WO2017179811A1 - Method for preparing sealing sleeve - Google Patents

Method for preparing sealing sleeve Download PDF

Info

Publication number
WO2017179811A1
WO2017179811A1 PCT/KR2017/001842 KR2017001842W WO2017179811A1 WO 2017179811 A1 WO2017179811 A1 WO 2017179811A1 KR 2017001842 W KR2017001842 W KR 2017001842W WO 2017179811 A1 WO2017179811 A1 WO 2017179811A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
metal powder
sleeve
sintering
hermetic sleeve
Prior art date
Application number
PCT/KR2017/001842
Other languages
French (fr)
Korean (ko)
Inventor
배창환
전용진
이종철
황권웅
Original Assignee
(주)하나테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)하나테크 filed Critical (주)하나테크
Priority to CN201780000650.8A priority Critical patent/CN107530779B/en
Publication of WO2017179811A1 publication Critical patent/WO2017179811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/13Controlling pressure

Definitions

  • the present invention relates to a method for manufacturing an airtight sleeve for a domestic, industrial, commercial, and automotive air conditioning system and a refrigeration / refrigeration system to which a refrigerant pipe is applied. More specifically, the present invention relates to a powder using a metal powder containing iron powder. The present invention relates to a method of manufacturing a hermetic sleeve by performing molding, sintering, shaping and plating by a metallurgical process.
  • the hermetic sleeve is important not only for the fastening mechanism for connecting the two tubes, but also for its material and manufacturing process. In terms of materials, corrosion resistance, chemical resistance, rigidity, surface strength, and the like are required, and in terms of manufacturing process, high dimensional accuracy and internal diameter roughness management are required in processing the inner diameter of the hermetic sleeve.
  • Korean Patent Laid-Open Publication No. 1997-0073775 name of the invention: a method for manufacturing a metal pipe, hereinafter referred to as the prior art 1
  • the work of leveling a flat plate of a raw material of metal is performed and bending both sides of the metal plate by rolling.
  • Forming the method of increasing the curvature gradually to approach the cross section in the direction perpendicular to the tube axis in a circle, the welding process is welded along the seam line in the next process, and then welded cutting process
  • a method of manufacturing a metal pipe comprising a shaping step of quenching (water cooling) and measuring the same, a calibrating step of correcting the warpage of the pipe by a calibrator, and a cutting step of cutting a saw, grindstone, or tip according to the application. have.
  • one embodiment of the present invention in the manufacturing method of the hermetic sleeve for sealingly coupling two tubes having through-holes and different sizes, comprising a metal powder and a molding lubricant containing iron
  • the shaping step of manufacturing a shaped body through a shaping process so that the cross-section of the through hole has a predetermined profile the impregnating step of sealing the pores of the shaped body by impregnating the shaped body, the shaped body subjected to resin impregnation It provides a method of manufacturing a hermetic sleeve comprising a plating step of performing a plating to complete a hermetic sleeve.
  • the molding lubricant may be characterized by including 0.2 to 1.5 wt% with respect to the total weight of the metal powder.
  • an embodiment of the present invention is a method of manufacturing a hermetic sleeve, the metal powder, copper (Cu) 8wt% or less, nickel (Ni) 5wt% or less, molybdenum (Mo) 2wt% with respect to the total metal powder weight
  • the composition may be composed of 5 wt% or less of chromium (Cr), 1.5 wt% or less of carbon (graphite), and balance iron (Fe).
  • an embodiment of the present invention in the manufacturing method of the hermetic sleeve, may be characterized in that it further comprises a polishing step and a rust prevention step between the sintering step and the shaping step.
  • an embodiment of the present invention in the method of manufacturing a hermetic sleeve, may be characterized in that the plating is performed after impregnating and curing the resin to fill the pores of the product, before performing the plating step.
  • the pressure in the forming step may be characterized in that it is carried out at a pressure of 2 to 10 Ton / cm 2 .
  • the sintering step in the method of manufacturing a hermetic sleeve, may be characterized in that it is carried out at the sintering temperature of 1000 to 1300 °C.
  • the sintering step in the method of manufacturing a hermetic sleeve, may be characterized in that it is carried out for 20 to 120 minutes at the sintering temperature.
  • the sintering step in the method of manufacturing a hermetic sleeve, may be characterized in that it is carried out in an atmosphere of 5 to 75 wt% hydrogen and 25 to 95wt% nitrogen.
  • the shaping step in the manufacturing method of the hermetic sleeve, may be characterized in that it is carried out at a pressure of 1 to 10 Ton / cm 2 .
  • an embodiment of the present invention is a method of manufacturing a hermetic sleeve
  • the impregnation step is a vacuum impregnation step for performing a vacuum impregnation of the molded body in a vacuum state, and curing the molded body at 70 to 200 °C for the molded body It may be characterized by including a curing step to perform.
  • an embodiment of the present invention is a method of manufacturing a hermetic sleeve
  • the impregnation step is a dipping step for filling the resin impregnation solution in the pores by dipping the crystals in the resin impregnation liquid with respect to the molded body 70 to 200 It may be characterized in that it comprises a curing step of performing the curing at °C.
  • an embodiment of the present invention may further include a vacuum impregnation step of impregnating a shaped body in a vacuum state between a dipping step and a curing step in the manufacturing method of the hermetic sleeve.
  • an embodiment of the present invention is a method of manufacturing a hermetic sleeve, the plating step is characterized in that the plating with one or two or more alloys selected from the group consisting of zinc, nickel and chromium to prevent corrosion of the hermetic sleeve. You can do
  • the powder metallurgy process using metal powder has the first effect that the surface roughness is superior to the processed product and has high dimensional accuracy, and the processing cost is lowered because the machining is not performed.
  • Internal effect roughness management can be performed precisely through the shaping process using the second effect, press core, which can be applied to various types of pipes, can increase the tightening force when knuckle (fastening), and improve the sealing reliability Can provide a fourth effect.
  • FIG. 1 is a flow chart of a manufacturing method of a hermetic sleeve according to an embodiment of the present invention.
  • Figure 2 is a graph showing the change in the apparent density of the hermetic sleeve according to the mixing time of the metal powder according to an embodiment of the manufacturing method of the hermetic sleeve of the present invention.
  • Figure 3 is a schematic diagram showing the shape of the sleeve manufactured according to an embodiment of the manufacturing method of the hermetic sleeve of the present invention.
  • Figure 4 is a schematic diagram showing an axial cross-sectional view of a sleeve manufactured according to an embodiment of the manufacturing method of the hermetic sleeve of the present invention.
  • One preferred embodiment of the present invention is as follows.
  • the first tube and the second tube are mutually inserted to seal the first tube having the first outer diameter and the first inner diameter and the second tube having the second outer diameter and the second inner diameter larger than the first outer diameter.
  • the main body through-hole on the main body
  • the hermetic sleeve may be formed in a state in which the first tube having the first outer diameter and the first inner diameter and the second tube having the second outer diameter and the second inner diameter larger than the first outer diameter, which are two tubes having different sizes, are inserted into each other.
  • the first pipe and the second pipe has a shape for being installed in the insertion coupling region which is the contact area,
  • the through-hole is installed in the insertion coupling portion, the internal diameter value is gradually increased in the longitudinal direction of the hermetic sleeve in order to increase the clamping force and sealability by increasing the pressure during the mounting process on the insertion coupling portion or Method for producing a hermetic sleeve, characterized in that it is formed to have a gradient to be small.
  • the hermetic sleeve manufactured by the present invention comprises a first tube having a first outer diameter and a first inner diameter and a second tube having a second outer diameter and a second tube having a second inner diameter larger than the first outer diameter.
  • the second pipe has a shape so as to be installed in the insertion coupling portion in the state inserted into each other.
  • the insertion coupling portion indicates a portion and an adjacent region where the first tube and the second tube are coupled to and contacted.
  • a hermetic sleeve with a through hole is shown in a generally cylindrical shape.
  • the through hole is a structure for mounting on the insertion coupling portion, and in order to increase the pressure in the mounting process, the through hole may have a predetermined cross-sectional profile such that the inner diameter value is gradually increased while going from the inlet to the outlet.
  • the metal powder is to refer to the object to be loaded into the mold for forming the green compact, the metal powder is formed by adding a molding lubricant to the metal powder.
  • a metal powder shall refer to the powder-like material which contains metals, such as copper, nickel, molybdenum, and chromium, graphite (carbon), etc. based on iron.
  • copper, nickel, molybdenum, chromium, or the like may be included as an alloy material of iron, or may be present in a powder form independently of the iron powder.
  • some of copper, nickel, molybdenum and chromium may be present in an alloy phase of iron, and the remainder may be prepared by mixing with an iron alloy powder as a powder.
  • Some of copper, nickel, chromium and molybdenum may be excluded from the composition of the metal powder.
  • a method of manufacturing a hermetic sleeve includes preparing a metal powder containing iron and a metal powder comprising a molding lubricant, and putting the metal powder into a mold and applying pressure to the green compact.
  • an embodiment of the present invention may further include a polishing step and a rust prevention step between the sintering step and the shaping step in the manufacturing method of the hermetic sleeve.
  • the molding lubricant may include 0.2 to 1.5 wt% with respect to the total metal powder weight.
  • the apparent density of the entire metal powder may be increased.
  • the molding lubricant zinc stearate, Kenolube, or amide wax may be applied.
  • zinc stearate or Kenolube may be applied. Referring to FIG. 2, it can be seen that when zinc stearate or Kenolube is used as the molding lubricant, the apparent density of the metal powder is superior to that of using amide wax as the molding lubricant.
  • Molding lubricant is a friction with the mold surface when the metal powder in the mold is compressed during molding, this may generate heat and scratch on the mold surface, it can be used to prevent this. However, if it exceeds 1.5 wt%, the compressibility decreases and burn-our during sintering may appear as a defect in the sintered body, and when used below 0.2wt%, it may cause heat generation and scratch on the mold surface. May be unsuitable for
  • the metal powder is the metal powder, excluding the molding lubricant, and based on the total metal powder weight, copper (Cu) 8 wt% or less, nickel (Ni) 5 wt% or less, molybdenum (Mo) 2 wt% or less, and chromium (Cr) 5 wt% Up to%, up to 1.5 wt% of carbon (graphite) and the balance iron (Fe).
  • Iron may be a powder prepared by a reduction method or a spraying method
  • copper powder may be a powder prepared by a spraying method or an electrolysis method
  • nickel, molybdenum and chromium powders may be alloyed with iron or used by mixing nickel, molybdenum and chromium powders.
  • Copper serves to increase the ductility and strength of the product at the same time, if the amount of more than 8wt% is deformed during sintering can be lowered the precision of the dimension can be unsuitable for use.
  • Nickel, molybdenum and chromium powders can serve to enhance the strength of the product. If the nickel powder exceeds 5wt%, the strength of the product is increased but the toughness is lowered, which may cause a problem of brittleness. If the molybdenum is more than 2wt%, the strength is increased but the toughness is reduced, the brittleness is increased. It can cause problems. In addition, even if the chromium powder exceeds 5wt%, the strength of the product is improved but toughness may be unsuitable for use.
  • Carbon (graphite) reacts with iron during sintering to improve strength, but when it exceeds 1.5 wt%, a problem of sharp embrittlement may occur by generating a structure called cementite in the metal structure.
  • Physical properties of the required metal powder (metal powder) include apparent density, flowability, and compressibility.
  • the apparent density is the density in the powder state before forming the green compact, whereby the green compact density is affected.
  • it is proposed to make 2 to 4 g / cm 3 as the apparent density of the metal powder. Apparent density 2 g / cm 3 If less, the green compact density is low, which causes a problem that the density of the final product may also be low.
  • Flow is a property related to the molding precision, regardless of whether the metal powder moves well to the corner of the mold when the metal powder is charged into the mold.
  • the process of confirming a burr above and below the green compact may be further sprayed to remove air.
  • the pressure in the molding step may be carried out at a pressure of 2 to 10 Ton / cm 2 . If the pressure is less than 2 Ton / cm 2, the compaction density of the green compact may be insufficient, resulting in insufficient strength of the final product.
  • the sintering step may be performed at 1000 to 1300 ° C. for 20 to 120 minutes. If the sintering temperature is less than 1000 °C sintering temperature is too low may not be sintering properly, if the sintering temperature is higher than 1300 °C, the sintering temperature is too high, the amount of dimensional sintering of the sintered body has a large amount of dimensional deformation is deteriorated, energy efficiency is poor It may not be suitable for use. In addition, if the sintering speed is less than 20 minutes, sintering does not occur sufficiently may be unsuitable in terms of strength, and if it exceeds 120 minutes, the strength is increased but the sintering deformation is not suitable in that the dimensional accuracy is poor. Consider.
  • the sintering step may be carried out in an atmosphere of 5 to 75 wt% hydrogen and 25 to 95wt% nitrogen.
  • Such mixed gas may be referred to as AX gas.
  • AX gas is a gas produced by decomposing ammonia, and is composed of nitrogen and hydrogen. It is also possible to use nitrogen further. It may consist of 5 to 75% hydrogen and 25 to 95% nitrogen. Hydrogen reduces the oxide on the metal surface in the sintering step and allows diffusion bonding between metals, and nitrogen serves as an inert gas to prevent oxidation of the sintered body.
  • the polishing step may be performed.
  • the polishing step may perform a barrel process, and may remove burrs of the sintered body generated during the sintering process.
  • a rotary barrel can be used.
  • the barrel method using equipment other than a rotary barrel is not excluded.
  • the lubricating step may be performed.
  • the lubrication step is to immerse the sintered body in the rusted oil so that the rusted oil exists in the surface and pores of the sintered body to reduce the friction between the product and the mold and act as a lubrication when forming the next process. You can also play a role of rust prevention.
  • the shaping step may be a process of correcting warpage, dimensions, or shape of the sintered body, and in particular, correcting the shape and dimensions of the inner diameter portion of the sintered body, so that the cross-section of the through hole may have a predetermined profile.
  • the inside of the through hole may have the same inner diameter in the longitudinal direction as shown in FIG. 3 or 4, but in order to increase the fastening pressure, a gradient is obtained in which the inner diameter value gradually increases or decreases when viewed in the longitudinal direction. You can have it.
  • the sintered compact is mounted on the mold of the press and the product is pressed with a punch. At this time, a shape of the inner diameter can be formed by the core formed in the mold.
  • the press pressure of the shaping step may be performed at 1 to 10 Ton / cm 2 .
  • the inner roughness surface state
  • the inner roughness can be made good, and because of the good inner roughness, it can be applied to various kinds of pipes, It is possible to increase the sealing reliability.
  • washing and drying step may be carried out in a vacuum atmosphere at a temperature of 80 to 130 °C.
  • the impregnation step is to fill the fine pores present in the body with respect to the body body.
  • the impregnation step may include a dipping step, a washing step, and a curing step for the body body.
  • the dipping step of the impregnation step may be a step of dipping a fixed body having pores in the resin impregnation liquid and inducing resin impregnation using air.
  • the vacuum impregnation step may be further performed after the dipping step, and the process may be performed by omitting the dipping step according to conditions of use and requirements.
  • the resin impregnation liquid may be an organic impregnation agent, but is not limited thereto.
  • the curing step may be to perform curing at 70 to 200 °C. If it is less than 70 °C hardening may not be made properly, if it exceeds 200 °C may not be efficient in terms of process efficiency and may be unsuitable for carrying out the process because of the high energy consumption.
  • the plating step may plate one or two or more alloys selected from the group consisting of zinc, nickel and chromium to prevent corrosion of the hermetic sleeve.
  • alloys selected from the group consisting of zinc, nickel and chromium to prevent corrosion of the hermetic sleeve.
  • the plating of metals to prevent corrosion other than zinc is not excluded.
  • the sleeve manufacturing method may form a predetermined profile on the inner wall of the through hole, and the forming process of the inner wall of the metal powder and the through hole in the shaping step according to the requirements of use, manufacturing needs, and mounting requirements. This can be determined.
  • Metal powders containing 96.4 wt% reduced pure iron powder, 2 wt% copper powder, 0.8 wt% graphite powder and 0.8 wt% zinc stearate were prepared, and the results of measuring the apparent density and flowability of the metal powder are shown in Table 1. .
  • the apparent density of the metal powder was 2.65 g / cm 3 and the flowability was 29 s / 50 g, which corresponds to a range in which a precise green compact shape and density can be obtained in green compact forming.
  • This compression density was confirmed to be a value within the range required to satisfy the specifications (strength, rigidity) of the final product.
  • Metal powder was laminated and a green compact was prepared by applying a pressure of 3 Ton / cm 2 using a pressing machine (model name: CP-5). Then, the uniformity of the density was confirmed with respect to the molded green compact and the presence of cracks or surface defects was confirmed.
  • Sintering was performed at a temperature of 1120 ° C. on the green compact from which the burr was removed. After sintering, the sintering was performed for 10 minutes with a rotary barrel, and then dipping was performed for 2 minutes using a rust preventive.
  • a shaping process for enhancing the dimensional accuracy by shaping the inner diameter of the through-hole by the defined profile was performed using the pressing machine.
  • the green compact and the core were placed in the mold of the press machine, and the pressure was applied.
  • the washed body was washed and dried with a hydrocarbon-based washing solution, and an automatic vacuum ultrasonic washing dryer was used. After drying, the resin was impregnated into the molded body, and a resin impregnation solution (IP1000) was used. It was dipped in the resin impregnation solution (IP1000) for 10 minutes.
  • IP1000 resin impregnation solution

