WO2017179690A1 - Friction transmission belt - Google Patents

Friction transmission belt Download PDF

Info

Publication number
WO2017179690A1
WO2017179690A1 PCT/JP2017/015262 JP2017015262W WO2017179690A1 WO 2017179690 A1 WO2017179690 A1 WO 2017179690A1 JP 2017015262 W JP2017015262 W JP 2017015262W WO 2017179690 A1 WO2017179690 A1 WO 2017179690A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
rubber
mass
belt
rubber layer
Prior art date
Application number
PCT/JP2017/015262
Other languages
French (fr)
Japanese (ja)
Inventor
久登 石黒
拓也 友田
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017078980A external-priority patent/JP6616793B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to US16/092,818 priority Critical patent/US11674561B2/en
Priority to CN201780022624.5A priority patent/CN108884907B/en
Priority to EP17782503.1A priority patent/EP3444501B1/en
Publication of WO2017179690A1 publication Critical patent/WO2017179690A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a friction transmission belt in which a friction transmission surface such as a V-belt or a V-ribbed belt is formed with a V-shaped slope, and more specifically, friction excellent in mechanical properties such as interface peeling resistance, wear resistance, and low friction coefficient.
  • a friction transmission surface such as a V-belt or a V-ribbed belt is formed with a V-shaped slope, and more specifically, friction excellent in mechanical properties such as interface peeling resistance, wear resistance, and low friction coefficient.
  • friction transmission belts such as V-belts, V-ribbed belts, and flat belts are known as transmission belts for transmitting power.
  • a V-belt or V-ribbed belt having a friction transmission surface (V-shaped side surface) formed at a V angle is wound around a driving pulley and a driven pulley with tension applied between the V-shaped side surface and the V groove of the pulley. Rotates between two shafts in contact. In the process, power is transmitted using energy associated with friction generated by thrust between the V-shaped side surface and the pulley V groove.
  • These friction transmission belts have a core body embedded in the rubber body (between the compressed rubber layer and the stretched rubber layer) along the longitudinal direction of the belt, and this core body transmits the power from the driving pulley to the driven pulley. Have a role to communicate. Moreover, in order to improve the adhesiveness between the core wire and the rubber, an adhesive rubber layer is usually provided.
  • the V-belt is covered with a low-edge type (raw edge V-belt), which is a rubber layer with an exposed friction transmission surface (V-shaped side surface), and a cover cloth covering the friction transmission surface (V-shaped side surface).
  • a low-edge type raw edge V-belt
  • Wrapped types wrapped V-belts
  • the low edge type belt has a low edge cog V that has improved flexibility by providing cogs only on the lower surface (inner peripheral surface) of the belt or on both the lower surface (inner peripheral surface) and the upper surface (outer peripheral surface) of the belt.
  • the low edge V belt and the low edge cogged V belt are mainly used for driving general industrial machinery, agricultural machinery, and driving auxiliary machinery in automobile engines.
  • a low edge cogged V belt called a transmission belt used in a belt type continuously variable transmission such as a motorcycle.
  • the belt-type continuously variable transmission 30 is a device that wraps the friction transmission belt 1 around a drive pulley 31 and a driven pulley 32 to change the gear ratio steplessly.
  • Each pulley 31 and 32 is composed of fixed pulley pieces 31a and 32a fixed in the axial direction and movable pulley pieces 31b and 32b movable in the axial direction. These fixed pulley pieces 31a and 32a and the movable pulley
  • the pulleys 31 and 32 formed by the pieces 31b and 32b have a structure capable of continuously changing the width of the V groove.
  • the transmission belt 1 has both end faces in the width direction formed of tapered surfaces whose inclinations coincide with the opposing faces of the V grooves of the pulleys 31 and 32, and the opposing faces of the V grooves according to the changed width of the V grooves. It fits in any vertical position. For example, when the width of the V groove of the driving pulley 31 is narrowed and the width of the V groove of the driven pulley 32 is widened, the state shown in FIG. 1A is changed to the state shown in FIG. The transmission belt 1 moves above the V-groove on the drive pulley 31 side, and below the V-groove on the driven pulley 32 side, and the wrapping radius around each pulley 31 and 32 changes continuously to change the gear ratio. Can change steplessly.
  • the speed change belt used in such applications is used in a severe layout under a high load while the belt is largely bent.
  • the severe movement in high load environment such as the movement in the pulley radial direction and the bending motion repeated by the continuous change of the winding radius.
  • Specific design is made to withstand.
  • a friction transmission belt such as a transmission belt
  • the resistance to side pressure received from the pulley is the resistance to side pressure received from the pulley.
  • a rubber composition having a large mechanical property reinforced by blending short fibers or the like is used for the compression rubber layer and the stretch rubber layer.
  • the mechanical properties of the adhesive rubber layer are excessively increased, the bending fatigue resistance is lowered. Therefore, a rubber composition having relatively small mechanical properties is used as the adhesive rubber layer.
  • the rubber hardness of at least one of the stretch rubber layer and the compression rubber layer is set to 90 to 96 °, and the rubber hardness of the adhesive rubber layer is set to 83 to 89 °.
  • a transmission V-belt in which aramid short fibers are oriented in the belt width direction is disclosed.
  • cracks and separation (peeling) of each rubber layer and cord are prevented from occurring at an early stage, side pressure resistance is improved, and high load transmission capability is improved.
  • the adhesive rubber layer a rubber composition containing 100 parts by mass of chloroprene rubber, 40 to 60 parts by mass of a reinforcing filler (carbon black), and 5 to 30 parts by mass of silica is described. It is described that when the amount is less than 5 parts by mass, the effect of enhancing the adhesive force is almost lost.
  • the detail of the adhesive rubber layer in an Example is unknown.
  • Patent Document 2 discloses an organic peroxidation of a rubber composition in which 20 to 70 parts by mass of silica and 1 to 10 parts by mass of carbon black are blended with 100 parts by mass of a rubber component containing an ethylene- ⁇ -olefin elastomer.
  • a power transmission belt composed of a cross-linked product is disclosed.
  • Patent Document 3 as a rubber composition for coating fibers constituting the core of a power transmission belt, 1 to 100 of silica is used with respect to 100 parts by mass of an ethylene- ⁇ -olefin-diene copolymer.
  • a first rubber composition containing 1 part by weight, 0.01 to 15 parts by weight of a silane coupling agent and 0.1 to 30 parts by weight of a filler such as carbon black.
  • a rubber composition for coating or embedding a coated fiber 1 to 100 parts by mass of silica and 1 to 100 parts by mass of a filler such as carbon black with respect to 100 parts by mass of an ethylene- ⁇ -olefin-diene copolymer.
  • a second rubber composition containing parts is disclosed.
  • the first rubber composition a composition containing 5 parts by mass of carbon black and 20 parts by mass of hydrous silica with respect to 100 parts by mass of EPDM was prepared, and as the second rubber composition, 100 parts by mass of EPDM.
  • a composition containing 35 parts by mass of carbon black and 20 parts by mass of hydrous silica is prepared.
  • the rubber composition containing silica has lower wear resistance than other reinforcing materials. Further, when a large amount of silica is blended, the pulley is worn during belt running, and is particularly noticeable when the pulley is made of a soft material such as aluminum.
  • Patent Document 4 as an adhesive rubber layer of a rubber V-belt, 1 to 20 parts by mass of a metal oxide vulcanizing agent, 5 to 30 parts by mass of silica, and 15 to 15 parts of reinforcing filler with respect to 100 parts by mass of chloroprene rubber.
  • a rubber composition comprising 50 parts by weight and 2-10 parts by weight of bismaleimide is disclosed.
  • an adhesive rubber composition containing 35 parts by mass of carbon black, 25 parts by mass of silica, and 2-8 parts by mass of bismaleimide with respect to 100 parts by mass of chloroprene rubber was prepared, and bismaleimide was added to the adhesive rubber layer. It is described that, when blended, the elastic modulus is increased by the effect of increasing the crosslinking density, the compression set is small, and the fatigue resistance is excellent.
  • An object of the present invention is to provide a friction transmission belt capable of suppressing peeling and cracking of an interlayer and a core body and suppressing wear of a belt and a pulley even in a severe situation in a high load environment such as a transmission belt. .
  • Another object of the present invention is to provide a friction transmission belt capable of improving bending fatigue resistance.
  • the inventors have formed an adhesive rubber layer of a friction transmission belt with a vulcanized rubber composition containing a rubber component and carbon black and silica in a predetermined ratio, and By covering the surface of the core with an overcoat layer made of a vulcanized rubber composition containing a rubber component and silica, the layers and cores can be peeled even in harsh conditions such as a transmission belt.
  • the present invention has been completed by finding that it is possible to suppress cracks and cracks and to suppress wear of the belt and pulley.
  • the friction transmission belt of the present invention is a friction transmission belt provided with an adhesive rubber layer in contact with at least a part of a core extending in the longitudinal direction of the belt, and the adhesive rubber layer includes a rubber component and a filler.
  • the filler comprises 30 parts by mass or more of carbon black and 0.1 to 15 parts by mass of silica with respect to 100 parts by mass of the rubber component, and the core is a rubber component.
  • the proportion of the carbon black may be 30 to 60 parts by mass with respect to 100 parts by mass of the rubber component.
  • the proportion of silica in the first vulcanized rubber composition may be 10 to 30 parts by mass with respect to 100 parts by mass of the carbon black.
  • the ratio of silica in the second vulcanized rubber composition may be 10 parts by mass or more (particularly 15 to 50 parts by mass) with respect to 100 parts by mass of the rubber component.
  • the average thickness of the overcoat layer may be 5 to 30 ⁇ m.
  • the rubber component of the first vulcanized rubber composition and / or the second vulcanized rubber composition may be chloroprene rubber.
  • the core may include a twisted cord including a polyester fiber and / or a polyamide fiber.
  • the adhesive rubber layer of the friction transmission belt is formed of a vulcanized rubber composition containing a rubber component and carbon black and silica in a predetermined ratio, and the surface of the core body is vulcanized containing the rubber component and silica. It is covered with an overcoat layer formed of a rubber composition. Therefore, the adhesive rubber layer is specialized for the stress dispersion function due to high mechanical properties (higher elastic modulus), and the core overcoat layer is specialized for the adhesion function. As a result, even in harsh conditions in a high load environment such as a transmission belt, it is possible to suppress peeling and cracking of the interlayer and core, and to suppress wear of the belt and pulley. Furthermore, by adjusting the proportion of carbon black in the adhesive rubber layer to 60 parts by mass or less with respect to 100 parts by mass of the rubber component, the bending fatigue resistance can also be improved.
  • FIG. 1 is a schematic diagram for explaining a speed change mechanism of a belt type continuously variable transmission.
  • FIG. 2 is a schematic perspective view showing an example of the friction transmission belt of the present invention.
  • FIG. 3 is a schematic sectional view of the friction transmission belt of FIG. 2 cut in the belt longitudinal direction.
  • FIG. 4 is a schematic diagram for explaining a durability running test of the friction transmission belt in the embodiment.
  • the adhesive rubber layer is formed of a first vulcanized rubber composition containing a rubber component and a filler containing carbon black and a relatively small amount of silica, and the surface of the core is What is necessary is just to coat
  • the friction transmission belt of the present invention includes a core extending in the longitudinal direction of the belt, an adhesive rubber layer in which the core is embedded, a compression rubber layer formed on one surface of the adhesive rubber layer, and the adhesive And a stretched rubber layer formed on the other surface of the rubber layer.
  • Examples of the friction transmission belt of the present invention include a V belt [wrapped V belt, low edge V belt, low edge cogged V belt (a low edge cogged V belt having a cog formed on the inner peripheral side of the low edge V belt, a low edge V belt).
  • Low edge double cogged V-belt in which cogs are formed on both the inner peripheral side and the outer peripheral side)] V-ribbed belt, flat belt and the like.
  • a V belt or a V-ribbed belt in which the friction transmission surface is inclined in a V shape (at a V angle) is preferable because it receives a large lateral pressure from the pulley.
  • the low edge cogged V-belt is particularly preferable because it is used in a belt-type continuously variable transmission that requires a high degree of fuel economy.
  • FIG. 2 is a schematic perspective view showing an example of the friction transmission belt (low edge cogged V belt) of the present invention
  • FIG. 3 is a schematic cross-sectional view of the friction transmission belt of FIG. 2 cut in the belt longitudinal direction.
  • the friction transmission belt 1 has a plurality of cogs 1a formed at predetermined intervals along the longitudinal direction of the belt (A direction in the drawing) on the inner peripheral surface of the belt main body.
  • the cross-sectional shape of the cog portion 1a in the longitudinal direction is substantially semicircular (curved or corrugated), and the cross-sectional shape in the direction orthogonal to the longitudinal direction (width direction or B direction in the figure) is a table. Shape. That is, each cog 1a protrudes from the cog bottom 1b in a cross section in the A direction (FIG. 3) in a substantially semicircular shape in the belt thickness direction.
  • the friction transmission belt 1 has a laminated structure, and the reinforcing cloth 2, the stretch rubber layer 3, the adhesive rubber layer 4, and the compression from the belt outer peripheral side toward the inner peripheral side (side where the cog portion 1 a is formed).
  • a rubber layer 5 and a reinforcing cloth 6 are sequentially laminated.
  • the cross-sectional shape in the belt width direction is a trapezoidal shape in which the belt width decreases from the belt outer peripheral side toward the inner peripheral side.
  • a core body 4a is embedded in the adhesive rubber layer 4, and the cog 1a is formed on the compressed rubber layer 5 by a cog-molding mold.
  • the adhesive rubber layer (adhesive layer) is provided in contact with at least a part of the core body for the purpose of bonding the core body and a rubber material for forming a belt.
  • the adhesive rubber layer is formed of a vulcanized rubber composition containing a rubber component and a filler.
  • the rubber component examples include known vulcanizable or crosslinkable rubber components and / or elastomers such as diene rubbers (for example, natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber (CR), styrene butadiene rubber (SBR), Water of the diene rubbers such as vinylpyridine-styrene-butadiene copolymer rubber, acrylonitrile butadiene rubber (nitrile rubber); hydrogenated nitrile rubber (including mixed polymer of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt) Additives, etc.], olefin rubber [eg, ethylene- ⁇ -olefin rubber (ethylene- ⁇ -olefin elastomer), polyoctenylene rubber, ethylene-vinyl acetate copolymer rubber, chlorosulfonated polyethylene rubber, alkylated chloro Sulfonated polyethylene rubber, etc.]
  • an ethylene- ⁇ -olefin elastomer ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer ( Ethylene- ⁇ -olefin rubbers such as EPDM) and chloroprene rubber are widely used, especially when used in high load environments such as transmission belts, mechanical strength, weather resistance, heat resistance, cold resistance, oil resistance, adhesion, etc.
  • EPM ethylene-propylene copolymer
  • EPDM ethylene-propylene-diene terpolymer
  • chloroprene rubber is particularly preferable from the viewpoint of excellent wear resistance in addition to the above characteristics.
  • the chloroprene rubber may be a sulfur-modified type or a non-sulfur-modified type.
  • the proportion of the chloroprene rubber in the rubber component may be about 50% by mass (especially 80 to 100% by mass), and 100% by mass (chloroprene rubber only) is particularly preferable.
  • carbon black is included as a filler in order to dramatically improve fatigue fracture resistance and wear resistance.
  • the average particle size of carbon black is, for example, about 5 to 200 nm, preferably about 10 to 150 nm, more preferably about 15 to 100 nm. From the viewpoint of high reinforcing effect, carbon black having a small particle size may be used. It may be about 38 nm, preferably 10 to 35 nm, more preferably about 15 to 30 nm. Examples of the carbon black having a small particle diameter include SAF, ISAF-HM, ISAF-LM, HAF-LS, HAF, and HAF-HS. These carbon blacks can be used alone or in combination.
  • the ratio of the carbon black is 30 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • Carbon black can suppress a decrease in workability even when blended in a large amount as compared with silica. Therefore, compared with a conventional adhesive rubber layer containing a large amount of silica, the mechanical properties (elastic modulus) of the adhesive rubber layer can be improved, so that the friction coefficient of the adhesive rubber layer can be reduced.
  • the adhesive rubber layer containing a relatively large amount of carbon black has a smaller difference in mechanical properties from the compressed rubber layer (or stretched rubber layer), and the belt undergoes shear stress due to severe movement during belt running in a high load environment.
  • the ratio of the carbon black may be 100 parts by mass or less with respect to the rubber component from the viewpoint of suppressing a decrease in bending fatigue resistance.
  • the proportion of carbon black is preferably 30 to 80 parts by weight (particularly 30 to 60 parts by weight), particularly preferably 40 to 60 parts by weight (particularly 45 to 60 parts by weight), based on 100 parts by weight of the rubber component. It may be about 50 to 70 parts by mass (particularly 55 to 65 parts by mass). If the proportion of carbon black is too small, the elastic modulus may be insufficient and the fatigue fracture resistance and wear resistance may be reduced. If it is too large, the elastic modulus will be too high and the bending fatigue resistance may be reduced. There is.
  • silica is further contained as a filler from the viewpoint that the adhesive property of the adhesive rubber layer can be improved without deteriorating the mechanical properties of the adhesive rubber layer.
  • Silica is a fine, bulky white powder formed of silicic acid and / or silicate, and has a plurality of silanol groups on its surface, so that it can be chemically bonded to the rubber component.
  • Silica includes dry silica, wet silica, surface-treated silica, and the like. Silica can also be classified into, for example, dry process white carbon, wet process white carbon, colloidal silica, precipitated silica, and the like according to the classification in the production method. These silicas can be used alone or in combination of two or more. Of these, wet white carbon containing hydrous silicic acid as a main component is preferable because it has many surface silanol groups and strong chemical bonding with rubber.
  • the average particle diameter of silica is, for example, about 1 to 1000 nm, preferably 3 to 300 nm, more preferably 5 to 100 nm (particularly 10 to 50 nm). If the particle size of the silica is too large, the mechanical properties of the adhesive rubber layer may be reduced, and if it is too small, it may be difficult to uniformly disperse.
  • Silica may be non-porous or porous, but the nitrogen adsorption specific surface area by the BET method is, for example, 50 to 400 m 2 / g, preferably 70 to 350 m 2 / g, more preferably 100. It may be about ⁇ 300 m 2 / g (especially 150 to 250 m 2 / g). If the specific surface area is too large, it may be difficult to uniformly disperse, and if the specific surface area is too small, the mechanical properties of the adhesive rubber layer may be reduced.
  • the proportion of silica is a small amount compared to the proportion blended in the conventional adhesive rubber layer in order to improve the adhesiveness. That is, in the present invention, since the overcoat layer of the core includes silica, the adhesive rubber layer does not require a large amount of silica. In the present invention, since the overcoat layer contains silica and the adhesive rubber layer contains silica in a small proportion, the mechanical properties and adhesiveness of the adhesive rubber layer, which are contradictory properties (for example, adhesiveness to the core), In particular, the adhesiveness can be improved to a high degree.
  • the specific proportion of silica is, for example, 0.1 to 15 parts by mass (for example, 0.1 to 10 parts by mass), preferably 1 to 14 parts by mass, and more preferably 3 to 13 parts per 100 parts by mass of the rubber component. About mass parts (particularly 5 to 12 mass parts). If the proportion of silica is too small, the effect of improving the adhesiveness may not be exhibited. If the proportion of silica is too large, mechanical properties such as interfacial peel resistance, wear resistance, and low friction coefficient may be deteriorated.
  • the ratio of silica is about 40 parts by mass or less with respect to 100 parts by mass of carbon black, for example, 5 to 35 parts by mass, preferably 10 to 30 parts by mass, and more preferably about 15 to 25 parts by mass. .
  • the filler may further contain a conventional filler.
  • conventional fillers include clay, calcium carbonate, talc, and mica. These conventional fillers can be used alone or in combination of two or more.
  • the ratio of carbon black to the whole filler may be 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more (particularly 80% by mass or more), and 90% by mass. % Or more (particularly 99.9% by mass or more). If the proportion of carbon black is too small, the mechanical properties of the adhesive rubber layer may be reduced.
  • the proportion (total proportion) of the filler is, for example, about 30 to 100 parts by weight, preferably 40 to 80 parts by weight, more preferably 50 to 70 parts by weight (particularly 55 to 65 parts by weight) with respect to 100 parts by weight of the rubber component. It is. If the proportion of the filler is too small, the wear resistance may decrease due to a decrease in the elastic modulus. Conversely, if it is too large, the elastic modulus will be too high and heat will be generated, and the stretched rubber layer and the compressed rubber layer will crack. May occur early.
  • the rubber composition for forming the adhesive rubber layer includes a vulcanizing agent or a crosslinking agent (or a crosslinking agent system), a co-crosslinking agent, a vulcanization aid, a vulcanization accelerator, and a vulcanization retarder as necessary.
  • Metal oxides eg, zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide
  • softeners oils such as paraffin oil and naphthenic oil
  • processing Agent or processing aid fatty acid such as stearic acid, fatty acid metal salt such as stearic acid metal salt, fatty acid amide such as stearic acid amide, wax, paraffin, etc.
  • adhesion improver [resorcin-formaldehyde cocondensate (RF condensation) Products
  • amino resins condensates of nitrogen-containing cyclic compounds and formaldehyde, such as hexamethylol melamine, hexaalkoxymethyl methy Melamine resins such as min (hexamethoxymethyl melamine, hexabutoxymethyl melamine, etc.), urea resins such as methylol urea, benzoguanamine resins such as methylol zoguanamine resin, etc., and their
  • the metal oxide may act as a crosslinking agent.
  • the resorcin-formaldehyde cocondensate and amino resin may be an initial condensate (prepolymer) of a nitrogen-containing cyclic compound such as resorcin and / or melamine and formaldehyde.
  • the vulcanizing agent or the crosslinking agent conventional components can be used depending on the type of rubber component.
  • the metal oxide magnesium oxide, zinc oxide, etc.
  • organic peroxide diacyl peroxide, peroxyester
  • dialkyl peroxide sulfur vulcanizing agents
  • sulfur-based vulcanizing agent examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, sulfur chloride (sulfur monochloride, sulfur dichloride, etc.), and the like.
  • These crosslinking agents or vulcanizing agents may be used alone or in combination of two or more.
  • a metal oxide magnesium oxide, zinc oxide, etc.
  • the metal oxide may be used in combination with other vulcanizing agents (such as sulfur-based vulcanizing agents), and the metal oxide and / or sulfur-based vulcanizing agent may be used alone or in combination with a vulcanization accelerator. May be used.
  • the proportion of the vulcanizing agent can be selected from a range of about 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component depending on the types of the vulcanizing agent and the rubber component.
  • the ratio of the organic peroxide as the vulcanizing agent is 1 to 8 parts by weight, preferably 1.5 to 5 parts by weight, and more preferably about 2 to 4.5 parts by weight with respect to 100 parts by weight of the rubber component.
  • the ratio of the metal oxide is 1 to 20 parts by weight, preferably 3 to 17 parts by weight, more preferably 5 to 15 parts by weight (particularly 7 to 13 parts by weight) with respect to 100 parts by weight of the rubber component. ) Select from a range of degrees.
  • co-crosslinking agent crosslinking aid or co-vulcanizing agent co-agent
  • crosslinking aids such as polyfunctional (iso) cyanurates [for example, triallyl isocyanurate (TAIC), triallyl cyanurate ( TAC), etc.], polydienes (eg, 1,2-polybutadiene, etc.), metal salts of unsaturated carboxylic acids [eg, zinc (meth) acrylate, magnesium (meth) acrylate, etc.], oximes (eg, quinonedi) Oximes, etc.), guanidines (eg, diphenylguanidine, etc.), polyfunctional (meth) acrylates (eg, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, etc.), Bismaleimides (aliphatic bismaleimides such as N, N′-1,2 Ethylmaleimides
  • crosslinking aids can be used alone or in combination of two or more.
  • bismaleimides arene bismaleimides such as N, N'-m-phenylene dimaleimide or aromatic bismaleimides
  • the addition of bismaleimides can increase the degree of crosslinking and prevent adhesive wear and the like.
  • the ratio of the co-crosslinking agent (crosslinking aid) can be selected from the range of about 0.01 to 10 parts by mass, for example, 0.1 to 10 parts by mass (for example 0 .3 to 8 parts by mass), preferably about 0.5 to 6 parts by mass (especially 1 to 5 parts by mass).
  • vulcanization accelerator examples include thiuram accelerators [for example, tetramethylthiuram monosulfide (TMTM), tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD).
  • TMTM tetramethylthiuram monosulfide
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • TBTD tetrabutylthiuram disulfide
  • thiazole accelerators eg, 2-mercaptobenzothiazol, 2 -Zinc salts of mercaptobenzothiazol, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (4'-morpholinodithio) benzothiazole, etc.
  • sulfenamide accelerators for example, N-cyclohexyl) -2-Benzothiazils Phenamide (CBS), N, N′-dicyclohexyl-2-benzothiazylsulfenamide, etc.]
  • guanidines diphenylguanidine, di-tolylguanidine, etc.
  • urea-based or thiourea accelerators for example, ethylenethiourea, etc.
  • the proportion of the vulcanization accelerator is, for example, 0.1 to 15 parts by mass, preferably 0.3 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass in terms of solid content with respect to 100 parts by mass of the rubber component. It may be about a part.
  • the ratio of the softening agent is, for example, about 1 to 30 parts by mass, preferably about 3 to 20 parts by mass (eg 5 to 10 parts by mass) with respect to 100 parts by mass of the total amount of rubber components.
  • the ratio of the processing agent or processing aid eg, stearic acid
  • the ratio of the adhesion improver is 0.1 to 20 parts by weight, preferably 0.3 to 10 parts by weight, based on 100 parts by weight of the rubber component. Preferably, it may be about 0.5 to 5 parts by mass (1 to 3 parts by mass).
  • the proportion of the antioxidant is, for example, 0.5 to 15 parts by weight, preferably 1 to 10 parts by weight, more preferably 2.5 to 7.5 parts by weight (particularly 3 parts by weight) with respect to 100 parts by weight of the total amount of rubber components. About 7 parts by mass).
  • the mechanical properties of the adhesive rubber layer can be appropriately selected according to the required performance.
  • the rubber hardness is, for example, 75 to 90 °, preferably 80 to 88 °, more preferably, by a method based on JIS K6253 (2012). It may be about 82 to 86 °.
