WO2017181749A1 - 内嵌式触控阵列基板及其驱动方法、显示装置 - Google Patents

内嵌式触控阵列基板及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2017181749A1
WO2017181749A1 PCT/CN2017/070739 CN2017070739W WO2017181749A1 WO 2017181749 A1 WO2017181749 A1 WO 2017181749A1 CN 2017070739 W CN2017070739 W CN 2017070739W WO 2017181749 A1 WO2017181749 A1 WO 2017181749A1
Authority
WO
WIPO (PCT)
Prior art keywords
common electrode
peripheral
portion common
sub
pixel
Prior art date
Application number
PCT/CN2017/070739
Other languages
English (en)
French (fr)
Inventor
彭敏
王�泓
荆耀秋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/543,900 priority Critical patent/US20190101998A1/en
Publication of WO2017181749A1 publication Critical patent/WO2017181749A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an in-cell touch array substrate, a driving method thereof, and a display device.
  • the touch panel and the liquid crystal display panel of most touch devices are independently disposed, the touch panel is disposed on the liquid crystal display panel, and there is a physical space between the liquid crystal display panel and the touch panel, and therefore, the liquid crystal display External light is reflected on the upper surface of the panel and the lower surface of the touch panel, which causes the visibility of the liquid crystal display panel to be lowered in a bright environment such as outdoors. If the visibility of the touch panel can be achieved, the integration of the two can also achieve thinning and weight reduction of the entire display panel.
  • VCOM common electrode
  • a main object of the present disclosure is to provide a technical solution that can avoid voltage jumps that are easily generated by a common electrode by inputting a DC voltage and an AC voltage in a display phase and a touch phase, thereby improving the display quality of the liquid crystal display panel.
  • an in-cell touch array substrate including a common electrode layer, and the common electrode layer includes: a pixel portion common electrode, corresponding to In the pixel region of the in-cell touch array substrate, in the touch phase, the pixel portion common electrode receives the common electrode signal; the peripheral portion common electrode corresponds to at least a portion of the non-pixel region except all the pixel regions, in the touch In the control phase, the peripheral portion of the common electrode receives the touch sensing signal.
  • the pixel portion common electrode includes a plurality of pixel sub-section common electrodes, and each of the pixel sub-section common electrodes corresponds to a sub-pixel region of each pixel.
  • the peripheral electrode of the peripheral portion and the gate line of the in-cell touch array substrate respectively form a mutual capacitive touch capacitor as the touch sensing electrode and the touch driving electrode.
  • an orthographic projection of the peripheral portion common electrode at the gate line layer is perpendicular to the gate line and overlaps the gate line.
  • the peripheral portion common electrode includes a plurality of peripheral sub-port common electrodes, and each adjacent two of the peripheral sub-ports includes at least one column of the pixel sub-port common electrodes between the common electrodes.
  • the in-cell touch array substrate further includes a data line layer; wherein the data line layer includes a plurality of data lines; wherein the peripheral portion common electrode includes a plurality of strip-shaped peripheral sub-ports An electrode; the peripheral sub-portion common electrode and the data line extend in the same direction, and the orthographic projection of the peripheral sub-portion common electrode in the data line layer is in one-to-one correspondence with the data line and overlap each other.
  • the data lines of the peripheral portion common electrode and the in-cell touch array substrate respectively form a mutual capacitive touch capacitor as the touch sensing electrode and the touch driving electrode.
  • an orthographic projection of the peripheral portion common electrode at the data line layer is perpendicular to the data line and overlaps the data line.
  • the peripheral portion common electrode includes a plurality of peripheral sub-port common electrodes, and each adjacent two of the peripheral sub-ports common electrodes includes at least one row of the pixel sub-port common electrodes.
  • the in-cell touch array substrate further includes a gate line layer; wherein the gate line layer comprises a plurality of gate lines; wherein the peripheral portion common electrode comprises a plurality of strip-shaped peripheral sub-sections common An electrode; the peripheral sub-portion common electrode and the gate line extend in the same direction, and the orthographic projection of the peripheral sub-portion common electrode in the gate line layer is in one-to-one correspondence with the gate line and overlap each other.
  • the peripheral portion common electrode separately forms a self-capacitive touch capacitor.
  • the peripheral portion common electrode includes a plurality of peripheral sub-port common electrodes, each of which The peripheral sub-portion common electrode is in a glyph shape and surrounds at least one of the pixel sub-portion common electrodes.
  • the in-cell touch array substrate further includes a data line layer and a gate line layer; wherein the data line layer includes a plurality of data lines, the gate line layer includes a plurality of gate lines;
  • the partial common electrode includes a plurality of strip-shaped first peripheral sub-portion common electrodes and a plurality of strip-shaped second peripheral sub-portion common electrodes; the first peripheral sub-portion common electrode and the data line extend in the same direction, and An orthographic projection of the first peripheral sub-portion common electrode in the data line layer and the data line are in one-to-one correspondence and overlap each other; the second peripheral sub-portion common electrode and the gate line extend in the same direction, And the orthographic projection of the second peripheral sub-portion common electrode in the gate line layer is in one-to-one correspondence with the gate lines and overlap each other.
  • the first peripheral sub-portion common electrode is perpendicular to the second peripheral sub-portion common electrode.
  • the pixel portion common electrode and the peripheral portion common electrode are spaced apart from each other.
  • the pixel portion common electrode and the peripheral portion common electrode receive a common electrode signal during a display phase.
  • the common electrode signal is a direct current voltage
  • the touch sensing signal is an alternating current voltage
  • a display device including the above-described in-cell touch array substrate is provided.
  • a driving method of an in-cell touch array substrate includes a common electrode layer, and the common electrode layer includes a common electrode of a pixel portion and a common electrode of a peripheral portion.
  • the pixel portion common electrode corresponds to all pixel regions of the in-cell touch array substrate, and the peripheral portion common electrode corresponds to at least a portion of the non-pixel regions except all the pixel regions, and the driving method includes: touching At the stage, a common electrode signal is input to the common electrode of the pixel portion, and a touch sensing signal is input to the common electrode of the peripheral portion.
  • the method further includes: inputting, to the pixel portion common electrode and the peripheral portion common electrode, the common electrode signal in a display phase.
  • the common electrode signal is a direct current voltage
  • the touch sensing signal is an alternating current voltage
  • the in-cell touch array substrate and the driving method thereof and the display device of the present disclosure can avoid that the common electrode in the related art is easy to input DC voltage and AC voltage respectively during the display phase and the touch phase.
  • the generated voltage jumps, thereby enabling the liquid crystal display panel to be improved Display image quality.
  • FIG. 1 is a schematic diagram of division of a VCOM segmentation technique in the related art
  • FIG. 2 is a schematic diagram of an In Cell Touch driving in the related art
  • 3A is a schematic diagram of a division mode 1 of a common electrode layer according to an embodiment of the present disclosure
  • 3B is a schematic diagram of a division mode 2 of a common electrode layer according to an embodiment of the present disclosure
  • 3C is a schematic diagram of a division mode 3 of a common electrode layer according to an embodiment of the present disclosure.
  • FIG. 3D is a schematic diagram of a sub-pixel region corresponding to each touch pad after dividing the common electrode layer according to the dividing manner of FIG. 3C;
  • FIG. 4 is a schematic diagram of an In Cell Touch driving according to the split mode 2 shown in FIG. 3B;
  • FIG. 5 is a schematic diagram of the In Cell Touch driving according to the division mode 3 shown in FIG. 3C and FIG. 3D.
  • FIG. 1 is a schematic diagram of a division of a common electrode (VCOM) segmentation technique in the related art.
  • VCOM common electrode
  • the VCOM 10 is divided into a plurality of regions 12 of equal size and area, which are respectively used as touch electrodes in the touch phase, and each region 12 (touch electrode) is connected to the TDDI through the leads.
  • Touch display integrated IC Touch display integrated IC
  • FIG. 2 is a schematic diagram of the In Cell Touch drive in the related art.
  • VCOM is prone to voltage jumps during the display phase and the touch phase, thereby reducing the display quality of the liquid crystal display panel.
  • an embodiment of the present disclosure provides an in-cell touch array substrate that can improve display quality of a display panel.
  • the in-cell touch array substrate can include a common electrode layer, and the common electrode layer includes two Part: (1) a pixel portion common electrode corresponding to all pixel regions of the in-cell touch array substrate, in the touch phase, the pixel portion common electrode receives a common electrode signal; and (2) a peripheral portion common electrode corresponding to At least a portion of the non-pixel area outside the pixel area, the peripheral portion of the common electrode receives the touch sensing signal during the touch phase.
  • the function of receiving the common electrode as the touch sensing electrode as the touch sensing signal is separated from the function of receiving the common electrode signal as the common electrode.
  • the common electrode of the pixel part is only used for receiving.
  • the common electrode signal is used, and the peripheral portion of the common electrode is used to receive the touch sensing signal during the touch phase.
  • the VCOM electrode ie, the touch electrode obtained by the common electrode division method in the related art can avoid the voltage jump easily generated during the switching between the DC voltage and the AC voltage during the display phase and the touch phase. And cause the display effect to decrease.
  • the pixel portion common electrode may include a plurality of pixel sub-section common electrodes, and each of the pixel sub-section common electrodes corresponds to one sub-pixel region of each pixel.
  • this design method is only an optional method, and in practical applications, a plurality of sub-pixel regions may be designed to correspond to one of the pixel sub-portion common electrodes, for example, one pixel composed of three sub-pixels of RGB.
  • one pixel area (3 sub-pixel areas) or three pixel areas (9 sub-pixel areas) or even more pixel areas correspond to one of the pixel sub-section common electrodes.
  • the common electrode as the plate of the touch capacitor, it can form a mutual capacitive touch capacitor, and can also form a self-capacitive touch capacitor. Based on this, the embodiments of the present disclosure provide three ways:
  • the common electrode of the peripheral portion is used as a touch sensing electrode in the touch phase, an opposite electrode plate must exist to form a mutual capacitive touch capacitor.
  • the common electrode of the peripheral portion and the gate line of the in-cell touch array substrate are respectively used as a touch sensing electrode and a touch driving electrode.
  • a mutual capacitive touch capacitor is used.
  • the two oppositely disposed plates overlap at least partially, so that there must be a partial overlap between the common electrode and the gate line of the peripheral portion to form a mutual capacitive touch capacitor.
  • the direction of the common electrode of the peripheral portion may be set to be perpendicular to the gate.
  • a line that is, an orthogonal projection of the peripheral electrode at the gate line layer is perpendicular to the gate line and overlaps with the gate line.
  • the common electrode of the peripheral portion may be substantially perpendicular to the gate line, and it is also feasible to be inclined at a certain angle with the gate line in the direction of the partial region, and, as an alternative, the peripheral electrode of the peripheral portion may be disposed at the positive of the data line. Above, in this way, the coordinate information of the touch point of the user on the touch panel can be determined, so that the touch can be realized.
  • the peripheral portion common electrode may include a plurality of peripheral sub-portion common electrodes, and each adjacent two of the peripheral sub-portions includes at least one column of the pixel sub-portion common electrodes between the common electrodes.
  • the common electrode of the peripheral sub-portion functions to form a mutual capacitive touch capacitance with the gate line to determine position information of the touch operation of the user. Therefore, the extending direction of the common electrode of each of the peripheral sub-sections and the pixel
  • the column arrangement directions of the partial common electrodes are the same, of course, the same as the direction of the data lines, and each of the peripheral sub-portion common electrodes may correspond to one or more columns of the pixel sub-section common electrodes.
  • FIG. 3A is a schematic diagram of a division manner 1 of a common electrode layer according to an embodiment of the present disclosure.
  • a common electrode layer is disposed on an upper layer of the pixel electrode layer.
  • the pixel sub-section common electrodes 31 respectively correspond to one sub-pixel display area.
  • the pixel sub-section common electrode 31 is disposed above the pixel electrode, and the peripheral sub-section common electrode 32 is located on the data line (Data ) directly above the 33, and overlaps with the gate 34.
  • Data data line
  • the overlap is a mutual capacitive touch capacitor.
  • the position is the position of the touch point.
  • Calculating the position of the peripheral sub-portion common electrode 32 can determine the abscissa of the touch point, and the ordinate of the touch point can be determined by calculating the position of the Gate 34.
  • the data lines of the common electrode of the peripheral portion and the embedded touch array substrate are respectively formed as a touch sensing electrode and a touch driving electrode.
  • Mutual capacitive touch capacitor In the touch mode, the data lines of the common electrode of the peripheral portion and the embedded touch array substrate are respectively formed as a touch sensing electrode and a touch driving electrode.
  • the two oppositely disposed plates overlap at least partially, so that there must also be a partial overlap between the common electrode and the data line of the peripheral portion to form a mutual capacitance.
  • Touch capacitor For the touch operation, the location information of the touch point corresponding to the touch operation on the touch panel needs to be confirmed. To facilitate the location information, the direction of the common electrode of the peripheral portion may be set to be perpendicular to the data. a line, that is, an orthogonal projection of the peripheral electrode at the data line layer is perpendicular to the data line and overlaps with the data line. Of course, this is merely an optional design.
  • the peripheral electrode of the peripheral portion may be substantially perpendicular to the data line, and it is also possible to arrange the direction of the partial region at an angle with both of the gate lines. Moreover, as an alternative, the peripheral electrode of the peripheral portion may be disposed on the gate line. Directly above, in this way, the coordinate information of the touch point of the user on the touch panel can be determined, so that the touch can be realized.
  • the peripheral portion common electrode may include a plurality of peripheral sub-portion common electrodes, and at least one row of the pixel sub-portion common electrodes is included between each adjacent two of the peripheral sub-portions common electrodes.
  • the function of the common electrode of the peripheral sub-portion is to form a mutual capacitive touch capacitance with the data line to determine position information of the touch operation of the user. Therefore, the extending direction of the common electrode of each of the peripheral sub-sections and the pixel
  • the row arrangement direction of the partial common electrodes is the same, of course, the direction of the gate lines is also the same, and each of the peripheral sub-section common electrodes may correspond to one or more rows of the pixel sub-section common electrodes.
  • FIG. 3B is a schematic diagram of a division mode 2 of a common electrode layer according to an embodiment of the present disclosure.
  • a common electrode layer is disposed on an upper layer of the pixel electrode layer.
  • the pixel sub-section common electrodes 31 respectively correspond to one sub-pixel display area.
  • the pixel sub-section common electrode 31 is disposed above the pixel electrode, and the peripheral sub-portion common electrode 32 is located on the gate line (Gate Directly above the 34, and overlaps with the data line 33.
  • the overlap is a mutual capacitive touch capacitor.
  • the position is the position of the touch point.
  • Calculating the position of the Data 33 can determine the abscissa of the touch point, and the ordinate of the touch point can be determined by calculating the position of the peripheral sub-portion common electrode 32.
  • the mode (2) has a more prominent advantage, for example, since the common electrode of the peripheral portion forms a mutual capacitance with the data line, and the signal input by the data line does not open and close the TFT. Have an impact, so in this way, the final display effect on the display panel will not occur influences. Based on this, in practical applications, the mode (2) can be selected.
  • the method is a self-capacitive touch mode.
  • the peripheral electrode of the peripheral portion can separately form a self-capacitive touch capacitor.
  • the peripheral portion common electrode may include a plurality of peripheral sub-portion common electrodes, each of the peripheral sub-portion common electrodes being in a shape of a back and surrounding at least one of the pixel sub-portion common electrodes.
  • FIG. 3C is a schematic diagram of a division mode 3 of a common electrode layer according to an embodiment of the present disclosure), and 16 sub-pixel regions in FIG. 3C as a display area corresponding to a unit touch pad.
  • the unit touch pad includes a plurality of pixel sub-portion common electrodes 31, and each of the peripheral sub-portion common electrodes 32 surrounds the pixel sub-portion common electrode 31, of course, for the corresponding display of the unit touch pad As a whole of the area, all of the peripheral sub-portion common electrodes 32 are connected together, and for the display areas corresponding to different unit touch pads, the peripheral sub-portion common electrodes 32 are disconnected.
  • FIG. 3D is a schematic diagram of a sub-pixel region corresponding to each unit touch pad after dividing the common electrode layer according to the dividing manner of FIG. 3C.
  • each unit touch plate corresponds to only one sub-pixel region.
  • each unit touch pad corresponds to a plurality of sub-pixel display regions, that is, FIG. 3D corresponds to a special case of FIG. 3C, that is, one pixel sub-portion common electrode 31 is a peripheral sub-port common electrode.
  • the split mode 3 shown in FIG. 3C and FIG. 3D is used as the plate of the self-capacitive touch capacitor, it can still be combined with the split mode shown in FIG. 3A and the segment shown in FIG. 3B.
  • the second mode is commonly used as a plate of the mutual-capacitive touch electrode.
  • the peripheral sub-portion common electrode 32 is also used as a touch sensing electrode, a Gate line or a Data line. In the touch driving electrode, the peripheral sub-portion common electrode 32 forms a mutual capacitive touch capacitor with the Gate line or the Data line.
  • the pixel portion common electrode and the peripheral portion common electrode receive the common electrode signal in the display phase, that is, the peripheral portion common electrode is still used as the common electrode in the display phase, so that the display can be guaranteed.
  • the common electrode signal may be a direct current voltage
  • the touch sensing signal may be an alternating current voltage
  • FIG. 4 is a schematic diagram of the In Cell Touch driving according to the split mode 2 shown in FIG. 3B.
  • Shielding com is a peripheral common electrode
  • Pixel com is a pixel partial common electrode.
  • the pixel portion common electrode (Pixel com) is always used to receive the common electrode signal input in the form of a direct current voltage
  • the peripheral portion common electrode (Shielding com) is used for receiving Touch electrode signal input in the form of AC voltage. Therefore, the phenomenon of picture instability caused by voltage jump does not occur, and the image quality at the display stage can be ensured.
  • FIG. 5 is a schematic diagram of the In Cell Touch driving according to the dividing mode 3 shown in FIG. 3C and FIG. 3D.
  • the pixel portion common electrode (Pixel) Com) is always used to receive the common electrode signal input in the form of DC voltage
  • the peripheral common electrode shielding com
  • the image instability caused by voltage jump does not occur, and the image quality at the display stage can be ensured.
  • the embodiment of the present disclosure further provides a display device, and the display device includes the in-cell touch array substrate. Since the improvement of the display device lies in the above-described in-cell touch array substrate, the display device will not be described in detail.
  • the embodiment of the present disclosure further provides a driving method of an in-cell touch array substrate for driving an in-cell touch array substrate, wherein the in-cell touch array substrate includes a common electrode layer, and the common electrode layer
  • the pixel portion common electrode and the peripheral portion common electrode are included, and the pixel portion common electrode corresponds to all pixel regions of the in-cell touch array substrate, and the peripheral portion common electrode corresponds to at least a portion of the non-pixel region except all the pixel regions.
  • the driving method includes:
  • a common electrode signal is input to the common electrode of the pixel portion, and a touch sensing signal is input to the common electrode of the peripheral portion.
  • the driving method may further include: inputting the common electrode signal to the pixel portion common electrode and the peripheral portion common electrode in a display phase.
  • the surrounding part is The display phase is still used as a common electrode to ensure the stability of the displayed image quality.
  • the common electrode signal may be a direct current voltage
  • the touch sensing signal may be an alternating current voltage
  • the common electrode, the gate line or the data line of the Shielding portion can be used as the interactive capacitor by dividing the common electrode into the common electrode of the Shielding portion and the common electrode of the Pixel portion.
  • the sensing electrode (RX) of the electrode, the driving electrode (TX), or the self-capacitance capacitor electrode can maintain the storage capacitance of the liquid crystal panel during the switching phase and the display phase, thereby solving the related art in the common electrode due to voltage jump
  • the problem is that the picture quality is unstable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种内嵌式触控阵列基板及其驱动方法、显示装置。该内嵌式触控阵列基板包括公共电极层,所述公共电极层包括:像素部分公共电极(31),对应于内嵌式触控阵列基板的所有像素区域,在触控阶段,所述像素部分公共电极(31)接收公共电极信号;周边部分公共电极(32),对应于所有像素区域之外的至少部分非像素区域,在触控阶段,所述周边部分公共电极(32)接收触控感应信号。