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

An embodiment of the present invention, in a method for preparing a sealing sleeve, comprises: a preparation step for preparing a metal powder body comprising a molding lubricant and metal powder comprising iron; a molding step for charging the metal powder body into a mold, applying pressure to the metal powder body and thus molding same into a green compact; a sintering step for sintering the green compact and thus forming a sintered compact; a fixing step for applying pressure to the inner side of the sintered compact, forming a predetermined curvature with respect to the inside diameter of a housing, and preparing a fixed compact; an impregnating step for resin-impregnating the fixed compact and thus sealing the micropores of the fixed compact; and a plating step for plating the fixed compact for which resin-impregnation has been performed and thus completing a sealing sleeve.

Description

밀폐형 슬리브의 제조방법Manufacturing method of hermetic sleeve
본 발명은 냉매 배관이 적용되는 가정용, 산업용, 상업용, 차량용 에어컨디셔닝 시스템 및 냉장/냉동시스템 적용의 밀폐형 슬리브의 제조방법에 관한 것으로, 더욱 상세하게는 철분말을 포함하는 금속분말체를 이용하여 분말야금공정에 의한 성형, 소결공정, 정형공정 및 도금을 수행하여 밀폐형 슬리브를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing an airtight sleeve for a domestic, industrial, commercial, and automotive air conditioning system and a refrigeration / refrigeration system to which a refrigerant pipe is applied. More specifically, the present invention relates to a powder using a metal powder containing iron powder. The present invention relates to a method of manufacturing a hermetic sleeve by performing molding, sintering, shaping and plating by a metallurgical process.
가정용, 산업용, 상업용, 차량용 에어컨디셔닝 시스템(에어컨) 및 가정용, 산업용, 상업용 냉장/냉동시스템(냉장고, 냉동고 등)에는, 고압으로 충전되는 냉매가 사용되며, 이러한 냉매에 대한 유로를 형성하는 배관은, 그 연결이음새가 강건하게 밀봉되어야 하는데, 이러한 밀봉 연결을 위한 부품으로서 밀폐형 슬리브가 사용되고 있다.For home, industrial, commercial, and automotive air conditioning systems (air conditioners) and home, industrial, and commercial refrigeration / freezing systems (refrigerators, freezers, etc.), refrigerants that are charged with high pressure are used. The joints should be tightly sealed, and a hermetic sleeve is used as a component for such a sealing connection.
밀폐형 슬리브는, 두 개의 관을 연결하기 위한 체결 메커니즘 뿐만 아니라, 그 소재 및 제조공정도 중요하다. 소재 측면에서는 내식성, 내화학성, 및 강성, 표면강도 등이 요구되며, 제조공정측면에서는, 밀폐형 슬리브의 내경부위 가공 등에 있어 높은 치수정밀도, 내경부 조도관리 등이 요구되고 있다. The hermetic sleeve is important not only for the fastening mechanism for connecting the two tubes, but also for its material and manufacturing process. In terms of materials, corrosion resistance, chemical resistance, rigidity, surface strength, and the like are required, and in terms of manufacturing process, high dimensional accuracy and internal diameter roughness management are required in processing the inner diameter of the hermetic sleeve.
대한민국 공개특허공보 제 1997-0073775호 (발명의 명칭 : 금속 파이프 제조방법, 이하 종래기술1이라 한다 )에서는, 금속의 원자재인 판재의 평면을 고르게 하는 작업을 하고 롤링가공에 의한 금속판 양측을 절곡성형(Forming)하는 성형공정과, 차차로 곡률을 크게해서 관축에 직각방향의 단면을 원으로 접근시키는 방법을 취하여 다음공정에서 이음매선을 따라 용접(Welding)한 다음 용접부절삭 가공하는 접합공정과, 이를 급냉(수냉)시키고, 이를 측정하는 정형공정과, 교정기에 의한 파이프의 휨을 교정하는 교정공정과, 톱이나 지석 또는 팁(Tip)으로 용도에 맞게 절단하는 절단공정으로 이루어지는 금속파이프 제조방법이 개시되어 있다.In Korean Patent Laid-Open Publication No. 1997-0073775 (name of the invention: a method for manufacturing a metal pipe, hereinafter referred to as the prior art 1), the work of leveling a flat plate of a raw material of metal is performed and bending both sides of the metal plate by rolling. (Forming) forming process, the method of increasing the curvature gradually to approach the cross section in the direction perpendicular to the tube axis in a circle, the welding process is welded along the seam line in the next process, and then welded cutting process Disclosed is a method of manufacturing a metal pipe comprising a shaping step of quenching (water cooling) and measuring the same, a calibrating step of correcting the warpage of the pipe by a calibrator, and a cutting step of cutting a saw, grindstone, or tip according to the application. have.
또한, 종래에는 정형공정에서, 슬리브의 내경 가공에 있어, 치수정밀도를 높이기 위해 절삭가공(머시닝가공)을 적용하는 기술(이하 종래기술 2라 한다)이 개시된 바 있다.In addition, a technique of applying cutting (machining) in order to increase the dimensional accuracy in the inner diameter processing of the sleeve in the shaping process has been disclosed in the related art (hereinafter referred to as the prior art 2).
상기의 종래기술1의 판금성형방식의 경우, 길이방향으로 형성된 파이프를 원하는 길이로 만들기 위해 필수적으로 절단에 필요한 장치가 수반되어야 하고, 용접부위를 연삭하여야 할 뿐만 아니라, 파이프의 내경 조도를 관리할 수 없다는 문제점 등이 있었다. In the case of the sheet metal forming method of the prior art 1, in order to make the pipe formed in the longitudinal direction to the desired length, it is necessary to be accompanied by a device necessary for cutting, not only to weld the welds, but also to manage the inner diameter roughness of the pipe There were problems such as not being able to.
또한, 종래기술2와 같이, 슬리브의 내경 가공을, 절삭 기계가공을 이용하여 수행하는 경우, 내경면의 조도(roughness)가 양호하게 관리될 수 없어, 슬리브를 배관에 장착하는 과정에서 마찰에 의한 파손이 발생하거나, 장착 후 사용과정에서 유체의 누설이 발생하는 등의 문제가 발생하는 경우가 있었다. In addition, as in the prior art 2, when the inner diameter machining of the sleeve is performed by using cutting machining, the roughness of the inner diameter surface cannot be managed well, and the friction caused by friction in the process of mounting the sleeve to the pipe. Problems such as breakage or leakage of fluid occur during use after installation.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 관통홀을 구비하고 크기가 다른 두개의 관을 밀봉결합하기 위한 밀폐형 슬리브의 제조방법에 있어서, 철을 포함하는 금속분말 및 성형윤활제를 포함하는 금속분말체를 준비하는 준비단계, 금속분말체를 틀에 장입하고 압력을 가하여 압분체로 성형하는 성형단계, 압분체를 소결하여 소결체를 형성하는 소결단계, 소결체의 관통홀의 내벽에 압력을 가하여, 상기 관통홀의 단면이 소정의 프로파일을 갖도록 하는 정형공정을 통해 정형체를 제조하는 정형단계, 정형체를 수지함침하여 정형체의 미세 기공을 봉공하는 함침단계, 수지함침을 수행한 정형체에 대하여 도금을 수행하여 밀폐형 슬리브를 완성하는 도금단계를 포함하는 것을 특징으로 하는 밀폐형 슬리브의 제조방법을 제공한다.In order to achieve the above technical problem, one embodiment of the present invention in the manufacturing method of the hermetic sleeve for sealingly coupling two tubes having through-holes and different sizes, comprising a metal powder and a molding lubricant containing iron A preparation step of preparing a metal powder to form, a molding step of putting the metal powder into a mold and applying pressure to form a green compact, a sintering step of sintering the green compact to form a sintered compact, by applying pressure to the inner wall of the through hole of the sintered compact In the shaping step of manufacturing a shaped body through a shaping process so that the cross-section of the through hole has a predetermined profile, the impregnating step of sealing the pores of the shaped body by impregnating the shaped body, the shaped body subjected to resin impregnation It provides a method of manufacturing a hermetic sleeve comprising a plating step of performing a plating to complete a hermetic sleeve.
또한, 성형윤활제는 전체 금속분말체 중량에 대하여, 0.2 내지 1.5 wt% 포함되는 것을 특징으로 할 수 있다.In addition, the molding lubricant may be characterized by including 0.2 to 1.5 wt% with respect to the total weight of the metal powder.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 금속분말은, 전체 금속분말 중량에 대하여, 구리(Cu) 8wt% 이하, 니켈(Ni) 5wt% 이하, 몰리브덴(Mo) 2wt% 이하, 크롬(Cr) 5wt% 이하, 탄소(흑연) 1.5 wt% 이하 및 잔부 철(Fe)로 조성되는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention is a method of manufacturing a hermetic sleeve, the metal powder, copper (Cu) 8wt% or less, nickel (Ni) 5wt% or less, molybdenum (Mo) 2wt% with respect to the total metal powder weight Hereinafter, the composition may be composed of 5 wt% or less of chromium (Cr), 1.5 wt% or less of carbon (graphite), and balance iron (Fe).
