as the previous one, and it was confirmed that biogas can be generated and recovered.
  • the first step and the second step may be repeated.
  • the advantage which repeats a 1st process and a 2nd process alternately is demonstrated.
  • fermentation technology for obtaining bioethanol using a carbon source is conducted by other methods, such as hydrolyzing the carbon source and physically adding a large amount of energy. Since most of them are changed, there is no concept of repeating the fermentation process as in the present invention.
  • the two steps of carbon source cellulose to glucose and glucose to ethanol are performed only with imperfections belonging to the genus Wickerhamomyces.
  • FIG. 11 is a diagram simply showing changes in the carbon source.
  • An example of the carbon source of the present invention is a powder such as bamboo powder, and a large surface area is ensured. However, when enlarged, it is a lump of cellulose as shown in FIG.
  • the glucose covers the surface. Since the present invention is premised on solid phase fermentation, it is considered that glucose does not elute and covers the surface.
  • the life cycle of an incomplete bacterium belonging to the genus Wickerhamomyces is transitioned to a yeast-like life cycle that actively degrades glucose. As shown in the middle to the bottom of FIG. It is fermented and evaporated to recover as biogas first. By fermenting the glucose in the solid phase on the surface at an appropriate place as described above, the cellulose is exposed again near the surface. Therefore, the process returns again from the lower stage to the upper stage in FIG.
  • the life cycle is returned to the filamentous fungus-like basidiomycetous life cycle, and the fermentation process of cellulose to glucose is performed.
  • the activity efficiency of the fermentation as a whole is increased by repeating the first step and the second step.
  • the biogas production method of the present invention can be widely applied to technical fields involving biomass processing using plant biomass resources, for example, lignocellulosic biomass resources such as trees, vegetation, bamboo, and rice straw.
  • plant biomass resources for example, lignocellulosic biomass resources such as trees, vegetation, bamboo, and rice straw.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

[Problem] To generate a biogas from plant biomass such as wood, bamboo, etc., without physical and chemical treatments, which are essential in conventional acid-hydrolysis techniques and enzymatic saccharification techniques, and collect the biogas in a gas state from a solid state. [Solution] In the present invention, an imperfect fungus of the genus Wickerhamomyces is fermented with a carbon source to generate a biogas. In this biogas generation step, the imperfect fungus of the genus Wickerhamomyces is used. The life cycle of the imperfect fungus of the genus Wickerhamomyces is artificially changed between a filamentous fungus/basidiomycete-like life cycle and a yeast-like life cycle. The biogas is generated by repeating steps of: seeding the imperfect fungus of the genus Wickerhamomyces onto the carbon source and controlling culture conditions, thereby producing glucose from cellulose; and generating a biogas such as ethanol, etc., from the glucose. Since the biogas can be collected in a gaseous state directly from the solid carbon source, the cost to collect the component is reduced.

