WO2017179737A1 - Laminate and outer package material for batteries - Google Patents

Laminate and outer package material for batteries Download PDF

Info

Publication number
WO2017179737A1
WO2017179737A1 PCT/JP2017/015405 JP2017015405W WO2017179737A1 WO 2017179737 A1 WO2017179737 A1 WO 2017179737A1 JP 2017015405 W JP2017015405 W JP 2017015405W WO 2017179737 A1 WO2017179737 A1 WO 2017179737A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
laminate
polyester resin
film
layer
Prior art date
Application number
PCT/JP2017/015405
Other languages
French (fr)
Japanese (ja)
Inventor
幸史朗 前田
崇嗣 杉原
志波 賢人
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Publication of WO2017179737A1 publication Critical patent/WO2017179737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/141Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/145Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laminate having a laminate structure in which a polyester resin composition containing a specific copolymerized polyester resin is used between a base film and a metal foil, and a battery exterior material using the laminate.
  • a vinyl chloride film is used for a package (press-through pack) such as a medicine (tablet).
  • a polypropylene film is used when packaging contents that require moisture resistance.
  • a laminate formed by laminating a metal foil on a resin film has been used for the purpose of imparting better gas barrier properties or moisture resistance from the viewpoint of maintaining the quality of contents.
  • a laminate composed of a base material layer (resin film) / metal foil layer (aluminum foil) / sealant layer is known.
  • a metal can type has been the mainstream of the exterior material of a lithium ion battery, but there have been pointed out disadvantages such as a low degree of freedom in shape and difficulty in weight reduction. For this reason, it has been proposed to use a laminate composed of a base material layer / metal foil layer / sealant layer or a laminate composed of a base material layer / base material layer / metal foil layer / sealant layer as an exterior body.
  • a laminated body is widely used because it is flexible and has a high degree of freedom in shape as compared to a metal can, and can be reduced in weight by thinning and can be easily reduced in size. ing.
  • the moldability in this case is the moldability particularly when the film is cold-molded (cold processing). That is, when a product is produced by molding a film, the molding conditions are as follows: a) hot molding in which the resin is melted under heating and b) cold molding in which the resin is molded without melting. Although there is inter-molding, in the above-mentioned applications, moldability in cold molding (particularly drawing and overhanging) is required. Cold molding is a molding method that is more advantageous than hot molding in that it is superior in terms of production speed and cost because it does not have a heating step, and can draw out the original characteristics of the resin.
  • the laminate as described above when used as a packaging material for a lithium ion battery, for example, the laminate is cold-molded to form a recess, and the cathode, separator, anode, electrolyte, etc. are formed in the recess.
  • the lithium ion battery is manufactured by inserting the power generation element consisting of the above, folding back the remaining part of the laminate, and heat-sealing the peripheral part.
  • an adhesive layer is provided in order to adhere each layer.
  • the adhesive layer used for adhesion between layers also has characteristics suitable for cold forming.
  • high-temperature heat treatment is not required, and adhesion between layers can be reliably performed by heat treatment at low temperature (heat treatment at 100 ° C. or less, particularly heat treatment at 60 to 90 ° C.) (hereinafter referred to as “low-temperature adhesion”). It is necessary to have viscoelasticity that does not hinder moldability in cold molding.
  • a main object of the present invention is to provide a laminate that is excellent in adhesion between layers by heat treatment at a relatively low temperature and suitable for cold forming.
  • this invention concerns on the following laminated body and battery exterior material.
  • It is a laminate including a base film, a polyester resin composition layer and a metal foil in this order,
  • the polyester resin composition layer is composed of a polyester resin composition containing a copolymer polyester resin having a glass transition temperature of 10 ° C. or lower.
  • a laminate characterized by the above. 2.
  • Item 2 The laminate according to Item 1, wherein the base film contains at least one of a polyester film, a polyamide film, and a polyolefin film. 3.
  • the laminate according to Item 1 wherein the copolymerized polyester resin contains terephthalic acid and isophthalic acid as acid components, and the total content of terephthalic acid and isophthalic acid in the acid component is 30 mol% or more. . 4).
  • Item 2. The laminate according to Item 1, wherein the copolyester resin contains 1 to 45 mol% of a glycol having 6 or more carbon atoms in the main chain as a glycol component. 5).
  • a battery packaging material comprising the laminate according to any one of items 1 to 4. 6).
  • a battery comprising: a power generation element; and the battery exterior material according to Item 5 that covers the power generation element.
  • the present invention it is possible to provide a laminate that is excellent in interlayer adhesion and suitable for cold forming by heat treatment at a relatively low temperature. More specifically, the following effects can be obtained.
  • the laminate of the present invention is a copolyester specific to the polyester resin composition layer (M) which is an adhesive layer of the base film (L) and the metal foil (N). Since the polyester-based resin composition (P) containing the resin (O) is adopted, when the laminate is obtained, the interlayer adhesion is excellent even when heat treatment is performed at a low temperature suitable for cold forming. While being able to be set as a laminated body, the polyester-type resin composition (P) has the viscoelasticity which does not inhibit cold moldability, and is excellent in cold moldability. In particular, the laminate of the present invention can be deep-drawn in cold forming.
  • Electrolytic solution resistance In the lithium ion battery, a lithium salt was dissolved in an aprotic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate together with the positive electrode material and the negative electrode material as the battery contents.
  • An electrolyte layer made of an electrolytic solution or a polymer gel impregnated with the electrolytic solution is included. When such a strongly permeable solvent passes through the sealant layer, the laminate strength between the aluminum foil layer and the sealant layer is lowered to cause delamination, which may cause leakage of the electrolytic solution. LiPF 6 , LiBF 4, etc.
  • the lithium salt that is the electrolyte of the battery are used as the lithium salt that is the electrolyte of the battery, but these salts generate hydrofluoric acid by hydrolysis with moisture, and the hydrofluoric acid corrodes the aluminum foil. To reduce the laminate strength.
  • the battery exterior material is also required to have resistance to the electrolyte as described above.
  • the laminated body of the present invention can exhibit an effect excellent in durability (corrosion resistance) against the constituent members of such a battery.
  • the laminate of the present invention having the features as described in the above (2) and (3) can be particularly suitably used as a battery exterior material.
  • the laminate of the present invention having the features as described in the above (2) and (3) can be particularly suitably used as a battery exterior material.
  • FIG. 1 It is a figure which shows the basic layer structure of the laminated body of this invention. It is a figure which shows the layer structure of the laminated body of 5 layers containing the laminated body of this invention. It is a schematic diagram when using the laminated body of this invention as an exterior material of a battery. It is a section lineblock diagram of an embodiment of a battery using a layered product of the present invention as an exterior material. It is a cross-sectional block diagram which concerns on embodiment of another battery using the laminated body of this invention as an exterior material.
  • Laminated body and its manufacturing method (1) Laminated body The laminated body of this invention is a laminated body which contains a base film, a polyester-type resin composition layer, and a metal foil in order, Comprising:
  • the said polyester-type resin composition layer is glass. It consists of the polyester-type resin composition containing the copolyester resin whose transition temperature is 10 degrees C or less, It is characterized by the above-mentioned.
  • the basic structure of the laminate of the present invention is shown in FIG.
  • a polyester resin composition layer M is laminated on a metal foil N
  • a base film L is laminated on the polyester resin composition layer M.
  • the adopted configuration is adopted.
  • the laminate of the present invention may be laminated in the order of the metal foil N, the polyester resin composition layer M, and the base film L as described above, and may be directly adjacent to each other or directly. It does not have to be adjacent to Therefore, the layered product of the present invention may contain other layers within a range not impeding the effects of the present invention.
  • an adhesive layer, a printing layer, a protective layer, an antistatic layer, an anchor coat layer (primer layer) and the like can be mentioned.
  • At least a base film L, a polyester-based resin composition layer M, and a metal foil N are laminated in this order in a laminated structure P, and between each layer or on the a plane and / or Or another layer may be laminated
  • Base film L Although a base film (L) is not specifically limited, It is preferable that it consists of a thermoplastic resin. As the thermoplastic resin, it is particularly preferable to use at least one of a polyester film, a polyamide film, and a polyolefin film.
  • the base film may be a stretched film or an unstretched film.
  • the stretched film various films such as a uniaxially stretched film and a biaxially stretched film can be used.
  • the base film may have a single layer structure or a multilayer structure.
  • a laminated film in which one side or both sides of a stretched film is resin-coated can be used.
  • the thickness of the base film can be changed as appropriate according to the type of base film used, the object to be packaged, and the like.
  • it when used as a battery exterior material, it is preferably 1 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, and even more preferably 5 to 30 ⁇ m in order to improve pinhole resistance and insulation. Most preferred.
  • the said thickness says the total thickness, when a base film is a multilayer structure.
  • the base film (L) is a polyester film
  • the polyester resin constituting the film include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2, 6-naphthalate, and the like.
  • PET polyethylene terephthalate
  • a base film including a PET film can be suitably used.
  • the base film (L) is a polyamide film
  • typical examples of the polyamide resin constituting the film include 6-nylon, 6,6-nylon, 6,10-nylon, 11-nylon, and 12-nylon.
  • poly (meta-xylene adipamide) Further, for example, it may be a copolymer of two or more such as 6-nylon / 6,6-nylon, 6-nylon / 6,10-nylon, 6-nylon / 11-nylon, 6-nylon / 12-nylon.
  • the film formed from these mixtures may be sufficient.
  • 6-nylon homopolymers b) copolymers containing 6-nylon, or c) mixtures thereof are particularly preferred from the viewpoints of cold formability, strength, cost, and the like.
  • the base film (L) is a polyester film or a polyamide film, it is preferably used as an outer packaging material for the battery.
  • the base film (L) may have a multilayer structure, or may be a multilayer film in which a polyester film and a polyamide film are laminated.
  • a base film (L) is a polyester-type film or a polyamide-type film, and the laminated body 10 is used as the exterior material for battery outer layers, a side is an outer side and b surface is an inner side (battery side). It arrange
  • the substrate film (L) is a polyolefin-based film
  • it is preferably used as a battery inner layer exterior material. That is, when the base film (L) is a polyolefin-based film and the laminate 10 is used as a battery exterior material, the a-side is disposed on the inner side (battery side) and the b-side is disposed on the outer side.
  • the polyester-type film or the polyamide-type film is laminated
  • polyolefin resins examples include polyethylene (low density polyethylene (LDPE), high density polyethylene (HDPE), acid-modified polyethylene, etc.), polypropylene, acid-modified polypropylene, copolymerized polypropylene, ethylene-vinyl acetate copolymer, ethylene- Examples include (meth) acrylic acid ester copolymers, ethylene- (meth) acrylic acid copolymers, and polyolefin resins such as ethylene ionomers. Among these, polypropylene resins are more preferable from the viewpoint of resistance to electrolytic solution.
  • Polyester resin composition layer M A polyester-type resin composition layer (M) consists of a polyester-type resin composition (P) containing the copolyester resin (O) whose glass transition temperature is 10 degrees C or less.
  • the polyester-based resin composition layer (M) has a function of bonding the base film L and the metal foil N.
  • the polyester resin composition (P) containing the copolyester resin (O) contributes to improvement in low-temperature adhesiveness, cold moldability, and the like.
  • the content of the copolymer polyester resin (O) in the polyester resin composition (P) can be appropriately set according to the type of the copolymer polyester resin (O) used. However, it is usually 50 to 100% by mass, particularly preferably 60 to 99% by mass, and more preferably 65 to 95% by mass. Therefore, for example, it can be set to 65 to 90% by mass.
  • the copolyester resin (O) contained in the polyester resin composition (P) is composed of an acid component and a glycol component. From the viewpoint of more surely expressing the transition temperature, it is preferable to employ each component and composition ratio as shown below.
  • the acid component copolymer polyester resin (O) contains terephthalic acid and isophthalic acid as the acid component, and the total content of terephthalic acid and isophthalic acid in the acid component is preferably 30 mol% or more, Among them, the content is more preferably 50 mol% or more, and most preferably 80 mol% or more.
  • the contents of both are not particularly limited, but can be, for example, 30 to 80 mol% terephthalic acid in the acid component and 20 to 60 mol% isophthalic acid, and more preferably 35 to 75 terephthalic acid in the acid component. Mol% and isophthalic acid 20 to 50 mol%.
  • an acid component (particularly polyvalent carboxylic acid) other than terephthalic acid and isophthalic acid may be contained in the copolyester resin (O) within a range that does not hinder the effects of the present invention.
  • the acid component also includes an anhydride of a polyvalent carboxylic acid.
  • Examples of these acid components include phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 3-tert-butylisophthalic acid, diphenic acid and other aromatic dicarboxylic acids, oxalic acid, succinic acid, succinic anhydride, Saturated aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, eicosanedioic acid, hydrogenated dimer acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, anhydrous Unsaturated aliphatic dicarboxylic acids such as citraconic acid and dimer acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norborn
  • polyvalent carboxylic acids having 6 or more carbon atoms in the main chain are preferable.
  • examples of the polyvalent carboxylic acid having 6 or more carbon atoms in the main chain include adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Among these, sebacic acid is particularly preferable.
  • the upper limit of the carbon number of the main chain in the polyvalent carboxylic acid is not limited, but is usually about 20.
  • the “main chain” in the present invention refers to a carbon chain having a continuous and maximum number of carbon atoms.
  • the content of acid components other than terephthalic acid and isophthalic acid is not limited, but it is usually preferably 3 to 48 mol% in the acid component.
  • the copolyester resin (O) preferably contains 1 to 45 mol%, more preferably 3 to 40 mol%, of a glycol having a main chain having 6 or more carbon atoms as the glycol component. Among these, the content is most preferably 4 to 35 mol%.
  • the upper limit of carbon number of a principal chain can be about 150, for example, it is not restrict
  • the glycol (G1) having 6 or more carbon atoms in the main chain is not limited.
  • 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octane examples thereof include diol, 1,9-nonanediol, triethylene glycol, dipropylene glycol, polytetramethylene glycol, polyethylene glycol, and polypropylene glycol.
  • polytetramethylene glycol is more preferable because it has a higher effect of improving the low-temperature adhesiveness of the polyester-based resin composition (P).
  • the content when polytetramethylene glycol is included is more preferably 3 to 20 mol%, and most preferably 4 to 15 mol% in the glycol component.
  • glycol component (G2) other than the glycol (G1) in the copolymerized polyester resin (O) examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2 -Aliphatic glycols such as methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-ethyl-2-butylpropanediol, 1,3 -Cycloaliphatic glycols such as cyclobutanedimethanol, alkylene oxide adducts of 2,2-bis [4- (hydroxyethoxy) phenyl] propane, alkylene oxide adducts of bis [4- (hydroxyethoxy) phenyl] sulfone, etc. Can be mentioned.
  • ethylene glycol and neopentyl glycol it is preferable to contain ethylene glycol and neopentyl glycol. In this case, it is preferable to contain 55 mol% or more of ethylene glycol and neopentyl glycol in total, and it is particularly preferable to contain 65 mol% or more in total. Furthermore, since the effect of improving the low-temperature adhesiveness of the polyester-based resin composition (P) is high, it is preferable to contain neopentyl glycol in an amount of 35 mol% or more, and more preferably in an amount of 40 mol% or more. .
  • ethylene glycol in the glycol component can be 15 to 60 mol% and neopentyl glycol 30 to 60 mol%, preferably ethylene glycol 20 to 55 mol% and neopentyl glycol 35 to 50 mol%. it can.
  • copolymer polyester resin (O) has a glass transition temperature of 10 ° C. or less, preferably 5 ° C. or less, more preferably 0 ° C. or less, most preferably from ⁇ 35 ° C. 0 ° C.
  • glass transition temperature exceeds 10 ° C.
  • the adhesiveness at low temperatures is poor.
  • adhesion at low temperatures may be inferior.
  • the viscosity and number average molecular weight of the copolymerized polyester resin (O) are in an appropriate range. It is preferable to adjust. That is, the relative viscosity of the copolyester resin (O) is usually about 1.1 to 2.0, preferably 1.2 to 1.7.
  • the number average molecular weight is usually about 5000 to 35000, and preferably 15000 to 30000.
  • polyester-based resin composition (P) may contain other components within a range not impeding the effects of the present invention.
  • examples of the resin component include polyester resins other than the above resin (O), modified nylon resins, urethane resins, phenol resins, silicone resins, epoxy resins, polyolefin resins, and the like.
  • additives that are added to known or commercially available adhesives may also be included.
  • the adhesion between the base film made of thermoplastic resin and the metal foil is improved, and in particular, water resistance (performance that hardly causes peeling even when immersed in high-temperature water).
  • the crosslinking agent is not particularly limited, and examples thereof include isocyanate compounds, melamine compounds, urea compounds, epoxy compounds, carbodiimide compounds, oxazoline group-containing compounds, aziridine compounds, zirconium salt compounds, and silane coupling agents. Among these, it is preferable to use an isocyanate compound from the viewpoint of high reactivity.
  • the isocyanate compound is not limited.
  • aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hydrogenated TDI, hydrogenated MDI, hydrogenated XDI, hexamethylene.
  • Aliphatic or alicyclic diisocyanates such as diisocyanate (HDI) and isophorone diisocyanate (IPDI) are useful for improving adhesion to metals.
  • aromatic diisocyanate is preferable, and tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI) are more preferable.
  • These aromatic diisocyanates can further improve water resistance when used in combination with the copolymerized polyester resin (O) in the present invention.
  • the content of the cross-linking agent in the polyester-based resin composition (P) depends on the type of cross-linking agent used and the like, but is usually preferably 1 to 40% by mass, and more preferably 5 to 38% by mass. It is more preferable. When the content of the crosslinking agent is less than 1% by mass, the above-described effect of improving adhesiveness or water resistance may be poor. On the other hand, when the content of the crosslinking agent exceeds 40% by mass, the resin composition is cured, and it becomes difficult to follow the elongation of the base film or the metal foil, and the desired cold formability may not be obtained. is there.
  • the polyester resin composition (P) desirably has the following physical properties.
  • the tangent loss at 80 ° C. hereinafter also referred to as “viscoelasticity 2”
  • the obtained laminate has a base film (L) and a metal foil (N) constituting the laminate. Is difficult to peel off and is excellent in water resistance.
  • it since it has a viscosity suitable for cold forming, deep drawing or the like can be more reliably performed, and excellent cold formability can be obtained.
  • the thickness of the polyester resin composition layer (M) (adhesive layer) formed of the polyester resin composition (P) is preferably 1 to 20 ⁇ m, more preferably 1 to 10 ⁇ m. . Thereby, more excellent cold moldability and low temperature adhesiveness can be obtained.
  • Metal foil N examples include various metal elements (aluminum, iron, copper, nickel, etc.) or metal foils of these alloys. Among them, aluminum foil (including aluminum alloy foil) is preferably used. The Moreover, the vapor deposition layer which vapor-deposited metal oxides, such as an alumina and a silica, may be sufficient.
  • the thickness is not limited, but can be about 9 to 200 ⁇ m, preferably 20 to 100 ⁇ m.
  • the tempering of the aluminum foil is not limited, the soft aluminum foil, particularly the soft aluminum foil with an iron content of 0.1 to 9.0% by mass, is particularly advantageous in terms of pinhole resistance and extensibility during molding. preferable. If the iron content is less than 0.1% by mass, pinhole resistance, spreadability and the like may not be sufficiently provided. Moreover, a softness
  • a degreasing treatment using an acid degreasing agent a hydrothermal modification treatment such as a boehmite treatment, an anodizing treatment such as an alumite treatment, or a chemical conversion treatment such as a chromate treatment.
  • a particularly preferable example of the surface treatment there is a method of treating with an acid degreasing agent in which a fluorine-containing compound such as monosodium ammonium difluoride is dissolved with an inorganic acid.
  • the layered product of the present invention may have other layers added within a range that does not hinder the effects of the present invention.
  • a resin film, a resin coating layer, and the like can be given. Therefore, for example, the base film L, the polyester resin composition layer M, or the metal foil N separately prepared for the laminated structure P can be added and laminated. More specifically, a) a laminate including a base film L1, a polyester resin composition layer M1, a metal foil N, a polyester resin composition layer M2 and a base film L2 in this order (see FIG. 2), b. ) Base film L1, polyester resin composition layer M1, metal foil N1, base film L2, polyester resin composition layer M2, metal foil N2, polyester resin composition layer M3 and base film L3 in this order. The laminated body etc. which are included are mentioned.
  • each may be the same material and may mutually differ. good.
  • the base film L when the base film L is employed in two layers, one may be a polyester film and the other may be a polyamide film.
  • an anchor coat layer may be provided in at least one of a) an interlayer between the base film and the polyester resin composition layer, and b) an interlayer between the polyester resin composition layer and the metal foil.
  • the anchor coat layer is not particularly limited as long as the performance of the obtained laminate is not impaired, and for example, a polyester resin, a polyolefin resin, a polyamide resin, a polyurethane resin, an acrylic resin, or the like is used.
  • the thickness of the anchor coat layer is preferably 0.01 ⁇ m to 5 ⁇ m.
  • the manufacturing method of the laminated body of this invention is not limited, For example, a polyester-type resin composition layer (M) between base film (L) and metal foil (N). It can manufacture suitably by the method including the process of laminating
  • the polyester-based resin composition layer (M) may be directly adjacent to the base film (L) and the metal foil (N), or may be laminated via another layer.
  • the method for laminating the polyester resin composition layer (M) is not particularly limited as long as it can be laminated in the order as described above.
  • a) a coating solution of the polyester resin composition (P) (hereinafter, this coating solution) Any of a method including a step of applying an adhesive), and a method including a step of laminating a sheet of a polyester resin composition (P) molded in advance can be employed.
  • the method a) can be more preferably employed in that lamination at a lower temperature is possible and excellent adhesiveness is obtained.
  • polyester-based resin composition (P) the materials described in “A. Composition of the polyester-based resin composition (P)” and “(3) Polyester-based resin composition (P)” below are suitable. Can be used.
  • a) Method by Application of Adhesive The method of a) above is more specifically applied by coating and drying the adhesive of the polyester resin composition (P) on the surface to be coated (substantially dry).
  • a layered product is formed by laminating an adherend layer on the coating film under heating and pressure (particularly dry laminating).
  • an adhesive is prepared by dissolving or dispersing the polyester resin composition (P) in a solvent.
  • the solvent in this case is not particularly limited.
  • ketone organic solvent aromatic hydrocarbon organic solvent, ether organic solvent, halogen-containing organic solvent, alcohol organic solvent, ester organic solvent, glycol type
  • water can be used.
  • ketone organic solvent examples include methyl ethyl ketone, acetone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, 2-hexanone, 5-methyl-2-hexanone, cyclopentanone, and cyclohexanone.
  • aromatic hydrocarbon organic solvent examples include toluene, xylene, benzene and the like.
  • ether organic solvent examples include dioxane, tetrahydrofuran and the like.
  • halogen-containing organic solvent examples include carbon tetrachloride, trichloromethane, dichloromethane, and the like.
  • alcohol-based organic solvents examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-amyl alcohol, isoamyl alcohol, sec-amyl alcohol, tert-amyl.
  • examples include alcohol, 1-ethyl-1-propanol, and 2-methyl-1-butanol.
  • ester organic solvent examples include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, 3-methoxybutyl acetate, methyl propionate, and the like.
  • glycol organic solvent examples include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol ethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether. , Diethylene glycol monobutyl ether, diethylene glycol ethyl ether acetate and the like.
  • organic solvents such as 3-methoxy-3-methylbutanol, 3-methoxybutanol, acetonitrile, dimethylformamide, dimethylacetamide, diacetone alcohol and the like can be used.
  • the concentration (solid content concentration) of the polyester resin composition (P) is preferably adjusted to about 5 to 75% by mass. .
  • the adhesive obtained as described above As a method of applying the adhesive obtained as described above, a known method can be used. Examples include gravure roll coating, reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, and brushing.
  • the adhesive is evenly coated on the surface of the substrate and, if necessary, set near room temperature, and then subjected to drying treatment or heat treatment for drying, most of the solvent is volatilized and uniform.
  • a simple resin layer (film) can be formed in close contact with the coated surface.
  • each layer using an adhesive it can be carried out as follows, for example. After the adhesive is applied on the metal foil N, it is dried to form a coating (substantially dry coating). Next, the coating surface on the metal foil N and the base film L surface are stacked so that they are in close contact, and using a laminating apparatus, the surface temperature of the upper and lower rolls is about 60 to 90 ° C., and the linear pressure is about 30 to 50 N / cm. Dry laminate under the conditions. Thereafter, if necessary, heat treatment is performed at a temperature of room temperature (about 20 ° C.) to about 45 ° C. for about 80 to 100 hours. In this way, a laminate having a three-layer structure can be obtained.
  • a sheet obtained by pre-molding the polyester-based resin composition (P) may be disposed between the base film and the metal foil, and laminated at a low temperature under heat and pressure. it can.
  • the polyester resin composition (P) can be laminated by a dry laminating method, an extrusion laminating method or the like without dissolving or dispersing it in a solvent.
  • the polyester resin composition (P) and the polyolefin resin constituting the base film are melt-extruded from a T die on a metal foil to laminate the laminate.
  • a body can be produced suitably.
  • Polyester resin composition (P) The present invention also includes a polyester resin composition (P) constituting the polyester resin composition layer M. That is, a polyester resin composition containing a copolyester resin (O) having a glass transition temperature of 10 ° C. or lower is also included in the present invention.
  • the composition of the polyester resin composition of the present invention includes, for example, at least one of a) terephthalic acid 30 to 80 mol%, b) isophthalic acid 20 to 60 mol% and c) adipic acid, azelaic acid and sebacic acid as the acid component.
  • a copolyester resin comprising 0-20 mol% of species, a) ethylene glycol 15-60 mol%, b) neopentyl glycol 30-60 mol% and c) polytetramethylene glycol 0-15 mol% as a glycol component;
  • a polyester resin composition containing an isocyanate compound as a crosslinking agent can be suitably employed.
  • the copolyester resin (O) is preferably 65 to 95% by mass in the polyester resin composition (P), and the isocyanate compound is 5 to 35 in the polyester resin composition (P). It is preferable that it is mass%.
  • the composition range described in the item “1-1) Composition of copolymer polyester (O)” can also be used for the copolymer polyester resin.
  • the polyester resin composition (P) of the present invention is obtained by subjecting the polyester resin to heat treatment at a low temperature (heat treatment at 100 ° C. or less, particularly heat treatment at 60 to 90 ° C.).
  • the viscoelasticity (hereinafter also referred to as “viscoelasticity 1”) of the unheated polyester-based resin composition (P) before the heat treatment is measured is 80 ° C.
  • the tangent loss at the point of loss loss elastic modulus (G ′′) / storage elastic modulus (G ′) is in the range of 1.0 to 7.0. Of these, the range of 1.5 to 6.5 is more preferable, and the range of 3.0 to 6.0 is most preferable.
  • the interlayer is excellent by heat treatment at a low temperature, and the resulting laminate can be deep-drawn or the like when cold-molded. It becomes possible to carry out more stably and excellent cold moldability can be obtained.
  • Viscoelasticity 1 is obtained by applying a polyester resin composition (P) dissolved or dispersed in a solvent to a Teflon (registered trademark) sheet, leaving it at 20 ° C. for 24 hours, and then using a vacuum dryer at 20 ° C. By drying for a period of time and evaporating the solvent, a polyester resin composition film (thickness: 100 ⁇ m) is obtained. And it measures and calculates using the measuring device mentioned later using the film of the obtained polyester-type resin composition.
  • P polyester resin composition
  • Teflon registered trademark
  • the viscoelasticity 2 is preferably 0.2 to 3.2, and more preferably 0.3 to 2.0.
  • the obtained laminate is less likely to cause peeling between the base film (L) and the metal foil (N) constituting the laminate, and is excellent in water resistance. . Furthermore, since it has a viscosity suitable for cold forming, deep drawing or the like can be more reliably performed, and excellent cold formability can be obtained.
  • the polyester resin composition (P) of the present invention is particularly suitable for adhesion between a metal material and a resin material.
  • a metal material for example, it can be suitably used for laminating an aluminum foil and a resin film.
  • the polyester-based resin composition (P) of the present invention is particularly suitable when 1) it is bonded by a heat treatment at a relatively low temperature (a heat treatment of 100 ° C. or less, especially a heat treatment at 60 to 90 ° C.). It can be suitably used for at least one of cases where a laminate including a polyester resin composition layer formed by heat treatment is cold-molded.
  • Exterior Material and Battery Using the Same (1) Exterior Material
  • the laminate of the present invention can be suitably used as an exterior material for a battery. More specifically, it can be used as an exterior material for covering a part or the whole of the power generation element.
  • the laminated body When used as a battery exterior material, the laminated body is molded into a concave shape (container shape) in advance, and then the power generating element is loaded and sealed, and the power generating element is placed on the laminated body and then wrapped.
  • a method of forming a laminate and sealing a power generation element can also be employed.
  • the method of forming the laminate of the present invention into a concave shape is not limited, but cold forming (particularly drawing) is performed at a temperature near room temperature without substantially melting the base film. It is preferable to employ at least one of processing and overhang processing. Therefore, the laminate of the present invention can be formed by deep drawing. These cold forming conditions themselves may follow a known cold forming method.
  • the power generation element is wrapped in two rectangular laminates and sealed by bonding the four sides, so that the laminate is loaded in a so-called two-sided bag.
  • Any of a method of sealing by bonding three sides after folding the power generation element on the laminated body and placing the power generation element on the laminated body can be adopted.
  • the laminate of the present invention can be used in a form in which laminates are laminated.
  • battery exterior materials include: 1) an inner layer exterior material that directly covers the power generation element in contact with the electrolyte in the power generation element; 2) an outer layer exterior that covers the power generation element without contact with the electrolyte.
  • the laminate of the present invention can be used for any type of exterior material. These can be used separately, but can also be used in a state in which both (two exterior materials) are laminated in advance.
  • the laminate structure in the case of using the laminate of the present invention as an exterior material is not particularly limited.
  • a base film (L1) / polyester resin composition layer (M) / metal foil (N) It is preferable to have a laminated structure including the order of / adhesive layer (M2) / base film (L2).
  • a polyamide film and a polyester film for the base film (L1) and a polyolefin film for the base film (L2).
  • heat sealing or the like can be performed by using the base film (L2) as a polyolefin film.
  • the adhesive layer (M2) may be formed using a known or commercially available adhesive, but it is particularly preferable to use the same layer as the polyester resin composition layer (M).
  • the outer packaging material of the present invention may further have a protective layer on the surface of the outermost base film L1.
  • the protective layer is effective for preventing impact from the outside of the battery, liquid leakage from the inside of the battery, and the like.
  • the protective layer for example, a film made of fluorine resin, polyester resin, acrylic resin, or the like can be used.
  • a layer can also be provided by applying a polyester-based, polyurethane-based, polyolefin-based, acrylic-based, polyvinyl alcohol-based or fluorine-based coating agent.
  • Various additives such as an ultraviolet absorber, an antioxidant, a flame retardant, a slip agent, a filler, organic beads, and fluorine powder can be blended in the protective layer as necessary.
  • the present invention includes a battery including a power generation element and the outer packaging material of the present invention that covers the power generation element.
  • FIG. 3 shows a schematic diagram of the battery.
  • the battery 20 has a configuration in which the power generation element 21 is covered with the exterior material 10. More specifically, the power generation element 21 is covered with the multilayer body 10 so that the b surface of the multilayer body 10 of the present invention is on the power generation element side.
  • the power generation element 21 includes a positive electrode composed of a positive electrode active material and a current collector, a separator, a negative electrode composed of a negative electrode active material and a current collector, and an electrolyte solution.
  • the positive electrode and the negative electrode each have lead wires extending to end portions ( Tab).
  • the constituent material of the power generation element is not particularly limited, and a known power generation element can be used. Further, either a primary battery or a secondary battery may be used. For example, a lithium ion battery, a nickel metal hydride battery, a nickel cadmium battery, etc. are mentioned.
  • Examples of the positive electrode active material include lithium salts such as lithium manganate, metal lithium, and the like.
  • Examples of the positive electrode current collector include aluminum foil.
  • Examples of the separator include microporous membranes such as polyethylene and polypropylene.
  • Examples of the negative electrode active material include graphite, lithium salts such as lithium manganate, metal lithium, and the like are used.
  • Examples of the positive electrode current collector include aluminum foil.
  • lithium salts such as lithium tetrafluoroborate (LiBF 4 ) and lithium hexafluorophosphate (LiPF 6 ) are dissolved in ethyl carbonate (EC), ethyl methyl carbonate (EMC), propylene carbonate, and the like. Solution.
  • FIG. 4 shows a cross-sectional view of an example of an embodiment of a battery using the laminate of the present invention as an exterior material.
  • the battery 20 has a configuration in which the laminated sheet of the inner layer outer packaging material 10a and the outer layer outer packaging material 10b is folded in two and the power generation element 21 is loaded therein.
  • An adhesive portion S1 is formed between the end portions of the laminated sheet by heat sealing or the like, and the lead wire 23 is sandwiched therebetween.
  • only one lead wire 23 is shown in FIG. 4 for the sake of simplicity, a positive lead wire and a negative lead wire are actually provided.
  • the power generation element 21 When the battery shown in FIG. 4 is assembled, in the power generation element 21 having the lead wire 23, the power generation element 21 is covered with the inner layer exterior material 10a so that the lead wire is exposed to the outside.
  • the inner layer exterior material 10 a can be cold-formed in advance in a concave shape so that the power generation element 21 can be accommodated.
  • a heat seal layer (not shown) is formed on the b surface of the inner layer outer packaging material 10a, and the heat sealing layers of the inner layer outer packaging material 10a that are folded in two are joined together. Coating is performed. In this case, a part is not joined, but is secured as an inlet for the electrolyte.
  • the injection port is also closed by heat sealing.
  • the outer peripheral surface of the inner layer exterior material 10a is similarly covered with the outer layer exterior material 10b.
  • the inner layer exterior material 10b can also be cold-molded into a concave shape in advance so that the power generation element 21 can be covered from the outside. In this way, the power generation element 21 is sealed by the exterior materials 10a and 10b.
  • FIG. 5 shows a schematic diagram of a cross section of a battery according to another embodiment.
  • the periphery of a power generation element (power generation element) 21 having a lead wire 23 for connection to the outside is covered with an inner layer exterior material 10 a, and the outer side is covered with an outer layer exterior material 10 b. Both ends of the inner layer exterior material 10a and the outer layer exterior material 10b are sealed by adhesive portions S1 and S2 by heat sealing or the like.
  • the lead wire 23 extends so as to be exposed from the electrode in the battery 20 to the outside, and the current from the power generation element 21 can be taken out to the outside. Although only one lead wire 23 is shown in FIG. 5 for the sake of simplicity, a positive lead wire and a negative lead wire are actually provided.
  • the power generation element 21 When the battery 20 shown in FIG. 5 is assembled, in the power generation element 21 having the lead wire 23, the power generation element 21 is covered with the inner layer exterior material 10a so that the lead wire is exposed to the outside.
  • the inner layer exterior material 10 a can be cold-formed in advance in a concave shape so that the power generation element 21 can be accommodated.
  • a heat seal layer (not shown) is formed on the b surface of the inner layer exterior material 10a, and the power generation element 21 is coated by joining the heat seal layers. In this case, a part is not joined, but is secured as an inlet for the electrolyte.
  • the injection port is also closed by heat sealing.
  • the outer peripheral surface of the inner layer exterior material 10a is covered with the outer layer exterior material 10b.
  • the inner layer exterior material 10b can also be cold-molded into a concave shape in advance so that the power generation element 21 can be covered from the outside. In this way, the power generation element 21 is sealed by the exterior materials 10a and 10b.
  • the outer packaging material may be a one-layer structure or three layers.
  • the exterior material of the above multilayer structure may be sufficient.
  • Glass transition temperature (Tg) of copolyester resin According to JIS-K 7121, using an input compensation type differential scanning calorimeter (diamond DSC type manufactured by PerkinElmer), measurement was performed from 20 ° C. to 120 ° C. under a temperature rising rate of 10 ° C./min. Find the temperature at the intersection of the straight line in the temperature rise curve, which extends the low temperature side baseline to the high temperature side, and the tangent line drawn at the point where the slope of the step change part of the glass transition is maximum. The transition temperature was used.
  • Viscoelasticity of polyester resin composition [tangent loss (tan ⁇ )] Viscoelasticity 1
  • the obtained resin composition solution was applied to a Teflon (registered trademark) sheet, allowed to stand at 20 ° C. for 24 hours, then dried in a vacuum dryer at 20 ° C. for 2 hours, and the mixed solvent was volatilized to form a polyester system.
  • a film (thickness: 100 ⁇ m) of the resin composition was obtained.
  • dynamic viscoelasticity was measured from 250 ° C. to 50 ° C. under a temperature drop rate of 2 ° C./minute using a dynamic viscoelasticity measuring instrument SR-5000 manufactured by Rheometric.
  • Viscoelasticity 2 loss elastic modulus (G ′′) / storage elastic modulus (G ′) was determined. This was designated as viscoelasticity 1.
  • a film with a film thickness of 3 ⁇ m cannot be obtained, a film with a film thickness of less than 3 ⁇ m is used on the premise that the thickness is corrected. May be measured.
  • Adhesiveness of laminated body The obtained laminated body was cut out with a width of 25 mm to obtain a measurement sample, and a tensile tester (precision universal material tester type 2020 manufactured by Intesco) was used and a tensile speed of 50 mm / min and a tensile angle of 180 were used.
  • the adhesion strength was evaluated by measuring the peel strength of the coating film in degrees.
  • A: The peel strength is 5 N / 25 mm or more and less than 8 N / 25 mm.
  • The peel strength is 2 N / 25 mm or more and less than 5 N / 25 mm.
  • X Peel strength is less than 2 N / 25 mm.
  • Base film (L) ⁇ L-1 Polyamide film (Nylon 6 film; “Emblem ON” thickness 25 ⁇ m manufactured by Unitika) ⁇ L-2 Polyester film (Polyethylene terephthalate film; “Embret S” thickness 25 ⁇ m, manufactured by Unitika) ⁇ L-3 Polyolefin film (Polypropylene film; Mitsui Chemicals, Inc.
  • GPC thickness 50 ⁇ m
  • Metal foil N
  • N-1 aluminum foil thickness 40 ⁇ m
  • S Cross-linking agent
  • S-1 4,4′-diphenylmethane diisocyanate [MDI] (“Polymeric MDI” manufactured by Mitsui Chemicals)
  • S-2 Hexamethylene diisocyanate [HDI] (“TPA-100” manufactured by Asahi Kasei Chemicals Corporation)
  • Copolyester resin Copolyester resin was prepared according to the following preparation examples.
  • the esterification reaction was allowed to proceed for 3 hours. After 3 hours, the temperature in the system was 240 ° C., and the system was depressurized. After the inside of the system reached a high vacuum (pressure: 0.1 to 10 ⁇ 5 Pa), a polymerization reaction was further performed for 3 hours to obtain a copolyester resin (A).
  • Copolyester resins (B) to (I) were obtained in the same manner as in Preparation Example 1, except that the types and composition of the components used and the polymerization reaction time were changed as shown in Table 1.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • ADA adipic acid (the main chain has 6 carbon atoms)
  • AZA Azelaic acid (main chain has 8 carbon atoms)
  • SEA Sebacic acid (main chain has 9 carbon atoms)
  • EG Ethylene glycol
  • NPG Neopentyl glycol
  • CHDM 1,4-cyclohexanedimethanol
  • PTMG1000 Polytetramethylene glycol (molecular weight: 1000, main chain carbon number is about 54)
  • HD 1,6-hexanediol (main chain has 6 carbon atoms)
  • Table 1 shows the charged composition at the time of preparation of the obtained copolymer polyester resins (A) to (I) and the composition and characteristic values of the obtained copolymer.
  • Example 1 As the copolyester resin, the copolyester resin A obtained in Preparation Example 1 was used to obtain a polyester resin composition in which the copolyester resin A was 100% by mass. Then, a mixed solvent of toluene and methyl ethyl ketone in a mass ratio of 8: 2 is added so that the resin solids concentration is 20% by mass, tightly plugged and dissolved with a paint shaker, and a resin composition solution (adhesive) is obtained. Obtained. L-1 (polyamide film) was used as the base film (L), and N-1 (aluminum foil) was used as the metal foil (N).
  • L-1 polyamide film
  • N-1 aluminum foil
  • the adhesive obtained as described above was coated on one side of a metal foil (N-1) using a desktop coating apparatus (film applicator manufactured by Yasuda Seiki Co., Ltd .; No. 542-AB type, equipped with a bar coater). It was dried with hot air at 1 ° C. for 1 minute to form a resin film (polyester resin composition layer) having a film thickness of 5 ⁇ m. Thereafter, the resin film-formed surface of the metal foil (N-1) and the corona-treated surface of the base film (L-1) are stacked so that they are in close contact with each other. Dry lamination was performed under conditions of a pressure of 40 N / cm and a speed of 1 m / min, and heat treatment was performed at 40 ° C. for 96 hours to obtain a laminate having a three-layer structure (having the structure shown in FIG. 1).
  • a desktop coating apparatus film applicator manufactured by Yasuda Seiki Co., Ltd .; No. 542-AB type, equipped with a
  • Example 2 Example 1 except that the polyester-based resin composition is a polyester-based resin composition comprising a copolymerized polyester resin A and a cross-linking agent S-1, and each content is as shown in Table 2.
  • An adhesive was prepared in the same manner as in Example 1, and a laminate having a three-layer structure was obtained in the same manner as in Example 1.
  • Examples 3-7 An adhesive was prepared in the same manner as in Example 1 except that the cross-linking agent shown in Table 2 was added so as to have the content shown in Table 2 when obtaining the polyester resin composition. Thus, a laminate having a three-layer structure was obtained.
  • Examples 8 to 19 and Comparative Examples 1 to 4 When obtaining a polyester-based resin composition, the type of copolymer polyester resin was changed to that shown in Tables 2 to 3, and a crosslinking agent was added so that the types and contents shown in Tables 2 to 3 were obtained. Except for the above, an adhesive was prepared in the same manner as in Example 1, and a laminate having a three-layer structure was obtained in the same manner as in Example 1.
  • Comparative Example 5 Three-layer construction was performed in the same manner as in Example 1 except that polyurethane (“Takelac A525 / Takenate A50” manufactured by Mitsui Chemicals, Inc.) was used instead of the resin solution (adhesive) in which the copolyester resin A was dissolved. A laminate was obtained.
  • polyurethane (“Takelac A525 / Takenate A50” manufactured by Mitsui Chemicals, Inc.) was used instead of the resin solution (adhesive) in which the copolyester resin A was dissolved.
  • a laminate was obtained.
  • Test example 1 For the laminates obtained in Examples 1 to 19 and Comparative Examples 1 to 5, the evaluation results of physical properties and the like listed in “1. Measuring method” are shown in Tables 2 to 3. In Tables 2 to 3, “Al” represents aluminum foil, “Ny” represents nylon (polyamide film), and “PU” represents polyurethane.
  • Example 20 An adhesive was prepared in the same manner as in Example 1 except that L-2 (polyester film) was used as the base film (L), and a three-layer laminate (see FIG. 1) was prepared in the same manner as in Example 1. Obtained).
  • L-2 polyester film
  • FIG. 1 a three-layer laminate
  • Example 21 When obtaining a polyester resin composition, a polyester resin composition composed of a copolyester resin A and a cross-linking agent S-1 was used except that each content was as shown in Table 4. An adhesive was prepared in the same manner as in Example 1, and a three-layer laminate was obtained in the same manner as in Example 20.
  • Examples 22 to 26 An adhesive was prepared in the same manner as in Example 1 except that a crosslinking agent of the type shown in Table 4 was added so as to have the content shown in Table 4 when obtaining the polyester resin composition. In the same manner, a laminate having a three-layer structure was obtained.
  • Examples 27-38, Comparative Examples 6-9 When obtaining a polyester-based resin composition, the type of copolymer polyester resin was changed to that shown in Tables 4 to 5, and a crosslinking agent was added so as to have the types and contents shown in Tables 4 to 5. Except for the above, an adhesive was prepared in the same manner as in Example 1, and a laminate having a three-layer structure was obtained in the same manner as in Example 20.
  • Comparative Example 10 Instead of the resin solution (adhesive) in which the copolyester resin A is dissolved, a polyurethane (“Takelac A525 / Takenate A50” manufactured by Mitsui Chemicals, Inc.) is used in the same manner as in Example 20, but a three-layer structure is used. A laminate was obtained.
  • a polyurethane (“Takelac A525 / Takenate A50” manufactured by Mitsui Chemicals, Inc.) is used in the same manner as in Example 20, but a three-layer structure is used. A laminate was obtained.
  • Test example 2 For the laminates obtained in Examples 20 to 38 and Comparative Examples 6 to 10, Tables 4 to 5 show the evaluation results of physical properties and the like given in “1. Measurement method”. In Tables 4 to 5, “Al” represents aluminum foil, “PET” represents a polyethylene terephthalate film, and “PU” represents polyurethane.
  • Example 39 An adhesive was prepared in the same manner as in Example 1 except that L-3 (polyolefin film) was used as the base film (L), and a three-layer laminate (see FIG. 1) was prepared in the same manner as in Example 1. Obtained).
  • L-3 polyolefin film
  • Example 40 Example 1 except that a polyester resin composition, a polyester resin composition comprising a copolyester resin A and a crosslinking agent S-1 was added so that the respective contents were as shown in Table 6. An adhesive was prepared in the same manner, and a laminate having a three-layer structure was obtained in the same manner as in Example 39.
  • Examples 41-45 An adhesive was prepared in the same manner as in Example 1 except that a crosslinking agent of the type shown in Table 6 was added so as to have the content shown in Table 6 when obtaining the polyester resin composition. In the same manner, a laminate having a three-layer structure was obtained.
  • Examples 46-57, Comparative Examples 11-14 When obtaining the polyester-based resin composition, the type of copolymer polyester resin was changed to that shown in Tables 6 to 7, and a crosslinking agent was added so as to have the types and contents shown in Tables 6 to 7. Except for the above, an adhesive was prepared in the same manner as in Example 1, and a laminate having a three-layer structure was obtained in the same manner as in Example 39.
  • Comparative Example 15 Instead of the resin solution (adhesive) in which the copolyester resin A is dissolved, a three-layer structure is used in the same manner as in Example 39 except that polyurethane (“Takelac A525 / Takenate A50” manufactured by Mitsui Chemicals, Inc.) is used. A laminate was obtained.
  • polyurethane Takelac A525 / Takenate A50 manufactured by Mitsui Chemicals, Inc.
  • Test example 3 With respect to the laminates obtained in Examples 39 to 57 and Comparative Examples 11 to 15, the evaluation results of physical properties and the like listed in “1. Measuring method” are shown in Tables 6 to 7.
  • Al represents aluminum foil
  • PP represents polypropylene film
  • PU represents polyurethane
  • Example 58 An adhesive was prepared in the same manner as in Example 1, and L-1 (polyamide film) was used as the base film (L1) shown in FIG. 2, and L-3 (polyolefin film) was used as the base film (L2). N-1 (aluminum foil) was used as the metal foil (N). Then, an adhesive was coated on both surfaces of the metal foil (N-1) in the same manner as in Example 1 to form a resin film so that a laminate having the configuration shown in FIG. 2 was obtained.
  • L-1 polyamide film
  • L-3 polyolefin film
  • N-1 aluminum foil
  • the resin film-forming surface on the upper surface of the metal foil (N-1) and the corona-treated surface of the base film (L-1) are stacked so as to be in close contact, while the lower surface of the metal foil (N-1) is
  • the resin film forming surface and the corona-treated surface of the base film (L-3) are stacked so that they are in close contact with each other, and the metal foil (N), polyamide film (L-1), metal foil (N) and polyolefin film (L -3) dry lamination was performed.
  • the obtained laminate was heat-treated at 40 ° C. for 96 hours to obtain a laminate having a five-layer structure (polyamide film / adhesive layer / metal foil / adhesive layer / polyolefin film five-layer structure) shown in FIG.
  • Examples 59-62 An adhesive was prepared in the same manner as in Example 1 except that the cross-linking agent shown in Table 8 was added so as to have the content shown in Table 8 when obtaining the polyester resin composition. Thus, a laminate having a five-layer structure was obtained.
  • Test example 4 For the laminates obtained in Examples 58 to 67 and Comparative Example 16, the evaluation results of physical properties and the like listed in “1. Measurement method” are shown in Table 8.
  • Al represents an aluminum foil
  • Ny represents nylon (polyamide film)
  • PP represents a polypropylene film.
  • Both the three-layer laminate obtained in Examples 1 to 57 and the five-layer laminate obtained in Examples 58 to 67 were excellent in interlayer adhesion and cold moldability. It was a thing. Further, they were excellent in alcohol resistance, water resistance, liquid leakage resistance and the like.
  • the laminates (Comparative Examples 1 to 4, 6 to 9, 11 to 14) having a layer made of a polyester-based resin composition containing a copolyester resin having a glass transition temperature exceeding 10 ° C. have good adhesion between the layers. Therefore, the alcohol resistance, water resistance, and liquid leakage resistance were also inferior. Furthermore, the cold formability was inferior. Further, a laminate (Comparative Examples 5, 10, 15, and 16) having a polyurethane resin layer instead of the polyester resin composition layer is inferior in alcohol resistance or water resistance and poor in versatility. It was.