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 소결단계와 정형단계의 사이에 연마단계 및 방청단계를 더 포함하는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention, in the manufacturing method of the hermetic sleeve, may be characterized in that it further comprises a polishing step and a rust prevention step between the sintering step and the shaping step.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 도금단계를 수행하기 전, 제품의 기공을 메꾸기 위해 수지를 함침하고 경화한 다음 도금을 수행하는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention, in the method of manufacturing a hermetic sleeve, may be characterized in that the plating is performed after impregnating and curing the resin to fill the pores of the product, before performing the plating step.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 성형단계에서 압력은 2내지 10 Ton/cm2의 압력으로 수행되는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention, in the manufacturing method of the hermetic sleeve, the pressure in the forming step may be characterized in that it is carried out at a pressure of 2 to 10 Ton / cm 2 .
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 소결단계는 본소결온도 1000 내지 1300℃에서 수행되는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention, in the method of manufacturing a hermetic sleeve, the sintering step may be characterized in that it is carried out at the sintering temperature of 1000 to 1300 ℃.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 소결단계는 본소결온도에서 20 내지 120분 동안 수행되는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention, in the method of manufacturing a hermetic sleeve, the sintering step may be characterized in that it is carried out for 20 to 120 minutes at the sintering temperature.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 소결단계는 수소 5내지 75 wt% 및 질소 25 내지 95wt%의 분위기하에서 수행되는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention, in the method of manufacturing a hermetic sleeve, the sintering step may be characterized in that it is carried out in an atmosphere of 5 to 75 wt% hydrogen and 25 to 95wt% nitrogen.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 정형단계는 1 내지 10Ton/cm2의 압력으로 수행되는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention, in the manufacturing method of the hermetic sleeve, the shaping step may be characterized in that it is carried out at a pressure of 1 to 10 Ton / cm 2 .
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 함침단계는 정형체에 대하여, 정형체를 진공상태에서 진공함침을 수행하는 진공함침단계 및 정형체를 70 내지 200℃에서 경화를 수행하는 경화단계를 포함하는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention is a method of manufacturing a hermetic sleeve, the impregnation step is a vacuum impregnation step for performing a vacuum impregnation of the molded body in a vacuum state, and curing the molded body at 70 to 200 ℃ for the molded body It may be characterized by including a curing step to perform.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 함침단계는 정형체에 대하여, 정형체를 수지함침액에 디핑하여 기공에 수짐함침액을 채우는 디핑단계 및 정형체를 70 내지 200℃에서 경화를 수행하는 경화단계를 포함하는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention is a method of manufacturing a hermetic sleeve, the impregnation step is a dipping step for filling the resin impregnation solution in the pores by dipping the crystals in the resin impregnation liquid with respect to the molded body 70 to 200 It may be characterized in that it comprises a curing step of performing the curing at ℃.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 디핑단계와 경화단계의 사이에 정형체를 진공상태에서 함침하는 진공함침단계를 더 포함하는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention may further include a vacuum impregnation step of impregnating a shaped body in a vacuum state between a dipping step and a curing step in the manufacturing method of the hermetic sleeve.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 도금단계는 밀폐형 슬리브의 부식을 막기 위해 아연, 니켈 및 크롬으로 이루어지는 군에서 선택되는 1종 또는 2종 이상의 합금으로 도금하는 것을 특징으로 할 수 있다.In addition, an embodiment of the present invention is a method of manufacturing a hermetic sleeve, the plating step is characterized in that the plating with one or two or more alloys selected from the group consisting of zinc, nickel and chromium to prevent corrosion of the hermetic sleeve. You can do
본 발명의 실시예에 따르면, 금속분말을 이용한 분말야금공정을 이용하여 표면의 조도가 절삭가공품에 비하여 우수하며 높은 치수의 정밀도를 갖는다는 제1효과, 기계가공을 수행하지 않아 공정비용이 낮아진다는 제2효과, 프레스 코어를 이용한 정형공정을 통해 내경조도관리를 정밀하게 수행할 수 있어, 여러 종류의 배관에 적용할 수 있고, 너클링(체결)시 체결력을 증대시킬 수 있으며, 밀봉 신뢰성을 높일 수 있다는 제4효과를 제공할 수 있다. According to an embodiment of the present invention, the powder metallurgy process using metal powder has the first effect that the surface roughness is superior to the processed product and has high dimensional accuracy, and the processing cost is lowered because the machining is not performed. Internal effect roughness management can be performed precisely through the shaping process using the second effect, press core, which can be applied to various types of pipes, can increase the tightening force when knuckle (fastening), and improve the sealing reliability Can provide a fourth effect.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일실시예에 따른 밀폐형 슬리브의 제조방법의 순서도이다.1 is a flow chart of a manufacturing method of a hermetic sleeve according to an embodiment of the present invention.
도 2는 본 발명의 밀폐형 슬리브의 제조방법의 일실시예에 따른 금속분말의 혼합시간에 따른 밀폐형 슬리브의 겉보기 밀도의 변화를 나타낸 그래프이다.Figure 2 is a graph showing the change in the apparent density of the hermetic sleeve according to the mixing time of the metal powder according to an embodiment of the manufacturing method of the hermetic sleeve of the present invention.
도 3은 본 발명의 밀폐형 슬리브의 제조방법의 일실시예에 따라 제조된 슬리브의 형상을 나타난 모식도이다.Figure 3 is a schematic diagram showing the shape of the sleeve manufactured according to an embodiment of the manufacturing method of the hermetic sleeve of the present invention.
도 4는 본 발명의 밀폐형 슬리브의 제조방법의 일실시예에 따라 제조된 슬리브의 축방향 단면도를 나타낸 모식도이다.Figure 4 is a schematic diagram showing an axial cross-sectional view of a sleeve manufactured according to an embodiment of the manufacturing method of the hermetic sleeve of the present invention.
본 발명의 바람직한 일실시예는 다음과 같다.One preferred embodiment of the present invention is as follows.
제1외경 및 제1내경을 갖는 제1관과 제2외경 및 상기 제1외경보다 큰 제2내경을 갖는 제2관을 밀봉결합하기 위하여 상기 제1관과 상기 제2관이 상호 삽입결합된 상태에서 삽입결합부위에 설치되는 밀폐형 슬리브에 있어서,The first tube and the second tube are mutually inserted to seal the first tube having the first outer diameter and the first inner diameter and the second tube having the second outer diameter and the second inner diameter larger than the first outer diameter. In the hermetic sleeve installed in the insertion coupling portion in the state,
본체중심축을 갖는 기둥 형상의 본체;A pillar-shaped main body having a main axis;
상기 본체 상에 상기 본체관통홀을 구비하는 형상으로 되고, 크기가 다른 두 개의 관을 밀봉결합하기 위한 밀폐형 슬리브의 제조방법에 있어서,In the manufacturing method of the hermetic sleeve for sealing the two pipes of different sizes, the main body through-hole on the main body,
i) 철을 포함하는 금속분말 및 성형윤활제를 포함하는 금속분말체를 준비하는 단계; i) preparing a metal powder including iron and a metal powder comprising a molding lubricant;
ii) 상기 금속분말체를 틀에 장입하고 압력을 가하여 압분체로 성형하는 성형단계;ii) molding the metal powder into a mold and applying pressure to form the green compact;
iii) 상기 압분체를 소결하여 소결체를 형성하는 소결단계;iii) sintering the green compact to form a sintered body;
iv) 상기 소결체의 관통홀의 내벽에 압력을 가하여, 상기 관통홀의 단면이 소정의 프로파일을 갖도록 하는 정형공정을 통해 정형체를 제조하는 정형단계;iv) forming a shaped body through a shaping process by applying pressure to an inner wall of the through hole of the sintered body so that the cross section of the through hole has a predetermined profile;
v) 상기 정형체를 수지함침하여 상기 정형체의 미세 기공을 봉공하는 함침단계; 그리고 v) an impregnation step of sealing the pores of the form by impregnating the resin; And