  • an adhesive rubber layer having a high rubber hardness may be formed.
  • the rubber hardness may be adjusted to about 84 to 90 ° by blending a large amount of filler.
  • the average thickness of the adhesive rubber layer can be appropriately selected depending on the type of belt, and may be, for example, about 0.4 to 3 mm, preferably about 0.6 to 2.2 mm, and more preferably about 0.8 to 1.4 mm. Good.
  • the surface of the core body is covered with an overcoat layer formed of a vulcanized rubber composition containing a rubber component and silica, from the viewpoint that the adhesiveness with the adhesive rubber layer can be improved.
  • stacked on the outermost surface of the core body contains a silica
  • the adhesiveness of an adhesive rubber layer and a core body can be improved.
  • silica silica exemplified as the silica of the adhesive rubber layer can be used.
  • the said silica can be used individually or in combination of 2 or more types.
  • the preferable type, average particle diameter, and specific surface area of silica are also the same as those of the adhesive rubber layer.
  • the proportion of silica may be 10 parts by mass or more (for example, 10 to 50 parts by mass) with respect to 100 parts by mass of the rubber component, for example, 15 to 50 parts by mass, preferably 25 to 50 parts by mass, and more preferably 30 parts. About 45 parts by mass (particularly 35 to 45 parts by mass). If the ratio of silica is too small, there is a possibility that sufficient adhesion between the core and the adhesive rubber layer may not be ensured, and if it is too large, processability may decrease and it may be difficult to add to the rubber composition. There is.
  • the rubber component exemplified as the rubber component of the adhesive rubber layer can be used as the rubber component.
  • the said rubber component can be used individually or in combination of 2 or more types.
  • diene rubber eg, chloroprene rubber, nitrile rubber, hydrogenated nitrile rubber, etc.
  • olefin rubber eg, EPM, EPDM, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, etc.
  • Etc. e.g, EPM, EPDM, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, etc.
  • the rubber component especially chloroprene rubber
  • the same or the same system as the adhesive rubber layer which embeds a core body can be used conveniently.
  • the vulcanized rubber composition forming the overcoat layer may further contain carbon black, if necessary.
  • the carbon black the carbon black exemplified as the carbon black of the adhesive rubber layer can be used.
  • the said carbon black can be used individually or in combination of 2 or more types.
  • the preferred type of carbon black and the average particle size are also the same as those of the carbon black of the adhesive rubber layer.
  • the proportion of carbon black may be 50 parts by mass or less with respect to 100 parts by mass of the rubber component, for example, 35 parts by mass or less (for example, 5 to 35 parts by mass), preferably 30 parts by mass or less (for example, 20 parts by mass or less). ), More preferably 10 parts by mass or less (particularly 5 parts by mass or less).
  • the vulcanized rubber composition may not contain carbon black. If the ratio of carbon black is too large, the processability is lowered and it may be difficult to blend silica at a high concentration.
  • the vulcanized rubber composition forming the overcoat layer may further contain an isocyanate compound and / or an epoxy compound as a curing agent.
  • isocyanate compound examples include 4,4′-diphenylmethane diisocyanate, tolylene 2,4-diisocyanate, polymethylene polyphenyl diisocyanate, hexamethylene diisocyanate, polyaryl polyisocyanate (for example, trade name “PAPI”), and the like.
  • isocyanate compounds may be blocked polyisocyanates obtained by reacting a blocking agent such as phenols, tertiary alcohols, and secondary alcohols to block the isocyanate groups of the polyisocyanate.
  • the epoxy compound examples include a reaction product of a polyhydric alcohol such as ethylene glycol, glycerin and pentaerythritol, a polyalkylene glycol such as polyethylene glycol, and a halogen-containing epoxy compound such as epichlorohydrin, resorcin, and bis (4-hydroxyphenyl).
  • a polyhydric alcohol such as ethylene glycol, glycerin and pentaerythritol
  • a polyalkylene glycol such as polyethylene glycol
  • a halogen-containing epoxy compound such as epichlorohydrin, resorcin, and bis (4-hydroxyphenyl).
  • Reaction products of polyhydric phenols such as dimethylmethane, phenol-formaldehyde resin, resorcinol-formaldehyde resin and halogen-containing epoxy compounds.
  • curing agents can be used alone or in combination of two or more. Of these, isocyanate compounds are preferred.
  • the ratio of the curing agent is, for example, about 10 to 200 parts by mass, preferably about 30 to 150 parts by mass, and more preferably about 50 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • fillers exemplified as fillers (fillers other than silica and carbon black) of the adhesive rubber layer and additives exemplified as additives can be used as necessary.
  • the said additive can be used individually or in combination of 2 or more types.
  • the ratio of the additive is the same as that of the adhesive rubber layer.
  • fillers, vulcanizing agents, co-vulcanizing agents, vulcanization accelerators, adhesion improvers, anti-aging agents, lubricants and the like are widely used.
  • Typical compositions include rubber components, silica, RF condensates, and additives (eg, vulcanizing agents, co-curing agents, vulcanization accelerators, adhesion improvers, fillers, anti-aging agents, lubricants) It is a combination.
  • additives eg, vulcanizing agents, co-curing agents, vulcanization accelerators, adhesion improvers, fillers, anti-aging agents, lubricants
  • the average thickness of the overcoat layer is, for example, about 5 to 30 ⁇ m, preferably about 8 to 25 ⁇ m, and more preferably about 10 to 20 ⁇ m.
  • the overcoat layer is adjusted to such a thin wall, it can be presumed that even if the overcoat layer is specialized for the adhesion function, the shear stress is easily dispersed and the deterioration of the mechanical properties can be suppressed. If the overcoat layer is too thin, the adhesion between the core and the adhesive rubber layer may not be sufficiently secured, and if it is too thick, the bending fatigue resistance may be inferior.
  • An anchor coat layer may be further interposed between the overcoat layer and the core body in order to improve the adhesion between the overcoat layer and the core body.
  • the anchor coat layer is not particularly limited as long as it is formed of a conventional adhesive component, and may be a single layer or a layer in which a plurality of layers are laminated. Among these, from the point which can improve the adhesiveness of an overcoat layer and a core, it intervenes between the 1st anchor coat layer which coat
  • the first anchor coat layer may be a layer formed with the curing agent exemplified in the section of the overcoat layer.
  • the curing agent the same or the same type of curing agent (particularly an isocyanate compound) as the curing agent contained in the overcoat layer can be suitably used.
  • the average thickness of the first anchor coat layer is, for example, about 0.001 to 5 ⁇ m, preferably about 0.01 to 3 ⁇ m, and more preferably about 0.05 to 2 ⁇ m.
  • the second anchor coat layer may be formed of a cured product of RFL liquid.
  • the RFL liquid contains resorcin (R), formaldehyde (F), and rubber or latex (L). Resorcin (R) and formaldehyde (F) may be contained in the form of these condensates (RF condensates).
  • RF condensates condensates
  • the rubber component constituting the latex is not particularly limited as long as it can impart flexibility to the core, and for example, the rubber component exemplified as the rubber component of the adhesive rubber layer can be used.
  • the said rubber component can be used individually or in combination of 2 or more types.
  • vinylpyridine-styrene-butadiene copolymer rubber is widely used.
  • the average thickness of the second anchor coat layer is, for example, about 1 to 30 ⁇ m, preferably 2 to 25 ⁇ m, and more preferably about 5 to 20 ⁇ m.
  • the core body is not particularly limited as long as it has an overcoat layer containing a rubber component and silica on the surface, but normally, core wires (twisted cords) arranged at predetermined intervals in the belt width direction can be used.
  • the cores are arranged to extend in the longitudinal direction of the belt, and are usually arranged to extend in parallel at a predetermined pitch in parallel with the longitudinal direction of the belt.
  • the core wire only needs to be at least partially in contact with the adhesive rubber layer via the overcoat layer.
  • the core rubber wire is embedded between the adhesive rubber layer and the stretch rubber layer. Any form of embedding the core wire and embedding the core wire between the adhesive rubber layer and the compressed rubber layer may be employed. Among these, the form in which the adhesive rubber layer embeds the core wire is preferable from the viewpoint that durability can be improved.
  • the fibers constituting the core wire include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers [polyethylene. Terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber, etc., poly C 2-4 alkylene C 6-14 arylate fiber, etc.], vinylon fiber, polyvinyl alcohol fiber, polyparaphenylene benzobisoxazole (PBO) fiber, etc. Synthetic fibers; natural fibers such as cotton, hemp and wool; and inorganic fibers such as carbon fibers. These fibers can be used alone or in combination of two or more.
  • polyester fibers polyalkylene arylate fibers mainly composed of C 2-4 alkylene arylates such as ethylene terephthalate and ethylene-2,6-naphthalate, aramid fibers, etc.
  • Inorganic fibers such as fibers and carbon fibers are widely used, and polyester fibers (especially polyethylene terephthalate fibers and polyethylene naphthalate fibers) and polyamide fibers (particularly aramid fibers) are preferable.
  • the fiber may be a multifilament yarn.
  • the fineness of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier).
  • the multifilament yarn may contain, for example, 100 to 5,000, preferably 500 to 4,000, more preferably about 1,000 to 3,000 monofilament yarns.
  • the core wire usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used.
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, 0.5 to 3 mm, preferably 0.6 to 2 mm, more preferably about 0.7 to 1.5 mm. Good.
  • the method for producing the core is not particularly limited, and the surface of the untreated yarn (core wire body) forming the core may be covered with the overcoat layer by a conventional method.
  • the core body When the core body has the first anchor coat layer, the second anchor coat layer, and the overcoat layer, the core body performs the first treatment for forming the untreated yarn of the core wire and the first anchor coat layer.
  • First treatment step for treating with an agent, second treatment step for treating with a second treatment agent for forming a second anchor coat layer, and third treatment for treating with a third treatment agent for forming an overcoat layer You may manufacture through a process.
  • the method for preparing the first treatment agent is not particularly limited, and usually the curing agent is dissolved in a solvent such as toluene or methyl ethyl ketone.
  • the method for treating the untreated yarn with the first treating agent is not particularly limited, and examples thereof include spraying, coating, and dipping. Of these treatment methods, immersion is widely used.
  • the immersion time may be, for example, about 1 to 20 seconds, preferably about 2 to 15 seconds.
  • the drying temperature may be, for example, about 100 to 250 ° C., preferably 110 to 220 ° C., more preferably 120 to 200 ° C. (especially 150 to 190 ° C.).
  • the drying time may be, for example, about 10 seconds to 30 minutes, preferably about 30 seconds to 10 minutes, and more preferably about 1 to 5 minutes.
  • the second treatment agent usually contains water in many cases.
  • the treatment method using the second treatment agent is the same as the treatment method using the first treatment agent.
  • a preferable drying temperature may be about 150 to 250 ° C. (particularly 200 to 240 ° C.).
  • the method for preparing the third treatment agent is not particularly limited.
  • the unvulcanized rubber composition is dissolved in a solvent such as toluene or methyl ethyl ketone, and the total solid content concentration is, for example, 1 to 20 masses. %, Preferably 2 to 15% by mass, more preferably 3 to 10% by mass.
  • the treatment method using the third treatment agent is the same as the treatment method using the first treatment agent.
  • a preferable drying temperature may be about 120 to 200 ° C. (especially 150 to 180 ° C.).
  • the vulcanized rubber composition for forming the compressed rubber layer (inner rubber layer or inner layer) and the stretched rubber layer (back rubber layer or back layer) is similar to the vulcanized rubber composition of the adhesive rubber layer.
  • Ingredients chloroprene rubber, etc.
  • vulcanizing agents or crosslinking agents metal oxides such as magnesium oxide and zinc oxide, sulfur-based vulcanizing agents such as sulfur
  • co-crosslinking agents or crosslinking aids N, N'-m -Maleimide crosslinkers such as phenylene dimaleimide
  • vulcanization accelerators TMTD, DPTT, CBS, etc.
  • fillers carbon black, silica, etc.
  • softeners oil such as naphthenic oil
  • processing agents or Processing aids stearic acid, metal stearates, waxes, paraffins, etc.
  • anti-aging agents adhesion improvers
  • fillers clay, calcium carbonate, talc, mica,
  • the vulcanized rubber composition for forming the compressed rubber layer and the stretched rubber layer may contain short fibers.
  • the fibers exemplified as the fibers constituting the core can be used.
  • the short fiber formed with the said fiber can be used individually or in combination of 2 or more types.
  • synthetic fibers and natural fibers particularly synthetic fibers (polyamide fibers, polyalkylene arylate fibers, etc.), among others, are rigid and have high strength and modulus, and at least from the point that they tend to protrude on the surface of the compressed rubber layer.
  • Short fibers including aramid fibers are preferred.
  • Aramid short fibers also have high wear resistance.
  • Aramid fibers are commercially available, for example, under the trade names “Conex”, “Nomex”, “Kevlar”, “Technola”, “Twaron”, and the like.
  • the average fiber diameter of the short fibers is 2 ⁇ m or more, for example, 2 to 100 ⁇ m, preferably 3 to 50 ⁇ m (for example 5 to 50 ⁇ m), more preferably 7 to 40 ⁇ m (particularly 10 to 30 ⁇ m).
  • the average length of the short fibers is, for example, 1 to 20 mm (eg, 1.2 to 20 mm), preferably 1.3 to 15 mm (eg, 1.5 to 10 mm), more preferably 2 to 5 mm (particularly 2.5 to 4 mm). )
  • the short fiber may be oriented in the belt width direction and embedded in the adhesive rubber layer.
  • the short fibers may be subjected to adhesion treatment (or surface treatment) by a conventional method.
  • the short fibers may be protruded from the surface by polishing the surface (friction transmission surface).
  • the average protruding height of the short fibers may be about 50 ⁇ m or more (for example, 50 to 200 ⁇ m).
  • the rubber component a rubber of the same type (diene rubber or the like) or the same type (chloroprene rubber or the like) as the rubber component of the rubber composition of the adhesive rubber layer is often used.
  • the proportions of the vulcanizing agent or crosslinking agent, co-crosslinking agent or crosslinking aid, vulcanization accelerator, softener, processing agent or processing aid, and anti-aging agent are the same as in the rubber composition of the adhesive rubber layer, respectively. You can select from a range.
  • the proportion of short fibers can be selected from the range of about 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component, and is usually 10 to 40 parts by mass, preferably 15 to 35 parts by mass, and more preferably 20 to 30 parts by mass. It may be about a part.
  • the ratio of the filler is about 1 to 100 parts by weight, preferably 3 to 50 parts by weight, and more preferably about 5 to 40 parts by weight with respect to 100 parts by weight of the rubber component.
  • the average thickness of the compressed rubber layer can be appropriately selected depending on the type of belt, and is, for example, about 2 to 25 mm, preferably about 3 to 16 mm, and more preferably about 4 to 12 mm.
  • the thickness of the stretched rubber layer can be appropriately selected depending on the type of belt, and is, for example, about 0.8 to 10.0 mm, preferably about 1.2 to 6.5 mm, and more preferably about 1.6 to 5.2 mm.
  • the reinforcing cloth is not limited to a form in which the reinforcing cloth is laminated on the surface of the compressed rubber layer.
  • the reinforcing cloth is applied to the surface of the stretched rubber layer (the surface opposite to the adhesive rubber layer). It may be laminated, or may be a form in which a reinforcing layer is embedded in a compressed rubber layer and / or a stretched rubber layer (for example, a form described in Japanese Patent Application Laid-Open No. 2010-230146).
  • the reinforcing cloth can be formed of, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth, and a non-woven cloth.
  • a cloth material preferably a woven cloth
  • an adhesive treatment for example, treatment with an RFL liquid (immersion treatment, etc.)
  • Friction for rubbing adhesive rubber into the cloth material or laminating (coating) the adhesive rubber and the cloth material, and then laminating on the surface of the compression rubber layer and / or the stretch rubber layer.
  • the manufacturing method of the friction transmission belt of the present invention is not particularly limited, and a conventional method can be used for the lamination process of each layer (the manufacturing method of the belt sleeve).
  • a laminated body composed of a reinforcing cloth (under cloth) and a sheet for a compressed rubber layer (unvulcanized rubber) is arranged with teeth and grooves alternately with the reinforcing cloth down.
  • cog pad with the cog part formed by press-pressing at a temperature of 60-100 ° C (especially 70-80 ° C) (not completely vulcanized, in a semi-cured state) After producing a certain pad), both ends of the cog pad may be cut vertically from the top of the cog crest.
  • an inner mother die in which teeth and grooves are alternately arranged is covered on a cylindrical mold, and a cog pad is wound around the teeth and the grooves, and a joint is formed at the top of the cog crest, and this is wound.
  • the core After laminating the first adhesive rubber layer sheet (lower adhesive rubber: unvulcanized rubber) on the cog pad, the core is spun in a spiral shape, and the second adhesive rubber layer sheet (upper adhesive) Rubber: Same as the adhesive rubber layer sheet), a stretch rubber layer sheet (unvulcanized rubber), and a reinforcing cloth (upper cloth) may be wound in order to produce a molded body.
  • a jacket is put on and the mold is placed in a vulcanizing can and vulcanized at a temperature of about 120 to 200 ° C. (especially 150 to 180 ° C.) to prepare a belt sleeve. Cutting may be performed.
  • Chloroprene rubber “R22” manufactured by Tosoh Corporation Carbon black: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
  • Silica “Ultrasil VN-3” manufactured by Evonik Degussa Japan Co., Ltd., specific surface area of 155 to 195 m 2 / g Naphthenic oil: “NS-900” manufactured by Idemitsu Kosan Co., Ltd.
  • Resorcin / formalin copolymer (resorcinol resin) resorcinol less than 20%, formalin less than 0.1% anti-aging agent: Seiko Chemical Co., Ltd.
  • Nonflex OD3 Vulcanization accelerator TMTD: Tetramethylthiuram disulfide
  • Aramid short fiber “Conex short fiber” manufactured by Teijin Techno Products Limited, average fiber length 3 mm, average fiber diameter 14 ⁇ m, RFL solution (2.6 parts of resorcin, 37% A short fiber having a solid content of 6% by mass bonded with 1.4 parts of formalin, 17.2 parts of vinylpyridine-styrene-butadiene copolymer latex (manufactured by Nippon Zeon Co., Ltd., 78.8 parts of water).
  • Polymeric MDI Polyisocyanate, “MR-200” manufactured by Tosoh Corporation
  • VP latex vinylpyridine-styrene-butadiene copolymer latex, manufactured by Nippon Zeon Co., Ltd.
  • Core wire 1,000 denier PET fiber with a 2 ⁇ 3 twist configuration, upper twist factor 3.0, lower twist factor 3 A twisted cord of 6,000 total denier twisted at 0.0.
  • a hollow rubber sheet having an inner diameter of 16.2 ⁇ 0.05 mm is obtained from a vulcanized rubber sheet (50 mm ⁇ 50 mm ⁇ 8 mm thick) produced by press vulcanizing the adhesive rubber layer sheet at a temperature of 160 ° C. for 30 minutes.
  • a cylindrical sample having a diameter of 16.2 ⁇ 0.2 mm and a thickness of 6 to 8 mm was produced by cutting with a drill. According to JIS K6264 (2005), the wear amount of the vulcanized rubber was measured using a rotating cylindrical drum device (DIN abrasion tester) wound with a polishing cloth.
  • Peel strength (adhesive strength with the core)
  • a plurality of core wires are arranged in parallel so that the width is 25 mm on one surface of the unvulcanized adhesive rubber layer sheet having a thickness of 4 mm, and canvas is laminated on the other surface.
  • the adhesive rubber layer sheet and canvas were press vulcanized (temperature 160 ° C., time 30 minutes, pressure 2.0 MPa) to prepare strip samples (25 mm ⁇ 150 mm ⁇ 4 mm thickness) for a peel test. Then, according to JIS K6256 (2013), a peel test was performed at a tensile speed of 50 mm / min, and the peel force (vulcanized adhesive force) between the core wire and the adhesive rubber layer sheet was measured in a room temperature atmosphere.
  • the formulation X (a formulation not containing silica) shown in Table 1 was used. Furthermore, the state of peeling was visually observed and evaluated according to the following criteria.
  • A The rubber layer was broken while the interface between the adhesive rubber layer and the core wire was bonded.
  • B Partial peeling occurred at the interface between the adhesive rubber layer and the core wire.
  • C Peeling occurred completely at the interface between the adhesive rubber layer and the core wire.
  • the endurance running test was performed using a two-axis running test machine including a driving (Dr.) pulley 22 having a diameter of 50 mm and a driven (Dn.) Pulley 23 having a diameter of 125 mm.
  • a low-edge cogged V-belt 21 is hung on each pulley 22, 23, the drive pulley 22 has a rotational speed of 5000 rpm, a load of 10 N ⁇ m is applied to the driven pulley 23, and the belt 21 is kept at an ambient temperature of 80 ° C for a maximum of 24 hours. I drove it. At this time, a misalignment of 0.5 ° was set between the driving pulley and the driven pulley.
  • the belt side surface (the surface in contact with the pulley) after running was observed with a microscope to check for the presence of peeling of the core wire, and evaluated according to the following criteria.
  • the weight of the belt before traveling and the weight of the belt after traveling were measured with an electronic balance, respectively, and the difference in weight was calculated as the amount of wear of the belt in the endurance traveling. Further, the pulley after running was visually observed to check for pulley wear. Finally, the overall evaluation of the durability running test was judged according to the following criteria.
  • A Neither pulley abrasion nor core wire peeling is observed.
  • B Wear of the pulley or peeling of the core wire occurs, but there is no practical problem.
  • C Either wear of the pulley or peeling of the core wire occurs to a degree that cannot be used.
  • Examples 1 to 8 and Comparative Examples 1 to 4 (Formation of rubber layer)
  • the rubber compositions in Table 1 (adhesive rubber layer) and Table 2 (compressed rubber layer and stretched rubber layer) were each kneaded using a known method such as a Banbury mixer, and the kneaded rubber was passed through a calender roll.
  • Rolled rubber sheets (adhesive rubber layer sheet, compression rubber layer sheet, stretch rubber layer sheet).
  • Table 1 shows the physical properties of the vulcanized rubber for the rubber composition used for the adhesive rubber layer.
  • the core wire was immersed in the first treatment agent (pretreatment liquid) shown in Table 3, and then heat treated at 180 ° C. for 4 minutes. Next, it was immersed in the 2nd processing agent (RFL liquid) shown in Table 4, and heat-processed at 230 degreeC for 2 minute (s). Furthermore, using the 3rd processing agent containing the rubber composition A or B shown in Table 5, the 3rd process (overcoat process) shown in Table 6 was performed. By these treatments, the solid contents contained in the first treatment agent, the second treatment agent, and the third treatment agent are respectively converted into the first anchor coat layer, the second anchor coat layer, and the overcoat layer film (three layers). A core wire attached as a coating was produced. That is, in the core wire after the adhesion treatment, the solid content contained in the third treatment agent is disposed as the outermost layer (overcoat layer) film. The thickness of the overcoat layer was 10 to 20 ⁇ m.
  • Table 5 shows the measured values of the peel force (vulcanized adhesive force) and the peel strength of the core wire to which the film is adhered by these adhesion treatments as a result of the peel test with the rubber composition for the adhesive rubber layer. The state is also shown.
  • the laminated body of the reinforcing cloth that becomes the lower cloth and the sheet for the compressed rubber layer (unvulcanized rubber) is installed in a flat cogged mold in which the teeth and grooves are alternately arranged with the reinforcing cloth facing down, A cog pad (not completely vulcanized but in a semi-vulcanized state) with a cog part formed by press-pressing at 75 ° C. was produced. Next, both ends of the cog pad were cut vertically from the top of the cog crest.
  • This sleeve is cut with a cutter into a V-shaped cross-sectional shape with a predetermined width in the longitudinal direction of the belt, and a low-edge cogged V-belt (size) which is a transmission belt having a structure shown in FIG. : Upper width 22.0 mm, thickness 11.0 mm, outer peripheral length 800 mm).
  • the rubber composition Z containing 20 parts by mass of silica with respect to the rubber composition Y containing 10 parts by mass of silica together with the content of silica. It can be seen that the amount of wear of the vulcanized rubber increases. Further, in the rubber compositions S and W in which the carbon black is reduced to 30 to 20 parts by mass with respect to the rubber composition Y containing 50 parts by mass of the carbon black, the wear amount increases as the carbon black content decreases. I understand that.
  • Example 7 is a friction transmission belt in which the ratio of silica in the adhesive rubber layer is as large as 33 parts by mass with respect to 100 parts by mass of carbon black. The amount of wear was slightly higher.
  • Example 4 is a friction transmission belt in which the amount of carbon black in the adhesive rubber layer is as large as 70 parts by mass. However, some peeling of the core wire was observed on the side of the belt after running for 24 hours, but this was a problem for practical use. It was not so much.
  • Example 5 is a friction transmission belt in which the ratio of silica in the adhesive rubber layer is as small as 4 parts by mass with respect to 100 parts by mass of carbon black, but slight peeling of the core wire is seen on the side of the belt after running for 24 hours. However, there was no problem in practical use.
  • Example 6 is a friction transmission belt in which 10 parts by mass of silica is included in the overcoat layer, and some peeling of the core wire was observed on the side surface of the belt after running for 24 hours, but there was no problem in practical use. It was.
  • Example 8 is a friction transmission belt in which 60 parts by mass of silica is included in the overcoat layer, but some peeling of the core wire was observed on the side of the belt after running for 24 hours, but there was no problem in practical use. there were. Considering the results of Examples 6 to 8, if the silica compounding amount of the overcoat layer is too small or too large, the core wire is peeled off.
  • Comparative Example 1 is a friction transmission belt in which 20 parts by mass of silica is contained in the adhesive rubber layer. However, the amount of wear of the belt during running for 24 hours was large, and further, wear of the pulley was also observed.
  • Comparative Example 2 is a friction transmission belt that does not contain silica in either the adhesive rubber layer or the overcoat layer (coating), and the core wire was peeled off on the side of the belt after running for 24 hours (problem in practical use).
  • Comparative Example 3 is a friction transmission belt that contains 10 parts by mass of silica in the adhesive rubber layer and no silica in the overcoat layer (coating), but the core wire peels off on the side of the belt after running for 24 hours.
  • Comparative Example 4 was a friction transmission belt having a carbon black amount of 20 mass parts in the adhesive rubber layer, but the amount of wear of the belt during 24-hour running was large.
  • the friction transmission belt of the present invention can be applied to, for example, a V belt (wrapped V belt, low edge V belt, low edge cogged V belt), V ribbed belt, flat belt, and the like.
  • a V-belt (transmission belt) used in a transmission continuously variable transmission in which the gear ratio changes steplessly during belt travel, such as a motorcycle, an ATV (four-wheel buggy), a snowmobile, etc.
  • the present invention is preferably applied to a low edge cogged V belt and a low edge double cogged V belt used in a transmission.