Abstract

[Problem] To provide a laminate which is suitable for cold forming, while exhibiting excellent bondability by means of a heat treatment at relatively low temperatures. [Solution] The present invention relates to: a laminate which sequentially comprises a base film, a polyester resin composition layer and a metal foil in this order, and which is characterized in that the polyester resin composition layer is formed from a polyester resin composition containing a copolymerized polyester resin having a glass transition temperature of 10°C or less; and an outer package material for batteries.

Description

積層体及び電池用外装材Laminate and battery exterior material
 本発明は、特定の共重合ポリエステル樹脂を含むポリエステル系樹脂組成物を基材フィルムと金属箔の間に用いる積層構成を有する積層体及びその積層体を用いた電池用外装材に関する。 The present invention relates to a laminate having a laminate structure in which a polyester resin composition containing a specific copolymerized polyester resin is used between a base film and a metal foil, and a battery exterior material using the laminate.
 各種の樹脂フィルムは、さまざまな加工を施すことによって包装体等の各種の製品とされている。例えば、薬剤(錠剤)等の包装体(プレススルーパック)には、塩化ビニルフィルムが使用されている。また例えば、防湿性が要求される内容物を包装する場合には、ポリプロピレンフィルムが使用されている。近年では、内容物の品質保持の観点から、より優れたガスバリア性又は防湿性を付与することを目的として、樹脂フィルムに金属箔を積層してなる積層体が使用されている。例えば、基材層(樹脂フィルム)/金属箔層(アルミニウム箔)/シーラント層から構成される積層体が知られている。 Various resin films are made into various products such as packages by applying various processes. For example, a vinyl chloride film is used for a package (press-through pack) such as a medicine (tablet). In addition, for example, a polypropylene film is used when packaging contents that require moisture resistance. In recent years, a laminate formed by laminating a metal foil on a resin film has been used for the purpose of imparting better gas barrier properties or moisture resistance from the viewpoint of maintaining the quality of contents. For example, a laminate composed of a base material layer (resin film) / metal foil layer (aluminum foil) / sealant layer is known.
 工業分野においては、リチウムイオン電池の外装材は、従来より金属缶タイプが主流であるが、形状の自由度の低さ、軽量化の困難さ等の欠点が指摘されている。このため、基材層/金属箔層/シーラント層からなる積層体、あるいは基材層/基材層/金属箔層/シーラント層からなる積層体を外装体として用いることが提案されている。このような積層体は、金属缶と比較して柔軟で形状の自由度が高く、さらに薄膜化による軽量化が可能であり、かつ、小型化が容易であることから、広く用いられるようになっている。 In the industrial field, a metal can type has been the mainstream of the exterior material of a lithium ion battery, but there have been pointed out disadvantages such as a low degree of freedom in shape and difficulty in weight reduction. For this reason, it has been proposed to use a laminate composed of a base material layer / metal foil layer / sealant layer or a laminate composed of a base material layer / base material layer / metal foil layer / sealant layer as an exterior body. Such a laminated body is widely used because it is flexible and has a high degree of freedom in shape as compared to a metal can, and can be reduced in weight by thinning and can be easily reduced in size. ing.
 上記用途で使用される積層体にはさまざまな性能が要求されており、特に防湿性は非常に重要な要素となる。ところが、防湿性を付与するアルミニウム箔等の金属箔は単体では延展性に乏しく、成型性に劣る。このため、基材層を構成する樹脂フィルムとしてポリアミド系フィルムを用いることにより延展性を付与し、成型性を高めている。 ¡Various performances are required for the laminate used in the above applications, and moisture resistance is a very important factor. However, a metal foil such as an aluminum foil that imparts moisture resistance is poor in spreadability and inferior in moldability. For this reason, using a polyamide-type film as a resin film which comprises a base material layer provides ductility, and has improved the moldability.
 この場合の成型性とは、特にフィルムを冷間成型(冷間加工)する際の成型性である。すなわち、フィルムを成型することにより製品を製造する際、その成型条件として、a)樹脂を加熱下で溶融させて成型する熱間成型及びb)樹脂を溶融させることなく、固体のまま成型する冷間成型があるが、上記用途では冷間成型(特に絞り加工、張り出し加工)における成型性が求められる。冷間成型は、加熱工程がないので生産速度・コスト面で優れることに加え、樹脂本来の特徴を引き出せるという点で熱間成型よりも有利な成型方法である。 The moldability in this case is the moldability particularly when the film is cold-molded (cold processing). That is, when a product is produced by molding a film, the molding conditions are as follows: a) hot molding in which the resin is melted under heating and b) cold molding in which the resin is molded without melting. Although there is inter-molding, in the above-mentioned applications, moldability in cold molding (particularly drawing and overhanging) is required. Cold molding is a molding method that is more advantageous than hot molding in that it is superior in terms of production speed and cost because it does not have a heating step, and can draw out the original characteristics of the resin.
 一般に、上記のような積層体をリチウムイオン電池用外装材として使用する際には、例えば積層体を冷間成型することによって凹部を形成し、その凹部内に正極、セパレータ、負極、電解液等からなる発電要素を入れ、積層体の残りの部分を折り返して周縁部分をヒートシールして密封することによってリチウムイオン電池が作製される。 In general, when the laminate as described above is used as a packaging material for a lithium ion battery, for example, the laminate is cold-molded to form a recess, and the cathode, separator, anode, electrolyte, etc. are formed in the recess. The lithium ion battery is manufactured by inserting the power generation element consisting of the above, folding back the remaining part of the laminate, and heat-sealing the peripheral part.
 リチウムイオン電池のエネルギー密度をさらに高める方法としては、冷間成型によって形成する凹部をより深くし、その凹部内に収容する内容物量を増やす方法がある。ところが、凹部を深くしようとするほど、冷間成形時に延伸率の高い部位である凹部の辺又は角の部分にピンホール又は破断が起こりやすくなる。リチウムイオン電池のエネルギー密度をさらに向上させることが求められていることから、リチウムイオン電池用外装材の成型性のさらなる向上が望まれている。 As a method of further increasing the energy density of the lithium ion battery, there is a method of deepening the concave portion formed by cold forming and increasing the amount of contents accommodated in the concave portion. However, as the recess is made deeper, pinholes or breaks are more likely to occur at the sides or corners of the recess, which is a portion having a high stretch ratio during cold forming. Since further improvement in the energy density of the lithium ion battery is required, further improvement in the moldability of the outer packaging material for the lithium ion battery is desired.
 通常、基材層/金属箔層/シーラント層からなる積層体において、各層を接着させるために接着層を設ける。冷間成型を行うにあたって、成型性を向上させるためには、層間の接着に用いる接着層も冷間成型に適した特性を有していることが必要である。つまり、高温の熱処理を必要とせず、低温での熱処理(100℃以下の熱処理、特に60~90℃での熱処理)で確実に層間の接着を行うことができることと(以下「低温接着性」ともいう。)、冷間成型における成型性を阻害しない粘弾性を有することが必要である。 Usually, in a laminate comprising a base material layer / metal foil layer / sealant layer, an adhesive layer is provided in order to adhere each layer. In performing cold forming, in order to improve moldability, it is necessary that the adhesive layer used for adhesion between layers also has characteristics suitable for cold forming. In other words, high-temperature heat treatment is not required, and adhesion between layers can be reliably performed by heat treatment at low temperature (heat treatment at 100 ° C. or less, particularly heat treatment at 60 to 90 ° C.) (hereinafter referred to as “low-temperature adhesion”). It is necessary to have viscoelasticity that does not hinder moldability in cold molding.
 リチウムイオン電池の外装材として使用される、基材層/金属箔層/シーラント層からなる積層体においては、層間を接着させるために、様々な接着剤を用いた積層体が提案されている(特許文献1~4参照)。これらの従来技術においては、接着剤として、例えばウレタン系、酸変性ポリオレフィン、スチレンエラストマー、アクリル系、シリコーン系、エーテル系、エチレン-酢酸ビニル系等が記載されている。 In a laminate comprising a base material layer / metal foil layer / sealant layer used as an exterior material of a lithium ion battery, a laminate using various adhesives has been proposed in order to bond the layers ( (See Patent Documents 1 to 4). In these conventional techniques, for example, urethane-based, acid-modified polyolefin, styrene elastomer, acrylic-based, silicone-based, ether-based, ethylene-vinyl acetate-based, etc. are described as adhesives.
特開2015-71745号公報Japanese Patent Laying-Open No. 2015-71745 特開2015-103341号公報JP2015-103341A 特開2009-238475号公報JP 2009-238475 A 特開2015-156404号公報JP 2015-156404 A
 しかしながら、これらの従来技術の外装材で採用されている接着剤は、比較的低温での熱処理による接着性とともに、冷間成型における成型性という点では、さらなる改善の余地がある。 However, the adhesives used in these conventional exterior materials have room for further improvement in terms of moldability in cold molding as well as adhesion by heat treatment at relatively low temperatures.
 従って、本発明の主な目的は、比較的低温での熱処理による層間の接着性に優れるとともに冷間成型に適した積層体を提供することにある。 Therefore, a main object of the present invention is to provide a laminate that is excellent in adhesion between layers by heat treatment at a relatively low temperature and suitable for cold forming.
 すなわち、本発明は、下記の積層体及び電池用外装材に係る。
1. 基材フィルム、ポリエステル系樹脂組成物層及び金属箔の順に含む積層体であって、
 前記ポリエステル系樹脂組成物層は、ガラス転移温度が10℃以下の共重合ポリエステル樹脂を含むポリエステル系樹脂組成物からなる、
ことを特徴とする積層体。
2. 基材フィルムが、ポリエステル系フィルム、ポリアミド系フィルム及びポリオレフィン系フィルムの少なくとも1種を含む、前記項1記載の積層体。
3. 共重合ポリエステル樹脂は、酸成分として、テレフタル酸とイソフタル酸を含有し、かつ、酸成分中のテレフタル酸とイソフタル酸の合計含有量が30モル%以上である、前記項1に記載の積層体。
4. 共重合ポリエステル樹脂は、グリコール成分として、主鎖の炭素数が6以上であるグリコールを1~45モル%含有する、前記項1に記載の積層体。
5. 前記項1~4のいずれかに記載の積層体を含む電池用外装材。
6. 発電要素と、前記発電要素を被覆する前記項5に記載の電池用外装材とを含む電池。
That is, this invention concerns on the following laminated body and battery exterior material.
1. It is a laminate including a base film, a polyester resin composition layer and a metal foil in this order,
The polyester resin composition layer is composed of a polyester resin composition containing a copolymer polyester resin having a glass transition temperature of 10 ° C. or lower.
A laminate characterized by the above.
2. Item 2. The laminate according to Item 1, wherein the base film contains at least one of a polyester film, a polyamide film, and a polyolefin film.
3. The laminate according to Item 1, wherein the copolymerized polyester resin contains terephthalic acid and isophthalic acid as acid components, and the total content of terephthalic acid and isophthalic acid in the acid component is 30 mol% or more. .
4). Item 2. The laminate according to Item 1, wherein the copolyester resin contains 1 to 45 mol% of a glycol having 6 or more carbon atoms in the main chain as a glycol component.
5). A battery packaging material comprising the laminate according to any one of items 1 to 4.
6). A battery comprising: a power generation element; and the battery exterior material according to Item 5 that covers the power generation element.
 本発明によれば、比較的低温での熱処理により、層間の接着性に優れるとともに、冷間成型に適した積層体を提供することができる。より具体的には、以下のような効果を得ることができる。 According to the present invention, it is possible to provide a laminate that is excellent in interlayer adhesion and suitable for cold forming by heat treatment at a relatively low temperature. More specifically, the following effects can be obtained.
(1)冷間成型性・低温接着性
 本発明の積層体は、基材フィルム(L)と金属箔(N)の接着層であるポリエステル系樹脂組成物層(M)に特定の共重合ポリエステル樹脂(O)を含有するポリエステル系樹脂組成物(P)を採用しているため、積層体を得る際には、冷間成型に適した低温で熱処理を施しても層間の接着性に優れた積層体とすることができるとともに、ポリエステル系樹脂組成物(P)は、冷間成型性を阻害しない粘弾性を有しており、冷間成型性に優れている。特に、本発明の積層体は、冷間成型における深絞り成形も可能である。
(1) Cold moldability / low temperature adhesiveness The laminate of the present invention is a copolyester specific to the polyester resin composition layer (M) which is an adhesive layer of the base film (L) and the metal foil (N). Since the polyester-based resin composition (P) containing the resin (O) is adopted, when the laminate is obtained, the interlayer adhesion is excellent even when heat treatment is performed at a low temperature suitable for cold forming. While being able to be set as a laminated body, the polyester-type resin composition (P) has the viscoelasticity which does not inhibit cold moldability, and is excellent in cold moldability. In particular, the laminate of the present invention can be deep-drawn in cold forming.
(2)耐電解液性
 リチウムイオン電池は、電池内容物として正極材及び負極材とともに、炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等の非プロトン性溶媒にリチウム塩を溶解した電解液又はその電解液を含浸させたポリマーゲルからなる電解質層を含んでいる。このような強浸透性の溶媒がシーラント層を通過すると、アルミニウム箔層とシーラント層間のラミネート強度を低下させてデラミネーションを生じさせ、電解液の漏出の原因にもなりかねない。
 電池の電解質であるリチウム塩としてはLiPF6、LiBF4等の物質が用いられているが、これらの塩は水分との加水分解反応によりフッ酸を発生し、フッ酸がアルミニウム箔を腐食することによりラミネート強度を低下させる。電池外装材料は、このように電解質に対する耐性を有していることも必要である。  本発明の積層体は、このような電池の構成部材に対する耐久性(耐食性)にも優れた効果を発揮することができる。
(2) Electrolytic solution resistance In the lithium ion battery, a lithium salt was dissolved in an aprotic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate together with the positive electrode material and the negative electrode material as the battery contents. An electrolyte layer made of an electrolytic solution or a polymer gel impregnated with the electrolytic solution is included. When such a strongly permeable solvent passes through the sealant layer, the laminate strength between the aluminum foil layer and the sealant layer is lowered to cause delamination, which may cause leakage of the electrolytic solution.
LiPF 6 , LiBF 4, etc. are used as the lithium salt that is the electrolyte of the battery, but these salts generate hydrofluoric acid by hydrolysis with moisture, and the hydrofluoric acid corrodes the aluminum foil. To reduce the laminate strength. The battery exterior material is also required to have resistance to the electrolyte as described above. The laminated body of the present invention can exhibit an effect excellent in durability (corrosion resistance) against the constituent members of such a battery.
(3)耐水性・耐アルコール性
 また、例えば電池がモバイル機器に使用される場合には、車内等の60~70℃という高温環境での耐漏液性が要求される。携帯電話に使用され誤って水中に落としたことを想定し、水分が浸入しないよう耐水性も必要とされる。このため、水より浸透性の高いアルコールの耐性を有していることも有利とされる。本発明の積層体は、耐水性・耐アルコール性を兼ね備えているので、上記のような問題にも対応することができる。
(3) Water resistance / alcohol resistance In addition, for example, when a battery is used in a mobile device, liquid resistance in a high temperature environment of 60 to 70 ° C. such as in a car is required. Assuming that it was used in a mobile phone and accidentally dropped into water, water resistance is also required to prevent moisture from entering. For this reason, it is also advantageous to have the tolerance of alcohol having higher permeability than water. Since the laminated body of this invention has water resistance and alcohol resistance, it can respond also to the above problems.
 このように、特に上記(1)のほか、上記(2)(3)のような特長を備えた本発明の積層体は、特に電池用外装材として好適に用いることができる。その結果、電池の高容量化及び長寿命化に寄与できるほか、取扱上の安全性も高まり、産業上の利用価値は非常に高い。 Thus, in addition to the above (1), the laminate of the present invention having the features as described in the above (2) and (3) can be particularly suitably used as a battery exterior material. As a result, it is possible to contribute to the increase in capacity and life of the battery, and the safety in handling is increased, and the industrial utility value is very high.
本発明の積層体の基本層構成を示す図である。It is a figure which shows the basic layer structure of the laminated body of this invention. 本発明の積層体を含む5層の積層体の層構成を示す図である。It is a figure which shows the layer structure of the laminated body of 5 layers containing the laminated body of this invention. 本発明の積層体を電池の外装材として用いる場合の模式図である。It is a schematic diagram when using the laminated body of this invention as an exterior material of a battery. 本発明の積層体を外装材として用いた電池の実施形態の断面構成図である。It is a section lineblock diagram of an embodiment of a battery using a layered product of the present invention as an exterior material. 本発明の積層体を外装材として用いた別の電池の実施形態に係る断面構成図である。It is a cross-sectional block diagram which concerns on embodiment of another battery using the laminated body of this invention as an exterior material.
発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION
1.積層体及びその製造方法
(1)積層体
 本発明の積層体は、基材フィルム、ポリエステル系樹脂組成物層及び金属箔の順に含む積層体であって、前記ポリエステル系樹脂組成物層は、ガラス転移温度が10℃以下の共重合ポリエステル樹脂を含むポリエステル系樹脂組成物からなる、ことを特徴とする。
1. Laminated body and its manufacturing method (1) Laminated body The laminated body of this invention is a laminated body which contains a base film, a polyester-type resin composition layer, and a metal foil in order, Comprising: The said polyester-type resin composition layer is glass. It consists of the polyester-type resin composition containing the copolyester resin whose transition temperature is 10 degrees C or less, It is characterized by the above-mentioned.
 本発明の積層体の基本構成を図1に示す。図1に示すように、本発明の積層体10の基本構成としては、金属箔N上にポリエステル樹脂組成物層Mが積層されており、ポリエステル樹脂組成物層M上に基材フィルムLが積層された構成が採用される。本発明の積層体は、上記のように、金属箔N、ポリエステル樹脂組成物層M及び基材フィルムLの順で積層されていれば良く、互いに直に隣接していても良いし、直接的に隣接していなくても良い。従って、本発明の積層体では、本発明の効果を妨げない範囲内において、他の層が含まれていても良い。例えば、接着剤層、印刷層、保護層、帯電防止層、アンカーコート層(プライマー層)等が挙げられる。 The basic structure of the laminate of the present invention is shown in FIG. As shown in FIG. 1, as a basic structure of the laminate 10 of the present invention, a polyester resin composition layer M is laminated on a metal foil N, and a base film L is laminated on the polyester resin composition layer M. The adopted configuration is adopted. The laminate of the present invention may be laminated in the order of the metal foil N, the polyester resin composition layer M, and the base film L as described above, and may be directly adjacent to each other or directly. It does not have to be adjacent to Therefore, the layered product of the present invention may contain other layers within a range not impeding the effects of the present invention. For example, an adhesive layer, a printing layer, a protective layer, an antistatic layer, an anchor coat layer (primer layer) and the like can be mentioned.
 本発明では、特に図1に示すように、少なくとも基材フィルムL、ポリエステル系樹脂組成物層M及び金属箔Nの順に積層された積層構成Pにおいて、その各層の層間、あるいはa面上及び/又はb面上に他の層が積層されていても良い。 In the present invention, as shown in FIG. 1 in particular, at least a base film L, a polyester-based resin composition layer M, and a metal foil N are laminated in this order in a laminated structure P, and between each layer or on the a plane and / or Or another layer may be laminated | stacked on b surface.
 基材フィルムL
 基材フィルム(L)は、特に限定されないが、熱可塑性樹脂からなるものであることが好ましい。熱可塑性樹脂としては、特にポリエステル系フィルム、ポリアミド系フィルム及びポリオレフィン系フィルムの少なくとも1種を用いることが好ましい。
Base film L
Although a base film (L) is not specifically limited, It is preferable that it consists of a thermoplastic resin. As the thermoplastic resin, it is particularly preferable to use at least one of a polyester film, a polyamide film, and a polyolefin film.
 また、基材フィルムは、延伸フィルム又は未延伸フィルムのいずれであっても良い。また、延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルム等の各種のフィルムを使用することができる。 Further, the base film may be a stretched film or an unstretched film. As the stretched film, various films such as a uniaxially stretched film and a biaxially stretched film can be used.
 基材フィルムは、単層構成であっても良いが、複層構成のものであっても良い。例えば、延伸フィルムの片面又は両面に樹脂コートされた積層フィルムを用いることができる。 The base film may have a single layer structure or a multilayer structure. For example, a laminated film in which one side or both sides of a stretched film is resin-coated can be used.
 基材フィルムの厚みは、用いる基材フィルムの種類、被包装物等によって適宜変更できる。特に、電池用外装材として用いる場合、耐ピンホール性、絶縁性を向上させるために1~100μmとすることが好ましく、その中でも5~80μmであることがより好ましく、さらには5~30μmであることが最も好ましい。なお、上記厚みは、基材フィルムが複層構成である場合はその総厚みをいう。 The thickness of the base film can be changed as appropriate according to the type of base film used, the object to be packaged, and the like. In particular, when used as a battery exterior material, it is preferably 1 to 100 μm, more preferably 5 to 80 μm, and even more preferably 5 to 30 μm in order to improve pinhole resistance and insulation. Most preferred. In addition, the said thickness says the total thickness, when a base film is a multilayer structure.
 基材フィルム(L)がポリエステル系フィルムである場合、フィルムを構成するポリエステル系樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2、6-ナフタレート等を挙げることができる。これらの中でも、コストと効果の観点からポリエチレンテレフタレート(PET)を用いることが好ましい。すなわち、PETフィルムを含む基材フィルムを好適に用いることができる。 When the base film (L) is a polyester film, examples of the polyester resin constituting the film include polyethylene terephthalate, polybutylene terephthalate, polyethylene-2, 6-naphthalate, and the like. Among these, it is preferable to use polyethylene terephthalate (PET) from the viewpoint of cost and effect. That is, a base film including a PET film can be suitably used.
 基材フィルム(L)がポリアミド系フィルムである場合、フィルムを構成するポリアミド系樹脂の代表例としては、6-ナイロン、6,6-ナイロン、6,10-ナイロン、11-ナイロン、12-ナイロン、ポリ(メタキシレンアジパミド)等が挙げられる。また、例えば6-ナイロン/6,6-ナイロン、6-ナイロン/6,10-ナイロン、6-ナイロン/11-ナイロン、6-ナイロン/12-ナイロン等の2元以上の共重合体でも良い。また、これらの混合物から形成されたフィルムであっても良い。 When the base film (L) is a polyamide film, typical examples of the polyamide resin constituting the film include 6-nylon, 6,6-nylon, 6,10-nylon, 11-nylon, and 12-nylon. And poly (meta-xylene adipamide). Further, for example, it may be a copolymer of two or more such as 6-nylon / 6,6-nylon, 6-nylon / 6,10-nylon, 6-nylon / 11-nylon, 6-nylon / 12-nylon. Moreover, the film formed from these mixtures may be sufficient.
