WO2017181618A1 - 一种模块化多单元格电池 - Google Patents

一种模块化多单元格电池 Download PDF

Info

Publication number
WO2017181618A1
WO2017181618A1 PCT/CN2016/101532 CN2016101532W WO2017181618A1 WO 2017181618 A1 WO2017181618 A1 WO 2017181618A1 CN 2016101532 W CN2016101532 W CN 2016101532W WO 2017181618 A1 WO2017181618 A1 WO 2017181618A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
plate
positive
negative
Prior art date
Application number
PCT/CN2016/101532
Other languages
English (en)
French (fr)
Inventor
韩祖孟
彭泽军
朱自德
Original Assignee
深圳市佰特瑞储能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市佰特瑞储能系统有限公司 filed Critical 深圳市佰特瑞储能系统有限公司
Priority to US15/749,774 priority Critical patent/US20190341655A1/en
Publication of WO2017181618A1 publication Critical patent/WO2017181618A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/14Assembling a group of electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/747Woven material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of batteries, and in particular, to a modular multi-cell battery.
  • One of the disadvantages of the conventional sealed lead storage battery is: electrolyte stratification due to the vertical placement of the battery plates therein; electrolyte stratification, that is, the electrolyte concentration difference This is one of the main reasons for the decline in battery capacity and shortened life.
  • the second disadvantage is that the internal cells of the traditional lead-acid battery are electrically connected by lead bar welding, which greatly increases the internal resistance of the battery, resulting in the battery not being able to discharge and charge quickly.
  • the third disadvantage is that after the assembly of the traditional lead-acid battery, the assembly pressure of the battery is absorbed by the battery casing. Therefore, the traditional lead-acid battery is subjected to strong impact, and the battery structure is easily deformed and fails, and the anti-vibration capability is poor.
  • the fourth disadvantage is that the traditional battery production is seriously polluted by the environment: the grid lead alloy smelting and grid casting process, using the externalization process to produce the acid and heavy metal wastewater from the plate washing.
  • a modular multi-cell battery including:
  • a battery core comprising a plurality of bipolar plates, a positive terminal plate, a negative terminal plate and a separator; wherein the bipolar plate is half coated with a positive active material as a positive electrode plate and the other half coated There is a negative active material as a negative electrode plate with a section of uncoated positive and negative active material in the middle for electrical connection between the cells; the positive terminal plate is coated with a positive active material as a positive electrode plate, While leaving a section of unpositive active material as the positive output of the battery core; the negative terminal plate is coated with a negative active material as a negative electrode plate with a section of uncoated active material on one side, as a battery cell The negative electrode output end; the diaphragm is used for acid absorption, so that the bipolar plate, the positive terminal plate and the negative terminal plate electrochemically react to generate electricity;
  • a pressure frame having a bottom surface and a plurality of sides for placing the battery cell
  • a pressure cover plate which cooperates with the pressure frame to press-fit and fix the battery cell, and forms each cell of the battery, and each cell is insulated by an insulating substance; [0009] a battery case and a battery cover, for packaging a battery core fixed by the pressure frame and the pressure cover; [0010] wherein the positive terminal plate, the bipolar plate, and the negative terminal The plates are placed horizontally alternately with the diaphragm placed between each of the upper and lower plates.
  • each of the cell boundaries of the outer side of the pressure frame has a hole for injecting the insulating substance.
  • the pressure frame further has a raised edge
  • the pressure cover 6 further has a recess for engaging the raised edge
  • each of the cell boundaries of the bottom surface and the side surface of the pressure frame has an inward groove to better inseparate the cells when the insulating material is injected. The sealing effect.
  • the pressure cover has a safety valve hole corresponding to the number of cells for independently injecting and exhausting gas into each cell.
  • each of the safety valve holes is provided with a safety valve.
  • the pressure cover is engaged with the pressure frame, and the epoxy glue is applied to the interface for bonding and isolating the cells from the outside.
  • the positive terminal plates are placed in the first cell or the last cell, and correspondingly, the negative terminal plates are placed in the last cell or the first
  • the modular multi-cell battery further includes two casting terminals for electrically connecting to the regions of the positive and negative terminal plates that are not coated with the active material, respectively, as the modular multi-cell Positive and negative outputs of the battery
  • the battery case and the battery cover are joined with epoxy glue, and the battery case further has a safety valve hole, and the safety valve hole is equipped with safety. valve.
  • the bipolar plate is a quasi-bipolar structure, and the lead-coated glass fiber is made into a lead wire by a solid extrusion process, and then the mesh is made into a lead mesh plate.
  • the grid half of the lead grid is coated with a positive active material as a positive electrode plate, and the other half of the lead mesh grid is coated with a negative active material as a negative electrode plate, and the positive and negative active materials of the bipolar plate are left for about ten millimeters.
  • the positive terminal plate which adopts a solid extrusion process to make the lead-coated glass fiber into a lead wire, and then woven the mesh into a lead mesh grid, in the lead mesh plate
  • the positive active material is coated on the grid, wherein one side of the plate leaves a section of unpositive active material as the end line of the positive terminal plate
  • the negative terminal plate adopts a solid extrusion process
  • the modular multi-cell battery according to the above embodiment because of the use of a bipolar plate, a space between the uncoated positive and negative active materials is left in between, for electrical connection between the cells,
  • the invention realizes the reliable electrical connection of the single cells between the internal units, no longer has the problems of large internal resistance caused by the traditional ear soldering, and realizes high power discharge and fast charging;
  • the battery core is press-fitted and fixed, thereby solving the problem that the expansion deformation of the electrode plate and the active material are easy to fall off, and the same Improve the battery's resistance to shock and impact;
  • each cell boundary of the outer side surface of the pressure frame is provided with a hole for injecting an insulating material such as asphalt and/or epoxy resin, Isolation of each cell in the battery to prevent acid and acid gas between the cells, avoiding the internal reaction caused by the internal storage or charging and discharging of the battery, and avoiding the internal reaction between the cells and
  • the self-discharge between the batteries is inconsistent, which ensures the battery consistency and battery life between the cells.
  • each of the plates is made of lead-coated glass fiber into a lead wire by a solid extrusion process, the mesh is made into a lead mesh grid, thereby greatly improving Corrosion resistance of the plates;
  • the number of multi-cells can be adjusted according to requirements, so that batteries of different voltages can be modularly manufactured, which is convenient, effective and simple.