Abstract

The present invention relates to a friction transmission belt provided with an adhesive rubber layer which is in contact with at least a part of a core extending in the lengthwise direction of the belt, wherein the adhesive rubber layer is formed from a first vulcanized rubber composition containing a rubber component and a filler, the filler contains at least 30 parts of carbon black by mass and 0.1-15 part of silica by mass per 100 parts of the rubber component by mass, and the core has an overcoat layer on the surface formed from a second vulcanized rubber composition that contains a rubber component and silica.

Description

摩擦伝動ベルトFriction transmission belt
 本発明は、VベルトやVリブドベルトなどの摩擦伝動面がV字状に傾斜して形成される摩擦伝動ベルトに関し、詳しくは耐界面剥離、耐摩耗性及び低摩擦係数などの力学特性に優れる摩擦伝動ベルトに関する。 The present invention relates to a friction transmission belt in which a friction transmission surface such as a V-belt or a V-ribbed belt is formed with a V-shaped slope, and more specifically, friction excellent in mechanical properties such as interface peeling resistance, wear resistance, and low friction coefficient. Related to transmission belt.
 従来から、動力を伝達する伝動ベルトとして、Vベルト、Vリブドベルト、平ベルトなどの摩擦伝動ベルトが知られている。摩擦伝動面(V字状側面)がV角度で形成されるVベルトやVリブドベルトは、駆動プーリと従動プーリとの間に張力をかけて巻き掛けられ、V字状側面がプーリのV溝と接触した状態で二軸間を回転走行する。その過程において、V字状側面とプーリV溝との間の推力により発生する摩擦に伴うエネルギーを利用して動力の伝達を行う。これらの摩擦伝動ベルトは、ゴム本体中(圧縮ゴム層と伸張ゴム層との間)にベルト長手方向に沿って芯体が埋設されており、この芯体が駆動プーリからの動力を従動プーリへ伝達する役割を担っている。また、心線とゴムとの接着性を高めるために、通常、接着ゴム層が設けられている。 Conventionally, friction transmission belts such as V-belts, V-ribbed belts, and flat belts are known as transmission belts for transmitting power. A V-belt or V-ribbed belt having a friction transmission surface (V-shaped side surface) formed at a V angle is wound around a driving pulley and a driven pulley with tension applied between the V-shaped side surface and the V groove of the pulley. Rotates between two shafts in contact. In the process, power is transmitted using energy associated with friction generated by thrust between the V-shaped side surface and the pulley V groove. These friction transmission belts have a core body embedded in the rubber body (between the compressed rubber layer and the stretched rubber layer) along the longitudinal direction of the belt, and this core body transmits the power from the driving pulley to the driven pulley. Have a role to communicate. Moreover, in order to improve the adhesiveness between the core wire and the rubber, an adhesive rubber layer is usually provided.
 Vベルトには、摩擦伝動面(V字状側面)が露出したゴム層であるローエッジ(Raw-Edge)タイプ(ローエッジVベルト)と、摩擦伝動面(V字状側面)がカバー布で覆われたラップド(Wrapped)タイプ(ラップドVベルト)とがあり、摩擦伝動面の表面性状(ゴム層とカバー布との摩擦係数)の違いから用途に応じて使い分けられている。また、ローエッジタイプのベルトには、ベルトの下面(内周面)のみ、又はベルトの下面(内周面)及び上面(外周面)の両方にコグを設けて屈曲性を改善したローエッジコグドVベルトがある。 The V-belt is covered with a low-edge type (raw edge V-belt), which is a rubber layer with an exposed friction transmission surface (V-shaped side surface), and a cover cloth covering the friction transmission surface (V-shaped side surface). There are also Wrapped types (wrapped V-belts), which are properly used depending on the application due to the difference in surface properties of the friction transmission surface (friction coefficient between the rubber layer and the cover cloth). The low edge type belt has a low edge cog V that has improved flexibility by providing cogs only on the lower surface (inner peripheral surface) of the belt or on both the lower surface (inner peripheral surface) and the upper surface (outer peripheral surface) of the belt. There is a belt.
 ローエッジVベルトやローエッジコグドVベルトは、主として、一般産業機械、農業機械の駆動、自動車エンジンでの補機駆動などに用いられる。また、他の用途として自動二輪車などのベルト式無段変速装置に用いられる変速ベルトと呼ばれるローエッジコグドVベルトがある。 The low edge V belt and the low edge cogged V belt are mainly used for driving general industrial machinery, agricultural machinery, and driving auxiliary machinery in automobile engines. As another application, there is a low edge cogged V belt called a transmission belt used in a belt type continuously variable transmission such as a motorcycle.
 ベルト式無段変速装置30は、図1に示すように、駆動プーリ31と従動プーリ32に摩擦伝動ベルト1を巻き掛けて、変速比を無段階で変化させる装置である。各プーリ31,32は、軸方向に固定された固定プーリ片31a,32aと、軸方向に移動可能とされた可動プーリ片31b,32bとからなり、これらの固定プーリ片31a,32aと可動プーリ片31b,32bとで形成されるプーリ31,32のV溝の幅を連続的に変更できる構造を有している。前記伝動ベルト1は、幅方向の両端面が各プーリ31,32のV溝の対向面と傾斜が合致するテーパ面で形成され、変更されたV溝の幅に応じて、V溝の対向面における任意の上下方向の位置に嵌まり込む。例えば、駆動プーリ31のV溝の幅を狭く、従動プーリ32のV溝の幅を広くすることにより、図1の(a)に示す状態から図1の(b)に示す状態に変更すると、伝動ベルト1は、駆動プーリ31側ではV溝の上方へ、従動プーリ32側ではV溝の下方へ移動し、各プーリ31,32への巻き掛け半径が連続的に変化して、変速比を無段階で変化できる。このような用途で用いる変速ベルトは、ベルトが大きく屈曲されるとともに高負荷での過酷なレイアウトで用いられる。すなわち、駆動プーリと従動プーリとの二軸間の巻き掛け回転走行だけでなく、プーリ半径方向への移動、巻き掛け半径の連続的変化により繰り返される屈曲動作など、高負荷環境での過酷な動きに耐用すべく特異的な設計がなされている。 As shown in FIG. 1, the belt-type continuously variable transmission 30 is a device that wraps the friction transmission belt 1 around a drive pulley 31 and a driven pulley 32 to change the gear ratio steplessly. Each pulley 31 and 32 is composed of fixed pulley pieces 31a and 32a fixed in the axial direction and movable pulley pieces 31b and 32b movable in the axial direction. These fixed pulley pieces 31a and 32a and the movable pulley The pulleys 31 and 32 formed by the pieces 31b and 32b have a structure capable of continuously changing the width of the V groove. The transmission belt 1 has both end faces in the width direction formed of tapered surfaces whose inclinations coincide with the opposing faces of the V grooves of the pulleys 31 and 32, and the opposing faces of the V grooves according to the changed width of the V grooves. It fits in any vertical position. For example, when the width of the V groove of the driving pulley 31 is narrowed and the width of the V groove of the driven pulley 32 is widened, the state shown in FIG. 1A is changed to the state shown in FIG. The transmission belt 1 moves above the V-groove on the drive pulley 31 side, and below the V-groove on the driven pulley 32 side, and the wrapping radius around each pulley 31 and 32 changes continuously to change the gear ratio. Can change steplessly. The speed change belt used in such applications is used in a severe layout under a high load while the belt is largely bent. In other words, not only the rotational rotation of the drive pulley and the driven pulley between two axes, but also the severe movement in high load environment such as the movement in the pulley radial direction and the bending motion repeated by the continuous change of the winding radius. Specific design is made to withstand.
 そのため、このような変速ベルトなどの摩擦伝動ベルトの耐久性を担う重要な因子の1つは、プーリから受ける耐側圧性である。従来から、耐側圧性を向上させる処方として、圧縮ゴム層や伸張ゴム層には短繊維などの配合により補強した力学特性の大きいゴム組成物が用いられる。その一方で、接着ゴム層の力学特性を過度に高めると耐屈曲疲労性が低下するため、接着ゴム層としては比較的力学特性の小さいゴム組成物が用いられている。 Therefore, one of the important factors responsible for the durability of such a friction transmission belt such as a transmission belt is the resistance to side pressure received from the pulley. Conventionally, as a prescription for improving the side pressure resistance, a rubber composition having a large mechanical property reinforced by blending short fibers or the like is used for the compression rubber layer and the stretch rubber layer. On the other hand, if the mechanical properties of the adhesive rubber layer are excessively increased, the bending fatigue resistance is lowered. Therefore, a rubber composition having relatively small mechanical properties is used as the adhesive rubber layer.
 例えば、特許文献1には、伸張ゴム層及び圧縮ゴム層の少なくとも一方のゴム硬度を90~96°、接着ゴム層のゴム硬度を83~89°の範囲に設定し、伸張ゴム層及び圧縮ゴム層にはアラミド短繊維をベルト幅方向に配向させた伝動用Vベルトが開示されている。この文献では、クラックや各ゴム層及びコードのセパレーション(剥離)が早期に発生することを防止し、耐側圧性を向上させて高負荷伝動能力を向上させている。さらに、接着ゴム層としては、クロロプレンゴム100質量部と、補強性充填剤(カーボンブラック)40~60質量部と、シリカ5~30質量部とを含むゴム組成物が記載され、シリカ配合量が5質量部より少ないと、接着力増強効果が殆どなくなると記載されている。なお、実施例における接着ゴム層の詳細は不明である。 For example, in Patent Document 1, the rubber hardness of at least one of the stretch rubber layer and the compression rubber layer is set to 90 to 96 °, and the rubber hardness of the adhesive rubber layer is set to 83 to 89 °. In the layer, a transmission V-belt in which aramid short fibers are oriented in the belt width direction is disclosed. In this document, cracks and separation (peeling) of each rubber layer and cord are prevented from occurring at an early stage, side pressure resistance is improved, and high load transmission capability is improved. Further, as the adhesive rubber layer, a rubber composition containing 100 parts by mass of chloroprene rubber, 40 to 60 parts by mass of a reinforcing filler (carbon black), and 5 to 30 parts by mass of silica is described. It is described that when the amount is less than 5 parts by mass, the effect of enhancing the adhesive force is almost lost. In addition, the detail of the adhesive rubber layer in an Example is unknown.
 しかし、このようなゴム組成物の配合設計の観点においては、高負荷環境でのベルト走行に伴い発生し、耐久性(寿命)低下の要因となる以下の(1)~(4)の不具合が懸念される。 However, from the viewpoint of the composition design of such a rubber composition, the following problems (1) to (4) occur as the belt travels in a high load environment and cause a decrease in durability (life). Concerned.
 (1)心線と接着ゴム層との接着性が低いと、心線と接着ゴム層との間で剥離する。
 (2)ベルトのプーリとの接触面(伝動面)の摩擦係数が高いとベルトがスムーズに移動しないため、ベルトが変形(特に、ディッシングと称される座屈)し易くなる。
 (3)ベルトのプーリ半径方向への移動や変形(座屈)に伴って、ベルト内部にせん断応力が発生し、特に、力学特性に差がある界面(この場合、圧縮ゴム層又は伸張ゴム層と接着ゴム層との界面)にせん断応力が集中し易く界面剥離(亀裂)が生じる。
 (4)ベルトのプーリとの接触面(伝動面)がプーリとの摺動により摩耗する。
(1) When the adhesiveness between the core wire and the adhesive rubber layer is low, the core wire and the adhesive rubber layer are peeled off.
(2) If the friction coefficient of the contact surface (transmission surface) with the pulley of the belt is high, the belt does not move smoothly, and the belt is likely to be deformed (particularly, buckling called dishing).
(3) A shear stress is generated inside the belt as the belt moves in the radial direction of the pulley and is deformed (buckling), and in particular, an interface having a difference in mechanical properties (in this case, a compressed rubber layer or a stretched rubber layer) And the adhesive rubber layer), shear stress tends to concentrate, and interface peeling (cracking) occurs.
(4) The contact surface (transmission surface) of the belt with the pulley is worn by sliding with the pulley.
 すなわち、ベルトの高負荷環境での過酷な動きに耐用すべく高度な耐久性(高寿命)を得るためには、耐側圧性のみならず、これらの特性を全て満たすような特異的な設計が必要になっている。特に、接着ゴム層については、心線と接着ゴム層との接着性や、せん断応力集中による界面剥離などの課題を解決するための配合処方が検討されてきた。 In other words, in order to obtain high durability (long life) to withstand the severe movement of belts under high load environment, a unique design that satisfies all these characteristics as well as side pressure resistance is required. It is necessary. In particular, with regard to the adhesive rubber layer, a formulation for solving problems such as adhesion between the core wire and the adhesive rubber layer and interfacial peeling due to concentration of shear stress has been studied.
 心線と接着ゴム層との接着性に関しては、補強材として接着性の高いシリカを配合する先行技術がある。例えば、特許文献2には、エチレン-α-オレフィンエラストマーを含有するゴム成分100質量部に対して、シリカ20~70質量部及びカーボンブラック1~10質量部を配合したゴム組成物の有機過酸化物架橋物で構成された動力伝動ベルトが開示されている。 Regarding the adhesion between the core wire and the adhesive rubber layer, there is a prior art in which silica having high adhesion is blended as a reinforcing material. For example, Patent Document 2 discloses an organic peroxidation of a rubber composition in which 20 to 70 parts by mass of silica and 1 to 10 parts by mass of carbon black are blended with 100 parts by mass of a rubber component containing an ethylene-α-olefin elastomer. A power transmission belt composed of a cross-linked product is disclosed.
 さらに、特許文献3には、動力伝動用ベルトの心線を構成する繊維を被覆するためのゴム組成物として、エチレン-α-オレフィン-ジエン共重合体100質量部に対して、シリカ1~100質量部、シランカップリング剤0.01~15質量部及びカーボンブラックなどの充填剤0.1~30質量部を含む第1のゴム組成物が開示されており、この第1のゴム組成物で被覆された繊維を被覆又は埋設するためのゴム組成物として、エチレン-α-オレフィン-ジエン共重合体100質量部に対して、シリカ1~100質量部及びカーボンブラックなどの充填剤1~100質量部を含む第2のゴム組成物が開示されている。この文献の実施例では、第1のゴム組成物として、EPDM100質量部に対してカーボンブラック5質量部及び含水シリカ20質量部を含む組成物が調製され、第2のゴム組成物として、EPDM100質量部に対してカーボンブラック35質量部及び含水シリカ20質量部を含む組成物が調製されている。 Further, in Patent Document 3, as a rubber composition for coating fibers constituting the core of a power transmission belt, 1 to 100 of silica is used with respect to 100 parts by mass of an ethylene-α-olefin-diene copolymer. There is disclosed a first rubber composition containing 1 part by weight, 0.01 to 15 parts by weight of a silane coupling agent and 0.1 to 30 parts by weight of a filler such as carbon black. As a rubber composition for coating or embedding a coated fiber, 1 to 100 parts by mass of silica and 1 to 100 parts by mass of a filler such as carbon black with respect to 100 parts by mass of an ethylene-α-olefin-diene copolymer. A second rubber composition containing parts is disclosed. In the examples of this document, as the first rubber composition, a composition containing 5 parts by mass of carbon black and 20 parts by mass of hydrous silica with respect to 100 parts by mass of EPDM was prepared, and as the second rubber composition, 100 parts by mass of EPDM. A composition containing 35 parts by mass of carbon black and 20 parts by mass of hydrous silica is prepared.
 しかし、補強材としてシリカを配合するこれらの方法では、接着性は高まるものの、カーボンブラックなどの他の補強材に比べて、耐界面剥離、耐摩耗性、及び低摩擦係数などの力学特性に対しては不利になる。その理由は、シリカは大量に配合すると混練り等の加工が困難になるため、配合量に限度があり、接着ゴム層の力学特性を充分に向上できないためである。すなわち、圧縮ゴム層又は伸張ゴム層と、接着ゴム層との力学特性の差を小さくして界面剥離を防止できるレベルにまで、接着ゴム層の力学特性を向上できない。また、シリカでは摩擦係数を充分に低くできるほど増量できない。また、シリカを配合したゴム組成物は他の補強材に比べ耐摩耗性が低下する。さらに、シリカを多量に配合すると、ベルト走行においてプーリが摩耗し、特にプーリがアルミニウムなどの軟質材料で形成されている場合に顕著である。 However, these methods of compounding silica as a reinforcing material increase the adhesion, but compared to other reinforcing materials such as carbon black, they have better mechanical properties such as interfacial debonding resistance, wear resistance, and low friction coefficient. Is disadvantageous. The reason for this is that if silica is compounded in a large amount, processing such as kneading becomes difficult, so the compounding amount is limited, and the mechanical properties of the adhesive rubber layer cannot be sufficiently improved. That is, the mechanical properties of the adhesive rubber layer cannot be improved to such a level that the difference in mechanical properties between the compressed rubber layer or the stretched rubber layer and the adhesive rubber layer can be reduced to prevent interface peeling. Silica cannot increase the friction coefficient sufficiently. In addition, the rubber composition containing silica has lower wear resistance than other reinforcing materials. Further, when a large amount of silica is blended, the pulley is worn during belt running, and is particularly noticeable when the pulley is made of a soft material such as aluminum.
 一方、特許文献4には、ゴムVベルトの接着ゴム層として、クロロプレンゴム100質量部に対して金属酸化物加硫剤1~20質量部、シリカ5~30質量部、補強性充填剤15~50質量部及びビスマレイミド2~10質量部を含むゴム組成物が開示されている。この文献の実施例では、クロロプレンゴム100質量部に対してカーボンブラック35質量部、シリカ25質量部及びビスマレイミド2~8質量部を含む接着ゴム組成物が調製され、接着ゴム層にビスマレイミドを配合することで架橋密度の増加効果によって弾性率が上昇し、圧縮永久歪みも小さく、耐疲労性に優れると記載されている。 On the other hand, in Patent Document 4, as an adhesive rubber layer of a rubber V-belt, 1 to 20 parts by mass of a metal oxide vulcanizing agent, 5 to 30 parts by mass of silica, and 15 to 15 parts of reinforcing filler with respect to 100 parts by mass of chloroprene rubber. A rubber composition comprising 50 parts by weight and 2-10 parts by weight of bismaleimide is disclosed. In an example of this document, an adhesive rubber composition containing 35 parts by mass of carbon black, 25 parts by mass of silica, and 2-8 parts by mass of bismaleimide with respect to 100 parts by mass of chloroprene rubber was prepared, and bismaleimide was added to the adhesive rubber layer. It is described that, when blended, the elastic modulus is increased by the effect of increasing the crosslinking density, the compression set is small, and the fatigue resistance is excellent.
 しかし、この接着ゴム層でも、近年のさらなる高負荷環境の要求に対しては十分でない上に、ビスマレイミドの配合量を増やして過度に硬度を高くすると耐屈曲疲労性が低下する。 However, even this adhesive rubber layer is not sufficient for the recent demand for higher load environments, and when the amount of bismaleimide is increased and the hardness is excessively increased, the bending fatigue resistance is lowered.
 すなわち、従来の技術では、特許文献1~4のベルトのように、個々の課題を解決する手段については提案されているものの、変速ベルトのような高負荷環境での過酷な動きに耐用するのに必要な特性を全て充足できているとはいえない。詳しくは、従来の技術では、接着ゴム層と心線との接着性を維持しつつ、力学特性も確保(耐界面剥離(せん断応力の分散)や耐摩耗性も充足)し、更にはプーリの摩耗をも抑制できる特異的な製品設計は実現できていなかった。 That is, in the prior art, as in the belts of Patent Documents 1 to 4, although means for solving each problem has been proposed, it can withstand severe movement in a high load environment such as a transmission belt. It cannot be said that all the necessary characteristics are satisfied. Specifically, in the conventional technology, while maintaining the adhesion between the adhesive rubber layer and the core wire, the mechanical properties are ensured (interfacial debonding resistance (distribution of shear stress) and wear resistance are satisfied), and the pulley Specific product design that can suppress wear has not been realized.
日本国特開平10-238596号公報Japanese Unexamined Patent Publication No. 10-238596 日本国特開2008-261473号公報Japanese Unexamined Patent Publication No. 2008-261473 日本国特開2012-177068号公報Japanese Unexamined Patent Publication No. 2012-177068 日本国特開昭61-290255号公報Japanese Unexamined Patent Publication No. 61-290255
 本発明の目的は、変速ベルトなどの高負荷環境での過酷な状況でも、層間や芯体の剥離や亀裂を抑制でき、かつベルト及びプーリの摩耗を抑制できる摩擦伝動ベルトを提供することにある。 An object of the present invention is to provide a friction transmission belt capable of suppressing peeling and cracking of an interlayer and a core body and suppressing wear of a belt and a pulley even in a severe situation in a high load environment such as a transmission belt. .
 本発明の他の目的は、耐屈曲疲労性を向上できる摩擦伝動ベルトを提供することにある。 Another object of the present invention is to provide a friction transmission belt capable of improving bending fatigue resistance.
 本発明者らは、前記課題を達成するため鋭意検討した結果、摩擦伝動ベルトの接着ゴム層を、ゴム成分と、所定割合のカーボンブラック及びシリカとを含む加硫ゴム組成物で形成し、かつ芯体の表面を、ゴム成分及びシリカを含む加硫ゴム組成物で形成されたオーバーコート層で被覆することにより、変速ベルトなどの高負荷環境での過酷な状況でも、層間や心線の剥離や亀裂を抑制でき、かつベルト及びプーリの摩耗を抑制できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the inventors have formed an adhesive rubber layer of a friction transmission belt with a vulcanized rubber composition containing a rubber component and carbon black and silica in a predetermined ratio, and By covering the surface of the core with an overcoat layer made of a vulcanized rubber composition containing a rubber component and silica, the layers and cores can be peeled even in harsh conditions such as a transmission belt. The present invention has been completed by finding that it is possible to suppress cracks and cracks and to suppress wear of the belt and pulley.
 すなわち、本発明の摩擦伝動ベルトは、ベルト長手方向に延びる芯体の少なくとも一部と接する接着ゴム層を備えた摩擦伝動ベルトであって、前記接着ゴム層が、ゴム成分及びフィラーを含む第1の加硫ゴム組成物で形成され、前記フィラーが、ゴム成分100質量部に対して30質量部以上のカーボンブラック及び0.1~15質量部のシリカを含み、かつ前記芯体が、ゴム成分及びシリカを含む第2の加硫ゴム組成物で形成されたオーバーコート層を表面に有する。前記第1の加硫ゴム組成物において、前記カーボンブラックの割合は、前記ゴム成分100質量部に対して30~60質量部であってもよい。前記第1の加硫ゴム組成物のシリカの割合は、前記カーボンブラック100質量部に対して10~30質量部であってもよい。前記第2の加硫ゴム組成物のシリカの割合はゴム成分100質量部に対して10質量部以上(特に15~50質量部)であってもよい。前記オーバーコート層の平均厚みは5~30μmであってもよい。前記第1の加硫ゴム組成物及び/又は第2の加硫ゴム組成物のゴム成分はクロロプレンゴムであってもよい。前記芯体は、ポリエステル繊維及び/又はポリアミド繊維を含む撚りコードを含んでいてもよい。 That is, the friction transmission belt of the present invention is a friction transmission belt provided with an adhesive rubber layer in contact with at least a part of a core extending in the longitudinal direction of the belt, and the adhesive rubber layer includes a rubber component and a filler. The filler comprises 30 parts by mass or more of carbon black and 0.1 to 15 parts by mass of silica with respect to 100 parts by mass of the rubber component, and the core is a rubber component. And an overcoat layer formed on the surface of the second vulcanized rubber composition containing silica. In the first vulcanized rubber composition, the proportion of the carbon black may be 30 to 60 parts by mass with respect to 100 parts by mass of the rubber component. The proportion of silica in the first vulcanized rubber composition may be 10 to 30 parts by mass with respect to 100 parts by mass of the carbon black. The ratio of silica in the second vulcanized rubber composition may be 10 parts by mass or more (particularly 15 to 50 parts by mass) with respect to 100 parts by mass of the rubber component. The average thickness of the overcoat layer may be 5 to 30 μm. The rubber component of the first vulcanized rubber composition and / or the second vulcanized rubber composition may be chloroprene rubber. The core may include a twisted cord including a polyester fiber and / or a polyamide fiber.