 上記の中でも、特に冷間成型性、強度、コスト等の観点から、a)6-ナイロンのホモポリマー、b)6-ナイロンを含むコポリマー又はc)これらの混合物が好ましい。 Of these, a) 6-nylon homopolymers, b) copolymers containing 6-nylon, or c) mixtures thereof are particularly preferred from the viewpoints of cold formability, strength, cost, and the like.
 基材フィルム(L)がポリエステル系フィルム又はポリアミド系フィルムである場合、電池の外層用外装材として用いることが好ましい。また、基材フィルム(L)は、複層構成のものであっても良いが、ポリエステル系フィルムとポリアミド系フィルムが積層された複層フィルムであっても良い。そして、基材フィルム(L)がポリエステル系フィルム又はポリアミド系フィルムであって、積層体10が電池の外層用外装材として使用される場合は、a面が外側、b面が内側(電池側)となるように配置される。 When the base film (L) is a polyester film or a polyamide film, it is preferably used as an outer packaging material for the battery. The base film (L) may have a multilayer structure, or may be a multilayer film in which a polyester film and a polyamide film are laminated. And when a base film (L) is a polyester-type film or a polyamide-type film, and the laminated body 10 is used as the exterior material for battery outer layers, a side is an outer side and b surface is an inner side (battery side). It arrange | positions so that it may become.
 基材フィルム(L)がポリオレフィン系フィルムである場合、電池の内層用外装材として用いることが好ましい。つまり、基材フィルム(L)がポリオレフィン系フィルムであって、積層体10が電池の外装材として使用される場合は、a面が内側(電池側)、b面が外側となるように配置される。そして、金属箔Nの上面に、接着剤層を介してポリエステル系フィルム又はポリアミド系フィルムが積層されていることが好ましい。 When the substrate film (L) is a polyolefin-based film, it is preferably used as a battery inner layer exterior material. That is, when the base film (L) is a polyolefin-based film and the laminate 10 is used as a battery exterior material, the a-side is disposed on the inner side (battery side) and the b-side is disposed on the outer side. The And it is preferable that the polyester-type film or the polyamide-type film is laminated | stacked on the upper surface of the metal foil N through the adhesive bond layer.
 ポリオレフィン系樹脂としては、例えば、ポリエチレン(低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、酸変性ポリエチレン等)、ポリプロピレン、酸変性ポリプロピレン、共重合ポリプロピレン、エチレン-ビニルアセテート共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン系アイオノマー等のポリオレフィン樹脂等が挙げられる。これらの中でも、耐電解液性等の見地から、ポリプロピレン系樹脂がより好ましい。 Examples of polyolefin resins include polyethylene (low density polyethylene (LDPE), high density polyethylene (HDPE), acid-modified polyethylene, etc.), polypropylene, acid-modified polypropylene, copolymerized polypropylene, ethylene-vinyl acetate copolymer, ethylene- Examples include (meth) acrylic acid ester copolymers, ethylene- (meth) acrylic acid copolymers, and polyolefin resins such as ethylene ionomers. Among these, polypropylene resins are more preferable from the viewpoint of resistance to electrolytic solution.
 ポリエステル系樹脂組成物層M
 ポリエステル系樹脂組成物層(M)は、ガラス転移温度が10℃以下である共重合ポリエステル樹脂(O)を含むポリエステル系樹脂組成物(P)からなる。ポリエステル系樹脂組成物層(M)は、基材フィルムLと金属箔Nとを接着する機能を有する。この中でも、前記共重合ポリエステル樹脂(O)を含むポリステル系樹脂組成物(P)が低温接着性、冷間成型性等の向上に寄与するものである。
Polyester resin composition layer M
A polyester-type resin composition layer (M) consists of a polyester-type resin composition (P) containing the copolyester resin (O) whose glass transition temperature is 10 degrees C or less. The polyester-based resin composition layer (M) has a function of bonding the base film L and the metal foil N. Among these, the polyester resin composition (P) containing the copolyester resin (O) contributes to improvement in low-temperature adhesiveness, cold moldability, and the like.
A.ポリエステル系樹脂組成物(P)の組成
 ポリエステル系樹脂組成物(P)中の共重合ポリエステル樹脂(O)の含有量は、用いる共重合ポリエステル樹脂(O)の種類等に応じて適宜設定できるが、通常は50~100質量%とし、特に60~99質量%が好ましく、さらには65~95質量%がより好ましい。従って、例えば65~90質量%に設定することもできる。
A. Composition of Polyester Resin Composition (P) The content of the copolymer polyester resin (O) in the polyester resin composition (P) can be appropriately set according to the type of the copolymer polyester resin (O) used. However, it is usually 50 to 100% by mass, particularly preferably 60 to 99% by mass, and more preferably 65 to 95% by mass. Therefore, for example, it can be set to 65 to 90% by mass.
 1)共重合ポリエステル樹脂(O)
 1-1)共重合ポリエステル樹脂(O)の組成
 ポリエステル系樹脂組成物(P)に含まれる共重合ポリエステル樹脂(O)は、酸成分とグリコール成分から構成されるが、特に10℃以下というガラス転移温度をより確実に発現させるという点では以下に示すような各成分及び組成割合を採用することが好ましい。
1) Copolyester resin (O)
1-1) Composition of Copolyester Resin (O) The copolyester resin (O) contained in the polyester resin composition (P) is composed of an acid component and a glycol component. From the viewpoint of more surely expressing the transition temperature, it is preferable to employ each component and composition ratio as shown below.
 a.酸成分
 共重合ポリエステル樹脂(O)は、酸成分として、テレフタル酸とイソフタル酸を含有し、かつ、酸成分中のテレフタル酸とイソフタル酸の合計含有量が30モル%以上であることが好ましく、中でも50モル%以上であることがより好ましく、さらには80モル%以上であることが最も好ましい。
a. The acid component copolymer polyester resin (O) contains terephthalic acid and isophthalic acid as the acid component, and the total content of terephthalic acid and isophthalic acid in the acid component is preferably 30 mol% or more, Among them, the content is more preferably 50 mol% or more, and most preferably 80 mol% or more.
 この場合の両者の含有量は、特に制限されないが、例えば酸成分中テレフタル酸30~80モル%及びイソフタル酸20~60モル%とすることができ、さらに好ましくは酸成分中テレフタル酸35~75モル%及びイソフタル酸20~50モル%とすることができる。 In this case, the contents of both are not particularly limited, but can be, for example, 30 to 80 mol% terephthalic acid in the acid component and 20 to 60 mol% isophthalic acid, and more preferably 35 to 75 terephthalic acid in the acid component. Mol% and isophthalic acid 20 to 50 mol%.
 本発明では、本発明の効果を妨げない範囲内において、共重合ポリエステル樹脂(O)中にテレフタル酸とイソフタル酸以外の酸成分(特に多価カルボン酸)が含まれていても良い。酸成分は、多価カルボン酸の無水物も含む。これらの酸成分としては、例えばフタル酸、無水フタル酸、2,6-ナフタレンジカルボン酸、3-tert-ブチルイソフタル酸、ジフェン酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、アイコサン二酸、水添ダイマー酸等の飽和脂肪族ジカルボン酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ダイマー酸等の不飽和脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸及びその無水物、テトラヒドロフタル酸及びその無水物等の脂環式ジカルボン酸、5-ナトリウムスルホイソフタル酸、5-ナトリウムスルホテレフタル酸等のスルホン酸塩基を有するジカルボン酸等が挙げられる。 In the present invention, an acid component (particularly polyvalent carboxylic acid) other than terephthalic acid and isophthalic acid may be contained in the copolyester resin (O) within a range that does not hinder the effects of the present invention. The acid component also includes an anhydride of a polyvalent carboxylic acid. Examples of these acid components include phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 3-tert-butylisophthalic acid, diphenic acid and other aromatic dicarboxylic acids, oxalic acid, succinic acid, succinic anhydride, Saturated aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, eicosanedioic acid, hydrogenated dimer acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, anhydrous Unsaturated aliphatic dicarboxylic acids such as citraconic acid and dimer acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid and anhydrides thereof, Alicyclic dicarboxylic acids such as tetrahydrophthalic acid and its anhydride, 5-sodium sulfate And dicarboxylic acids having a sulfonate group such as foisophthalic acid and 5-sodium sulfoterephthalic acid.
 これらの中でも、主鎖の炭素数が6以上である多価カルボン酸が好ましい。主鎖の炭素数が6以上である多価カルボン酸としては、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の少なくとも1種が挙げられる。これらの中でも、特にセバシン酸がより好ましい。多価カルボン酸における主鎖の炭素数の上限は、限定的ではないが、通常は20程度とする。なお、本発明における「主鎖」とは、炭素数が連続で最大となる炭素鎖をいう。 Among these, polyvalent carboxylic acids having 6 or more carbon atoms in the main chain are preferable. Examples of the polyvalent carboxylic acid having 6 or more carbon atoms in the main chain include adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Among these, sebacic acid is particularly preferable. The upper limit of the carbon number of the main chain in the polyvalent carboxylic acid is not limited, but is usually about 20. The “main chain” in the present invention refers to a carbon chain having a continuous and maximum number of carbon atoms.
 テレフタル酸とイソフタル酸以外の酸成分の含有量は、限定的ではないが、通常は酸成分中に3~48モル%含有することが好ましい。 The content of acid components other than terephthalic acid and isophthalic acid is not limited, but it is usually preferably 3 to 48 mol% in the acid component.
 b.グリコール成分
 共重合ポリエステル樹脂(O)は、グリコール成分として、主鎖の炭素数が6以上であるグリコールを1~45モル%含有することが好ましく、特に3~40モル%含有することがより好ましく、中でも4~35モル%含有することが最も好ましい。また、グリコール成分として、主鎖の炭素数の上限は、例えば150程度とすることができるが、これに制約されない。例えば、前記炭素数として6~120程度の範囲を設定することもできる。
b. Glycol component The copolyester resin (O) preferably contains 1 to 45 mol%, more preferably 3 to 40 mol%, of a glycol having a main chain having 6 or more carbon atoms as the glycol component. Among these, the content is most preferably 4 to 35 mol%. Moreover, as a glycol component, although the upper limit of carbon number of a principal chain can be about 150, for example, it is not restrict | limited. For example, a range of about 6 to 120 can be set as the carbon number.
 主鎖の炭素数が6以上であるグリコール(G1)としては、限定的ではなく、例えば1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリエチレングリコール、ジプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。 The glycol (G1) having 6 or more carbon atoms in the main chain is not limited. For example, 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octane Examples thereof include diol, 1,9-nonanediol, triethylene glycol, dipropylene glycol, polytetramethylene glycol, polyethylene glycol, and polypropylene glycol.
 これらの中でも、本発明では、1,4-シクロヘキサンジメタノール、ポリテトラメチレングリコール等の少なくとも1種がより好ましい。特に、ポリテトラメチレングリコールは、ポリエステル系樹脂組成物(P)の低温での接着性を向上させる効果がより高いため、より好ましい。ポリテトラメチレングリコールを含む場合の含有量は、グリコール成分中に3~20モル%含有することがより好ましく、特に4~15モル%含有することが最も好ましい。 Among these, in the present invention, at least one of 1,4-cyclohexanedimethanol, polytetramethylene glycol and the like is more preferable. In particular, polytetramethylene glycol is more preferable because it has a higher effect of improving the low-temperature adhesiveness of the polyester-based resin composition (P). The content when polytetramethylene glycol is included is more preferably 3 to 20 mol%, and most preferably 4 to 15 mol% in the glycol component.
 共重合ポリエステル樹脂(O)における、前記グリコール(G1)以外のグリコール成分(G2)としては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-エチル-2-ブチルプロパンジオール等の脂肪族グリコール、1,3-シクロブタンジメタノール等の脂環族グリコール、2,2-ビス[4-(ヒドロキシエトキシ)フェニル]プロパンのアルキレンオキシド付加体、ビス[4-(ヒドロキシエトキシ)フェニル]スルホンのアルキレンオキシド付加体等が挙げられる。 Examples of the glycol component (G2) other than the glycol (G1) in the copolymerized polyester resin (O) include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2 -Aliphatic glycols such as methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-ethyl-2-butylpropanediol, 1,3 -Cycloaliphatic glycols such as cyclobutanedimethanol, alkylene oxide adducts of 2,2-bis [4- (hydroxyethoxy) phenyl] propane, alkylene oxide adducts of bis [4- (hydroxyethoxy) phenyl] sulfone, etc. Can be mentioned.
 これらの中でも、エチレングリコールとネオペンチルグリコールを含有していることが好ましい。この場合、エチレングリコールとネオペンチルグリコールを合計で55モル%以上含有することが好ましく、特に合計で65モル%以上含有することが好ましい。さらには、ポリエステル系樹脂組成物(P)の低温での接着性を向上させる効果が高いため、ネオペンチルグリコールを35モル%以上含有することが好ましく、その中でも40モル%以上含有することが好ましい。従って、例えばグリコール成分中エチレングリコール15~60モル%及びネオペンチルグリコール30~60モル%とすることができ、好ましくはエチレングリコール20~55モル%及びネオペンチルグリコール35~50モル%とすることができる。 Among these, it is preferable to contain ethylene glycol and neopentyl glycol. In this case, it is preferable to contain 55 mol% or more of ethylene glycol and neopentyl glycol in total, and it is particularly preferable to contain 65 mol% or more in total. Furthermore, since the effect of improving the low-temperature adhesiveness of the polyester-based resin composition (P) is high, it is preferable to contain neopentyl glycol in an amount of 35 mol% or more, and more preferably in an amount of 40 mol% or more. . Accordingly, for example, ethylene glycol in the glycol component can be 15 to 60 mol% and neopentyl glycol 30 to 60 mol%, preferably ethylene glycol 20 to 55 mol% and neopentyl glycol 35 to 50 mol%. it can.
 1-2)共重合ポリエステル樹脂(O)の物性
 a.ガラス転移温度
 共重合ポリエステル樹脂(O)は、ガラス転移温度が10℃以下であり、中でも5℃以下であることが好ましく、さらには0℃以下であることが好ましく、最も好ましくは-35℃~0℃である。ガラス転移温度が10℃を超えると、低温での接着性に劣るものとなる。このため、接着性を向上させるためには高温の熱処理が必要となるため、処理工程の簡略化、低コスト化等を図ることが困難となる。一方、ガラス転移温度が-35℃よりも低い場合、低温での接着性に劣るものとなる場合がある。
1-2) Physical properties of copolymer polyester resin (O) a. Glass Transition Temperature The copolymerized polyester resin (O) has a glass transition temperature of 10 ° C. or less, preferably 5 ° C. or less, more preferably 0 ° C. or less, most preferably from −35 ° C. 0 ° C. When the glass transition temperature exceeds 10 ° C., the adhesiveness at low temperatures is poor. For this reason, in order to improve adhesiveness, since high temperature heat processing is required, it becomes difficult to simplify a process, cost reduction, etc. On the other hand, when the glass transition temperature is lower than −35 ° C., adhesion at low temperatures may be inferior.
 b.粘度等
 本発明のポリエステル系樹脂組成物(P)の粘弾性1又は粘弾性2を後述する範囲のものとするには、共重合ポリエステル樹脂(O)の粘度と数平均分子量を適正な範囲に調整することが好ましい。すなわち、共重合ポリエステル樹脂(O)の相対粘度は、通常1.1~2.0程度とし、その中でも1.2~1.7の範囲にすることが好ましい。また、数平均分子量は、通常5000~35000程度とし、その中でも15000~30000の範囲にすることが好ましい。
b. Viscosity etc. In order to make the viscoelasticity 1 or viscoelasticity 2 of the polyester-based resin composition (P) of the present invention into the range described later, the viscosity and number average molecular weight of the copolymerized polyester resin (O) are in an appropriate range. It is preferable to adjust. That is, the relative viscosity of the copolyester resin (O) is usually about 1.1 to 2.0, preferably 1.2 to 1.7. The number average molecular weight is usually about 5000 to 35000, and preferably 15000 to 30000.
 2)ポリエステル系樹脂組成物(P)中の他の成分
 ポリエステル系樹脂組成物(P)中には、本発明の効果を妨げない範囲内で他の成分が含まれていても良い。
2) Other components in the polyester-based resin composition (P) The polyester-based resin composition (P) may contain other components within a range not impeding the effects of the present invention.
 例えば、樹脂成分としては、上記樹脂(O)以外のポリエステル樹脂、変性ナイロン樹脂、ウレタン樹脂、フェノール樹脂、シリコーン樹脂、エポキシ樹脂、ポリオレフィン樹脂等が挙げられる。  For example, examples of the resin component include polyester resins other than the above resin (O), modified nylon resins, urethane resins, phenol resins, silicone resins, epoxy resins, polyolefin resins, and the like.
 また、公知又は市販の接着剤にも添加されている添加剤が含まれていても良い。特に、ポリエステル系樹脂組成物(P)中には、熱可塑性樹脂からなる基材フィルムと金属箔との接着性を向上させ、とりわけ耐水性(高温水中に浸漬させても剥離が生じにくい性能)を向上させる目的で架橋剤を含有していることが好ましい。 Also, additives that are added to known or commercially available adhesives may also be included. In particular, in the polyester resin composition (P), the adhesion between the base film made of thermoplastic resin and the metal foil is improved, and in particular, water resistance (performance that hardly causes peeling even when immersed in high-temperature water). It is preferable to contain a crosslinking agent for the purpose of improving the viscosity.
 架橋剤としては、特に制限されず、例えばイソシアネート化合物、メラミン化合物、尿素化合物、エポキシ化合物、カルボジイミド化合物、オキサゾリン基含有化合物、アジリジン化合物、ジルコニウム塩化合物、シランカップリング剤等が挙げられる。その中でも反応性が高いという見地からイソシアネート化合物を用いることが好ましい。 The crosslinking agent is not particularly limited, and examples thereof include isocyanate compounds, melamine compounds, urea compounds, epoxy compounds, carbodiimide compounds, oxazoline group-containing compounds, aziridine compounds, zirconium salt compounds, and silane coupling agents. Among these, it is preferable to use an isocyanate compound from the viewpoint of high reactivity.
 イソシアネート化合物としては、限定的でなく、例えばトリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)等の芳香族ジイソシアネート、水添TDI、水添MDI、水添XDI、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)等の脂肪族又は脂環族ジイソシナネートが、金属への接着性を向上させるためには有用である。中でも、芳香族ジイソシアネートが好ましく、さらには、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)が好ましい。これらの芳香族ジイソシアネートは、本発明における共重合ポリエステル樹脂(O)と併用することにより、耐水性をより向上させることができる。 The isocyanate compound is not limited. For example, aromatic diisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI), hydrogenated TDI, hydrogenated MDI, hydrogenated XDI, hexamethylene. Aliphatic or alicyclic diisocyanates such as diisocyanate (HDI) and isophorone diisocyanate (IPDI) are useful for improving adhesion to metals. Among them, aromatic diisocyanate is preferable, and tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI) are more preferable. These aromatic diisocyanates can further improve water resistance when used in combination with the copolymerized polyester resin (O) in the present invention.
 ポリエステル系樹脂組成物(P)中の架橋剤の含有量は、用いる架橋剤の種類等にもよるが、通常は1~40質量%であることが好ましく、その中でも5~38質量%であることがより好ましい。架橋剤の含有量が1質量%未満であると、上記したような接着性又は耐水性の向上効果が乏しくなる場合がある。一方、架橋剤の含有量が40質量%を超えると、樹脂組成物が硬化し、基材フィルム又は金属箔の伸びに追従することが困難となり、所望の冷間成型性が得られなくなる場合がある。 The content of the cross-linking agent in the polyester-based resin composition (P) depends on the type of cross-linking agent used and the like, but is usually preferably 1 to 40% by mass, and more preferably 5 to 38% by mass. It is more preferable. When the content of the crosslinking agent is less than 1% by mass, the above-described effect of improving adhesiveness or water resistance may be poor. On the other hand, when the content of the crosslinking agent exceeds 40% by mass, the resin composition is cured, and it becomes difficult to follow the elongation of the base film or the metal foil, and the desired cold formability may not be obtained. is there.
B.ポリエステル系樹脂組成物(P)の物性
 ポリエステル系樹脂組成物(P)は、以下のような物性を有していることが望ましい。
B. Physical properties of the polyester resin composition (P) The polyester resin composition (P) desirably has the following physical properties.
 1)粘弾性2
 ポリエステル系樹脂組成物層(M)を形成するポリエステル系樹脂組成物(P)は、粘弾性として、80℃での正接損失=損失弾性率(G’’)/貯蔵弾性率(G’)が0.2~3.2であることが好ましく、その中でも0.3~2.0であることが好ましい。この80℃での正接損失(以降「粘弾性2」ともいう。)が上記の範囲内であると、得られる積層体は、積層体を構成する基材フィルム(L)と金属箔(N)の剥離が生じ難いものとなり、耐水性に優れるものとなる。さらには、冷間成型に適した粘性を有しているため、深絞り成型等をより確実に行うことが可能となり、優れた冷間成型性を得ることができる。
 なお、ポリエステル系樹脂組成物(P)の粘弾性2を測定する際には、後述するように、得られる積層体からポリエステル系樹脂組成物(P)の被膜を切り出し、この被膜について後述する測定器を用いて測定し、算出すれば良い。
1) Viscoelasticity 2
The polyester resin composition (P) forming the polyester resin composition layer (M) has a tangent loss at 80 ° C. = loss elastic modulus (G ″) / storage elastic modulus (G ′) as viscoelasticity. It is preferably 0.2 to 3.2, and more preferably 0.3 to 2.0. When the tangent loss at 80 ° C. (hereinafter also referred to as “viscoelasticity 2”) is within the above range, the obtained laminate has a base film (L) and a metal foil (N) constituting the laminate. Is difficult to peel off and is excellent in water resistance. Furthermore, since it has a viscosity suitable for cold forming, deep drawing or the like can be more reliably performed, and excellent cold formability can be obtained.
When measuring the viscoelasticity 2 of the polyester-based resin composition (P), as described later, a film of the polyester-based resin composition (P) is cut out from the obtained laminate, and the measurement described later for this film is performed. What is necessary is just to measure and calculate using a vessel.
 2)厚み
 ポリエステル系樹脂組成物(P)で形成されるポリエステル系樹脂組成物層(M)(接着層)の厚みは1~20μmであることが好ましく、特に1~10μmであることがより好ましい。これにより、より優れた冷間成型性及び低温接着性を得ることができる。
2) Thickness The thickness of the polyester resin composition layer (M) (adhesive layer) formed of the polyester resin composition (P) is preferably 1 to 20 μm, more preferably 1 to 10 μm. . Thereby, more excellent cold moldability and low temperature adhesiveness can be obtained.
 金属箔N
 金属箔(N)としては、各種の金属元素(アルミニウム、鉄、銅、ニッケル等)又はこれらの合金の金属箔が挙げられるが、中でもアルミニウム箔(アルミニウム合金箔を含む。)が好適に使用される。また、アルミナ、シリカ等の金属酸化物を蒸着した蒸着層であっても良い。
Metal foil N
Examples of the metal foil (N) include various metal elements (aluminum, iron, copper, nickel, etc.) or metal foils of these alloys. Among them, aluminum foil (including aluminum alloy foil) is preferably used. The Moreover, the vapor deposition layer which vapor-deposited metal oxides, such as an alumina and a silica, may be sufficient.
 アルミニウム箔を使用する場合は、純アルミニウム箔又はアルミニウム合金箔のいずれでも良い。厚みは、限定的ではないが、9~200μm程度とし、好ましくは20~100μmとすることができる。アルミニウム箔の調質も制限されないが、特に軟質アルミニウム箔、特に鉄含有率が0.1~9.0質量%の軟質アルミニウム箔が、耐ピンホール性、成形加工時の延展性等の点で好ましい。鉄含有率が0.1質量%未満であると、耐ピンホール性、延展性等を十分に付与できないおそれがある。また、鉄含有率が9.0質量%を超えると柔軟性が損なわれることがある。  When using aluminum foil, either pure aluminum foil or aluminum alloy foil may be used. The thickness is not limited, but can be about 9 to 200 μm, preferably 20 to 100 μm. Although the tempering of the aluminum foil is not limited, the soft aluminum foil, particularly the soft aluminum foil with an iron content of 0.1 to 9.0% by mass, is particularly advantageous in terms of pinhole resistance and extensibility during molding. preferable. If the iron content is less than 0.1% by mass, pinhole resistance, spreadability and the like may not be sufficiently provided. Moreover, a softness | flexibility may be impaired when an iron content rate exceeds 9.0 mass%.