Description

バイオガス製造方法および装置Biogas production method and apparatus
 本発明は、菌類を用いた植物バイオマスからのバイオガスの製造方法に関するものである。特に、Wickerhamomyces属に属する不完全菌を用いた植物バイオマスからのバイオガスの製造装置および方法に関するものである。 The present invention relates to a method for producing biogas from plant biomass using fungi. In particular, the present invention relates to an apparatus and method for producing biogas from plant biomass using imperfect bacteria belonging to the genus Wickerhamomyces.
 未利用の植物バイオマス資源の有効活用が求められている。従来技術においても植物バイオマス資源のうち比較的利用しやすいとされているトウモロコシやジャガイモなどのデンプン質原料、サトウキビなどの糖質原料を用いたバイオマスエタノール生産などが進められている。
 しかし、比較的利用がまだ緒についていない植物バイオマス資源、たとえば、間伐材、建築廃材、稲藁などのリグノセルロース系バイオマス資源は、燃焼させることによる熱源として利用はされている例があるが、リグノセルロース系植物バイオマス資源からバイオエタノールを生成してバイオ燃料を得ることは比較的困難とされている。
Effective utilization of unused plant biomass resources is required. In the prior art, biomass ethanol production using starch raw materials such as corn and potato, which are considered to be relatively easy to use among plant biomass resources, and sugar raw materials such as sugar cane is being promoted.
However, there are examples of plant biomass resources that have not been used yet, for example, lignocellulosic biomass resources such as thinned wood, construction waste, and rice straw, are used as a heat source by burning. It is relatively difficult to produce bioethanol from cellulosic plant biomass resources to obtain biofuel.
 リグノセルロース系バイオマス資源を直接、分解してエタノールを生産する自然界に存在する菌はまだ一般には知られていない。そのため従来技術では、木質系セルロースに対して物理的処理や化学的処理を施して一旦グルコースに分解し、その後、グルコースを基材にした酵母菌によるアルコールを得るサイクルが知られている。広く知られた従来手法として、酸加水分解法と酵素糖化法が知られている。 The fungus existing in nature that directly decomposes lignocellulosic biomass resources to produce ethanol is not yet generally known. Therefore, in the prior art, a cycle is known in which woody cellulose is subjected to physical treatment or chemical treatment to be once decomposed into glucose, and then alcohol is obtained from yeast based on glucose. As a widely known conventional technique, an acid hydrolysis method and an enzymatic saccharification method are known.
 まず、酸加水分解法は、図12の上図に示すようなサイクルでエタノールを得る。
 第1の工程として、固相のまま、木質に対して物理的・化学的方法で脱リグニン処理を施し、処理しやすいセルロースを得る。第2の工程として、セルロースに対して強酸を加えて加水分解し、グルコースを得る。強酸を添加した加水分解であるのでこの段階で処理状態は液相となる。第3の工程として、液相のグルコースを基材として酵母菌を播種してアルコール発酵させてアルコール含有発酵液を得る。この状態も液相のままである。
First, in the acid hydrolysis method, ethanol is obtained in a cycle as shown in the upper diagram of FIG.
As a 1st process, the delignification process is performed with respect to woody with a physical and chemical method with a solid phase, and the cellulose which is easy to process is obtained. As a 2nd process, a strong acid is added and hydrolyzed with respect to a cellulose, and glucose is obtained. Since the hydrolysis is performed by adding a strong acid, the treatment state becomes a liquid phase at this stage. As a third step, yeast is seeded using liquid phase glucose as a base material and subjected to alcohol fermentation to obtain an alcohol-containing fermentation broth. This state also remains a liquid phase.
 次に、酵素糖化法は、図12の下図に示すようなサイクルでエタノールを得る。
 第1の工程として、固相のまま、木質に対して物理的・化学的方法で脱リグニン処理を施し、処理しやすいセルロースを得る。第2の工程として、セルロースに対して物理的・化学的処理を加えてより分解が進んだセルロース(β-1,4-グルカン)とする。例えば、オゾン水を作用させる手法、超臨界水を作用させる手法、爆砕する手法など多様なものがあり得る。この段階で液相になる。第3の工程として、処理済みのセルロース(β-1,4-グルカン)を基材として、酵素の一種であるセルラーゼを用いてグルコースを得る。セルラーゼは、セルロース(β-1,4-グルカン)のグリコシド結合を加水分解する酵素であり、グルコースを得ることができる。この段階も液相のままである。第4の工程として、液相のグルコースを基材として酵母菌を播種してアルコール発酵させてアルコール含有発酵液を得る。この状態も液相のままである。
Next, in the enzymatic saccharification method, ethanol is obtained in a cycle as shown in the lower diagram of FIG.
As a 1st process, the delignification process is performed with respect to woody with a physical and chemical method with a solid phase, and the cellulose which is easy to process is obtained. In the second step, cellulose (β-1,4-glucan) is further decomposed by adding physical / chemical treatment to cellulose. For example, there can be various methods such as a method of applying ozone water, a method of applying supercritical water, and a method of explosion. It becomes a liquid phase at this stage. In the third step, glucose is obtained using cellulase, which is a kind of enzyme, using treated cellulose (β-1,4-glucan) as a base material. Cellulase is an enzyme that hydrolyzes the glycosidic bond of cellulose (β-1,4-glucan) and can obtain glucose. This stage also remains in the liquid phase. As a 4th process, yeast is seed | inoculated and made into alcohol fermentation using liquid phase glucose as a base material, and an alcohol containing fermented liquid is obtained. This state also remains a liquid phase.
 次に、従来技術において、物理的工程・化学的工程に頼らず、菌を用いて木質系セルロースの分解からエタノール発酵まで行うサイクルを開示した文献例は、その数が少ないものの、例えば、WO2012/2164990号公報が存在する。これはPhlebia属に属する担子菌を用いて木質系セルロースを分解してエタノールを製造する方法を開示したものである。当該出願の発明者亀井一郎らは、Phlebia属に属する担子菌がリグニン分解能及び多糖類の糖化能を有するだけでなく、糖からエタノールを生成する能力を有すること、並びに、グルコースだけでなくキシロースを炭素源とした場合でもエタノールを生成する能力を有することを開示しており、更に、Phlebia属に属する担子菌をリグニン含有の炭素源と共に好気的条件において発酵する前処理工程を行った後に、半好気的条件又は嫌気的条件において、当該Phlebia属に属する担子菌を炭素源とともに更に発酵して炭素源を基質とするエタノール発酵を行うことにより、エタノールの生成効率を更に高めることができることを開示している。 Next, in the prior art, a literature example disclosing a cycle from decomposition of woody cellulose to ethanol fermentation using a fungus without using a physical process / chemical process is small, for example, WO2012 / No. 2164990 exists. This discloses a method for producing ethanol by degrading woody cellulose using basidiomycetes belonging to the genus Phlebia. The inventor Ichiro Kamei et al. Of the application described that basidiomyceae belonging to the genus Phlebia not only have lignin resolution and polysaccharide saccharification ability, but also have the ability to produce ethanol from sugar, and not only glucose but also xylose. Disclosed that it has the ability to produce ethanol even when used as a carbon source, and further, after performing a pretreatment step of fermenting basidiomycetes belonging to the genus Phlebia together with a lignin-containing carbon source under aerobic conditions, Under semi-aerobic conditions or anaerobic conditions, ethanol production efficiency can be further increased by further fermenting basidiomycetes belonging to the genus Phlebia together with a carbon source and performing ethanol fermentation using the carbon source as a substrate. Disclosure.
 上記に示すように、従来の酸加水分解法、酵素糖化法は、複数の物理的工程・化学的工程、さらに酵素の生分解工程や酵母の発酵工程を必要とするものであるが、間伐材などの木質を原料としてバイオエタノールを得る方法として知られていた。また、菌を用いて間伐材などの木質を原料としてバイオエタノールを得る方法も数は少ないが報告がある。 As shown above, the conventional acid hydrolysis and enzymatic saccharification methods require multiple physical and chemical processes, as well as biodegradation processes of enzymes and yeast fermentation processes. It was known as a method for obtaining bioethanol from wood. In addition, there are few reports on how to obtain bioethanol from woody materials such as thinned wood using fungi.
WO2012/2164990号公報WO2012 / 2164990
 ここで、上記の従来技術における、リグノセルロース系バイオマス資源を原料としてエタノールを生産する酸加水分解法、酵素糖化法、WO2012/2164990号公報に開示された方法には、下記に示すような問題があった。 Here, the acid hydrolysis method for producing ethanol using the lignocellulosic biomass resource as a raw material, the enzymatic saccharification method, and the method disclosed in WO2012 / 2164990 in the above-mentioned conventional technology have the following problems. there were.
 まず、従来の酸加水分解法には以下の問題がある。
 従来の酸加水分解法は、第1の工程として、木質に対して物理的・化学的方法で脱リグニン処理を施す必要があるが、この脱リグニン処理は容易ではなくコストがかかり、また、物理的・化学的処理にエネルギーを必要とするものである。
 また、従来の酸加水分解法は、第2の工程として、セルロースに対して強酸を加えて加水分解する必要があるが、この強酸添加による加水分解は、コストがかかり、また、物理的・化学的処理にエネルギーを必要とするものであり、反応後の強酸を処理するための物理的・化学的コストがかかっていた。また、セルロースの分解速度の制御が難しいという問題がある。また、グルコースが強酸で分解されてしまうおそれもある。
 また、従来の酸加水分解法は、第3の工程として、液相のグルコースを基材として酵母菌を播種してアルコール発酵させる必要があるが、第1の工程の脱リグニン処理や第2の工程の強酸による加水分解処理において液相中の酵母菌に対して悪影響を与える物質が混在しているため、そのままではアルコール発酵が阻害されるためにグルコースを洗浄する必要があり、コスト向上、エネルギー消費増加を招いていた。
First, the conventional acid hydrolysis method has the following problems.
In the conventional acid hydrolysis method, it is necessary to subject the wood to delignification by a physical / chemical method as the first step. However, this delignification treatment is not easy and costly. It requires energy for chemical and chemical treatment.
Further, in the conventional acid hydrolysis method, as a second step, it is necessary to add a strong acid to the cellulose to hydrolyze. However, the hydrolysis by the addition of the strong acid is costly, and physical / chemical The process requires energy, and physical and chemical costs are required to treat the strong acid after the reaction. In addition, there is a problem that it is difficult to control the decomposition rate of cellulose. In addition, glucose may be decomposed with a strong acid.
In addition, in the conventional acid hydrolysis method, as a third step, it is necessary to inoculate yeast using liquid phase glucose as a base material for alcohol fermentation, but the delignification treatment or the second step in the first step is required. In the process of hydrolysis with strong acid in the process, substances that adversely affect the yeast in the liquid phase are mixed, so alcohol fermentation is inhibited as it is, so it is necessary to wash glucose, improving cost, energy Consumption increased.
 次に、従来の酵素糖化法には以下の問題がある。
 従来の酵素糖化法は、第1の工程として、木質に対して物理的・化学的方法で脱リグニン処理を施す必要があるが、上記に指摘したように、この脱リグニン処理は容易ではなくコストがかかり、また、物理的・化学的処理にエネルギーを必要とするものである。
 従来の酵素糖化法は、第2の工程として、セルロースに対して物理的・化学的処理を加えてより分解が進んだセルロースとする必要があるが、オゾン水を作用させる手法、超臨界水を作用させる手法、爆砕する手法などいずれの手段も物理的・化学的コストがかかるものであり、反応釜や処理装置も特殊なものとなり製造設備にもコストがかかっていた。
 また、従来の酵素糖化法は、第4の工程として、液相のグルコースを基材として酵母菌を播種してアルコール発酵させる必要があるが、上記したように、第1の工程の脱リグニン処理や第2の工程の強酸による加水分解処理において生じるアルコール発酵が阻害物質の除去のためコスト向上、エネルギー消費増加を招いていた。
Next, the conventional enzymatic saccharification method has the following problems.
In the conventional enzymatic saccharification method, as a first step, it is necessary to perform delignification treatment on wood by a physical / chemical method. However, as pointed out above, this delignification treatment is not easy and costly. And requires energy for physical and chemical treatment.
In the conventional enzymatic saccharification method, as a second step, it is necessary to add a physical / chemical treatment to cellulose to obtain a cellulose that has been further decomposed. Both the method of acting and the method of blasting require physical and chemical costs, and the reaction kettle and processing equipment are special and the manufacturing equipment is also expensive.
In addition, in the conventional enzymatic saccharification method, as a fourth step, it is necessary to inoculate yeast using liquid phase glucose as a base material for alcohol fermentation, but as described above, the delignification treatment in the first step Alcohol fermentation that occurs in the hydrolysis treatment with a strong acid in the second step or the like has resulted in an increase in cost and an increase in energy consumption due to the removal of inhibitors.
 次に、Phlebia属に属する担子菌を用いて木質を原料から直接バイオエタノールを得るWO2012/2164990号公報に記載の方法には以下の問題がある。
 Phlebia属に属する担子菌を用いて木質から直接バイオエタノールを得る方法は、従来の酸加水分解法や酵素糖化法には必須の手順であった物理的・化学的処理を伴わないため、その点は注目すべき技術ではある。
 しかし、Phlebia属に属する担子菌を用いて木質から直接バイオエタノールを得る方法は、担子菌がバイオエタノールを生産する相が液相であることである。エタノールは親水性が大きく、一度液相になってしまえば、物理的な蒸留工程を経なければエタノールを単離することができない。その蒸留工程のためコスト増、エネルギー増を招いていた。
 この液相のバイオエタノールからエタノールを単離する問題は、上記した酸加水分解法や酵素糖化法にも共通の問題点となっている。
Next, the method described in WO2012 / 2164990, which obtains bioethanol directly from a woody material using basidiomycetes belonging to the genus Phlebia, has the following problems.
The method of directly obtaining bioethanol from wood using basidiomycetes belonging to the genus Phlebia does not involve physical and chemical treatments that are essential procedures for conventional acid hydrolysis and enzymatic saccharification methods. Is a remarkable technology.
However, the method of obtaining bioethanol directly from wood using basidiomycetes belonging to the genus Phlebia is that the phase in which basidiomycetes produce bioethanol is a liquid phase. Ethanol is highly hydrophilic, and once it is in a liquid phase, it cannot be isolated without a physical distillation step. The distillation process caused an increase in cost and energy.
The problem of isolating ethanol from liquid-phase bioethanol is a problem common to the acid hydrolysis method and enzymatic saccharification method described above.
 また、Phlebia属に属する担子菌と、利用出来る木質の組み合わせの点である。同公報には炭素源として利用可能な糖類としては、グルコース、マンノース、ガラクトース、フルクトース等の六炭糖、キシロース、アラビノース等の五炭糖等の単糖類、セロビオース等の二糖類が挙げられており、植物バイオマス資材は特に限定されていない。しかし、担子菌はいわゆるキノコであるところ、キノコは種類によって生える場所、寄生する木材の種類が限られることが広く知られている。キノコの栽培は、相性の合う木の原木を利用する原木栽培や、その原木を粉砕した木粉にフスマやコメヌカなどの栄養源を混合した菌床を利用する菌床栽培で行われていることから、いわゆる樹木、その粉砕物である菌床との相性は良いと考えられる。
 キノコは相性の良い樹木に寄生して発生するが、一般には、竹林、スギ林、ヒノキ林にはごく一部のキノコしか育たないとされている。近年、経済林への竹の侵入が問題となっているが、竹は担子菌との相性は良くないとされている。
 このように、Phlebia属に属する担子菌を用いる植物バイオマスを原料とするバイオエタノール生産方法は、利用出来る植物バイオマスの種類が限定されるおそれがある。
Moreover, it is the point of the basidiomycete which belongs to Phlebia genus, and the combination of the wood which can be utilized. In this publication, saccharides that can be used as a carbon source include hexoses such as glucose, mannose, galactose and fructose, monosaccharides such as pentoses such as xylose and arabinose, and disaccharides such as cellobiose. The plant biomass material is not particularly limited. However, basidiomycetes are so-called mushrooms, and it is widely known that mushrooms grow by type and the types of parasitic wood are limited. Mushrooms are cultivated in raw wood cultivation using compatible wood logs or in fungus bed cultivation using a fungus bed and rice bran mixed with nutrient sources such as bran and rice bran Therefore, it is considered that compatibility with so-called trees and fungus beds which are pulverized products is good.
Although mushrooms are parasitic on well-matched trees, in general, only a few mushrooms are said to grow in bamboo, cedar and cypress forests. In recent years, invasion of bamboo into economic forests has become a problem, but bamboo is said to be incompatible with basidiomycetes.
As described above, the bioethanol production method using plant biomass using basidiomycetes belonging to the genus Phlebia as a raw material may limit the types of plant biomass that can be used.
 次に、非特許文献1は、Wickerhamomyces anomalus を用いたバイオエタノール産生について開示されているが、開示された生産工程を見れば、最初の工程として炭素源に加水分解処理を施してセルロース等をグルコースまで分解する工程が前提となっており、多大なエネルギーや化学薬品の投入が必要であり、かつ、液相での処理となっている。非特許文献1はグルコースに対してWickerhamomyces anomalusを播種してエタノール発酵するものである。グルコースからエタノールを生産する工程は、酵母菌など他の菌を用いた発酵手段が知られており、非特許文献1のWickerhamomyces anomalusの利用は、そのグルコースからエタノールを産出する工程の代替手段に過ぎないものである。
 なお、非特許文献1は、液相での炭素源の加水分解処理が前提となっているため、Wickerhamomyces anomalusの利用段階も液相である。エタノールは親水性が大きく、一度液相になってしまえば、物理的な蒸留工程を経なければエタノールを単離することができない。その蒸留工程のためコスト増、エネルギー増を招く。
Next, Non-Patent Document 1 discloses bioethanol production using Wickerhamomyces anomalus. From the viewpoint of the disclosed production process, as a first process, a carbon source is hydrolyzed to convert cellulose and the like into glucose. It is premised on the process of decomposing, and enormous amounts of energy and chemicals are required, and the process is in the liquid phase. Non-Patent Document 1 is a method in which Wickerhamomyces anomalus is seeded on glucose and fermented with ethanol. The process of producing ethanol from glucose is known as a fermentation means using other bacteria such as yeast, and the use of Wickerhamomyces anomalus in Non-Patent Document 1 is only an alternative means of producing ethanol from glucose. There is nothing.
In addition, since the nonpatent literature 1 presupposes the hydrolysis process of the carbon source in a liquid phase, the utilization stage of Wickerhamomyces anomalus is also a liquid phase. Ethanol is highly hydrophilic, and once it is in a liquid phase, it cannot be isolated without a physical distillation step. The distillation process increases costs and energy.
 次に、非特許文献2は、全体の目的は麦藁からのエタノール発酵となっておりますが、Wickerhamomycesが関与する部分は、冬季前に大量に採れる麦藁の炭素源を冬季期間中に如何に保存するかという保存工程であり、炭素源の麦藁からエタノールを生成する発酵工程には一切関与していないものである。非特許文献2では、ISP処理と呼ばれるWickerhamomyces anomalusを利用した冬季保存を行うものの、春季になればエタノール発酵前にWickerhamomyces anomalusの分離が行われて除去され、エタノール発酵自体は、酸処理と、熱分解処理と、液相でのDUET酵素播種による発酵となっており、Wickerhamomyces anomalusは発酵に関与しておらず、また、発酵自体は液相での発酵となっている。 Next, in Non-Patent Document 2, the overall purpose is ethanol fermentation from wheat straw, but the part where Wickerhamomyces is involved is how to preserve the carbon source of wheat straw that can be harvested in large quantities before the winter season. It is a preservation process, and it is not involved at all in the fermentation process for producing ethanol from wheat straw as a carbon source. In Non-patent Document 2, winter preservation using Wickerhamomyces anomalus called ISP treatment is performed, but in the spring, Wickerhamomyces anomalus is separated and removed before ethanol fermentation. Ethanol fermentation itself consists of acid treatment, It is fermentation by decomposition treatment and DUET enzyme seeding in liquid phase, Wickerhamomyces anomalus is not involved in fermentation, and fermentation itself is fermentation in liquid phase.
 そこで、本発明は、上記問題に鑑みてなされたものであり、従来の酸加水分解法や酵素糖化法では必須の手順である物理的・化学的処理を伴わない形で、原料となる植物バイオマスから直接エタノールや酢酸エチルなどのバイオガスを得ることを目的とする。
 また、本発明は、植物バイオマスからバイオガスを発生させて固相から気相にて回収することを目的とし、従来の酸加水分解法や酵素糖化法や非特許文献などのように液相での回収とはせず、固相状態の炭素源から直接気相状態のバイオガスを回収することにより、回収コストを低減することを目的とする。
Therefore, the present invention has been made in view of the above problems, and is a plant biomass that is used as a raw material in a form that does not involve physical and chemical treatment, which is an essential procedure in conventional acid hydrolysis methods and enzymatic saccharification methods. The objective is to obtain biogas such as ethanol and ethyl acetate directly from