 本発明では、摩擦伝動ベルトの接着ゴム層が、ゴム成分と所定の割合のカーボンブラック及びシリカとを含む加硫ゴム組成物で形成され、かつ芯体の表面がゴム成分及びシリカを含む加硫ゴム組成物で形成されたオーバーコート層で被覆されている。そのため、接着ゴム層は高い力学特性(高弾性率化)による応力分散機能に特化され、かつ芯体のオーバーコート層は接着機能に特化されている。その結果、変速ベルトなどの高負荷環境での過酷な状況でも、層間や芯体の剥離や亀裂を抑制でき、かつベルト及びプーリの摩耗を抑制できる。さらに、接着ゴム層におけるカーボンブラックの割合をゴム成分100質量部に対して60質量部以下に調整することにより、耐屈曲疲労性も向上できる。 In the present invention, the adhesive rubber layer of the friction transmission belt is formed of a vulcanized rubber composition containing a rubber component and carbon black and silica in a predetermined ratio, and the surface of the core body is vulcanized containing the rubber component and silica. It is covered with an overcoat layer formed of a rubber composition. Therefore, the adhesive rubber layer is specialized for the stress dispersion function due to high mechanical properties (higher elastic modulus), and the core overcoat layer is specialized for the adhesion function. As a result, even in harsh conditions in a high load environment such as a transmission belt, it is possible to suppress peeling and cracking of the interlayer and core, and to suppress wear of the belt and pulley. Furthermore, by adjusting the proportion of carbon black in the adhesive rubber layer to 60 parts by mass or less with respect to 100 parts by mass of the rubber component, the bending fatigue resistance can also be improved.
図1は、ベルト式無段変速装置の変速機構を説明するための概略図である。FIG. 1 is a schematic diagram for explaining a speed change mechanism of a belt type continuously variable transmission. 図2は、本発明の摩擦伝動ベルトの一例を示す概略斜視図である。FIG. 2 is a schematic perspective view showing an example of the friction transmission belt of the present invention. 図3は、図2の摩擦伝動ベルトをベルト長手方向に切断した概略断面図である。FIG. 3 is a schematic sectional view of the friction transmission belt of FIG. 2 cut in the belt longitudinal direction. 図4は、実施例における摩擦伝動ベルトの耐久走行試験を説明するための概略図である。FIG. 4 is a schematic diagram for explaining a durability running test of the friction transmission belt in the embodiment.
 [摩擦伝動ベルトの構造]
 本発明の摩擦伝動ベルトは、接着ゴム層が、ゴム成分と、カーボンブラック及び比較的少量のシリカを含むフィラーとを含む第1の加硫ゴム組成物で形成され、かつ芯体の表面が、ゴム成分及びシリカを含む第2の加硫ゴム組成物で形成されたオーバーコート層で被覆されていればよい。通常、本発明の摩擦伝動ベルトは、ベルトの長手方向に延びる芯体と、この芯体を埋設した接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えている。
[Structure of friction transmission belt]
In the friction transmission belt of the present invention, the adhesive rubber layer is formed of a first vulcanized rubber composition containing a rubber component and a filler containing carbon black and a relatively small amount of silica, and the surface of the core is What is necessary is just to coat | cover with the overcoat layer formed with the 2nd vulcanized rubber composition containing a rubber component and a silica. Usually, the friction transmission belt of the present invention includes a core extending in the longitudinal direction of the belt, an adhesive rubber layer in which the core is embedded, a compression rubber layer formed on one surface of the adhesive rubber layer, and the adhesive And a stretched rubber layer formed on the other surface of the rubber layer.
 本発明の摩擦伝動ベルトとしては、例えば、Vベルト[ラップドVベルト、ローエッジVベルト、ローエッジコグドVベルト(ローエッジVベルトの内周側にコグが形成されたローエッジコグドVベルト、ローエッジVベルトの内周側及び外周側の双方にコグが形成されたローエッジダブルコグドVベルト)]、Vリブドベルト、平ベルトなどが例示できる。これらの摩擦伝動ベルトのうち、プーリからの側圧を大きく受ける点から、摩擦伝動面がV字状に傾斜して(V角度で)形成されているVベルト又はVリブドベルトが好ましく、耐側圧性と省燃費性との高度な両立を要求されるベルト式無段変速装置に用いられる点から、ローエッジコグドVベルトが特に好ましい。 Examples of the friction transmission belt of the present invention include a V belt [wrapped V belt, low edge V belt, low edge cogged V belt (a low edge cogged V belt having a cog formed on the inner peripheral side of the low edge V belt, a low edge V belt). Low edge double cogged V-belt in which cogs are formed on both the inner peripheral side and the outer peripheral side)], V-ribbed belt, flat belt and the like. Among these friction transmission belts, a V belt or a V-ribbed belt in which the friction transmission surface is inclined in a V shape (at a V angle) is preferable because it receives a large lateral pressure from the pulley. The low edge cogged V-belt is particularly preferable because it is used in a belt-type continuously variable transmission that requires a high degree of fuel economy.
 図2は、本発明の摩擦伝動ベルト(ローエッジコグドVベルト)の一例を示す概略斜視図であり、図3は、図2の摩擦伝動ベルトをベルト長手方向に切断した概略断面図である。 FIG. 2 is a schematic perspective view showing an example of the friction transmission belt (low edge cogged V belt) of the present invention, and FIG. 3 is a schematic cross-sectional view of the friction transmission belt of FIG. 2 cut in the belt longitudinal direction.
 この例では、摩擦伝動ベルト1は、ベルト本体の内周面に、ベルトの長手方向(図中のA方向)に沿って所定の間隔をおいて形成された複数のコグ部1aを有しており、このコグ部1aの長手方向における断面形状は略半円状(湾曲状又は波形状)であり、長手方向に対して直交する方向(幅方向又は図中のB方向)における断面形状は台形状である。すなわち、各コグ部1aは、ベルト厚み方向において、コグ底部1bからA方向の断面(図3)において略半円状に突出している。摩擦伝動ベルト1は、積層構造を有しており、ベルト外周側から内周側(コグ部1aが形成された側)に向かって、補強布2、伸張ゴム層3、接着ゴム層4、圧縮ゴム層5、補強布6が順次積層されている。ベルト幅方向における断面形状は、ベルト外周側から内周側に向かってベルト幅が小さくなる台形状である。さらに、接着ゴム層4内には、芯体4aが埋設されており、前記コグ部1aは、コグ付き成形型により圧縮ゴム層5に形成されている。 In this example, the friction transmission belt 1 has a plurality of cogs 1a formed at predetermined intervals along the longitudinal direction of the belt (A direction in the drawing) on the inner peripheral surface of the belt main body. The cross-sectional shape of the cog portion 1a in the longitudinal direction is substantially semicircular (curved or corrugated), and the cross-sectional shape in the direction orthogonal to the longitudinal direction (width direction or B direction in the figure) is a table. Shape. That is, each cog 1a protrudes from the cog bottom 1b in a cross section in the A direction (FIG. 3) in a substantially semicircular shape in the belt thickness direction. The friction transmission belt 1 has a laminated structure, and the reinforcing cloth 2, the stretch rubber layer 3, the adhesive rubber layer 4, and the compression from the belt outer peripheral side toward the inner peripheral side (side where the cog portion 1 a is formed). A rubber layer 5 and a reinforcing cloth 6 are sequentially laminated. The cross-sectional shape in the belt width direction is a trapezoidal shape in which the belt width decreases from the belt outer peripheral side toward the inner peripheral side. Furthermore, a core body 4a is embedded in the adhesive rubber layer 4, and the cog 1a is formed on the compressed rubber layer 5 by a cog-molding mold.
 [接着ゴム層]
 接着ゴム層(接着層)は、芯体とベルトを形成するためのゴム材料とを接着させる目的で、芯体の少なくとも一部に接して設けられる。本発明では、この接着ゴム層は、ゴム成分及びフィラーを含む加硫ゴム組成物で形成されている。
[Adhesive rubber layer]
The adhesive rubber layer (adhesive layer) is provided in contact with at least a part of the core body for the purpose of bonding the core body and a rubber material for forming a belt. In the present invention, the adhesive rubber layer is formed of a vulcanized rubber composition containing a rubber component and a filler.
 (ゴム成分)
 ゴム成分としては、公知の加硫又は架橋可能なゴム成分及び/又はエラストマー、例えば、ジエン系ゴム[例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム(CR)、スチレンブタジエンゴム(SBR)、ビニルピリジン-スチレン-ブタジエン共重合体ゴム、アクリロニトリルブタジエンゴム(ニトリルゴム);水素化ニトリルゴム(水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーを含む)などの前記ジエン系ゴムの水添物など]、オレフィン系ゴム[例えば、エチレン-α-オレフィン系ゴム(エチレン-α-オレフィンエラストマー)、ポリオクテニレンゴム、エチレン-酢酸ビニル共重合体ゴム、クロロスルホン化ポリエチレンゴム、アルキル化クロロスルホン化ポリエチレンゴムなど]、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらのゴム成分は単独で又は二種以上組み合わせて使用することができる。
(Rubber component)
Examples of the rubber component include known vulcanizable or crosslinkable rubber components and / or elastomers such as diene rubbers (for example, natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber (CR), styrene butadiene rubber (SBR), Water of the diene rubbers such as vinylpyridine-styrene-butadiene copolymer rubber, acrylonitrile butadiene rubber (nitrile rubber); hydrogenated nitrile rubber (including mixed polymer of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt) Additives, etc.], olefin rubber [eg, ethylene-α-olefin rubber (ethylene-α-olefin elastomer), polyoctenylene rubber, ethylene-vinyl acetate copolymer rubber, chlorosulfonated polyethylene rubber, alkylated chloro Sulfonated polyethylene rubber, etc.] Examples thereof include chlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, and fluorine rubber. These rubber components can be used alone or in combination of two or more.
 これらのゴム成分のうち、加硫剤及び加硫促進剤が拡散し易い点から、エチレン-α-オレフィンエラストマー(エチレン-プロピレン共重合体(EPM)、エチレン-プロピレン-ジエン三元共重合体(EPDM)などのエチレン-α-オレフィン系ゴム)、クロロプレンゴムが汎用され、特に、変速ベルトなど高負荷環境で用いる場合、機械的強度、耐候性、耐熱性、耐寒性、耐油性、接着性などのバランスに優れる点から、クロロプレンゴム、EPDMが好ましい。さらに、前記特性に加えて、耐摩耗性にも優れる点から、クロロプレンゴムが特に好ましい。クロロプレンゴムは、硫黄変性タイプであってもよく、非硫黄変性タイプであってもよい。 Among these rubber components, an ethylene-α-olefin elastomer (ethylene-propylene copolymer (EPM), ethylene-propylene-diene terpolymer ( Ethylene-α-olefin rubbers such as EPDM) and chloroprene rubber are widely used, especially when used in high load environments such as transmission belts, mechanical strength, weather resistance, heat resistance, cold resistance, oil resistance, adhesion, etc. From the viewpoint of excellent balance, chloroprene rubber and EPDM are preferable. Furthermore, chloroprene rubber is particularly preferable from the viewpoint of excellent wear resistance in addition to the above characteristics. The chloroprene rubber may be a sulfur-modified type or a non-sulfur-modified type.
 ゴム成分がクロロプレンゴムを含む場合、ゴム成分中のクロロプレンゴムの割合は50質量%以上(特に80~100質量%)程度であってもよく、100質量%(クロロプレンゴムのみ)が特に好ましい。 When the rubber component contains chloroprene rubber, the proportion of the chloroprene rubber in the rubber component may be about 50% by mass (especially 80 to 100% by mass), and 100% by mass (chloroprene rubber only) is particularly preferable.
 (フィラー)
 本発明では、耐疲労破壊性と耐摩耗性を飛躍的に向上させるために、フィラーとしてカーボンブラックを含む。カーボンブラックの平均粒径は、例えば5~200nm、好ましくは10~150nm、さらに好ましくは15~100nm程度であり、補強効果が高い点から、小粒径のカーボンブラックであってもよく、例えば5~38nm、好ましくは10~35nm、さらに好ましくは15~30nm程度であってもよい。小粒径のカーボンブラックとしては、例えば、SAF、ISAF-HM、ISAF-LM、HAF-LS、HAF、HAF-HSなどが例示できる。これらのカーボンブラックは単独又は組み合わせて使用できる。
(Filler)
In the present invention, carbon black is included as a filler in order to dramatically improve fatigue fracture resistance and wear resistance. The average particle size of carbon black is, for example, about 5 to 200 nm, preferably about 10 to 150 nm, more preferably about 15 to 100 nm. From the viewpoint of high reinforcing effect, carbon black having a small particle size may be used. It may be about 38 nm, preferably 10 to 35 nm, more preferably about 15 to 30 nm. Examples of the carbon black having a small particle diameter include SAF, ISAF-HM, ISAF-LM, HAF-LS, HAF, and HAF-HS. These carbon blacks can be used alone or in combination.
 本発明では、前記カーボンブラックの割合は、前記ゴム成分100質量部に対して30質量部以上である。カーボンブラックは、シリカに比べ、大量に配合しても加工性の低下を抑制できる。そのため、シリカを大量に配合した従来の接着ゴム層に比べて、接着ゴム層の力学特性(弾性率)を向上できるため、接着ゴム層の摩擦係数を低減できる。さらに、カーボンブラックを比較的大量に含む接着ゴム層は、圧縮ゴム層(又は伸張ゴム層)との力学特性の差が小さくなり、高負荷環境でのベルト走行における過酷な動きでベルトがせん断応力を受けても、接着ゴム層と圧縮ゴム層(又は伸張ゴム層)との界面がせん断応力の集中点にならず、界面剥離(亀裂)が生じ難い。さらに、カーボンブラックを含むゴム組成物は、シリカに比べて耐摩耗性が優れるため、接着ゴム層の耐摩耗性を向上できる。 In the present invention, the ratio of the carbon black is 30 parts by mass or more with respect to 100 parts by mass of the rubber component. Carbon black can suppress a decrease in workability even when blended in a large amount as compared with silica. Therefore, compared with a conventional adhesive rubber layer containing a large amount of silica, the mechanical properties (elastic modulus) of the adhesive rubber layer can be improved, so that the friction coefficient of the adhesive rubber layer can be reduced. Furthermore, the adhesive rubber layer containing a relatively large amount of carbon black has a smaller difference in mechanical properties from the compressed rubber layer (or stretched rubber layer), and the belt undergoes shear stress due to severe movement during belt running in a high load environment. Even if it receives, the interface of an adhesive rubber layer and a compression rubber layer (or extension rubber layer) does not become a concentrated point of shear stress, and interface peeling (crack) does not occur easily. Furthermore, since the rubber composition containing carbon black has higher wear resistance than silica, the wear resistance of the adhesive rubber layer can be improved.
 また、前記カーボンブラックの割合は、耐屈曲疲労性の低下を抑制できる点から、前記ゴム成分に対して100質量部以下であってもよい。さらに、カーボンブラックの割合は、ゴム成分100質量部に対して30~80質量部(特に30~60質量部)が好ましく、40~60質量部(特に45~60質量部)が特に好ましく、例えば50~70質量部(特に55~65質量部)程度であってもよい。カーボンブラックの割合が少なすぎると、弾性率が不足して耐疲労破壊性や耐摩耗性が低下する虞があり、多すぎると、弾性率が高くなりすぎて、耐屈曲疲労性が低下する虞がある。 Further, the ratio of the carbon black may be 100 parts by mass or less with respect to the rubber component from the viewpoint of suppressing a decrease in bending fatigue resistance. Further, the proportion of carbon black is preferably 30 to 80 parts by weight (particularly 30 to 60 parts by weight), particularly preferably 40 to 60 parts by weight (particularly 45 to 60 parts by weight), based on 100 parts by weight of the rubber component. It may be about 50 to 70 parts by mass (particularly 55 to 65 parts by mass). If the proportion of carbon black is too small, the elastic modulus may be insufficient and the fatigue fracture resistance and wear resistance may be reduced. If it is too large, the elastic modulus will be too high and the bending fatigue resistance may be reduced. There is.
 本発明では、接着ゴム層の力学特性を低下させることなく、接着ゴム層の接着性を向上できる点から、フィラーとしてさらに比較的少量のシリカを含む。シリカは、珪酸及び/又は珪酸塩で形成された微細な嵩高い白色粉末であり、その表面には複数のシラノール基が存在するため、ゴム成分と化学的に接着できる。 In the present invention, a relatively small amount of silica is further contained as a filler from the viewpoint that the adhesive property of the adhesive rubber layer can be improved without deteriorating the mechanical properties of the adhesive rubber layer. Silica is a fine, bulky white powder formed of silicic acid and / or silicate, and has a plurality of silanol groups on its surface, so that it can be chemically bonded to the rubber component.
 シリカには、乾式シリカ、湿式シリカ、表面処理したシリカなどが含まれる。また、シリカは、製法での分類によって、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどにも分類できる。これらのシリカは、単独で又は二種以上組み合わせて使用できる。これらのうち、表面シラノール基が多く、ゴムとの化学的結合力が強い点から、含水珪酸を主成分とする湿式法ホワイトカーボンが好ましい。 Silica includes dry silica, wet silica, surface-treated silica, and the like. Silica can also be classified into, for example, dry process white carbon, wet process white carbon, colloidal silica, precipitated silica, and the like according to the classification in the production method. These silicas can be used alone or in combination of two or more. Of these, wet white carbon containing hydrous silicic acid as a main component is preferable because it has many surface silanol groups and strong chemical bonding with rubber.
 シリカの平均粒径は、例えば1~1000nm、好ましくは3~300nm、さらに好ましくは5~100nm(特に10~50nm)程度である。シリカの粒径が大きすぎると、接着ゴム層の機械的特性が低下する虞があり、小さすぎると、均一に分散するのが困難となる虞がある。 The average particle diameter of silica is, for example, about 1 to 1000 nm, preferably 3 to 300 nm, more preferably 5 to 100 nm (particularly 10 to 50 nm). If the particle size of the silica is too large, the mechanical properties of the adhesive rubber layer may be reduced, and if it is too small, it may be difficult to uniformly disperse.
 また、シリカは、非多孔質又は多孔質のいずれであってもよいが、BET法による窒素吸着比表面積は、例えば50~400m/g、好ましくは70~350m/g、さらに好ましくは100~300m/g(特に150~250m/g)程度であってもよい。比表面積が大きすぎると、均一に分散するのが困難となる虞があり、比表面積が小さすぎると、接着ゴム層の機械的特性が低下する虞がある。 Silica may be non-porous or porous, but the nitrogen adsorption specific surface area by the BET method is, for example, 50 to 400 m 2 / g, preferably 70 to 350 m 2 / g, more preferably 100. It may be about ˜300 m 2 / g (especially 150 to 250 m 2 / g). If the specific surface area is too large, it may be difficult to uniformly disperse, and if the specific surface area is too small, the mechanical properties of the adhesive rubber layer may be reduced.
 シリカの割合は、接着性を向上させるために従来の接着ゴム層に配合されている割合に比べて少量である。すなわち、本発明では、芯体のオーバーコート層がシリカを含むため、接着ゴム層では、多量のシリカは必要ではない。本発明では、オーバーコート層がシリカを含み、接着ゴム層が少ない割合でシリカを含むことにより、相反する特性であった接着ゴム層の力学特性と接着性(例えば、芯体との接着性)とを両立でき、特に、接着性を高度に向上できる。 The proportion of silica is a small amount compared to the proportion blended in the conventional adhesive rubber layer in order to improve the adhesiveness. That is, in the present invention, since the overcoat layer of the core includes silica, the adhesive rubber layer does not require a large amount of silica. In the present invention, since the overcoat layer contains silica and the adhesive rubber layer contains silica in a small proportion, the mechanical properties and adhesiveness of the adhesive rubber layer, which are contradictory properties (for example, adhesiveness to the core), In particular, the adhesiveness can be improved to a high degree.
 具体的なシリカの割合は、ゴム成分100質量部に対して、例えば0.1~15質量部(例えば0.1~10質量部)、好ましくは1~14質量部、さらに好ましくは3~13質量部(特に5~12質量部)程度である。シリカの割合が少なすぎると、接着性の向上効果が発現しない虞がある。シリカの割合が多すぎると、耐界面剥離性、耐摩耗性及び低摩擦係数などの力学特性が低下する虞がある。 The specific proportion of silica is, for example, 0.1 to 15 parts by mass (for example, 0.1 to 10 parts by mass), preferably 1 to 14 parts by mass, and more preferably 3 to 13 parts per 100 parts by mass of the rubber component. About mass parts (particularly 5 to 12 mass parts). If the proportion of silica is too small, the effect of improving the adhesiveness may not be exhibited. If the proportion of silica is too large, mechanical properties such as interfacial peel resistance, wear resistance, and low friction coefficient may be deteriorated.
 さらに、シリカの割合は、カーボンブラック100質量部に対して、40質量部以下程度であり、例えば5~35質量部、好ましくは10~30質量部、さらに好ましくは15~25質量部程度である。 Further, the ratio of silica is about 40 parts by mass or less with respect to 100 parts by mass of carbon black, for example, 5 to 35 parts by mass, preferably 10 to 30 parts by mass, and more preferably about 15 to 25 parts by mass. .
 フィラーは、さらに慣用のフィラーを含んでいてもよい。慣用のフィラーとしては、例えば、クレー、炭酸カルシウム、タルク、マイカなどが挙げられる。これらの慣用のフィラーは、単独で又は二種以上組み合わせて使用できる。 The filler may further contain a conventional filler. Examples of conventional fillers include clay, calcium carbonate, talc, and mica. These conventional fillers can be used alone or in combination of two or more.
 フィラー全体に対して、カーボンブラックの割合は50質量%以上であってもよく、好ましくは60質量%以上、さらに好ましくは70質量%以上(特に80質量%以上)であってもよく、90質量%以上(特に99.9質量%以上)であってもよい。カーボンブラックの割合が少なすぎると、接着ゴム層の力学特性が低下する虞がある。 The ratio of carbon black to the whole filler may be 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more (particularly 80% by mass or more), and 90% by mass. % Or more (particularly 99.9% by mass or more). If the proportion of carbon black is too small, the mechanical properties of the adhesive rubber layer may be reduced.
 フィラーの割合(合計割合)は、ゴム成分100質量部に対して、例えば30~100質量部、好ましくは40~80質量部、さらに好ましくは50~70質量部(特に55~65質量部)程度である。フィラーの割合が少なすぎると、弾性率の低下により耐摩耗性が低下する虞があり、逆に多すぎると、弾性率が高くなりすぎて、発熱も多く、伸張ゴム層及び圧縮ゴム層に亀裂が早期に発生する虞がある。 The proportion (total proportion) of the filler is, for example, about 30 to 100 parts by weight, preferably 40 to 80 parts by weight, more preferably 50 to 70 parts by weight (particularly 55 to 65 parts by weight) with respect to 100 parts by weight of the rubber component. It is. If the proportion of the filler is too small, the wear resistance may decrease due to a decrease in the elastic modulus. Conversely, if it is too large, the elastic modulus will be too high and heat will be generated, and the stretched rubber layer and the compressed rubber layer will crack. May occur early.
 (添加剤)
 接着ゴム層を形成するためのゴム組成物には、必要に応じて、加硫剤又は架橋剤(又は架橋剤系)、共架橋剤、加硫助剤、加硫促進剤、加硫遅延剤、金属酸化物(例えば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、軟化剤(パラフィンオイル、ナフテン系オイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸などの脂肪酸、ステアリン酸金属塩などの脂肪酸金属塩、ステアリン酸アマイドなどの脂肪酸アマイド、ワックス、パラフィンなど)、接着性改善剤[レゾルシン-ホルムアルデヒド共縮合物(RF縮合物)、アミノ樹脂(窒素含有環状化合物とホルムアルデヒドとの縮合物、例えば、ヘキサメチロールメラミン、ヘキサアルコキシメチルメラミン(ヘキサメトキシメチルメラミン、ヘキサブトキシメチルメラミンなど)などのメラミン樹脂、メチロール尿素などの尿素樹脂、メチロールンゾグアナミン樹脂などのベンゾグアナミン樹脂など)、これらの共縮合物(レゾルシン-メラミン-ホルムアルデヒド共縮合物など)など]、短繊維(ポリエステル短繊維、アラミド短繊維など)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止剤、オゾン劣化防止剤など)、着色剤、粘着付与剤、可塑剤、滑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、難燃剤、帯電防止剤などを含んでいてもよい。なお、金属酸化物は架橋剤として作用してもよい。また、接着性改善剤において、レゾルシン-ホルムアルデヒド共縮合物及びアミノ樹脂は、レゾルシン及び/又はメラミンなどの窒素含有環状化合物とホルムアルデヒドとの初期縮合物(プレポリマー)であってもよい。
(Additive)