vi) 상기 수지함침을 수행한 정형체에 대하여 도금을 수행하여 밀폐형 슬리브를 완성하는 도금단계;를 포함하고,vi) a plating step of performing a plating on the resin-impregnated body to complete the hermetic sleeve; and
상기 밀폐형 슬리브는 상기 크기가 다른 두 개의 관인 제1외경과 제1내경을 갖는 제1관 및 제2외경과 상기 제1외경보다 큰 제2내경을 갖는 제2관이 상호 삽입결합된 상태에서 상기 제1관 및 제2관이 접촉된 영역인 삽입결합부위에 설치되기 위한 형상을 가지며,The hermetic sleeve may be formed in a state in which the first tube having the first outer diameter and the first inner diameter and the second tube having the second outer diameter and the second inner diameter larger than the first outer diameter, which are two tubes having different sizes, are inserted into each other. The first pipe and the second pipe has a shape for being installed in the insertion coupling region which is the contact area,
상기 정형단계에서, 상기 관통홀은 상기 삽입결합부위에 설치되고, 상기 삽입결합부위에 장착과정에서 압력을 높임으로써 체결력 및 밀봉성을 높이기 위해 상기 밀폐형 슬리브의 길이방향으로 내경값이 점진적으로 커지거나 작아지도록 하는 구배를 가지도록 형성되는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.In the shaping step, the through-hole is installed in the insertion coupling portion, the internal diameter value is gradually increased in the longitudinal direction of the hermetic sleeve in order to increase the clamping force and sealability by increasing the pressure during the mounting process on the insertion coupling portion or Method for producing a hermetic sleeve, characterized in that it is formed to have a gradient to be small.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, coupled)" with another part, it is not only "directly connected" but also "indirectly connected" with another member in between. "Includes the case. In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
본 발명으로 제조되는 밀폐형 슬리브는, 제1외경 및 제1내경을 갖는 제1관과 제2외경 및 상기 제1외경보다 큰 제2내경을 갖는 제2관을 밀봉결합하기 위하여 상기 제1관과 상기 제2관이 상호 삽입결합된 상태에서 삽입결합부위에 설치되도록 되기 위한 형상을 갖는다. 삽입결합부위는, 제1관과 제2관이 결합되어 접촉된 부위 및 인접영역을 나타내는 것이다. 도 3 또는 도 4에 도시된 일실시예에서는, 전체적으로 원통형의 형상에, 관통홀을 구비하는 밀폐형 슬리브가 나타나 있다. 관통홀은 상기 삽입결합부위에 마운팅되기 위한 구조이며, 장착과정에서 압력을 높이기 위해 관통홀은 입구부에서 출구부측으로 가면서 내경값이 점진적으로 증대되도록 하는 등 소정의 단면 프로파일을 갖도록 할 수 있다.The hermetic sleeve manufactured by the present invention comprises a first tube having a first outer diameter and a first inner diameter and a second tube having a second outer diameter and a second tube having a second inner diameter larger than the first outer diameter. The second pipe has a shape so as to be installed in the insertion coupling portion in the state inserted into each other. The insertion coupling portion indicates a portion and an adjacent region where the first tube and the second tube are coupled to and contacted. In the embodiment shown in FIG. 3 or FIG. 4, a hermetic sleeve with a through hole is shown in a generally cylindrical shape. The through hole is a structure for mounting on the insertion coupling portion, and in order to increase the pressure in the mounting process, the through hole may have a predetermined cross-sectional profile such that the inner diameter value is gradually increased while going from the inlet to the outlet.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 문서에서 금속분말체는, 압분체 형성을 위하여 틀에 장입되는 대상을 지칭하기로 하며, 금속분말체는,금속분말에 성형윤활제가 추가되어 이루어진다. 금속분말은, 철을 기본으로 하여 동, 니켈, 몰리브덴, 크롬 등의 금속 및 흑연(탄소) 등이 포함되는 분말상의 재료를 지칭하는 것으로 한다. 금속분말에 있어, 구리, 니켈, 몰리브덴, 크롬 등이 철의 합금재료로서 포함될 수도 있고, 철분말과 독립적으로 존재하는 분말상으로 혼합되어 존재할 수도 있다. 또한, 구리, 니켈, 몰리브덴, 크롬 중 일부는 철의 합금상으로 존재하고, 나머지는 분말상으로서 철합금분말과 혼합되어 준비될 수도 있음은 물론이다. 구리, 니켈, 크롬, 몰리브덴 중 일부는 금속분말의 조성에서 배제할 수 있다.In this document, the metal powder is to refer to the object to be loaded into the mold for forming the green compact, the metal powder is formed by adding a molding lubricant to the metal powder. A metal powder shall refer to the powder-like material which contains metals, such as copper, nickel, molybdenum, and chromium, graphite (carbon), etc. based on iron. In the metal powder, copper, nickel, molybdenum, chromium, or the like may be included as an alloy material of iron, or may be present in a powder form independently of the iron powder. In addition, some of copper, nickel, molybdenum and chromium may be present in an alloy phase of iron, and the remainder may be prepared by mixing with an iron alloy powder as a powder. Some of copper, nickel, chromium and molybdenum may be excluded from the composition of the metal powder.
본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 철을 포함하는 금속분말 및 성형윤활제를 포함하는 금속분말체를 준비하는 준비단계, 금속분말체를 틀에 장입하고 압력을 가하여 압분체로 성형하는 성형단계, 압분체를 소결하여 소결체를 형성하는 소결단계, 소결체의 관통홀의 내벽에 압력을 가하여, 상기 관통홀의 단면이 소정의 프로파일을 갖도록 하는 정형공정을 통해 정형체를 제조하는 정형단계, 정형체를 수지함침하여 정형체의 미세 기공을 봉공하는 함침단계, 수지함침을 수행한 정형체에 대하여 도금을 수행하여 밀폐형 슬리브를 완성하는 도금단계를 포함할 수 있다.According to one embodiment of the present invention, a method of manufacturing a hermetic sleeve includes preparing a metal powder containing iron and a metal powder comprising a molding lubricant, and putting the metal powder into a mold and applying pressure to the green compact. A shaping step of forming, a sintering step of sintering the green compact to form a sintered body, and a shaping step of manufacturing a shaped body through a shaping process of applying a pressure to an inner wall of the through hole of the sintered body so that the cross section of the through hole has a predetermined profile; It may include an impregnation step of sealing the pores of the molded body by impregnating the molded body, a plating step of performing a plating on the molded body subjected to the resin impregnation to complete the hermetic sleeve.
또한, 본 발명의 일실시예는 밀폐형 슬리브의 제조방법에 있어서, 소결단계와 정형단계의 사이에 연마단계 및 방청단계를 더 포함할 수 있다.In addition, an embodiment of the present invention may further include a polishing step and a rust prevention step between the sintering step and the shaping step in the manufacturing method of the hermetic sleeve.
준비단계에서 금속분말체의 구성은 성형윤활제는 전체 금속분말체 중량에 대하여, 0.2 내지 1.5 wt% 포함할 수 있다. In the preparation step of the metal powder, the molding lubricant may include 0.2 to 1.5 wt% with respect to the total metal powder weight.
또한, 성형윤활제를 적용하면, 전체 금속분말체의 겉보기 밀도가 증대될 수 있다. 성형윤활제의 일실시예로서 스테아린산 아연, Kenolube, 아미드왁스(Amide wax)를 적용할 수 있으며, 바람직하게는, 스테아린산 아연, Kenolube 을 적용할 수 있다. 도 2를 참조하면, 성형윤활제로서 스테아린산 아연 또는 Kenolube를 사용하였을 때 금속분말의 겉보기 밀도가 아미드왁스(Amide wax)를 성형윤활제로 사용했을 때 보다 우수한 것을 확인할 수 있다. In addition, by applying the molding lubricant, the apparent density of the entire metal powder may be increased. As an example of the molding lubricant, zinc stearate, Kenolube, or amide wax may be applied. Preferably, zinc stearate or Kenolube may be applied. Referring to FIG. 2, it can be seen that when zinc stearate or Kenolube is used as the molding lubricant, the apparent density of the metal powder is superior to that of using amide wax as the molding lubricant.
성형윤활제는 성형시 금형 내 금속분말이 압축되면서 금형면과 마찰이 발생하게 되고, 이때 발열 및 금형면에 스크래치가 발생할 수 있는데, 이를 방지하기 위해 사용할 수 있는 것이다. 그러나 1.5 wt%를 초과하는 경우 압축성이 떨어지고 소결시 번아웃(Burn-our)이 되면서 소결체에 결함으로 나타날 수 있고, 0.2wt%미만으로 사용하는 경우 금형면에 발열 및 스크래치를 유발 시킬 수 있어 사용하기에 부적합할 수 있다.Molding lubricant is a friction with the mold surface when the metal powder in the mold is compressed during molding, this may generate heat and scratch on the mold surface, it can be used to prevent this. However, if it exceeds 1.5 wt%, the compressibility decreases and burn-our during sintering may appear as a defect in the sintered body, and when used below 0.2wt%, it may cause heat generation and scratch on the mold surface. May be unsuitable for
금속분말은, 금속분말체 중 성형윤활제를 제외한 것으로서, 전체 금속분말 중량에 대하여, 구리(Cu) 8wt% 이하, 니켈(Ni) 5wt% 이하, 몰리브덴(Mo) 2wt% 이하, 크롬(Cr) 5wt% 이하, 탄소(흑연) 1.5 wt% 이하 및 잔부 철(Fe)로 조성된다. The metal powder is the metal powder, excluding the molding lubricant, and based on the total metal powder weight, copper (Cu) 8 wt% or less, nickel (Ni) 5 wt% or less, molybdenum (Mo) 2 wt% or less, and chromium (Cr) 5 wt% Up to%, up to 1.5 wt% of carbon (graphite) and the balance iron (Fe).
철은 환원법이나 분사법으로 제조된 분말을 사용할 수 있으며, 구리분말은 분무법이나 전기분해법으로 제조된 분말을 사용할 수 있다. 또한, 니켈, 몰리브덴 및 크롬 분말은 철과 합금화된 상태이거나 니켈, 몰리브덴 및 크롬 분말을 혼합하는 방법으로 사용할 수 있다.Iron may be a powder prepared by a reduction method or a spraying method, and copper powder may be a powder prepared by a spraying method or an electrolysis method. In addition, the nickel, molybdenum and chromium powders may be alloyed with iron or used by mixing nickel, molybdenum and chromium powders.
구리는, 제품의 연성과 강도를 동시에 높혀주는 역할을 하며, 8wt%를 초과하는 양이 들어가면 소결시 변형량이 심하여 치수의 정밀도를 낮출 수 있어 사용하기 부적합할 수 있다. Copper serves to increase the ductility and strength of the product at the same time, if the amount of more than 8wt% is deformed during sintering can be lowered the precision of the dimension can be unsuitable for use.
니켈, 몰리브덴 및 크롬 분말은 제품의 강도를 향상시켜주는 역할을 할 수 있다. 니켈분말이 5wt%를 초과하는 경우에는 제품의 강도가 올라가지만 인성이 떨어져 취성이 증가하는 문제를 발생시킬 수 있으며, 몰리브덴이 2wt%를 초과하는 경우도 강도가 올라가지만 인성이 떨어져 취성이 증가하는 문제를 발생시킬 수 있다. 또한, 크롬분말이 5wt%를 초과하는 경우에도 제품의 강도는 향상되지만 인성이 떨어져 사용하기 부적합할 수 있다. Nickel, molybdenum and chromium powders can serve to enhance the strength of the product. If the nickel powder exceeds 5wt%, the strength of the product is increased but the toughness is lowered, which may cause a problem of brittleness. If the molybdenum is more than 2wt%, the strength is increased but the toughness is reduced, the brittleness is increased. It can cause problems. In addition, even if the chromium powder exceeds 5wt%, the strength of the product is improved but toughness may be unsuitable for use.
카본(흑연)은 소결 중에 철과 반응하여 강도를 향상시키는 역할을 하지만 1.5wt%를 초과하는 경우 금속 조직 내 세멘타이트라는 조직을 생성시켜 취성이 급격히 상승하는 문제가 발생할 수 있다. Carbon (graphite) reacts with iron during sintering to improve strength, but when it exceeds 1.5 wt%, a problem of sharp embrittlement may occur by generating a structure called cementite in the metal structure.
요구되는 금속분말(금속분말체)의 물리적 특성으로는, 겉보기 밀도, 흐름성, 압축성이 있다. Physical properties of the required metal powder (metal powder) include apparent density, flowability, and compressibility.
겉보기 밀도는 압분체 형성 전, 분말 상태에서의 밀도이며, 이에 따라 압분체의 밀도가 영향받는다. 본 발명에서는, 금속분말의 겉보기 밀도로서 2내지 4g/cm3 가 되도록 하는 것을 제안한다. 겉보기 밀도가 2 g/cm3 미만이면, 압분체 밀도가 낮게 성형되는데 이는 최종품의 밀도도 낮게 될 수 있다는 문제가 발생한다. The apparent density is the density in the powder state before forming the green compact, whereby the green compact density is affected. In the present invention, it is proposed to make 2 to 4 g / cm 3 as the apparent density of the metal powder. Apparent density 2 g / cm 3 If less, the green compact density is low, which causes a problem that the density of the final product may also be low.
흐름성(flow)은, 금형에 금속분말을 장입하였을 때, 금형의 구석부위까지 금속분말체가 잘 이동하는지와 관계되어, 성형정밀도와 관련있는 물성이다.Flow is a property related to the molding precision, regardless of whether the metal powder moves well to the corner of the mold when the metal powder is charged into the mold.
성형단계는, 압분체 성형 후, 압분체 상하에 있는 버(Burr)를 확인하여 에어를 분사하여 이를 제거하는 공정을 더 둘 수 있다. 또한, 성형단계에서 압력은 2내지 10 Ton/cm2 의 압력으로 수행될 수 있다. 압력이 2Ton/cm2 미만인 경우에는 압분체의 압축밀도가 작아 최종품의 강도가 부족할 수 있다.In the molding step, after forming the green compact, the process of confirming a burr above and below the green compact may be further sprayed to remove air. In addition, the pressure in the molding step may be carried out at a pressure of 2 to 10 Ton / cm 2 . If the pressure is less than 2 Ton / cm 2, the compaction density of the green compact may be insufficient, resulting in insufficient strength of the final product.
소결단계는 1000 내지 1300℃에서 20 내지 120분 동안 수행될 수 있다. 소결온도가 1000℃ 미만인 경우에는 소결온도가 너무 낮아 소결이 제대로 이루어지지 않을 수 있으며, 1300℃가 초과되는 경우에는 소결온도가 너무 높아 소결체의 치수변형량이 많아 치수의 정밀도가 떨어지고, 에너지 효율이 좋지 않아 사용하기 부적합할 수 있다. 또한, 소결속도가 20분 미만인 경우 소결이 충분히 일어나지 않아 강도가 떨어지는 점에서 부적합할 수 있으며, 120분을 초과하는 경우 강도가 증가하지만 소결변형으로 치수 정밀도가 떨어지는 문제가 발생한다는 점에서 부적합함을 감안한다.The sintering step may be performed at 1000 to 1300 ° C. for 20 to 120 minutes. If the sintering temperature is less than 1000 ℃ sintering temperature is too low may not be sintering properly, if the sintering temperature is higher than 1300 ℃, the sintering temperature is too high, the amount of dimensional sintering of the sintered body has a large amount of dimensional deformation is deteriorated, energy efficiency is poor It may not be suitable for use. In addition, if the sintering speed is less than 20 minutes, sintering does not occur sufficiently may be unsuitable in terms of strength, and if it exceeds 120 minutes, the strength is increased but the sintering deformation is not suitable in that the dimensional accuracy is poor. Consider.
또한, 소결단계는 수소 5내지 75 wt% 및 질소 25 내지 95wt% 분위기하에서 수행될 수 있다. 이러한 혼합가스를 AX가스라 칭할 수 있다. AX가스는 암모니아를 분해하여 생성된 가스로서, 질소와 수소로 이루어지는데, 질소를 더 첨가하여 사용하는 것도 가능하다. 수소5내지 75%와 질소25내지 95%로 구성될 수 있다. 수소는, 소결단계에서 금속표면의 산화물을 환원시키고 금속간 확산접합이 이루어질 수 있도록 하며, 질소는 불활성가스로서 소결체의 산화를 방지하는 작용을 할 수 있다.In addition, the sintering step may be carried out in an atmosphere of 5 to 75 wt% hydrogen and 25 to 95wt% nitrogen. Such mixed gas may be referred to as AX gas. AX gas is a gas produced by decomposing ammonia, and is composed of nitrogen and hydrogen. It is also possible to use nitrogen further. It may consist of 5 to 75% hydrogen and 25 to 95% nitrogen. Hydrogen reduces the oxide on the metal surface in the sintering step and allows diffusion bonding between metals, and nitrogen serves as an inert gas to prevent oxidation of the sintered body.
소결단계를 끝낸 후, 연마단계를 수행할 수 있다. 연마단계는 바렐공정을 수행할 수 있으며, 소결과정에서 생긴 소결체의 버(Burr)를 제거할 수 있다. 바람직하게는 회전식 바렐기를 사용할 수 있다. 물론, 회전식 바렐기 이외의 장비를 사용하는 바렐방법을 배제하는 것은 아니다.After finishing the sintering step, the polishing step may be performed. The polishing step may perform a barrel process, and may remove burrs of the sintered body generated during the sintering process. Preferably, a rotary barrel can be used. Of course, the barrel method using equipment other than a rotary barrel is not excluded.
연마단계를 끝낸 후에는 윤활처리단계를 수행할 수 있다. 윤활처리단계는 다음공정으로 정형할 때 제품과 금형 사이의 마찰을 줄이고 윤활역활 시키기 위해 방청유에 담가서 소결체 표면과 기공내에 방청유가 있도록 소결체를 방청유에 담그는 것으로, 이는 교정시 윤활역활과 녹발생을 방지할 수 있는 방청역활도 할 수 있다.After finishing the polishing step, the lubricating step may be performed. The lubrication step is to immerse the sintered body in the rusted oil so that the rusted oil exists in the surface and pores of the sintered body to reduce the friction between the product and the mold and act as a lubrication when forming the next process. You can also play a role of rust prevention.
정형단계는 소결체의 휘어짐, 치수 또는 형상을 교정하는 공정일 수 있으며, 특히 소결체의 내경 부위에 대한 형상 및 치수를 교정하여, 관통홀의 단면이 소정의 프로파일을 갖도록 할 수 있다. 관통홀 내측은, 도 3 또는 도 4에 도시된 바와 같이 길이방향으로 동일한 내경을 갖도록 할 수도 있지만, 체결압력을 높이기 위해, 길이방향으로 보았을 때, 내경값이 점진적으로 커지거나 작아지도록 하는 구배를 갖도록 할 수 있다. The shaping step may be a process of correcting warpage, dimensions, or shape of the sintered body, and in particular, correcting the shape and dimensions of the inner diameter portion of the sintered body, so that the cross-section of the through hole may have a predetermined profile. The inside of the through hole may have the same inner diameter in the longitudinal direction as shown in FIG. 3 or 4, but in order to increase the fastening pressure, a gradient is obtained in which the inner diameter value gradually increases or decreases when viewed in the longitudinal direction. You can have it.