Description

内嵌式触控阵列基板及其驱动方法、显示装置
相关申请的交叉引用
本申请主张在2016年4月19日在中国提交的中国专利申请号No.201610245220.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其是涉及一种内嵌式触控阵列基板及其驱动方法、显示装置。
背景技术
目前,大多数触控装置的触控面板与液晶显示面板是独立设置的,触控面板设置于液晶显示面板之上,且液晶显示面板和触控面板之间存在物理空间,因此,在液晶显示面板的上表面和触控面板的下表面上会反射外来光线,这会导致在室外等光线明亮的环境下液晶显示面板的可视性降低。如果能够实现触控面板的可视性,二者实现一体化还可以实现整个显示面板的薄型化和轻量化。
在此技术发展需求下,In Cell触控技术得以出现并迅速发展,但是在In Cell触控技术中,大多使用简单的分割方式对公共电极(VCOM)进行分割,并在显示阶段向VCOM输入直流电压,在触控阶段对VCOM进行交流驱动。然而,在显示阶段和触控阶段相互转换时,VCOM必然产生电压跳变,因而降低液晶显示面板的显示画质。
发明内容
本公开的主要目的在于提供一种可以避免公共电极由于在显示阶段和触控阶段分别输入直流电压和交流电压而容易产生的电压跳变,从而能够提高液晶显示面板的显示画质的技术方案。
为了达到上述目的,根据本公开的一个方面,提供了一种内嵌式触控阵列基板,包括公共电极层,所述公共电极层包括:像素部分公共电极,对应 于内嵌式触控阵列基板的所有像素区域,在触控阶段,所述像素部分公共电极接收公共电极信号;周边部分公共电极,对应于所有像素区域之外的至少部分非像素区域,在触控阶段,所述周边部分公共电极接收触控感应信号。
可选地,所述像素部分公共电极包括多个像素子部分公共电极,每个所述像素子部分公共电极对应于每个像素的一亚像素区域。
可选地,在触控阶段,所述周边部分公共电极与内嵌式触控阵列基板的栅线分别作为触控感应电极、触控驱动电极形成一互容式触控电容。
可选地,所述周边部分公共电极在栅线层的正投影垂直于所述栅线且与所述栅线形成交叠。
可选地,所述周边部分公共电极包括多个周边子部分公共电极,每相邻两个所述周边子部分公共电极之间包括至少一列所述像素子部分公共电极。
可选地,所述内嵌式触控阵列基板还包括数据线层;其中,所述数据线层包括多条数据线;其中,所述周边部分公共电极包括多个条状的周边子部分公共电极;所述周边子部分公共电极和所述数据线的延伸方向相同,且所述周边子部分公共电极在所述数据线层的正投影与所述数据线一一对应且相互交叠。
可选地,在触控阶段,所述周边部分公共电极与内嵌式触控阵列基板的数据线分别作为触控感应电极、触控驱动电极形成一互容式触控电容。
可选地,所述周边部分公共电极在数据线层的正投影垂直于所述数据线且与所述数据线形成交叠。
可选地,所述周边部分公共电极包括多个周边子部分公共电极,每相邻两个所述周边子部分公共电极之间包括至少一行所述像素子部分公共电极。
可选地,所述内嵌式触控阵列基板还包括栅线层;其中,所述栅线层包括多条栅线;其中,所述周边部分公共电极包括多个条状的周边子部分公共电极;所述周边子部分公共电极和所述栅线的延伸方向相同,且所述周边子部分公共电极在所述栅线层的正投影与所述栅线一一对应且相互交叠。
可选地,在触控阶段,所述周边部分公共电极单独形成一自容式触控电容。
可选地,所述周边部分公共电极包括多个周边子部分公共电极,每个所 述周边子部分公共电极呈回字形,且包围至少一个所述像素子部分公共电极。
可选地,所述内嵌式触控阵列基板还包括数据线层和栅线层;其中,所述数据线层包括多条数据线,所述栅线层包括多条栅线;所述周边部分公共电极包括多个条状的第一周边子部分公共电极和多个条状的第二周边子部分公共电极;所述第一周边子部分公共电极和所述数据线的延伸方向相同,且所述第一周边子部分公共电极在所述数据线层的正投影与所述数据线一一对应且相互交叠;所述第二周边子部分公共电极和所述栅线的延伸方向相同,且所述第二周边子部分公共电极在所述栅线层的正投影与所述栅线一一对应且相互交叠。
可选地,所述第一周边子部分公共电极垂直于所述第二周边子部分公共电极。
可选地,所述像素部分公共电极和所述周边部分公共电极相互间隔设置。
可选地,所述像素部分公共电极和所述周边部分公共电极在显示阶段接收公共电极信号。
可选地,所述公共电极信号为直流电压,所述触控感应信号为交流电压。
根据本方面的另一个方面,提供了一种显示装置,该显示装置包括上述内嵌式触控阵列基板。
根据本方面的又一个方面,提供了一种内嵌式触控阵列基板的驱动方法,内嵌式触控阵列基板包括公共电极层,所述公共电极层包括像素部分公共电极和周边部分公共电极,所述像素部分公共电极对应于内嵌式触控阵列基板的所有像素区域,所述周边部分公共电极对应于所有像素区域之外的至少部分非像素区域,所述驱动方法包括:在触控阶段,向所述像素部分公共电极输入公共电极信号,并向所述周边部分公共电极输入触控感应信号。
可选地,还包括:在显示阶段,向所述像素部分公共电极和所述周边部分公共电极输入所述公共电极信号。
可选地,所述公共电极信号为直流电压,所述触控感应信号为交流电压。
与相关技术相比,本公开所述的内嵌式触控阵列基板及其驱动方法、显示装置,可以避免相关技术中公共电极由于在显示阶段和触控阶段分别输入直流电压和交流电压而容易产生的电压跳变,从而能够提高液晶显示面板的 显示画质。
附图说明
图1是相关技术中VCOM分割技术的分割示意图;
图2是相关技术中的In Cell Touch驱动示意图;
图3A是根据本公开实施例的公共电极层的分割方式一的示意图;
图3B是根据本公开实施例的公共电极层的分割方式二的示意图;
图3C是根据本公开实施例的公共电极层的分割方式三的示意图;
图3D是按照图3C的分割方式三对公共电极层进行分割后每个触控极板对应一个亚像素区域的示意图;
图4是根据图3B所示的分割方式二的In Cell Touch驱动示意图;以及
图5是根据图3C和图3D所示的分割方式三的In Cell Touch驱动示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域的普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