In addition, the present invention aims at generating biogas from plant biomass and recovering it from the solid phase in the gas phase, and in the liquid phase as in the conventional acid hydrolysis method, enzymatic saccharification method and non-patent literature. The purpose is to reduce the recovery cost by recovering the biogas in the gas phase directly from the solid-state carbon source.
 本発明者は、Wickerhamomyces属の不完全菌が、セルロース分解能、リグニン分解能及び多糖類の糖化能を備えるだけでなく、糖からエタノールを生成する能力を備えること、さらに、エタノールを経て酢酸エチルを生成する能力を備えることを発見した。一般にこのWickerhamomyces属の不完全菌は、加工食品を腐敗させることで知られており、如何に生育を抑制するかという制御方法について各種検討、報告がなされていた。しかし本発明者はこの細菌を有効利用し、各種のバイオマスを用いて有用なバイオガスを固相にて発生させ、容易に回収する技術を初めて開発、構築したものである。 The inventor of the genus Wickerhamomyces has not only cellulose-degrading ability, lignin-degrading ability, and polysaccharide saccharification ability, but also ability to produce ethanol from sugar, and further produces ethyl acetate via ethanol. I found that I have the ability to do. In general, this incomplete bacterium of the genus Wickerhamomyces is known to rot processed foods, and various studies and reports have been made on control methods for suppressing growth. However, the present inventor has developed and constructed for the first time a technology that makes effective use of this bacterium, generates a useful biogas in various phases using solid biomass, and easily recovers it.
 例えば、Wickerhamomyces属に属する不完全菌としてはPichiaなどがある。
 Wickerhamomyces属に属する不完全菌は、糸状菌担子菌様生活環と、酵母様生活環の異なった生活環を遷移するものである。本発明はこのWickerhamomyces属に属する不完全菌の性質に着目したものである。
For example, as an incomplete bacterium belonging to the genus Wickerhamomyces, there is Pichia.
An imperfect bacterium belonging to the genus Wickerhamomyces transitions between a life cycle different from a filamentous fungi-like life cycle and a yeast-like life cycle. The present invention focuses on the properties of imperfect bacteria belonging to the genus Wickerhamomyces.
 本発明のバイオガスの製造方法は、Wickerhamomyces属に属する不完全菌を炭素源とともに培養することによりバイオガスを生成するバイオガス生成工程を含むバイオガスの製造方法であって、前記Wickerhamomyces属に属する不完全菌が、糸状菌担子菌様生活環と、酵母様生活環の異なった生活環を遷移するものであり、前記バイオガス生成工程が、前記Wickerhamomyces属に属する不完全菌を糸状菌担子菌様生活環にて培養して固相状態の前記炭素源のセルロースをグルコースに分解する第1工程と、前記Wickerhamomyces属に属する不完全菌を酵母様生活環にて培養して前記第1の工程において固相状態の前記炭素源から生成された固相状態の前記グルコースを分解して気相状態のメタノール、エタノール、それらのエステル類のいずれかまたはそれらの混合物であるバイオガスを生成する第2工程を備え、前記第1の工程および前記第2の工程において、前記Wickerhamomyces属に属する不完全菌の前記糸状菌担子菌様生活環と前記酵母様生活環を遷移させつつ、液相を介することなく前記炭素源から直接、気相状態の前記バイオガスを発生させる工程としたものである、バイオガスの製造方法である。
 炭素源を材料として、前記第1の工程と前記第2の工程を経ればバイオガスが発生するが、さらに、前記第1の工程と前記第2の工程を連続して交互に繰り返す連続処理工程とし、前記固相状態の前記炭素源から液相を介することなく直接気相状態の前記バイオガスを生産することもできる。
The biogas production method of the present invention is a biogas production method including a biogas production step of producing biogas by culturing an incomplete bacterium belonging to the genus Wickerhamomyces together with a carbon source, and belongs to the genus Wickerhamomyces An incomplete bacterium transitions between a life cycle of a filamentous fungus basidiomycetous life cycle and a life cycle different from a yeast-like life cycle, and the biogas generation step converts the incomplete bacterium belonging to the genus Wickerhamomyces to a filamentous fungus basidiomycetes A first step of degrading cellulose of the carbon source in a solid phase by culturing in a life-like life cycle, and a first step of culturing incomplete bacteria belonging to the genus Wickerhamomyces in a yeast-like life cycle In the solid state, the glucose in the solid state generated from the carbon source in the solid state is decomposed to produce methanol, ethanol, any of their esters, or a mixture thereof. A second step of generating a biogas, wherein the filamentous basidiomycetous life cycle and the yeast-like life cycle of the incomplete bacterium belonging to the genus Wickerhamomyces are transitioned in the first step and the second step. And a process for producing the biogas in a gas phase state directly from the carbon source without going through a liquid phase.
Biogas is generated by using the carbon source as a material through the first step and the second step, and further, the first step and the second step are continuously repeated alternately. In the process, the biogas in the gas phase can be produced directly from the carbon source in the solid phase without going through the liquid phase.
 ここで、前記第1の工程から前記第2の工程へ遷移させる条件が、前記Wickerhamomyces属に属する不完全菌の酵母菌様生活環を活性化させる酵母菌様生活環活性条件であり、前記第2の工程から前記第1の工程へ遷移させる条件が、前記Wickerhamomyces属に属する不完全菌の糸状菌担子菌様生活環を活性化させる糸状菌担子菌様生活環活性条件であり、培養槽の培養条件として、前記酵母菌様生活環活性条件と、前記糸状菌担子菌様生活環活性条件とを適宜切り替えることにより、前記第1の工程と前記第2の工程を交互に切り替えつつバイオガスの生成を進める。
 例えば、前記酵母菌様生活環活性条件が常温かつ嫌気条件であり、前記糸状菌担子菌様生活環活性条件が常温かつ好気条件とする。
Here, the condition for transition from the first step to the second step is a yeast-like life cycle activity condition for activating the yeast-like life cycle of an incomplete bacterium belonging to the genus Wickerhamomyces, The condition for transition from the step 2 to the first step is a filamentous fungus basidiomycetous life cycle activation condition for activating the filamentous fungus basidiomycetous life cycle of the incomplete bacterium belonging to the genus Wickerhamomyces, By appropriately switching between the yeast-like life cycle activity condition and the filamentous fungus basidiomycet-like life cycle activity condition as culture conditions, the first step and the second step are alternately switched while the biogas Proceed with generation.
For example, the yeast-like life cycle activity conditions are normal temperature and anaerobic conditions, and the filamentous fungi-like life cycle activity conditions are normal temperature and aerobic conditions.
 上記バイオガス製造方法は、固相発酵を実現している。固相発酵とは、炭素源を粉体または破砕体の固相とし、バイオガス発生工程が固相状態の炭素源から気相状態にてバイオガスを発生させるものであり、液相を介することなく炭素源から直接、バイオガスを発生させる発酵である。前記Wickerhamomyces属に属する不完全菌を用いた固相発酵技術を実現できたことにより、様々な技術的効果が得られる。 The above biogas production method realizes solid phase fermentation. Solid-phase fermentation is a process in which the carbon source is a powder or crushed solid phase, and the biogas generation step generates biogas in a gas phase from a solid-state carbon source. It is a fermentation that generates biogas directly from a carbon source. Various technical effects can be obtained by realizing the solid-phase fermentation technique using incomplete bacteria belonging to the genus Wickerhamomyces.
 固相発酵技術の第1の技術的効果は、発酵サイクルの阻害要因となり得る、生成過程で生じるアルコール成分による発酵サイクルへ与える悪影響の排除である。生成過程で生じるアルコール成分は、殺菌力が高い。液相発酵の場合は高い親水性により液中にアルコール成分が溶け出して系内に存在するため、アルコール濃度が菌の増殖限界を超えてしまうと菌の繁殖を抑制してしまうことがあり得る。しかし、本発明では固体発酵技術を完成したので、当該菌にとって有害なアルコール類は液相に移行せずに、固相の炭素源から直接揮発して気相として系外に排出されるため、菌の発酵阻害要因にはならない。 The first technical effect of the solid-phase fermentation technology is the elimination of adverse effects on the fermentation cycle caused by alcohol components produced during the production process, which can be an inhibiting factor of the fermentation cycle. The alcohol component produced in the production process has a high bactericidal power. In the case of liquid phase fermentation, the alcohol component dissolves in the liquid due to its high hydrophilicity and is present in the system. Therefore, if the alcohol concentration exceeds the growth limit of the bacteria, the growth of the bacteria may be suppressed. . However, since the solid fermentation technology has been completed in the present invention, alcohols harmful to the bacteria do not move to the liquid phase, but volatilize directly from the solid phase carbon source and are discharged out of the system as a gas phase. It is not a factor that inhibits the fermentation of fungi.
 固相発酵技術の第2の技術的効果は、アルコール成分、エステル成分の回収コストの低減である。もし、液相発酵の場合は生成可能なアルコール濃度も15%程度が上限であり、工業的に利用するためには蒸留等の濃縮工程が必須となってしまう。しかし、本発明の固体発酵技術を用いれば、発酵生成物はガス状に生成されるため、冷却トラップ等の凝集装置によって簡単に直接濃縮液化することができる。また冷却温度をコントロールすることで、バイオガスはアルコール成分とエステル成分などが混気状態で生産されても、冷却トラップ等の凝集装置の温度設定により簡単に目的とする成分ごとに選択濃縮できる利点もある。 The second technical effect of the solid phase fermentation technique is a reduction in the recovery cost of the alcohol component and ester component. In the case of liquid phase fermentation, the upper limit of the concentration of alcohol that can be produced is about 15%, and a concentration step such as distillation is essential for industrial use. However, if the solid state fermentation technique of the present invention is used, the fermentation product is produced in a gaseous state, so that it can be directly concentrated and liquefied easily by an aggregating device such as a cooling trap. In addition, by controlling the cooling temperature, even if the biogas is produced in the mixed state of alcohol component and ester component, the advantage is that it can be easily selectively concentrated for each target component by setting the temperature of the aggregator such as a cooling trap. There is also.
 Wickerhamomyces属に属する不完全菌は、自然界に存在する菌であるが、本発明のように炭素源からアルコール類およびエステル類を固相発酵することは報告されていない。それは、自然界の状態では、Wickerhamomyces属に属する不完全菌は基本的に生育速度が遅い一方、普遍的な常在菌である乳酸菌などの増殖には追いつけず、乳酸菌類等普遍的に存在する菌類と、共棲させた場合どうしても増殖速度で劣勢となり、乳酸などの発酵生産物によってWickerhamomyces属に属する不完全菌は生育阻害を受けてしまうため、Wickerhamomyces属に属する不完全菌の潜在能力が十分に活性化されることがなかったためと考えられる。つまり、Wickerhamomyces属に属する不完全菌は、糸状菌担子菌様生活環と酵母様生活環との間を遷移しながら、グルコースの生成反応と、アルコール類・エステル類の生成反応を十分に発揮できるが、その条件や環境が自然に揃うことはなかったためと考えられる。また、自然環境では、たとえWickerhamomyces属に属する不完全菌が乳酸菌に打ち勝ち、ある炭素源のもとで優勢に繁殖したとしても、大気中の好気条件下での糸状菌担子菌様生活環にてセルロースをグルコース化したあと、自然と嫌気条件に切り替わることがなく、Wickerhamomyces属に属する不完全菌が酵母様の生活環に遷移することがないため、固相状態の炭素源の表面のセルロースがグルコースに変化した部分がそれ以上分解されることがないか、極めて緩慢にしか変化が進まなかったためと考えられる。 The incomplete bacterium belonging to the genus Wickerhamomyces is a bacterium that exists in nature, but no solid-phase fermentation of alcohols and esters from a carbon source as in the present invention has been reported. In the natural state, incomplete bacteria belonging to the genus Wickerhamomyces basically have a slow growth rate, but they cannot catch up with the growth of lactic acid bacteria, which are universal resident bacteria. When inoculated, the growth rate is inevitably inferior, and the incomplete bacteria belonging to the genus Wickerhamomyces are inhibited by fermentation products such as lactic acid, so the potential of the incomplete bacteria belonging to the genus Wickerhamomyces is fully active. It is thought that it was not made. In other words, imperfect bacteria belonging to the genus Wickerhamomyces can fully exert glucose production reactions and alcohol / ester production reactions while transitioning between the filamentous fungi-like life cycle and the yeast-like life cycle. However, it is thought that the conditions and environment did not match naturally. Also, in the natural environment, even if imperfect bacteria belonging to the genus Wickerhamomyces overcome lactic acid bacteria and proliferate predominately under a certain carbon source, the fungal basidiomycetous life cycle under aerobic conditions in the atmosphere After glucosylation of cellulose, there is no natural switching to anaerobic conditions, and imperfect bacteria belonging to the genus Wickerhamomyces do not transition to the yeast-like life cycle. This is probably because the portion changed to glucose was not further decomposed, or the change proceeded only very slowly.
 本発明では、Wickerhamomyces属に属する不完全菌の生活環を人為的に繰り返し遷移させることにより、その潜在能力を発揮せしめ、固相状態の炭素源のセルロースからグルコース、グルコースからエタノールという変化を繰り返して起こして固相状態の炭素源から直接気相状態のバイオガスを繰り返し生成することを可能としたものである。 In the present invention, by artificially repeating the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces, its potential is exerted, and the change from solid phase carbon source cellulose to glucose and glucose to ethanol is repeated. It is possible to repetitively produce a gas phase biogas directly from a solid state carbon source.
 ここで、最初の第1の工程についても後続に繰り返し出てくる第1の工程と同様に好気条件から始めても良いが、好気条件から始めるのではなく嫌気条件から始める工夫もあり得る。それは、炭素源に混入している抗菌スペクトルの広い乳酸菌が優勢に繁殖することを人為的に防止する工夫である。つまり、上記した前記第1の工程と前記第2の工程の交互の繰り返しにおいて、最初の第1の工程では、培養条件を、前記糸状菌担子菌様生活環活性条件とはせずに、当初から前記酵母菌様生活環活性条件である常温かつ嫌気条件とし、炭素源に混入している乳酸菌の増殖を抑制するとともに、Wickerhamomyces属に属する不完全菌が前記炭素源のセルロースからグルコースを生産しつつも、酵母菌様生活環活性条件下であるので、やがてその生活環が酵母菌様生活環へ自然と遷移し、第2の工程に遷移してゆくようコントロールするものである。
 最初の第1の工程の時点で、嫌気条件からスタートすることで好気性の乳酸菌の繁殖を抑えることができ、最初の第1の工程の時点では乳酸菌よりWickerhamomyces属に属する不完全菌が繁殖し優勢になることができる。その後の第2の工程で引き続き、酵母様の生活環に遷移したWickerhamomyces属に属する不完全菌の優勢が大きくなるため、それ以降、第1の工程に遷移する際の糸状菌担子菌様生活環活性条件、つまり、好気的条件が与えられてもWickerhamomyces属に属する不完全菌が十分に優勢となっており、乳酸菌に負けることなく、発酵を継続することができる。
Here, the first first step may be started from an aerobic condition similarly to the first step repeatedly appearing thereafter, but there may be a device that starts from an anaerobic condition instead of starting from an aerobic condition. It is a device that artificially prevents lactic acid bacteria having a wide antibacterial spectrum mixed in a carbon source from proliferating predominately. That is, in the alternating repetition of the first step and the second step described above, in the first first step, the culture condition is not changed to the filamentous fungus-like basidiomycetous life cycle activity condition. From the above, the yeast-like life cycle activity conditions are normal temperature and anaerobic conditions, suppress the growth of lactic acid bacteria mixed in the carbon source, and incomplete bacteria belonging to the genus Wickerhamomyces produce glucose from cellulose as the carbon source. However, since it is under the yeast-like life cycle activity condition, the life cycle is controlled to naturally transit to the yeast-like life cycle and to transit to the second step.
By starting from anaerobic conditions at the time of the first first step, the growth of aerobic lactic acid bacteria can be suppressed, and at the time of the first first step, incomplete bacteria belonging to the genus Wickerhamomyces are propagated from lactic acid bacteria. Can become dominant. Since the predominance of imperfect bacteria belonging to the genus Wickerhamomyces that subsequently transitioned to the yeast-like life cycle increases in the second step thereafter, the filamentous fungus basidiomycetous life cycle at the time of transition to the first step thereafter Even under active conditions, that is, aerobic conditions, imperfect bacteria belonging to the genus Wickerhamomyces are sufficiently dominant, and fermentation can be continued without losing lactic acid bacteria.
 第1の工程と第2の工程の繰り返しにおいて、第1の工程から第2の工程への切り替えは、炭素源の表面のセルロールがグルコースへの変化速度がピークを過ぎた後の任意のタイミングであり、第2の工程から第1の工程への切り替えは、グルコースからエタノールまたは酢酸エチルまたはその混合物であるバイオガスへの変化速度がピークを過ぎた後の任意のタイミングとすれば良い。 In the repetition of the first step and the second step, switching from the first step to the second step is performed at an arbitrary timing after the rate of change of the cellulosic surface of the carbon source to glucose has passed the peak. Yes, the switching from the second step to the first step may be performed at an arbitrary timing after the rate of change from glucose to biogas which is ethanol, ethyl acetate, or a mixture thereof passes the peak.
 なお、本発明のバイオガス製造装置における炭素源は、木材、稲藁、竹などを含む広く植物バイオマス資材を利用することができる。リグノセルロース系の植物バイオマス資材を広く用いることができる。なお、後述するように、本発明者は本発明のバイオガス製造方法を用いることにより、一般には植物バイオマス資材のうちでも発酵利用が難しいと考えられる竹粉を炭素源として固相でのバイオガス生成に成功している。 The carbon source in the biogas production apparatus of the present invention can widely use plant biomass materials including wood, rice straw, bamboo and the like. Lignocellulose-based plant biomass materials can be widely used. As will be described later, the inventor of the present invention uses the biogas production method of the present invention, so that biogas in a solid phase using bamboo flour, which is generally considered difficult to be fermented among plant biomass materials, as a carbon source. Generated successfully.
 本発明のバイオガス製造方法において生成されるバイオガスは、アルコール類およびそのエステル類、揮発性有機酸類およびそのエステル類のいずれかまたはその任意の組み合わせが含まれ得る。アルコール類としては、メチルアルコール、エチルアルコールなどが含まれる。なお、可能性としては、ブチルアルコール、アミルアルコールなどの他のアルコール類、揮発性有機酸類としては、カプロン酸、カプリル酸、カプリン酸などが生成できると考えられる。エステル類としては上記したアルコール類のエステル類や揮発性有機酸のエステル類が含まれ得る。
 例えば、エタノールはバイオエタノール燃料として既に注目されており、また、酢酸エチルガスも工業用の各種原料としての需要が大きいものである。
The biogas produced in the biogas production method of the present invention may include any of alcohols and esters thereof, volatile organic acids and esters thereof, or any combination thereof. Examples of alcohols include methyl alcohol and ethyl alcohol. As a possibility, caproic acid, caprylic acid, capric acid and the like can be generated as other alcohols such as butyl alcohol and amyl alcohol and volatile organic acids. Esters may include the above-described alcohol esters and volatile organic acid esters.
For example, ethanol has already attracted attention as a bioethanol fuel, and ethyl acetate gas is also in great demand as various industrial raw materials.
 本発明者は、本発明のバイオガス製造方法を実現させる素材として、Wickerhamomyces属に属する不完全菌と、当該Wickerhamomyces属に属する不完全菌を担持する担体とを含む、炭素源からバイオガスを生成するための種菌を製作することにも成功した。 The present inventor, as a material for realizing the biogas production method of the present invention, generates biogas from a carbon source, which includes imperfect bacteria belonging to the genus Wickerhamomyces and a carrier carrying the imperfect bacteria belonging to the genus Wickerhamomyces We have also succeeded in producing an inoculum for this purpose.
 本発明のバイオガス生成装置は、上記したWickerhamomyces属に属する不完全菌の培養条件を保持するよう制御できる装置であることが好ましい。具体的には、前記炭素源と当該炭素源に播種した前記Wickerhamomyces属に属する不完全菌を培養する培養槽と、前記培養槽の培養条件を前記酵母菌様生活環活性条件および前記糸状菌担子菌様生活環活性条件で切り替え自在とした培養条件設定手段と、生成された前記バイオガスを回収するバイオガス回収手段を備えたものとする。炭素源の撹拌装置を伴う構成も好ましい。 The biogas generating apparatus of the present invention is preferably an apparatus that can be controlled so as to maintain the culture conditions of the incomplete bacteria belonging to the genus Wickerhamomyces described above. Specifically, a culture tank for culturing the carbon source and the incomplete bacteria belonging to the genus Wickerhamomyces sowed on the carbon source, and the culture conditions of the culture tank are the yeast-like life cycle activity condition and the filamentous fungus basidiomycete It is assumed that culture condition setting means that can be switched under the fungus-like life cycle activity conditions and biogas recovery means that recovers the generated biogas are provided. A configuration with a carbon source stirring device is also preferred.