소결체를 프레스기의 금형틀에 장착하고 펀치로 제품을 눌러주는데, 이 때 금형에 형성되어 있는 코어에 의해 내경의 형상을 형성할 수 있다. 정형단계의 프레스 압력은, 1 내지 10 Ton/cm2으로 수행할 수 있다. 상기와 같은 정형공정을 통해 절삭공정을 통한 정형과는 다르게 내경조도(표면상태)를 양호하게 할 수 있고, 내경조도의 양호함으로 인해 여러종류의 배관에 적용할 수 있고, 너클링 시 체결력을 증대시킬 수 있고, 밀봉 신뢰성을 높일 수 있게 된다. The sintered compact is mounted on the mold of the press and the product is pressed with a punch. At this time, a shape of the inner diameter can be formed by the core formed in the mold. The press pressure of the shaping step may be performed at 1 to 10 Ton / cm 2 . Unlike the shaping process through the shaping process as described above, the inner roughness (surface state) can be made good, and because of the good inner roughness, it can be applied to various kinds of pipes, It is possible to increase the sealing reliability.
정형단계와 함침단계의 사이에 세척 및 건조단계가 있을 수 있는데, 세척단계에서는 탄화수소계 세척액으로 작업하는 것이 바람직할 수 있지만, 다른 방법을 배제하는 것은 아니다. 건조단계는 80 내지 130℃의 온도에서 진공분위기하에 건조를 수행할 수 있다. There may be a washing and drying step between the shaping step and the impregnation step. In the washing step, it may be desirable to work with the hydrocarbon-based washing liquid, but this does not exclude other methods. The drying step may be carried out in a vacuum atmosphere at a temperature of 80 to 130 ℃.
함침단계는 정형체에 대하여 정형체에 존재하는 미세한 기공을 메꾸기 위한 것으로 함침단계는 정형체에 대하여 디핑단계, 세척단계 및 경화단계를 포함할 수 있다.The impregnation step is to fill the fine pores present in the body with respect to the body body. The impregnation step may include a dipping step, a washing step, and a curing step for the body body.
먼저, 함침단계의 디핑단계는 기공을 확보한 정형체를 수지함침액에 디핑하고, 에어를 이용하여 수지함침을 유도하는 단계일 수 있다. 또한, 디핑단계 이후에 진공함침 단계를 더 수행할 수 있으며, 사용상, 요구상의 조건에 따라서 디핑단계를 생략하고 공정을 수행할 수 있다. 수지함침액은 유기계 함침제일 수 있지만, 이에 한정하는 것은 아니다.First, the dipping step of the impregnation step may be a step of dipping a fixed body having pores in the resin impregnation liquid and inducing resin impregnation using air. In addition, the vacuum impregnation step may be further performed after the dipping step, and the process may be performed by omitting the dipping step according to conditions of use and requirements. The resin impregnation liquid may be an organic impregnation agent, but is not limited thereto.
수지함침을 끝낸 정형체에 대하여 세척 및 경화를 진행하는 세척단계 및 경화단계가 있을 수 있다. 경화단계는 70 내지 200℃에서 경화를 수행하는 것일 수 있다. 70℃ 미만인 경우 경화가 제대로 이루어지지 않을 수 있으며, 200℃가 초과하는 경우 공정효율 측면에서 효율적이지 못하고 에너지 소모가 심함으로 공정을 수행하기에 부적합할 수 있다. There may be a washing step and a curing step of proceeding washing and curing of the resin-impregnated form. The curing step may be to perform curing at 70 to 200 ℃. If it is less than 70 ℃ hardening may not be made properly, if it exceeds 200 ℃ may not be efficient in terms of process efficiency and may be unsuitable for carrying out the process because of the high energy consumption.
도금단계는 밀폐형 슬리브의 부식을 막기 위해 아연, 니켈 및 크롬으로 이루어지는 군에서 선택되는 1종 또는 2종이상의 합금을 도금할 수 있다. 물론, 아연 이외의 부식을 막기 위한 금속의 도금을 배제하지는 않는다.The plating step may plate one or two or more alloys selected from the group consisting of zinc, nickel and chromium to prevent corrosion of the hermetic sleeve. Of course, the plating of metals to prevent corrosion other than zinc is not excluded.
이하, 본 발명의 실시예 및 실험예를 통하여 본 발명의 효과를 구체적으로 설명하도록 한다. 제시된 실시예는 본 발명의 구체적인 예시일 뿐이며, 본 발명의 범위를 제한하기 위한 것은 아니다. 본 발명의 일실시예로 슬리브의 제조방법은 관통홀 내벽에 소정의 프로파일을 형성할 수 있으며, 사용상의 요구, 제조상의 요구, 실장상의 요구에 따라서 금속분말 및 정형단계의 관통홀 내벽의 정형공정이 정해질 수 있다.Hereinafter, the effects of the present invention will be described in detail through examples and experimental examples of the present invention. The examples presented are merely illustrative of the invention and are not intended to limit the scope of the invention. According to one embodiment of the present invention, the sleeve manufacturing method may form a predetermined profile on the inner wall of the through hole, and the forming process of the inner wall of the metal powder and the through hole in the shaping step according to the requirements of use, manufacturing needs, and mounting requirements. This can be determined.
<실시예1>Example 1
환원 순철분 96.4wt%, 구리분말 2wt%, 그라파이트분말 0.8wt% 및 스테아린산 아연 0.8wt%를 혼합한 금속분말을 준비하고, 금속분말의 겉보기 밀도 및 흐름성을 측정한 결과는 표1에 표시하였다.Metal powders containing 96.4 wt% reduced pure iron powder, 2 wt% copper powder, 0.8 wt% graphite powder and 0.8 wt% zinc stearate were prepared, and the results of measuring the apparent density and flowability of the metal powder are shown in Table 1. .
Apparent density, g/cm3 Apparent density, g / cm 3 Flow, sec/50gFlow, sec / 50g
2.652.65 2929
금속분말의 겉보기 밀도는 2.65g/cm3, 흐름성은 29s/50g이었으며, 이는 압분체 성형에 있어서, 정밀한 압분체 형상과 밀도를 얻을 수 있는 범위에 해당한다. The apparent density of the metal powder was 2.65 g / cm 3 and the flowability was 29 s / 50 g, which corresponds to a range in which a precise green compact shape and density can be obtained in green compact forming.
또한, 압축압력에 따라 측정된 압분체의 압축밀도(compressibility)를 표 2에 표시하였다.In addition, the compressibility of the green compact measured according to the compression pressure is shown in Table 2.
Compacting pressureCompacting pressure Compressibility, g/cm3 (0.8% Zn-st)Compressibility, g / cm 3 (0.8% Zn-st)
300 MPa(21.6 tsi)300 MPa (21.6 tsi) 6.356.35
500 MPa(36.0 tsi)500 MPa (36.0 tsi) 6.916.91
700 MPa(50.4 tsi)700 MPa (50.4 tsi) 7.167.16
이러한 압축밀도는, 최종품의 스펙(강도, 강성)을 만족시키기 위해 필요한 범위 내의 값임을 확인할 수 있었다.This compression density was confirmed to be a value within the range required to satisfy the specifications (strength, rigidity) of the final product.
금속분말을 적층하여 프레싱머신(모델명 : CP-5)를 이용하여 3Ton/cm2의 압력을 가하여 압분체를 제조하였다. 이후, 성형된 압분체에 대하여 밀도의 균일성을 확인하고 크랙이나 표면 결함 유무를 확인하였다. Metal powder was laminated and a green compact was prepared by applying a pressure of 3 Ton / cm 2 using a pressing machine (model name: CP-5). Then, the uniformity of the density was confirmed with respect to the molded green compact and the presence of cracks or surface defects was confirmed.
가압압력에 따른 압분체의 성형강도(green strength)의 측정결과는 표3에 표시된 바와 같다. The measurement results of the green strength of the green compact according to the pressurized pressure are shown in Table 3.
Compacting pressureCompacting pressure Green strength, MPa(103psi) (0.8% Zn-st)Green strength, MPa (10 3 psi) (0.8% Zn-st)
300 MPa(21.6 tsi)300 MPa (21.6 tsi) 7(1.0)7 (1.0)
500 MPa(36.0 tsi)500 MPa (36.0 tsi) 13(1.9)13 (1.9)
700 MPa(50.4 tsi)700 MPa (50.4 tsi) 17(2.5)17 (2.5)
Burr를 제거한 압분체에 대하여 1120℃의 온도에서 소결을 수행하였고, 소결이 끝난후 회전식 바렐기로 10분간 작업한 뒤, 방청기를 이용하여 2분간 디핑방청을 수행하였다.Sintering was performed at a temperature of 1120 ° C. on the green compact from which the burr was removed. After sintering, the sintering was performed for 10 minutes with a rotary barrel, and then dipping was performed for 2 minutes using a rust preventive.
방청까지 수행한 압분체에 대하여 관통홀의 내경을 정해진 프로파일에 의해 정형하여 치수 정밀도를 고양하기 위한 정형공정을 프레싱머신을 이용하여 수행하였다. 프레스머신의 금형에 압분체 및 코어를 위치시키고, 압력을 가하는 방법으로 수행하였다. A shaping process for enhancing the dimensional accuracy by shaping the inner diameter of the through-hole by the defined profile was performed using the pressing machine. The green compact and the core were placed in the mold of the press machine, and the pressure was applied.
정형체에는 탄화수소계 세척액으로 세척 및 건조를 진행하였고, 자동진공초음파세척 건조기를 사용하였다. 건조가 끝난뒤 정형체에 수지함침을 수행하였으며, 수지함침액(IP1000)을 사용하였다. 수지함침액(IP1000)에 10분간 디핑하였다. The washed body was washed and dried with a hydrocarbon-based washing solution, and an automatic vacuum ultrasonic washing dryer was used. After drying, the resin was impregnated into the molded body, and a resin impregnation solution (IP1000) was used. It was dipped in the resin impregnation solution (IP1000) for 10 minutes.
수지함침이 끝난뒤 세척 및 경화를 수행하고 아연도금을 통해 밀폐형 슬리브를 제조하였다.After the resin impregnation, washing and curing were performed, and a sealed sleeve was manufactured by galvanizing.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.
<부호의 설명><Description of the code>
10 : 슬리브10: sleeve