 金属箔の表面処理としては、酸脱脂剤による脱脂処理、ベーマイト処理のような熱水変性処理、アルマイト処理のような陽極酸化処理又はクロメート処理のような化成処理が行われていることが好ましい。特に好ましい表面処理の例としては、一ナトリウム二フッ化アンモニウム等のフッ素含有化合物を無機酸で溶解させた酸脱脂剤で処理する方法が挙げられる。これにより、軟質アルミニウム箔の脱脂効果だけでなく、不動態であるアルミニウムのフッ化物を形成させることが可能であり、耐フッ酸性という点で有効である。 As the surface treatment of the metal foil, it is preferable that a degreasing treatment using an acid degreasing agent, a hydrothermal modification treatment such as a boehmite treatment, an anodizing treatment such as an alumite treatment, or a chemical conversion treatment such as a chromate treatment. As a particularly preferable example of the surface treatment, there is a method of treating with an acid degreasing agent in which a fluorine-containing compound such as monosodium ammonium difluoride is dissolved with an inorganic acid. Thereby, not only the degreasing effect of the soft aluminum foil but also a passive aluminum fluoride can be formed, which is effective in terms of resistance to hydrofluoric acid.
 その他の層
 本発明の積層体は、本発明の効果を妨げない範囲内において他の層が付加されていても良い。
Other Layers The layered product of the present invention may have other layers added within a range that does not hinder the effects of the present invention.
 他の層としては、前記で挙げた各層のほか、樹脂フィルム、樹脂塗工層等も挙げられる。従って、例えば積層構成Pに対して別途に用意した基材フィルムL、ポリエステル系樹脂組成物層M又は金属箔Nを追加して積層することもできる。より具体的には、a)基材フィルムL1、ポリエステル系樹脂組成物層M1、金属箔N、ポリエステル系樹脂組成物層M2及び基材フィルムL2の順で含む積層体(図2参照)、b)基材フィルムL1、ポリエステル系樹脂組成物層M1、金属箔N1、基材フィルムL2、ポリエステル系樹脂組成物層M2、金属箔N2、ポリエステル系樹脂組成物層M3及び基材フィルムL3の順で含む積層体等が挙げられる。 As the other layers, in addition to the above-mentioned layers, a resin film, a resin coating layer, and the like can be given. Therefore, for example, the base film L, the polyester resin composition layer M, or the metal foil N separately prepared for the laminated structure P can be added and laminated. More specifically, a) a laminate including a base film L1, a polyester resin composition layer M1, a metal foil N, a polyester resin composition layer M2 and a base film L2 in this order (see FIG. 2), b. ) Base film L1, polyester resin composition layer M1, metal foil N1, base film L2, polyester resin composition layer M2, metal foil N2, polyester resin composition layer M3 and base film L3 in this order. The laminated body etc. which are included are mentioned.
 なお、上記のように、基材フィルムL、ポリエステル系樹脂組成物層M、金属箔Nがそれぞれ2層以上採用されている場合、それぞれ同一の材料であっても良いし、互いに異なっていても良い。例えば、基材フィルムLが2層で採用されている場合、一方がポリエステル系フィルムであり、他方がポリアミド系フィルムであっても良い In addition, as above-mentioned, when the base film L, the polyester-type resin composition layer M, and the metal foil N are each employ | adopted two or more layers, each may be the same material and may mutually differ. good. For example, when the base film L is employed in two layers, one may be a polyester film and the other may be a polyamide film.
 また、本発明では、基材フィルム(L)とポリエステル系樹脂組成物層(M)との接着性、ポリエステル系樹脂組成物層(M)と金属箔(N)との接着性を向上させるために、a)基材フィルムとポリエステル系樹脂組成物層との層間、b)ポリエステル系樹脂組成物層と金属箔との層間の少なくとも一方にアンカーコート層を有していても良い。 Moreover, in this invention, in order to improve the adhesiveness of a base film (L) and a polyester-type resin composition layer (M), and the adhesiveness of a polyester-type resin composition layer (M) and metal foil (N). In addition, an anchor coat layer may be provided in at least one of a) an interlayer between the base film and the polyester resin composition layer, and b) an interlayer between the polyester resin composition layer and the metal foil.
 アンカーコート層としては得られる積層体の性能を損なわなければ特に制限されず、例えばポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリウレタン樹脂、アクリル樹脂等が用いられる。アンカーコート層の厚みは0.01μm~5μmであることが好ましい。 The anchor coat layer is not particularly limited as long as the performance of the obtained laminate is not impaired, and for example, a polyester resin, a polyolefin resin, a polyamide resin, a polyurethane resin, an acrylic resin, or the like is used. The thickness of the anchor coat layer is preferably 0.01 μm to 5 μm.
(2)積層体の製造方法
 本発明の積層体の製造方法は、限定的ではないが、例えば基材フィルム(L)と金属箔(N)との間にポリエステル系樹脂組成物層(M)を積層する工程を含む方法により好適に製造することができる。この場合、ポリエステル系樹脂組成物層(M)は、基材フィルム(L)と金属箔(N)に直に隣接していても良いし、他の層を介して積層されていても良い。特に、本発明では、互いに直に隣接する状態で基材フィルム(L)/ポリエステル系樹脂組成物層(M)/金属箔(N)の積層体を構成することが望ましい。
(2) Manufacturing method of laminated body Although the manufacturing method of the laminated body of this invention is not limited, For example, a polyester-type resin composition layer (M) between base film (L) and metal foil (N). It can manufacture suitably by the method including the process of laminating | stacking. In this case, the polyester-based resin composition layer (M) may be directly adjacent to the base film (L) and the metal foil (N), or may be laminated via another layer. In particular, in the present invention, it is desirable to constitute a laminate of base film (L) / polyester resin composition layer (M) / metal foil (N) in a state immediately adjacent to each other.
 ポリエステル系樹脂組成物層(M)の積層方法は、上記のような順序で積層できる限り特に制限されず、例えばa)ポリエステル系樹脂組成物(P)の塗工液(以下、この塗工液を「接着剤」という。)を塗布する工程を含む方法、b)予め成形されたポリエステル系樹脂組成物(P)のシートを積層する工程を含む方法等のいずれも採用することができる。本発明では、より低温での積層が可能であり、かつ、優れた接着性が得られるという点で、上記a)の方法をより好ましく採用することができる。 The method for laminating the polyester resin composition layer (M) is not particularly limited as long as it can be laminated in the order as described above. For example, a) a coating solution of the polyester resin composition (P) (hereinafter, this coating solution) Any of a method including a step of applying an adhesive), and a method including a step of laminating a sheet of a polyester resin composition (P) molded in advance can be employed. In the present invention, the method a) can be more preferably employed in that lamination at a lower temperature is possible and excellent adhesiveness is obtained.
 ここで、ポリエステル系樹脂組成物(P)としては、前記「A.ポリエステル系樹脂組成物(P)の組成」、後記「(3)ポリエステル系樹脂組成物(P)」で示した材料を好適に用いることができる。 Here, as the polyester-based resin composition (P), the materials described in “A. Composition of the polyester-based resin composition (P)” and “(3) Polyester-based resin composition (P)” below are suitable. Can be used.
 a)接着剤の塗布による方法
 上記a)の方法は、より具体的には、ポリエステル系樹脂組成物(P)の接着剤を被塗工面に塗布及び乾燥することにより塗膜(実質的に乾燥した塗膜)を形成した後、前記塗膜に被接着層を加熱・加圧下で積層(特にドライラミネート)することにより積層体を形成する方法である。
a) Method by Application of Adhesive The method of a) above is more specifically applied by coating and drying the adhesive of the polyester resin composition (P) on the surface to be coated (substantially dry). In this method, a layered product is formed by laminating an adherend layer on the coating film under heating and pressure (particularly dry laminating).
 まず、ポリエステル系樹脂組成物(P)を溶媒に溶解又は分散させることにより、接着剤を調製する。この場合の溶媒としては、特に限定されず、例えばケトン系有機溶剤、芳香族系炭化水素系有機溶剤、エーテル系有機溶剤、含ハロゲン系有機溶剤、アルコール系有機溶剤、エステル系有機溶剤、グリコール系有機溶剤等の各種の有機溶剤のほか、水を用いることができる。なお、溶媒は、単独あるいは2種以上を組み合わせて使用しても良い。 First, an adhesive is prepared by dissolving or dispersing the polyester resin composition (P) in a solvent. The solvent in this case is not particularly limited. For example, ketone organic solvent, aromatic hydrocarbon organic solvent, ether organic solvent, halogen-containing organic solvent, alcohol organic solvent, ester organic solvent, glycol type In addition to various organic solvents such as organic solvents, water can be used. In addition, you may use a solvent individually or in combination of 2 or more types.
 ケトン系有機溶剤としては、例えば、メチルエチルケトン、アセトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、2-ヘキサノン、5-メチル-2-ヘキサノン、シクロペンタノン、シクロヘキサノン等が挙げられる。 Examples of the ketone organic solvent include methyl ethyl ketone, acetone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, 2-hexanone, 5-methyl-2-hexanone, cyclopentanone, and cyclohexanone.
 芳香族炭化水素系有機溶剤としては、例えば、トルエン、キシレン、ベンゼン等が挙げられる。 Examples of the aromatic hydrocarbon organic solvent include toluene, xylene, benzene and the like.
 エーテル系有機溶剤としては、例えば、ジオキサン、テトラヒドロフラン等が挙げられる。 Examples of the ether organic solvent include dioxane, tetrahydrofuran and the like.
 含ハロゲン系有機溶剤としては、例えば、四塩化炭素、トリクロロメタン、ジククロロメタン等が挙げられる。 Examples of the halogen-containing organic solvent include carbon tetrachloride, trichloromethane, dichloromethane, and the like.
 アルコール系有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、tert-ブタノール、n-アミルアルコール、イソアミルアルコール、sec-アミルアルコール、tert-アミルアルコール、1-エチル-1-プロパノール、2-メチル-1-ブタノール等が挙げられる。 Examples of alcohol-based organic solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-amyl alcohol, isoamyl alcohol, sec-amyl alcohol, tert-amyl. Examples include alcohol, 1-ethyl-1-propanol, and 2-methyl-1-butanol.
 エステル系有機溶剤としては、例えば、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-sec-ブチル、酢酸-3-メトキシブチル、プロピオン酸メチル等が挙げられる。 Examples of the ester organic solvent include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate, 3-methoxybutyl acetate, methyl propionate, and the like. .
 グリコール系有機溶剤としては、例えば、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールエチルエーテルアセテート等が挙げられる。 Examples of the glycol organic solvent include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol ethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether. , Diethylene glycol monobutyl ether, diethylene glycol ethyl ether acetate and the like.
 また、3-メトキシ-3-メチルブタノール、3-メトキシブタノール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジアセトンアルコール等の有機溶剤も使用することができる。 Also, organic solvents such as 3-methoxy-3-methylbutanol, 3-methoxybutanol, acetonitrile, dimethylformamide, dimethylacetamide, diacetone alcohol and the like can be used.
 ポリエステル系樹脂組成物(P)を上記のような溶媒に溶解又は分散させる場合は、ポリエステル系樹脂組成物(P)の濃度(固形分濃度)を5~75質量%程度に調節することが好ましい。 When the polyester resin composition (P) is dissolved or dispersed in the solvent as described above, the concentration (solid content concentration) of the polyester resin composition (P) is preferably adjusted to about 5 to 75% by mass. .
 上記のようにして得られた接着剤を塗布する方法としては、公知の方法を用いることができる。例えばグラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法等が挙げられる。これらの方法により接着剤を基材表面に均一にコーティングし、必要に応じて室温付近でセッティングした後、乾燥処理又は乾燥のための加熱処理に供することにより、溶媒の大部分が揮発し、均一な樹脂層(被膜)を塗布面に密着させて形成することができる。  As a method of applying the adhesive obtained as described above, a known method can be used. Examples include gravure roll coating, reverse roll coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, and brushing. By these methods, the adhesive is evenly coated on the surface of the substrate and, if necessary, set near room temperature, and then subjected to drying treatment or heat treatment for drying, most of the solvent is volatilized and uniform. A simple resin layer (film) can be formed in close contact with the coated surface.
 接着剤を用いて各層を積層する場合は、例えば以下のようにして実施することができる。接着剤を金属箔N上に塗布した後、乾燥して被膜(実質的に乾燥した塗膜)を形成する。次いで、金属箔N上の前記被膜面と基材フィルムL面とが密着するように重ね、ラミネート装置を用いて、上下ロールの表面温度60~90℃程度、線圧30~50N/cm程度の条件でドライラミネートを行う。その後、必要に応じて、室温(約20℃)~45℃程度の温度で80~100時間程度をかけて熱処理する。このようにして、3層構成の積層体を得ることができる。 When laminating each layer using an adhesive, it can be carried out as follows, for example. After the adhesive is applied on the metal foil N, it is dried to form a coating (substantially dry coating). Next, the coating surface on the metal foil N and the base film L surface are stacked so that they are in close contact, and using a laminating apparatus, the surface temperature of the upper and lower rolls is about 60 to 90 ° C., and the linear pressure is about 30 to 50 N / cm. Dry laminate under the conditions. Thereafter, if necessary, heat treatment is performed at a temperature of room temperature (about 20 ° C.) to about 45 ° C. for about 80 to 100 hours. In this way, a laminate having a three-layer structure can be obtained.
 b)シートを積層することによる積層方法
 この方法では、予めポリエステル系樹脂組成物(P)のシートを成形し、そのシートを積層する方法のほか、ポリエステル系樹脂組成物(P)の成形と同時に積層する方法等のいずれも採用することができる。これらの方法は、特に基材フィルムがポリオレフィン系フィルムである場合に好適に採用することができる。
b) Lamination method by laminating sheets In this method, a sheet of the polyester resin composition (P) is molded in advance, and the sheet is laminated, and simultaneously with the molding of the polyester resin composition (P). Any of the laminating methods can be adopted. These methods can be suitably employed particularly when the base film is a polyolefin film.
 具体的な方法としては、例えばポリエステル系樹脂組成物(P)を予め成形して得られたシートを基材フィルムと金属箔との間に配置し、低温で加熱・加圧下で積層することができる。 As a specific method, for example, a sheet obtained by pre-molding the polyester-based resin composition (P) may be disposed between the base film and the metal foil, and laminated at a low temperature under heat and pressure. it can.
 また例えば、ポリエステル系樹脂組成物(P)を溶剤に溶解又は分散することなく、ドライラミネート法、押出ラミネート法等によって積層することもできる。特に、押出ラミネート法により積層体を製造する際には、金属箔の上にポリエステル系樹脂組成物(P)と基材フィルムを構成するポリオレフィン系樹脂とをTダイから溶融押出することにより、積層体を好適に作製することができる。 Further, for example, the polyester resin composition (P) can be laminated by a dry laminating method, an extrusion laminating method or the like without dissolving or dispersing it in a solvent. In particular, when a laminate is produced by an extrusion laminating method, the polyester resin composition (P) and the polyolefin resin constituting the base film are melt-extruded from a T die on a metal foil to laminate the laminate. A body can be produced suitably.
2.ポリエステル系樹脂組成物(P)
 本発明は、前記のポリエステル系樹脂組成物層Mを構成するポリエステル系樹脂組成物(P)も包含する。すなわち、ガラス転移温度が10℃以下の共重合ポリエステル樹脂(O)を含むポリエステル系樹脂組成物も本発明に包含される。
2. Polyester resin composition (P)
The present invention also includes a polyester resin composition (P) constituting the polyester resin composition layer M. That is, a polyester resin composition containing a copolyester resin (O) having a glass transition temperature of 10 ° C. or lower is also included in the present invention.
 本発明のポリエステル系樹脂組成物の組成は、例えば、酸成分としてa)テレフタル酸30~80モル%、b)イソフタル酸20~60モル%及びc)アジピン酸、アゼライン酸及びセバシン酸の少なくとも1種0~20モル%、グリコール成分としてa)エチレングリコール15~60モル%、b)ネオペンチルグリコール30~60モル%及びc)ポリテトラメチレングリコール0~15モル%を含む共重合ポリエステル樹脂と、架橋剤としてイソシアネート化合物とを含むポリエステル系樹脂組成物を好適に採用することができる。このとき、共重合ポリエステル樹脂(O)は、ポリエステル系樹脂組成物(P)中の65~95質量%であることが好ましく、イソシアネート化合物は、ポリエステル系樹脂組成物(P)中の5~35質量%であることが好ましい。前記共重合ポリエステル樹脂は、先の「1-1)共重合ポリエステル(O)の組成」の項目で述べた組成範囲も採用することができる。 The composition of the polyester resin composition of the present invention includes, for example, at least one of a) terephthalic acid 30 to 80 mol%, b) isophthalic acid 20 to 60 mol% and c) adipic acid, azelaic acid and sebacic acid as the acid component. A copolyester resin comprising 0-20 mol% of species, a) ethylene glycol 15-60 mol%, b) neopentyl glycol 30-60 mol% and c) polytetramethylene glycol 0-15 mol% as a glycol component; A polyester resin composition containing an isocyanate compound as a crosslinking agent can be suitably employed. At this time, the copolyester resin (O) is preferably 65 to 95% by mass in the polyester resin composition (P), and the isocyanate compound is 5 to 35 in the polyester resin composition (P). It is preferable that it is mass%. The composition range described in the item “1-1) Composition of copolymer polyester (O)” can also be used for the copolymer polyester resin.
 また、本発明のポリエステル系樹脂組成物(P)は、積層体を得る際には低温での熱処理(100℃以下の熱処理、特に60~90℃での熱処理)を施すことにより、ポリエステル系樹脂組成物層(M)を得るが、このような熱処理を施す前の未熱処理のポリエステル系樹脂組成物(P)の粘弾性(以降「粘弾性1」ともいう。)を測定した際、80℃での正接損失=損失弾性率(G’’)/貯蔵弾性率(G’)が1.0~7.0の範囲にあることが好ましい。中でも1.5~6.5の範囲にあることがより好ましく、さらには、3.0~6.0の範囲にあることが最も好ましい。この80℃での正接損失(粘弾性1)が上記の範囲内であると、低温での熱処理による層間の接着性に優れ、得られる積層体は、冷間成型した際に深絞り成型等がより安定的に実施することが可能となり、優れた冷間成型性を得ることができる。 In addition, the polyester resin composition (P) of the present invention is obtained by subjecting the polyester resin to heat treatment at a low temperature (heat treatment at 100 ° C. or less, particularly heat treatment at 60 to 90 ° C.). When the composition layer (M) is obtained, the viscoelasticity (hereinafter also referred to as “viscoelasticity 1”) of the unheated polyester-based resin composition (P) before the heat treatment is measured is 80 ° C. It is preferable that the tangent loss at the point of loss = loss elastic modulus (G ″) / storage elastic modulus (G ′) is in the range of 1.0 to 7.0. Of these, the range of 1.5 to 6.5 is more preferable, and the range of 3.0 to 6.0 is most preferable. When the tangent loss at 80 ° C. (viscoelasticity 1) is within the above range, the interlayer is excellent by heat treatment at a low temperature, and the resulting laminate can be deep-drawn or the like when cold-molded. It becomes possible to carry out more stably and excellent cold moldability can be obtained.
 粘弾性1は、ポリエステル系樹脂組成物(P)を溶媒に溶解又は分散させたものをテフロン(登録商標)シートに塗布し、20℃、24時間放置した後、20℃の真空乾燥機で2時間乾燥させて、溶媒を揮発させることによりポリエステル系樹脂組成物の被膜(厚み100μm)を得る。そして、得られたポリエステル系樹脂組成物の被膜を用いて、後述する測定器を用いて測定、算出するものである。 Viscoelasticity 1 is obtained by applying a polyester resin composition (P) dissolved or dispersed in a solvent to a Teflon (registered trademark) sheet, leaving it at 20 ° C. for 24 hours, and then using a vacuum dryer at 20 ° C. By drying for a period of time and evaporating the solvent, a polyester resin composition film (thickness: 100 μm) is obtained. And it measures and calculates using the measuring device mentioned later using the film of the obtained polyester-type resin composition.
 また、本発明の積層体を形成する前の段階で、本発明のポリエステル系樹脂組成物(P)の粘弾性2を測定する際には、粘弾性1を測定する際に得られた被膜を用い、80℃の熱風乾燥器中で1分熱処理し、さらに40℃の熱風乾燥器中で96時間処理した後、粘弾性1と同様にして、80℃での正接損失=損失弾性率(G’’)/貯蔵弾性率(G’)を求めることができる。粘弾性2は、0.2~3.2であることが好ましく、中でも0.3~2.0であることが好ましい。粘弾性2が上記の範囲内であると、得られる積層体は、積層体を構成する基材フィルム(L)と金属箔(N)の剥離が生じ難いものとなり、耐水性により優れるものとなる。さらには、冷間成型に適した粘性を有しているため、深絞り成型等をより確実に行うことが可能となり、優れた冷間成型性を得ることができる。 Moreover, when measuring the viscoelasticity 2 of the polyester-type resin composition (P) of this invention in the step before forming the laminated body of this invention, the film obtained when measuring the viscoelasticity 1 is used. Used, heat-treated in a hot air dryer at 80 ° C. for 1 minute, further treated in a hot air dryer at 40 ° C. for 96 hours, and then tangential loss at 80 ° C. = loss elastic modulus (G '') / Storage modulus (G ') can be determined. The viscoelasticity 2 is preferably 0.2 to 3.2, and more preferably 0.3 to 2.0. When the viscoelasticity 2 is within the above range, the obtained laminate is less likely to cause peeling between the base film (L) and the metal foil (N) constituting the laminate, and is excellent in water resistance. . Furthermore, since it has a viscosity suitable for cold forming, deep drawing or the like can be more reliably performed, and excellent cold formability can be obtained.
 本発明のポリエステル系樹脂組成物(P)は、特に金属材料と樹脂材料との接着に適している。例えばアルミニウム箔と樹脂フィルムとの積層に好適に用いることができる。 The polyester resin composition (P) of the present invention is particularly suitable for adhesion between a metal material and a resin material. For example, it can be suitably used for laminating an aluminum foil and a resin film.
 本発明のポリエステル系樹脂組成物(P)は、特に1)比較的低温での熱処理(100℃以下の熱処理、特に60~90℃での熱処理)で接着する場合、2)比較的低温での熱処理により形成されたポリエステル系樹脂組成物層を含む積層体が冷間成型される場合の少なくともいずれかに好適に使用することができる。 The polyester-based resin composition (P) of the present invention is particularly suitable when 1) it is bonded by a heat treatment at a relatively low temperature (a heat treatment of 100 ° C. or less, especially a heat treatment at 60 to 90 ° C.). It can be suitably used for at least one of cases where a laminate including a polyester resin composition layer formed by heat treatment is cold-molded.
3.外装材及びそれを用いた電池
(1)外装材
 本発明の積層体は、電池の外装材として好適に用いることができる。より具体的には、発電要素の一部又は全体を被覆するための外装材として用いることができる。
3. Exterior Material and Battery Using the Same (1) Exterior Material The laminate of the present invention can be suitably used as an exterior material for a battery. More specifically, it can be used as an exterior material for covering a part or the whole of the power generation element.
 電池の外装材として用いる場合、積層体を予め凹状(容器状)に成形した後に発電要素を装填して封止する方法のほか、積層体に発電要素を載置した後、それを包み込むように積層体を成形して発電要素を封止する方法等も採用することができる。 When used as a battery exterior material, the laminated body is molded into a concave shape (container shape) in advance, and then the power generating element is loaded and sealed, and the power generating element is placed on the laminated body and then wrapped. A method of forming a laminate and sealing a power generation element can also be employed.