请参考图1,图1是相关技术中公共电极(VCOM)分割技术的分割示意图。从图1中可以看出,VCOM 10被分割为多个大小面积相等的区域12,这些区域分别作为触控阶段的触控电极,每个区域12(触控电极)通过引线集中连接至TDDI(触控显示集成IC)。
采用这种方式,在显示阶段向VCOM输入直流电压,在触控阶段对VCOM进行交流驱动,为便于理解,请同时参考图2(图2是相关技术中的In Cell Touch驱动示意图)。采用这种简单的VCOM分割方式,在显示阶段和触控阶段相互转换时,VCOM易产生电压跳变,因而降低液晶显示面板的显示画质。
为了解决VCOM电压跳变现象影响液晶显示面板的显示画质的问题,相 关技术中有的采用将输入到显示IC后的数据(Data)信号先进行处理再输入液晶显示面板使用的方式,但是这种方式无法从根本上解决VCOM电压跳变的问题,对显示画质的效果提升仍然非常有限。
基于此,本公开实施例提出了一种可以提高显示面板的显示画质的内嵌式触控阵列基板,该内嵌式触控阵列基板可以包括公共电极层,所述公共电极层包括两个部分:(1)像素部分公共电极,对应于内嵌式触控阵列基板的所有像素区域,在触控阶段,所述像素部分公共电极接收公共电极信号;(2)周边部分公共电极,对应于所有像素区域之外的至少部分非像素区域,在触控阶段,所述周边部分公共电极接收触控感应信号。
也就是说,将公共电极作为触控感应电极接收触控感应信号的功能和作为公共电极接收公共电极信号的功能分开,通过将公共电极层划分为两个部分,像素部分公共电极只用于接收公共电极信号,而周边部分公共电极用于在触控阶段接收触控感应信号。
采用这样的设计方式,可以避免相关技术中的公共电极划分方式得到的VCOM电极(即触控电极)在显示阶段和触控阶段,由于直流电压与交流电压之间转换时容易产生的电压跳变,并导致降低显示效果现象的发生。
作为一个可选示例,所述像素部分公共电极可以包括多个像素子部分公共电极,每个所述像素子部分公共电极对应于每个像素的一亚像素区域。当然,这种设计方式仅仅是一种可选方式,而在实际应用中,可以设计成多个亚像素区域对应一个所述像素子部分公共电极,例如对于由RGB三种亚像素组成一个像素的像素结构中,一个像素区域(3个亚像素区域)或三个像素区域(9个亚像素区域)甚至更多个像素区域对应一个所述像素子部分公共电极。这些设计方式都是可行的。
对于公共电极作为触控电容的极板来说,其可以形成互容式触控电容,也可以形成自容式触控电容。基于此,本公开实施例给出了三种方式:
由于所述周边部分公共电极在触控阶段是用作触控感应电极的,因此必须存在一个与之相对的电极板,才能形成互容式触控电容。
方式(1),该方式为互容式触控方式,在触控阶段,所述周边部分公共电极与内嵌式触控阵列基板的栅线分别作为触控感应电极、触控驱动电极形 成一互容式触控电容。
如果要形成互容式电容,两个相对设置的极板至少有存在部分交叠,因此所述周边部分公共电极与栅线之间也必须存在部分交叠,才能形成互容式触控电容。对于触控操作来说,需要确认该触控操作对应于的触控点在触控面板上的位置信息,为便于得到该位置信息,可以将所述周边部分公共电极的方向设置为垂直于栅线,即所述周边部分公共电极在栅线层的正投影垂直于所述栅线且与所述栅线形成交叠,当然,这仅仅是可选的设计方式,在实际应用中,只要所述周边部分公共电极大致与栅线垂直即可,在部分区域的方向与栅线呈一定角度倾斜设置也是可行的,而且,作为一个可选方式,所述周边部分公共电极可以设置在数据线的正上方,通过这种方式,能够确定用户在触控面板上的触控点的坐标信息,从而可以实现触控。
进一步地,所述周边部分公共电极可以包括多个周边子部分公共电极,每相邻两个所述周边子部分公共电极之间包括至少一列所述像素子部分公共电极。由于所述周边子部分公共电极的作用是与栅线形成互容式触控电容以确定用户触控操作的位置信息,因此,每个所述周边子部分公共电极的延伸方向与所述像素子部分公共电极的列排布方向是相同的,当然与数据线的方向也是相同的,而且,每个所述周边子部分公共电极可以对应一列或多列所述像素子部分公共电极。
为便于理解,请参考图3A(图3A是根据本公开实施例的公共电极层的分割方式一的示意图),从图3A中可以看出,像素电极层的上层设置公共电极层,每个所述像素子部分公共电极31分别对应一个亚像素显示区域,每个亚像素显示区域中,所述像素子部分公共电极31设置在像素电极上方,所述周边子部分公共电极32位于数据线(Data)33的正上方,并与栅线(Gate)34形成交叠,该交叠即为一个互容式触控电容,当其电容发生变化时意味着该位置即为触控点的位置,通过计算该所述周边子部分公共电极32的位置可以确定触控点的横坐标,通过计算Gate 34的位置可以确定触控点的纵坐标。
方式(2),该方式为互容式触控方式,在触控阶段,所述周边部分公共电极与内嵌式触控阵列基板的数据线分别作为触控感应电极、触控驱动电极形成一互容式触控电容。
如前述内容所述,要形成互容式电容,两个相对设置的极板至少有存在部分交叠,因此所述周边部分公共电极与数据线之间也必须存在部分交叠,才能形成互容式触控电容。对于触控操作来说,需要确认该触控操作对应于的触控点在触控面板上的位置信息,为便于得到该位置信息,可以将所述周边部分公共电极的方向设置为垂直于数据线,即所述周边部分公共电极在数据线层的正投影垂直于所述数据线且与所述数据线形成交叠,当然,这仅仅是可选的设计方式,在实际应用中,只要所述周边部分公共电极大致与数据线垂直即可,在部分区域的方向与栅线二者呈一定角度倾斜设置也是可行的,而且,作为一个可选方式,所述周边部分公共电极可以设置在栅线的正上方,通过这种方式,能够确定用户在触控面板上的触控点的坐标信息,从而可以实现触控。
进一步地,所述周边部分公共电极可以包括多个周边子部分公共电极,每相邻两个所述周边子部分公共电极之间包括至少一行所述像素子部分公共电极。由于所述周边子部分公共电极的作用是与数据线形成互容式触控电容以确定用户触控操作的位置信息,因此,每个所述周边子部分公共电极的延伸方向与所述像素子部分公共电极的行排布方向是相同的,当然与栅线的方向也是相同的,而且,每个所述周边子部分公共电极可以对应一行或多行所述像素子部分公共电极。
为便于理解,请参考图3B(图3B是根据本公开实施例的公共电极层的分割方式二的示意图),从图3B中可以看出,像素电极层的上层设置公共电极层,每个所述像素子部分公共电极31分别对应一个亚像素显示区域,每个亚像素显示区域中,所述像素子部分公共电极31设置在像素电极上方,所述周边子部分公共电极32位于栅线(Gate)34的正上方,并与数据线(Data)33形成交叠,该交叠即为一个互容式触控电容,当其电容发生变化时意味着该位置即为触控点的位置,通过计算Data 33的位置可以确定触控点的横坐标,通过计算该所述周边子部分公共电极32的位置可以确定触控点的纵坐标。
相较于方式(1),方式(2)具有更加突出的优势,例如由于其周边部分公共电极与数据线形成互容式电容,而数据线输入的信号并不会对TFT的打开和关断产生影响,因此这种方式下,对显示面板的最终显示效果不会产生 影响。基于此,在实际应用中,可以选择采用方式(2)。
方式(3),该方式为自容式触控方式,在触控阶段,所述周边部分公共电极可以单独形成一自容式触控电容。这种情况下,所述周边部分公共电极可以包括多个周边子部分公共电极,每个所述周边子部分公共电极呈回字形,且包围至少一个所述像素子部分公共电极。
这种方式下,对于图1中所示的小公共电极(VCOM)这一单元触控极板而言,其不再是一个整体,而是包括只接收公共电极信号的所述像素子部分公共电极,以及围绕设置在一个或多个所述像素子部分公共电极周围的所述周边子部分公共电极。为便于理解,请参考图3C(图3C是根据本公开实施例的公共电极层的分割方式三的示意图),图3C中的16个亚像素区域整体作为一个单元触控极板对应的显示区域,即该单元触控极板包括多个像素子部分公共电极31,每个所述周边子部分公共电极32围绕在像素子部分公共电极31周围,当然,对于该单元触控极板对应的显示区域这一整体来说,所有所述周边子部分公共电极32是连接在一起的,而对于不同的单元触控极板对应的显示区域,所述周边子部分公共电极32是断开的。
图3D是按照图3C的分割方式三对公共电极层进行分割后每个单元触控极板对应一个亚像素区域的示意图,图3D中,每个单元触控极板只对应一个亚像素区域,而图3C中,每个单元触控极板对应多个亚像素显示区域,也就是说,图3D相当于图3C的一个特殊情况,即一个像素子部分公共电极31被一个周边子部分公共电极32所围绕设置,图3D所示的情况下,触控灵敏度会大大提高。
对于自容式触控电容的极板来说,由于无需设置对向极板,因此不存在与栅线层或数据线层的设置关系,结构相较简单。
需要说明的是,虽然将图3C和图3D所示的分割方式三用作自容式触控电容的极板,但其仍然可以与图3A所示的分割方式一,图3B所示的分割方式二共同作为互容式触控电极的极板,对于图3C和图3D所示的分割方式三来说,所述周边子部分公共电极32同样作为触控感应电极,Gate线或Data线作为触控驱动电极的,所述周边子部分公共电极32与Gate线或Data线之间形成互容式触控电容。
在本公开实施例中,所述像素部分公共电极和所述周边部分公共电极在显示阶段均接收公共电极信号,也就是说,周边部分公共电极在显示阶段仍然作为公共电极使用,这样可以保证显示效果。作为一个可选示例,所述公共电极信号可以为直流电压,所述触控感应信号可以为交流电压。
为便于理解,请参考图4(图4是根据图3B所示的分割方式二的In Cell Touch驱动示意图),在图4中,Shielding com为周边部分公共电极,Pixel com为像素部分公共电极,在显示阶段和触控阶段,所述像素部分公共电极(Pixel com)始终用于接收以直流电压形式输入的公共电极信号,而在触控阶段,周边部分公共电极(Shielding com)用于接收以交流电压形式输入的触控电极信号。因此,不会发生电压跳变造成的画面不稳定的现象,可以保证显示阶段的画质稳定。
同时请参考图5,图5是根据图3C和图3D所示的分割方式三的In Cell Touch驱动示意图,如图5所示,在显示阶段和触控阶段,所述像素部分公共电极(Pixel com)始终用于接收以直流电压形式输入的公共电极信号,而在触控阶段,周边部分公共电极(Shielding com)用于接收以交流电压形式输入的触控电极信号。同样地,采用这种驱动方式,不会发生电压跳变造成的画面不稳定的现象,可以保证显示阶段的画质稳定。
在上述内嵌式触控阵列基板的基础上,本公开实施例还提供了一种显示装置,该显示装置包括上述内嵌式触控阵列基板。由于该显示装置的改进在于上述内嵌式触控阵列基板,因此不再对该显示装置进行详细描述。
本公开实施例还提供了一种内嵌式触控阵列基板的驱动方法,用于驱动内嵌式触控阵列基板,所述内嵌式触控阵列基板包括公共电极层,所述公共电极层包括像素部分公共电极和周边部分公共电极,所述像素部分公共电极对应于内嵌式触控阵列基板的所有像素区域,所述周边部分公共电极对应于所有像素区域之外的至少部分非像素区域,所述驱动方法包括:
在触控阶段,向所述像素部分公共电极输入公共电极信号,并向所述周边部分公共电极输入触控感应信号。
该驱动方法,还可以进一步包括:在显示阶段,向所述像素部分公共电极和所述周边部分公共电极输入所述公共电极信号。也就是说,周边部分在 显示阶段仍然作为公共电极,可以保证显示画质的稳定性效果。
作为一个可选实施例,所述公共电极信号可以为直流电压,所述触控感应信号可以为交流电压。
由此可见,本公开实施例,通过把公共电极划分为周边(Shielding)部分的公共电极和像素(Pixel)部分的公共电极,可以将Shielding部分的公共电极、栅线或数据线作为交互式电容电极的感应电极(RX)、驱动电极(TX),或者是形成自容式电容电极,在触控阶段和显示阶段转换时可以保持液晶面板的存储电容,从而解决相关技术中公共电极因为电压跳变导致画质不稳定的问题。
以上所述是本公开的可选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为包含在本公开的保护范围之内。

Claims (21)

  1. 一种内嵌式触控阵列基板,包括公共电极层,其中,所述公共电极层包括:
    像素部分公共电极,对应于内嵌式触控阵列基板的所有像素区域,在触控阶段,所述像素部分公共电极接收公共电极信号;
    周边部分公共电极,对应于所有像素区域之外的至少部分非像素区域,在触控阶段,所述周边部分公共电极接收触控感应信号。
  2. 根据权利要求1所述的内嵌式触控阵列基板,其中,所述像素部分公共电极包括多个像素子部分公共电极,每个所述像素子部分公共电极对应于每个像素的一亚像素区域。
  3. 根据权利要求2所述的内嵌式触控阵列基板,其中,在触控阶段,所述周边部分公共电极与内嵌式触控阵列基板的栅线分别作为触控感应电极、触控驱动电极形成一互容式触控电容。
  4. 根据权利要求3所述的内嵌式触控阵列基板,其中,所述周边部分公共电极在栅线层的正投影垂直于所述栅线且与所述栅线形成交叠。
  5. 根据权利要求4所述的内嵌式触控阵列基板,其中,所述周边部分公共电极包括多个周边子部分公共电极,每相邻两个所述周边子部分公共电极之间包括至少一列所述像素子部分公共电极。
  6. 根据权利要求4所述的内嵌式触控阵列基板,还包括数据线层;其中,所述数据线层包括多条数据线;
    其中,所述周边部分公共电极包括多个条状的周边子部分公共电极;所述周边子部分公共电极和所述数据线的延伸方向相同,且所述周边子部分公共电极在所述数据线层的正投影与所述数据线一一对应且相互交叠。
  7. 根据权利要求2所述的内嵌式触控阵列基板,其中,在触控阶段,所述周边部分公共电极与内嵌式触控阵列基板的数据线分别作为触控感应电极、触控驱动电极形成一互容式触控电容。
  8. 根据权利要求7所述的内嵌式触控阵列基板,其中,所述周边部分公共电极在数据线层的正投影垂直于所述数据线且与所述数据线形成交叠。
  9. 根据权利要求8所述的内嵌式触控阵列基板,其中,所述周边部分公共电极包括多个周边子部分公共电极,每相邻两个所述周边子部分公共电极之间包括至少一行所述像素子部分公共电极。
  10. 根据权利要求8所述的内嵌式触控阵列基板,还包括栅线层;其中,所述栅线层包括多条栅线;
    其中,所述周边部分公共电极包括多个条状的周边子部分公共电极;所述周边子部分公共电极和所述栅线的延伸方向相同,且所述周边子部分公共电极在所述栅线层的正投影与所述栅线一一对应且相互交叠。
  11. 根据权利要求2所述的内嵌式触控阵列基板,其中,在触控阶段,所述周边部分公共电极单独形成一自容式触控电容。
  12. 根据权利要求11所述的内嵌式触控阵列基板,其中,所述周边部分公共电极包括多个周边子部分公共电极,每个所述周边子部分公共电极呈回字形,且包围至少一个所述像素子部分公共电极。
  13. 根据权利要求11所述的内嵌式触控阵列基板,还包括数据线层和栅线层;其中,所述数据线层包括多条数据线,所述栅线层包括多条栅线;
    其中,所述周边部分公共电极包括多个条状的第一周边子部分公共电极和多个条状的第二周边子部分公共电极;
    所述第一周边子部分公共电极和所述数据线的延伸方向相同,且所述第一周边子部分公共电极在所述数据线层的正投影与所述数据线一一对应且相互交叠;
    所述第二周边子部分公共电极和所述栅线的延伸方向相同,且所述第二周边子部分公共电极在所述栅线层的正投影与所述栅线一一对应且相互交叠。
  14. 根据权利要求13所述的内嵌式触控阵列基板,其中,所述第一周边子部分公共电极垂直于所述第二周边子部分公共电极。
  15. 根据权利要求1所述的内嵌式触控阵列基板,其中,所述像素部分公共电极和所述周边部分公共电极相互间隔设置。
  16. 根据权利要求1所述的内嵌式触控阵列基板,其中,所述像素部分公共电极和所述周边部分公共电极在显示阶段接收公共电极信号。
  17. 根据权利要求1至16中任一项所述的内嵌式触控阵列基板,其中, 所述公共电极信号为直流电压,所述触控感应信号为交流电压。
  18. 一种显示装置,包括权利要求1至17中任一项所述的内嵌式触控阵列基板。
  19. 一种内嵌式触控阵列基板的驱动方法,内嵌式触控阵列基板包括公共电极层,其中,所述公共电极层包括像素部分公共电极和周边部分公共电极,所述像素部分公共电极对应于内嵌式触控阵列基板的所有像素区域,所述周边部分公共电极对应于所有像素区域之外的至少部分非像素区域,所述驱动方法包括:
    在触控阶段,向所述像素部分公共电极输入公共电极信号,并向所述周边部分公共电极输入触控感应信号。
  20. 根据权利要求19所述的驱动方法,还包括:在显示阶段,向所述像素部分公共电极和所述周边部分公共电极输入所述公共电极信号。
  21. 根据权利要求19或20所述的驱动方法,其中,所述公共电极信号为直流电压,所述触控感应信号为交流电压。
PCT/CN2017/070739 2016-04-19 2017-01-10 内嵌式触控阵列基板及其驱动方法、显示装置 WO2017181749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/543,900 US20190101998A1 (en) 2016-04-19 2017-01-10 In-cell touch array substrate, driving method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610245220.X 2016-04-19
CN201610245220.XA CN105930000B (zh) 2016-04-19 2016-04-19 内嵌式触控阵列基板及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2017181749A1 true WO2017181749A1 (zh) 2017-10-26

Family

ID=56839429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070739 WO2017181749A1 (zh) 2016-04-19 2017-01-10 内嵌式触控阵列基板及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US20190101998A1 (zh)
CN (1) CN105930000B (zh)
WO (1) WO2017181749A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105930000B (zh) * 2016-04-19 2019-02-26 京东方科技集团股份有限公司 内嵌式触控阵列基板及其驱动方法、显示装置
JP6665051B2 (ja) * 2016-07-25 2020-03-13 株式会社ジャパンディスプレイ 表示装置及びその駆動方法
TWI726623B (zh) 2020-02-18 2021-05-01 友達光電股份有限公司 觸控面板
CN111913610B (zh) * 2020-08-06 2022-05-10 业成科技(成都)有限公司 触控显示面板及触控坐标获取方法
US11651612B2 (en) * 2020-09-14 2023-05-16 Superc-Touch Corporation Fingerprint sensing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699284A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及其制备方法、显示装置
CN104698701A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板以及显示装置
CN105094489A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
US20160062164A1 (en) * 2014-08-26 2016-03-03 Lg Display Co., Ltd. In-cell touch type liquid crystal display device
CN105930000A (zh) * 2016-04-19 2016-09-07 京东方科技集团股份有限公司 内嵌式触控阵列基板及其驱动方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760708B (zh) * 2014-01-09 2017-08-11 北京京东方光电科技有限公司 一种阵列基板、电容式触摸屏和触控显示装置
CN104049799B (zh) * 2014-05-30 2017-04-05 京东方科技集团股份有限公司 一种阵列基板、内嵌式触摸屏及显示装置
CN104598080B (zh) * 2015-02-13 2019-02-26 重庆京东方光电科技有限公司 触控显示面板及其驱动方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699284A (zh) * 2013-12-27 2014-04-02 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及其制备方法、显示装置
US20160062164A1 (en) * 2014-08-26 2016-03-03 Lg Display Co., Ltd. In-cell touch type liquid crystal display device
CN104698701A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 阵列基板以及显示装置
CN105094489A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN105930000A (zh) * 2016-04-19 2016-09-07 京东方科技集团股份有限公司 内嵌式触控阵列基板及其驱动方法、显示装置

Also Published As

Publication number Publication date
US20190101998A1 (en) 2019-04-04
CN105930000A (zh) 2016-09-07
CN105930000B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
US10409434B2 (en) Integrated touch screens
JP6224658B2 (ja) タッチセンサ一体型表示装置
WO2017181749A1 (zh) 内嵌式触控阵列基板及其驱动方法、显示装置
KR101612206B1 (ko) 터치스크린용 멀티-모드 전압
US9256097B2 (en) Display apparatuses
US9690420B2 (en) Display device having touch sensor
WO2013094527A1 (ja) タッチセンサ内蔵型表示パネル、それを備えた表示装置、およびタッチセンサ内蔵型表示パネルの駆動方法
TWI617959B (zh) 顯示裝置
KR20110122727A (ko) 일체형 터치 스크린
CN107065322B (zh) 触摸屏显示设备及含其的集成触摸屏的显示设备
TWI457797B (zh) 觸控面板
KR101673206B1 (ko) 셀프 커패시터 방식 인셀 터치 액정표시장치
JP2018028863A (ja) 入力検出装置および電子装置
KR20130024470A (ko) 터치 스크린의 내장된 액정표시장치
AU2013100573A4 (en) Integrated touch screens

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785235

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 120419)

122 Ep: pct application non-entry in european phase

Ref document number: 17785235

Country of ref document: EP

Kind code of ref document: A1