The rubber composition for forming the adhesive rubber layer includes a vulcanizing agent or a crosslinking agent (or a crosslinking agent system), a co-crosslinking agent, a vulcanization aid, a vulcanization accelerator, and a vulcanization retarder as necessary. , Metal oxides (eg, zinc oxide, magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide), softeners (oils such as paraffin oil and naphthenic oil), processing Agent or processing aid (fatty acid such as stearic acid, fatty acid metal salt such as stearic acid metal salt, fatty acid amide such as stearic acid amide, wax, paraffin, etc.), adhesion improver [resorcin-formaldehyde cocondensate (RF condensation) Products), amino resins (condensates of nitrogen-containing cyclic compounds and formaldehyde, such as hexamethylol melamine, hexaalkoxymethyl methy Melamine resins such as min (hexamethoxymethyl melamine, hexabutoxymethyl melamine, etc.), urea resins such as methylol urea, benzoguanamine resins such as methylol zoguanamine resin, etc., and their condensates (resorcin-melamine-formaldehyde co-condensation) Etc.), short fibers (polyester short fibers, aramid short fibers, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, anti-bending cracking agents, anti-ozone degradation agents, etc.), colorants, tackifiers An agent, a plasticizer, a lubricant, a coupling agent (such as a silane coupling agent), a stabilizer (such as an ultraviolet absorber and a heat stabilizer), a flame retardant, and an antistatic agent may be included. The metal oxide may act as a crosslinking agent. In the adhesion improver, the resorcin-formaldehyde cocondensate and amino resin may be an initial condensate (prepolymer) of a nitrogen-containing cyclic compound such as resorcin and / or melamine and formaldehyde.
 加硫剤又は架橋剤としては、ゴム成分の種類に応じて慣用の成分が使用でき、例えば、前記金属酸化物(酸化マグネシウム、酸化亜鉛など)、有機過酸化物(ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイドなど)、硫黄系加硫剤などが例示できる。硫黄系加硫剤としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、塩化硫黄(一塩化硫黄、二塩化硫黄など)などが挙げられる。これらの架橋剤又は加硫剤は単独で又は二種以上組み合わせて使用してもよい。ゴム成分がクロロプレンゴムである場合、加硫剤又は架橋剤として金属酸化物(酸化マグネシウム、酸化亜鉛など)を使用してもよい。なお、金属酸化物は他の加硫剤(硫黄系加硫剤など)と組合せて使用してもよく、金属酸化物及び/又は硫黄系加硫剤は単独で又は加硫促進剤と組み合わせて使用してもよい。 As the vulcanizing agent or the crosslinking agent, conventional components can be used depending on the type of rubber component. For example, the metal oxide (magnesium oxide, zinc oxide, etc.), organic peroxide (diacyl peroxide, peroxyester) And dialkyl peroxide), sulfur vulcanizing agents, and the like. Examples of the sulfur-based vulcanizing agent include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, sulfur chloride (sulfur monochloride, sulfur dichloride, etc.), and the like. These crosslinking agents or vulcanizing agents may be used alone or in combination of two or more. When the rubber component is chloroprene rubber, a metal oxide (magnesium oxide, zinc oxide, etc.) may be used as a vulcanizing agent or a crosslinking agent. The metal oxide may be used in combination with other vulcanizing agents (such as sulfur-based vulcanizing agents), and the metal oxide and / or sulfur-based vulcanizing agent may be used alone or in combination with a vulcanization accelerator. May be used.
 加硫剤の割合は、加硫剤及びゴム成分の種類に応じて、ゴム成分100質量部に対して1~20質量部程度の範囲から選択できる。例えば、加硫剤としての有機過酸化物の割合は、ゴム成分100質量部に対して1~8質量部、好ましくは1.5~5質量部、さらに好ましくは2~4.5質量部程度の範囲から選択でき、金属酸化物の割合は、ゴム成分100質量部に対して1~20質量部、好ましくは3~17質量部、さらに好ましくは5~15質量部(特に7~13質量部)程度の範囲から選択できる。 The proportion of the vulcanizing agent can be selected from a range of about 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component depending on the types of the vulcanizing agent and the rubber component. For example, the ratio of the organic peroxide as the vulcanizing agent is 1 to 8 parts by weight, preferably 1.5 to 5 parts by weight, and more preferably about 2 to 4.5 parts by weight with respect to 100 parts by weight of the rubber component. The ratio of the metal oxide is 1 to 20 parts by weight, preferably 3 to 17 parts by weight, more preferably 5 to 15 parts by weight (particularly 7 to 13 parts by weight) with respect to 100 parts by weight of the rubber component. ) Select from a range of degrees.
 共架橋剤(架橋助剤、又は共加硫剤co-agent)としては、公知の架橋助剤、例えば、多官能(イソ)シアヌレート[例えば、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート(TAC)など]、ポリジエン(例えば、1,2-ポリブタジエンなど)、不飽和カルボン酸の金属塩[例えば、(メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウムなど]、オキシム類(例えば、キノンジオキシムなど)、グアニジン類(例えば、ジフェニルグアニジンなど)、多官能(メタ)アクリレート[例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなど]、ビスマレイミド類(脂肪族ビスマレイミド、例えば、N,N’-1,2-エチレンジマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)シクロヘキサンなど;アレーンビスマレイミド又は芳香族ビスマレイミド、例えば、N,N’-m-フェニレンジマレイミド、4-メチル-1,3-フェニレジマレイミド、4,4’-ジフェニルメタンジマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、4,4’-ジフェニルエーテルジマレイミド、4,4’-ジフェニルスルフォンジマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼンなど)などが挙げられる。これらの架橋助剤は、単独で又は二種以上組み合わせて使用できる。これらの架橋助剤のうち、ビスマレイミド類(N,N’-m-フェニレンジマレイミドなどのアレーンビスマレイミド又は芳香族ビスマレイミド)が好ましい。ビスマレイミド類の添加により架橋度を高め、粘着摩耗などを防止できる。 Examples of the co-crosslinking agent (crosslinking aid or co-vulcanizing agent co-agent) include known crosslinking aids such as polyfunctional (iso) cyanurates [for example, triallyl isocyanurate (TAIC), triallyl cyanurate ( TAC), etc.], polydienes (eg, 1,2-polybutadiene, etc.), metal salts of unsaturated carboxylic acids [eg, zinc (meth) acrylate, magnesium (meth) acrylate, etc.], oximes (eg, quinonedi) Oximes, etc.), guanidines (eg, diphenylguanidine, etc.), polyfunctional (meth) acrylates (eg, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, etc.), Bismaleimides (aliphatic bismaleimides such as N, N′-1,2 Ethylene dimaleimide, 1,6′-bismaleimide- (2,2,4-trimethyl) cyclohexane, etc .; arene bismaleimide or aromatic bismaleimide, such as N, N′-m-phenylene dimaleimide, 4-methyl- 1,3-Phenylene resin maleimide, 4,4′-diphenylmethane dimaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 4,4′-diphenyl ether dimaleimide, 4,4′-diphenyl Sulfone dimaleimide, 1,3-bis (3-maleimidophenoxy) benzene and the like. These crosslinking aids can be used alone or in combination of two or more. Of these crosslinking aids, bismaleimides (arene bismaleimides such as N, N'-m-phenylene dimaleimide or aromatic bismaleimides) are preferred. The addition of bismaleimides can increase the degree of crosslinking and prevent adhesive wear and the like.
 共架橋剤(架橋助剤)の割合は、固形分換算で、ゴム成分100質量部に対して0.01~10質量部程度の範囲から選択でき、例えば0.1~10質量部(例えば0.3~8質量部)、好ましくは0.5~6質量部(特に1~5質量部)程度であってもよい。 The ratio of the co-crosslinking agent (crosslinking aid) can be selected from the range of about 0.01 to 10 parts by mass, for example, 0.1 to 10 parts by mass (for example 0 .3 to 8 parts by mass), preferably about 0.5 to 6 parts by mass (especially 1 to 5 parts by mass).
 加硫促進剤としては、例えば、チウラム系促進剤[例えば、テトラメチルチウラム・モノスルフィド(TMTM)、テトラメチルチウラム・ジスルフィド(TMTD)、テトラエチルチウラム・ジスルフィド(TETD)、テトラブチルチウラム・ジスルフィド(TBTD)、ジペンタメチレンチウラムテトラスルフィド(DPTT)、N,N’-ジメチル-N,N’-ジフェニルチウラム・ジスルフィドなど]、チアゾ-ル系促進剤[例えば、2-メルカプトベンゾチアゾ-ル、2-メルカプトベンゾチアゾ-ルの亜鉛塩、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(4’-モルホリノジチオ)ベンゾチアゾールなど)など]、スルフェンアミド系促進剤[例えば、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N,N’-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミドなど]、グアニジン類(ジフェニルグアニジン、ジo-トリルグアニジンなど)、ウレア系又はチオウレア系促進剤(例えば、エチレンチオウレアなど)、ジチオカルバミン酸塩類、キサントゲン酸塩類などが挙げられる。これらの加硫促進剤は、単独で又は二種以上組み合わせて使用できる。これらの加硫促進剤のうち、TMTD、DPTT、CBSなどが汎用される。 Examples of the vulcanization accelerator include thiuram accelerators [for example, tetramethylthiuram monosulfide (TMTM), tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD). ), Dipentamethylene thiuram tetrasulfide (DPTT), N, N′-dimethyl-N, N′-diphenyl thiuram disulfide, etc.], thiazole accelerators (eg, 2-mercaptobenzothiazol, 2 -Zinc salts of mercaptobenzothiazol, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (4'-morpholinodithio) benzothiazole, etc.)], sulfenamide accelerators (for example, N-cyclohexyl) -2-Benzothiazils Phenamide (CBS), N, N′-dicyclohexyl-2-benzothiazylsulfenamide, etc.], guanidines (diphenylguanidine, di-tolylguanidine, etc.), urea-based or thiourea accelerators (for example, ethylenethiourea, etc.) ), Dithiocarbamates, xanthates and the like. These vulcanization accelerators can be used alone or in combination of two or more. Of these vulcanization accelerators, TMTD, DPTT, CBS and the like are widely used.
 加硫促進剤の割合は、固形分換算で、ゴム成分100質量部に対して、例えば0.1~15質量部、好ましくは0.3~10質量部、さらに好ましくは0.5~5質量部程度であってもよい。 The proportion of the vulcanization accelerator is, for example, 0.1 to 15 parts by mass, preferably 0.3 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass in terms of solid content with respect to 100 parts by mass of the rubber component. It may be about a part.
 軟化剤(ナフテン系オイルなどのオイル類)の割合は、ゴム成分の総量100質量部に対して、例えば1~30質量部、好ましくは3~20質量部(例えば5~10質量部)程度であってもよい。また、加工剤又は加工助剤(ステアリン酸など)の割合は、ゴム成分100質量部に対して、10質量部以下(例えば、0~10質量部)、好ましくは0.1~5質量部、さらに好ましくは0.3~3質量部(特に0.5~2質量部)程度であってもよい。 The ratio of the softening agent (oils such as naphthenic oil) is, for example, about 1 to 30 parts by mass, preferably about 3 to 20 parts by mass (eg 5 to 10 parts by mass) with respect to 100 parts by mass of the total amount of rubber components. There may be. Further, the ratio of the processing agent or processing aid (eg, stearic acid) is 10 parts by mass or less (for example, 0 to 10 parts by mass), preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber component. More preferably, it may be about 0.3 to 3 parts by mass (particularly 0.5 to 2 parts by mass).
 接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、ヘキサメトキシメチルメラミンなど)の割合は、ゴム成分100質量部に対して、0.1~20質量部、好ましくは0.3~10質量部、さらに好ましくは0.5~5質量部(1~3質量部)程度であってもよい。 The ratio of the adhesion improver (resorcin-formaldehyde cocondensate, hexamethoxymethylmelamine, etc.) is 0.1 to 20 parts by weight, preferably 0.3 to 10 parts by weight, based on 100 parts by weight of the rubber component. Preferably, it may be about 0.5 to 5 parts by mass (1 to 3 parts by mass).
 老化防止剤の割合は、ゴム成分の総量100質量部に対して、例えば0.5~15質量部、好ましくは1~10質量部、さらに好ましくは2.5~7.5質量部(特に3~7質量部)程度であってもよい。 The proportion of the antioxidant is, for example, 0.5 to 15 parts by weight, preferably 1 to 10 parts by weight, more preferably 2.5 to 7.5 parts by weight (particularly 3 parts by weight) with respect to 100 parts by weight of the total amount of rubber components. About 7 parts by mass).
 (接着ゴム層の特性)
 接着ゴム層の力学特性は、要求性能に応じて適宜選択でき、例えば、JIS K6253(2012)に準拠した方法で、ゴム硬度は、例えば75~90°、好ましくは80~88°、さらに好ましくは82~86°程度であってもよい。さらに、高いゴム硬度の接着ゴム層を形成してもよく、例えば、フィラーを多量に配合することにより、ゴム硬度を84~90°程度に調整してもよい。
(Characteristics of adhesive rubber layer)
The mechanical properties of the adhesive rubber layer can be appropriately selected according to the required performance. For example, the rubber hardness is, for example, 75 to 90 °, preferably 80 to 88 °, more preferably, by a method based on JIS K6253 (2012). It may be about 82 to 86 °. Further, an adhesive rubber layer having a high rubber hardness may be formed. For example, the rubber hardness may be adjusted to about 84 to 90 ° by blending a large amount of filler.
 接着ゴム層の平均厚みは、ベルトの種類に応じて適宜選択でき、例えば0.4~3mm、好ましくは0.6~2.2mm、さらに好ましくは0.8~1.4mm程度であってもよい。 The average thickness of the adhesive rubber layer can be appropriately selected depending on the type of belt, and may be, for example, about 0.4 to 3 mm, preferably about 0.6 to 2.2 mm, and more preferably about 0.8 to 1.4 mm. Good.
 [芯体]
 本発明では、芯体の表面は、前記接着ゴム層との接着性を向上できる点から、ゴム成分及びシリカを含む加硫ゴム組成物で形成されたオーバーコート層で被覆されている。
[Core]
In the present invention, the surface of the core body is covered with an overcoat layer formed of a vulcanized rubber composition containing a rubber component and silica, from the viewpoint that the adhesiveness with the adhesive rubber layer can be improved.
 (オーバーコート層)
 本発明では、芯体の最表面に積層されたオーバーコート層がシリカを含むため、接着ゴム層と芯体との接着性を向上できる。シリカとしては、前記接着ゴム層のシリカとして例示されたシリカを利用できる。前記シリカは、単独で又は二種以上組み合わせて使用できる。シリカの好ましい種類、平均粒径、比表面積についても、前記接着ゴム層のシリカと同一である。
(Overcoat layer)
In this invention, since the overcoat layer laminated | stacked on the outermost surface of the core body contains a silica, the adhesiveness of an adhesive rubber layer and a core body can be improved. As the silica, silica exemplified as the silica of the adhesive rubber layer can be used. The said silica can be used individually or in combination of 2 or more types. The preferable type, average particle diameter, and specific surface area of silica are also the same as those of the adhesive rubber layer.
 シリカの割合は、ゴム成分100質量部に対して10質量部以上(例えば10~50質量部)であってもよく、例えば15~50質量部、好ましくは25~50質量部、さらに好ましくは30~45質量部(特に35~45質量部)程度である。シリカの割合が少なすぎると、芯体と接着ゴム層との接着性を十分確保することができない虞があり、多すぎると、加工性が低下してゴム組成物への添加が困難になる虞がある。 The proportion of silica may be 10 parts by mass or more (for example, 10 to 50 parts by mass) with respect to 100 parts by mass of the rubber component, for example, 15 to 50 parts by mass, preferably 25 to 50 parts by mass, and more preferably 30 parts. About 45 parts by mass (particularly 35 to 45 parts by mass). If the ratio of silica is too small, there is a possibility that sufficient adhesion between the core and the adhesive rubber layer may not be ensured, and if it is too large, processability may decrease and it may be difficult to add to the rubber composition. There is.
 ゴム成分としては、前記接着ゴム層のゴム成分として例示されたゴム成分を利用できる。前記ゴム成分は、単独で又は二種以上組み合わせて使用できる。前記ゴム成分のうち、ジエン系ゴム(例えば、クロロプレンゴム、ニトリルゴム、水素化ニトリルゴムなど)、オレフィン系ゴム(例えば、EPM、EPDM、クロロスルホン化ポリエチレンゴム、アルキル化クロロスルホン化ポリエチレンゴムなど)などが汎用される。なお、ゴム成分として、芯体を埋設する接着ゴム層と同一又は同系統のゴム成分(特にクロロプレンゴム)を好適に使用できる。 The rubber component exemplified as the rubber component of the adhesive rubber layer can be used as the rubber component. The said rubber component can be used individually or in combination of 2 or more types. Among the rubber components, diene rubber (eg, chloroprene rubber, nitrile rubber, hydrogenated nitrile rubber, etc.), olefin rubber (eg, EPM, EPDM, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, etc.) Etc. are widely used. In addition, as a rubber component, the rubber component (especially chloroprene rubber) of the same or the same system as the adhesive rubber layer which embeds a core body can be used conveniently.
 オーバーコート層を形成する加硫ゴム組成物は、必要に応じて、カーボンブラックをさらに含んでいてもよい。カーボンブラックとしては、前記接着ゴム層のカーボンブラックとして例示されたカーボンブラックを利用できる。前記カーボンブラックは、単独で又は二種以上組み合わせて使用できる。カーボンブラックの好ましい種類、平均粒径についても、前記接着ゴム層のカーボンブラックと同一である。 The vulcanized rubber composition forming the overcoat layer may further contain carbon black, if necessary. As the carbon black, the carbon black exemplified as the carbon black of the adhesive rubber layer can be used. The said carbon black can be used individually or in combination of 2 or more types. The preferred type of carbon black and the average particle size are also the same as those of the carbon black of the adhesive rubber layer.
 カーボンブラックの割合は、ゴム成分100質量部に対して50質量部以下であってもよく、例えば35質量部以下(例えば5~35質量部)、好ましくは30質量部以下(例えば20質量部以下)、さらに好ましくは10質量部以下(特に5質量部以下)である。また、加硫ゴム組成物は、カーボンブラックを含んでいなくてもよい。カーボンブラックの割合が多すぎると、加工性が低下する上に、シリカを高濃度で配合するのが困難となる虞がある。 The proportion of carbon black may be 50 parts by mass or less with respect to 100 parts by mass of the rubber component, for example, 35 parts by mass or less (for example, 5 to 35 parts by mass), preferably 30 parts by mass or less (for example, 20 parts by mass or less). ), More preferably 10 parts by mass or less (particularly 5 parts by mass or less). Further, the vulcanized rubber composition may not contain carbon black. If the ratio of carbon black is too large, the processability is lowered and it may be difficult to blend silica at a high concentration.
 オーバーコート層を形成する加硫ゴム組成物は、硬化剤として、イソシアネート化合物及び/又はエポキシ化合物をさらに含んでいてもよい。 The vulcanized rubber composition forming the overcoat layer may further contain an isocyanate compound and / or an epoxy compound as a curing agent.
 イソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレン2,4-ジイソシアネート、ポリメチレンポリフェニルジイソシアネート、ヘキサメチレンジイソシアネート、ポリアリールポリイソシアネート、(例えば、商品名「PAPI」)などが挙げられる。これらのイソシアネート化合物は、フェノール類、第3級アルコール類、第2級アルコール類などのブロック化剤を反応させてポリイソシアネートのイソシアネート基をブロック化したブロック化ポリイソシアネートであってもよい。 Examples of the isocyanate compound include 4,4′-diphenylmethane diisocyanate, tolylene 2,4-diisocyanate, polymethylene polyphenyl diisocyanate, hexamethylene diisocyanate, polyaryl polyisocyanate (for example, trade name “PAPI”), and the like. . These isocyanate compounds may be blocked polyisocyanates obtained by reacting a blocking agent such as phenols, tertiary alcohols, and secondary alcohols to block the isocyanate groups of the polyisocyanate.
 エポキシ化合物としては、例えば、エチレングリコール、グリセリン、ペンタエリスリトールなどの多価アルコールやポリエチレングリコールなどのポリアルキレングリコールと、エピクロルヒドリンなどのハロゲン含有エポキシ化合物との反応生成物、レゾルシン、ビス(4-ヒドロキシフェニル)ジメチルメタン、フェノール-ホルムアルデヒド樹脂、レゾルシン-ホルムアルデヒド樹脂などの多価フェノール類とハロゲン含有エポキシ化合物との反応生成物などが挙げられる。 Examples of the epoxy compound include a reaction product of a polyhydric alcohol such as ethylene glycol, glycerin and pentaerythritol, a polyalkylene glycol such as polyethylene glycol, and a halogen-containing epoxy compound such as epichlorohydrin, resorcin, and bis (4-hydroxyphenyl). ) Reaction products of polyhydric phenols such as dimethylmethane, phenol-formaldehyde resin, resorcinol-formaldehyde resin and halogen-containing epoxy compounds.
 これらの硬化剤は、単独で又は二種以上組み合わせて使用できる。これらのうち、イソシアネート化合物が好ましい。 These curing agents can be used alone or in combination of two or more. Of these, isocyanate compounds are preferred.
 硬化剤の割合は、前記ゴム成分100質量部に対して、例えば10~200質量部、好ましくは30~150質量部、さらに好ましくは50~100質量部程度である。 The ratio of the curing agent is, for example, about 10 to 200 parts by mass, preferably about 30 to 150 parts by mass, and more preferably about 50 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
 オーバーコート層を形成する加硫ゴム組成物には、必要に応じて、接着ゴム層のフィラー(シリカ及びカーボンブラック以外のフィラー)として例示されたフィラー、添加剤として例示された添加剤を利用できる。前記添加剤は、単独で又は二種以上組み合わせて使用できる。前記添加剤の割合については、接着ゴム層の添加剤と同一である。これらのうち、フィラー、加硫剤、共加硫剤、加硫促進剤、接着性改善剤、老化防止剤、滑剤などが汎用される。代表的な組成物は、ゴム成分、シリカ、RF縮合物、及び添加剤(例えば、加硫剤、共加硫剤、加硫促進剤、接着性改善剤、フィラー、老化防止剤、滑剤)との組み合わせである。 In the vulcanized rubber composition forming the overcoat layer, fillers exemplified as fillers (fillers other than silica and carbon black) of the adhesive rubber layer and additives exemplified as additives can be used as necessary. . The said additive can be used individually or in combination of 2 or more types. The ratio of the additive is the same as that of the adhesive rubber layer. Of these, fillers, vulcanizing agents, co-vulcanizing agents, vulcanization accelerators, adhesion improvers, anti-aging agents, lubricants and the like are widely used. Typical compositions include rubber components, silica, RF condensates, and additives (eg, vulcanizing agents, co-curing agents, vulcanization accelerators, adhesion improvers, fillers, anti-aging agents, lubricants) It is a combination.
 オーバーコート層の平均厚みは、例えば5~30μm、好ましくは8~25μm、さらに好ましくは10~20μm程度である。本発明では、オーバーコート層がこのような薄肉に調整されているため、オーバーコート層を接着機能に特化してもせん断応力を分散し易くなり、力学特性の低下を抑制できたと推定できる。オーバーコート層の厚みが薄すぎると、芯体と接着ゴム層との接着性を十分確保できない虞があり、厚すぎると耐屈曲疲労性が劣る虞がある。 The average thickness of the overcoat layer is, for example, about 5 to 30 μm, preferably about 8 to 25 μm, and more preferably about 10 to 20 μm. In the present invention, since the overcoat layer is adjusted to such a thin wall, it can be presumed that even if the overcoat layer is specialized for the adhesion function, the shear stress is easily dispersed and the deterioration of the mechanical properties can be suppressed. If the overcoat layer is too thin, the adhesion between the core and the adhesive rubber layer may not be sufficiently secured, and if it is too thick, the bending fatigue resistance may be inferior.
 (アンカーコート層)
 オーバーコート層と芯体との間には、オーバーコート層と芯体との接着性を向上するために、アンカーコート層がさらに介在していてもよい。
(Anchor coat layer)
An anchor coat layer may be further interposed between the overcoat layer and the core body in order to improve the adhesion between the overcoat layer and the core body.
 アンカーコート層は、慣用の接着成分で形成されていればよく、特に限定されず、単層であってもよく、複数の層が積層された層であってもよい。これらのうち、オーバーコート層と芯体との接着性を向上できる点から、芯体の表面を被覆する第1のアンカーコート層と、第1のアンカーコート層とオーバーコート層との間に介在する第2のアンカーコート層との組み合わせが好ましい。 The anchor coat layer is not particularly limited as long as it is formed of a conventional adhesive component, and may be a single layer or a layer in which a plurality of layers are laminated. Among these, from the point which can improve the adhesiveness of an overcoat layer and a core, it intervenes between the 1st anchor coat layer which coat | covers the surface of a core, and a 1st anchor coat layer and an overcoat layer A combination with the second anchor coat layer is preferable.