 本発明の積層体を凹状(容器状)に成形する方法としては、限定的ではないが、基材フィルムを実質的に溶融させることなく、常温付近の温度で成形を行なう冷間成型(特に絞り加工及び張り出し加工の少なくとも1種)を採用することが好ましい。従って、本発明の積層体は、深絞り加工により成形することもできる。これらの冷間成型の条件自体は公知の冷間成型方法に従えば良い。 The method of forming the laminate of the present invention into a concave shape (container shape) is not limited, but cold forming (particularly drawing) is performed at a temperature near room temperature without substantially melting the base film. It is preferable to employ at least one of processing and overhang processing. Therefore, the laminate of the present invention can be formed by deep drawing. These cold forming conditions themselves may follow a known cold forming method.
 さらに、積層体による被覆(包装)形態としては、2枚の矩形積層体で発電要素を包み、4方を接着することにより封止する方法、いわゆる二方袋に装填する形式で積層体を2つに折り、積層体に発電要素を載置した後、3方を接着することにより封止する方法等のいずれも採用することができる。 Furthermore, as a covering (packaging) form by the laminate, the power generation element is wrapped in two rectangular laminates and sealed by bonding the four sides, so that the laminate is loaded in a so-called two-sided bag. Any of a method of sealing by bonding three sides after folding the power generation element on the laminated body and placing the power generation element on the laminated body can be adopted.
 また、本発明の積層体は、積層体どうしを積層したかたちで用いることもできる。一般に電池の外装材としては1)発電要素中の電解液に接触した状態で発電要素を直に被覆する内層用外装材、2)前記電解液に接触しない状態で発電要素を被覆する外層用外装材の2つのタイプがあるが、本発明の積層体はいずれのタイプの外装材にも使用することができる。これらは、別々に用いることもできるが、予め両者(2つの外装材)を積層した状態で用いることもできる。 Also, the laminate of the present invention can be used in a form in which laminates are laminated. In general, battery exterior materials include: 1) an inner layer exterior material that directly covers the power generation element in contact with the electrolyte in the power generation element; 2) an outer layer exterior that covers the power generation element without contact with the electrolyte. Although there are two types of materials, the laminate of the present invention can be used for any type of exterior material. These can be used separately, but can also be used in a state in which both (two exterior materials) are laminated in advance.
 本発明の積層体を外装材として用いる場合の積層構成は、特に限定されないが、図2に示すように、基材フィルム(L1)/ポリエステル系樹脂組成物層(M)/金属箔(N)/接着剤層(M2)/基材フィルム(L2)の順に含む積層構成とすることが好ましい。 The laminate structure in the case of using the laminate of the present invention as an exterior material is not particularly limited. However, as shown in FIG. 2, a base film (L1) / polyester resin composition layer (M) / metal foil (N) It is preferable to have a laminated structure including the order of / adhesive layer (M2) / base film (L2).
 この場合、基材フィルム(L1)にポリアミドフィルム及びポリエステルフィルムの少なくとも一方を用い、基材フィルム(L2)にポリオレフィンフィルムを用いることが好ましい。特に、本発明の外装材を内層用外装材として用いる場合は、基材フィルム(L2)がポリオレフィンフィルムであることによってヒートシール等を行うことができる。 In this case, it is preferable to use at least one of a polyamide film and a polyester film for the base film (L1) and a polyolefin film for the base film (L2). In particular, when the exterior material of the present invention is used as the interior material for the inner layer, heat sealing or the like can be performed by using the base film (L2) as a polyolefin film.
 また、接着剤層(M2)は、公知又は市販の接着剤を用いて形成しても良いが、特にポリエステル系樹脂組成物層(M)と同様のものを採用することが好ましい。 The adhesive layer (M2) may be formed using a known or commercially available adhesive, but it is particularly preferable to use the same layer as the polyester resin composition layer (M).
 本発明の外装材では、最外層の基材フィルムL1の表面にさらに保護層を有していても良い。保護層は、電池外部からの衝撃、電池内部からの液漏れ等を防止するために有効である。 The outer packaging material of the present invention may further have a protective layer on the surface of the outermost base film L1. The protective layer is effective for preventing impact from the outside of the battery, liquid leakage from the inside of the battery, and the like.
 保護層としては、例えばフッ素系樹脂、ポリエステル系樹脂、アクリル系樹脂等のフィルムを用いることができる。また、ポリエステル系、ポリウレタン系、ポリオレフィン系、アクリル系、ポリビニルアルコール系、フッ素系の塗剤を塗工して層を設けることもできる。保護層には、必要に応じて、例えば紫外線吸収剤、酸化防止剤、難燃剤、スリップ剤、フィラー、有機ビーズ、フッ素パウダー等の各種添加剤を配合することもできる。 As the protective layer, for example, a film made of fluorine resin, polyester resin, acrylic resin, or the like can be used. Moreover, a layer can also be provided by applying a polyester-based, polyurethane-based, polyolefin-based, acrylic-based, polyvinyl alcohol-based or fluorine-based coating agent. Various additives such as an ultraviolet absorber, an antioxidant, a flame retardant, a slip agent, a filler, organic beads, and fluorine powder can be blended in the protective layer as necessary.
(2)電池
 本発明は、発電要素と、前記発電要素を被覆する本発明外装材とを含む電池を包含する。図3には、電池の概要図を示す。電池20は、発電要素21を外装材10によって被覆された構成を有する。より具体的には、本発明の積層体10のb面が発電要素側となるように、発電要素21を積層体10で被覆されている。
(2) Battery The present invention includes a battery including a power generation element and the outer packaging material of the present invention that covers the power generation element. FIG. 3 shows a schematic diagram of the battery. The battery 20 has a configuration in which the power generation element 21 is covered with the exterior material 10. More specifically, the power generation element 21 is covered with the multilayer body 10 so that the b surface of the multilayer body 10 of the present invention is on the power generation element side.
 発電要素21とは、正極活物質と集電体からなる正極、セパレータ、負極活物質と集電体からなる負極、電解液からなり、正極、負極はそれぞれ端部に延出されたリード線(タブ)を有する。  The power generation element 21 includes a positive electrode composed of a positive electrode active material and a current collector, a separator, a negative electrode composed of a negative electrode active material and a current collector, and an electrolyte solution. The positive electrode and the negative electrode each have lead wires extending to end portions ( Tab).
 上記の発電要素の構成物質は特に限定されず、公知の発電要素を用いることができる。また、一次電池、二次電池のいずれであっても良い。例えば、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池等が挙げられる。 The constituent material of the power generation element is not particularly limited, and a known power generation element can be used. Further, either a primary battery or a secondary battery may be used. For example, a lithium ion battery, a nickel metal hydride battery, a nickel cadmium battery, etc. are mentioned.
 リチウムイオン電池を一例として挙げると以下のような構成を採用できる。正極活物質の例としては、マンガン酸リチウム等のリチウム塩のほか、金属リチウム等が挙げられ、正極の集電体の例としてはアルミニウム箔が挙げられる。セパレータとしては、例えばポリエチレン、ポリプロピレン等の微多孔膜が挙げられる。負極活物質の例としては、黒鉛が挙げられ、マンガン酸リチウム等のリチウム塩、金属リチウム等が用いられ、正極の集電体の例としてはアルミニウム箔が挙げられる。電解液としては、四フッ化ホウ酸リチウム(LiBF)、六フッ化リン酸リチウム塩(LiPF)等のリチウム塩をエチルカーボネート(EC)、エチルメチルカーボネート(EMC)、プロピレンカーボネート等に溶解した溶液が挙げられる。  Taking a lithium ion battery as an example, the following configuration can be employed. Examples of the positive electrode active material include lithium salts such as lithium manganate, metal lithium, and the like. Examples of the positive electrode current collector include aluminum foil. Examples of the separator include microporous membranes such as polyethylene and polypropylene. Examples of the negative electrode active material include graphite, lithium salts such as lithium manganate, metal lithium, and the like are used. Examples of the positive electrode current collector include aluminum foil. As an electrolytic solution, lithium salts such as lithium tetrafluoroborate (LiBF 4 ) and lithium hexafluorophosphate (LiPF 6 ) are dissolved in ethyl carbonate (EC), ethyl methyl carbonate (EMC), propylene carbonate, and the like. Solution.
 図4には、本発明の積層体を外装材として用いた電池の実施形態の一例の断面図を示す。電池20では、内層用外装材10a及び外層用外装材10bの積層シートを2つ折りにして、その中に発電要素21が装填された構成をとる。積層シートの端部どうしをヒートシール等による接着部S1が形成されているが、その間にリード線23が挟持されている。図4では簡略化するためにリード線23が1つだけ示されているが、実際は正極用リード線及び負極用リード線が設けられる。 FIG. 4 shows a cross-sectional view of an example of an embodiment of a battery using the laminate of the present invention as an exterior material. The battery 20 has a configuration in which the laminated sheet of the inner layer outer packaging material 10a and the outer layer outer packaging material 10b is folded in two and the power generation element 21 is loaded therein. An adhesive portion S1 is formed between the end portions of the laminated sheet by heat sealing or the like, and the lead wire 23 is sandwiched therebetween. Although only one lead wire 23 is shown in FIG. 4 for the sake of simplicity, a positive lead wire and a negative lead wire are actually provided.
 図4に示す電池の組み立てに際しては、リード線23を備えた発電要素21において、リード線を外部に露出するようにして発電要素21を内層用外装材10aで被覆する。内層用外装材10aは、発電要素21を収容できるように予め凹状に冷間成型しておくことができる。被覆に際し、内層用外装材10aのb面にはヒートシール層(図示せず)が形成されていて、2つ折りにした内層用外装材10aのヒートシール層どうしを接合することにより発電要素21の被覆が行われる。この場合、一部を接合せずに、電解液の注入口として確保する。次いで、注入口から電解液を充填した後、注入口もヒートシールにより閉じる。その後、内層用外装材10aの外周面を外層用外装材10bで同様に覆う。この場合、内層用外装材10bも、発電要素21を外から被覆できるように予め凹状に冷間成型しておくことができる。このようにして外装材10a,10bによって発電要素21の封止が行われる。 When the battery shown in FIG. 4 is assembled, in the power generation element 21 having the lead wire 23, the power generation element 21 is covered with the inner layer exterior material 10a so that the lead wire is exposed to the outside. The inner layer exterior material 10 a can be cold-formed in advance in a concave shape so that the power generation element 21 can be accommodated. At the time of coating, a heat seal layer (not shown) is formed on the b surface of the inner layer outer packaging material 10a, and the heat sealing layers of the inner layer outer packaging material 10a that are folded in two are joined together. Coating is performed. In this case, a part is not joined, but is secured as an inlet for the electrolyte. Next, after filling the electrolytic solution from the injection port, the injection port is also closed by heat sealing. Thereafter, the outer peripheral surface of the inner layer exterior material 10a is similarly covered with the outer layer exterior material 10b. In this case, the inner layer exterior material 10b can also be cold-molded into a concave shape in advance so that the power generation element 21 can be covered from the outside. In this way, the power generation element 21 is sealed by the exterior materials 10a and 10b.
 また、図5には、別の実施形態に係る電池の断面の概要図を示す。電池20においては、外部に接続するためのリード線23を有する発電要素(発電素子)21の周囲が内層用外装材10aで覆われ、さらにその外側が外層用外装材10bで覆われている。内層用外装材10a及び外層用外装材10bの両端は、ヒートシール等による接着部S1,S2によって封止されている。リード線23は、電池20内の電極から外部まで露出するように延びており、発電要素21からの電流を外部に取り出すことができる。図5では簡略化するためにリード線23が1つだけ示されているが、実際は正極用リード線及び負極用リード線が設けられる。 FIG. 5 shows a schematic diagram of a cross section of a battery according to another embodiment. In the battery 20, the periphery of a power generation element (power generation element) 21 having a lead wire 23 for connection to the outside is covered with an inner layer exterior material 10 a, and the outer side is covered with an outer layer exterior material 10 b. Both ends of the inner layer exterior material 10a and the outer layer exterior material 10b are sealed by adhesive portions S1 and S2 by heat sealing or the like. The lead wire 23 extends so as to be exposed from the electrode in the battery 20 to the outside, and the current from the power generation element 21 can be taken out to the outside. Although only one lead wire 23 is shown in FIG. 5 for the sake of simplicity, a positive lead wire and a negative lead wire are actually provided.
 図5に示す電池20の組み立てに際しては、リード線23を備えた発電要素21において、リード線を外部に露出するようにして発電要素21を内層用外装材10aで被覆する。内層用外装材10aは、発電要素21を収容できるように予め凹状に冷間成型しておくことができる。被覆に際し、内層用外装材10aのb面にはヒートシール層(図示せず)が形成されていて、そのヒートシール層どうしを接合することにより発電要素21の被覆が行われる。この場合、一部を接合せずに、電解液の注入口として確保する。次いで、注入口から電解液を充填した後、注入口もヒートシールにより閉じる。その後、内層用外装材10aの外周面を外層用外装材10bで覆う。この場合、内層用外装材10bも、発電要素21を外から被覆できるように予め凹状に冷間成型しておくことができる。このようにして外装材10a,10bによって発電要素21の封止が行われる。 When the battery 20 shown in FIG. 5 is assembled, in the power generation element 21 having the lead wire 23, the power generation element 21 is covered with the inner layer exterior material 10a so that the lead wire is exposed to the outside. The inner layer exterior material 10 a can be cold-formed in advance in a concave shape so that the power generation element 21 can be accommodated. At the time of coating, a heat seal layer (not shown) is formed on the b surface of the inner layer exterior material 10a, and the power generation element 21 is coated by joining the heat seal layers. In this case, a part is not joined, but is secured as an inlet for the electrolyte. Next, after filling the electrolytic solution from the injection port, the injection port is also closed by heat sealing. Thereafter, the outer peripheral surface of the inner layer exterior material 10a is covered with the outer layer exterior material 10b. In this case, the inner layer exterior material 10b can also be cold-molded into a concave shape in advance so that the power generation element 21 can be covered from the outside. In this way, the power generation element 21 is sealed by the exterior materials 10a and 10b.
 なお、図4~図5では、電池用外装材として、内層用外装材と外層用外装材の2層構造のものを示したが、1層構造の外装材であっても良いし、3層以上の多層構造の外装材であっても良い。 4 to 5 show the two-layer structure of the outer packaging material for the inner layer and the outer packaging material for the outer layer as the outer packaging material for the battery, but the outer packaging material may be a one-layer structure or three layers. The exterior material of the above multilayer structure may be sufficient.
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。 Hereinafter, examples and comparative examples will be shown to describe the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples.
1.測定方法
 実施例及び比較例で得られた試料等における各特性値の測定方法及び各種の評価は、以下のように行った。
1. Measuring method The measuring method of each characteristic value and various evaluations in the samples and the like obtained in Examples and Comparative Examples were performed as follows.
(1)共重合ポリエステル樹脂の組成
 NMR測定装置(日本電子社製JNM-LA400型)を用い、1H-NMR測定を行って、それぞれの共重合成分の組成を求めた。なお、測定溶媒としては、重水素化トリフルオロ酢酸を用いた。
(1) Composition of copolymerized polyester resin Using an NMR measuring apparatus (JNM-LA400 type, manufactured by JEOL Ltd.), 1H-NMR measurement was performed to determine the composition of each copolymer component. Note that deuterated trifluoroacetic acid was used as a measurement solvent.
(2)共重合ポリエステル樹脂の数平均分子量
 ゲルパーミエーションクロマトグラフィー(GPC)を用いて、以下の条件でポリスチレン換算の数平均分子量を測定した。
 送液ユニット:島津製作所社製LC-10ADvp
 紫外-可視分光光度計:島津製作所社製SPD-6AV、検出波長:254nm、カラム:Shodex社製KF-803 1本、Shodex社製KF-804 2本を直列に接続して使用
 溶媒:テトラヒドロフラン
 測定温度:40℃
(2) Number average molecular weight of copolymerized polyester resin Using gel permeation chromatography (GPC), the number average molecular weight in terms of polystyrene was measured under the following conditions.
Liquid feeding unit: LC-10ADvp manufactured by Shimadzu Corporation
Ultraviolet-visible spectrophotometer: SPD-6AV manufactured by Shimadzu Corporation, detection wavelength: 254 nm, column: one KF-803 manufactured by Shodex, and two KF-804 manufactured by Shodex are used in series. Solvent: tetrahydrofuran measurement Temperature: 40 ° C
(3)共重合ポリエステル樹脂のガラス転移温度(Tg)
 JIS-K 7121に従って、入力補償型示差走査熱量測定装置(パーキンエルマー社製ダイヤモンドDSC型)を用い、20℃から120℃まで、昇温速度10℃/分の条件で測定を行い、得られた昇温曲線中の、低温側ベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大となるような点で引いた接線との交点の温度を求め、ガラス転移温度とした。
(3) Glass transition temperature (Tg) of copolyester resin
According to JIS-K 7121, using an input compensation type differential scanning calorimeter (diamond DSC type manufactured by PerkinElmer), measurement was performed from 20 ° C. to 120 ° C. under a temperature rising rate of 10 ° C./min. Find the temperature at the intersection of the straight line in the temperature rise curve, which extends the low temperature side baseline to the high temperature side, and the tangent line drawn at the point where the slope of the step change part of the glass transition is maximum. The transition temperature was used.
(4)共重合ポリエステル樹脂の相対粘度
 共重合ポリエステル樹脂をフェノール/1,1,2,2-テトラクロロエタンの等重量混合溶媒に0.2g/40mlの濃度で溶解し、ウベローデ粘度管を用いて、20℃にて試料溶液及び溶媒それぞれの流下時間を測定し、次式により相対粘度を算出した。   
 相対粘度:ηrel=t/t0   
 t:共重合ポリエステル樹脂溶液の流下時間   
 t0:溶媒の流下時間  
(4) Relative Viscosity of Copolyester Resin Copolyester resin is dissolved in an equal weight mixed solvent of phenol / 1,1,2,2-tetrachloroethane at a concentration of 0.2 g / 40 ml, and an Ubbelohde viscometer is used. The flowing time of each of the sample solution and the solvent was measured at 20 ° C., and the relative viscosity was calculated by the following formula.
Relative viscosity: ηrel = t / t0
t: Flow time of the copolyester resin solution
t0: solvent flow time
(5)ポリエステル系樹脂組成物の粘弾性〔正接損失(tanδ)〕
 粘弾性1
 得られた樹脂組成物の溶液をテフロン(登録商標)シートに塗布し、20℃、24時間放置した後、20℃の真空乾燥機で2時間乾燥させて、混合溶剤を揮発させることによりポリエステル系樹脂組成物の被膜(厚み100μm)を得た。得られたポリエステル系樹脂組成物の被膜を用い、動的粘弾性をRheometric社製動的粘弾性測定器SR-5000を用い、250℃から50℃まで、降温速度2℃/分の条件で測定を行って、80℃での正接損失=損失弾性率(G’’)/貯蔵弾性率(G’)を求めた。これを粘弾性1とした。
 粘弾性2
 得られた積層体からポリエステル系樹脂組成物層を切り出し、膜厚3μmの被膜を採取する。この被膜を用い、動的粘弾性をRheometric社製動的粘弾性測定器SR-5000を用い、250℃から50℃まで、降温速度2℃/分の条件で測定を行ない、80℃での正接損失=損失弾性率(G’’)/貯蔵弾性率(G’)を求めた。これを粘弾性2とした。
 なお、得られた積層体からポリエステル系樹脂組成物層を切り出す際に、膜厚3μmの被膜を得ることができない場合は、厚み補正がなされることを前提として、膜厚3μm未満の被膜を用いて測定しても良い。
(5) Viscoelasticity of polyester resin composition [tangent loss (tan δ)]
Viscoelasticity 1
The obtained resin composition solution was applied to a Teflon (registered trademark) sheet, allowed to stand at 20 ° C. for 24 hours, then dried in a vacuum dryer at 20 ° C. for 2 hours, and the mixed solvent was volatilized to form a polyester system. A film (thickness: 100 μm) of the resin composition was obtained. Using the resulting polyester-based resin composition film, dynamic viscoelasticity was measured from 250 ° C. to 50 ° C. under a temperature drop rate of 2 ° C./minute using a dynamic viscoelasticity measuring instrument SR-5000 manufactured by Rheometric. The tangent loss at 80 ° C. = loss elastic modulus (G ″) / storage elastic modulus (G ′) was determined. This was designated as viscoelasticity 1.
Viscoelasticity 2
A polyester-based resin composition layer is cut out from the obtained laminate, and a film with a thickness of 3 μm is collected. Using this coating, dynamic viscoelasticity was measured from 250 ° C. to 50 ° C. under a temperature drop rate of 2 ° C./min using a dynamic viscoelasticity measuring instrument SR-5000 manufactured by Rheometric, and tangent at 80 ° C. Loss = loss elastic modulus (G ″) / storage elastic modulus (G ′). This was designated as viscoelasticity 2.
When a polyester-based resin composition layer is cut out from the obtained laminate, if a film with a film thickness of 3 μm cannot be obtained, a film with a film thickness of less than 3 μm is used on the premise that the thickness is corrected. May be measured.
(6)積層体の接着性
 得られた積層体を25mm幅で切り出して測定サンプルとし、引張り試験機(インテスコ社製精密万能材料試験機2020型)を用い、引張り速度50mm/分及び引張り角度180度で塗膜の剥離強度を測定することにより接着強度を評価した。
 ◎:剥離強度が8N/25mm以上である。
 ○:剥離強度が5N/25mm以上、8N/25mm未満である。
 △:剥離強度が2N/25mm以上、5N/25mm未満である。
 ×:剥離強度が2N/25mm未満である。
(6) Adhesiveness of laminated body The obtained laminated body was cut out with a width of 25 mm to obtain a measurement sample, and a tensile tester (precision universal material tester type 2020 manufactured by Intesco) was used and a tensile speed of 50 mm / min and a tensile angle of 180 were used. The adhesion strength was evaluated by measuring the peel strength of the coating film in degrees.
A: Peel strength is 8 N / 25 mm or more.
A: The peel strength is 5 N / 25 mm or more and less than 8 N / 25 mm.
Δ: The peel strength is 2 N / 25 mm or more and less than 5 N / 25 mm.
X: Peel strength is less than 2 N / 25 mm.
(7)積層体の耐アルコール性
 得られた積層体を長さ100mm×幅15mmの寸法に裁断して試験片とした。この試験片を、エタノールを充填した容器中に挿入して密栓し、85℃、3時間保管後、さらに水中に1昼夜浸漬した後の試験片の剥離状況を目視で観察した。
 ○:積層体の剥離が見られなかった。
 △:積層体全面積の10%未満で剥離が確認された。
 ×:積層体全面積の10%を超える範囲で剥離が確認された。
(7) Alcohol resistance of the laminate The obtained laminate was cut into a size of 100 mm length x 15 mm width to obtain a test piece. The test piece was inserted into a container filled with ethanol, sealed, and stored at 85 ° C. for 3 hours and then immersed in water for one day and night, and the peeled state of the test piece was visually observed.
○: No peeling of the laminate was observed.
Δ: Peeling was confirmed in less than 10% of the total area of the laminate.
X: Peeling was confirmed in a range exceeding 10% of the total area of the laminate.
(8)積層体の耐水性
 得られた積層体を長さ100mm×幅15mmの寸法に裁断して試験片とし、その試験片を85℃の水中に48時間浸漬した後の試験片の剥離状況を目視で観察した。
 ○:積層体の剥離が見られなかった。
 △:積層体全面積の10%未満で剥離が確認された。
 ×:積層体全面積の10%を超える範囲で剥離が確認された。
(8) Water resistance of laminated body The obtained laminated body was cut into a test piece having a length of 100 mm and a width of 15 mm, and the test piece was peeled off in water at 85 ° C for 48 hours. Was visually observed.
○: No peeling of the laminate was observed.