Claims (13)

  1. 관통홀을 구비하는 형상으로 되고, 크기가 다른 두 개의 관을 밀봉결합하기 위한 밀폐형 슬리브의 제조방법에 있어서,In the method of manufacturing a hermetic sleeve for sealing two pipes of different sizes having a through hole,
    i) 철을 포함하는 금속분말 및 성형윤활제를 포함하는 금속분말체를 준비하는 단계; i) preparing a metal powder including iron and a metal powder comprising a molding lubricant;
    ii) 상기 금속분말체를 틀에 장입하고 압력을 가하여 압분체로 성형하는 성형단계;ii) molding the metal powder into a mold and applying pressure to form the green compact;
    iii) 상기 압분체를 소결하여 소결체를 형성하는 소결단계;iii) sintering the green compact to form a sintered body;
    iv) 상기 소결체의 관통홀의 내벽에 압력을 가하여, 상기 관통홀의 단면이 소정의 프로파일을 갖도록 하는 정형공정을 통해 정형체를 제조하는 정형단계;iv) forming a shaped body through a shaping process by applying pressure to an inner wall of the through hole of the sintered body so that the cross section of the through hole has a predetermined profile;
    v) 상기 정형체를 수지함침하여 상기 정형체의 미세 기공을 봉공하는 함침단계;v) an impregnation step of sealing the pores of the form by impregnating the resin;
    vi) 상기 수지함침을 수행한 정형체에 대하여 도금을 수행하여 밀폐형 슬리브를 완성하는 도금단계;vi) a plating step of performing plating on the resin-impregnated body to complete the hermetic sleeve;
    를 포함하는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.Method of manufacturing a hermetic sleeve comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 i) 단계에서의 성형윤활제는 전체 금속분말체 중량에 대하여, 0.2 내지 1.5 wt% 포함되는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The molding lubricant in step i) is 0.2 to 1.5 wt% of the total weight of the metal powder, characterized in that the manufacturing method of the closed sleeve.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 i)단계에서의 금속분말은, 전체 금속분말 중량에 대하여, 구리(Cu) 8wt% 이하, 니켈(Ni) 5wt% 이하, 몰리브덴(Mo) 2wt% 이하, 크롬(Cr) 5wt% 이하, 탄소(흑연) 1.5 wt% 이하 및 잔부 철(Fe)로 조성되는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The metal powder in step i), copper (Cu) 8wt% or less, nickel (Ni) 5wt% or less, molybdenum (Mo) 2wt%, chromium (Cr) 5wt% or less, based on the total metal powder weight (Graphite) A manufacturing method of a hermetic sleeve, characterized in that it is composed of 1.5 wt% or less and the balance iron (Fe).
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 소결단계와 상기 정형단계의 사이에 연마단계 및 방청단계를 더 포함하는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The method of manufacturing a hermetic sleeve further comprising a polishing step and a rust prevention step between the sintering step and the shaping step.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 성형단계에서 압력은 2내지 10 Ton/cm2 의 압력으로 수행되는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.Pressure in the forming step is a manufacturing method of the closed sleeve, characterized in that carried out at a pressure of 2 to 10 Ton / cm 2 .
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 소결단계는 본소결온도 1000 내지 1300℃에서 수행되는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The sintering step is a manufacturing method of the hermetic sleeve, characterized in that carried out at the sintering temperature of 1000 to 1300 ℃.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 소결단계는 본소결온도에서 20 내지 120분 동안 수행되는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The sintering step is a manufacturing method of the hermetic sleeve, characterized in that carried out for 20 to 120 minutes at the sintering temperature.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 소결단계는 수소 5내지 75 wt% 및 질소 25 내지 95wt%의 분위기하에서 수행되는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The sintering step is a manufacturing method of the hermetic sleeve, characterized in that carried out in an atmosphere of 5 to 75 wt% hydrogen and 25 to 95wt% nitrogen.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 정형단계는 1 내지 10 Ton/cm2의 압력으로 수행되는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The shaping step is a manufacturing method of the hermetic sleeve, characterized in that carried out at a pressure of 1 to 10 Ton / cm 2 .
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 함침단계는 상기 정형체에 대하여, 상기 정형체를 진공상태에서 진공함침을 수행하는 진공함침단계 및 상기 정형체를 70 내지 200℃에서 경화를 수행하는 경화단계를 포함하는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The impregnating step may include a vacuum impregnation step for performing vacuum impregnation of the form body with respect to the form body, and a curing step of performing curing of the form body at 70 to 200 ° C. Manufacturing method.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 함침단계는 상기 정형체에 대하여, 상기 정형체를 수지함침액에 디핑하여 상기 기공에 수짐함침액을 채우는 디핑단계 및 상기 정형체를 70 내지 200℃에서 경화를 수행하는 경화단계를 포함하는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The impregnation step includes a dipping step of filling the resin impregnation solution in the pores by dipping the form into a resin impregnation solution and a curing step of curing the form at 70 to 200 ° C. Method for producing a hermetic sleeve characterized in that.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 디핑단계와 상기 경화단계의 사이에 상기 정형체를 진공상태에서 함침하는 진공함침단계를 더 포함하는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.And a vacuum impregnation step of impregnating the shaped body in a vacuum state between the dipping step and the hardening step.
  13. 청구항 1에 있어서,The method according to claim 1,
    상기 도금단계는 상기 밀폐형 슬리브의 부식을 막기 위해 아연, 니켈 및 크롬으로 이루어지는 군으로부터 선택되는 1종 또는 2종 이상의 합금으로 도금하는 것을 특징으로 하는 밀폐형 슬리브의 제조방법.The plating step is a method of manufacturing a hermetic sleeve, characterized in that the plating with one or two or more alloys selected from the group consisting of zinc, nickel and chromium to prevent corrosion of the hermetic sleeve.
PCT/KR2017/001842 2016-04-12 2017-02-20 Method for preparing sealing sleeve WO2017179811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780000650.8A CN107530779B (en) 2016-04-12 2017-02-20 The manufacturing method of closed molded cannula