 本発明にかかるバイオガス製造方法によれば、Wickerhamomyces属に属する不完全菌を有効利用し、各種のバイオマスを用いて有用なバイオガスを固相のまま分解・発酵し、気相のバイオガスを生成させ、容易に回収することができる。
 固相のまま分解・発酵するので、炭素源を粉体または破砕体などの固相の炭素源とし、バイオガス発生工程がその固相状態の炭素源から直接気相状態のバイオガスを発生させるものであり、液相を介することなく固相状態の炭素源から直接気相状態のバイオガスを発生させることが可能となる。固相発酵であるので、バイオガス生成過程で生じるアルコール成分による発酵サイクルへ与える悪影響を排除でき、また、バイオガスがアルコール成分とエステル成分などが混気状態で生産されても冷却トラップ等の凝集装置の温度設定により簡単に目的とする成分ごとに選択濃縮できる。
According to the biogas production method of the present invention, an incomplete bacterium belonging to the genus Wickerhamomyces is effectively used, and various biomass is used to decompose and ferment useful biogas in a solid phase, Can be generated and easily recovered.
Since it decomposes and ferments in the solid phase, the carbon source is used as a solid phase carbon source such as powder or crushed material, and the biogas generation process generates biogas in the gas phase directly from the solid state carbon source. Therefore, it is possible to generate a biogas in a gas phase directly from a carbon source in a solid phase without going through a liquid phase. Solid-phase fermentation eliminates adverse effects on the fermentation cycle caused by alcohol components generated in the biogas production process, and even when biogas is produced in a mixed state of alcohol and ester components, agglomerates such as cooling traps Selective concentration can be easily performed for each target component by setting the temperature of the apparatus.
本発明のバイオガス製造装置および製造方法で用いるWickerhamomyces属に属する不完全菌に関する生活環を説明する図である。It is a figure explaining the life cycle regarding the imperfect bacteria which belong to the genus Wickerhamomyces used with the biogas manufacturing apparatus and manufacturing method of this invention. 実施例1にかかる本発明のバイオガスの製造装置および当該装置の中で行われる本発明のバイオガス製造方法を簡単に示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed simply the biogas manufacturing apparatus of this invention concerning Example 1, and the biogas manufacturing method of this invention performed in the said apparatus. 本発明のバイオガス製造方法を検証するための実験器具の構成を簡単に示した図である。It is the figure which showed simply the structure of the laboratory instrument for verifying the biogas manufacturing method of this invention. 実証実験に用いた竹粉のサンプルの拡大写真を示す図である。It is a figure which shows the enlarged photograph of the sample of the bamboo powder used for verification experiment. 実証実験におけるバイオガスの回収結果を示す図である。It is a figure which shows the collection | recovery result of the biogas in verification experiment. 発生するバイオガスの種類の時系列変化を示す図である。It is a figure which shows the time-sequential change of the kind of biogas to generate | occur | produce. 実験終了直後のバイオガス生成部110を想定した固相発酵用フラスコの底面近くの様子を示した図および培地を用いた培養結果を示す図である。It is the figure which showed the mode near the bottom face of the flask for solid-phase fermentation which assumed the biogas production | generation part 110 immediately after completion | finish of experiment, and the figure which shows the culture result using a culture medium. 実施例2にかかる本発明のバイオガスの製造装置および当該装置の中で行われる本発明のバイオガス製造方法を簡単に示した図である。It is the figure which showed simply the biogas manufacturing apparatus of this invention concerning Example 2, and the biogas manufacturing method of this invention performed in the said apparatus. 最初の第1の工程から第2の工程を経て、次に第1の工程に戻ることを簡単に示した図および培地を用いた培養結果を示す図である。It is the figure which showed the culture | cultivation result using the figure which showed simply returning from the 1st 1st process to the 1st process through the 2nd process first, and a culture medium. 再度第1の工程に戻った状態から再度第2の工程に移行することを簡単に示した図およびその後第1の工程と第2の工程と繰り返して行く様子を示す図である。It is the figure which showed simply that it transfers to a 2nd process again from the state which returned to the 1st process again, and a figure which shows a mode that it repeats with a 1st process and a 2nd process after that. 炭素源の変化を簡単に示した図である。It is the figure which showed the change of the carbon source simply. 従来技術において、木質系セルロースを原料としてアルコールを得る酸加水分解法および酵素糖化法を説明する図である。In the prior art, it is a figure explaining the acid hydrolysis method and enzyme saccharification method which obtain alcohol using wood type cellulose as a raw material.
 以下、図面を参照しつつ、本発明のバイオガス製造方法、および、バイオガスを生成するための種菌の実施例について説明する。
 なお、以下の実施例は一例であり、本発明の内容は実施例の具体的内容には限定されない。
Hereinafter, the biogas production method of the present invention and examples of inoculum for producing biogas will be described with reference to the drawings.
In addition, the following Examples are examples and the content of this invention is not limited to the specific content of an Example.
 本発明は、Wickerhamomyces属に属する不完全菌の活性を制御し、糸状菌担子菌様生活環と、酵母様生活環の異なった生活環の遷移を制御し、炭素源を原料として固相発酵を可能とし、アルコール類やエステル類を含むバイオガスを生成させるものである。
 本発明に用いるWickerhamomyces属に属する不完全菌は、糸状菌担子菌様生活環と、酵母様生活環の異なった生活環を遷移することにより、以下の固相発酵サイクルが可能である。
The present invention controls the activity of imperfect bacteria belonging to the genus Wickerhamomyces, controls the transition of the different life cycles of the filamentous fungi-like life cycle and the yeast-like life cycle, and performs solid-state fermentation using a carbon source as a raw material. It is possible to produce biogas containing alcohols and esters.
The incomplete bacterium belonging to the genus Wickerhamomyces used in the present invention can undergo the following solid-state fermentation cycle by transitioning between a life cycle of a filamentous fungus-like basidiomycetous life cycle and a yeast-like life cycle.
 図1は、本発明のバイオガス製造方法で用いるWickerhamomyces属に属する不完全菌に関する生活環を説明するものである。
 図1に示すように、炭素源の分解進度において、糸状菌担子菌様生活環は好気条件下でセルロースリッチな状態で発現しやすく、セルロース→グルコース→アルコール類への進度を進め、酵母様生活環は嫌気条件下でグルコースリッチな状態で発現しやすくグルコース→アルコール類→エステル類への進度を進めてゆく。
FIG. 1 illustrates the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces used in the biogas production method of the present invention.
As shown in FIG. 1, the filamentous basidiomycete-like life cycle is easily expressed in a cellulose-rich state under aerobic conditions in the progress of decomposition of the carbon source, and the progress from cellulose to glucose to alcohols is promoted. The life cycle tends to be expressed in a glucose-rich state under anaerobic conditions, and progresses from glucose to alcohols to esters.
 なお、本発明者は、このWickerhamomyces属に属する不完全菌の2つの生活環の間を遷移させて炭素源の分解進度を進める手法を発明した。バイオガスの発生は、糸状菌担子菌様生活環によるセルロースのグルコースへの分解と、酵母様生活環によるグルコースからバイオガスへの生成がなされれば良いので、糸状菌担子菌様生活環から始めて酵母様生活環へ遷移すればバイオガスの生成が見られる。さらに、図1に示すように、糸状菌担子菌様生活環から酵母様生活環への遷移のコントロールと、酵母様生活環から糸状菌担子菌様生活環への遷移のコントロールを人為的に操って炭素源の分解進度を繰り返して実行することにより繰り返しバイオガスを生成することもできる。
  このように、Wickerhamomyces属に属する不完全菌の2つの生活環の間の遷移を人為的に制御した炭素源からのバイオガスの発生という技術は、今までにない画期的なものである。
The inventor has invented a method of transitioning between two life cycles of incomplete bacteria belonging to the genus Wickerhamomyces to advance the decomposition rate of the carbon source. The generation of biogas should start from the filamentous basidiomycetous life cycle, as long as the decomposition of cellulose into glucose by the fungal basidiomycetous life cycle and the production of glucose to biogas by the yeast-like life cycle is performed. Biogas production can be seen when transitioning to a yeast-like life cycle. Furthermore, as shown in FIG. 1, the transition control from the filamentous basidiomycetous life cycle to the yeast-like life cycle and the transition control from the yeast-like life cycle to the filamentous basidiomycetous life cycle are artificially manipulated. Thus, it is possible to repeatedly generate biogas by repeatedly performing the decomposition progress of the carbon source.
Thus, the technology of generating biogas from a carbon source in which the transition between two life cycles of imperfect bacteria belonging to the genus Wickerhamomyces is artificially controlled is an unprecedented breakthrough.
 図2は、実施例1にかかるバイオガスの製造装置および当該装置の中で行われる本発明のバイオガス製造方法を簡単に示したものである。
 図2(a)は、実施例1にかかる本発明で用いるバイオガス製造装置100の構成を簡単に示したものである。
 図2(a)に示すように、培養槽110を中心とし、炭素源投入手段120により適宜、固相状態の炭素源を投入できるものとなっている。また、培養条件設定手段130を備え、培養槽110における培養条件を制御できる。この実施例では培養条件の制御は嫌気条件と好気条件の切り替えで行うものとなっており、培養条件設定手段130は窒素供給手段140のバルブ141の制御を行うものとなっている。バイオガス回収手段160は培養槽110により炭素源の分解が進み、セルロースからグルコースを経て、発生した気相状態のメタノール、エタノール、酢酸エチルなどのバイオガスを受け取り、気相のまま回収する装置である。
FIG. 2 simply shows the biogas production apparatus according to the first embodiment and the biogas production method of the present invention performed in the apparatus.
FIG. 2A simply shows the configuration of the biogas production apparatus 100 used in the present invention according to the first embodiment.
As shown in FIG. 2 (a), a solid phase carbon source can be appropriately charged by a carbon source charging means 120 with a culture tank 110 as a center. Moreover, the culture condition setting means 130 is provided and the culture conditions in the culture tank 110 can be controlled. In this embodiment, the culture condition is controlled by switching between the anaerobic condition and the aerobic condition, and the culture condition setting means 130 controls the valve 141 of the nitrogen supply means 140. The biogas recovery means 160 is a device that receives the biogas such as methanol, ethanol, ethyl acetate, etc. in the gas phase generated from the cellulose through glucose through the culture tank 110, and recovers it in the gas phase. is there.
 図2(b)は、本発明のバイオガス製造方法として第1の工程と第2の工程が行われる様子を示したものである。
 第1の工程は、Wickerhamomyces属に属する不完全菌を固相状態の炭素源とともに培養し、炭素源のセルロースからグルコースを生成する工程である。
 第2の工程は、第1の工程に引き続き、前記Wickerhamomyces属に属する不完全菌を培養して前記第1の工程で生成された固相状態のグルコースを分解して気相状態のメタノール、エタノール、酢酸エチルのいずれかまたはそれらの混合物であるバイオガスを生成する工程である。
 この第1の工程と第2の工程を行うことにより、固相状態の炭素源から液相を介することなく直接気相状態のバイオガスを生産する工程となっている。
FIG. 2B shows how the first step and the second step are performed as the biogas production method of the present invention.
The first step is a step of culturing incomplete bacteria belonging to the genus Wickerhamomyces together with a solid-state carbon source to produce glucose from the carbon source cellulose.
In the second step, subsequent to the first step, incomplete bacteria belonging to the genus Wickerhamomyces are cultured to decompose the solid-phase glucose produced in the first step to decompose gas phase methanol and ethanol. , Producing biogas which is any of ethyl acetate or a mixture thereof.
By performing the first step and the second step, a biogas in a gas phase state is directly produced from a carbon source in a solid phase state without passing through a liquid phase.
 培養条件設定手段130は、第1の工程から第2の工程へ遷移させる場合、酵母菌様生活環活性条件、つまり、培養槽110内を常温かつ嫌気条件を保つため、必要に応じて窒素供給手段140のバルブ141の開放制御を行って適度な嫌気条件を維持する。 When the culture condition setting means 130 makes a transition from the first step to the second step, the yeast-like life cycle activity condition, that is, the inside of the culture tank 110 is maintained at room temperature and anaerobic conditions, so that nitrogen is supplied as necessary. Control of opening the valve 141 of the means 140 is performed to maintain an appropriate anaerobic condition.
 なお、最初の第1の工程は、この例では、嫌気条件から始める例となっている。好気条件であると炭素源に混入している乳酸菌が優勢に繁殖してしまう可能性があるためである。嫌気条件であったとしても、Wickerhamomyces属に属する不完全菌が炭素源のセルロースからグルコースを生産しつつも、酵母様生活環活性条件であるので、糸状菌担子菌様の生活環がやがて酵母菌様生活環へ自然と遷移してゆき、第2の工程に遷移してゆく。 In this example, the first first step is an example starting from anaerobic conditions. This is because lactic acid bacteria mixed in the carbon source may proliferate predominantly under aerobic conditions. Even under anaerobic conditions, an incomplete bacterium belonging to the genus Wickerhamomyces is producing yeast from cellulose as a carbon source, but it is a yeast-like life cycle activity condition, so that the filamentous basidiomycetous life cycle will eventually become yeast. It will naturally transition to the life cycle, and will transition to the second step.
 以下、本発明のバイオガス製造方法を実験により実証する。
 [実証実験に用いた器具構成]
 図3は、バイオガス製造方法を検証するための実験器具の構成を示す図である。
 固相発酵用フラスコは培養槽110を想定したものである。
 固相発酵用フラスコは、炭素源となる竹粉を封入し、70℃で1週間窒素乾留し、Wickerhamomyces属に属する不完全菌を播種したものである。
 人手で実験器具を操作することにより、培養条件設定手段130を省略した。
 酸素ボンベは酸素供給手段150、窒素ボンベは窒素供給手段140を模したものである。なお、実証実験の後段に使用する酸素ボンベは培養槽に見立てた固相発酵用フラスコ内を好気条件にする際に使用するものであるが、滅菌した空気を投入する空気ボンベであっても良い。
 嫌気条件は、窒素ボンベからは毎分2mlにて窒素ガスを供給することで維持する。
 好気条件は、酸素ボンベまたは空気ボンベから毎分2mlにて酸素ガスまたは空気を供給することで維持する。
 バイオガス回収装置160はクールトラップ器具により代替した。クールトラップ器具は、ガストラップ瓶にガラス玉を入れて配管したものを、予め-20℃で予冷しておく。
 なお、上記の実験器具の構成により、本発明のバイオガス製造装置の基本的構造を想定した実験となっている。
Hereinafter, the biogas production method of the present invention will be demonstrated by experiments.
[Apparatus configuration used in the demonstration experiment]
FIG. 3 is a diagram showing a configuration of a laboratory instrument for verifying the biogas production method.
The flask for solid phase fermentation assumes a culture tank 110.
The flask for solid-phase fermentation encloses bamboo powder as a carbon source, nitrogen-distilled at 70 ° C. for 1 week, and seeded with imperfect bacteria belonging to the genus Wickerhamomyces.
The culture condition setting means 130 was omitted by manually operating the experimental instrument.
The oxygen cylinder imitates the oxygen supply means 150, and the nitrogen cylinder imitates the nitrogen supply means 140. The oxygen cylinder used in the latter stage of the demonstration experiment is used when the inside of the flask for solid-phase fermentation assumed to be a culture tank is in an aerobic condition, but even an air cylinder into which sterilized air is introduced. good.
Anaerobic conditions are maintained by supplying nitrogen gas from a nitrogen cylinder at 2 ml / min.
Aerobic conditions are maintained by supplying oxygen gas or air from an oxygen or air cylinder at 2 ml / min.
The biogas recovery device 160 was replaced with a cool trap device. The cool trap device is pre-cooled at −20 ° C. in which a glass ball is put in a gas trap bottle and piped.
In addition, it is an experiment which assumed the basic structure of the biogas manufacturing apparatus of this invention by the structure of said experimental instrument.
 [実証実験に用いた菌]
 以下、実証実験に用いるWickerhamomyces属に属する不完全菌を同定して確認した。
 菌の分析は、微生物同定試験を受託している株式会社テクノスルガ・ラボに実証実験に用いる菌を持ち込んで微生物同定試験を依頼した。具体的な同定方法は、変性剤濃度勾配ゲル電気泳動法(Denaturing gradient gel electrophoresis:DGGE)法を用いて微生物群集構造解析を行った。DGGE法は、同じ長さの二本鎖DNA断片を塩基配列の違いに基づいて分離する電気泳動法である。切り出したバンドからDNAを抽出し、これを鋳型としてPCR増幅した産物を用いて再度DGGEを行うことによりバンドの純度確認を行いつつDNA型の解析をした。DGGE解析によって得られた7バンドの28SrDNA部分塩基配列および1バンドの16SrDNA部分塩基配列を決定し、それら結果により簡易系統解析を行い、各バンドに由来する細菌群の帰属分類群を決定した。
[Bacteria used in the demonstration experiment]
Hereinafter, incomplete bacteria belonging to the genus Wickerhamomyces used in the demonstration experiment were identified and confirmed.
For the analysis of the bacteria, the microorganism used in the demonstration experiment was commissioned to Techno Suruga Lab Co., Ltd., which undertakes the microorganism identification test, and the microorganism identification test was requested. As a specific identification method, microbial community structure analysis was performed using a denaturing gradient gel electrophoresis (DGGE) method. The DGGE method is an electrophoresis method that separates double-stranded DNA fragments having the same length based on differences in base sequences. DNA was extracted from the excised band, and the DNA type was analyzed while confirming the purity of the band by performing DGGE again using the product amplified by PCR using this as a template. The 7-band 28S rDNA partial base sequence and the 1-band 16S rDNA partial base sequence obtained by DGGE analysis were determined, and a simple lineage analysis was performed based on these results to determine the belonging taxon of the bacterial group derived from each band.
 サイクルシーケンス:Big Dye Terminator v3.1 Cycle Sequencing Kit
           (Applied Biosystems, CA, USA)
 使用プライマー:DGGE band sequencing kit for analysis of the bacterial v3 region
         (DS-0001)(TechnoSuruga Laboratory Co., Ltd, Shizuoka)
         Lac1, Lac3, Lac2 (Lactobacillales 目増幅用) Lac1, Lac 3は等量混合使用
 シーケンス:ABI 3130xl Genetic Analyzer System (Applied Biosystems, CA, USA)
 配列決定 :ChromasPro 1.4 (Technelysium Pty Ltd., Tewantin, AUS)
 相同性検索及び簡易分子系統解析:ソフトウェアアポロン3.0(テクノスルガ・ラボ、静岡)
 データベース:国際塩基配列データベース(GenBank/DDBJ/EMBL)
        アポロンDB-BA10.0(テクノスルガ・ラボ静岡)
        アポロンDB-FU(D1/D2)8.0(テクノスルガ・ラボ静岡)
 以下、本発明のバイオガス製造方法で用いるWickerhamomyces属に属する不完全菌として、実証実験に用いた菌に関する同定結果を示す。
 試験サンプルは、試験区分1と試験区分2の2つを用意してダブルチェックした。
Cycle sequence: Big Dye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems, CA, USA)
Primer used: DGGE band sequencing kit for analysis of the bacterial v3 region
(DS-0001) (TechnoSuruga Laboratory Co., Ltd, Shizuoka)
Lac1, Lac3, Lac2 (for Lactobacillales eye amplification) Lac1, Lac 3 are mixed in equal amounts Sequence: ABI 3130xl Genetic Analyzer System (Applied Biosystems, CA, USA)
Sequencing: ChromasPro 1.4 (Technelysium Pty Ltd., Tewantin, AUS)
Homology search and simple molecular phylogenetic analysis: Software Apollon 3.0 (Techno Suruga Lab, Shizuoka)
Database: International nucleotide sequence database (GenBank / DDBJ / EMBL)
Apollon DB-BA10.0 (Techno Suruga Lab Shizuoka)
Apollon DB-FU (D1 / D2) 8.0 (Techno Suruga Lab Shizuoka)
Hereinafter, the identification result regarding the microbe used for the demonstration experiment as an incomplete microbe belonging to the genus Wickerhamomyces used in the biogas production method of the present invention is shown.
Two test samples, test category 1 and test category 2, were prepared and double-checked.
 [試験区分1のサンプルの分析]
 試験1 塩基配列と上位15株との相同率
アポロンDB-FU(D1/D2)8.0検索結果
Figure JPOXMLDOC01-appb-T000001
[Analysis of test category 1 sample]
Test 1 Apollon DB-FU (D1 / D2) 8.0 search results for the homology between the base sequence and the top 15 strains
Figure JPOXMLDOC01-appb-T000001
 試験2 塩基配列と上位20株との相同率
 GenBank/DDBJ/EMBL国際塩基配列データベース検索結果
Figure JPOXMLDOC01-appb-T000002
Test 2 Homology between base sequence and top 20 strains GenBank / DDBJ / EMBL international base sequence database search results
Figure JPOXMLDOC01-appb-T000002
 [試験区分2のサンプルの分析]
 試験1 塩基配列と上位15株との相同率
 アポロンDB-FU(D1/D2)8.0検索結果
Figure JPOXMLDOC01-appb-T000003
[Analysis of test category 2 samples]
Test 1 Homology between base sequence and top 15 strains Apollon DB-FU (D1 / D2) 8.0 search results
Figure JPOXMLDOC01-appb-T000003
 試験2 塩基配列と上位20株との相同率
 GenBank/DDBJ/EMBL国際塩基配列データベース検索結果
Figure JPOXMLDOC01-appb-T000004
Test 2 Homology between base sequence and top 20 strains GenBank / DDBJ / EMBL international base sequence database search results
Figure JPOXMLDOC01-appb-T000004
 [表1]及び[表3]のアポロンDB-FU(D1/D2)に対する相同性検索の結果、バンド由来の28SrDNA塩基配列は、Wickerhamomyces arborariusに由来する28rDNAに対して最も高い相同性が示された。
 また、[表2]及び[表4]のGenBank/DDBJ/EMBL国際塩基配列データベース検索の結果において、Wickerhamomyces anomalusなどの28SrDNAに対して高い相同性が示された。
 それらを総合して判断すると、バンド由来の塩基配列はWickerhamomyces属の28SrDNAのクラスターに含まれると結論付けられた。
 その結果、実証実験に用いられた菌は、Wickerhamomyces属に属する不完全菌であると結論付けられた。
As a result of homology search for Apollon DB-FU (D1 / D2) in [Table 1] and [Table 3], the 28S rDNA base sequence derived from the band showed the highest homology to 28 rDNA derived from Wickerhamomyces arborarius. It was.
Further, in the results of the GenBank / DDBJ / EMBL international base sequence database search in [Table 2] and [Table 4], high homology was shown to 28S rDNA such as Wickerhamomyces anomalus.
Judging all of them, it was concluded that the base sequence derived from the band was included in the 28S rDNA cluster of the genus Wickerhamomyces.
As a result, it was concluded that the bacteria used in the demonstration experiment were incomplete bacteria belonging to the genus Wickerhamomyces.
 なお、本発明に用いるWickerhamomyces属に属する不完全菌は、Wickerhamomyces属に属し、固相での培養条件にて炭素源とともに培養した場合に、糸状菌担子菌様生活環と酵母様生活環の異なった生活環を遷移し、炭素源を原料として固相発酵によりアルコール類やそのエステル類、揮発性有機酸類やそのエステル類を含むバイオガスを生成させる菌であれば特に限定されない。
 本発明者は、この同定された当該Wickerhamomyces属に属する不完全菌の株と同じ株の菌を用いて実証実験に使用した。
The incomplete bacteria belonging to the genus Wickerhamomyces used in the present invention belong to the genus Wickerhamomyces, and when cultured with a carbon source under solid-phase culture conditions, the filamentous fungi-like life cycle and yeast-like life cycle are different. It is not particularly limited as long as it is a bacterium that changes the life cycle and generates a biogas containing alcohols and esters thereof, volatile organic acids and esters thereof by solid phase fermentation using a carbon source as a raw material.
The inventor used the identified strain of the same strain as that of the incomplete strain belonging to the genus Wickerhamomyces.
 [実証実験に用いた炭素源]
 本発明で利用するWickerhamomyces属に属する不完全菌は、糸状菌担子菌様生活環と、酵母様生活環の異なった生活環を遷移することができるため、特に、炭素源は限定されない。
 例えば、植物バイオマス資材としてはリグノセルロース系バイオマス等があり、樹木系バイオマス資材であってもよいし、草系バイオマス資材であってもよい。樹木系バイオマス資材としては針葉樹、広葉樹、裸子植物等の樹木に由来する木材(建築廃材、間伐材等を含む)、またはそれらの樹皮、おがくず、葉、きのこ廃菌床等が挙げられる。草系バイオマス資材としては稲、麦、トウモロコシ、サトウキビ、竹、ススキ等に由来する資材、例えば農産物の収穫や加工処理の際に生じる残渣等が挙げられる。
[Carbon source used in the demonstration experiment]
The incomplete bacteria belonging to the genus Wickerhamomyces used in the present invention can transition between a life cycle of a filamentous fungus-like basidiomycetous life cycle and a life cycle different from a yeast-like life cycle, and therefore the carbon source is not particularly limited.
For example, the plant biomass material includes lignocellulosic biomass and the like, and may be a tree biomass material or a grass biomass material. Examples of the woody biomass material include woods (including building waste materials, thinned woods, etc.) derived from trees such as conifers, broadleaf trees, gymnosperms, or their bark, sawdust, leaves, mushroom waste fungus beds, and the like. Examples of grass-based biomass materials include materials derived from rice, wheat, corn, sugarcane, bamboo, Japanese pampas grass, and the like, for example, residues generated during harvesting and processing of agricultural products.
 広葉樹木材、稲藁、竹等のリグノセルロース系バイオマス等を含む植物バイオマス資材は、キシロース等の五炭糖と、グルコース等の六単糖とを構成単位とするヘミセルロースと、グルコースを構成単位とするセルロースを多く含んでいる。つまり、本発明のバイオガス製造方法の炭素源としては、セルロース、ヘミセルロースを利用できるが、もちろん、もっと分解の進んだ糖類、つまり、デンプン、グルコース、マンノース、ガラクトース、フルクトース等の六炭糖、キシロース、アラビノース等の五炭糖等の単糖類、セロビオース等の二糖類なども炭素源として利用可能である。
 本発明では固相のまま直接炭素源を材料とし、気相のバイオガスを発生するものであるので、従来のリグノセルロース系の炭素源の利用に必要とされていた物理的処理や化学的処理は不要である。 
 以下の実証実験では、比較的バイオマス利用が難しいとされている竹粉を用いて行った。
 図4は実証実験に用いた竹粉のサンプルの拡大写真である。
Plant biomass materials including lignocellulosic biomass such as hardwood wood, rice straw, bamboo, etc. are composed of hemicellulose consisting of pentoses such as xylose and hexoses such as glucose, and glucose. Contains a lot of cellulose. That is, as the carbon source of the biogas production method of the present invention, cellulose and hemicellulose can be used, but of course, saccharides that have been further decomposed, that is, hexoses such as starch, glucose, mannose, galactose, and fructose, xylose Monosaccharides such as pentose such as arabinose and disaccharides such as cellobiose can also be used as the carbon source.
In the present invention, the carbon source is directly used as a material in the solid phase, and gas phase biogas is generated. Therefore, the physical treatment and chemical treatment required for the use of the conventional lignocellulose-based carbon source are used. Is unnecessary.
The following demonstration experiment was conducted using bamboo powder, which is considered to be relatively difficult to use biomass.
FIG. 4 is an enlarged photograph of a sample of bamboo powder used in the demonstration experiment.
 [実証実験における固相発酵工程、培養条件]
 本発明のバイオガス製造装置および製造方法の実証は、以下の固相発酵工程、培養条件で行った。
 まず、本発明の実施例1にかかるバイオガス製造方法における、第1の工程と第2の工程への遷移によるバイオガスの製造を実証する実験を行った。
 ・固相発酵工程:竹粉を固相のままとし、Wickerhamomyces属に属する不完全菌を播種
 ・培養条件:常温、嫌気的条件に維持
[Solid-phase fermentation process and culture conditions in the demonstration experiment]
The biogas production apparatus and production method of the present invention were verified by the following solid phase fermentation process and culture conditions.
First, in the biogas production method according to Example 1 of the present invention, an experiment was performed to demonstrate biogas production by transition to the first step and the second step.
・ Solid-phase fermentation process: Bamboo powder remains in solid phase and seeded with imperfect bacteria belonging to the genus Wickerhamomyces ・ Culture conditions: maintained at room temperature and anaerobic conditions
 なお、本来の固相の培養条件としては、炭素源を粉体または破砕体の固相状態とすることおよび嫌気的条件とすることに加え、炭素源に既に混入している自然界の乳酸菌の活性化を阻害することが条件として入るが、後述するように、十分に嫌気性が保たれていれば、乳酸菌は好気性菌であるので活性化が阻害されるよう配慮して実験を行えば、上記培養条件にて固相での培養条件が満たされる。 In addition to the solid-state culture conditions of the solid phase, the solid state of the carbon source or powdered body and the anaerobic conditions, in addition to the activity of natural lactic acid bacteria already mixed in the carbon source As described below, if sufficient anaerobicity is maintained, lactic acid bacteria are aerobic bacteria, so if the experiment is conducted in consideration of the activation being inhibited, The above-mentioned culture conditions satisfy the culture conditions in the solid phase.
 炭素源は竹を粒状体または粉体の固相体とした。なお、本発明のバイオガス製造方法では材料は炭素源のみで良いが、必要に応じて窒素源、無機塩類等の必要な成分とともに含有させることも除外されない。
 菌の播種は、固相状態の適当な培地にWickerhamomyces属に属する不完全菌を播種して培養する。ここで、乳酸菌や、他の糸状菌、担子菌、酵母菌などの菌が混入しないようにする。
 菌の培養温度は、25℃~35℃の常温が好ましく、培養時間は24時間~2000時間程度とすることができる。なお、実施した実証実験では培養温度30℃、培養時間1440時間(60日)とした。
As a carbon source, bamboo was used as a granular or powder solid phase. In the biogas production method of the present invention, the material may be only a carbon source, but it is not excluded to contain it together with necessary components such as a nitrogen source and inorganic salts as necessary.
Inoculation with bacteria is performed by inoculating an appropriate medium in a solid phase with incomplete bacteria belonging to the genus Wickerhamomyces. Here, bacteria such as lactic acid bacteria, other filamentous fungi, basidiomycetes, and yeasts are prevented from being mixed.
The culture temperature of the fungus is preferably an ordinary temperature of 25 ° C. to 35 ° C., and the culture time can be about 24 hours to 2000 hours. In the demonstration experiment, the culture temperature was 30 ° C. and the culture time was 1440 hours (60 days).
 菌の培養は、嫌気的培養とする。嫌気的培養とは具体的には、Wickerhamomyces属に属する不完全菌を播種した培地を、外気と実質的に通気させることなく培養することを指す。本発明において嫌気的条件とは、実質的に遊離酵素が存在しない培養条件を指し、例えば、Wickerhamomyces属に属する不完全菌と培地とを容器内に収容し、容器内の雰囲気を窒素ガス等で置換するなどして実質的に酵素を含まない状態とし、容器内と外気とが実質的に通気しない状態で培養する培養条件が挙げられる。 The culture of the bacteria shall be anaerobic culture. Specifically, anaerobic culture refers to culturing a medium inoculated with imperfect bacteria belonging to the genus Wickerhamomyces without substantially aeration with the outside air. In the present invention, anaerobic conditions refer to culture conditions that are substantially free of free enzyme.For example, imperfect bacteria belonging to the genus Wickerhamomyces and a medium are contained in a container, and the atmosphere in the container is filled with nitrogen gas or the like. Examples include culture conditions in which the enzyme is not substantially contained by substitution or the like, and the culture is performed in a state where the inside of the container and the outside air are not substantially vented.
 後述する考察で述べるように、本発明のバイオガス製造方法では、嫌気的条件において培養することにより炭素源に混入している自然界の乳酸菌の活性化を阻害するよう制御する。乳酸菌は好気性細菌であり、好気的条件ではWickerhamomyces属に属する不完全菌より繁殖力が優位であり、Wickerhamomyces属に属する不完全菌の繁殖を抑制してしまう。そこで、本発明では嫌気的条件に維持することにより乳酸菌の繁殖を抑え、Wickerhamomyces属に属する不完全菌の繁殖を優位に維持できるようコントロールするものである。
 このことを確認する意図も込めて、比較実験として、好気的条件にて培養した結果も示す。ここで、好気的条件とは、具体的には、Wickerhamomyces属に属する不完全菌を播種した培地を、外気と実質的に通気させる状態で培養することを指す。
As will be described later in the discussion, the biogas production method of the present invention controls to inhibit the activation of natural lactic acid bacteria mixed in the carbon source by culturing under anaerobic conditions. Lactic acid bacteria are aerobic bacteria, and under aerobic conditions, the fertility is superior to incomplete bacteria belonging to the genus Wickerhamomyces, and the reproduction of incomplete bacteria belonging to the genus Wickerhamomyces is suppressed. Therefore, in the present invention, the growth of lactic acid bacteria is suppressed by maintaining anaerobic conditions, and the incomplete bacteria belonging to the genus Wickerhamomyces are controlled so as to be advantageously maintained.
With the intention of confirming this, a result of culturing under aerobic conditions is also shown as a comparative experiment. Here, the aerobic condition specifically refers to culturing a medium inoculated with imperfect bacteria belonging to the genus Wickerhamomyces in a state of being substantially aerated with the outside air.
 [実証実験における固相発酵の結果]
 培養試験及びバイオガス生成実験は、公設の試験研究機関である兵庫県立工業技術センターにおいて行なった。
 図5に、実証実験におけるバイオガスの回収結果を示す。
 図5は、培養を始めて3日目あたりで放出されているバイオガスのGC-MSの測定結果である。
 ガスの種類の特定は、GC-MS(Gas Chromatography Mass Spectrometry:ガスクロマトグラフィー質量分析法)により行った。
[Results of solid-phase fermentation in demonstration experiments]
Culture tests and biogas generation experiments were conducted at the Hyogo Prefectural Industrial Technology Center, which is a public testing and research institution.
FIG. 5 shows the result of biogas recovery in the demonstration experiment.
FIG. 5 shows the results of GC-MS measurement of biogas released around the third day from the start of culture.
The type of gas was identified by GC-MS (Gas Chromatography Mass Spectrometry).
 GC-MSの測定結果を分析した。
 図5の中で、明瞭に検出されている2.53分のピークはメタノール、2.92分のピークはエタノールである。これらは、バイオガス生成部110を想定した固相発酵用フラスコ内で発生したバイオガスと考えられる。なお、その他のものはバイオガスではないとみられる。例えば、2分付近の大きなピークと8.5分のピークは、トラップ液の溶媒に使用したアセトン由来ピークと考えられる。18.04分の2つのピークはプラスチックの可塑剤のピークでコンタミネーションした物質由来と推測される。その他の小さなピークの多くは再現性の無いノイズと考えられる。
GC-MS measurement results were analyzed.
In FIG. 5, the peak of 2.53 minutes clearly detected is methanol, and the peak of 2.92 minutes is ethanol. These are considered to be biogas generated in the flask for solid phase fermentation assuming the biogas generation unit 110. Others are not considered to be biogas. For example, a large peak near 2 minutes and a peak at 8.5 minutes are considered to be acetone-derived peaks used as a solvent for the trap solution. The two peaks at 18.04 are presumed to originate from the material contaminated with the plasticizer peak of the plastic. Many other small peaks are considered non-reproducible noise.
 次に、培養日数を通じて観察した発生するバイオガスの種類の時系列変化について調べた。
 図6は、培養日数を通じて観察した発生するバイオガスの種類の時系列変化を示す図である。培養日数を横軸にとり、縦軸にバイオガス生成濃度(mg/l)を取ったものである。
 図6に示すように、培養日数が浅いうちは、メタノールやエタノールのアルコール類の発生が盛んに見られ、アルコール濃度が高くなっているが、培養日数が経過してゆくにつれ、エステル濃度が上がって来たことが分かる。つまり、培養によって先にアルコール濃度が向上してゆき、遅れるようにエステル濃度が次第に向上していることが読み取れる。つまり最初にエタノール発酵が進み、その後に続いてエステル発酵が起こっていることが分かる。
Next, the time series change of the kind of generated biogas observed through the culture days was examined.
FIG. 6 is a diagram showing a time-series change in the type of generated biogas observed through the number of days of culture. The culture days are plotted on the horizontal axis, and the biogas production concentration (mg / l) is plotted on the vertical axis.
As shown in FIG. 6, while the days of culture were shallow, alcohols such as methanol and ethanol were actively generated and the alcohol concentration was high. However, as the days of culture passed, the ester concentration increased. You can see that That is, it can be read that the alcohol concentration is first improved by the culture, and the ester concentration is gradually improved so as to be delayed. That is, it can be seen that ethanol fermentation first proceeds, and ester fermentation subsequently occurs.
 なお、気中に放出されたバイオガス成分をGC-MSで調べたところ、気中に放出されたアルコール類の主成分はエタノールであり、エステル類は酢酸エチルであることが分かった。
 この実験結果から、本発明のバイオガス生成装置を想定した実験装置で実行した用いた本発明のバイオガス製造方法により、Wickerhamomyces属に属する不完全菌により、嫌気状態等の固相発酵条件下で竹粉の炭素源からバイオガスを得られることが実証できた。
When the biogas component released into the air was examined by GC-MS, it was found that the main component of the alcohols released into the air was ethanol and the esters were ethyl acetate.
From this experimental result, by the biogas production method of the present invention used in the experimental apparatus assuming the biogas generation apparatus of the present invention, the incomplete bacteria belonging to the genus Wickerhamomyces, under solid-state fermentation conditions such as anaerobic state It was proved that biogas can be obtained from the carbon source of bamboo powder.
 ここで、本発明のバイオガス製造方法が固相発酵を可能とした点を確認した。
 図7(a)は、実験終了直後のバイオガス生成部110を想定した固相発酵用フラスコの底面近くの様子を写したものである。図7(a)に示すように、固相発酵用フラスコ内は固相のままで液溜まりが見られなかった。固相発酵用フラスコ内部の竹粉を直接確認しても液体で濡れたような状態は確認できなかった。クールトラップで捕捉されたメタノールやエタノールは気相状態でバイオガス回収装置130を想定したクールトラップ器具に到達しているので、固相発酵から液相を介することなく気相のバイオガスを発生するサイクルで固相発酵が進んだことが分かる。
Here, it was confirmed that the biogas production method of the present invention enabled solid-phase fermentation.
FIG. 7A shows a state near the bottom surface of the flask for solid phase fermentation assuming the biogas generation unit 110 immediately after the end of the experiment. As shown to Fig.7 (a), the inside of the flask for solid phase fermentation remained a solid phase, and the liquid pool was not seen. Even if the bamboo powder inside the solid phase fermentation flask was directly confirmed, it was not possible to confirm the state of being wet with liquid. Methanol and ethanol captured by the cool trap reach the cool trap device assuming the biogas recovery device 130 in a gas phase state, so that gas phase biogas is generated from the solid phase fermentation without going through the liquid phase. It can be seen that solid-phase fermentation progressed in the cycle.
 ここで、第2の工程でのバイオガスの製造を終了した時点でのWickerhamomyces属に属する不完全菌の生活環を確認した。
 生活環の確認は、培地を用いた培養により確認した。
 抽出液の調整は、試料25gを滅菌水500mlに分散・静置し、上澄液を回収して抽出した。
 培地の種類は、ポテトデキストロース培地とYPD培地を用いた。ポテトデキストロース培地は糸状菌担子菌様生活環にあるWickerhamomyces属に属する不完全菌の繁殖に適しており、ポテトデキストロース培地で繁殖が大きければWickerhamomyces属に属する不完全菌の生活環が糸状菌担子菌様生活環であったと推定できる。YPD培地は酵母様生活環にある菌の繁殖に適しており、YPD培地で繁殖が大きければ菌の生活環が酵母菌様生活環であったと推定できる。
 いずれも培養条件は、抽出液200μLを培地表面に播種し、シールテープで密封した後29℃で3日間静置することで培養した。
Here, the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces at the time when the production of biogas in the second step was completed was confirmed.
The life cycle was confirmed by culture using a medium.
For the adjustment of the extract, 25 g of the sample was dispersed and left in 500 ml of sterilized water, and the supernatant was collected and extracted.
As the type of medium, potato dextrose medium and YPD medium were used. The potato dextrose medium is suitable for the propagation of incomplete bacteria belonging to the genus Wickerhamomyces in the filamentous fungus-like life cycle. It can be estimated that it was a life cycle. The YPD medium is suitable for the propagation of bacteria in the yeast-like life cycle, and if the YPD medium is highly propagated, it can be estimated that the life cycle of the bacteria was a yeast-like life cycle.
In any case, the culture conditions were such that 200 μL of the extract was seeded on the surface of the medium, sealed with a sealing tape, and then allowed to stand at 29 ° C. for 3 days.
 図7(b)の左図は、ポテトデキストリン培地を用いた培養結果である。播種したWickerhamomyces属に属する不完全菌の増殖は見られるものの比較的限られていることが分かる。
 図7(b)の右図は、YPD培地を用いた培養結果である。播種したWickerhamomyces属に属する不完全菌の増殖が大きく、活発に繁殖していることが分かる。
 以上から第2の工程でのバイオガスの製造を終了した時点でのWickerhamomyces属に属する不完全菌の生活環が酵母菌様生活環に遷移していることが確認できた。
The left figure of FIG.7 (b) is the culture result using a potato dextrin culture medium. It can be seen that the growth of imperfect bacteria belonging to the genus Wickerhamomyces sowed is relatively limited, although it can be seen.
The right figure of FIG.7 (b) is a culture result using a YPD culture medium. It can be seen that the inoculated bacteria belonging to the genus Wickerhamomyces sowed have large growth and are actively breeding.
From the above, it was confirmed that the life cycle of the incomplete bacteria belonging to the genus Wickerhamomyces at the time when the production of the biogas in the second step was completed was changed to a yeast-like life cycle.
[結果および考察]
 上記の実証実験の結果を考察する。
 バイオガス発生工程は、固相状態の炭素源から気相状態にてバイオガスが発生し、液相を介することなく炭素源から直接、バイオガスを発生させる固相発酵であることが確認できたことから、本発明のバイオガス製造方法は、Wickerhamomyces属に属する不完全菌は繁殖する過程における固相発酵サイクルでアルコール類や揮発性有機酸やそれらのエステル類が製造されたものと考えられる。
[Results and Discussion]
Consider the results of the above demonstration experiment.
It was confirmed that the biogas generation process is solid-phase fermentation in which biogas is generated in a gas phase from a solid-state carbon source and biogas is generated directly from the carbon source without going through the liquid phase. Therefore, it is considered that the biogas production method of the present invention produced alcohols, volatile organic acids, and esters thereof in a solid phase fermentation cycle in the process of propagation of imperfect bacteria belonging to the genus Wickerhamomyces.
 Wickerhamomyces属に属する不完全菌を利用する固相発酵サイクルは、糸状菌担子菌様生活環と、酵母様生活環の異なった生活環の間を遷移させることで実行される。
 第1の反応が、固相発酵サイクルの当初に起こる反応であり、炭素源が竹粉などセルロースリッチかつグルコース欠乏の状態であり、嫌気条件下におくことでWickerhamomyces属に属する不完全菌の『糸状菌担子菌様生活環』にてセルロースが分解されグルコースが生成される。
 このグルコースの生成にあたり、まず『糸状菌担子菌様生活環』にあるWickerhamomyces属に属する不完全菌は、セルロースとリグニンを分解する脱リグニン反応が起こると考えられる。このことは、実証実験において、リグニンの減少を測定することにより検証できる。
 次に、脱リグニン反応に続いて、『糸状菌担子菌様生活環』にあるWickerhamomyces属に属する不完全菌は、セルロースをグルコースに分解するグルコース分解反応を起こすものと考えられる。
The solid-phase fermentation cycle using imperfect bacteria belonging to the genus Wickerhamomyces is performed by transitioning between different life cycles of the filamentous fungi-like life cycle and the yeast-like life cycle.
The first reaction is the reaction that occurs at the beginning of the solid-phase fermentation cycle. The carbon source is in a cellulose-rich and glucose-deficient state, such as bamboo flour. By placing it under anaerobic conditions, the incomplete bacteria belonging to the genus Wickerhamomyces Cellulose is decomposed in a filamentous fungus-like basidiomycetous life cycle to produce glucose.
In the production of glucose, it is considered that first, incomplete bacteria belonging to the genus Wickerhamomyces in the “Basidiomycetous fungus-like life cycle” undergo a delignification reaction that decomposes cellulose and lignin. This can be verified by measuring the decrease in lignin in a demonstration experiment.
Next, following the delignification reaction, incomplete bacteria belonging to the genus Wickerhamomyces in the “Basidiomycetous basidiomycetous life cycle” are considered to cause a glucose decomposition reaction that decomposes cellulose into glucose.
 第2の反応は、第1の反応でグルコース分解反応が進み、周辺環境におけるグルコース濃度が高くなってくると、Wickerhamomyces属に属する不完全菌は次第に生活環を『糸状菌担子菌様生活環』から『酵母様生活環』に遷移させる。つまり、炭素源がグルコースリッチの条件下におくことでWickerhamomyces属に属する不完全菌の生活環が『酵母様生活環』に遷移して活性化され、グルコースをアルコール類(エタノール)への分解、さらにエステル類(酢酸エチル)の生成が促進される。 In the second reaction, when the glucose decomposition reaction proceeds in the first reaction and the glucose concentration in the surrounding environment increases, the imperfect bacteria belonging to the genus Wickerhamomyces gradually change their life cycle to “Family fungus basidiomycetous life cycle”. To “Yeast-like life cycle”. In other words, by placing the carbon source under glucose-rich conditions, the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces is transitioned to the “yeast-like life cycle” and activated, and glucose is decomposed into alcohols (ethanol). Furthermore, the production of esters (ethyl acetate) is promoted.
 以上の第1の反応および第2の反応とも、固相で行われ、一度も液相を介することがない。放出されるアルコール類、エステル類は気相として放出されるため、固相状態の炭素源から気相状態のバイオガスが生成されることが検証できた。 Both the first reaction and the second reaction described above are performed in a solid phase and never go through a liquid phase. Since the released alcohols and esters are released as a gas phase, it has been verified that a gas phase biogas is generated from a solid state carbon source.
 実施例2は、第1の工程と第2の工程を連続して交互に繰り返すことにより、固相状態の炭素源から液相を介することなく直接気相状態のバイオガスを生産するバイオガスの製造方法である。
 図8は、実施例2にかかる本発明のバイオガスの製造装置および当該装置の中で行われる本発明のバイオガス製造方法を簡単に示した図である。
 図2に比べて、酸素供給手段150およびバルブ151が追加された構成となっている。 なお、酸素供給手段150は、工業用の酸素ボンベなどでも良いが、本発明における好気条件は大気中の空気と同様の酸素濃度でも良いので、大気中の空気を送り出すポンプ、または大気を通気させるベンチレーションでも良い。
 実施例2のバイオガス製造方法では、最初の第1の工程から第2の工程を経て、最初のサイクルにおいてバイオガスが回収した後、引き続き、第2の工程から第1の工程へ再遷移させて次のバイオガス生成サイクルを行う。
 図8(b)は、第1の工程と第2の工程が繰り返される様子を示したものである。この第1の工程と第2の工程を連続して交互に繰り返すことにより、固相状態の炭素源から液相を介することなく直接気相状態のバイオガスを連続して生産する工程となっている。
 なお、この例では、最初の第1の工程における条件と、2回目以降の第1の工程における条件が異なる例となっている。
In Example 2, the first step and the second step are alternately and continuously repeated to produce a biogas in a gas phase directly from a solid phase carbon source without passing through a liquid phase. It is a manufacturing method.
FIG. 8 is a diagram simply illustrating the biogas production apparatus of the present invention according to Example 2 and the biogas production method of the present invention performed in the apparatus.
Compared to FIG. 2, an oxygen supply means 150 and a valve 151 are added. The oxygen supply means 150 may be an industrial oxygen cylinder or the like. However, since the aerobic condition in the present invention may be the same oxygen concentration as that of air in the atmosphere, a pump for sending air in the atmosphere or a ventilation of the atmosphere. It can be ventilation.
In the biogas production method of Example 2, after the biogas is recovered in the first cycle through the first step from the first step, the transition from the second step to the first step is continued. Then perform the next biogas production cycle.
FIG. 8B shows a state in which the first step and the second step are repeated. By repeating this first step and the second step alternately and continuously, it is a step of continuously producing biogas in the gas phase directly from the carbon source in the solid phase without going through the liquid phase. Yes.
In this example, the conditions in the first step are different from the conditions in the first step after the first time.
 実施例2の場合も、最初の第1の工程を経て第2の工程に遷移してバイオガスを生成する方法は、実施例1と同様であるのでここでは説明を省略する。
 実施例2の場合、第2の工程から引き続き、第1の工程に再度遷移する。
 図9は、最初の第1の工程から第2の工程を経て、次に第1の工程に戻ることを簡単に示したものである。図9に示すように、培養条件設定手段130は、窒素供給手段140のバルブ141を閉じるとともに、酸素供給手段150のバルブ151を開いて培養槽110内に酸素を供給し、培養槽110の内部を好気条件とする。なお、工業的な量産システムでは 酸素供給手段150は、大気中の空気を送り出すポンプ、または大気を通気させるベンチレーション、工業用の酸素ボンベなどでも良い。
Also in the case of the second embodiment, the method for generating the biogas by passing through the first first step to the second step is the same as that of the first embodiment, and thus the description thereof is omitted here.
In the case of Example 2, the process continues from the second process to the first process again.
FIG. 9 simply shows that the first step goes through the second step and then returns to the first step. As shown in FIG. 9, the culture condition setting means 130 closes the valve 141 of the nitrogen supply means 140 and opens the valve 151 of the oxygen supply means 150 to supply oxygen into the culture tank 110. Is an aerobic condition. In an industrial mass production system, the oxygen supply means 150 may be a pump that sends out air in the atmosphere, a ventilation that ventilates the atmosphere, an industrial oxygen cylinder, or the like.
 この第2の工程から第1の工程に戻る手順を実証する実証実験は、図3に示した実験器具構成において、空気ボンベより空気で置換することにより行った。その他の実験器具構成はそのままとした。
 空気が置換された固相発酵用フラスコを30℃インキュベータにて1週間培養を続けた。
 図9(b)は1週間の培養を経て得られたWickerhamomyces属に属する不完全菌の生活環を調べたものである。生活環の確認は前出の確認と同様、培地を用いた培養により確認した。
 抽出液の調整は、試料25gを滅菌水500mlに分散・静置し、上澄液を回収して抽出した。培地の種類は、ポテトデキストロース培地とYPD培地を用いた。いずれも培養条件は、抽出液200μLを培地表面に播種し、シールテープで密封した後29℃で3日間静置することで培養した。
A demonstration experiment for demonstrating the procedure of returning from the second step to the first step was performed by replacing the air in the experimental instrument configuration shown in FIG. 3 with air. Other laboratory equipment configurations were left as they were.
The solid phase fermentation flask in which air was replaced was continued to be cultured in a 30 ° C. incubator for 1 week.
FIG. 9B shows the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces obtained after one week of culture. The confirmation of the life cycle was confirmed by culture using a medium as in the previous confirmation.
For the adjustment of the extract, 25 g of the sample was dispersed and left in 500 ml of sterilized water, and the supernatant was collected and extracted. As the type of medium, potato dextrose medium and YPD medium were used. In any case, the culture conditions were such that 200 μL of the extract was seeded on the surface of the medium, sealed with a sealing tape, and then allowed to stand at 29 ° C. for 3 days.
 図9(b)の左図は、ポテトデキストリン培地を用いた培養結果である。播種したWickerhamomyces属に属する不完全菌の増殖が大きく、活発に繁殖していることが分かる。
 図9(b)の右図は、YPD培地を用いた培養結果である。播種したWickerhamomyces属に属する不完全菌の増殖が大きく、活発に繁殖していることが分かる。
 以上から、第2の工程の後、好気条件にすることにより、Wickerhamomyces属に属する不完全菌の一部はその生活環を、酵母様生活環から糸状菌担子菌様生活環へ再遷移したことが確認できた。つまり、第2の工程から第1の工程へ戻ることができたことが確認できた。
The left figure of FIG.9 (b) is the culture result using a potato dextrin culture medium. It can be seen that the inoculated bacteria belonging to the genus Wickerhamomyces sowed have large growth and are actively breeding.
The right figure of FIG.9 (b) is the culture result using a YPD culture medium. It can be seen that the inoculated bacteria belonging to the genus Wickerhamomyces sowed have large growth and are actively breeding.
From the above, by making the aerobic condition after the second step, some imperfect bacteria belonging to the genus Wickerhamomyces re-transitioned from the yeast-like life cycle to the filamentous basidiomycetous life cycle. I was able to confirm. In other words, it was confirmed that the process could return from the second process to the first process.
 なお、この実証実験では、図9(b)の右側の実験からWickerhamomyces属に属する不完全菌の一部の生活環は酵母様生活環のまま維持されていたようであるが、好気条件の培養期間を長くすればより多くの割合のWickerhamomyces属に属する不完全菌の生活環が糸状菌担子菌様生活環へ再遷移することが期待できる。また、たとえ一部のWickerhamomyces属に属する不完全菌の生活環が酵母様生活環を維持し続けたとしてもセルロースのグルコースへの分解に対して大きく阻害するようなものではない。
 以上、第2工程の後、第1の工程に戻ってセルロースのグルコースへの分解工程に再度遷移することができることが確認できた。
In this demonstration experiment, it seems that a part of the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces was maintained as a yeast-like life cycle from the experiment on the right side of FIG. 9B. It can be expected that the life cycle of imperfect bacteria belonging to the genus Wickerhamomyces re-transitions to the filamentous fungus-like life cycle if the culture period is lengthened. Moreover, even if the life cycle of some incomplete bacteria belonging to the genus Wickerhamomyces continues to maintain the yeast-like life cycle, it does not significantly inhibit the decomposition of cellulose into glucose.
As described above, it was confirmed that after the second step, it was possible to return to the first step and transition again to the step of decomposing cellulose into glucose.
 次に、実施例2では、第1の工程に戻った後、再び第2の工程に移行する。
 図10は、図9のように第1の工程に戻った状態から再度第2の工程に移行することを簡単に示したものである。図10(a)に示すように、培養条件設定手段130は、酸素供給手段150のバルブ151を閉じるとともに、窒素供給手段140のバルブ141を開いて培養槽110内に窒素を供給し、培養槽110の内部を嫌気条件とする。実証実験では、図3に示した実験器具構成において、窒素ボンベより発酵用フラスコ内を窒素で置換した。その他の実験器具構成はそのままで良い。
 この実験は、前出したものと同じであり、バイオガスの発生・回収ができることが確認できた。
Next, in Example 2, after returning to the 1st process, it shifts to the 2nd process again.
FIG. 10 simply shows the transition from the state returned to the first step to the second step as shown in FIG. As shown in FIG. 10 (a), the culture condition setting means 130 closes the valve 151 of the oxygen supply means 150 and opens the valve 141 of the nitrogen supply means 140 to supply nitrogen into the culture tank 110. The inside of 110 is an anaerobic condition. In the demonstration experiment, the inside of the fermentation flask was replaced with nitrogen from a nitrogen cylinder in the experimental instrument configuration shown in FIG. Other laboratory instrument configurations can be left as they are.
This experiment was the same as the previous one, and it was confirmed that biogas can be generated and recovered.
 その後も図10(b)に示すように、第1の工程、第2の工程と繰り返して行けば良い。
 ここで、第1の工程、第2の工程を交互に繰り返す利点について説明する。 
 一般に他で行われている炭素源を用いたバイオエタノールを得る発酵技術は、炭素源を加水分解処理など物理的に大量のエネルギーを投入してグルコース化を終えてから、そのグルコースを発酵によりエタノールに変化させるものがほとんどであるため、本発明のように発酵工程を繰り返すという概念がない。しかし、本発明は、炭素源のセルロースからグルコース、グルコースからエタノールという2工程を、Wickerhamomyces属に属する不完全のみで行うものである。
Thereafter, as shown in FIG. 10B, the first step and the second step may be repeated.
Here, the advantage which repeats a 1st process and a 2nd process alternately is demonstrated.
In general, fermentation technology for obtaining bioethanol using a carbon source is conducted by other methods, such as hydrolyzing the carbon source and physically adding a large amount of energy. Since most of them are changed, there is no concept of repeating the fermentation process as in the present invention. However, in the present invention, the two steps of carbon source cellulose to glucose and glucose to ethanol are performed only with imperfections belonging to the genus Wickerhamomyces.
 ここで、炭素源のセルロースをWickerhamomyces属に属する不完全のみでほとんどグルコースになるまで発酵させるとすると長時間を要するものと考えられる。そこで、発酵進度を効率的に進めるため、炭素源のセルロースからグルコース、グルコースからエタノールという2工程を交互に進める手法を想起した。 Here, it is considered that it takes a long time to ferment the cellulose, which is a carbon source, until it becomes almost glucose with only imperfections belonging to the genus Wickerhamomyces. Then, in order to advance fermentation progress efficiently, the method of advancing alternately two processes called glucose from a carbon source, glucose, and glucose to ethanol was recalled.
 図11は炭素源の変化を簡単に示した図である。本発明の炭素源の例は、竹粉などの粉体であり、表面積は大きく確保されているが、拡大してみれば、図11のごとく、セルロースの塊状のものである。ここで、図11の上段から中段に示すように、Wickerhamomyces属に属する不完全菌が糸状菌担子菌様の生活環でセルロースを分解してグルコースに変化させるとグルコースが表面を覆ってくる。本発明は固相発酵を前提としているので、グルコースが溶出せず表面を覆ってくるものと考えられる。このまま、Wickerhamomyces属に属する不完全菌の生活環を糸状菌担子菌様生活環に維持した状態で培養を継続しても、その活性が低下してくるおそれがある。そこで、本発明では、Wickerhamomyces属に属する不完全菌の生活環を遷移させ、グルコースを活発に分解する酵母様生活環にし、図11中段から下段のように、表面の固相状態のグルコースをエタノールに発酵させ、蒸散させて先にバイオガスとして回収するものである。このように適度なところで表面の固相状態のグルコースを発酵してしまうことにより、再びセルロースが表面近くに露出するので、再度、図11下段から上段へ戻って、Wickerhamomyces属に属する不完全菌の生活環を糸状菌担子菌様生活環に戻してセルロースのグルコースへの発酵工程とするものである。このように、第1の工程と第2の工程を繰り返すことにより、全体としての発酵の活性効率を高くするものである。 FIG. 11 is a diagram simply showing changes in the carbon source. An example of the carbon source of the present invention is a powder such as bamboo powder, and a large surface area is ensured. However, when enlarged, it is a lump of cellulose as shown in FIG. Here, as shown in the upper to middle of FIG. 11, when an incomplete bacterium belonging to the genus Wickerhamomyces decomposes cellulose in the life cycle of a filamentous fungus-like fungus and changes it to glucose, the glucose covers the surface. Since the present invention is premised on solid phase fermentation, it is considered that glucose does not elute and covers the surface. Even if the culture is continued in a state where the life cycle of the incomplete bacterium belonging to the genus Wickerhamomyces is maintained as a filamentous fungus-like life cycle, the activity may be reduced. Therefore, in the present invention, the life cycle of an incomplete bacterium belonging to the genus Wickerhamomyces is transitioned to a yeast-like life cycle that actively degrades glucose. As shown in the middle to the bottom of FIG. It is fermented and evaporated to recover as biogas first. By fermenting the glucose in the solid phase on the surface at an appropriate place as described above, the cellulose is exposed again near the surface. Therefore, the process returns again from the lower stage to the upper stage in FIG. 11, and the incomplete bacteria belonging to the genus Wickerhamomyces are returned. The life cycle is returned to the filamentous fungus-like basidiomycetous life cycle, and the fermentation process of cellulose to glucose is performed. Thus, the activity efficiency of the fermentation as a whole is increased by repeating the first step and the second step.
 以上、本発明のバイオガス製造方法、バイオガス製造装置について好ましい実施例を図示して説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。 The preferred embodiments of the biogas production method and biogas production apparatus of the present invention have been illustrated and described above, but it will be understood that various modifications can be made without departing from the technical scope of the present invention. Will.
 本発明のバイオガス製造方法は、植物バイオマス資源、たとえば、樹木、草木、竹、稲藁などのリグノセルロース系バイオマス資源を利用したバイオマス処理を伴う技術分野に広く適用することができる。 The biogas production method of the present invention can be widely applied to technical fields involving biomass processing using plant biomass resources, for example, lignocellulosic biomass resources such as trees, vegetation, bamboo, and rice straw.
 100 バイオガス製造装置
 110 培養槽
 120 炭素源投入手段
 130 培養条件設定手段
 140 窒素供給手段
 141 バルブ
 150 酸素供給手段
 151 バルブ
 160 バイオガス回収部
DESCRIPTION OF SYMBOLS 100 Biogas production apparatus 110 Culture tank 120 Carbon source input means 130 Culture condition setting means 140 Nitrogen supply means 141 Valve 150 Oxygen supply means 151 Valve 160 Biogas recovery part

Claims (7)

  1.  Wickerhamomyces属に属する不完全菌を炭素源とともに培養することによりバイオガスを生成するバイオガス生成工程を含むバイオガスの製造方法であって、
     前記Wickerhamomyces属に属する不完全菌が、糸状菌担子菌様生活環と、酵母様生活環の異なった生活環を遷移するものであり、
     前記バイオガス生成工程が、
     前記Wickerhamomyces属に属する不完全菌を糸状菌担子菌様生活環にて培養して固相状態の前記炭素源のセルロースをグルコースに分解する第1工程と、
     前記Wickerhamomyces属に属する不完全菌を酵母様生活環にて培養して前記第1の工程において固相状態の前記炭素源から生成された固相状態の前記グルコースを分解して気相状態のメタノール、エタノール、それらのエステル類のいずれかまたはそれらの混合物であるバイオガスを生成する第2工程を備え、
     前記第1の工程および前記第2の工程において、前記Wickerhamomyces属に属する不完全菌の前記糸状菌担子菌様生活環と前記酵母様生活環を遷移させつつ、液相を介することなく前記炭素源から直接、気相状態の前記バイオガスを発生させる工程としたものである、バイオガスの製造方法。
    A biogas production method comprising a biogas production step of producing biogas by culturing an incomplete bacterium belonging to the genus Wickerhamomyces together with a carbon source,
    The imperfect bacteria belonging to the genus Wickerhamomyces are those that transition through a different life cycle of a filamentous fungus basidiomycetous life cycle and a yeast-like life cycle,
    The biogas generation step includes
    A first step of culturing an incomplete bacterium belonging to the genus Wickerhamomyces in a filamentous fungus basidiomycetous life cycle and decomposing the carbon of the carbon source in a solid state into glucose;
    Incomplete bacteria belonging to the genus Wickerhamomyces are cultured in a yeast-like life cycle, and the solid-phase glucose produced from the solid-state carbon source in the first step is decomposed to produce vapor-phase methanol. A second step of producing biogas which is ethanol, one of their esters or a mixture thereof,
    In the first step and the second step, the carbon source is transferred without passing through a liquid phase while transitioning the filamentous fungi-like basidiomycetous life cycle and the yeast-like life cycle of the incomplete bacterium belonging to the genus Wickerhamomyces. A method for producing a biogas, which is a process for generating the biogas in a gas phase directly from a gas phase.
  2.  前記第1の工程と前記第2の工程を連続して交互に繰り返すことにより、前記固相状態の前記炭素源から液相を介することなく直接気相状態の前記バイオガスを生産する請求項1に記載のバイオガスの製造方法。 The biogas in a gas phase state is directly produced from the carbon source in the solid phase state without passing through a liquid phase by continuously and alternately repeating the first step and the second step. The biogas production method according to claim 1.
  3.  前記第1の工程から前記第2の工程へ遷移させる条件が、前記Wickerhamomyces属に属する不完全菌の酵母菌様生活環を活性化させる酵母菌様生活環活性条件であり、
     前記第2の工程から前記第1の工程へ遷移させる条件が、前記Wickerhamomyces属に属する不完全菌の糸状菌担子菌様生活環を活性化させる糸状菌担子菌様生活環活性条件であり、
     培養槽の培養条件として、前記酵母菌様生活環活性条件と、前記糸状菌担子菌様生活環活性条件とを適宜切り替えることにより、前記第1の工程と前記第2の工程を交互に切り替えつつ前記バイオガスの生成を進めることを特徴とする請求項2に記載のバイオガス製造装置。
    The condition for transition from the first step to the second step is a yeast-like life cycle activity condition for activating the yeast-like life cycle of an incomplete bacterium belonging to the genus Wickerhamomyces,
    The condition for transition from the second step to the first step is a filamentous fungus basidiomycetous life cycle activity condition for activating the filamentous fungi basidiomycetous life cycle of the incomplete bacterium belonging to the genus Wickerhamomyces,
    While appropriately switching between the yeast-like life cycle activity condition and the filamentous basidiomycetous life cycle activity condition as the culture conditions of the culture tank, the first step and the second step are alternately switched. The biogas production apparatus according to claim 2, wherein the biogas production is advanced.
  4.  前記酵母菌様生活環活性条件が常温かつ嫌気条件であり、
     前記糸状菌担子菌様生活環活性条件が常温かつ好気条件であることを特徴とする請求項3に記載のバイオガスの製造方法。
    The yeast-like life cycle activity conditions are normal temperature and anaerobic conditions,
    The method for producing biogas according to claim 3, wherein the filamentous basidiomycetous life cycle activity condition is normal temperature and aerobic condition.
  5.  前記第1の工程と前記第2の工程の交互の繰り返しにおいて、
     最初の前記第1の工程は、培養条件を、前記糸状菌担子菌様生活環活性条件とはせずに、当初から前記酵母菌様生活環活性条件である常温かつ嫌気条件とし、前記Wickerhamomyces属に属する不完全菌の生活環を前記糸状菌担子菌様生活環にコントロールしたものを播種し、前記炭素源に混入している乳酸菌の増殖を抑制するとともに、前記Wickerhamomyces属に属する不完全菌が前記炭素源のセルロースをグルコースに分解しつつも、前記酵母菌様生活環活性条件下、やがてその生活環が前記糸状菌担子菌様生活環から前記酵母菌様生活環へ自然と遷移してゆき、前記第2の工程に遷移してゆくようコントロールすることを特徴とした請求項3または4に記載のバイオガス製造方法。
    In alternating repetition of the first step and the second step,
    In the first step, the culture conditions are not the filamentous basidiomycetous life cycle activity conditions, but are initially set to room temperature and anaerobic conditions as the yeast fungus life cycle activity conditions, and the Wickerhamomyces genus The life cycle of an incomplete bacterium belonging to is controlled by the filamentous fungus basidiomycetous life cycle to suppress the growth of lactic acid bacteria mixed in the carbon source, and the incomplete bacterium belonging to the genus Wickerhamomyces While the cellulose of the carbon source is decomposed into glucose, the life cycle naturally transitions from the filamentous basidiomycetous life cycle to the yeast-like life cycle under the yeast-like life cycle activity conditions. 5. The biogas production method according to claim 3, wherein control is performed so as to make a transition to the second step.
  6.  前記第1の工程と前記第2の工程の交互の繰り返しにおいて、
     最初の前記第1の工程から前記第2の工程への遷移を除き、
     前記第1の工程から前記第2の工程への切り替えは、前記炭素源の表面のセルロールからグルコースへの分解速度がピークを過ぎた後の任意のタイミングであり、
     前記第2の工程から前記第1の工程への切り替えは、前記グルコースから前記エタノールまたはそれらのエステル類またはそれらの混合物である前記バイオガスへの分解速度がピークを過ぎた後の任意のタイミングであることを特徴とする請求項2から5のいずれかに記載のバイオガス製造方法。
    In alternating repetition of the first step and the second step,
    Excluding the transition from the first step to the second step,
    Switching from the first step to the second step is an arbitrary timing after the decomposition rate of cellulose from the surface of the carbon source to glucose has passed a peak,
    The switching from the second step to the first step is performed at an arbitrary timing after the decomposition rate of the glucose into the biogas which is the ethanol, their esters, or a mixture thereof passes the peak. The biogas production method according to any one of claims 2 to 5, wherein the biogas production method is provided.
  7.  前記炭素源が、植物バイオマス資材である請求項1から6のいずれかに記載のバイオガスの製造方法。 The method for producing biogas according to any one of claims 1 to 6, wherein the carbon source is a plant biomass material.
PCT/JP2016/062383 2016-04-19 2016-04-19 Biogas production method and device WO2017183110A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018512683A JP6579534B2 (en) 2016-04-19 2016-04-19 Biogas production method
PCT/JP2016/062383 WO2017183110A1 (en) 2016-04-19 2016-04-19 Biogas production method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062383 WO2017183110A1 (en) 2016-04-19 2016-04-19 Biogas production method and device