Δ: Peeling was confirmed in less than 10% of the total area of the laminate.
X: Peeling was confirmed in a range exceeding 10% of the total area of the laminate.
(9)積層体の耐漏液性
 得られた積層体を100mm×50mmの寸法に裁断して、ポリオレフィンフィルム側を内側として2枚重ねて電解液5ccを入れ4方向をシールした。作製した電池を50℃の乾燥機(3時間)に入れ、耐漏液性を調べた。電解液は、エチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1(質量比)の混合溶液にLiPFが1.5Mになるように調整した液を用いた。なお、ポリオレフィン系フィルムを有していない積層体については、耐漏液性の評価を行わなかった。
 ○:電解液の漏れが認められなかった。
 ×:電解液の漏れが認められた。
(9) Liquid Leakage Resistance of Laminate The obtained laminate was cut into a size of 100 mm × 50 mm, and two sheets were stacked with the polyolefin film side as the inside, and 5 cc of electrolyte solution was added to seal the four directions. The produced battery was placed in a dryer (3 hours) at 50 ° C., and leakage resistance was examined. As the electrolytic solution, a solution prepared by adjusting a mixed solution of ethylene carbonate / diethyl carbonate / dimethyl carbonate = 1/1/1 (mass ratio) so that LiPF 6 is 1.5 M was used. In addition, about the laminated body which does not have a polyolefin-type film, liquid leakage resistance evaluation was not performed.
○: No leakage of electrolyte was observed.
X: Leakage of electrolyte was recognized.
(10)積層体の成形性
 JISZ2247に基づいて、エリクセン試験機(安田精機製作所社製No.5755)を用い、得られた積層体に鋼球ポンチを所定の押し込み深さで押し付け、エリクセン値を求めた(破断、クラック、剥離が生じない押し込み深さとした)。エリクセン値は0.5mmごとに測定し、以下の基準に従って評価した。
 ◎:エリクセン値が7mm以上
 ○:エリクセン値が5mm以上、7mm未満
 △:エリクセン値が3mm以上、5mm未満
 ×:エリクセン値が3mm未満
(10) Formability of laminated body Based on JISZ2247, using an Erichsen tester (No. 5755 manufactured by Yasuda Seiki Seisakusho Co., Ltd.), a steel ball punch was pressed against the obtained laminated body at a predetermined indentation depth, and the Erichsen value was determined. It was determined (the indentation depth was such that no breakage, cracking or peeling occurred). The Erichsen value was measured every 0.5 mm and evaluated according to the following criteria.
◎: Eriksen value is 7 mm or more ○: Eriksen value is 5 mm or more and less than 7 mm △: Eriksen value is 3 mm or more and less than 5 mm ×: Eriksen value is less than 3 mm
2.原料
 各実施例及び比較例では、以下のような原料をそれぞれ用いた。
(1)基材フィルム(L)
・L-1 ポリアミドフィルム(ナイロン6フィルム;ユニチカ社製「エンブレムON」厚み25μm)
・L-2 ポリエステルフィルム(ポリエチレンテレフタレートフィルム;ユニチカ社製「エンブレットS」厚み25μm)
・L-3 ポリオレフィンフイルム(ポリプロピレンフィルム;三井化学東セロ社製「GHC」厚み50μm)
(2)金属箔(N)
・N-1 アルミニウム箔 厚み40μm(JIS規格A8079H-O)
(3)架橋剤(S)
・S-1:4,4′-ジフェニルメタンジイソシアネート[MDI](三井化学社製「ポリメリックMDI」)
・S-2:ヘキサメチレンジイソシアネート[HDI](旭化成ケミカルズ社製「TPA-100」) 
(4)共重合ポリエステル樹脂
 以下の各調製例に従って共重合ポリエステル樹脂を調製した。
2. Raw materials In the examples and comparative examples, the following raw materials were used.
(1) Base film (L)
・ L-1 Polyamide film (Nylon 6 film; “Emblem ON” thickness 25 μm manufactured by Unitika)
・ L-2 Polyester film (Polyethylene terephthalate film; "Embret S" thickness 25μm, manufactured by Unitika)
・ L-3 Polyolefin film (Polypropylene film; Mitsui Chemicals, Inc. “GHC” thickness 50 μm)
(2) Metal foil (N)
・ N-1 aluminum foil thickness 40μm (JIS standard A8079H-O)
(3) Cross-linking agent (S)
S-1: 4,4′-diphenylmethane diisocyanate [MDI] (“Polymeric MDI” manufactured by Mitsui Chemicals)
S-2: Hexamethylene diisocyanate [HDI] (“TPA-100” manufactured by Asahi Kasei Chemicals Corporation)
(4) Copolyester resin Copolyester resin was prepared according to the following preparation examples.
 調製例1
 テレフタル酸83g(50モル%)、イソフタル酸83g(50モル%)、エチレングリコール17g(27モル%)、ネオペンチルグリコール71g(68モル%)、1,4-シクロヘキサンジメタノール36g(25モル%)、ポリテトラメチレングリコール150g(15モル%)及び重合触媒としてテトラブチルチタネート0.1gを反応器に仕込み、系内を窒素に置換した。そして、これらの原料を1000rpmで撹拌しながら、反応器を245℃で加熱し、溶融させた。反応器内温度が245℃に到達してから、3時間エステル化反応を進行させた。3時間経過後、系内の温度を240℃にし、系内を減圧した。系内が高真空(圧力:0.1~10-5Pa)に到達してから、さらに3時間重合反応を行って、共重合ポリエステル樹脂(A)を得た。
Preparation Example 1
83 g (50 mol%) terephthalic acid, 83 g (50 mol%) isophthalic acid, 17 g (27 mol%) ethylene glycol, 71 g (68 mol%) neopentyl glycol, 36 g (25 mol%) 1,4-cyclohexanedimethanol In addition, 150 g (15 mol%) of polytetramethylene glycol and 0.1 g of tetrabutyl titanate as a polymerization catalyst were charged into the reactor, and the system was replaced with nitrogen. And while stirring these raw materials at 1000 rpm, the reactor was heated at 245 ° C. and melted. After the temperature in the reactor reached 245 ° C., the esterification reaction was allowed to proceed for 3 hours. After 3 hours, the temperature in the system was 240 ° C., and the system was depressurized. After the inside of the system reached a high vacuum (pressure: 0.1 to 10 −5 Pa), a polymerization reaction was further performed for 3 hours to obtain a copolyester resin (A).
 調製例2~9
 使用する各成分の種類とその組成及び重合反応時間を表1のように変更した以外は、調製例1と同様にし、共重合ポリエステル樹脂(B)~(I)を得た。
Preparation Examples 2 to 9
Copolyester resins (B) to (I) were obtained in the same manner as in Preparation Example 1, except that the types and composition of the components used and the polymerization reaction time were changed as shown in Table 1.
 なお、表1における略語は、それぞれ以下のものを示す。
 TPA:テレフタル酸
 IPA:イソフタル酸
 ADA:アジピン酸(主鎖の炭素数が6)
 AZA:アゼライン酸(主鎖の炭素数が8)
 SEA:セバシン酸(主鎖の炭素数が9)
 EG:エチレングリコール
 NPG:ネオペンチルグリコール
 CHDM:1,4-シクロヘキサンジメタノール
 PTMG1000:ポリテトラメチレングリコール(分子量:1000、主鎖の炭素数が約54)
 HD:1,6-ヘキサンジオール(主鎖の炭素数が6)
In addition, the abbreviation in Table 1 shows the following, respectively.
TPA: terephthalic acid IPA: isophthalic acid ADA: adipic acid (the main chain has 6 carbon atoms)
AZA: Azelaic acid (main chain has 8 carbon atoms)
SEA: Sebacic acid (main chain has 9 carbon atoms)
EG: Ethylene glycol NPG: Neopentyl glycol CHDM: 1,4-cyclohexanedimethanol PTMG1000: Polytetramethylene glycol (molecular weight: 1000, main chain carbon number is about 54)
HD: 1,6-hexanediol (main chain has 6 carbon atoms)
 得られた共重合ポリエステル樹脂(A)~(I)の調製時の仕込組成と得られた共重合体の組成及び特性値を表1に示す。 Table 1 shows the charged composition at the time of preparation of the obtained copolymer polyester resins (A) to (I) and the composition and characteristic values of the obtained copolymer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1
 共重合ポリエステル樹脂として、上記調製例1で得られた共重合ポリエステル樹脂Aを用い、共重合ポリエステル樹脂Aが100質量%であるポリエステル系樹脂組成物を得た。そして、樹脂固形分の濃度が20質量%になるようにトルエンとメチルエチルケトンの質量比8:2の混合溶剤を投入し、密栓してペイントシェイカーで溶解し、樹脂組成物の溶液(接着剤)を得た。基材フィルム(L)としてL-1(ポリアミドフィルム)を用い、金属箔(N)としてN-1(アルミニウム箔)を用いた。上記で得られた接着剤を、卓上型コーティング装置(安田精機社製フィルムアプリケータ;No.542-AB型、バーコータ装着)を用いて金属箔(N-1)の片面にコーティングした後、80℃で1分熱風乾燥させ、膜厚5μmの樹脂被膜(ポリエステル系樹脂組成物層)を形成した。その後、金属箔(N-1)の樹脂被膜形成面と、基材フィルム(L-1)のコロナ処理面とが密着するように重ね、ラミネート装置を用い、上下ロールの表面温度80℃、線圧40N/cm、速度1m/minの条件でドライラミネートを行い、40℃で96時間熱処理し、3層構成の積層体(図1に示す構成のもの)を得た。
Example 1
As the copolyester resin, the copolyester resin A obtained in Preparation Example 1 was used to obtain a polyester resin composition in which the copolyester resin A was 100% by mass. Then, a mixed solvent of toluene and methyl ethyl ketone in a mass ratio of 8: 2 is added so that the resin solids concentration is 20% by mass, tightly plugged and dissolved with a paint shaker, and a resin composition solution (adhesive) is obtained. Obtained. L-1 (polyamide film) was used as the base film (L), and N-1 (aluminum foil) was used as the metal foil (N). The adhesive obtained as described above was coated on one side of a metal foil (N-1) using a desktop coating apparatus (film applicator manufactured by Yasuda Seiki Co., Ltd .; No. 542-AB type, equipped with a bar coater). It was dried with hot air at 1 ° C. for 1 minute to form a resin film (polyester resin composition layer) having a film thickness of 5 μm. Thereafter, the resin film-formed surface of the metal foil (N-1) and the corona-treated surface of the base film (L-1) are stacked so that they are in close contact with each other. Dry lamination was performed under conditions of a pressure of 40 N / cm and a speed of 1 m / min, and heat treatment was performed at 40 ° C. for 96 hours to obtain a laminate having a three-layer structure (having the structure shown in FIG. 1).
 実施例2
 ポリエステル系樹脂組成物を、共重合ポリエステル樹脂Aと架橋剤S-1とからなるポリエステル系樹脂組成物とし、それぞれの含有量が表2に示すものとなるように添加した以外は、実施例1と同様にして接着剤を調製し、実施例1と同様にして3層構成の積層体を得た。
Example 2
Example 1 except that the polyester-based resin composition is a polyester-based resin composition comprising a copolymerized polyester resin A and a cross-linking agent S-1, and each content is as shown in Table 2. An adhesive was prepared in the same manner as in Example 1, and a laminate having a three-layer structure was obtained in the same manner as in Example 1.
 実施例3~7
 ポリエステル系樹脂組成物を得る際に、表2に示す架橋剤を表2に示す含有量となるように添加した以外は、実施例1と同様にして接着剤を調製し、実施例1と同様にして3層構成の積層体を得た。
Examples 3-7
An adhesive was prepared in the same manner as in Example 1 except that the cross-linking agent shown in Table 2 was added so as to have the content shown in Table 2 when obtaining the polyester resin composition. Thus, a laminate having a three-layer structure was obtained.
 実施例8~19、比較例1~4
 ポリエステル系樹脂組成物を得る際に、共重合ポリエステル樹脂の種類を表2~表3に記載のものに変更し、表2~表3に示す種類及び含有量となるように架橋剤を添加した以外は、実施例1と同様にして接着剤を調製し、実施例1と同様にして3層構成の積層体を得た。
Examples 8 to 19 and Comparative Examples 1 to 4
When obtaining a polyester-based resin composition, the type of copolymer polyester resin was changed to that shown in Tables 2 to 3, and a crosslinking agent was added so that the types and contents shown in Tables 2 to 3 were obtained. Except for the above, an adhesive was prepared in the same manner as in Example 1, and a laminate having a three-layer structure was obtained in the same manner as in Example 1.
 比較例5
 共重合ポリエステル樹脂Aを溶解した樹脂溶液(接着剤)に代えて、ポリウレタン(三井化学社製の「タケラックA525/タケネートA50」)を使用した以外は、実施例1と同様にして、3層構成の積層体を得た。
Comparative Example 5
Three-layer construction was performed in the same manner as in Example 1 except that polyurethane (“Takelac A525 / Takenate A50” manufactured by Mitsui Chemicals, Inc.) was used instead of the resin solution (adhesive) in which the copolyester resin A was dissolved. A laminate was obtained.
 試験例1
 実施例1~19、比較例1~5で得られた積層体について、前記「1.測定方法」で挙げた物性等の評価結果を表2~表3に示す。なお、表2~表3中における「Al」はアルミニウム箔、「Ny」はナイロン(ポリアミドフィルム)、「PU」はポリウレタンをそれぞれ示す。
Test example 1
For the laminates obtained in Examples 1 to 19 and Comparative Examples 1 to 5, the evaluation results of physical properties and the like listed in “1. Measuring method” are shown in Tables 2 to 3. In Tables 2 to 3, “Al” represents aluminum foil, “Ny” represents nylon (polyamide film), and “PU” represents polyurethane.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例20
 基材フィルム(L)としてL-2(ポリエステルフィルム)を用いたほかは、実施例1と同様にして接着剤を調製し、実施例1と同様にして3層構成の積層体(図1に示す構成のもの)を得た。
Example 20
An adhesive was prepared in the same manner as in Example 1 except that L-2 (polyester film) was used as the base film (L), and a three-layer laminate (see FIG. 1) was prepared in the same manner as in Example 1. Obtained).
 実施例21
 ポリエステル系樹脂組成物を得る際に、共重合ポリエステル樹脂Aと架橋剤S-1とからなるポリエステル系樹脂組成物とし、それぞれの含有量が表4に示すものとなるように添加した以外は、実施例1と同様にして接着剤を調製し、実施例20と同様にして3層構成の積層体を得た。
Example 21
When obtaining a polyester resin composition, a polyester resin composition composed of a copolyester resin A and a cross-linking agent S-1 was used except that each content was as shown in Table 4. An adhesive was prepared in the same manner as in Example 1, and a three-layer laminate was obtained in the same manner as in Example 20.
 実施例22~26
 ポリエステル系樹脂組成物を得る際に、表4に示す種類の架橋剤を表4に示す含有量となるように添加した以外は、実施例1と同様にして接着剤を調製し、実施例20と同様にして3層構成の積層体を得た。
Examples 22 to 26
An adhesive was prepared in the same manner as in Example 1 except that a crosslinking agent of the type shown in Table 4 was added so as to have the content shown in Table 4 when obtaining the polyester resin composition. In the same manner, a laminate having a three-layer structure was obtained.
 実施例27~38、比較例6~9
 ポリエステル系樹脂組成物を得る際に、共重合ポリエステル樹脂の種類を表4~表5に記載のものに変更し、表4~表5に示す種類及び含有量となるように架橋剤を添加した以外は、実施例1と同様にして接着剤を調製し、実施例20と同様にして3層構成の積層体を得た。
Examples 27-38, Comparative Examples 6-9
When obtaining a polyester-based resin composition, the type of copolymer polyester resin was changed to that shown in Tables 4 to 5, and a crosslinking agent was added so as to have the types and contents shown in Tables 4 to 5. Except for the above, an adhesive was prepared in the same manner as in Example 1, and a laminate having a three-layer structure was obtained in the same manner as in Example 20.
 比較例10
 共重合ポリエステル樹脂Aを溶解した樹脂溶液(接着剤)に代えて、ポリウレタン(三井化学社製の「タケラックA525/タケネートA50」)を使用した以外は、実施例20と同様にして3層構成の積層体を得た。
Comparative Example 10
Instead of the resin solution (adhesive) in which the copolyester resin A is dissolved, a polyurethane (“Takelac A525 / Takenate A50” manufactured by Mitsui Chemicals, Inc.) is used in the same manner as in Example 20, but a three-layer structure is used. A laminate was obtained.
 試験例2
 実施例20~38、比較例6~10で得られた積層体について、前記「1.測定方法」で挙げた物性等の評価結果を表4~表5に示す。なお、表4~表5中における「Al」はアルミニウム箔、「PET」はポリエチレンテレフタレートフィルム、「PU」はポリウレタンをそれぞれ示す。
Test example 2
For the laminates obtained in Examples 20 to 38 and Comparative Examples 6 to 10, Tables 4 to 5 show the evaluation results of physical properties and the like given in “1. Measurement method”. In Tables 4 to 5, “Al” represents aluminum foil, “PET” represents a polyethylene terephthalate film, and “PU” represents polyurethane.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例39
 基材フィルム(L)としてL-3(ポリオレフィンフィルム)を用いた以外は、実施例1と同様にして接着剤を調製し、実施例1と同様にして3層構成の積層体(図1に示す構成のもの)を得た。
Example 39
An adhesive was prepared in the same manner as in Example 1 except that L-3 (polyolefin film) was used as the base film (L), and a three-layer laminate (see FIG. 1) was prepared in the same manner as in Example 1. Obtained).
 実施例40
 ポリエステル系樹脂組成物、共重合ポリエステル樹脂Aと架橋剤S-1とからなるポリエステル系樹脂組成物とし、それぞれの含有量が表6に示すものになるように添加した以外は、実施例1と同様にして接着剤を調製し、実施例39と同様にして3層構成の積層体を得た。
Example 40
Example 1 except that a polyester resin composition, a polyester resin composition comprising a copolyester resin A and a crosslinking agent S-1 was added so that the respective contents were as shown in Table 6. An adhesive was prepared in the same manner, and a laminate having a three-layer structure was obtained in the same manner as in Example 39.
 実施例41~45
 ポリエステル系樹脂組成物を得る際に、表6に示す種類の架橋剤を表6に示す含有量となるように添加した以外は、実施例1と同様にして接着剤を調製し、実施例39と同様にして3層構成の積層体を得た。
Examples 41-45
An adhesive was prepared in the same manner as in Example 1 except that a crosslinking agent of the type shown in Table 6 was added so as to have the content shown in Table 6 when obtaining the polyester resin composition. In the same manner, a laminate having a three-layer structure was obtained.
 実施例46~57、比較例11~14
 ポリエステル系樹脂組成物を得る際に、共重合ポリエステル樹脂の種類を表6~表7に記載のものに変更し、表6~表7に示す種類及び含有量となるように架橋剤を添加した以外は、実施例1と同様にして接着剤を調製し、実施例39と同様にして3層構成の積層体を得た。
Examples 46-57, Comparative Examples 11-14
When obtaining the polyester-based resin composition, the type of copolymer polyester resin was changed to that shown in Tables 6 to 7, and a crosslinking agent was added so as to have the types and contents shown in Tables 6 to 7. Except for the above, an adhesive was prepared in the same manner as in Example 1, and a laminate having a three-layer structure was obtained in the same manner as in Example 39.
 比較例15
 共重合ポリエステル樹脂Aを溶解した樹脂溶液(接着剤)に代えて、ポリウレタン(三井化学社製の「タケラックA525/タケネートA50」)を使用した以外は、実施例39と同様にして3層構成の積層体を得た。
Comparative Example 15
Instead of the resin solution (adhesive) in which the copolyester resin A is dissolved, a three-layer structure is used in the same manner as in Example 39 except that polyurethane (“Takelac A525 / Takenate A50” manufactured by Mitsui Chemicals, Inc.) is used. A laminate was obtained.
 試験例3
 実施例39~57、比較例11~15で得られた積層体について、前記「1.測定方法」で挙げた物性等の評価結果を表6~表7に示す。なお、表6~表7中における「Al」はアルミニウム箔、「PP」はポリプロピレンフィルム、「PU」はポリウレタンをそれぞれ示す。
Test example 3
With respect to the laminates obtained in Examples 39 to 57 and Comparative Examples 11 to 15, the evaluation results of physical properties and the like listed in “1. Measuring method” are shown in Tables 6 to 7. In Tables 6 to 7, “Al” represents aluminum foil, “PP” represents polypropylene film, and “PU” represents polyurethane.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例58
 実施例1と同様にして接着剤を調製し、図2に示す基材フィルム(L1)としてL-1(ポリアミドフィルム)を用い、基材フィルム(L2)としてL-3(ポリオレフィンフィルム)を用い、金属箔(N)としてN-1(アルミニウム箔)を用いた。そして、図2に示す構成の積層体となるように、金属箔(N-1)の両面に実施例1と同様にして接着剤をコーティングし、樹脂被膜を形成した。その後、金属箔(N-1)の上面の樹脂被膜形成面と、基材フィルム(L-1)のコロナ処理面とが密着するように重ね、一方、金属箔(N-1)の下面の樹脂被膜形成面と、基材フィルム(L-3)のコロナ処理面とが密着するように重ね、金属箔(N)とポリアミドフィルム(L-1)、金属箔(N)とポリオレフィンフィルム(L-3)のドライラミネートを実施した。得られた積層体を40℃で96時間熱処理し、図2に示す5層構成(ポリアミドフィルム/接着層/金属箔/接着層/ポリオレフィンフィルムの5層構成)の積層体を得た。
Example 58
An adhesive was prepared in the same manner as in Example 1, and L-1 (polyamide film) was used as the base film (L1) shown in FIG. 2, and L-3 (polyolefin film) was used as the base film (L2). N-1 (aluminum foil) was used as the metal foil (N). Then, an adhesive was coated on both surfaces of the metal foil (N-1) in the same manner as in Example 1 to form a resin film so that a laminate having the configuration shown in FIG. 2 was obtained. Thereafter, the resin film-forming surface on the upper surface of the metal foil (N-1) and the corona-treated surface of the base film (L-1) are stacked so as to be in close contact, while the lower surface of the metal foil (N-1) is The resin film forming surface and the corona-treated surface of the base film (L-3) are stacked so that they are in close contact with each other, and the metal foil (N), polyamide film (L-1), metal foil (N) and polyolefin film (L -3) dry lamination was performed. The obtained laminate was heat-treated at 40 ° C. for 96 hours to obtain a laminate having a five-layer structure (polyamide film / adhesive layer / metal foil / adhesive layer / polyolefin film five-layer structure) shown in FIG.
 実施例59~62
 ポリエステル系樹脂組成物を得る際に、表8に示す架橋剤を表8に示す含有量となるように添加した以外は、実施例1と同様にして接着剤を調製し、実施例58と同様にして5層構成の積層体を得た。
Examples 59-62
An adhesive was prepared in the same manner as in Example 1 except that the cross-linking agent shown in Table 8 was added so as to have the content shown in Table 8 when obtaining the polyester resin composition. Thus, a laminate having a five-layer structure was obtained.
 実施例63~67、比較例16
 ポリエステル系樹脂組成物を得る際に、共重合ポリエステル樹脂の種類を表8に記載のものに変更し、表8に示す種類及び含有量となるように架橋剤を添加した以外は、実施例1と同様にして接着剤を調製し、実施例58と同様にして5層構成の積層体を得た。
Examples 63 to 67, Comparative Example 16
Example 1 except that when obtaining a polyester-based resin composition, the type of copolymer polyester resin was changed to that shown in Table 8 and a crosslinking agent was added so as to have the type and content shown in Table 8. In the same manner as described above, an adhesive was prepared, and a laminate having a five-layer structure was obtained in the same manner as in Example 58.
 試験例4
 実施例58~67、比較例16で得られた積層体について、前記「1.測定方法」で挙げた物性等の評価結果を表8に示す。なお、表8中における「Al」はアルミニウム箔、「Ny」はナイロン(ポリアミドフィルム)、「PP」はポリプロピレンフィルムをそれぞれ示す。
Test example 4
For the laminates obtained in Examples 58 to 67 and Comparative Example 16, the evaluation results of physical properties and the like listed in “1. Measurement method” are shown in Table 8. In Table 8, “Al” represents an aluminum foil, “Ny” represents nylon (polyamide film), and “PP” represents a polypropylene film.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~57で得られた3層構成の積層体及び実施例58~67で得られた5層構成の積層体のいずれも、層間の接着性に優れ、冷間成型性にも優れたものであった。さらには、これらは耐アルコール性、耐水性、耐漏液性等にも優れたものであった。 Both the three-layer laminate obtained in Examples 1 to 57 and the five-layer laminate obtained in Examples 58 to 67 were excellent in interlayer adhesion and cold moldability. It was a thing. Further, they were excellent in alcohol resistance, water resistance, liquid leakage resistance and the like.
 一方、ガラス転移温度が10℃を超える共重合ポリエステル樹脂を含むポリエステル系樹脂組成物からなる層を有する積層体(比較例1~4、6~9、11~14)は、層間の接着性に劣り、このため耐アルコール性、耐水性、耐漏液性にも劣るものであった。さらに、冷間成型性に劣るものであった。また、ポリエステル系樹脂組成物層に代えてポリウレタン樹脂層を有する積層体(比較例5、10、15、16)は、耐アルコール性又は耐水性に劣るものであり、汎用性に乏しいものであった。 On the other hand, the laminates (Comparative Examples 1 to 4, 6 to 9, 11 to 14) having a layer made of a polyester-based resin composition containing a copolyester resin having a glass transition temperature exceeding 10 ° C. have good adhesion between the layers. Therefore, the alcohol resistance, water resistance, and liquid leakage resistance were also inferior. Furthermore, the cold formability was inferior. Further, a laminate (Comparative Examples 5, 10, 15, and 16) having a polyurethane resin layer instead of the polyester resin composition layer is inferior in alcohol resistance or water resistance and poor in versatility. It was.