  • FIG. 1 is a cross-sectional view of a modular multi-cell battery in which a pressure frame, a pressure cover, and a battery case are partially cut away to better illustrate the structure of a modular multi-cell battery.
  • 3 (a) and (b) are a front view and a plan view of a positive terminal plate according to an embodiment of the present application; 4 (a) and (b) are a front view and a plan view of a negative terminal plate according to an embodiment of the present application;
  • FIG. 5 is a schematic structural view of a pressure frame according to an embodiment of the present application.
  • FIG. 6 is a schematic structural view of a pressure cover according to an embodiment of the present application.
  • FIG. 7 is a schematic view of a battery core that is press-fitted by a pressure frame and a pressure cover and electrically connected with a casting terminal according to an embodiment of the present application;
  • FIG. 8 is a schematic structural view of a first layer of a modular multi-cell battery assembly according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a modular multi-cell battery before press-fit according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a finished product of a 24V modular multi-cell battery according to an embodiment of the present application.
  • FIG. 11 is a schematic structural view of a 36V modular multi-cell battery before press-fit according to an embodiment of the present application
  • FIG. 12 is a schematic diagram of a finished product of a 36V modular multi-cell battery according to an embodiment of the present application.
  • FIG. 13 is a schematic structural view of a 48V modular multi-cell battery before press-fit according to an embodiment of the present application
  • FIG. 14 is a schematic diagram of a finished product of a 48V modular multi-cell battery according to an embodiment of the present application.
  • the present application proposes a modular multi-cell battery including a battery core, a pressure frame 5, a pressure cover 6, a battery case 10, and a battery cover 11, which are specifically described below.
  • the battery cell includes a plurality of bipolar plates 1, a positive terminal plate 2, a negative terminal plate 3, and a diaphragm 4.
  • one half of the bipolar plate 1 is coated with a positive active material as a positive electrode plate, and the other half is coated with a negative active material as a negative electrode plate with an uncoated positive and negative active material in the middle. Spacer, used for electrical connections between cells.
  • the bipolar plate 1 is a quasi-bipolar structure, and the lead-coated glass fiber is made into a lead wire by a solid extrusion process, and then the mesh is made into a lead grid.
  • One half of the lead grid is coated with a positive active material as a positive electrode plate, and the other half of the lead mesh grid is coated with a negative active material as a negative electrode plate, and a gap of about ten millimeters is left between the positive and negative active materials of the bipolar plate. Used for line connections between cells.
  • the positive terminal plate 2 is coated with a positive active material as a positive electrode plate, and a region on one side of which is not coated with a positive active material is used as a positive electrode output terminal of the battery cell.
  • the positive terminal plate 2 is formed by using a solid-state extrusion process to form a lead-coated glass fiber into a lead wire, and then a mesh is formed into a lead mesh grid, and a positive active material is coated on the lead mesh grid. , in which one side of the plate is left with an area of uncoated active material , as the end line of the positive terminal plate.
  • the negative terminal plate 3 is coated with a negative active material as a negative electrode plate, and a region on the one side which is not coated with a negative active material is left as a negative electrode output terminal of the battery cell.
  • the negative terminal plate 3 is formed by using a solid-state extrusion process to form a lead-coated glass fiber into a lead wire, and then a mesh is made into a lead mesh grid, and a negative active material is coated on the lead mesh grid. , where one side of the plate leaves a section of uncoated active material as the end line of the negative terminal plate.
  • Each of the above-mentioned plates is made of lead-coated glass fiber into a lead wire by a solid extrusion process, and then the mesh is made into a lead mesh grid, thereby greatly improving the corrosion resistance of the plate, and the production process is not Produces serious environmental pollution problems like traditional battery production.
  • the separator 4 is used for acid absorption to cause an electrochemical reaction between the bipolar plate 1, the positive terminal plate 2 and the negative terminal plate 3 to generate electricity.
  • the pressure frame 5 which can form 12 cells.
  • the pressure frame 5 has a bottom surface and a plurality of sides for placing the battery cells.
  • the cell boundaries at the outer side of the pressure frame 5 are provided with holes 52 for injecting insulating materials such as asphalt and/or epoxy glue.
  • the cell boundaries at the bottom and sides of the pressure frame 5 have inwardly directed grooves 51 for injecting an insulating material to achieve a better sealing between the cells.
  • FIG. 6, is a schematic diagram of a result of the pressure cover 6.
  • the pressure cover 6 cooperates with the pressure frame 5 to press-fit the battery cells and form cells of the battery, each cell being isolated by a barrier substance.
  • the pressure cover 6 has a safety valve bore 61 in accordance with the number of cells for independently injecting and venting the cells into each cell.
  • each safety valve bore 61 is equipped with a safety valve 9, and the safety valve 9 can be provided with a rubber cap.
  • the inward side of the pressure cover 6, i.e., the side in contact with the cell has a recess 63 that acts as an internal venting or acid passage.
  • the inward side of the pressure cover plate 6 and the cell boundary at each cell boundary have grooves 64 for glue injection or asphalt rafting as a sealing contact surface of the glue or asphalt with the pressure cover plate 6 so that each A better sealing effect between cells.
  • the battery case 10 and the battery cover 11 are used to package a battery core that is press-fitted by the pressure frame 5 and the pressure cover 6.
  • the pressure frame 5 and the pressure cover 6 are engaged by a recess 62 on the pressure frame 5 and a recess 62 used in cooperation with the pressure cover 6.
  • the positive terminal plates 2 are placed in the first cell or the last cell, and accordingly, the negative terminal plates 3 are placed in the last cell or the first cell;
  • the multi-cell battery further includes two casting terminals 8 for electrically connecting to the regions of the positive and negative terminal plates 2, 3 which are not coated with active material, respectively, to serve as positive and negative output terminals of the modular multi-cell battery, respectively. .
  • the convex edge 53 on the pressure frame 5 and the groove 62 of the pressure cover 6 are glued with epoxy glue for bonding and each cell is Isolated from the outside world.
  • the battery case 10 and the battery cover 11 are connected to each other, and the epoxy resin can also be used for bonding and sealing.
  • the positive terminal plate 2, the bipolar plate 1 and the negative terminal plate 3 are alternately placed horizontally, and a diaphragm 4 is placed between each of the upper and lower plates.
  • a diaphragm 4 is placed between each of the upper and lower plates.
  • the pressure frame 5 is fixed on the assembly device.
  • the pressure frame 5 has two assembly positions in front and rear, and each assembly position can assemble 6 cells, and 12 cells are connected in series.