 第1のアンカーコート層としては、前記オーバーコート層の項で例示された硬化剤で形成された層であってもよい。硬化剤としては、前記オーバーコート層に含まれる硬化剤と同一又は同系統の硬化剤(特にイソシアネート化合物)を好適に使用できる。 The first anchor coat layer may be a layer formed with the curing agent exemplified in the section of the overcoat layer. As the curing agent, the same or the same type of curing agent (particularly an isocyanate compound) as the curing agent contained in the overcoat layer can be suitably used.
 第1のアンカーコート層の平均厚みは、例えば0.001~5μm、好ましくは0.01~3μm、さらに好ましくは0.05~2μm程度である。 The average thickness of the first anchor coat layer is, for example, about 0.001 to 5 μm, preferably about 0.01 to 3 μm, and more preferably about 0.05 to 2 μm.
 第2のアンカーコート層としては、RFL液の硬化物で形成されていてもよい。RFL液は、レゾルシン(R)とホルムアルデヒド(F)とゴム又はラテックス(L)とを含む。レゾルシン(R)とホルムアルデヒド(F)とは、これらの縮合物(RF縮合物)の形態で含まれていてもよい。特に、第1のアンカーコート層で被覆された芯体が撚りコードである場合、第2のアンカーコート層は第1のアンカーコート層の上に被膜を形成し、撚りコードの集束性を向上する。さらに、第2のアンカーコート層は、オーバーコート層とも強固に接着して、第1のアンカーコート層からオーバーコート層を強固に一体化できる。 The second anchor coat layer may be formed of a cured product of RFL liquid. The RFL liquid contains resorcin (R), formaldehyde (F), and rubber or latex (L). Resorcin (R) and formaldehyde (F) may be contained in the form of these condensates (RF condensates). In particular, when the core body covered with the first anchor coat layer is a twisted cord, the second anchor coat layer forms a film on the first anchor coat layer, thereby improving the convergence of the twisted cord. . Furthermore, the second anchor coat layer can be firmly bonded to the overcoat layer, so that the overcoat layer can be firmly integrated from the first anchor coat layer.
 レゾルシンとホルムアルデヒドとの割合(使用割合)は、例えば、前者/後者(モル比)=1/0.1~1/5程度の範囲から選択でき、レゾール型とノボラック型との混合物を生成する場合、両者のモル比は、例えば、前者/後者=1/0.3~1/1、好ましくは1/0.4~1/0.95、さらに好ましくは1/0.5~1/0.9程度であってもよい。ホルムアルデヒドの割合が多すぎると、残留ホルムアルデヒドによる汚染の虞があり、逆に少なすぎると、レゾール型RF縮合物の含有量が不足して硬化物の機械的特性が低下する虞がある。 The ratio (use ratio) of resorcin to formaldehyde can be selected from the range of the former / latter (molar ratio) = 1 / 0.1 to 1/5, for example, and a mixture of resole type and novolak type is produced. The molar ratio of the two is, for example, the former / the latter = 1 / 0.3 to 1/1, preferably 1 / 0.4 to 1 / 0.95, and more preferably 1 / 0.5 to 1 / 0.0. It may be about 9. If the proportion of formaldehyde is too large, there is a risk of contamination with residual formaldehyde. Conversely, if it is too small, the content of the resol-type RF condensate may be insufficient and the mechanical properties of the cured product may be deteriorated.
 ラテックスを構成するゴム成分としては、芯体に柔軟性を付与できる限り特に制限されず、例えば、前記接着ゴム層のゴム成分として例示されたゴム成分を利用できる。前記ゴム成分は、単独で又は二種以上組み合わせて使用できる。前記ゴム成分のうち、ビニルピリジン-スチレン-ブタジエン共重合体ゴムなどが汎用される。 The rubber component constituting the latex is not particularly limited as long as it can impart flexibility to the core, and for example, the rubber component exemplified as the rubber component of the adhesive rubber layer can be used. The said rubber component can be used individually or in combination of 2 or more types. Of the rubber components, vinylpyridine-styrene-butadiene copolymer rubber is widely used.
 第2のアンカーコート層の平均厚みは、例えば1~30μm、好ましくは2~25μm、さらに好ましくは5~20μm程度である。 The average thickness of the second anchor coat layer is, for example, about 1 to 30 μm, preferably 2 to 25 μm, and more preferably about 5 to 20 μm.
 (芯体)
 芯体としては、ゴム成分及びシリカを含むオーバーコート層を表面に有していれば、特に限定されないが、通常、ベルト幅方向に所定間隔で配列した心線(撚りコード)を使用できる。心線は、ベルトの長手方向に延びて配設され、通常、ベルトの長手方向に平行に所定のピッチで並列的に延びて配設されている。心線は、少なくともその一部が前記オーバーコート層を介して接着ゴム層と接していればよく、接着ゴム層が心線を埋設する形態、接着ゴム層と伸張ゴム層との間に心線を埋設する形態、接着ゴム層と圧縮ゴム層との間に心線を埋設する形態のいずれの形態であってもよい。これらのうち、耐久性を向上できる点から、接着ゴム層が心線を埋設する形態が好ましい。
(Core)
The core body is not particularly limited as long as it has an overcoat layer containing a rubber component and silica on the surface, but normally, core wires (twisted cords) arranged at predetermined intervals in the belt width direction can be used. The cores are arranged to extend in the longitudinal direction of the belt, and are usually arranged to extend in parallel at a predetermined pitch in parallel with the longitudinal direction of the belt. The core wire only needs to be at least partially in contact with the adhesive rubber layer via the overcoat layer. The core rubber wire is embedded between the adhesive rubber layer and the stretch rubber layer. Any form of embedding the core wire and embedding the core wire between the adhesive rubber layer and the compressed rubber layer may be employed. Among these, the form in which the adhesive rubber layer embeds the core wire is preferable from the viewpoint that durability can be improved.
 心線を構成する繊維としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維など)、ポリアルキレンアリレート系繊維[ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維などのポリC2-4アルキレンC6-14アリレート系繊維など]、ビニロン繊維、ポリビニルアルコール系繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などの合成繊維;綿、麻、羊毛などの天然繊維;炭素繊維などの無機繊維が汎用される。これらの繊維は、単独で又は二種以上組み合わせて使用できる。 Examples of the fibers constituting the core wire include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyalkylene arylate fibers [polyethylene. Terephthalate (PET) fiber, polyethylene naphthalate (PEN) fiber, etc., poly C 2-4 alkylene C 6-14 arylate fiber, etc.], vinylon fiber, polyvinyl alcohol fiber, polyparaphenylene benzobisoxazole (PBO) fiber, etc. Synthetic fibers; natural fibers such as cotton, hemp and wool; and inorganic fibers such as carbon fibers. These fibers can be used alone or in combination of two or more.
 前記繊維のうち、高モジュラスの点から、エチレンテレフタレート、エチレン-2,6-ナフタレートなどのC2-4アルキレンアリレートを主たる構成単位とするポリエステル繊維(ポリアルキレンアリレート系繊維)、アラミド繊維などの合成繊維、炭素繊維などの無機繊維などが汎用され、ポリエステル繊維(特に、ポリエチレンテレフタレート系繊維、ポリエチレンナフタレート系繊維)、ポリアミド繊維(特に、アラミド繊維)が好ましい。繊維はマルチフィラメント糸であってもよい。マルチフィラメント糸の繊度は、例えば2000~10000デニール(特に4000~8000デニール)程度であってもよい。マルチフィラメント糸は、例えば100~5,000本であってもよく、好ましくは500~4,000本、さらに好ましくは1,000~3,000本程度のモノフィラメント糸を含んでいてもよい。 Among these fibers, from the viewpoint of high modulus, synthesis of polyester fibers (polyalkylene arylate fibers) mainly composed of C 2-4 alkylene arylates such as ethylene terephthalate and ethylene-2,6-naphthalate, aramid fibers, etc. Inorganic fibers such as fibers and carbon fibers are widely used, and polyester fibers (especially polyethylene terephthalate fibers and polyethylene naphthalate fibers) and polyamide fibers (particularly aramid fibers) are preferable. The fiber may be a multifilament yarn. The fineness of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier). The multifilament yarn may contain, for example, 100 to 5,000, preferably 500 to 4,000, more preferably about 1,000 to 3,000 monofilament yarns.
 心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば0.5~3mmであってもよく、好ましくは0.6~2mm、さらに好ましくは0.7~1.5mm程度であってもよい。 As the core wire, usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used. The average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, 0.5 to 3 mm, preferably 0.6 to 2 mm, more preferably about 0.7 to 1.5 mm. Good.
 (芯体の製造方法)
 芯体の製造方法は、特に限定されず、慣用の方法により、芯体を形成する未処理糸(心線本体)の表面をオーバーコート層で被覆すればよい。芯体が第1のアンカーコート層、第2のアンカーコート層及びオーバーコート層を有する場合、芯体は、心線の未処理糸を、第1のアンカーコート層を形成するための第1処理剤で処理する第1処理工程、第2のアンカーコート層を形成するための第2処理剤で処理する第2処理工程、オーバーコート層を形成するための第3処理剤で処理する第3処理工程を経て製造してもよい。
(Manufacturing method of core)
The method for producing the core is not particularly limited, and the surface of the untreated yarn (core wire body) forming the core may be covered with the overcoat layer by a conventional method. When the core body has the first anchor coat layer, the second anchor coat layer, and the overcoat layer, the core body performs the first treatment for forming the untreated yarn of the core wire and the first anchor coat layer. First treatment step for treating with an agent, second treatment step for treating with a second treatment agent for forming a second anchor coat layer, and third treatment for treating with a third treatment agent for forming an overcoat layer You may manufacture through a process.
 第1処理工程において、第1処理剤の調製方法は、特に限定されず、通常、硬化剤をトルエンやメチルエチルケトンなどの溶媒に溶解させる。 In the first treatment step, the method for preparing the first treatment agent is not particularly limited, and usually the curing agent is dissolved in a solvent such as toluene or methyl ethyl ketone.
 未処理糸に第1処理剤を処理する方法としては、特に制限されず、例えば、噴霧、塗布、浸漬などが例示できる。これらの処理方法のうち、浸漬が汎用される。浸漬時間は、例えば1~20秒、好ましくは2~15秒程度であってもよい。 The method for treating the untreated yarn with the first treating agent is not particularly limited, and examples thereof include spraying, coating, and dipping. Of these treatment methods, immersion is widely used. The immersion time may be, for example, about 1 to 20 seconds, preferably about 2 to 15 seconds.
 未処理糸を第1処理剤で処理した後、必要に応じて乾燥してもよい。乾燥温度は、例えば100~250℃、好ましくは110~220℃、さらに好ましくは120~200℃(特に150~190℃)程度であってもよい。乾燥時間は、例えば10秒~30分、好ましくは30秒~10分、さらに好ましくは1~5分程度であってもよい。 After the untreated yarn is treated with the first treating agent, it may be dried as necessary. The drying temperature may be, for example, about 100 to 250 ° C., preferably 110 to 220 ° C., more preferably 120 to 200 ° C. (especially 150 to 190 ° C.). The drying time may be, for example, about 10 seconds to 30 minutes, preferably about 30 seconds to 10 minutes, and more preferably about 1 to 5 minutes.
 第2処理工程において、第2処理剤は、通常、水を含んでいる場合が多い。第2処理剤による処理方法は、第1処理剤による処理方法と同様である。好ましい乾燥温度は150~250℃(特に200~240℃)程度であってもよい。 In the second treatment step, the second treatment agent usually contains water in many cases. The treatment method using the second treatment agent is the same as the treatment method using the first treatment agent. A preferable drying temperature may be about 150 to 250 ° C. (particularly 200 to 240 ° C.).
 第3処理工程において、第3処理剤の調製方法は、特に限定されず、通常、未加硫ゴム組成物をトルエンやメチルエチルケトンなどの溶媒に溶解し、全固形分濃度を、例えば1~20質量%、好ましくは2~15質量%、さらに好ましくは3~10質量%程度に調整する。第3処理剤による処理方法も、第1処理剤による処理方法と同様である。好ましい乾燥温度は120~200℃(特に150~180℃)程度であってもよい。 In the third treatment step, the method for preparing the third treatment agent is not particularly limited. Usually, the unvulcanized rubber composition is dissolved in a solvent such as toluene or methyl ethyl ketone, and the total solid content concentration is, for example, 1 to 20 masses. %, Preferably 2 to 15% by mass, more preferably 3 to 10% by mass. The treatment method using the third treatment agent is the same as the treatment method using the first treatment agent. A preferable drying temperature may be about 120 to 200 ° C. (especially 150 to 180 ° C.).
 [圧縮ゴム層及び伸張ゴム層]
 圧縮ゴム層(内面ゴム層又は内部層)及び伸張ゴム層(背面ゴム層又は背面層)を形成するための加硫ゴム組成物は、前記接着ゴム層の加硫ゴム組成物と同様に、ゴム成分(クロロプレンゴムなど)、加硫剤又は架橋剤(酸化マグネシウム、酸化亜鉛などの金属酸化物、硫黄などの硫黄系加硫剤など)、共架橋剤又は架橋助剤(N,N’-m-フェニレンジマレイミドなどのマレイミド系架橋剤など)、加硫促進剤(TMTD、DPTT、CBSなど)、フィラー(カーボンブラック、シリカなど)、軟化剤(ナフテン系オイルなどのオイル類)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤、接着性改善剤、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、難燃剤、帯電防止剤などを含んでいてもよい。
[Compressed rubber layer and stretched rubber layer]
The vulcanized rubber composition for forming the compressed rubber layer (inner rubber layer or inner layer) and the stretched rubber layer (back rubber layer or back layer) is similar to the vulcanized rubber composition of the adhesive rubber layer. Ingredients (chloroprene rubber, etc.), vulcanizing agents or crosslinking agents (metal oxides such as magnesium oxide and zinc oxide, sulfur-based vulcanizing agents such as sulfur), co-crosslinking agents or crosslinking aids (N, N'-m -Maleimide crosslinkers such as phenylene dimaleimide), vulcanization accelerators (TMTD, DPTT, CBS, etc.), fillers (carbon black, silica, etc.), softeners (oils such as naphthenic oil), processing agents or Processing aids (stearic acid, metal stearates, waxes, paraffins, etc.), anti-aging agents, adhesion improvers, fillers (clay, calcium carbonate, talc, mica, etc.), colorants, sticking An additive, a plasticizer, a coupling agent (such as a silane coupling agent), a stabilizer (such as an ultraviolet absorber and a heat stabilizer), a flame retardant, and an antistatic agent may be included.
 さらに、圧縮ゴム層及び伸張ゴム層を形成するための加硫ゴム組成物は、短繊維を含んでいてもよい。 Furthermore, the vulcanized rubber composition for forming the compressed rubber layer and the stretched rubber layer may contain short fibers.
 短繊維としては、前記芯体を構成する繊維として例示された繊維を利用できる。前記繊維で形成された短繊維は、単独で又は二種以上組み合わせて使用できる。これらの短繊維のうち、合成繊維や天然繊維、特に合成繊維(ポリアミド繊維、ポリアルキレンアリレート系繊維など)、中でも剛直で高い強度及びモジュラスを有し、圧縮ゴム層表面で突出し易い点から、少なくともアラミド繊維を含む短繊維が好ましい。アラミド短繊維は、高い耐摩耗性をも有している。アラミド繊維は、例えば、商品名「コーネックス」、「ノーメックス」、「ケブラー」、「テクノーラ」、「トワロン」などとして市販されている。 As the short fibers, the fibers exemplified as the fibers constituting the core can be used. The short fiber formed with the said fiber can be used individually or in combination of 2 or more types. Among these short fibers, synthetic fibers and natural fibers, particularly synthetic fibers (polyamide fibers, polyalkylene arylate fibers, etc.), among others, are rigid and have high strength and modulus, and at least from the point that they tend to protrude on the surface of the compressed rubber layer. Short fibers including aramid fibers are preferred. Aramid short fibers also have high wear resistance. Aramid fibers are commercially available, for example, under the trade names “Conex”, “Nomex”, “Kevlar”, “Technola”, “Twaron”, and the like.
 短繊維の平均繊維径は2μm以上であり、例えば2~100μm、好ましくは3~50μm(例えば5~50μm)、さらに好ましくは7~40μm(特に10~30μm)程度である。短繊維の平均長さは、例えば1~20mm(例えば1.2~20mm)、好ましくは1.3~15mm(例えば1.5~10mm)、さらに好ましくは2~5mm(特に2.5~4mm)程度である。 The average fiber diameter of the short fibers is 2 μm or more, for example, 2 to 100 μm, preferably 3 to 50 μm (for example 5 to 50 μm), more preferably 7 to 40 μm (particularly 10 to 30 μm). The average length of the short fibers is, for example, 1 to 20 mm (eg, 1.2 to 20 mm), preferably 1.3 to 15 mm (eg, 1.5 to 10 mm), more preferably 2 to 5 mm (particularly 2.5 to 4 mm). )
 短繊維は、プーリからの押圧に対するベルトの圧縮変形を抑制するため、ベルト幅方向に配向して接着ゴム層中に埋設されてもよい。 In order to suppress the compressive deformation of the belt against the pressure from the pulley, the short fiber may be oriented in the belt width direction and embedded in the adhesive rubber layer.
 ゴム組成物中の短繊維の分散性や接着性の観点から、短繊維は、慣用の方法で接着処理(又は表面処理)されてもよい。 From the viewpoint of dispersibility and adhesion of the short fibers in the rubber composition, the short fibers may be subjected to adhesion treatment (or surface treatment) by a conventional method.
 さらに、表面(摩擦伝動面)を研磨することにより、短繊維を表面から突出させてもよい。短繊維の平均突出高さは50μm以上(例えば50~200μm)程度であってもよい。 Furthermore, the short fibers may be protruded from the surface by polishing the surface (friction transmission surface). The average protruding height of the short fibers may be about 50 μm or more (for example, 50 to 200 μm).
 なお、このゴム組成物において、ゴム成分としては、前記接着ゴム層のゴム組成物のゴム成分と同系統(ジエン系ゴムなど)又は同種(クロロプレンゴムなど)のゴムを使用する場合が多い。 In this rubber composition, as the rubber component, a rubber of the same type (diene rubber or the like) or the same type (chloroprene rubber or the like) as the rubber component of the rubber composition of the adhesive rubber layer is often used.
 加硫剤又は架橋剤、共架橋剤又は架橋助剤、加硫促進剤、軟化剤、加工剤又は加工助剤、老化防止剤の割合は、それぞれ、前記接着ゴム層のゴム組成物と同様の範囲から選択できる。また、短繊維の割合は、ゴム成分100質量部に対して5~50質量部程度の範囲から選択でき、通常10~40質量部、好ましくは15~35質量部、さらに好ましくは20~30質量部程度であってもよい。さらに、フィラーの割合は、ゴム成分100質量部に対して1~100質量部、好ましくは3~50質量部、さらに好ましくは5~40質量部程度である。 The proportions of the vulcanizing agent or crosslinking agent, co-crosslinking agent or crosslinking aid, vulcanization accelerator, softener, processing agent or processing aid, and anti-aging agent are the same as in the rubber composition of the adhesive rubber layer, respectively. You can select from a range. The proportion of short fibers can be selected from the range of about 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component, and is usually 10 to 40 parts by mass, preferably 15 to 35 parts by mass, and more preferably 20 to 30 parts by mass. It may be about a part. Further, the ratio of the filler is about 1 to 100 parts by weight, preferably 3 to 50 parts by weight, and more preferably about 5 to 40 parts by weight with respect to 100 parts by weight of the rubber component.
 圧縮ゴム層の平均厚みは、ベルトの種類に応じて適宜選択でき、例えば2~25mm、好ましくは3~16mm、さらに好ましくは4~12mm程度である。伸張ゴム層の厚みもベルトの種類に応じて適宜選択でき、例えば0.8~10.0mm、好ましくは1.2~6.5mm、さらに好ましくは1.6~5.2mm程度である。 The average thickness of the compressed rubber layer can be appropriately selected depending on the type of belt, and is, for example, about 2 to 25 mm, preferably about 3 to 16 mm, and more preferably about 4 to 12 mm. The thickness of the stretched rubber layer can be appropriately selected depending on the type of belt, and is, for example, about 0.8 to 10.0 mm, preferably about 1.2 to 6.5 mm, and more preferably about 1.6 to 5.2 mm.
 [補強布]
 摩擦伝動ベルトにおいて、補強布を使用する場合、圧縮ゴム層の表面に補強布を積層する形態に限定されず、例えば、伸張ゴム層の表面(接着ゴム層と反対側の面)に補強布を積層してもよく、圧縮ゴム層及び/又は伸張ゴム層に補強層を埋設する形態(例えば、日本国特開2010-230146号公報に記載の形態など)であってもよい。補強布は、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)などで形成でき、必要であれば、接着処理、例えば、RFL液で処理(浸漬処理など)したり、接着ゴムを前記布材にすり込むフリクションや、前記接着ゴムと前記布材とを積層(コーティング)した後、圧縮ゴム層及び/又は伸張ゴム層の表面に積層してもよい。
[Reinforcing cloth]
When a reinforcing cloth is used in the friction transmission belt, the reinforcing cloth is not limited to a form in which the reinforcing cloth is laminated on the surface of the compressed rubber layer. For example, the reinforcing cloth is applied to the surface of the stretched rubber layer (the surface opposite to the adhesive rubber layer). It may be laminated, or may be a form in which a reinforcing layer is embedded in a compressed rubber layer and / or a stretched rubber layer (for example, a form described in Japanese Patent Application Laid-Open No. 2010-230146). The reinforcing cloth can be formed of, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth, and a non-woven cloth. If necessary, an adhesive treatment, for example, treatment with an RFL liquid (immersion treatment, etc.) ), Friction for rubbing adhesive rubber into the cloth material, or laminating (coating) the adhesive rubber and the cloth material, and then laminating on the surface of the compression rubber layer and / or the stretch rubber layer.
 [摩擦伝動ベルトの製造方法]
 本発明の摩擦伝動ベルトの製造方法は、特に限定されず、各層の積層工程(ベルトスリーブの製造方法)に関しては、慣用の方法を利用できる。
[Method of manufacturing friction transmission belt]
The manufacturing method of the friction transmission belt of the present invention is not particularly limited, and a conventional method can be used for the lamination process of each layer (the manufacturing method of the belt sleeve).
 例えば、コグドVべルトの場合、補強布(下布)と圧縮ゴム層用シート(未加硫ゴム)からなる積層体を、前記補強布を下にして歯部と溝部とを交互に配した平坦なコグ付き型に設置し、温度60~100℃(特に70~80℃)程度でプレス加圧することによってコグ部を型付けしたコグパッド(完全には加硫しておらず、半加硫状態にあるパッド)を作製した後、このコグパッドの両端をコグ山部の頂部から垂直に切断してもよい。さらに、円筒状の金型に歯部と溝部とを交互に配した内母型を被せ、この歯部と溝部に係合させてコグパッドを巻き付けてコグ山部の頂部でジョイントし、この巻き付けたコグパッドの上に第1の接着ゴム層用シート(下接着ゴム:未加硫ゴム)を積層した後、芯体を螺旋状にスピニングし、この上に第2の接着ゴム層用シート(上接着ゴム:前記接着ゴム層用シートと同じ)、伸張ゴム層用シート(未加硫ゴム)、補強布(上布)を順次巻き付けて成形体を作製してもよい。その後、ジャケットを被せて金型を加硫缶に設置し、温度120~200℃(特に150~180℃)程度で加硫してベルトスリーブを調製した後、カッターなどを用いて、V状に切断加工してもよい。 For example, in the case of a cogged V belt, a laminated body composed of a reinforcing cloth (under cloth) and a sheet for a compressed rubber layer (unvulcanized rubber) is arranged with teeth and grooves alternately with the reinforcing cloth down. Installed on a flat cogged mold, cog pad with the cog part formed by press-pressing at a temperature of 60-100 ° C (especially 70-80 ° C) (not completely vulcanized, in a semi-cured state) After producing a certain pad), both ends of the cog pad may be cut vertically from the top of the cog crest. Furthermore, an inner mother die in which teeth and grooves are alternately arranged is covered on a cylindrical mold, and a cog pad is wound around the teeth and the grooves, and a joint is formed at the top of the cog crest, and this is wound. After laminating the first adhesive rubber layer sheet (lower adhesive rubber: unvulcanized rubber) on the cog pad, the core is spun in a spiral shape, and the second adhesive rubber layer sheet (upper adhesive) Rubber: Same as the adhesive rubber layer sheet), a stretch rubber layer sheet (unvulcanized rubber), and a reinforcing cloth (upper cloth) may be wound in order to produce a molded body. After that, a jacket is put on and the mold is placed in a vulcanizing can and vulcanized at a temperature of about 120 to 200 ° C. (especially 150 to 180 ° C.) to prepare a belt sleeve. Cutting may be performed.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下の例において、実施例に用いた原料、各物性における測定方法又は評価方法を以下に示す。なお、特にことわりのない限り、「部」及び「%」は質量基準である。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the following examples, the raw materials used in the examples and the measurement methods or evaluation methods for each physical property are shown below. Unless otherwise specified, “part” and “%” are based on mass.
 [原料]
 クロロプレンゴム:東ソー(株)製「R22」
 カーボンブラック:東海カーボン(株)製「シースト3」
 シリカ:エボニック・デグサ・ジャパン(株)製「ウルトラジルVN-3」、比表面積155~195m/g
 ナフテン系オイル:出光興産(株)製「NS-900」
 レゾルシン・ホルマリン共重合物(レゾルシノール樹脂):レゾルシノール20%未満、ホルマリン0.1%未満のレゾルシン・ホルマリン共重合物
 老化防止剤:精工化学(株)製「ノンフレックスOD3」
 加硫促進剤TMTD:テトラメチルチウラム・ジスルフィド
 アラミド短繊維:帝人テクノプロダクツ(株)製「コーネックス短繊維」、平均繊維長3mm、平均繊維径14μm、RFL液(レゾルシン2.6部、37%ホルマリン1.4部、ビニルピリジン-スチレン-ブタジエン共重合体ラテックス(日本ゼオン(株)製)17.2部、水78.8部)で接着処理した固形分の付着率6質量%の短繊維
 ポリメリックMDI:ポリイソシアネート、東ソー(株)製「MR-200」
 VPラテックス:ビニルピリジン-スチレン-ブタジエン共重合体ラテックス、日本ゼオン(株)製
 心線:1,000デニールのPET繊維を2×3の撚り構成で、上撚り係数3.0、下撚り係数3.0で諸撚りしたトータルデニール6,000の撚りコード。
[material]
Chloroprene rubber: “R22” manufactured by Tosoh Corporation
Carbon black: “Seast 3” manufactured by Tokai Carbon Co., Ltd.
Silica: “Ultrasil VN-3” manufactured by Evonik Degussa Japan Co., Ltd., specific surface area of 155 to 195 m 2 / g
Naphthenic oil: “NS-900” manufactured by Idemitsu Kosan Co., Ltd.
Resorcin / formalin copolymer (resorcinol resin): resorcinol less than 20%, formalin less than 0.1% anti-aging agent: Seiko Chemical Co., Ltd. “Nonflex OD3”
Vulcanization accelerator TMTD: Tetramethylthiuram disulfide Aramid short fiber: “Conex short fiber” manufactured by Teijin Techno Products Limited, average fiber length 3 mm, average fiber diameter 14 μm, RFL solution (2.6 parts of resorcin, 37% A short fiber having a solid content of 6% by mass bonded with 1.4 parts of formalin, 17.2 parts of vinylpyridine-styrene-butadiene copolymer latex (manufactured by Nippon Zeon Co., Ltd., 78.8 parts of water). Polymeric MDI: Polyisocyanate, “MR-200” manufactured by Tosoh Corporation
VP latex: vinylpyridine-styrene-butadiene copolymer latex, manufactured by Nippon Zeon Co., Ltd. Core wire: 1,000 denier PET fiber with a 2 × 3 twist configuration, upper twist factor 3.0, lower twist factor 3 A twisted cord of 6,000 total denier twisted at 0.0.
 [加硫ゴム物性の測定]
 (1)硬度
 接着ゴム層用シートを温度160℃、時間30分でプレス加硫し、加硫ゴムシート(100mm×100mm×2mm厚み)を作製した。硬度はJIS K6253(2012)に準じ、加硫ゴムシートを3枚重ね合わせた積層物を試料とし、デュロメータA形硬さ試験機を用いて硬度を測定した。
[Measurement of physical properties of vulcanized rubber]
(1) Hardness The adhesive rubber layer sheet was press vulcanized at a temperature of 160 ° C. for 30 minutes to prepare a vulcanized rubber sheet (100 mm × 100 mm × 2 mm thickness). Hardness was measured according to JIS K6253 (2012) using a laminate of three vulcanized rubber sheets as a sample and using a durometer A type hardness tester.
 (2)摩耗量
 接着ゴム層用シートを温度160℃、時間30分でプレス加硫して作製した加硫ゴムシート(50mm×50mm×8mm厚)より、内径16.2±0.05mmの中空ドリルで切り抜いて、直径16.2±0.2mm、厚さ6~8mmの円筒状の試料を作製した。JIS K6264(2005)に準じ、研磨布を巻きつけた回転円筒ドラム装置(DIN摩耗試験機)を用いて加硫ゴムの摩耗量を測定した。
(2) Abrasion A hollow rubber sheet having an inner diameter of 16.2 ± 0.05 mm is obtained from a vulcanized rubber sheet (50 mm × 50 mm × 8 mm thick) produced by press vulcanizing the adhesive rubber layer sheet at a temperature of 160 ° C. for 30 minutes. A cylindrical sample having a diameter of 16.2 ± 0.2 mm and a thickness of 6 to 8 mm was produced by cutting with a drill. According to JIS K6264 (2005), the wear amount of the vulcanized rubber was measured using a rotating cylindrical drum device (DIN abrasion tester) wound with a polishing cloth.
 (3)剥離力(心線との接着力)
 厚み4mmの未加硫の接着ゴム層用シートの一方の面に幅が25mmとなるように複数本の心線を平行に並べ、他方の面に帆布を積層し、この積層体(心線、接着ゴム層用シート、帆布)をプレス加硫(温度160℃、時間30分、圧力2.0MPa)して剥離試験用の短冊試料(25mm×150mm×4mm厚)を作製した。そして、JIS K6256(2013)に従い、引張速度50mm/分で剥離試験を行い、心線と接着ゴム層用シート間の剥離力(加硫接着力)を室温雰囲気下で測定した。この剥離試験の接着ゴム層用シートには、表1の配合X(シリカを含有しない配合)を用いた。さらに、剥離の状態について、目視観察し、以下の基準で評価した。
(3) Peel strength (adhesive strength with the core)
A plurality of core wires are arranged in parallel so that the width is 25 mm on one surface of the unvulcanized adhesive rubber layer sheet having a thickness of 4 mm, and canvas is laminated on the other surface. The adhesive rubber layer sheet and canvas were press vulcanized (temperature 160 ° C., time 30 minutes, pressure 2.0 MPa) to prepare strip samples (25 mm × 150 mm × 4 mm thickness) for a peel test. Then, according to JIS K6256 (2013), a peel test was performed at a tensile speed of 50 mm / min, and the peel force (vulcanized adhesive force) between the core wire and the adhesive rubber layer sheet was measured in a room temperature atmosphere. For the adhesive rubber layer sheet of this peel test, the formulation X (a formulation not containing silica) shown in Table 1 was used. Furthermore, the state of peeling was visually observed and evaluated according to the following criteria.
  A:接着ゴム層と心線との界面が接合したままゴム層が破壊した。
  B:接着ゴム層と心線との界面で部分的な剥離が生じた。
  C:接着ゴム層と心線との界面で完全に剥離が生じた。
A: The rubber layer was broken while the interface between the adhesive rubber layer and the core wire was bonded.
B: Partial peeling occurred at the interface between the adhesive rubber layer and the core wire.
C: Peeling occurred completely at the interface between the adhesive rubber layer and the core wire.
 [ベルトの耐久走行試験]
 耐久走行試験は、図4に示すように、直径50mmの駆動(Dr.)プーリ22と、直径125mmの従動(Dn.)プーリ23とからなる2軸走行試験機を用いて行なった。各プーリ22,23にローエッジコグドVベルト21を掛架し、駆動プーリ22の回転数5000rpm、従動プーリ23に10N・mの負荷を付与し、雰囲気温度80℃にてベルト21を最大24時間走行させた。このとき、駆動プーリと従動プーリとの間で0.5°のミスアライメントを設定した。ベルト21が24時間走行すれば耐久性は問題ないと判断した。また、走行後のベルト側面(プーリと接する面)をマイクロスコープで観察して心線の剥離の有無を調べ、以下の基準で評価した。
[Durability test of belt]
As shown in FIG. 4, the endurance running test was performed using a two-axis running test machine including a driving (Dr.) pulley 22 having a diameter of 50 mm and a driven (Dn.) Pulley 23 having a diameter of 125 mm. A low-edge cogged V-belt 21 is hung on each pulley 22, 23, the drive pulley 22 has a rotational speed of 5000 rpm, a load of 10 N · m is applied to the driven pulley 23, and the belt 21 is kept at an ambient temperature of 80 ° C for a maximum of 24 hours. I drove it. At this time, a misalignment of 0.5 ° was set between the driving pulley and the driven pulley. If the belt 21 traveled for 24 hours, it was determined that there was no problem with durability. Further, the belt side surface (the surface in contact with the pulley) after running was observed with a microscope to check for the presence of peeling of the core wire, and evaluated according to the following criteria.
  A:心線の剥離が全く見られない。
  B:心線の剥離が見られたが実用的には問題ない程度である。
  C:実用できない程度に心線が剥離していた。
A: No peeling of the core wire is observed.
B: Although peeling of the core wire was observed, there is no problem in practical use.
C: The core wire was peeled off to the extent that it was not practical.
 また、走行前のベルト重量と、走行後のベルト重量をそれぞれ電子天秤で測定し、その重量差を耐久走行におけるベルトの摩耗量として算出した。さらに、走行後のプーリを目視で観察してプーリ摩耗の有無を調べた。最後に、耐久走行試験の総合評価を以下の基準で判定した。 In addition, the weight of the belt before traveling and the weight of the belt after traveling were measured with an electronic balance, respectively, and the difference in weight was calculated as the amount of wear of the belt in the endurance traveling. Further, the pulley after running was visually observed to check for pulley wear. Finally, the overall evaluation of the durability running test was judged according to the following criteria.
  A:プーリの摩耗、心線の剥離がともに見られない。
  B:プーリの摩耗、又は心線の剥離が生じるが、実用的には問題ない。
  C:プーリの摩耗、心線の剥離のどちらかが、実用できない程度に生じる。
A: Neither pulley abrasion nor core wire peeling is observed.
B: Wear of the pulley or peeling of the core wire occurs, but there is no practical problem.
C: Either wear of the pulley or peeling of the core wire occurs to a degree that cannot be used.
 実施例1~8及び比較例1~4
 (ゴム層の形成)
 表1(接着ゴム層)及び表2(圧縮ゴム層及び伸張ゴム層)のゴム組成物は、それぞれ、バンバリーミキサーなどの公知の方法を用いてゴム練りを行い、この練りゴムをカレンダーロールに通して圧延ゴムシート(接着ゴム層用シート、圧縮ゴム層用シート、伸張ゴム層用シート)を作製した。また、接着ゴム層に用いるゴム組成物については、表1に加硫ゴム物性を示した。
Examples 1 to 8 and Comparative Examples 1 to 4
(Formation of rubber layer)
The rubber compositions in Table 1 (adhesive rubber layer) and Table 2 (compressed rubber layer and stretched rubber layer) were each kneaded using a known method such as a Banbury mixer, and the kneaded rubber was passed through a calender roll. Rolled rubber sheets (adhesive rubber layer sheet, compression rubber layer sheet, stretch rubber layer sheet). Table 1 shows the physical properties of the vulcanized rubber for the rubber composition used for the adhesive rubber layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (心線の接着処理)
 心線を表3に示す第1処理剤(前処理液)に浸漬した後、180℃で4分間熱処理した。次に、表4に示す第2処理剤(RFL液)に浸漬し、230℃で2分間熱処理した。さらに表5に示すゴム組成物A又はBを含む第3処理剤を用い、表6に示す第3処理(オーバーコート処理)を行った。これらの処理により、第1処理剤、第2処理剤、第3処理剤に含まれた固形分がそれぞれ第1のアンカーコート層、第2のアンカーコート層、オーバーコート層の被膜(3層の被膜)として付着した心線を製造した。すなわち、接着処理後の心線では、第3処理剤に含まれた固形分が最外層(オーバーコート層)の被膜として配置されている。オーバーコート層の被膜の厚みは10~20μmであった。
(Core bonding process)
The core wire was immersed in the first treatment agent (pretreatment liquid) shown in Table 3, and then heat treated at 180 ° C. for 4 minutes. Next, it was immersed in the 2nd processing agent (RFL liquid) shown in Table 4, and heat-processed at 230 degreeC for 2 minute (s). Furthermore, using the 3rd processing agent containing the rubber composition A or B shown in Table 5, the 3rd process (overcoat process) shown in Table 6 was performed. By these treatments, the solid contents contained in the first treatment agent, the second treatment agent, and the third treatment agent are respectively converted into the first anchor coat layer, the second anchor coat layer, and the overcoat layer film (three layers). A core wire attached as a coating was produced. That is, in the core wire after the adhesion treatment, the solid content contained in the third treatment agent is disposed as the outermost layer (overcoat layer) film. The thickness of the overcoat layer was 10 to 20 μm.
 また、表5には、これらの接着処理により被膜が付着した心線について、接着ゴム層用ゴム組成物との剥離試験の結果として、剥離力(加硫接着力)の測定値と、剥離の状態も示した。 Table 5 shows the measured values of the peel force (vulcanized adhesive force) and the peel strength of the core wire to which the film is adhered by these adhesion treatments as a result of the peel test with the rubber composition for the adhesive rubber layer. The state is also shown.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (摩擦伝動ベルトの製造)
 下布となる補強布と、圧縮ゴム層用シート(未加硫ゴム)との積層体を、補強布を下にして歯部と溝部とを交互に配した平坦なコグ付き型に設置し、75℃でプレス加圧することによってコグ部を型付けしたコグパッド(完全には加硫しておらず、半加硫状態にある)を作製した。次に、このコグパッドの両端をコグ山部の頂部から垂直に切断した。
(Manufacture of friction transmission belt)
The laminated body of the reinforcing cloth that becomes the lower cloth and the sheet for the compressed rubber layer (unvulcanized rubber) is installed in a flat cogged mold in which the teeth and grooves are alternately arranged with the reinforcing cloth facing down, A cog pad (not completely vulcanized but in a semi-vulcanized state) with a cog part formed by press-pressing at 75 ° C. was produced. Next, both ends of the cog pad were cut vertically from the top of the cog crest.
 円筒状の金型に歯部と溝部とを交互に配した内母型を被せ、この歯部と溝部に係合させて前記コグパッドを巻き付けてコグ山部の頂部でジョイントし、この巻き付けたコグパッドの上に接着ゴム層用シート(下接着ゴム:未加硫ゴム)を積層した後、心線を螺旋状にスピニングし、この上に接着ゴム層用シート(上接着ゴム:前記接着ゴム層用シートと同じ)、伸張ゴム層用シート(未加硫ゴム)、上布となる補強布を順次巻き付けて成形体を作製した。その後、ジャケットを被せて金型を加硫缶に設置し、温度160℃、時間20分で加硫してベルトスリーブを得た。このスリーブをカッターでベルト長手方向に所定幅でV状断面形状に切断して、図2に示す構造のベルト、すなわちベルト内周側にコグを有した変速ベルトであるローエッジコグドVベルト(サイズ:上幅22.0mm、厚み11.0mm、外周長800mm)に仕上げた。 Cover the inner die with teeth and grooves alternately on a cylindrical mold, engage the teeth and grooves, wrap the cog pad, joint at the top of the cog crest, and wind this cog pad After laminating a sheet for an adhesive rubber layer (lower adhesive rubber: unvulcanized rubber) on top, the core wire is spun into a spiral shape, and an adhesive rubber layer sheet (upper adhesive rubber: for the adhesive rubber layer) The same as the sheet), a stretched rubber layer sheet (unvulcanized rubber), and a reinforcing cloth as an upper cloth were wound in order to prepare a molded body. Thereafter, the jacket was put on and the mold was placed in a vulcanizing can and vulcanized at a temperature of 160 ° C. for 20 minutes to obtain a belt sleeve. This sleeve is cut with a cutter into a V-shaped cross-sectional shape with a predetermined width in the longitudinal direction of the belt, and a low-edge cogged V-belt (size) which is a transmission belt having a structure shown in FIG. : Upper width 22.0 mm, thickness 11.0 mm, outer peripheral length 800 mm).
 実施例及び比較例で得られた摩擦伝動ベルト(ローエッジコグドVベルト)における接着ゴム層用ゴム組成物と、心線の第3処理剤(オーバーコート層)用のゴム組成物との組み合わせを表7に示した。さらに、表7にはベルト耐久走行試験の結果も示した。 A combination of the rubber composition for the adhesive rubber layer in the friction transmission belt (low-edge cogged V-belt) obtained in Examples and Comparative Examples and the rubber composition for the third treatment agent (overcoat layer) of the core wire It is shown in Table 7. Table 7 also shows the results of the belt durability running test.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1における接着ゴム層用ゴム組成物の加硫ゴム物性の結果から、シリカを10質量部含むゴム組成物Yに対して、シリカを20質量部含むゴム組成物Zでは、シリカの含有量とともに加硫ゴムの摩耗量が増加することがわかる。また、カーボンブラックを50質量部含むゴム組成物Yに対して、カーボンブラックを30~20質量部に減量したゴム組成物S及びWでは、カーボンブラックの含有量の減少とともに、摩耗量が増加することがわかる。 From the result of the vulcanized rubber physical properties of the rubber composition for the adhesive rubber layer in Table 1, the rubber composition Z containing 20 parts by mass of silica with respect to the rubber composition Y containing 10 parts by mass of silica together with the content of silica. It can be seen that the amount of wear of the vulcanized rubber increases. Further, in the rubber compositions S and W in which the carbon black is reduced to 30 to 20 parts by mass with respect to the rubber composition Y containing 50 parts by mass of the carbon black, the wear amount increases as the carbon black content decreases. I understand that.
 表5における接着処理を施した心線と、シリカを含まない接着ゴム層用ゴム組成物Xとの剥離試験の結果から、第3処理剤(オーバーコート層)用ゴム組成物にシリカを40質量部含むゴム組成物Aでは、接着ゴム層と心線との接着力が良好で、それらの界面が接合したままゴム層が破壊した。一方、シリカを含まないゴム組成物Bでは、接着ゴム層と心線との界面で完全に剥離が生じた。また、ゴム組成物Aに対して、シリカを10質量部に減量したゴム組成物Cでは、接着ゴム層と心線との界面で部分的な剥離が生じた。 From the result of the peel test between the core wire subjected to the adhesion treatment in Table 5 and the rubber composition X for the adhesive rubber layer not containing silica, 40 mass of silica is added to the rubber composition for the third treatment agent (overcoat layer). In the rubber composition A containing part, the adhesive force between the adhesive rubber layer and the core wire was good, and the rubber layer was broken while the interface was bonded. On the other hand, in the rubber composition B containing no silica, peeling occurred completely at the interface between the adhesive rubber layer and the core wire. Further, in the rubber composition C in which silica was reduced to 10 parts by mass with respect to the rubber composition A, partial peeling occurred at the interface between the adhesive rubber layer and the core wire.
 これらの接着ゴム層用ゴム組成物と、第3処理剤用ゴム組成物(オーバーコート層)とを組み合わせて製造した摩擦伝動ベルトの耐久走行試験の結果(表7)から、接着ゴム層に比較的少量のシリカを含む摩擦伝動ベルト(実施例1~3)であっても、シリカが40質量部含まれるオーバーコート層(被膜)と組み合わせると、24時間走行した後でも、心線と接着ゴム層との接着が良好で剥離は見られなかった。さらに、ベルトの摩耗量は少なく、プーリの摩耗も見られなかった。なかでも、実施例2は、接着ゴム層中のシリカの割合がカーボンブラック100質量部に対して33質量部と多い摩擦伝動ベルトであるが、24時間走行における剥離は見られなかったものの、ベルトの摩耗量が若干多かった。 From the results (Table 7) of the durability running test of the friction transmission belt manufactured by combining the rubber composition for the adhesive rubber layer and the rubber composition for the third treatment agent (overcoat layer), it is compared with the adhesive rubber layer. Even if it is a friction transmission belt (Examples 1 to 3) containing a small amount of silica, when combined with an overcoat layer (coating) containing 40 parts by mass of silica, the core wire and the adhesive rubber even after running for 24 hours Adhesion with the layer was good and no peeling was observed. Furthermore, the amount of wear on the belt was small, and no wear on the pulley was observed. In particular, Example 2 is a friction transmission belt in which the ratio of silica in the adhesive rubber layer is as large as 33 parts by mass with respect to 100 parts by mass of carbon black. The amount of wear was slightly higher.
 実施例4は、接着ゴム層のカーボンブラック量が70質量部と多い摩擦伝動ベルトであるが、24時間走行後のベルト側面にて心線の剥離が若干みられたが、実用的には問題ない程度であった。実施例5は、接着ゴム層中のシリカの割合がカーボンブラック100質量部に対して4質量部と少ない摩擦伝動ベルトであるが、24時間走行後のベルト側面にて心線の剥離が若干見られたが、実用的には問題ない程度であった。 Example 4 is a friction transmission belt in which the amount of carbon black in the adhesive rubber layer is as large as 70 parts by mass. However, some peeling of the core wire was observed on the side of the belt after running for 24 hours, but this was a problem for practical use. It was not so much. Example 5 is a friction transmission belt in which the ratio of silica in the adhesive rubber layer is as small as 4 parts by mass with respect to 100 parts by mass of carbon black, but slight peeling of the core wire is seen on the side of the belt after running for 24 hours. However, there was no problem in practical use.
 実施例6は、オーバーコート層にシリカを10質量部含む摩擦伝動ベルトであり、24時間走行後のベルト側面にて心線の剥離が若干見られたが、実用的には問題ない程度であった。実施例8は、オーバーコート層にシリカを60質量部含む摩擦伝動ベルトであるが、24時間走行後のベルト側面にて心線の剥離が若干見られたが、実用的には問題ない程度であった。実施例6~8の結果を考慮すると、オーバーコート層のシリカ配合量は、少なすぎても、多すぎても心線の剥離を生じる結果となった。 Example 6 is a friction transmission belt in which 10 parts by mass of silica is included in the overcoat layer, and some peeling of the core wire was observed on the side surface of the belt after running for 24 hours, but there was no problem in practical use. It was. Example 8 is a friction transmission belt in which 60 parts by mass of silica is included in the overcoat layer, but some peeling of the core wire was observed on the side of the belt after running for 24 hours, but there was no problem in practical use. there were. Considering the results of Examples 6 to 8, if the silica compounding amount of the overcoat layer is too small or too large, the core wire is peeled off.
 比較例1は接着ゴム層にシリカを20質量部含む摩擦伝動ベルトであるが、24時間走行におけるベルトの摩耗量が多く、さらにはプーリの摩耗も見られた。比較例2は、接着ゴム層、オーバーコート層(被膜)のいずれにもシリカを含まない摩擦伝動ベルトであり、24時間走行後のベルト側面にて心線が剥離していた(実用的に問題となる程度)。比較例3は、接着ゴム層にはシリカを10質量部含み、オーバーコート層(被膜)にはシリカを含まない摩擦伝動ベルトであるが、24時間走行後のベルト側面にて心線が剥離していた(実用的に問題となる程度)。比較例4は、接着ゴム層のカーボンブラック量が20質量部と少ない摩擦伝動ベルトであるが、24時間走行におけるベルトの摩耗量が多かった。 Comparative Example 1 is a friction transmission belt in which 20 parts by mass of silica is contained in the adhesive rubber layer. However, the amount of wear of the belt during running for 24 hours was large, and further, wear of the pulley was also observed. Comparative Example 2 is a friction transmission belt that does not contain silica in either the adhesive rubber layer or the overcoat layer (coating), and the core wire was peeled off on the side of the belt after running for 24 hours (problem in practical use). ) Comparative Example 3 is a friction transmission belt that contains 10 parts by mass of silica in the adhesive rubber layer and no silica in the overcoat layer (coating), but the core wire peels off on the side of the belt after running for 24 hours. (Practical problem) Comparative Example 4 was a friction transmission belt having a carbon black amount of 20 mass parts in the adhesive rubber layer, but the amount of wear of the belt during 24-hour running was large.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2016年4月15日出願の日本特許出願2016-082465、および2017年4月12日出願の日本特許出願2017-078980に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2016-082465 filed on April 15, 2016 and Japanese Patent Application No. 2017-078980 filed on April 12, 2017, the contents of which are incorporated herein by reference.
 本発明の摩擦伝動ベルトは、例えば、Vベルト(ラップドVベルト、ローエッジVベルト、ローエッジコグドVベルト)、Vリブドベルト、平ベルトなどに適用できる。特に、ベルト走行中に変速比が無段階で変わる変速機(無段変速装置)に使用されるVベルト(変速ベルト)、例えば、自動二輪車やATV(四輪バギー)、スノーモービルなどの無段変速装置に使用されるローエッジコグドVベルト、ローエッジダブルコグドVベルトに適用するのが好ましい。 The friction transmission belt of the present invention can be applied to, for example, a V belt (wrapped V belt, low edge V belt, low edge cogged V belt), V ribbed belt, flat belt, and the like. In particular, a V-belt (transmission belt) used in a transmission (continuously variable transmission) in which the gear ratio changes steplessly during belt travel, such as a motorcycle, an ATV (four-wheel buggy), a snowmobile, etc. The present invention is preferably applied to a low edge cogged V belt and a low edge double cogged V belt used in a transmission.
 1…摩擦伝動ベルト
 2,6…補強布
 3…伸張ゴム層
 4…接着ゴム層
 4a…芯体
 5…圧縮ゴム層
DESCRIPTION OF SYMBOLS 1 ... Friction power transmission belt 2, 6 ... Reinforcement cloth 3 ... Stretch rubber layer 4 ... Adhesive rubber layer 4a ... Core body 5 ... Compression rubber layer

Claims (9)

  1.  ベルト長手方向に延びる芯体の少なくとも一部と接する接着ゴム層を備えた摩擦伝動ベルトであって、
     前記接着ゴム層が、ゴム成分及びフィラーを含む第1の加硫ゴム組成物で形成され、
     前記フィラーが、ゴム成分100質量部に対して30質量部以上のカーボンブラック及び0.1~15質量部のシリカを含み、かつ
     前記芯体が、ゴム成分及びシリカを含む第2の加硫ゴム組成物で形成されたオーバーコート層を表面に有する摩擦伝動ベルト。
    A friction transmission belt comprising an adhesive rubber layer in contact with at least a part of a core extending in a longitudinal direction of the belt,
    The adhesive rubber layer is formed of a first vulcanized rubber composition containing a rubber component and a filler,
    The filler contains 30 parts by mass or more of carbon black and 0.1 to 15 parts by mass of silica with respect to 100 parts by mass of the rubber component, and the core is a second vulcanized rubber containing the rubber component and silica. A friction transmission belt having an overcoat layer formed of a composition on its surface.
  2.  第1の加硫ゴム組成物のカーボンブラックの割合が、ゴム成分100質量部に対して30~60質量部である請求項1記載の摩擦伝動ベルト。 The friction transmission belt according to claim 1, wherein the proportion of carbon black in the first vulcanized rubber composition is 30 to 60 parts by mass with respect to 100 parts by mass of the rubber component.
  3.  第1の加硫ゴム組成物のシリカの割合が、カーボンブラック100質量部に対して10~30質量部である請求項1又は2記載の摩擦伝動ベルト。 The friction transmission belt according to claim 1 or 2, wherein the silica content of the first vulcanized rubber composition is 10 to 30 parts by mass with respect to 100 parts by mass of carbon black.
  4.  第2の加硫ゴム組成物のシリカの割合がゴム成分100質量部に対して10質量部以上である請求項1~3のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 3, wherein the silica ratio of the second vulcanized rubber composition is 10 parts by mass or more with respect to 100 parts by mass of the rubber component.
  5.  第2の加硫ゴム組成物のシリカの割合がゴム成分100質量部に対して15~50質量部である請求項4記載の摩擦伝動ベルト。 The friction transmission belt according to claim 4, wherein the ratio of silica in the second vulcanized rubber composition is 15 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
  6.  オーバーコート層の平均厚みが5~30μmである請求項1~5のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 5, wherein the average thickness of the overcoat layer is 5 to 30 µm.
  7.  第1の加硫ゴム組成物のゴム成分がクロロプレンゴムである請求項1~6のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 6, wherein the rubber component of the first vulcanized rubber composition is chloroprene rubber.
  8.  第2の加硫ゴム組成物のゴム成分がクロロプレンゴムである請求項1~7のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 7, wherein the rubber component of the second vulcanized rubber composition is chloroprene rubber.
  9.  芯体が、ポリエステル繊維及び/又はポリアミド繊維を含む撚りコードを含む請求項1~8のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 8, wherein the core includes a twisted cord including a polyester fiber and / or a polyamide fiber.
PCT/JP2017/015262 2016-04-15 2017-04-14 Friction transmission belt WO2017179690A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/092,818 US11674561B2 (en) 2016-04-15 2017-04-14 Friction transmission belt
CN201780022624.5A CN108884907B (en) 2016-04-15 2017-04-14 Friction transmission belt
EP17782503.1A EP3444501B1 (en) 2016-04-15 2017-04-14 Friction transmission belt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-082465 2016-04-15
JP2016082465 2016-04-15
JP2017078980A JP6616793B2 (en) 2016-04-15 2017-04-12 Friction transmission belt
JP2017-078980 2017-04-12

Publications (1)

Publication Number Publication Date
WO2017179690A1 true WO2017179690A1 (en) 2017-10-19

Family

ID=60041829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015262 WO2017179690A1 (en) 2016-04-15 2017-04-14 Friction transmission belt

Country Status (1)

Country Link
WO (1) WO2017179690A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124484A (en) * 2004-10-28 2006-05-18 Mitsuboshi Belting Ltd Method for producing bonded product of ethylene/alpha-olefin rubber composition and fiber and power transmission belt
JP2008261489A (en) * 2007-03-19 2008-10-30 Mitsuboshi Belting Ltd Power transmission belt
JP2009156467A (en) * 2007-11-28 2009-07-16 Mitsuboshi Belting Ltd Power transmission belt
JP2012045895A (en) * 2010-08-30 2012-03-08 Mitsuboshi Belting Ltd Laminated body, method for manufacturing the same, and belt for power transmission
WO2015045256A1 (en) * 2013-09-30 2015-04-02 バンドー化学株式会社 Flat belt and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124484A (en) * 2004-10-28 2006-05-18 Mitsuboshi Belting Ltd Method for producing bonded product of ethylene/alpha-olefin rubber composition and fiber and power transmission belt
JP2008261489A (en) * 2007-03-19 2008-10-30 Mitsuboshi Belting Ltd Power transmission belt
JP2009156467A (en) * 2007-11-28 2009-07-16 Mitsuboshi Belting Ltd Power transmission belt
JP2012045895A (en) * 2010-08-30 2012-03-08 Mitsuboshi Belting Ltd Laminated body, method for manufacturing the same, and belt for power transmission
WO2015045256A1 (en) * 2013-09-30 2015-04-02 バンドー化学株式会社 Flat belt and production method therefor

Similar Documents

Publication Publication Date Title
JP6055430B2 (en) Transmission belt
WO2013161777A1 (en) Transmission belt
CN109477548B (en) V-belt for transmission
JP6483745B2 (en) Friction transmission belt
US11300178B2 (en) Friction drive belt
EP3587859A1 (en) Transmission belt
CN108431450B (en) Friction transmission belt and method for manufacturing same
WO2017110790A1 (en) Friction-transmission belt and method for manufacturing same
JP2018004080A (en) Friction transmission belt
JP6616793B2 (en) Friction transmission belt
WO2018016557A1 (en) Transmission v-belt
JP6650388B2 (en) Friction transmission belt
WO2017179688A1 (en) Friction transmission belt
JP6747924B2 (en) Friction transmission belt and manufacturing method thereof
WO2017179690A1 (en) Friction transmission belt
WO2024004769A1 (en) Rubber composition for transmission belt, transmission belt, and method for manufacturing transmission belt
JP2024007332A (en) Rubber composition for transmission belt, transmission belt and method for manufacturing transmission belt

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017782503

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017782503

Country of ref document: EP

Effective date: 20181115

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782503

Country of ref document: EP

Kind code of ref document: A1