Claims (6)

  1. 基材フィルム、ポリエステル系樹脂組成物層及び金属箔の順に含む積層体であって、
     前記ポリエステル系樹脂組成物層は、ガラス転移温度が10℃以下の共重合ポリエステル樹脂を含むポリエステル系樹脂組成物からなる、
    ことを特徴とする積層体。
    It is a laminate including a base film, a polyester resin composition layer and a metal foil in this order,
    The polyester resin composition layer is composed of a polyester resin composition containing a copolymer polyester resin having a glass transition temperature of 10 ° C. or lower.
    A laminate characterized by the above.
  2. 基材フィルムが、ポリエステル系フィルム、ポリアミド系フィルム及びポリオレフィン系フィルムの少なくとも1種を含む、請求項1記載の積層体。 The laminated body of Claim 1 in which a base film contains at least 1 sort (s) of a polyester-type film, a polyamide-type film, and a polyolefin-type film.
  3. 共重合ポリエステル樹脂は、酸成分としてテレフタル酸とイソフタル酸を含有し、かつ、酸成分中のテレフタル酸とイソフタル酸の合計含有量が30モル%以上である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the copolymerized polyester resin contains terephthalic acid and isophthalic acid as acid components, and the total content of terephthalic acid and isophthalic acid in the acid component is 30 mol% or more.
  4. 共重合ポリエステル樹脂は、グリコール成分として主鎖の炭素数が6以上であるグリコールを1~45モル%含有する、請求項1に記載の積層体。 The laminate according to claim 1, wherein the copolymerized polyester resin contains 1 to 45 mol% of a glycol having a main chain having 6 or more carbon atoms as a glycol component.
  5. 請求項1~4のいずれかに記載の積層体を含む電池用外装材。 A battery packaging material comprising the laminate according to any one of claims 1 to 4.
  6. 発電要素と、前記発電要素を被覆する請求項5に記載の電池用外装材とを含む電池。 The battery containing a power generation element and the battery exterior material of Claim 5 which coat | covers the said power generation element.
PCT/JP2017/015405 2016-04-15 2017-04-14 Laminate and outer package material for batteries WO2017179737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-082145 2016-04-15
JP2016082145 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017179737A1 true WO2017179737A1 (en) 2017-10-19