  • the assembly has four front and rear directions, and the first cell is a front left orientation, the sixth cell is a front left orientation, the seventh cell is a rear left orientation, and the twelfth cell is a rear right orientation.
  • a diaphragm 4 is sequentially placed by the robot at the positions of the cells corresponding to the first to twelfth cells of the pressure frame 5.
  • the bipolar plate 1 is placed horizontally on the diaphragm 4, specifically, six bipolar plates 1 are placed from the first cell to the twelfth cell, and the first bipolar plate 1 is placed.
  • the negative plate refers to the plate of the bipolar plate 1 coated with the negative active material
  • the positive plate refers to the plate of the bipolar plate 1 coated with the positive active material)
  • the negative pole of the second bipolar plate 1 is placed in the third cell area
  • the positive electrode is placed in the fourth cell area
  • the negative pole of the third bipolar plate 1 is placed
  • the positive electrode is placed in the sixth cell area
  • the negative electrode of the fourth bipolar plate 1 is placed in the seventh cell region
  • the positive electrode is placed in the eighth cell region
  • the fifth bipolar electrode is
  • the negative electrode of plate 1 is placed in the ninth cell area
  • the positive electrode is placed in the tenth cell area
  • the negative electrode of the sixth bipolar plate 1 is placed in the eleventh cell area
  • a membrane 4 is placed on each cell, and twelve membranes are provided in twelve cells.
  • a separator 4 is placed on the positive and negative electrodes of each of the bipolar plates 1 respectively.
  • a positive terminal plate 2 is placed in the first cell
  • a negative terminal plate 3 is placed in the twelfth cell
  • a bipolar plate 1 is placed in the second cell and the third cell.
  • the positive electrode is in the third cell In the region, the negative electrode is located in the second cell region, and the fourth cell and the fifth cell are placed in a bipolar plate 1, the positive electrode is located in the fifth cell region, the negative electrode is located in the fourth cell region, and the sixth cell is The seventh cell is placed with a bipolar plate 1, the positive pole is located in the seventh cell region, the negative electrode is located in the sixth cell region, and the sixth and seventh cells are located at the corner of the battery, so the bipolar plate placement position Relative to the other plates is the front and rear vertical position.
  • a bipolar plate 1 is placed, the positive electrode is located in the ninth cell region, the negative electrode is located in the eighth cell region, and the tenth cell and the eleventh cell are placed in a bipolar region.
  • the plate 1 has its positive pole in the eleventh cell region, the negative electrode in the tenth cell region, and the positive terminal plate 2 of the first cell and the negative terminal plate 3 of the twelfth cell are respectively outwardly Towards the right side of the battery.
  • the arrangement of the plates is from right to left, from left to right, from bottom to top, positive and negative plates (positive plate refers to positive terminal plate 2 and bipolar
  • positive plate on the plate 1; the negative plate refers to the negative terminal plate 3 and the negative plate on the bipolar plate 1 are placed in a staggered arrangement, and the upper and lower sides of each plate are covered by the diaphragm 4,
  • a spacer region of about 10 mm between the positive and negative active materials of the bipolar plate 1 is positioned at the boundary between the cells of the pressure frame 5, thus completing the assembly of the entire battery cell.
  • the pressure cover 6 is placed on the pressure frame 5, the glue is glued at the pasting position of the two, and the pressure cover 6 is bonded and fixed to the pressure frame 5 by a press machine, and the press design pressure can reach 100 kPa. .
  • the end wires of the first and twelfth cells that is, the end wires of the positive terminal plate 2 and the negative terminal plate 3 are respectively cast and soldered to the casting terminal 8 for respectively as a modular multi-unit The positive and negative electrodes of the battery.
  • the vacuum is applied from the safety valve hole 61 on the pressure cover 6 to each of the cells independently, and the battery is further formed.
  • the rubber cap of the safety valve 9 is attached, and the battery case 10 and the battery cover 11 are installed, the groove of the sealing surface of the battery cover 11 and the battery case 10, the battery cover 11 and the battery case 10 are Connected to the seal, all with glue, with The adhesive seal is used as a battery protection case, and an external safety valve 7 is mounted on the battery case 10 to form a finished battery, as shown in FIG.
  • the modular multi-cell battery manufactured above can be regarded as a single cell of 2V. Therefore, since the above-mentioned modular multi-cell battery has 12 cells, it is a 24V battery. It can make module batteries of different voltage specifications by adjusting the number of cells, for example, making module batteries of 2 ⁇ 48V.
  • FIG. 10 is a schematic diagram of a 24V battery according to an embodiment of the present application
  • FIG. 11 and FIG. 12 are schematic diagrams of a 36V battery according to an embodiment of the present application
  • FIGS. 13 and 14 are schematic diagrams of a 48V battery according to an embodiment of the present application.
  • the present application solves the problems of stratification of a battery liquid in a conventional lead-acid battery, failure to charge and discharge at a high rate, poor vibration resistance, and serious environmental pollution in a production process, and the inventors consider changing the production technology of a 2V modular multi-cell battery.
  • the present application is based on a 2V single cell, and can be assembled in series by a bipolar plate to form a module battery of 2 to 48V.
  • the grid technology is made by using a lead-coated glass fiber to make a wire mesh, which greatly improves the corrosion resistance of each pole grid, thereby greatly improving the cycle life of the battery.
  • the series connection between the unit cells is directly connected by the lead net, which realizes the reliable connection of the internal unit cells, no longer has the problem of tab welding, and solves the concentration polarization of the conventional battery. Phenomenon, the same battery enables high-power discharge and fast charging.
  • the pressure frame structure technology is used to solve the problem that the expansion deformation of the plate and the active material are easy to fall off, and the vibration resistance and impact resistance of the battery are greatly improved.
  • the same kind of glue is injected between the cells to achieve the sealing between the cell cells, and the self-discharge between the cell cells and the individual cells caused by the internal liquid-collecting gas between the cells is solved, and the self-discharge is greatly improved.
  • the 2V modular multi-cell battery has new features such as high specific energy, high power charge and discharge, strong anti-vibration capability, long cycle life, etc. These advantages are unmatched by the conventional battery technology. of. At the same time, this technology guarantees that the other excellent performance of the traditional lead-acid battery is not affected, and some of the performance reaches the level of the lithium battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请公开了一种模块化多单元格电池,其包括:电池芯,其包括若干双极性极板、正端子极板、负端子极板和隔膜;压力框架;压力盖板,其与所述压力框架配合将电池芯压装固定;电池盒及电池盖,用于封装被所述压力框架和压力盖板压装固定后的电池芯;其中,所述正端子极板、双极性极板和负端子极板水平交替放置,各上下极板之间都放置有所述隔膜。本申请具有高比能量、大功率充放电、抗震动能力强、循环寿命长等新特点,这些优点都是现传统电池技术所无法比拟的;同时本申请还保证保持传统铅酸电池的其它优异性能不受影响,部分性能达到锂电池水平。

Description

一种模块化多单元格电池 技术领域
[0001] 本申请涉及蓄电池领域, 尤其涉及一种模块化多单元格电池。
[0002] 背景技术
[0003] 传统的密闭式铅蓄电池, 其缺点之一是: 由于其内的电池极板采用的垂直放置 方式而导致的电解液层化现象; 电解液层化现象, 即电解液浓度差的极化现象 , 这是电池容量下降及寿命缩短的主要原因之一。 缺点之二是传统铅酸电池内 部各单元格间通过铅条极耳焊接进行电连接, 这使得电池内阻大大提高, 造成 电池无法大功率放电和快速充电。 缺点之三是传统铅酸电池在极板装配完后, 电池的装配压力靠电池壳挤压来承受, 因此传统铅酸电池在承受强冲击吋, 电 池结构容易变形而失效, 抗震动能力差。 缺点之四是传统电池生产对环境污染 严重: 板栅铅合金熔炼及板栅铸造成型工艺、 采用外化成工艺产生极板洗涤所 含酸、 重金属的废水。
[0004] 发明内容
[0005] 根据第一方面, 一种实施例中提供一种模块化多单元格电池, 包括:
[0006] 电池芯, 其包括若干双极性极板、 正端子极板、 负端子极板和隔膜; 其中, 所 述双极性极板一半涂有正活性物质以作为正极板, 另一半涂有负活性物质以作 为负极板, 中间留有一段未涂正、 负活性物质的间隔区, 用于各单元格之间的 电连接; 正端子极板涂有正活性物质以作为正极板, 其一边留有一段未涂正活 性物质的区域, 作为电池芯的正极输出端; 负端子极板涂有负活性物质以作为 负极板, 其一边留有一段未涂负活性物质的区域, 作为电池芯的负极输出端; 隔膜用于吸酸, 以使双极性极板、 正端子极板和负端子极板发生电化学反应而 产生电;
[0007] 压力框架, 其具有底面和多侧面, 用于放置所述电池芯;
[0008] 压力盖板, 其与所述压力框架配合将电池芯压装固定, 并形成所述电池的各单 元格, 各单元格之间通过一隔绝物质进行隔绝; [0009] 电池盒及电池盖, 用于封装被所述压力框架和压力盖板压装固定后的电池芯; [0010] 其中, 所述正端子极板、 双极性极板和负端子极板水平交替放置, 各上下极板 之间都放置有所述隔膜。
[0011] 在一较优实施例中, 所述压力框架的外侧面的各单元格分界处, 都幵有孔, 用 于注入所述隔绝物质。
[0012] 在一较优实施例中, 压力框架还具有凸起边, 压力盖板 6还具有与所述凸起边 配合卡接使用的凹槽。
[0013] 在一较优实施例中, 所述压力框架的底面和侧面的各单元格分界处都具有向内 的凹槽, 以当注入所述隔绝物质吋, 使各单元格间达到更好的密封效果。
[0014] 在一较优实施例中, 所述压力盖板上具有与单元格数量一致的安全阀孔, 用于 独立向各单元格内进行注酸和排气。
[0015] 在一较优实施例中, 所述各安全阀孔都配备有安全阀。
[0016] 在一较优实施例中, 所述压力盖板与压力框架卡接, 相接处刷有环氧树脂胶, 用于粘接并将各单元格与外界隔绝。
[0017] 在一较优实施例中, 所述正端子极板都放置于第一个单元格或最后一个单元格 , 相应地, 所述负端子极板都放置于最后一个单元格或第一个单元格; 所述模 块化多单元格电池还包括两个铸件端子, 用于分别与所述正、 负端子极板未涂 活性物质的区域电连接, 以分别作为所述模块化多单元格电池的正、 负输出端
[0018] 在一较优实施例中, 所述电池盒及电池盖相接处, 都加有环氧树脂胶, 所述电 池盒上还具有一安全阀孔, 所述安全阀孔配备有安全阀。
[0019] 在一较优实施例中, 所述双极性极板为准双极性结构, 其采用固态挤压工艺把 铅包覆玻璃纤维制成铅丝后, 再织网制成铅网板栅, 在铅网板栅的一半涂正活 性物质作为正极板, 在此铅网板栅的另一半涂负活性物质作为负极板, 双极性 极板的正、 负活性物质间留十毫米左右的空隙, 用于单元格间的线连接; 所述 正端子极板, 其采用固态挤压工艺把铅包覆玻璃纤维制成铅丝后, 再织网制成 铅网板栅, 在铅网板栅上涂正活性物质, 其中极板的一边留有一段未涂正活性 物质的区域, 作为正端子极板的端线; 所述负端子极板, 其采用固态挤压工艺 把铅包覆玻璃纤维制成铅丝后, 再织网制成铅网板栅, 在铅网板栅上涂负活性 物质, 其中极板的一边留有一段未涂负活性物质的区域, 作为负端子极板的端 线。
[0020] 依上述实施的模块化多单元格电池, 由于所述正端子极板、 双极性极板和负端 子极板水平交替放置, 各上下极板之间都放置有所述隔膜, 避免了传统电解液 层化的现象;
[0021] 依上述实施的模块化多单元格电池, 由于采用了双极性极板, 其中间留有一段 未涂正、 负活性物质的间隔区, 用于各单元格之间的电连接, 实现了内部各单 元之间的单体电池的可靠电连接, 不再有传统极耳焊接带来的大内阻等问题, 实现了大功率放电和快速充电;
[0022] 依上述实施的模块化多单元格电池, 由于引入压力框架和压力盖板, 两者配合 将电池芯压装固定, 解决了极板膨胀变形和活性物质易脱落的难题, 同吋大大 提高了电池的抗震动和耐冲击能力;
[0023] 依上述实施的模块化多单元格电池, 由于所述压力框架的外侧面的各单元格分 界处, 都幵有孔, 用于注入沥青和 /或环氧树脂胶等隔绝物质, 从而将电池中的 各单元格隔绝, 防止各单元格间串酸液和酸气, 避免了电池内部一直处于串格 状态而造成的存放或充放电吋内部反应不一, 避免了电池单元格间及电池间自 放电不一致, 保证了电池各单元格间的电池一致性和电池寿命。
[0024] 依上述实施的模块化多单元格电池, 由于各极板都是采用固态挤压工艺把铅包 覆玻璃纤维制成铅丝后, 再织网制成铅网板栅, 因而大大提高了极板的耐腐蚀 性能;
[0025] 依上述实施的模块化多单元格电池, 可根据需求调整多单元格的数量, 从而可 模块化地制成不同电压的电池, 方便、 有效和简洁。