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160044751A KR101684858B1 (en) 2016-04-12 2016-04-12 A method for manufacturing a lock sleeve
KR10-2016-0044751 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017179811A1 true WO2017179811A1 (en) 2017-10-19

Family

ID=57574111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001842 WO2017179811A1 (en) 2016-04-12 2017-02-20 Method for preparing sealing sleeve

Country Status (3)

Country Link
KR (1) KR101684858B1 (en)
CN (1) CN107530779B (en)
WO (1) WO2017179811A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101943608B1 (en) * 2017-07-20 2019-04-17 대한소결금속 주식회사 Electro-polishing method of Fe-based green compact for powder metallurgy product
KR102253241B1 (en) * 2020-10-13 2021-05-20 (주)티에스엠 Sintered alloy plating method and system
KR102507258B1 (en) 2022-01-18 2023-03-20 (주)하나테크 Manufacturing method of metal lock sleeve using the shaping method and lock sleeve manufactured by the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055049A (en) * 1998-08-05 2000-02-22 Smc Corp Gas bearing and manufacture therefor
JP2003287028A (en) * 2002-03-27 2003-10-10 Minebea Co Ltd Oil impregnated sintered bearing and its manufacturing method
KR200404467Y1 (en) * 2005-09-20 2005-12-23 주식회사 에스.오.비 Sliding bearing with solid-state sintered layer
JP2010007721A (en) * 2008-06-25 2010-01-14 Panasonic Corp Dynamic pressure fluid bearing device, spindle motor with it, and manufacturing method
JP2010091001A (en) * 2008-10-08 2010-04-22 Ntn Corp Sintered bearing and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061367A (en) * 1990-11-10 1992-05-27 山东省临朐县五井胜利粉末冶金厂 Copper iron powder metallurgy-produced liner bush and manufacture craft thereof
KR970073775A (en) 1997-09-01 1997-12-10 조청조 Metal pipe manufacturing method
US6503443B1 (en) * 1999-04-16 2003-01-07 Unisia Jecs Corporation Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
CN1919503A (en) * 2005-08-26 2007-02-28 松下电器产业株式会社 Sleeve for hydrodynamic bearing device, hydrodynamic bearing device and spindle motor using the same, and method for manufacturing sleeve
CN100462165C (en) * 2006-08-08 2009-02-18 海门市常乐粉末冶金厂 Manufacture method and die for powder metallurgy inside spin ratchet wheel
CN101592530B (en) * 2009-06-30 2010-11-03 巩义市恒星金属制品有限公司 Liquid zinc corrosion resistant thermocouple protective casing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055049A (en) * 1998-08-05 2000-02-22 Smc Corp Gas bearing and manufacture therefor
JP2003287028A (en) * 2002-03-27 2003-10-10 Minebea Co Ltd Oil impregnated sintered bearing and its manufacturing method
KR200404467Y1 (en) * 2005-09-20 2005-12-23 주식회사 에스.오.비 Sliding bearing with solid-state sintered layer
JP2010007721A (en) * 2008-06-25 2010-01-14 Panasonic Corp Dynamic pressure fluid bearing device, spindle motor with it, and manufacturing method
JP2010091001A (en) * 2008-10-08 2010-04-22 Ntn Corp Sintered bearing and manufacturing method therefor

Also Published As

Publication number Publication date
KR101684858B1 (en) 2016-12-12
CN107530779B (en) 2019-03-05
CN107530779A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2017179811A1 (en) Method for preparing sealing sleeve
CN103084388B (en) Preparation method of ultrathin Ta-W alloy foil
CN105598389B (en) A kind of casting technique for the composite flange for sealing rain-proof
JP2012234872A (en) Forming method of green compact
CN110181040B (en) Lubricant for preparing neodymium-iron-boron magnet through powder metallurgy and using method
CN101985996B (en) Process for manufacturing internal and external anti-corrosion polytetrafluoroethylene pipe fitting
EP0014071B1 (en) Powder metallurgical articles and method of forming same and of bonding the articles to ferrous base materials
CN1261245C (en) Preparaton method of iron nickel alloy/copper composite wire material
KR100286246B1 (en) Side Bearing and Manufacturing Method Thereof
CN100561078C (en) The production technology of aluminum-cladding copper capillary
CN111925674A (en) Anti-corrosion self-lubricating fastener and preparation process thereof
KR101642077B1 (en) Vaccum chamber and manufacturing method thereof
JP2012234871A (en) Forming method of green compact
WO2017150604A1 (en) Method for producing machine component
EP1886747A1 (en) Process for producing aluminum composite material
CN110860692B (en) High-airtightness powder metallurgy valve guide pipe and processing method and application thereof
CN113857462A (en) Method for preparing radiator with complex variable cross-section pore channels
CN109280797B (en) Preparation method of graphene-copper solid lubricating material
CN1290789C (en) Sealing method for vacuum heat collecting glass tube and low expanding alloy metal end cover
JP2012255208A (en) Method of using powder metallurgy fabrication for manufacturing integral header and tube replacement section
JP6675908B2 (en) Manufacturing method of machine parts
CN109356924B (en) Automobile engine bottom shell nut and manufacturing method thereof
CN110345227B (en) Special-shaped gear with inner shaping layer and machining process thereof
CN212371973U (en) Sweat gland structure-imitated endocrine cooling sintered grinding wheel
CN202442063U (en) Coating tube

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782567

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782567

Country of ref document: EP

Kind code of ref document: A1