Publications (1)

Publication Number Publication Date
WO2017183110A1 true WO2017183110A1 (en) 2017-10-26

Family

ID=60116631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062383 WO2017183110A1 (en) 2016-04-19 2016-04-19 Biogas production method and device

Country Status (2)

Country Link
JP (1) JP6579534B2 (en)
WO (1) WO2017183110A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733448B (en) * 2020-05-14 2021-07-11 台以環能股份有限公司 Energy and resource system of using mushroom waste bags
CN117660203A (en) * 2023-12-18 2024-03-08 河北省科学院生物研究所 Anaerobic fermentation promoter and preparation and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046008A (en) * 2008-08-21 2010-03-04 Sumitomo Electric Ind Ltd Fermentation system using biomass
JP2016077293A (en) * 2014-10-20 2016-05-16 株式会社ヨネクニ Production apparatus and production method of biogas from plant biomass using fungi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046008A (en) * 2008-08-21 2010-03-04 Sumitomo Electric Ind Ltd Fermentation system using biomass
JP2016077293A (en) * 2014-10-20 2016-05-16 株式会社ヨネクニ Production apparatus and production method of biogas from plant biomass using fungi

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PASSOTH, VOLKMAR ET AL.: "Enhanced ethanol production from wheat straw by integrated storage and pre-treatment (ISP).", ENZYME MICROB. TECHNOL., vol. 52, no. 2, 2013, pages 105 - 110, XP055602283, DOI: 10.1016/j.enzmictec.2012.11.003 *
RUYTERS, S. ET AL.: "Assessing the potential of wild yeasts for bioethanol production.", J. IND. MICROBIOL. BIOTECHNOL., vol. 42, 2015, pages 39 - 48, XP035419065, DOI: doi:10.1007/s10295-014-1544-y *
ZHA, Y. ET AL.: "Pichia anomala 29X: a resistant strain for lignocellulosic biomass hydrolysate fermentation", FEMS YEAST RES., vol. 13, no. 7, 2013, pages 609 - 617, XP055602278, DOI: 10.1111/1567-1364.12062 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733448B (en) * 2020-05-14 2021-07-11 台以環能股份有限公司 Energy and resource system of using mushroom waste bags
CN117660203A (en) * 2023-12-18 2024-03-08 河北省科学院生物研究所 Anaerobic fermentation promoter and preparation and application thereof

Also Published As

Publication number Publication date
JPWO2017183110A1 (en) 2018-08-02
JP6579534B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP5916200B2 (en) Composition and method for degrading lignocellulosic biomass
JP6173346B2 (en) Biomass material processing
JP4697858B2 (en) Pretreatment of mushroom waste bed and conversion to sugar and ethanol by using it
Nutongkaew et al. Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation
WO2011116358A2 (en) Microorganisms with inactivated lactate dehydrogenase gene (ldh) for chemical production
JP4637536B2 (en) Biomass ethanol from mushroom waste bed
JP6579534B2 (en) Biogas production method
EP3008196B1 (en) Methods to enhance microbial conversion of cellulosic biomass with mechanical augmentation
JP2007195406A (en) Method for producing and fermenting ethanol
JP5984195B2 (en) Apparatus and method for producing biogas from plant biomass using fungi
Christy et al. Enhancing Bioethanol Production from Azolla filiculoides through Optimization of Pretreatment and Culture Conditions with Saccharomyces cerevisiae
JP6167758B2 (en) Ethanol production method
KR20120120625A (en) Preparation for mixed carboxylate by using the seaweed
JP2010035553A (en) PRODUCTION METHOD OF BIOMASS KEEPING alpha-GLUCAN CONVERTED FROM PLANT CELL WALL COMPONENT
JP5007998B2 (en) Saccharification method using lignocellulosic plant material decay
Triyani et al. Potential Utilization of Sugarcane Bagasse as Raw Material for Bioethanol Production
Anushya et al. Bioprocessing of cassava stem to bioethanol using soaking in aqueous ammonia pretreatment
WO2015122538A1 (en) Alcohol manufacturing method
TW201139679A (en) Method of treating raw materials containing lignocellulose as substrate for microbial fermentation
Makky et al. Bioeconomy: fermented waste management and pectinases purification from Thermomyceslanuginosus
Tukur ADAPTIVE LABORATORY EVOLUTION STRATEGY FOR IMPROVEMENT OF GROWTH AND SUBSTRATE UTILIZATION OF BACILLUS SUBTILIS IN HAZELNUT SHELLS HYDROLYSATE
KR101642056B1 (en) Method for producing microbial metabolites from starch-containing lignocellulosic biomass
John et al. Production of Bioethanol from Banana Peel Using Isolated Cellulase
KR20150093705A (en) Method for obtaining biofuel from lignocellulosic and/or amylaceous biomass
JP2006020603A (en) Method for converting waste mushroom bed as raw material to ethanol

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018512683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899384

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899384

Country of ref document: EP

Kind code of ref document: A1