[0026] 附图说明
[0027] 图 1为本申请一实施例的模块化多单元格电池的剖视图, 其中压力框架、 压力 盖板和电池盒被剖去一部分, 以更好地说明模块化多单元格电池的结构。
[0028] 图 2 (a) 和 (b) 为本申请一实施例的双极性极板的主视图和俯视图;
[0029] 图 3 (a) 和 (b) 为本申请一实施例的正端子极板的主视图和俯视图; [0030] 图 4 (a) 和 (b) 为本申请一实施例的负端子极板的主视图和俯视图;
[0031] 图 5为本申请一实施例的压力框架的结构示意图;
[0032] 图 6为本申请一实施例的压力盖板的结构示意图;
[0033] 图 7为本申请一实施例的被压力框架和压力盖板压装固定后的、 并电连接有铸 件端子的电池芯的示意图;
[0034] 图 8为申请一实施例的模块化多单元格电池组装第一层结构示意图;
[0035] 图 9为本申请一实施例的模块化多单元格电池压装前结构示意图;
[0036] 图 10为本申请一实施例的 24V模块化多单元格电池的成品示意图;
[0037] 图 11为本申请一实施例的 36V模块化多单元格电池压装前结构示意图;
[0038] 图 12为本申请一实施例的 36V模块化多单元格电池的成品示意图;
[0039] 图 13为本申请一实施例的 48V模块化多单元格电池压装前结构示意图;
[0040] 图 14为本申请一实施例的 48V模块化多单元格电池的成品示意图。
[0041] 具体实施方式
[0042] 下面通过具体实施方式结合附图对本申请作进一步详细说明。
[0043] 请参照图 1~图4, 本申请提出了一种模块化多单元格电池, 其包括电池芯、 压 力框架 5、 压力盖板 6、 电池盒 10和电池盖 11, 下面具体说明。
[0044] 电池芯包括若干双极性极板 1、 正端子极板 2、 负端子极板 3和隔膜 4。
[0045] 请参照图 2, 双极性极板 1的一半涂有正活性物质以作为正极板, 另一半涂有负 活性物质以作为负极板, 中间留有一段未涂正、 负活性物质的间隔区, 用于各 单元格之间的电连接。 在一较优的实施例中, 双极性极板 1为准双极性结构, 其 采用固态挤压工艺把铅包覆玻璃纤维制成铅丝后, 再织网制成铅网板栅, 在铅 网板栅的一半涂正活性物质作为正极板, 在此铅网板栅的另一半涂负活性物质 作为负极板, 双极性极板的正、 负活性物质间留十毫米左右的空隙, 用于单元 格间的线连接。
[0046] 请参照图 3, 正端子极板 2涂有正活性物质以作为正极板, 其一边留有一段未涂 正活性物质的区域, 作为电池芯的正极输出端。 在一较优的实施例中, 正端子 极板 2采用固态挤压工艺把铅包覆玻璃纤维制成铅丝后, 再织网制成铅网板栅, 在铅网板栅上涂正活性物质, 其中极板的一边留有一段未涂正活性物质的区域 , 作为正端子极板的端线。
[0047] 请参照图 4, 负端子极板 3涂有负活性物质以作为负极板, 其一边留有一段未涂 负活性物质的区域, 作为电池芯的负极输出端。 在一较优的实施例中, 负端子 极板 3采用固态挤压工艺把铅包覆玻璃纤维制成铅丝后, 再织网制成铅网板栅, 在铅网板栅上涂负活性物质, 其中极板的一边留有一段未涂负活性物质的区域 , 作为负端子极板的端线。 上述各极板都是采用固态挤压工艺把铅包覆玻璃纤 维制成铅丝后, 再织网制成铅网板栅, 因而大大提高了极板的耐腐蚀性能, 同 吋生产过程中不会产生像传统电池生产一样的严重环境污染问题。
[0048] 隔膜 4用于吸酸, 以使双极性极板 1、 正端子极板 2和负端子极板 3发生电化学反 应而产生电。
[0049] 请参照图 5, 为压力框架 5的一种结构示意图, 其可以形成 12个单元格。 在一实 施例中, 压力框架 5具有底面和多侧面, 用于放置电池芯。 在一实施例中, 压力 框架 5的外侧面的各单元格分界处, 都幵有孔 52, 用于注入沥青和 /或环氧树脂胶 等隔绝物质。 在一实施例中, 压力框架 5的底面和侧面的各单元格分界处都具有 向内的凹槽 51, 以当注入隔绝物质吋, 使各单元格间达到更好的密封效果。
[0050] 请参照图 6, 为压力盖板 6的一种结果示意图。 在一实施例中, 压力盖板 6与压 力框架 5配合将电池芯压装固定, 并形成电池的各单元格, 各单元格之间通过隔 绝物质进行隔绝。 在一实施例中, 压力盖板 6上具有与单元格数量一致的安全阀 孔 61, 用于独立向各单元格内进行注酸和排气。 在一实施例中, 各安全阀孔 61 都配备有安全阀 9, 安全阀 9可配置胶帽。 在一实施例中, 压力盖板 6向内的一面 , 即与电池芯接触的那一面, 具有凹槽 63, 其作为内部排气或注酸的通道。 在 一实施例中, 压力盖板 6向内的一面, 各单元格分界处还具有凹槽 64, 用于注胶 或沥青吋作为胶或沥青与压力盖板 6的密封接触面, 以使各单元格间达到更好的 密封效果。
[0051] 电池盒 10和电池盖 11, 两者配合用于封装被压力框架 5和压力盖板 6压装固定后 的电池芯。
[0052] 在一实施例中, 压力框架 5与压力盖板 6是通过压力框架 5上的凸起边 53与压力 盖板 6上配合使用的凹槽 62进行卡接。 [0053] 请参照图 7, 正端子极板 2都放置于第一个单元格或最后一个单元格, 相应地, 负端子极板 3都放置于最后一个单元格或第一个单元格; 模块化多单元格电池还 包括两个铸件端子 8, 用于分别与正、 负端子极板 2、 3未涂活性物质的区域电连 接, 以分别作为模块化多单元格电池的正、 负输出端。
[0054] 在上述各实施例中, 压力框架 5上的凸起边 53与压力盖板 6的凹槽 62相接处, 都 刷有环氧树脂胶, 用于粘接并将各单元格与外界隔绝。 类似地, 电池盒 10和电 池盖 11各相接处, 也可以都刷环氧树脂胶, 用于粘接及密封等。
[0055] 在上述各实施例中, 正端子极板 2、 双极性极板 1和负端子极板 3水平交替放置 , 各上下极板之间都放置有隔膜 4。 下面通过一个实际例子来进一步说明。
[0056] 请参照图 8, 在组装设备上固定压力框架 5, 压力框架 5有前后横向两个组装位 , 每个组装位可组装 6个单元格, 共 12个单元格进行串联。 具体地, 组装有前后 左右四个方位, 不妨令第一单元格为前右方位, 则第六单元为前左方位, 第七 单元格为后左方位, 第十二单元格为后右方位。 用机械手在压力框架 5的第一到 第十二单元格对应的各单元格的位置上依次放置一片隔膜 4。
[0057] 接着在隔膜 4上水平放置双极性极板 1, 具体地, 从第一单元格到第十二单元格 放置六片双极性极板 1, 第一片双极性极板 1的负极板 (指双极性极板 1上涂有负 活性物质的极板地带) 放在第一单元格区域, 正极板 (指双极性极板 1上涂有正 活性物质的极板地带) 放在第二单元格区域, 第二片双极性极板 1的负极放在第 三单元格区域, 正极放在第四单元格区域, 第三片双极性极板 1的负极放在第五 单元格区域, 正极放在第六单元格区域, 第四片双极性极板 1的负极放在第七单 元格区域, 正极放在第八单元格区域, 第五片双极性极板 1的负极放在第九单元 格区域, 正极放在第十单元格区域, 第六片双极性极板 1的负极放在第十一单元 格区域, 正极放在第十二单元格区域, 这样, 自然而然地, 双极性极板 1正、 负 活性物质间留有约 10mm的间隔区定位在压力框架 5单元格间分界处。
[0058] 接着再在每单元格上放一片隔膜 4, 十二个单元共十二片隔膜, 每一片双极性 极板 1的正极和负极上分别放置有一片隔膜 4。
[0059] 接着再在第一单元格放置一片正端子极板 2, 第十二单元格放置一片负端子极 板 3, 第二单元格和第三单元格放置一片双极性极板 1, 其正极位于第三单元格 区域, 负极位于第二单元格区域, 第四单元格和第五单元格放置一片双极性极 板 1, 其正极位于第五单元格区域, 负极位于第四单元格区域, 第六单元格和第 七单元格放置一片双极性极板 1, 其正极位于第七单元格区域, 负极位于第六单 元格区域, 第六、 第七单元格位于电池拐角处, 因此该片双极板放置位置相对 其它极板为前后垂直位置。 第八单元格和第九单元格放置一片双极性极板 1, 其 正极位于第九单元格区域, 负极位于第八单元格区域, 第十单元格和第十一单 元格放置一片双极性极板 1, 其正极位于第十一单元格区域, 负极位于第十单元 格区域, 另外第一单元格的正端子极板 2和第十二单元格的负端子极板 3的端线 分别向外朝向电池的右边方位。
[0060] 这样就完成正负一层电池的组装, 可以根据组装的电池层数依次一直向上叠加 隔膜 4和各极板。
[0061] 请参照图 9, 如此, 各极板的排列是按照从前位右到左, 从后位左到右, 从下 到上, 正、 负极板 (正极板指正端子极板 2和双极性极板 1上的正极板; 负极板 指负端子极板 3和双极性极板 1上的负极板) 交错放置的顺序放置, 并每片极板 的上下均是被隔膜 4包覆, 双极性极板 1正负活性物质间留有约 10mm的间隔区定 位在压力框架 5单元格间分界处位置, 如此, 完成整个电池芯的组装。
[0062] 接着, 将压力盖板 6放置于压力框架 5上, 在两者的粘贴位置刷胶, 用压装机设 备把压力盖板 6与压力框架 5粘接固定, 压装设计压力可达 100kPa。
[0063] 之后, 对第一及第十二单元格的电池芯的端线, 即正端子极板 2和负端子极板 3 露出的端线分别铸焊上铸件端子 8, 以分别作为模块化多单元格电池的正极和负 极。
[0064] 再通过从压力框架 5的外侧面单元格分界处的孔 52内注入沥青或胶, 使沥青或 胶完全填充并密封住压力框架 5及压力盖板 6的单元格分界处, 以便将各单元格 隔绝, 通过上述过程, 实现了十二个单元格间的完全单独密封与隔离。
[0065] 之后, 从压力盖板 6上的安全阀孔 61通过抽真空后分别独立地向各单元格内注 酸, 电池再进行化成。
[0066] 电池化成完后, 安上安全阀 9的胶帽, 再安装电池盒 10及电池盖 11, 在电池盖 1 1与电池盒 10密封面的凹槽, 电池盖 11与电池盒 10的相接密封处, 都加有胶, 用 于粘接密封, 作为电池保护外壳, 并在电池外壳 10上安装外安全阀 7, 成为成品 电池, 如图 10所示。
[0067] 上述制成的模块化多单元格电池, 其各单元格可视为 2V的单体电池, 因此, 上 述的模块化多单元格电池由于具有 12个单元格, 故其为 24V的电池, 其可通过调 整单元格的数量, 制成不同电压规格的模块电池, 例如制成 2~48V的模块电池等 。 例如, 图 10为本申请一实施例的 24V电池示意图; 图 11和图 12为本申请一实施 例的 36V电池示意图; 图 13和图 14为本申请一实施例的 48V电池示意图。
[0068] 本申请为解决传统铅酸电池中电池液分层、 无法高倍率充放电、 抗震动能力差 及生产过程环境污染严重等问题, 发明人考虑将 2V模块化多单元格电池生产技 术更改为铅包覆挤压板栅技术、 双极板技术、 压力框架技术、 新密封技术、 单 元格模块化生产。
[0069] 本申请通过以 2V单体电池为基础, 可通过双极板组装串接, 形成 2〜48V的模 块电池。 通过采用基于铅包覆玻璃纤维制成铅丝后织网制成板栅技术, 这大大 提高各极板栅耐腐蚀性能, 从而大大提高电池循环寿命。 通过采用准双极板技 术, 单体电池单元间的串联由铅网直接连通实现, 实现了内部单体电池的可靠 连接, 不再有极耳焊接的问题, 解决了传统电池的浓差极化现象, 同吋使电池 可大功率放电和快速充电。 采用压力框架结构技术, 解决了极板膨胀变形和活 性物质易脱落的难题, 同吋大大提高了电池的抗震动和耐冲击能力。 同吋在单 元格间注胶或沥青来实现电池芯单元格间的密封, 解决了电池单元格间内部串 液串气而造成的电池单元格间及各单体电池间自放电不一致, 大大提高了电池 的荷电保持能力及电池的一致性。
[0070] 通过以上技术有效结合, 使 2V模块化多单元格电池具有高比能量、 大功率充放 电、 抗震动能力强、 循环寿命长等新特点, 这些优点都是现传统电池技术所无 法比拟的。 同吋该技术保证保持传统铅酸电池的其它优异性能不受影响, 部分 性能达到锂电池水平。
[0071]
[0072] 以上内容是结合具体的实施方式对本申请所作的进一步详细说明, 不能认定本 申请的具体实施只局限于这些说明。 对于本申请所属技术领域的普通技术人员 来说, 在不脱离本申请发明构思的前提下, 还可以做出若干简单推演或替换。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种模块化多单元格电池, 其特征在于, 包括:
电池芯, 其包括若干双极性极板、 正端子极板、 负端子极板和隔膜; 其中, 所述双极性极板一半涂有正活性物质以作为正极板, 另一半涂 有负活性物质以作为负极板, 中间留有一段未涂正、 负活性物质的间 隔区, 用于各单元格之间的电连接; 正端子极板涂有正活性物质以作 为正极板, 其一边留有一段未涂正活性物质的区域, 作为电池芯的正 极输出端; 负端子极板涂有负活性物质以作为负极板, 其一边留有一 段未涂负活性物质的区域, 作为电池芯的负极输出端; 隔膜用于吸酸 , 以使双极性极板、 正端子极板和负端子极板发生电化学反应而产生 电;
压力框架, 其具有底面和多侧面, 用于放置所述电池芯;
压力盖板, 其与所述压力框架配合将电池芯压装固定, 并形成所述电 池的各单元格, 各单元格之间通过一隔绝物质进行隔绝;
电池盒及电池盖, 用于封装被所述压力框架和压力盖板压装固定后的 电池芯;
其中, 所述正端子极板、 双极性极板和负端子极板水平交替放置, 各 上下极板之间都放置有所述隔膜。
[权利要求 2] 如权利要求 1所述的模块多单元格电池, 其特征在于, 所述压力框架 的外侧面的各单元格分界处, 都幵有孔, 用于注入所述隔绝物质。
[权利要求 3] 如权利要求 1所述的模块多单元格电池, 其特征在于, 压力框架还具 有凸起边, 压力盖板 6还具有与所述凸起边配合卡接使用的凹槽。
[权利要求 4] 如权利要求 2所述的模块化多单元格电池, 其特征在于, 所述压力框 架的底面和侧面的各单元格分界处都具有向内的凹槽, 以当注入所述 隔绝物质吋, 使各单元格间达到更好的密封效果。
[权利要求 5] 如权利要求 1所述的模块化多单元格电池, 其特征在于, 所述压力盖 板上具有与单元格数量一致的安全阀孔, 用于独立向各单元格内进行 注酸和排气。
[权利要求 6] 如权利要求 5所述的模块化多单元格电池, 其特征在于, 所述各安全 阀孔都配备有安全阀。
[权利要求 7] 如权利要求 1所述的模块化多单元格电池, 其特征在于, 所述压力盖 板与压力框架卡接, 相接处刷有环氧树脂胶, 用于粘接并将各单元格 与外界隔绝。
[权利要求 8] 如权利要求 1所述的模块化多单元格电池, 其特征在于, 所述正端子 极板都放置于第一个单元格或最后一个单元格, 相应地, 所述负端子 极板都放置于最后一个单元格或第一个单元格; 所述模块化多单元格 电池还包括两个铸件端子, 用于分别与所述正、 负端子极板未涂活性 物质的区域电连接, 以分别作为所述模块化多单元格电池的正、 负输 出端。
[权利要求 9] 如权利要求 1所述的模块化多单元格电池, 其特征在于, 所述电池盒 及电池盖相接处, 都加有环氧树脂胶, 所述电池盒上还具有一安全阀 孔, 所述安全阀孔配备有安全阀。
[权利要求 10] 如权利要求 1至 9中任意一项所述的模块化多单元格电池, 其特征在于 所述双极性极板为准双极性结构, 其采用固态挤压工艺把铅包覆玻璃 纤维制成铅丝后, 再织网制成铅网板栅, 在铅网板栅的一半涂正活性 物质作为正极板, 在此铅网板栅的另一半涂负活性物质作为负极板, 双极性极板的正、 负活性物质间留十毫米左右的空隙, 用于单元格间 的线连接;
所述正端子极板, 其采用固态挤压工艺把铅包覆玻璃纤维制成铅丝后 , 再织网制成铅网板栅, 在铅网板栅上涂正活性物质, 其中极板的一 边留有一段未涂正活性物质的区域, 作为正端子极板的端线; 所述负端子极板, 其采用固态挤压工艺把铅包覆玻璃纤维制成铅丝后 , 再织网制成铅网板栅, 在铅网板栅上涂负活性物质, 其中极板的一 边留有一段未涂负活性物质的区域, 作为负端子极板的端线。
PCT/CN2016/101532 2016-04-20 2016-10-09 一种模块化多单元格电池 WO2017181618A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/749,774 US20190341655A1 (en) 2016-04-20 2016-10-09 Modular multi-cell battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610247768.8 2016-04-20
CN201610247768.8A CN107305966A (zh) 2016-04-20 2016-04-20 一种模块化多单元格电池

Publications (1)

Publication Number Publication Date
WO2017181618A1 true WO2017181618A1 (zh) 2017-10-26

Family

ID=60115572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101532 WO2017181618A1 (zh) 2016-04-20 2016-10-09 一种模块化多单元格电池

Country Status (3)

Country Link
US (1) US20190341655A1 (zh)
CN (1) CN107305966A (zh)
WO (1) WO2017181618A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12002993B2 (en) 2022-09-01 2024-06-04 Milwaukee Electric Tool Corporation Battery pack with wire bonded bus bars

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109378514B (zh) * 2018-08-31 2022-10-04 广州倬粤动力新能源有限公司 用于碳纤维电池模块的生成方法
CN109148974A (zh) * 2018-10-17 2019-01-04 浙江图兰特储能科技有限公司 一种用于水平铅酸电池的隔离件
CN109378531B (zh) * 2018-10-17 2021-11-05 浙江图兰特储能科技有限公司 包含分离式外壳的水平铅酸电池及其组装方法
KR102378527B1 (ko) * 2018-12-05 2022-03-23 주식회사 엘지에너지솔루션 전지 모듈 및 그 제조 방법
CN109888297A (zh) * 2019-03-14 2019-06-14 肇庆中特能科技投资有限公司 一种具有双极板堆叠的电池芯及其制成的电池
CN111370777B (zh) * 2020-02-26 2021-12-14 天能电池集团股份有限公司 一种双极性铅蓄电池
CN113506879B (zh) * 2021-04-15 2022-11-04 淄博火炬能源有限责任公司 轻质双极性铅酸蓄电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202355A (zh) * 2006-12-15 2008-06-18 夏振明 电动汽车用长寿命高容量双极型极板铅酸电池
CN101202356A (zh) * 2006-12-15 2008-06-18 夏振明 电动汽车用长寿命高容量双极型极板铅酸电池
CN202817062U (zh) * 2012-08-07 2013-03-20 安徽理士电池技术有限公司 用于电池壳体的鞍子、电池壳体组件及一种铅酸蓄电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2462549Y (zh) * 2001-01-12 2001-11-28 长沙丰日电气集团有限公司 水平双极铅蓄电池
CN201994350U (zh) * 2011-04-18 2011-09-28 美美电池有限公司 一种蓄电池壳
CN103208633B (zh) * 2013-03-22 2015-06-17 超威电源有限公司 一种水平电池及其制造方法
CN105374954A (zh) * 2015-01-12 2016-03-02 上海立全新能源有限公司 多格连体锌镍电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202355A (zh) * 2006-12-15 2008-06-18 夏振明 电动汽车用长寿命高容量双极型极板铅酸电池
CN101202356A (zh) * 2006-12-15 2008-06-18 夏振明 电动汽车用长寿命高容量双极型极板铅酸电池
CN202817062U (zh) * 2012-08-07 2013-03-20 安徽理士电池技术有限公司 用于电池壳体的鞍子、电池壳体组件及一种铅酸蓄电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12002993B2 (en) 2022-09-01 2024-06-04 Milwaukee Electric Tool Corporation Battery pack with wire bonded bus bars

Also Published As

Publication number Publication date
CN107305966A (zh) 2017-10-31
US20190341655A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2017181618A1 (zh) 一种模块化多单元格电池
WO2021143668A1 (zh) 电池、电池模组、电池包及汽车
CN103208633B (zh) 一种水平电池及其制造方法
WO2021143560A1 (zh) 一种电池、电池模组、电池包和电动车
US20130157111A1 (en) Bipolar electrochemical battery with an improved casing
WO2014134783A1 (zh) 双极性电池及其制作方法和车辆
CN101908643B (zh) 一种动力锂离子电池及其制作方法
CN206490142U (zh) 一种多单元格的水平电池
CN201478392U (zh) 具有集流盘的高功率动力锂离子电池
JP7064119B2 (ja) バイポーラ型鉛酸蓄電池
CN111312979A (zh) 多极柱端子锂电池及其制作方法
CN103531852B (zh) 一种双极性铅酸蓄电池
CN2909545Y (zh) 二次电池
KR20120123851A (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자
CN205882100U (zh) 一种单体水平电池
CN212874703U (zh) 一种一体化成型的内串软包锂离子电池组
CN109378531B (zh) 包含分离式外壳的水平铅酸电池及其组装方法
CN103531853B (zh) 一种高效能的双极性铅酸蓄电池
CN113948759A (zh) 电池单体及锂离子电池组
CN203589165U (zh) 一种高效能的双极性铅酸蓄电池
CN219553750U (zh) 电芯包络结构、电芯及电池
CN203589170U (zh) 一种双极性铅酸蓄电池
JP2020087587A (ja) 蓄電モジュール及び蓄電モジュールの製造方法
CN220400725U (zh) 动力电池
JP2013543225A (ja) 二次電池セルの導電連結構造

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899203

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899203

Country of ref document: EP

Kind code of ref document: A1