Family

ID=60041787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015405 WO2017179737A1 (en) 2016-04-15 2017-04-14 Laminate and outer package material for batteries

Country Status (1)

Country Link
WO (1) WO2017179737A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117080A1 (en) * 2016-12-20 2018-06-28 Dic株式会社 Battery packaging material adhesive, battery packaging material, battery container, and battery
CN111587495A (en) * 2018-01-22 2020-08-25 大日本印刷株式会社 Battery packaging material, method for producing same, and battery
WO2021215506A1 (en) * 2020-04-22 2021-10-28 東洋製罐株式会社 Multilayer film and packaging container
JP7311073B1 (en) 2021-09-15 2023-07-19 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, film, and power storage device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362729A (en) * 1986-09-03 1988-03-19 昭和アルミニウム株式会社 Resin-aluminum composite material having excellent cold moldability
JP2011166118A (en) * 2009-09-17 2011-08-25 Toyo Ink Sc Holdings Co Ltd Back protective sheet of solar cell, method of manufacturing the same, and solar cell module
JP2012238491A (en) * 2011-05-12 2012-12-06 Toray Ind Inc Polyester film for battery outer package, laminate for battery outer package including the same, and constitutional body
JP2013194066A (en) * 2012-03-16 2013-09-30 Unitika Ltd Coating agent, coating film and laminate
JP2013203946A (en) * 2012-03-29 2013-10-07 Toyo Ink Sc Holdings Co Ltd Polyester resin and adhesive for dry laminate containing the same
JP2014091770A (en) * 2012-11-01 2014-05-19 Toyo Ink Sc Holdings Co Ltd Polyurethane adhesive for a battery packaging material, battery packaging material, battery container, and battery
WO2015087761A1 (en) * 2013-12-09 2015-06-18 東洋紡株式会社 Polyester resin composition and adhesive composition
JP2016048658A (en) * 2014-08-28 2016-04-07 大日本印刷株式会社 Packaging material for battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362729A (en) * 1986-09-03 1988-03-19 昭和アルミニウム株式会社 Resin-aluminum composite material having excellent cold moldability
JP2011166118A (en) * 2009-09-17 2011-08-25 Toyo Ink Sc Holdings Co Ltd Back protective sheet of solar cell, method of manufacturing the same, and solar cell module
JP2012238491A (en) * 2011-05-12 2012-12-06 Toray Ind Inc Polyester film for battery outer package, laminate for battery outer package including the same, and constitutional body
JP2013194066A (en) * 2012-03-16 2013-09-30 Unitika Ltd Coating agent, coating film and laminate
JP2013203946A (en) * 2012-03-29 2013-10-07 Toyo Ink Sc Holdings Co Ltd Polyester resin and adhesive for dry laminate containing the same
JP2014091770A (en) * 2012-11-01 2014-05-19 Toyo Ink Sc Holdings Co Ltd Polyurethane adhesive for a battery packaging material, battery packaging material, battery container, and battery
WO2015087761A1 (en) * 2013-12-09 2015-06-18 東洋紡株式会社 Polyester resin composition and adhesive composition
JP2016048658A (en) * 2014-08-28 2016-04-07 大日本印刷株式会社 Packaging material for battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117080A1 (en) * 2016-12-20 2018-06-28 Dic株式会社 Battery packaging material adhesive, battery packaging material, battery container, and battery
JPWO2018117080A1 (en) * 2016-12-20 2019-03-07 Dic株式会社 Battery packaging material adhesive, battery packaging material, battery container and battery
US11063313B2 (en) 2016-12-20 2021-07-13 Dic Corporation Adhesive for packaging material, a packaging material, and a container
CN111587495A (en) * 2018-01-22 2020-08-25 大日本印刷株式会社 Battery packaging material, method for producing same, and battery
CN111587495B (en) * 2018-01-22 2022-10-04 大日本印刷株式会社 Battery packaging material, method for producing same, and battery
WO2021215506A1 (en) * 2020-04-22 2021-10-28 東洋製罐株式会社 Multilayer film and packaging container
JP7311073B1 (en) 2021-09-15 2023-07-19 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, film, and power storage device

Similar Documents

Publication Publication Date Title
TWI613071B (en) Aluminum plastic film packaging material for lithium battery
WO2017179737A1 (en) Laminate and outer package material for batteries
JP5704202B2 (en) Battery packaging materials
JP2017069203A (en) Battery-packaging material and battery
JP6862084B2 (en) Packaging materials, cases and power storage devices
CN114902471A (en) Power storage device packaging material, power storage device using same, method for producing power storage device packaging material, and method for selecting sealant film used as sealant layer in power storage device packaging material
JP2017157432A (en) Exterior packaging material for power storage device and power storage device
JP6950857B2 (en) Adhesive film for metal terminals, metal terminals with adhesive film for metal terminals, power storage devices using the adhesive film for metal terminals, and methods for manufacturing power storage devices
JP2021132041A (en) Adhesive film for metal terminal, metal terminal with adhesive film for metal terminal, power storage device using adhesive film for metal terminal, and manufacturing method of power storage device
JP2017139121A (en) Adhesive film for metal terminal
WO2021090950A1 (en) Adhesive film for metal terminal, method for producing adhesive film for metal terminal, metal terminal with adhesive film for metal terminal attached thereto, power storage device using said adhesive film for metal terminal, and method for producing power storage device
JP6589331B2 (en) Battery packaging materials
WO2016159233A1 (en) Packaging material for cell, process for producing same, and cell
JP7311073B1 (en) Exterior material for power storage device, manufacturing method thereof, film, and power storage device
JP7355275B2 (en) Exterior material for power storage device, manufacturing method thereof, film, and power storage device
JP7355274B2 (en) Exterior material for power storage device, manufacturing method thereof, film, and power storage device
JP2020043016A (en) Exterior material for power storage device, method for manufacturing the same, and power storage device
JP2021108242A (en) Resin film for terminal and selection method therefor, and power storage device
JP6699130B2 (en) Battery packaging material
WO2023140338A1 (en) Metal-terminal adhesive film, production method therefor, metal terminal having metal-terminal adhesive film, power storage device using said metal-terminal adhesive film, kit including metal-terminal adhesive film and power-storage-device exterior material, and production method for power storage device
JP7311076B1 (en) An adhesive film for a metal terminal and a method for producing the same, a metal terminal with an adhesive film for a metal terminal, an electricity storage device using the adhesive film for a metal terminal, a kit including an adhesive film for a metal terminal and an exterior material for an electricity storage device, and method for manufacturing power storage device
JP7031805B1 (en) An adhesive film for metal terminals, a metal terminal with an adhesive film for metal terminals, a power storage device using the adhesive film for metal terminals, and a method for manufacturing the power storage device.
WO2023243696A1 (en) Exterior material for power storage device, production method for same, and power storage device
WO2023136360A1 (en) Exterior material for electricity storage device, method for manufacturing same, resin composition, and electricity storage device
WO2023058452A1 (en) Covering material for power storage device, method for manufacturing same, and power storage device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782550

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP