WO2017179405A1 - Processing agent for manufacturing non-woven fabric and use thereof - Google Patents

Processing agent for manufacturing non-woven fabric and use thereof Download PDF

Info

Publication number
WO2017179405A1
WO2017179405A1 PCT/JP2017/012241 JP2017012241W WO2017179405A1 WO 2017179405 A1 WO2017179405 A1 WO 2017179405A1 JP 2017012241 W JP2017012241 W JP 2017012241W WO 2017179405 A1 WO2017179405 A1 WO 2017179405A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
nonwoven fabric
fatty acid
compound
fiber
Prior art date
Application number
PCT/JP2017/012241
Other languages
French (fr)
Japanese (ja)
Inventor
新吾 國田
充宏 多田
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to JP2018511954A priority Critical patent/JP6871238B2/en
Publication of WO2017179405A1 publication Critical patent/WO2017179405A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/224Esters of carboxylic acids; Esters of carbonic acid

Definitions

  • the present invention relates to a processing agent for manufacturing a nonwoven fabric, a short fiber to which the processing agent adheres, a nonwoven fabric, and a nonwoven fabric manufacturing method.
  • fibers used in the nonwoven fabric there are natural fibers and synthetic fibers. Since natural fibers have oils and fats attached to the fiber surface, a processing agent is rarely required during processing into a nonwoven fabric. On the other hand, since synthetic fibers do not adhere to the fiber surface, treatment agents imparting lubricity, bundling properties, antistatic properties and the like are used depending on the purpose. For example, a polyester fiber treating agent that can simultaneously impart antistatic properties, card passage properties, and hydrophilicity has been developed (Patent Document 1).
  • the present inventors have found that it varies as follows depending on the processing mode.
  • the web during nonwoven fabric processing is disturbed by foaming of the treatment agent.
  • the quality of the nonwoven fabric was deteriorated.
  • the quality of the nonwoven fabric deteriorated due to the occurrence of a large amount of fluff due to insufficient entanglement and uneven web did.
  • an object of the present invention is to provide a nonwoven fabric-producing treatment agent that is excellent in entanglement and scum suppression and has low foaming, short fibers that are excellent in entanglement and scum suppression during nonwoven fabric processing and have low foaming, and good texture. Is to provide a simple nonwoven fabric.
  • the treating agent for producing a nonwoven fabric of the present invention is an ester compound (A) that is at least one selected from an alditol fatty acid ester compound (A1) and an ester compound (A2) of dianhydride alditol and a fatty acid,
  • a component (B) which is at least one selected from polyoxyalkylene polyhydric alcohol fatty acid ester (B1), polyalkylene glycol fatty acid ester (B2), mineral oil (B3) and monohydric alcohol fatty acid ester (B4).
  • the valence of the hydroxyl group of alditol constituting the compound (A1) is 5 or more.
  • the weight ratio of the compound (A) to the nonvolatile content of the treating agent is preferably 0.1 to 20% by weight.
  • the weight ratio (A / D) between the compound (A) and the compound (D) is preferably 0.1 to 1000.
  • the alditol constituting the compound (A) is preferably at least one selected from arabitol, xylitol, ribitol, sorbitol, mannitol and galactitol.
  • the short fiber of the present invention is obtained by imparting the above-mentioned processing agent for producing a nonwoven fabric to raw short fibers.
  • the nonwoven fabric of this invention contains the said short fiber.
  • the manufacturing method of the nonwoven fabric of this invention includes the process of producing the fiber web by accumulating the said short fiber, and processing this fiber web by a spunlace method.
  • the productivity can be improved.
  • the non-woven fabric containing the short fibers has a good formation and is excellent in safety to the human body. If it is a manufacturing method of the nonwoven fabric using the short fiber by which the processing agent for nonwoven fabric manufacture of this invention was processed, productivity can be improved in a nonwoven fabric preparation process.
  • the treatment agent for producing a nonwoven fabric of the present invention contains a specific compound (A) and a specific component (B), and the weight ratio of the anionic surfactant is less than a certain amount. This will be described in detail below.
  • the ester compound (A) is at least one selected from an alditol fatty acid ester compound (A1) and an ester compound (A2) of dianhydride alditol and a fatty acid, and is an essential component in the present invention.
  • an effect of excellent scum suppression and low foaming properties can be obtained in the production of synthetic fibers and the post-processing steps.
  • the factors that can produce the effect of excellent scum suppression and low foaming in the synthetic fiber production and post-processing steps when the compound (A1) and the component (B) are used in combination are not clear, but are estimated as follows. is doing.
  • the compound (A1) includes a metal ion that is a cause of scum.
  • the compound (A1) including the metal ion and the component (B) are compatible. Therefore, it is presumed that metal ions are taken into the treatment agent to suppress scum precipitation due to metal ions. Moreover, it is estimated that it is excellent in low foaming property with scum suppression.
  • Alditol fatty acid ester compound (A1) The valence of the hydroxyl group of alditol constituting the compound (A1) is 5 or more. If it is 4 or less, the number of hydroxyl groups is reduced when esterified, and the scum cannot be suppressed because the interaction between the compound (A1) and the component (B) is small. Especially, 5 or 6 is more preferable from a viewpoint of suppressing that a metal ion precipitates as a scum, and 6 is further more preferable.
  • the lower limit of the number of hydroxyl groups in the compound (A1) is preferably 2 from the viewpoint of scum suppression, more preferably 3, and even more preferably 4.
  • the upper limit of the number of hydroxyl groups in the compound (A1) is preferably 6 from the viewpoint of suppressing scum, and more preferably 5.
  • the alditol constituting the compound (A1) includes D-arabinitol, L-arabinitol, xylitol, ribitol, D-iditol, L-iditol, galactitol, D-glucitol, L-glucitol, D-mannitol, L-mannitol. And alditols having a valence of 5 to 8 such as boremitol, perseitol, D-erythro-D-galacto-octitol and the like.
  • hydroxyl groups such as D-arabinitol, L-arabinitol, xylitol, ribitol, D-iditol, L-iditol, galactitol, D-glucitol, L-glucitol, D-mannitol, L-mannitol, etc.
  • An alditol having a valence of 5 or 6 is preferred.
  • Examples of fatty acids constituting the compound (A1) include butyric acid, crotonic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristic acid, pentadecanoic acid, palmitic acid.
  • Palmitoleic acid isocetyl acid, margaric acid, stearic acid, isostearic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, isoeicosaic acid, gadoleic acid, eicosenoic acid, docosanoic acid, isodocosanoic acid, elca Examples include acid, tetracosanoic acid, isotetracosanoic acid, nervonic acid, serotic acid, montanic acid, melicic acid and the like.
  • saturated fatty acids such as capric acid, lauric acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, and stearic acid are preferable from the viewpoint of low foaming property.
  • the compound (A1) is not particularly limited.
  • the compound (A1) may be a commercially available product or may be synthesized by a known method. When synthesized by a known method, it is obtained by esterifying alditol and fatty acid at a molar ratio of 1: 1 to 1: 3.
  • the ester compound (A2) of dianhydride alditol and fatty acid (hereinafter sometimes referred to as compound (A2)) is an ester compound having a structure in which dianhydride alditol and fatty acid are ester-bonded.
  • compound (A2) is used in combination with the component (B) to be described later, an effect of excellent scum suppression and low foaming properties can be obtained in the synthetic fiber production and post-processing steps.
  • the factors that can produce the effect of excellent scum suppression and low foaming in the synthetic fiber production and post-processing steps when the compound (A2) and the component (B) are used in combination are not clear, but are estimated as follows.
  • the compound (A2) Since the compound (A2) has two cyclic structures containing an oxygen atom in the molecule, it can easily take in a metal ion. Therefore, first, the compound (A2) includes a metal ion that is a cause of scum. Next, the compound (A2) including metal ions and the component (B) are compatible. Therefore, it is presumed that metal ions are taken into the treatment agent to suppress scum precipitation due to metal ions. Moreover, it is estimated that it is excellent in low foaming property with scum suppression.
  • Examples of dianhydride alditol constituting the compound (A2) include isohexides such as isosorbide, isomannide, isoidide and isogalactide.
  • the fatty acid which comprises the said compound (A2) can mention the same thing as the fatty acid which comprises the said compound (A1).
  • the compound (A2) is not particularly limited, and examples thereof include isosorbide monostearate, isosorbide monooleate, isosorbide monolaurate, isoidide monostearate, isoidide monooleate, isoidide monolaurate, Examples thereof include isomannide monopalmitate and isosorbide monomyristylate.
  • the compound (A2) may be a commercially available product or may be synthesized by a known method.
  • Component (B) The processing agent of this invention contains a component (B) essential. As described above, component (B) suppresses scum precipitation by using in combination with compound (A1) or compound (A2). Moreover, a component (B) is a component excellent in entanglement property.
  • Component (B) used in the treating agent of the present invention is composed of polyoxyalkylene polyhydric alcohol fatty acid ester (B1), polyalkylene glycol fatty acid ester (B2), mineral oil (B3), and monohydric alcohol fatty acid ester (B4). At least one selected.
  • the polyoxyalkylene polyhydric alcohol fatty acid ester (B1) is a compound obtained by adding an alkylene oxide such as propylene oxide or ethylene oxide to the polyhydric alcohol fatty acid ester (b1).
  • polyhydric alcohol constituting the polyhydric alcohol fatty acid ester (b1) examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, glycerin, trimethylolpropane, sorbitol, and sorbitan. , Pentaerythritol, dipentaerythritol, sucrose and the like.
  • polyglycerin such as diglycerin, triglycerin, tetraglycerin, hexaglycerin and the like, which are condensates of glycerin.
  • trivalent or higher alcohols are preferable from the viewpoint of improving entanglement, and preferable examples include glycerin, trimethylolpropane, sorbitol, sorbitan, pentaerythritol, and dipentaerythritol.
  • the fatty acid constituting the polyhydric alcohol fatty acid ester (b1) is not particularly limited, and may be saturated or unsaturated, and may contain a hydroxyl group in the side chain of the hydrocarbon group.
  • the fatty acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, coconut fatty acid, myristic acid, palmitic acid, stearic acid, oleic acid,
  • Examples include behenic acid, ricinoleic acid, linolenic acid, ricineraidic acid, hydroxystearic acid, 12-hydroxystearic acid, cerebronic acid, hydroxylignoceric acid, salicylic acid, and lactic acid. These may be used in combination of two or more.
  • the polyhydric alcohol fatty acid ester (b1) is an ester having a structure in which at least one hydroxyl group of the polyhydric alcohol is esterified.
  • examples of the alkylene oxide constituting the polyoxyalkylene group added in the polyhydric alcohol fatty acid ester include alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, and the like. The above may be used.
  • the order of addition of ethylene oxide, propylene oxide and butylene oxide to be added is not particularly limited, and the addition form may be any of block addition, random addition and a combination of block addition and random addition, and there is no particular limitation.
  • the number of moles of alkylene oxide added is preferably 5 to 60, more preferably 10 to 50, and further preferably 20 to 40 per molecule of the polyhydric alcohol fatty acid ester (b1). preferable. If it exceeds 60, the low foaming property may be deteriorated. If it is less than 5, scum suppression may be insufficient.
  • the polyalkylene glycol fatty acid ester (B2) (hereinafter sometimes simply referred to as ester (B2)) is an ester compound having a structure in which a fatty acid and a polyalkylene glycol are ester-bonded.
  • ester (B2) examples include polyethylene glycol monolaurate, polyethylene glycol dilaurate, polyethylene glycol monopalmitate, polyethylene glycol dipalmitate, polyethylene glycol monooleate, polyethylene glycol dioleate, polyethylene glycol monostearate, polyethylene glycol.
  • ester (B2) examples include polyethylene glycol monolaurate, polyethylene glycol dilaurate, polyethylene glycol monopalmitate, polyethylene glycol dipalmitate, polyethylene glycol monooleate, polyethylene glycol dioleate, polyethylene glycol monostearate, polyethylene glycol.
  • Examples include, but are not limited to, distearate, polyethylene polypropylene glycol monolaurate, polyethylene polypropylene glycol dilaurate, polyethylene polypropylene glycol monooleate, and polyethylene polypropylene glycol dioleate.
  • polyethylene glycol monooleate, polyethylene glycol dioleate, polyethylene glycol monostearate, and polyethylene glycol distearate are preferable, and polyethylene glycol monooleate and polyethylene glycol dioleate are preferable. More preferred.
  • the molecular weight of the polyalkylene glycol constituting the ester (B2) is preferably 100 to 2000, more preferably 200 to 1500, still more preferably 300 to 1000, and most preferably 400 to 800, from the viewpoint of low foamability. If the molecular weight of the polyalkylene glycol is less than 100, scum suppression may be insufficient, and if it exceeds 2000, foaming of the treatment agent increases and the product viscosity increases, and scum suppression may be insufficient.
  • Examples of the mineral oil (B3) include, but are not limited to, machine oil, spindle oil, and liquid paraffin.
  • the viscosity of the mineral oil at 40 ° C. is preferably in the range of 40 to 300 seconds (JISK-2283) with a Redwood viscometer, more preferably 40 to 160 seconds, still more preferably 60 to 160 seconds, and 60 to 120 seconds. Is particularly preferred. If it is less than 40 seconds, the mineral oil may volatilize with the standing time when the fiber after refueling is left, and if it exceeds 300 seconds, the viscosity is too high and scum suppression may be lowered.
  • the monohydric alcohol fatty acid ester (B4) is a compound having a structure in which a monohydric alcohol and a fatty acid are ester-bonded.
  • monohydric alcohol which comprises the said monohydric alcohol fatty acid ester (B4)
  • Monovalent aliphatic alcohol etc. are mentioned.
  • the carbon number of the monovalent aliphatic alcohol may be distributed. Further, it may be saturated or unsaturated, linear, or branched.
  • the number of carbon atoms of the monovalent aliphatic alcohol is preferably 1 to 30, more preferably 2 to 24, still more preferably 4 to 20, and particularly preferably 8 to 18. If the monovalent aliphatic alcohol has more than 30 carbon atoms, the low foaming property may be deteriorated.
  • Examples of the monohydric alcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, decanol, 2-ethylhexanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, isostearyl alcohol, Examples include oleyl alcohol and behenyl alcohol.
  • the fatty acid constituting the monohydric alcohol fatty acid ester (B4) is not particularly limited and may be saturated or unsaturated, and may contain a hydroxyl group in the side chain of the hydrocarbon group.
  • the fatty acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, coconut fatty acid, myristic acid, palmitic acid, stearic acid, oleic acid, Examples include behenic acid, ricinoleic acid, linolenic acid, ricineraidic acid, hydroxystearic acid, 12-hydroxystearic acid, cerebronic acid, hydroxylignoceric acid, salicylic acid, and lactic acid. These may be used in combination of two or more.
  • the anionic surfactant (C) includes alkyl sulfonate salt (C1), alkyl sulfate salt (C2), polyoxyalkylene alkyl sulfate salt (C3), alkyl phosphate salt (C4), polyoxyalkylene alkyl phosphate salt (C5). And at least one selected from the group consisting of dialkylsulfosuccinate (C6), fatty acid metal salt (C7) and polyhydric alcohol fatty acid ester sulfate salt (C8), and a component imparting antistatic properties. Therefore, it is preferable to further include an anionic surfactant (C) because the short fiber to which the treatment agent adheres improves the process passability through the process such as the card process.
  • the alkyl sulfonate salt (C1) preferably has 1 to 30 alkyl groups, more preferably 4 to 22 and even more preferably 6 to 18 from the viewpoint of improving processability.
  • the alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
  • the alkyl sulfonate of the alkyl sulfonate salt (C1) is not particularly limited.
  • butyl sulfonate, hexyl sulfonate, octyl sulfonate, decyl sulfonate, lauryl sulfonate, cetyl sulfonate, stearyl sulfonate, oleyl sulfonate, p-toluene sulfonate examples include dodecyl phenyl sulfonate, oleyl phenyl sulfonate, naphthyl sulfonate, diisopropyl naphthyl sulfonate, etc., and octyl sulfonate, decyl sulfonate, lauryl sulfonate, cetyl sulfonate, stearyl sulfonate, oleyl sulfonate, lauryl sulfonate, lauryl sulfonate
  • the alkyl sulfate salt (C2) preferably has an alkyl group of 1 to 30, more preferably 4 to 22, and still more preferably 6 to 18, from the viewpoint of improving process passability.
  • the alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
  • the alkyl sulfate of the alkyl sulfate salt (C2) is not particularly limited, and examples thereof include methyl sulfate, ethyl sulfate, butyl sulfate, hexyl sulfate, octyl sulfate, decyl sulfate, lauryl sulfate, cetyl sulfate, stearyl sulfate, and oleyl sulfate.
  • lauryl sulfate, cetyl sulfate, stearyl sulfate, and oleyl sulfate are preferable, and lauryl sulfate, cetyl sulfate, stearyl sulfate, and oleyl sulfate are more preferable.
  • a salt of the alkyl sulfate salt (C2) of this invention For example, a sodium salt, potassium salt, and ammonium salt are mentioned.
  • the polyoxyalkylene alkyl sulfate salt (C3) preferably has 1 to 30 alkyl groups, more preferably 4 to 22, and still more preferably 6 to 18 from the viewpoint of improving process passability.
  • the alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
  • the polyoxyalkylene of the polyoxyalkylene alkyl sulfate salt of the present invention is polyoxyethylene and / or polyoxypropylene. In the case of polyoxyethylene and polyoxypropylene, it may be a random addition type compound or a block type addition polymerization compound. From the viewpoint of productivity, a compound obtained by addition polymerization in a random type is preferable.
  • the number of added moles of the polyoxyalkylene is 1 to 40, preferably 2 to 30, more preferably 3 to 25, and still more preferably 4 to 20.
  • the salt of the polyoxyalkylene alkyl sulfate salt (C3) is not particularly limited, and examples thereof include sodium salts, potassium salts, and ammonium salts.
  • the alkyl phosphate salt (C4) preferably has an alkyl group of 1 to 30, more preferably 4 to 22, and even more preferably 6 to 18 from the viewpoint of improving process passability.
  • the alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
  • the alkyl phosphate of the alkyl phosphate salt (C4) is not particularly limited.
  • the salt of the alkyl phosphate salt (C4) is not particularly limited, and examples thereof include sodium salts, potassium salts, and ammonium salts.
  • the alkyl group is preferably 1 to 30, more preferably 4 to 22, and still more preferably 6 to 18, from the viewpoint of improving process passability.
  • the alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
  • the polyoxyalkylene of the polyoxyalkylene alkyl phosphate salt (C5) is polyoxyethylene and / or polyoxypropylene. In the case of polyoxyethylene and polyoxypropylene, it may be a random addition type compound or a block type addition polymerization compound. From the viewpoint of productivity, a compound obtained by addition polymerization in a random type is preferable.
  • the number of added moles of the polyoxyalkylene is 1 to 40, preferably 2 to 30, more preferably 3 to 25, and still more preferably 4 to 20.
  • process passability may be lowered.
  • a salt of the said polyoxyalkylene alkyl phosphate salt (C5) For example, a sodium salt, potassium salt, and ammonium salt are mentioned.
  • the alkyl group is preferably 1-30, more preferably 4-22, and even more preferably 6-18, from the viewpoint of improving processability.
  • the alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
  • the two alkyl groups may be the same or different.
  • the alkylsulfosuccinate (C6) is not particularly limited.
  • dioctylsulfosuccinate sodium salt dioctylsulfosuccinate sodium salt, didodecenylsulfosuccinate sodium salt, di-2-ethylhexylsulfosuccinate sodium salt, dilaurylsulfosuccinate sodium salt
  • Examples include dimyristyl sulfosuccinic acid sodium salt and distearyl sulfosuccinic acid sodium salt.
  • the salt of the alkylsulfosuccinate (C6) is not particularly limited, and examples thereof include sodium salts, potassium salts, and ammonium salts.
  • the fatty acid metal salt (C7) preferably has an alkyl group of 1 to 30, more preferably 4 to 22, and even more preferably 6 to 18 from the viewpoint of improving process passability.
  • the alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
  • the fatty acid metal salt (C7) is not particularly limited.
  • acetic acid, caproic acid, lauric acid, 2-ethylhexanoic acid, isostearic acid, oleic acid, erucic acid, malonic acid, adipic acid, sebacic acid examples include potassium salts such as pentadecenyl succinic acid, sodium salts, ammonium salts, and the like.
  • the polyhydric alcohol fatty acid ester sulfate salt (C8) is a sulfate salt having a structure obtained by sulfating and neutralizing the polyhydric alcohol fatty acid ester (c).
  • the method of sulfation is not particularly limited, and a known method can be used with fuming sulfuric acid, concentrated sulfuric acid, chlorosulfonic acid, sulfur trioxide gas or the like.
  • the neutralization method is not particularly limited, and a known method can be used. Examples of basic substances used for neutralization include alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal bicarbonates such as sodium bicarbonate and potassium bicarbonate, sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • Alkali metal hydroxides calcium oxides, calcium hydroxides, magnesium oxides, oxides and hydroxides of alkaline earth metals such as magnesium hydroxides, ammonia, monoalkyl having 2 to 4 carbon atoms in the hydroxyalkyl chain, Di- and trialkanolamines, primary, secondary and tertiary alkylamines having 1 to 4 carbon atoms in the alkyl chain.
  • Two or more basic substances may be used in combination.
  • the polyhydric alcohol fatty acid ester (c) is an ester compound having a structure in which a polyhydric alcohol and a fatty acid are ester-bonded, and may be a synthetic product or a natural product.
  • the unsaturated fatty acid content with respect to the fatty acid is preferably 30% by weight or more, more preferably 40% by weight or more, further preferably 70% by weight or more,
  • the upper limit of the unsaturated fatty acid content relative to the fatty acid is preferably 100% by weight, more preferably 99% by weight.
  • the polyhydric alcohol used in the synthetic product of the polyhydric alcohol fatty acid ester (c) is a polyhydric alcohol having two or more hydroxyl groups, such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6 -Diols such as hexanediol and diethylene glycol, polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polyethylene polypropylene glycol, glycerin, trimethylolpropane, pentaerythritol, erythritol, diglycerin, polyglycerin, sorbitan, sorbitol, ditrimethylolpropane, di Pentaerythritol, sucrose, etc., and glycerin and sorbitan are more preferable from the viewpoint of low foaming property and scum suppression, and glycerin is more preferable. Preferred.
  • the fatty acid used for the synthetic product of the polyhydric alcohol fatty acid ester (c) may be any of saturated fatty acid, unsaturated fatty acid, hydroxy fatty acid and hydroxy unsaturated fatty acid.
  • fatty acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, Examples include behenic acid, lignoceric acid, nervonic acid, serotic acid, montanic acid, mellic acid, lanolin fatty acid, hydroxycaprylic acid, hydroxycapric acid, hydroxyundecanoic acid, hydroxylauric acid, hydroxystearic acid, ricinoleic acid, linolenic acid, etc.
  • oleic acid and hydroxycapryl are preferred because the more hydroxyl groups or carbon-carbon unsaturated bonds in the molecule, the more the sulfate groups per molecule of the sulfate salt, the better the suppression of scum.
  • Acid, hydroxycapric acid, hydroxyundecanoic acid, hydroxylauric acid, hydroxystearic acid, ricinoleic acid and linolenic acid are preferred, and linolenic acid is more preferred.
  • the polyhydric alcohol fatty acid ester (c) has a lower foaming property as the molecular weight is larger. Therefore, the total carbon number of the polyhydric alcohol fatty acid ester (c) is preferably 23 or more, more preferably 27 or more, still more preferably 31 or more, and particularly preferably 39 or more.
  • the preferable upper limit of the total carbon number of the polyhydric alcohol fatty acid ester (c) is 100, more preferably 90, and still more preferably 80. When the total carbon number of the polyhydric alcohol fatty acid ester (c) exceeds 100, scum suppression may be lowered.
  • Natural products of the polyhydric alcohol fatty acid ester (c) include beef tallow, pork tallow, horse tallow, sheep tallow, bird fat, whale oil, sea pig oil, cocoon oil, cocoon oil, cocoon oil, castor oil, rapeseed oil, cottonseed oil, sesame oil Olive oil, soybean oil, palm oil, palm oil, palm kernel oil, peanut oil, corn oil, sunflower oil and the like.
  • beef tallow and rapeseed oil are preferable from the viewpoint of low foaming property.
  • Examples of the polyhydric alcohol fatty acid ester (c) include hardened oil and semi-hardened oil having a structure obtained by hydrogenating the natural product in addition to the natural product.
  • hardened palm oil, hardened palm oil Semi-hardened palm oil, hardened palm kernel oil, hardened soybean oil, hardened rapeseed oil, hardened castor oil, hardened beef tallow, semi-hardened beef tallow, hardened pork fat, semi-hardened koji oil, hardened koji oil, hardened koji oil, hardened koji oil, semi Examples include hardened soot, hardened soot, and semi-hardened soot.
  • An ester compound (D) of monoanhydroalditol and a fatty acid (hereinafter sometimes referred to as compound (D)) is a component that increases the scum-inhibiting effect when used in combination with compound (A) and component (B). is there.
  • the compound (D) is different from the component (B1) in that a polyoxyalkylene group is not added. Although it is not certain that the compound (D) is used in combination with the compound (A) and the component (B), the scum-inhibiting effect is increased. However, the compound (D) and the component (B) are used in combination.
  • the compound (D) is obtained as a mixture with the alditol fatty acid ester compound (A) when it is obtained by esterifying alditol and fatty acid at a molar ratio of 1: 1 to 1: 2. Although it is possible to adjust the ratio of the ester compound (A) to the compound (D) depending on the reaction conditions, the ratio of the ester compound (A) increases as the esterification reaction time is shortened and the temperature is lowered. .
  • the monoanhydroalditol constituting the compound (D) is not particularly limited, and examples thereof include sorbitan and / or mannitan.
  • Examples of the fatty acid constituting the compound (D) include butyric acid, crotonic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristoleic acid, pentadecanoic acid, and palmitic acid.
  • Palmitoleic acid isocetyl acid, margaric acid, stearic acid, isostearic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, isoeicosaic acid, gadoleic acid, eicosenoic acid, docosanoic acid, isodocosanoic acid, elca
  • Examples include acid, tetracosanoic acid, isotetracosanoic acid, nervonic acid, serotic acid, montanic acid, melicic acid and the like.
  • saturated fatty acids having 16 or less carbon atoms such as caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, palmitoleic acid, margarine
  • Unsaturated fatty acids such as acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, vaccenic acid, gadoleic acid, erucic acid, and nervonic acid; Is preferred.
  • sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monopalmitate, sorbitan dipalmitate, sorbitan tripalmitate, sorbitan monomyristylate, sorbitan dimmilliate from the viewpoint of achieving the effect of the present application.
  • Stylate, sorbitan trimyristate, sorbitan monooleate, sorbitan dioleate, sorbitan trioleate are preferred.
  • the processing agent for nonwoven fabric manufacture of this invention processes to the short fiber used for manufacture of a nonwoven fabric.
  • the fiber will be described later.
  • the processing agent for nonwoven fabric production of the present invention comprises an alditol fatty acid ester compound (A1) and an ester compound (A) which is at least one selected from an ester compound (A2) of dianhydride alditol and a fatty acid, and a polyoxyalkylene polyvalent A component (B) that is at least one selected from an alcohol fatty acid ester (B1), a polyalkylene glycol fatty acid ester (B2), a mineral oil (B3), and a monohydric alcohol fatty acid ester (B4), and the compound (A1 ) In which the valence of the hydroxyl group of alditol is 4 or more.
  • the treatment agent for producing a nonwoven fabric according to the present invention provides an effect of excellent scum suppression and low foaming in synthetic fiber production and post-processing
  • the weight ratio of the compound (A) to the nonvolatile content of the treating agent is preferably 0.1 to 20% by weight, more preferably 0.5 to 15% by weight, further preferably 1 to 10% by weight, and 1 to 5% by weight. % Is particularly preferred. If it is less than 0.1% by weight, foaming may not be suppressed, and if it exceeds 20% by weight, scum suppression may be inferior.
  • the upper limit of the total weight ratio of the compound (A) and the component (B) with respect to the non-volatile content of the treating agent is preferably 99% by weight, more preferably 95% by weight, from the viewpoint of easily obtaining the effect of the present application. 90% by weight is more preferred, 85% by weight is particularly preferred, and 80% by weight is most preferred.
  • the lower limit of the total weight ratio of the compound (A) and the component (B) with respect to the nonvolatile content of the treatment agent is preferably 20% by weight, more preferably 40% by weight, from the viewpoint of easily obtaining the effect of the present application. 50% by weight is more preferred, 55% by weight is particularly preferred, and 60% by weight is most preferred.
  • the weight ratio of the anionic surfactant (C) to the non-volatile content of the treating agent is preferably 0.1 to 60% by weight, more preferably 0.5 to 50% by weight, still more preferably 1 to 40% by weight, 2 to 30% by weight is particularly preferred. If it is less than 0.1% by weight, the process passability may be lowered, and if it exceeds 20% by weight, scum suppression may be inferior.
  • the processing agent for producing a nonwoven fabric of the present invention further contains an ester compound (D) of monoanhydroalditol and a fatty acid because the scum suppressing effect is enhanced.
  • the lower limit of the weight ratio (A / D) between the compound (A) and the compound (D) is preferably 0.1, more preferably 0.2, and 0.3. More preferably, 0.4 is particularly preferable.
  • the upper limit of the weight ratio (A / D) between the compound (A) and the compound (D) is preferably 1000, more preferably 200, still more preferably 10, and particularly preferably 2.
  • the processing agent for nonwoven fabric manufacture of this invention may contain water and / or a solvent as needed.
  • the water used in the present invention may be any of pure water, distilled water, purified water, soft water, ion exchange water, tap water and the like.
  • an emulsifier such as N-trialkylglycine and N-trialkylsulfobetaine, a lubricant such as carnauba wax, and the like may be added to the treatment agent for producing a nonwoven fabric of the present invention.
  • an appropriate preservative, rust inhibitor, and antifoaming agent may be added.
  • the treating agent is usually produced by adding and mixing the above-mentioned components constituting in any order.
  • the short fiber of the present invention refers to a fiber composed of a raw material short fiber main body and the treatment agent for producing a nonwoven fabric attached thereto, and is generally a short fiber cut into a predetermined length.
  • the applied amount of the processing agent for producing a nonwoven fabric is preferably 0.05 to 2.0% by weight, more preferably 0.06 to 1.5% by weight, and 0.07 to 1.0% by weight based on the raw material short fibers. % Is more preferable, and 0.08 to 0.7% by weight is particularly preferable. If it is less than 0.05%, the antistatic property may be insufficient, and if it exceeds 2.0% by weight, scum due to dropping may increase.
  • the fiber length of the short fiber of the present invention varies as follows depending on the nonwoven fabric processing mode.
  • 2 to 100 mm is preferable, 10 to 64 mm is more preferable, 20 to 60 mm is further preferable, and 31 to 55 mm is particularly preferable.
  • the fiber length is less than 2 mm or more than 100 mm, the entanglement may be reduced.
  • 1 to 40 mm is preferable, 2 to 20 mm is more preferable, and 3 to 10 mm is further preferable.
  • the fiber length is 40 mm or less, uniform dispersion is easily achieved, and the formation of the nonwoven fabric is likely to be good.
  • the fiber length is 1 mm or more, the strength of the nonwoven fabric when processed into a nonwoven fabric is good.
  • the thickness of the short fiber of the present invention is generally expressed in units of decitex (hereinafter expressed as dtex), preferably 0.7 to 4.0 dtex, more preferably 0.8 to 3.0 dtex, 0 Is more preferably 0.9 to 2.0 dtex, and particularly preferably 1.0 to 1.5 dtex. If it is less than 0.7 dtex, the card passing property may be lowered. If it exceeds 4.0 dtex, the entanglement may be reduced.
  • the treatment agent for producing a nonwoven fabric of the present invention may be attached to the raw material short fiber body without being diluted as it is, and diluted with water or the like to a concentration such that the weight ratio of the entire nonvolatile content is 0.2 to 15% by weight. It may be attached to the raw material short fiber body as an emulsion.
  • the step of attaching the processing agent for manufacturing nonwoven fabric to the raw material short fiber body and the means for attaching the processing agent for manufacturing nonwoven fabric of the present invention to the raw material short fiber body differ depending on the type of raw material short fiber.
  • the process of attaching the processing agent for nonwoven fabric production to the raw material short fiber body is the spinning process, drawing process, crimping of the raw material short fiber body. Any of the process and the cutting process may be performed, and the means for attaching may be any of roller lubrication, nozzle spray lubrication, dip lubrication, and the like.
  • the process of attaching the processing agent for nonwoven fabric production to the raw material short fiber body is after the fiber cutting process, and the means for attaching is uniformly attached.
  • dip-nip oiling is preferable.
  • the method is not limited to the above, and a method of obtaining a desired adhesion rate more uniformly and efficiently in accordance with the short fiber manufacturing process and its characteristics may be adopted.
  • a drying method you may use the method of drying with a hot air and infrared rays, the method of making it contact with a heat source, and drying.
  • the raw material short fibers of the present invention include cotton fibers, natural fibers such as bleached cotton fibers, regenerated fibers such as rayon fibers, cupra fibers, acetate fibers, polyolefin fibers, polyester fibers, polyamide fibers, acrylic fibers, polychlorinated fibers.
  • Examples thereof include synthetic fibers such as vinyl fibers and composite fibers composed of two or more kinds of thermoplastic resins.
  • the polyamide fiber include 6-nylon fiber, 6,6-nylon fiber, and aromatic polyamide fiber.
  • the manufacturing treatment agent is preferably for rayon fibers
  • the short fibers of the present invention are preferably rayon short fibers
  • the nonwoven fabric of the present invention preferably contains rayon short fibers.
  • the raw material fibers are polyolefin fibers and polyester fibers
  • the fibers are water-repellent, a higher water pressure is required at the time of manufacturing the nonwoven fabric by the spunlace method, and from the viewpoint that foaming reduction is further necessary
  • the fibers are polyolefin fibers and polyester fibers.
  • the rayon fibers include viscose rayon fibers (including strong rayon fibers, high strength rayon fibers, high wet elastic rayon fibers, and polynosic fibers), solvent-spun rayon fibers, and the like.
  • polyolefin resin / polyolefin resin for example, high density polyethylene / polypropylene, linear high density polyethylene / polypropylene, low density polyethylene / polypropylene, two types of propylene and other ⁇ -olefins are used.
  • examples thereof include an original copolymer or ternary copolymer / polypropylene, linear high-density polyethylene / high-density polyethylene, and low-density polyethylene / high-density polyethylene.
  • polyolefin resin / polyester resin for example, polypropylene / polyethylene terephthalate, high-density polyethylene / polyethylene terephthalate, linear high-density polyethylene / polyethylene terephthalate, and low-density polyethylene / polyethylene terephthalate.
  • polyester-type resin / polyester-type resin copolymer polyester / polyethylene terephthalate etc. are mentioned, for example.
  • the fiber which consists of polyamide-type resin / polyester-type resin, polyolefin-type resin / polyamide-type resin, etc. is mentioned.
  • the raw material fibers are water-repellent, a higher water pressure is required at the time of producing the nonwoven fabric by the spunlace method, and from the viewpoint of further reducing foaming properties, polyolefin resins / polyolefin resins, polyolefin resins A resin / polyester resin and a polyester resin / polyester resin are more preferable.
  • the short fiber of the present invention is used for the nonwoven fabric manufacturing process by the airlaid method or papermaking method described later, if the raw material fiber includes a heat-bonded fiber, it is mixed with a fiber other than the heat-bonded fiber and then heat-bonded. Since it becomes a nonwoven fabric by this, it is preferable.
  • the heat-fusible fiber may be any thermoplastic fiber that can be melted and fused in the nonwoven fabric manufacturing process, and a single fiber such as low-melting polyester, low-melting vinylon, and low-melting nylon, or a core made of polyethylene, polypropylene, or Polyester having a sheath with polyester, a so-called core-sheath type composite fiber such as an ethylene / vinyl acetate copolymer may be used alone, or two or more of these may be used in combination.
  • a single fiber such as low-melting polyester, low-melting vinylon, and low-melting nylon, or a core made of polyethylene, polypropylene, or Polyester having a sheath with polyester, a so-called core-sheath type composite fiber such as an ethylene / vinyl acetate copolymer may be used alone, or two or more of these may be used in combination.
  • Nonwoven fabric and method for producing nonwoven fabric As described in the background art, the nonwoven fabric processing modes are diversified, and there are a spunlace method, a needle punch method, a chemical bond method, a papermaking method, and an airlaid method. Moreover, you may combine those nonwoven fabric manufacturing methods.
  • the nonwoven fabric of the present invention is a nonwoven fabric produced by the method described below.
  • the short fibers of the present invention are opened in the opening process, and when two or more kinds of short fibers are used, they are mixed, and the fiber web is formed by carding with a nonwoven fabric processing machine. Make it.
  • the fibers are supplied to a nonwoven fabric processing machine, and a fleece discharged from the nonwoven fabric processing machine is appropriately laminated.
  • Nonwoven fabric processing machines include a parallel nonwoven fabric processing machine in which the fibers in the fleece are arranged in almost one direction, a random nonwoven fabric processing machine in which the fibers in the fleece are non-oriented, and a semi-random nonwoven fabric processing that has an intermediate orientation between the former two.
  • a flat nonwoven fabric processing machine or the like that is most commonly used for the opening of conventional cotton fibers can be used.
  • a large number of fleeces discharged from the nonwoven fabric processing machine may be stacked as they are to form a web in which fibers are arranged in one direction or a fiber web in which fibers are not oriented.
  • a plurality of fleeces in which fibers are arranged in one direction may be stacked in a state where the fibers of each fleece are perpendicular to each other to form a longitudinal and lateral uniform fiber web.
  • a fiber web in which fibers are non-oriented or fibers between each fleece are orthogonal is used as the fiber web.
  • the carding process by the nonwoven fabric processing machine is different from the carding process at the time of spinning in that a fiber web is produced instead of a sliver in a fiber bundle shape. For this reason, in the carding process by the nonwoven fabric processing machine, fluff that is not found in the carding process at the time of spinning tends to occur. For this reason, the nonwoven fabric manufacturing treatment agent of the present invention has a very high degree of entanglement requirement, unlike the spinning treatment agent.
  • the spunlace treatment is an entanglement treatment means in which a high-pressure water stream is made to collide with the fiber web.
  • the high-pressure water stream is, for example, a liquid such as water or warm water from an injection hole having a hole diameter of about 0.05 to 2.0 mm, particularly 0.1 to 0.4 mm, at an injection pressure of about 5 to 150 kg / cm 2 ⁇ G. If it is ejected, it can be easily obtained.
  • a device in which a large number of the injection holes are arranged in one or a plurality of rows at intervals of 0.3 to 10 mm is arranged so that the traveling direction of the fiber web is orthogonal to the rows of the injection holes. This is done by impinging a high-pressure water stream on the traveling fiber web.
  • the distance between the injection hole and the fiber web is preferably about 1 to 15 cm. If this distance is less than 1 cm, the energy when the high-pressure water stream collides with the fiber web is too large, and the resulting nonwoven fabric may be disturbed. On the other hand, if it exceeds 15 cm, the energy when the high-pressure water stream collides with the fiber web becomes small, and sufficient kinetic energy cannot be given to the fiber, and the three-dimensional entanglement tends to be insufficient.
  • the fiber web When the spunlace treatment is applied to the fiber web, the fiber web is usually supported on a support.
  • the support is placed on the side opposite to the side subjected to the spunlace treatment.
  • Any material can be used as the support so long as it allows a high-pressure water flow applied to the fiber web to pass well.
  • a mesh screen or a perforated plate is used.
  • a mesh screen such as a wire mesh is adopted, and the size of the hole is preferably about 20 to 100 mesh.
  • the fiber web is impregnated with a liquid such as water or warm water used as a liquid flow.
  • the liquid is removed by a conventionally known method to obtain a nonwoven fabric. It is obtained.
  • a method of removing the liquid first, excess liquid is mechanically removed using a squeezing device such as a mangle roll, and then the remaining liquid is removed using a drying device such as a continuous hot air dryer. A removal method or the like is used.
  • the nonwoven fabric obtained as described above has sufficient three-dimensional entanglement between fibers, and has sufficient tensile strength for use as a material for hand towels, hand towels, and the like.
  • the method for producing the fiber web is the same as the spunlace method.
  • the nonwoven fabric manufacturing method by the needle punch method is generally a three-dimensional structure in which a needle with barbs moves up and down in a direction perpendicular to the fiber bundle and the fiber bundle caught by the needle tip or barb is pushed in.
  • Including a step of producing a non-woven fabric by causing entanglement (sometimes referred to as a needle punching step).
  • the number of needle punches, the density, and the shape of the needle can be optimized to obtain a desired binding force.
  • the nonwoven fabric manufacturing method by the papermaking method includes a step of making paper by dispersing the short fibers treated with the treatment agent of the present invention in water (sometimes referred to as a papermaking step).
  • the short fibers are less likely to get entangled with each other during stirring and dispersion, settle quickly and disperse into single fibers, and have a good stable dispersibility.
  • a conventional wet papermaking process can be employed. In the wet papermaking process, the short fiber treated with the treatment agent of the present invention in the above process is put into a pulper, stirred and dispersed in water, and suspended.
  • the paper is supplied to a paper net and used as wet paper. And after the drying process which dries a wet paper, it winds up in roll shape and obtains a wet papermaking nonwoven fabric.
  • the netting net is generally a circular net or a short net, but may be a long net, a rotoformer, a hydroformer, a perchformer, or the like.
  • the drying process may be a plurality of rotary heating roller type (multi-cylinder type) or Yankee drum type.
  • the manufacturing method of the papermaking nonwoven fabric of this invention may disperse
  • the nonwoven fabric manufacturing method by the air laid method includes a step (sometimes referred to as an air laid step) in which the short fibers of the present invention are passed through a sieve or a screen to form a fiber web in which the short fibers are uniformly dispersed.
  • the short fiber of the present invention includes the above heat-fusible fiber, for example, when the fiber is composed of rayon fiber, pulp fiber, and heat-fusible fiber, after obtaining the fiber web by the airlaid process, heat fusion by heating is performed.
  • the process of manufacturing a nonwoven fabric by adhesion or thermal bonding is preferred.
  • the short fiber of the present invention does not contain a heat-fusible fiber, for example, when it is a rayon fiber alone
  • an emulsion binder is applied and the intersection of the fibers
  • the emulsion binder include acrylonitrile-butadiene rubber, styrene-butadiene rubber, polyvinyl acetate, polyethylene vinyl acetate, and polyacrylate.
  • a box-type sieve type apparatus that vibrates in any of front and rear, left and right, upper and lower, horizontal circles, etc., and disperses and drops short fibers from the sieve eyes can be used.
  • a net-like cylindrical type apparatus in which a net-like metal perforated plate is formed into a cylindrical shape, has a fiber inlet on the side surface thereof, and disperses / drops the fiber from its sieve eyes can be used.
  • the fibers are uniformly dispersed in all directions, so that a bulky fiber aggregate is formed and the fibers are uniformly dispersed. can get.
  • the weight (weight per unit area) of the fiber web is preferably about 10 to 150 g / m 2 .
  • the basis weight is less than 10 g / m 2 , the fiber density becomes small, and the three-dimensional entanglement tends to be insufficient.
  • the basis weight exceeds 150 g / m 2 , the amount of fibers per unit area is too large, and the three-dimensional entanglement tends to be insufficient.
  • the weight of the fiber web (basis weight) can select a wide range of applications as 20 ⁇ 1300g / m 2 approximately, preferably 20 ⁇ 500g / m 2, more preferably 30 ⁇ 400g / m 2. If the basis weight is less than 20 g / m 2 and more than 1300 g / m 2 , the texture of the nonwoven fabric may be lowered. In the case of the airlaid method, the weight (weight) of the fiber web is preferably about 10 to 150 g / m 2 . Even when the basis weight is less than 10 g / m 2 or more than 150 g / m 2 , there is a possibility that the thickness of the nonwoven fabric becomes non-uniform due to an inappropriate amount of fibers per unit area.
  • the non-woven fabric of the present invention is characterized by low foaming in the non-woven fabric manufacturing process by the spunlace method and the papermaking method. is there. Even when the high-pressure water flow of the spunlace method is performed with circulating water, the productivity of the nonwoven fabric can be improved because there is no harmful effect such as filter or nozzle clogging due to scum generation.
  • the nonwoven fabric of the present invention is of high quality because the web becomes uniform because the nonwoven fabric is produced by the spunlace method and the needle punch method, because the web is uniform because of its excellent entanglement.
  • the nonwoven fabric of the present invention is of high quality because the web becomes uniform due to excellent scum suppression in the nonwoven fabric manufacturing process by the airlaid method.
  • nonwoven fabric of the present invention includes the following suitable applications according to various nonwoven fabric manufacturing methods.
  • the nonwoven fabric obtained by the nonwoven fabric manufacturing method by the spunlace method is spunlaced in the manufacturing process, so that the remaining amount of the processing agent for nonwoven fabric production is small, the inter-fiber gap is large, and the flexibility is excellent. From this point of view, it is preferably used as an application or a wiping cloth that directly touches the skin.
  • Masks air filters, water, coffee and tea bags, liquid cartridges and bag filters, vacuum bags, allergen membranes, baby diapers, feminine hygiene napkins, adult incontinence products, personal hygiene wipes, bandages, wound dressings.
  • Examples include air filters, liquid filters, household wipes, store towels, battery separators, vacuum cleaner bags, cosmetic pads, food packages, clothes, clothes, medical clothes, and disposable underwear.
  • the nonwoven fabric obtained by the airlaid method is a bulky fiber aggregate, and the fibers are uniformly dispersed, so a high-strength nonwoven fabric can be obtained, so that cosmetic puffs, hygiene materials, skin It is useful for cleaning sheets, wipers, food drip absorption sheets, kitchen paper, various packaging materials, cushioning materials, adsorbent sheets, sound absorbing materials, air filters and the like.
  • the nonwoven fabric obtained by the non-woven fabric manufacturing method by the papermaking method has a uniform texture and excellent flexibility, and is therefore useful for sanitary materials, medical materials, and household products. Specifically, it is useful for a base material for skin contact, a mask, a base material for a patch, a base material for makeup removal, an interlining for clothing, a wiper, a base material for leather.
  • Non-woven fabric manufacturing process of the present invention used for manufacturing non-woven fabrics related to the human body, such as cosmetic puffs, base materials for makeup removal, skin cleaning sheets, base materials for patches, masks, kitchen paper, food drip absorption sheets, etc.
  • the agent preferably contains the ester compound (A), the polyoxyalkylene polyhydric alcohol fatty acid ester (B1), the mineral oil (B2), and the compound (D).
  • the resulting reaction mixture was cooled to 170 ° C., 2.3 g of phosphoric acid (85% by weight) was added to neutralize the catalyst, then the reaction mixture was cooled to about 150 ° C. and 800 g of glycerin was added. After uniform mixing, the mixture was left at that temperature for about 1 hour to remove about 640 g of the separated glycerin phase.
  • the obtained sorbitan fatty acid ester was distilled under reduced pressure at 160 ° C. and 250 Pa to distill away the remaining glycerin to obtain 800 g of sorbitan monostearate (D-1) (acid value 3.1, hydroxyl value: 252)
  • Low foaming index (bubble height (cm)) A (very good): The height of the foam is less than 0.5 cm.
  • a second stage spunlace treatment was applied at an injection pressure of 100 kg / cm 2 ⁇ G and dried to obtain nonwoven fabrics.
  • the formation of the nonwoven fabric obtained by the spunlace method was evaluated by visual judgment.
  • Index of determination of the formation of the nonwoven fabric A There is no disturbance of the formation of the nonwoven fabric, and the appearance is very good.
  • There is little disorder of the formation of the nonwoven fabric, and the appearance is good.
  • X Disturbance is seen in the formation of a nonwoven fabric.
  • the treatment agents for nonwoven fabric production of Examples 1 to 14 are at least one selected from alditol fatty acid ester compound (A1) and ester compound (A2) of dianhydride alditol and fatty acid. It is at least one selected from an ester compound (A), a polyoxyalkylene polyhydric alcohol fatty acid ester (B1), a polyalkylene glycol fatty acid ester (B2), a mineral oil (B3), and a monohydric alcohol fatty acid ester (B4).

Abstract

Provided are: a processing agent for manufacturing non-woven fabric that is well-entwined and has excellent suppression of scum and low foaming; short fibers that have excellent entwining properties and scum suppression, and low foaming during non-woven fabric processing; and non-woven fabric with a good texture. A processing agent for manufacturing non-woven fabric comprising at least one kind of ester compound (A) selected from (A1) alditol fatty acid ester compounds and (A2) ester compounds of alditol dianhydride with a fatty acid, and at least one kind of component (B) selected from (B1) polyoxyalkylene polyhydric alcohol fatty acid esters, (B2) polyalkyleneglycol fatty acid esters, (B3) mineral oils and (B4) monohydric alcohol fatty acid esters, wherein the number of hydroxyl groups of the alditol configuring the compound (A1) is at least 5.

Description

不織布製造用処理剤及びその利用Non-woven fabric manufacturing agent and use thereof
 本発明は、不織布製造用処理剤、該処理剤が付着した短繊維、不織布及び不織布の製造方法に関する。 The present invention relates to a processing agent for manufacturing a nonwoven fabric, a short fiber to which the processing agent adheres, a nonwoven fabric, and a nonwoven fabric manufacturing method.
 不織布に使用される繊維として、天然繊維と合成繊維とがある。
 天然繊維は、繊維表面に油脂が付着しているため、不織布への加工時に処理剤が必要とされることが少ない。一方、合成繊維は繊維表面に何も付着していないため、潤滑性、集束性、帯電防止性などを付与する処理剤が目的に応じて使用されている。
 例えば、制電性、カード通過性及び親水性を同時に付与することができるポリエステル系繊維用処理剤が開発されている(特許文献1)。
As fibers used in the nonwoven fabric, there are natural fibers and synthetic fibers.
Since natural fibers have oils and fats attached to the fiber surface, a processing agent is rarely required during processing into a nonwoven fabric. On the other hand, since synthetic fibers do not adhere to the fiber surface, treatment agents imparting lubricity, bundling properties, antistatic properties and the like are used depending on the purpose.
For example, a polyester fiber treating agent that can simultaneously impart antistatic properties, card passage properties, and hydrophilicity has been developed (Patent Document 1).
 近年、不織布加工技術の進歩に伴い、スパンレース法、エアレイド法、ニードルパンチ法、ケミカルボンド法及び抄紙法等の加工態様の多様化及び不織布加工速度の高速化が顕著になってきた。
 特許文献1に記載の特殊なノニオン界面活性剤を主体とする繊維処理剤を適用した場合、いずれの加工態様においても、不織布の地合いが不均一、すなわち、不織布の品質の低下が散見されるようになってきた。
In recent years, with the progress of nonwoven fabric processing technology, diversification of processing modes such as the spunlace method, airlaid method, needle punch method, chemical bond method, and papermaking method, and the speed of nonwoven fabric processing have become remarkable.
When the fiber treatment agent mainly composed of the special nonionic surfactant described in Patent Document 1 is applied, the texture of the nonwoven fabric is uneven in any of the processing modes, that is, the quality of the nonwoven fabric is likely to be deteriorated. It has become.
日本国特開2013-87365号公報Japanese Unexamined Patent Publication No. 2013-87365
 本発明者らは、不織布の品質の低下の原因を調査した結果、加工態様によって、次のように異なることが分かった。
 特殊なノニオン界面活性剤を主体とする繊維処理剤が付着した短繊維を、スパンレースや抄紙等の水を使用する生産工程に供すると、該処理剤の起泡により不織布加工途中のウェブが乱れることで不織布の品質の低下が生じていることが判明した。
 また、ニードルパンチ及びケミカルボンド等の工程に供すると、絡合性が不足するために風綿が多く発生して、ウェブが不均一となることで不織布の品質の低下が生じていることが判明した。
 エアレイドの工程に供すると、スリット等にスカムが蓄積し、均一に短繊維を降り積もらせることができなくなっていることが判明した。
 繊維処理剤を不織布の加工態様に合わせて変えると、合成繊維製造の生産性の面から適切でない。
 そこで、本発明の目的は、絡合性及びスカム抑制に優れ、起泡の少ない不織布製造用処理剤、不織布加工時に絡合性及びスカム抑制に優れ且つ起泡の少ない短繊維、及び地合いの良好な不織布を提供することにある。
As a result of investigating the cause of the deterioration of the quality of the nonwoven fabric, the present inventors have found that it varies as follows depending on the processing mode.
When short fibers with a special nonionic surfactant-based fiber treatment agent attached to the production process using water such as spunlace and papermaking, the web during nonwoven fabric processing is disturbed by foaming of the treatment agent. As a result, it was found that the quality of the nonwoven fabric was deteriorated.
In addition, when subjected to processes such as needle punching and chemical bonding, it was found that the quality of the nonwoven fabric deteriorated due to the occurrence of a large amount of fluff due to insufficient entanglement and uneven web did.
When subjected to the airlaid process, it was found that scum accumulated in the slits and the like, and the short fibers could not be uniformly deposited.
If the fiber treatment agent is changed in accordance with the processing mode of the nonwoven fabric, it is not appropriate from the viewpoint of productivity of synthetic fiber production.
Accordingly, an object of the present invention is to provide a nonwoven fabric-producing treatment agent that is excellent in entanglement and scum suppression and has low foaming, short fibers that are excellent in entanglement and scum suppression during nonwoven fabric processing and have low foaming, and good texture. Is to provide a simple nonwoven fabric.
 本発明者らは、鋭意検討した結果、特定のエステル化合物と特定の成分とを併用すると上記課題が解決できることを見出し、本発明に到達した。
 すなわち、本発明の不織布製造用処理剤は、アルジトール脂肪酸エステル化合物(A1)及び二無水アルジトールと脂肪酸とのエステル化合物(A2)から選ばれる少なくとも1種であるエステル化合物(A)と、
ポリオキシアルキレン多価アルコール脂肪酸エステル(B1)、ポリアルキレングリコール脂肪酸エステル(B2)、鉱物油(B3)及び1価アルコール脂肪酸エステル(B4)から選ばれる少なくとも1種である成分(B)とを含み、
前記化合物(A1)を構成するアルジトールの水酸基の価数が5以上である。
As a result of intensive studies, the present inventors have found that the above problem can be solved by using a specific ester compound and a specific component in combination, and have reached the present invention.
That is, the treating agent for producing a nonwoven fabric of the present invention is an ester compound (A) that is at least one selected from an alditol fatty acid ester compound (A1) and an ester compound (A2) of dianhydride alditol and a fatty acid,
A component (B) which is at least one selected from polyoxyalkylene polyhydric alcohol fatty acid ester (B1), polyalkylene glycol fatty acid ester (B2), mineral oil (B3) and monohydric alcohol fatty acid ester (B4). ,
The valence of the hydroxyl group of alditol constituting the compound (A1) is 5 or more.
 アニオン性界面活性剤(C)をさらに含むと好ましい。
 一無水アルジトールと脂肪酸とのエステル化合物(D)をさらに含むと好ましい。
 処理剤の不揮発分に対する前記化合物(A)の重量割合が0.1~20重量%であると好ましい。
 前記化合物(A)と前記化合物(D)との重量比(A/D)が0.1~1000であると好ましい。
 前記化合物(A)を構成するアルジトールが、アラビトール、キシリトール、リビトール、ソルビトール、マンニトール及びガラクチトールから選ばれる少なくとも1種であると好ましい。
It is preferable to further contain an anionic surfactant (C).
It is preferable to further contain an ester compound (D) of monoanhydroalditol and a fatty acid.
The weight ratio of the compound (A) to the nonvolatile content of the treating agent is preferably 0.1 to 20% by weight.
The weight ratio (A / D) between the compound (A) and the compound (D) is preferably 0.1 to 1000.
The alditol constituting the compound (A) is preferably at least one selected from arabitol, xylitol, ribitol, sorbitol, mannitol and galactitol.
 本発明の短繊維は、原料短繊維に対して、上記不織布製造用処理剤を付与してなる。
 本発明の不織布は、上記短繊維を含有する。
 本発明の不織布の製造方法は、上記短繊維を集積させて繊維ウェブを作製し、該繊維ウェブをスパンレース法で処理する工程を含む。
The short fiber of the present invention is obtained by imparting the above-mentioned processing agent for producing a nonwoven fabric to raw short fibers.
The nonwoven fabric of this invention contains the said short fiber.
The manufacturing method of the nonwoven fabric of this invention includes the process of producing the fiber web by accumulating the said short fiber, and processing this fiber web by a spunlace method.
 本発明の不織布製造用処理剤が付与された短繊維は、絡合性及びスカム抑制に優れ且つ起泡が少ないため、生産性を向上させることができ、本発明の不織布製造用処理剤が処理された短繊維を含む不織布は、地合が良好であり、人体への安全性に優れる。
 本発明の不織布製造用処理剤が処理された短繊維を用いた不織布の製造方法であれば、不織布作製工程において、生産性を向上させることができる。
Since the short fiber to which the processing agent for producing a nonwoven fabric of the present invention is applied is excellent in entanglement and scum suppression and has less foaming, the productivity can be improved. The non-woven fabric containing the short fibers has a good formation and is excellent in safety to the human body.
If it is a manufacturing method of the nonwoven fabric using the short fiber by which the processing agent for nonwoven fabric manufacture of this invention was processed, productivity can be improved in a nonwoven fabric preparation process.
 本発明の不織布製造用処理剤は、特定の化合物(A)及び特定の成分(B)を含み、アニオン界面活性剤の重量割合が一定量未満である。以下に詳細に説明する。 The treatment agent for producing a nonwoven fabric of the present invention contains a specific compound (A) and a specific component (B), and the weight ratio of the anionic surfactant is less than a certain amount. This will be described in detail below.
[エステル化合物(A)]
 エステル化合物(A)は、アルジトール脂肪酸エステル化合物(A1)及び二無水アルジトールと脂肪酸とのエステル化合物(A2)から選ばれる少なくとも1種であり、本発明に必須の成分である。
 エステル化合物(A)は、後述する成分(B)と併用すると、合成繊維の製造及び後加工工程にてスカム抑制及び低起泡性に優れる効果が得られる。
 化合物(A1)と成分(B)とを併用した場合に合成繊維の製造及び後加工工程にてスカム抑制及び低起泡性に優れる効果が得られる要因は定かではないが、次のように推定している。
 先ず、スカムの原因の一因である金属イオンを化合物(A1)が包摂する。次に、金属イオンを包摂した化合物(A1)と成分(B)とが相溶する。従って、金属イオンが処理剤中に取り込まれることで、金属イオンによるスカム析出を抑制しているものと推定している。又、スカム抑制に伴って、低起泡性に優れるものと推定している。
[Ester compound (A)]
The ester compound (A) is at least one selected from an alditol fatty acid ester compound (A1) and an ester compound (A2) of dianhydride alditol and a fatty acid, and is an essential component in the present invention.
When the ester compound (A) is used in combination with the later-described component (B), an effect of excellent scum suppression and low foaming properties can be obtained in the production of synthetic fibers and the post-processing steps.
The factors that can produce the effect of excellent scum suppression and low foaming in the synthetic fiber production and post-processing steps when the compound (A1) and the component (B) are used in combination are not clear, but are estimated as follows. is doing.
First, the compound (A1) includes a metal ion that is a cause of scum. Next, the compound (A1) including the metal ion and the component (B) are compatible. Therefore, it is presumed that metal ions are taken into the treatment agent to suppress scum precipitation due to metal ions. Moreover, it is estimated that it is excellent in low foaming property with scum suppression.
(アルジトール脂肪酸エステル化合物(A1))
 前記化合物(A1)を構成するアルジトールの水酸基の価数は、5以上である。4以下では、エステル化した場合に水酸基の数が少なくなり、化合物(A1)と成分(B)との併用による相互作用が小さいためか、スカム抑制することができない。なかでも、金属イオンがスカムとして析出するのを抑制する観点から、5又は6がより好ましく、6がさらに好ましい。
(Alditol fatty acid ester compound (A1))
The valence of the hydroxyl group of alditol constituting the compound (A1) is 5 or more. If it is 4 or less, the number of hydroxyl groups is reduced when esterified, and the scum cannot be suppressed because the interaction between the compound (A1) and the component (B) is small. Especially, 5 or 6 is more preferable from a viewpoint of suppressing that a metal ion precipitates as a scum, and 6 is further more preferable.
 前記化合物(A1)の水酸基の数の下限は、スカム抑制の観点から、2が好ましく、3がより好ましく、4がさらに好ましい。
 前記化合物(A1)の水酸基の数の上限は、スカム抑制の観点から、6が好ましく、5がより好ましい。
The lower limit of the number of hydroxyl groups in the compound (A1) is preferably 2 from the viewpoint of scum suppression, more preferably 3, and even more preferably 4.
The upper limit of the number of hydroxyl groups in the compound (A1) is preferably 6 from the viewpoint of suppressing scum, and more preferably 5.
 前記化合物(A1)を構成するアルジトールとしては、D-アラビニトール、L-アラビニトール、キシリトール、リビトール、D-イジトール、L-イジトール、ガラクチトール、D-グルシトール、L-グルシトール、D-マンニトール、L-マンニトール、ボレミトール、ペルセイトール、D-エリトロ-D-ガラクト-オクチトール等の水酸基の価数5~8のアルジトールが挙げられる。なかでも、スカム抑制の観点から、D-アラビニトール、L-アラビニトール、キシリトール、リビトール、D-イジトール、L-イジトール、ガラクチトール、D-グルシトール、L-グルシトール、D-マンニトール、L-マンニトール等の水酸基の価数が5又は6のアルジトールが好ましい。 The alditol constituting the compound (A1) includes D-arabinitol, L-arabinitol, xylitol, ribitol, D-iditol, L-iditol, galactitol, D-glucitol, L-glucitol, D-mannitol, L-mannitol. And alditols having a valence of 5 to 8 such as boremitol, perseitol, D-erythro-D-galacto-octitol and the like. Among these, from the viewpoint of scum suppression, hydroxyl groups such as D-arabinitol, L-arabinitol, xylitol, ribitol, D-iditol, L-iditol, galactitol, D-glucitol, L-glucitol, D-mannitol, L-mannitol, etc. An alditol having a valence of 5 or 6 is preferred.
 前記化合物(A1)を構成する脂肪酸としては、酪酸、クロトン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、ペンタデカン酸、パルミチン酸、パルミトレイン酸、イソセチル酸、マルガリン酸、ステアリン酸、イソステアリン酸、オレイン酸、エライジン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、イソエイコサ酸、ガドレイン酸、エイコセン酸、ドコサン酸、イソドコサン酸、エルカ酸、テトラコサン酸、イソテトラコサン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸等が挙げられる。
 これらの中でも、低起泡性の観点から、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、マルガリン酸、ステアリン酸などの飽和脂肪酸が好ましい。
Examples of fatty acids constituting the compound (A1) include butyric acid, crotonic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristic acid, pentadecanoic acid, palmitic acid. , Palmitoleic acid, isocetyl acid, margaric acid, stearic acid, isostearic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, isoeicosaic acid, gadoleic acid, eicosenoic acid, docosanoic acid, isodocosanoic acid, elca Examples include acid, tetracosanoic acid, isotetracosanoic acid, nervonic acid, serotic acid, montanic acid, melicic acid and the like.
Among these, saturated fatty acids such as capric acid, lauric acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, and stearic acid are preferable from the viewpoint of low foaming property.
 前記化合物(A1)としては、特に限定はされないが、例えば、D-マンニトールモノミリスチレート、D-マンニトールジミリスチレート、D-マンニトールトリミリスチレート、D-グルシトールモノパルミテート、D-グルシトールジパルミテート、D-グルシトールトリパルミテート、キシリトールモノステアテート、キシリトールジステアテート、キシリトールトリステアテート、ソルビトールモノステアレート(D-グルシトールモノステアレートともいう。)、D-マンニトールジパルミテート、ソルビトールジミリスチレート(D-グルシトールジミリスチレートともいう。)等が挙げられる。 The compound (A1) is not particularly limited. For example, D-mannitol monomyristylate, D-mannitol dimyristylate, D-mannitol trimyristylate, D-glucitol monopalmitate, D -Glucitol dipalmitate, D-glucitol tripalmitate, xylitol monostearate, xylitol distearate, xylitol tristearate, sorbitol monostearate (also called D-glucitol monostearate), And D-mannitol dipalmitate and sorbitol dimyristate (also referred to as D-glucitol dimyristate).
 前記化合物(A1)は、市販品であっても、公知の方法により合成してもよい。公知の方法により合成する場合には、アルジトールと脂肪酸とをモル比1:1~1:3でエステル化して得られる。 The compound (A1) may be a commercially available product or may be synthesized by a known method. When synthesized by a known method, it is obtained by esterifying alditol and fatty acid at a molar ratio of 1: 1 to 1: 3.
(二無水アルジトールと脂肪酸とのエステル化合物(A2))
 二無水アルジトールと脂肪酸とのエステル化合物(A2)(以後、化合物(A2)ということがある。)は、二無水アルジトールと脂肪酸とがエステル結合した構造を有するエステル化合物である。
 エステル化合物(A2)は、後述する成分(B)と併用すると、合成繊維の製造及び後加工工程にてスカム抑制及び低起泡性に優れる効果が得られる。
 化合物(A2)と成分(B)とを併用した場合に合成繊維の製造及び後加工工程にてスカム抑制及び低起泡性に優れる効果が得られる要因は定かではないが、次のように推定している。
 化合物(A2)は、分子内に酸素原子を含む2つの環状構造を有するので、金属イオンを取り込みやすい。そこで、先ず、スカムの原因の一因である金属イオンを化合物(A2)が包摂する。次に、金属イオンを包摂した化合物(A2)と成分(B)とが相溶する。従って、金属イオンが処理剤中に取り込まれることで、金属イオンによるスカム析出を抑制しているものと推定している。又、スカム抑制に伴って、低起泡性に優れるものと推定している。
(Ester compound of dianhydride alditol and fatty acid (A2))
The ester compound (A2) of dianhydride alditol and fatty acid (hereinafter sometimes referred to as compound (A2)) is an ester compound having a structure in which dianhydride alditol and fatty acid are ester-bonded.
When the ester compound (A2) is used in combination with the component (B) to be described later, an effect of excellent scum suppression and low foaming properties can be obtained in the synthetic fiber production and post-processing steps.
The factors that can produce the effect of excellent scum suppression and low foaming in the synthetic fiber production and post-processing steps when the compound (A2) and the component (B) are used in combination are not clear, but are estimated as follows. is doing.
Since the compound (A2) has two cyclic structures containing an oxygen atom in the molecule, it can easily take in a metal ion. Therefore, first, the compound (A2) includes a metal ion that is a cause of scum. Next, the compound (A2) including metal ions and the component (B) are compatible. Therefore, it is presumed that metal ions are taken into the treatment agent to suppress scum precipitation due to metal ions. Moreover, it is estimated that it is excellent in low foaming property with scum suppression.
 前記化合物(A2)を構成する二無水アルジトールとしては、イソソルバイド、イソマンニド、イソイジドおよびイソガラクチド等のイソへキシドが挙げられる。
 前記化合物(A2)を構成する脂肪酸は、前記化合物(A1)を構成する脂肪酸と同じものを挙げることができる。
 前記化合物(A2)としては、特に限定されないが、例えば、イソソルビドモノステアレート、イソソルビドモノオレエート、イソソルビドモノラウレート、イソイジドモノステアレート、イソイジドモノオレート、イソイジドモノラウレート、イソマンニドモノパルミテート、イソソルビドモノミリスチレート等が挙げられる。
 前記化合物(A2)は、市販品であっても、公知の方法により合成してもよい。
Examples of dianhydride alditol constituting the compound (A2) include isohexides such as isosorbide, isomannide, isoidide and isogalactide.
The fatty acid which comprises the said compound (A2) can mention the same thing as the fatty acid which comprises the said compound (A1).
The compound (A2) is not particularly limited, and examples thereof include isosorbide monostearate, isosorbide monooleate, isosorbide monolaurate, isoidide monostearate, isoidide monooleate, isoidide monolaurate, Examples thereof include isomannide monopalmitate and isosorbide monomyristylate.
The compound (A2) may be a commercially available product or may be synthesized by a known method.
[成分(B)]
 本発明の処理剤は、成分(B)を必須に含む。成分(B)は、上述したように、化合物(A1)又は化合物(A2)と併用することにより、スカム析出を抑制している。
 また、成分(B)は、絡合性に優れる成分である。
[Component (B)]
The processing agent of this invention contains a component (B) essential. As described above, component (B) suppresses scum precipitation by using in combination with compound (A1) or compound (A2).
Moreover, a component (B) is a component excellent in entanglement property.
 本発明の処理剤に用いられる成分(B)は、ポリオキシアルキレン多価アルコール脂肪酸エステル(B1)、ポリアルキレングリコール脂肪酸エステル(B2)、鉱物油(B3)及び1価アルコール脂肪酸エステル(B4)から選ばれる少なくとも1種である。 Component (B) used in the treating agent of the present invention is composed of polyoxyalkylene polyhydric alcohol fatty acid ester (B1), polyalkylene glycol fatty acid ester (B2), mineral oil (B3), and monohydric alcohol fatty acid ester (B4). At least one selected.
 前記ポリオキシアルキレン多価アルコール脂肪酸エステル(B1)は、多価アルコール脂肪酸エステル(b1)にプロピレンオキシドやエチレンオキシドなどのアルキレンオキシドを付加した化合物である。 The polyoxyalkylene polyhydric alcohol fatty acid ester (B1) is a compound obtained by adding an alkylene oxide such as propylene oxide or ethylene oxide to the polyhydric alcohol fatty acid ester (b1).
 多価アルコール脂肪酸エステル(b1)を構成する多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、グリセリン、トリメチロールプロパン、ソルビトール、ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、ショ糖等類が挙げられる。さらに、グリセリンの縮合物であるジグリセリン、トリグリセリン、テトラグリセリン、ヘキサグリセリン等のポリグリセリンも挙げられる。これらの中でも、絡合性向上の観点から、3価以上のアルコールが好ましく、グリセリン、トリメチロールプロパン、ソルビトール、ソルビタン、ペンタエリスリトール、ジペンタエリスリトールが好ましい例として挙げることができる。 Examples of the polyhydric alcohol constituting the polyhydric alcohol fatty acid ester (b1) include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, glycerin, trimethylolpropane, sorbitol, and sorbitan. , Pentaerythritol, dipentaerythritol, sucrose and the like. In addition, polyglycerin such as diglycerin, triglycerin, tetraglycerin, hexaglycerin and the like, which are condensates of glycerin. Among these, trivalent or higher alcohols are preferable from the viewpoint of improving entanglement, and preferable examples include glycerin, trimethylolpropane, sorbitol, sorbitan, pentaerythritol, and dipentaerythritol.
 多価アルコール脂肪酸エステル(b1)を構成する脂肪酸としては、特に限定はなく、飽和であっても不飽和であってもよく、炭化水素基の側鎖にヒドロキシル基を含有していてもよい。当該脂肪酸はたとえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、やし脂肪酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘン酸、リシノール酸、リノレン酸、リシネライジン酸、ヒドロキシステアリン酸、12-ヒドロキシステアリン酸、セレブロン酸、ヒドロキシリグノセリン酸、サリチル酸、乳酸等があげられ、これ等を2種類以上併用してもよい。 The fatty acid constituting the polyhydric alcohol fatty acid ester (b1) is not particularly limited, and may be saturated or unsaturated, and may contain a hydroxyl group in the side chain of the hydrocarbon group. Examples of the fatty acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, coconut fatty acid, myristic acid, palmitic acid, stearic acid, oleic acid, Examples include behenic acid, ricinoleic acid, linolenic acid, ricineraidic acid, hydroxystearic acid, 12-hydroxystearic acid, cerebronic acid, hydroxylignoceric acid, salicylic acid, and lactic acid. These may be used in combination of two or more.
 前記多価アルコール脂肪酸エステル(b1)は、多価アルコールの水酸基の少なくとも1つ以上がエステル化された構造を有するエステルである。また、当該多価アルコール脂肪酸エステルにおいて付加されるポリオキシアルキレン基を構成するアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等の炭素数2~4のアルキレンオキシドが挙げられ、これ等の2種類以上を使用してもよい。付加されるエチレンオキシド、プロピレンオキシド及びブチレンオキシドの付加の順序には特に限定はなく、また付加形態もブロック付加、ランダム付加及びブロック付加とランダム付加の組み合わせのいずれでもよく、特に制限はない。 The polyhydric alcohol fatty acid ester (b1) is an ester having a structure in which at least one hydroxyl group of the polyhydric alcohol is esterified. Further, examples of the alkylene oxide constituting the polyoxyalkylene group added in the polyhydric alcohol fatty acid ester include alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, and the like. The above may be used. The order of addition of ethylene oxide, propylene oxide and butylene oxide to be added is not particularly limited, and the addition form may be any of block addition, random addition and a combination of block addition and random addition, and there is no particular limitation.
 低起泡性及びスカム抑制の観点から、アルキレンオキシドの付加モル数は、多価アルコール脂肪酸エステル(b1)の1分子当り、5~60が好ましく、10~50がより好ましく、20~40がさらに好ましい。60を越えると、低起泡性が悪化する可能性がある。5未満では、スカム抑制が不足する可能性がある。 From the viewpoint of low foaming property and scum suppression, the number of moles of alkylene oxide added is preferably 5 to 60, more preferably 10 to 50, and further preferably 20 to 40 per molecule of the polyhydric alcohol fatty acid ester (b1). preferable. If it exceeds 60, the low foaming property may be deteriorated. If it is less than 5, scum suppression may be insufficient.
 前記ポリアルキレングリコール脂肪酸エステル(B2)(以後単にエステル(B2)と表すことがある)は、脂肪酸とポリアルキレングリコールとがエステル結合した構造を有するエステル化合物である。 The polyalkylene glycol fatty acid ester (B2) (hereinafter sometimes simply referred to as ester (B2)) is an ester compound having a structure in which a fatty acid and a polyalkylene glycol are ester-bonded.
 前記エステル(B2)としては、ポリエチレングリコールモノラウレート、ポリエチレングリコールジラウレート、ポリエチレングリコールモノパルミテート、ポリエチレングリコールジパルミテート、ポリエチレングリコールモノオレエート、ポリエチレングリコールジオレエート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレンポリプロピレングリコールモノラウレート、ポリエチレンポリプロピレングリコールジラウレート、ポリエチレンポリプロピレングリコールモノオレエート、ポリエチレンポリプロピレングリコールジオレエート等が挙げられるが、これに限定されるものではない。これらの中でも、低起泡性の観点から、ポリエチレングリコールモノオレエート、ポリエチレングリコールジオレエート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレートが好ましく、ポリエチレングリコールモノオレエート、ポリエチレングリコールジオレエートがより好ましい。 Examples of the ester (B2) include polyethylene glycol monolaurate, polyethylene glycol dilaurate, polyethylene glycol monopalmitate, polyethylene glycol dipalmitate, polyethylene glycol monooleate, polyethylene glycol dioleate, polyethylene glycol monostearate, polyethylene glycol. Examples include, but are not limited to, distearate, polyethylene polypropylene glycol monolaurate, polyethylene polypropylene glycol dilaurate, polyethylene polypropylene glycol monooleate, and polyethylene polypropylene glycol dioleate. Among these, from the viewpoint of low foaming property, polyethylene glycol monooleate, polyethylene glycol dioleate, polyethylene glycol monostearate, and polyethylene glycol distearate are preferable, and polyethylene glycol monooleate and polyethylene glycol dioleate are preferable. More preferred.
 前記エステル(B2)を構成するポリアルキレングリコールの分子量は、低起泡性の観点から、100~2000が好ましく、200~1500がより好ましく、300~1000がさらに好ましく、400~800が最も好ましい。ポリアルキレングリコールの分子量が100未満であるとスカム抑制が不足する可能性があり、2000を越えると当該処理剤の発泡が多くなると共に製品粘度が高くなりスカム抑制が不足する可能性がある。 The molecular weight of the polyalkylene glycol constituting the ester (B2) is preferably 100 to 2000, more preferably 200 to 1500, still more preferably 300 to 1000, and most preferably 400 to 800, from the viewpoint of low foamability. If the molecular weight of the polyalkylene glycol is less than 100, scum suppression may be insufficient, and if it exceeds 2000, foaming of the treatment agent increases and the product viscosity increases, and scum suppression may be insufficient.
 前記鉱物油(B3)としては、マシン油、スピンドル油及び流動パラフィン等が挙げられるがこれに限定されるものではない。40℃における鉱物油の粘度はレッドウッド粘度計で40~300秒(JISK-2283)の範囲とすることが好ましく、40~160秒がより好ましく、60~160秒がさらに好ましく、60~120秒が特に好ましい。40秒未満では給油後の繊維を放置したとき放置時間と共に鉱物油が揮発する可能性があり、300秒を越えると粘度が高すぎてスカム抑制が低下する可能性がある。 Examples of the mineral oil (B3) include, but are not limited to, machine oil, spindle oil, and liquid paraffin. The viscosity of the mineral oil at 40 ° C. is preferably in the range of 40 to 300 seconds (JISK-2283) with a Redwood viscometer, more preferably 40 to 160 seconds, still more preferably 60 to 160 seconds, and 60 to 120 seconds. Is particularly preferred. If it is less than 40 seconds, the mineral oil may volatilize with the standing time when the fiber after refueling is left, and if it exceeds 300 seconds, the viscosity is too high and scum suppression may be lowered.
 前記1価アルコール脂肪酸エステル(B4)は、一価アルコールと脂肪酸とがエステル結合した構造を有する化合物である。 The monohydric alcohol fatty acid ester (B4) is a compound having a structure in which a monohydric alcohol and a fatty acid are ester-bonded.
 前記1価アルコール脂肪酸エステル(B4)を構成する1価アルコールとしては、特に限定はないが、1価の脂肪族アルコール等が挙げられる。1価の脂肪族アルコールの炭素数は分布があってもよい。また、飽和であっても不飽和であってもよく、直鎖状であってもよく、分岐を有していてもよい。1価の脂肪族アルコールの炭素数は、1~30が好ましく、2~24がより好ましく、4~20がさらに好ましく、8~18が特に好ましい。1価の脂肪族アルコールの炭素数が30を越えると、低起泡性が悪化する可能性がある。
 前記1価アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、2-エチルヘキサノール、ラウリルアルコール、ミリスチリルアルコール、セチルアルコール、ステアリルアルコール、イソステアリルアルコール、オレイルアルコール、ベヘニルアルコール等が挙げられる。
Although it does not specifically limit as monohydric alcohol which comprises the said monohydric alcohol fatty acid ester (B4), Monovalent aliphatic alcohol etc. are mentioned. The carbon number of the monovalent aliphatic alcohol may be distributed. Further, it may be saturated or unsaturated, linear, or branched. The number of carbon atoms of the monovalent aliphatic alcohol is preferably 1 to 30, more preferably 2 to 24, still more preferably 4 to 20, and particularly preferably 8 to 18. If the monovalent aliphatic alcohol has more than 30 carbon atoms, the low foaming property may be deteriorated.
Examples of the monohydric alcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, decanol, 2-ethylhexanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, isostearyl alcohol, Examples include oleyl alcohol and behenyl alcohol.
 前記1価アルコール脂肪酸エステル(B4)を構成する脂肪酸としては、特に限定はなく、飽和であっても不飽和であってもよく、炭化水素基の側鎖に水酸基を含有していてもよい。当該脂肪酸はたとえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、やし脂肪酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘン酸、リシノール酸、リノレン酸、リシネライジン酸、ヒドロキシステアリン酸、12-ヒドロキシステアリン酸、セレブロン酸、ヒドロキシリグノセリン酸、サリチル酸、乳酸等があげられ、これ等を2種類以上併用してもよい。 The fatty acid constituting the monohydric alcohol fatty acid ester (B4) is not particularly limited and may be saturated or unsaturated, and may contain a hydroxyl group in the side chain of the hydrocarbon group. Examples of the fatty acid include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, coconut fatty acid, myristic acid, palmitic acid, stearic acid, oleic acid, Examples include behenic acid, ricinoleic acid, linolenic acid, ricineraidic acid, hydroxystearic acid, 12-hydroxystearic acid, cerebronic acid, hydroxylignoceric acid, salicylic acid, and lactic acid. These may be used in combination of two or more.
(アニオン性界面活性剤(C))
 アニオン性界面活性剤(C)は、アルキルスルホネート塩(C1)、アルキルサルフェート塩(C2)、ポリオキシアルキレンアルキルサルフェート塩(C3)、アルキルホスフェート塩(C4)、ポリオキシアルキレンアルキルホスフェート塩(C5)、ジアルキルスルホコハク酸塩(C6)、脂肪酸金属塩(C7)及び多価アルコール脂肪酸エステルサルフェート塩(C8)からなる群より選ばれた少なくとも1種であり、制電性を付与する成分である。従って、アニオン性界面活性剤(C)をさらに含むと、処理剤が付着した短繊維がカード工程等の工程を通過する工程通過性が向上するため、好ましい。
(Anionic surfactant (C))
The anionic surfactant (C) includes alkyl sulfonate salt (C1), alkyl sulfate salt (C2), polyoxyalkylene alkyl sulfate salt (C3), alkyl phosphate salt (C4), polyoxyalkylene alkyl phosphate salt (C5). And at least one selected from the group consisting of dialkylsulfosuccinate (C6), fatty acid metal salt (C7) and polyhydric alcohol fatty acid ester sulfate salt (C8), and a component imparting antistatic properties. Therefore, it is preferable to further include an anionic surfactant (C) because the short fiber to which the treatment agent adheres improves the process passability through the process such as the card process.
 前記アルキルスルホネート塩(C1)は、工程通過性向上の観点から、アルキル基が1~30であることが好ましく、4~22がより好ましく、6~18がさらに好ましい。当該アルキル基は、直鎖若しくは分岐又は飽和若しくは不飽和又は脂肪族若しくは芳香族のいずれであってもよく、分布があってもよい。
 前記アルキルスルホネート塩(C1)のアルキルスルホネートとしては、特に限定はないが、例えば、ブチルスルホネート、ヘキシルスルホネート、オクチルスルホネート、デシルスルホネート、ラウリルスルホネート、セチルスルホネート、ステアリルスルホネート、オレイルスルホネート、p-トルエンスルホネート、ドデシルフェニルスルホネート、オレイルフェニルスルホネート、ナフチルスルホネート、ジイソプロピルナフチルスルホネート等が挙げられ、工程通過性向上の観点から、オクチルスルホネート、デシルスルホネート、ラウリルスルホネート、セチルスルホネート、ステアリルスルホネート、オレイルスルホネートが好ましく、ラウリルスルホネート、セチルスルホネート、ステアリルスルホネート、オレイルスルホネートがさらに好ましい。
 前記アルキルスルホネート塩(C1)の塩としては、特に限定はないが、例えば、ナトリウム塩、カリウム塩及びアンモニウム塩が挙げられる。
The alkyl sulfonate salt (C1) preferably has 1 to 30 alkyl groups, more preferably 4 to 22 and even more preferably 6 to 18 from the viewpoint of improving processability. The alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
The alkyl sulfonate of the alkyl sulfonate salt (C1) is not particularly limited. For example, butyl sulfonate, hexyl sulfonate, octyl sulfonate, decyl sulfonate, lauryl sulfonate, cetyl sulfonate, stearyl sulfonate, oleyl sulfonate, p-toluene sulfonate, Examples include dodecyl phenyl sulfonate, oleyl phenyl sulfonate, naphthyl sulfonate, diisopropyl naphthyl sulfonate, etc., and octyl sulfonate, decyl sulfonate, lauryl sulfonate, cetyl sulfonate, stearyl sulfonate, oleyl sulfonate, lauryl sulfonate, lauryl sulfonate, Cetyl sulfonate, stearyl sulfonate, oleyl sulfo Over door is further preferable.
The salt of the alkyl sulfonate salt (C1) is not particularly limited, and examples thereof include sodium salts, potassium salts, and ammonium salts.
 前記アルキルサルフェート塩(C2)は、工程通過性向上の観点から、アルキル基が1~30であることが好ましく、4~22がより好ましく、6~18がさらに好ましい。当該アルキル基は、直鎖若しくは分岐又は飽和若しくは不飽和又は脂肪族若しくは芳香族のいずれであってもよく、分布があってもよい。
 前記アルキルサルフェート塩(C2)のアルキルサルフェートとしては、特に限定はないが、例えば、メチルサルフェート、エチルサルフェート、ブチルサルフェート、ヘキシルサルフェート、オクチルサルフェート、デシルサルフェート、ラウリルサルフェート、セチルサルフェート、ステアリルサルフェート、オレイルサルフェート等が挙げられ、工程通過性向上の観点から、ラウリルサルフェート、セチルサルフェート、ステアリルサルフェート、オレイルサルフェートが好ましく、ラウリルサルフェート、セチルサルフェート、ステアリルサルフェート、オレイルサルフェートがさらに好ましい。
 本発明のアルキルサルフェート塩(C2)の塩としては、特に限定はないが、例えば、ナトリウム塩、カリウム塩及びアンモニウム塩が挙げられる。
The alkyl sulfate salt (C2) preferably has an alkyl group of 1 to 30, more preferably 4 to 22, and still more preferably 6 to 18, from the viewpoint of improving process passability. The alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
The alkyl sulfate of the alkyl sulfate salt (C2) is not particularly limited, and examples thereof include methyl sulfate, ethyl sulfate, butyl sulfate, hexyl sulfate, octyl sulfate, decyl sulfate, lauryl sulfate, cetyl sulfate, stearyl sulfate, and oleyl sulfate. From the viewpoint of improving process passability, lauryl sulfate, cetyl sulfate, stearyl sulfate, and oleyl sulfate are preferable, and lauryl sulfate, cetyl sulfate, stearyl sulfate, and oleyl sulfate are more preferable.
Although there is no limitation in particular as a salt of the alkyl sulfate salt (C2) of this invention, For example, a sodium salt, potassium salt, and ammonium salt are mentioned.
 前記ポリオキシアルキレンアルキルサルフェート塩(C3)は、工程通過性向上の観点から、アルキル基が1~30であることが好ましく、4~22がより好ましく、6~18がさらに好ましい。当該アルキル基は、直鎖若しくは分岐又は飽和若しくは不飽和又は脂肪族若しくは芳香族のいずれであってもよく、分布があってもよい。
 本発明のポリオキシアルキレンアルキルサルフェート塩のポリオキシアルキレンは、ポリオキシエチレン及び/又はポリオキシプロピレンである。ポリオキシエチレン及びポリオキシプロピレンである場合には、ランダム型に付加重合させた化合物であってもよく、ブロック型に付加重合させた化合物であってもよい。生産性の点から、ランダム型に付加重合させた化合物が好ましい。
 工程通過性向上の観点から、当該ポリオキシアルキレンの付加モル数は1~40であり、2~30が好ましく、3~25がより好ましく、4~20がさらに好ましい。当該ポリオキシアルキレンの付加モル数が40を超えると、工程通過性が低下する可能性がある。
 前記ポリオキシアルキレンアルキルサルフェート塩(C3)の塩としては、特に限定はないが、例えば、ナトリウム塩、カリウム塩及びアンモニウム塩が挙げられる。
The polyoxyalkylene alkyl sulfate salt (C3) preferably has 1 to 30 alkyl groups, more preferably 4 to 22, and still more preferably 6 to 18 from the viewpoint of improving process passability. The alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
The polyoxyalkylene of the polyoxyalkylene alkyl sulfate salt of the present invention is polyoxyethylene and / or polyoxypropylene. In the case of polyoxyethylene and polyoxypropylene, it may be a random addition type compound or a block type addition polymerization compound. From the viewpoint of productivity, a compound obtained by addition polymerization in a random type is preferable.
From the viewpoint of improving process passability, the number of added moles of the polyoxyalkylene is 1 to 40, preferably 2 to 30, more preferably 3 to 25, and still more preferably 4 to 20. When the added mole number of the polyoxyalkylene exceeds 40, process passability may be lowered.
The salt of the polyoxyalkylene alkyl sulfate salt (C3) is not particularly limited, and examples thereof include sodium salts, potassium salts, and ammonium salts.
 前記アルキルホスフェート塩(C4)は、工程通過性向上の観点から、アルキル基が1~30であることが好ましく、4~22がより好ましく、6~18がさらに好ましい。当該アルキル基は、直鎖若しくは分岐又は飽和若しくは不飽和又は脂肪族若しくは芳香族のいずれであってもよく、分布があってもよい。
 前記アルキルホスフェート塩(C4)のアルキルホスフェートとしては、特に限定はないが、例えば、メチルホスフェート、ジエチルホスフェート、ブチルホスフェート、ヘキシルホスフェート、オクチルホスフェート、デシルホスフェート、ラウリルホスフェート、セチルホスフェート、ステアリルホスフェート、オレイルホスフェート、ジオクチルホスフェート、メチルオレイルホスフェート、ノニルフェニルオキシエトキシエチルメチルホスフェート等が挙げられる。
 前記アルキルホスフェート塩(C4)の塩としては、特に限定はないが、例えば、ナトリウム塩、カリウム塩及びアンモニウム塩が挙げられる。
The alkyl phosphate salt (C4) preferably has an alkyl group of 1 to 30, more preferably 4 to 22, and even more preferably 6 to 18 from the viewpoint of improving process passability. The alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
The alkyl phosphate of the alkyl phosphate salt (C4) is not particularly limited. For example, methyl phosphate, diethyl phosphate, butyl phosphate, hexyl phosphate, octyl phosphate, decyl phosphate, lauryl phosphate, cetyl phosphate, stearyl phosphate, oleyl phosphate , Dioctyl phosphate, methyl oleyl phosphate, nonylphenyloxyethoxyethyl methyl phosphate and the like.
The salt of the alkyl phosphate salt (C4) is not particularly limited, and examples thereof include sodium salts, potassium salts, and ammonium salts.
 前記ポリオキシアルキレンアルキルホスフェート塩(C5)は、工程通過性向上の観点から、アルキル基が1~30であることが好ましく、4~22がより好ましく、6~18がさらに好ましい。当該アルキル基は、直鎖若しくは分岐又は飽和若しくは不飽和又は脂肪族若しくは芳香族のいずれであってもよく、分布があってもよい。
 前記ポリオキシアルキレンアルキルホスフェート塩(C5)のポリオキシアルキレンは、ポリオキシエチレン及び/又はポリオキシプロピレンである。ポリオキシエチレン及びポリオキシプロピレンである場合には、ランダム型に付加重合させた化合物であってもよく、ブロック型に付加重合させた化合物であってもよい。生産性の点から、ランダム型に付加重合させた化合物が好ましい。
 工程通過性向上の観点から、当該ポリオキシアルキレンの付加モル数は1~40であり、2~30が好ましく、3~25がより好ましく、4~20がさらに好ましい。当該ポリオキシアルキレンの付加モル数が40を超えると、工程通過性が低下する可能性がある。
 前記ポリオキシアルキレンアルキルホスフェート塩(C5)の塩としては、特に限定はないが、例えば、ナトリウム塩、カリウム塩及びアンモニウム塩が挙げられる。
In the polyoxyalkylene alkyl phosphate salt (C5), the alkyl group is preferably 1 to 30, more preferably 4 to 22, and still more preferably 6 to 18, from the viewpoint of improving process passability. The alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
The polyoxyalkylene of the polyoxyalkylene alkyl phosphate salt (C5) is polyoxyethylene and / or polyoxypropylene. In the case of polyoxyethylene and polyoxypropylene, it may be a random addition type compound or a block type addition polymerization compound. From the viewpoint of productivity, a compound obtained by addition polymerization in a random type is preferable.
From the viewpoint of improving process passability, the number of added moles of the polyoxyalkylene is 1 to 40, preferably 2 to 30, more preferably 3 to 25, and still more preferably 4 to 20. When the added mole number of the polyoxyalkylene exceeds 40, process passability may be lowered.
Although it does not specifically limit as a salt of the said polyoxyalkylene alkyl phosphate salt (C5), For example, a sodium salt, potassium salt, and ammonium salt are mentioned.
 前記アルキルスルホコハク酸塩(C6)は、工程通過性向上の観点から、アルキル基が1~30であることが好ましく、4~22がより好ましく、6~18がさらに好ましい。当該アルキル基は、直鎖若しくは分岐又は飽和若しくは不飽和又は脂肪族若しくは芳香族のいずれであってもよく、分布があってもよい。2個のアルキル基は同一であっても異なっていてもよい。
 前記アルキルスルホコハク酸塩(C6)としては、特に限定はないが、例えば、ジオクチルスルホコハク酸ナトリウム塩、ジドデセニルスルホコハク酸ナトリウム塩、ジ2-エチルヘキシルスルホコハク酸ナトリウム塩、ジラウリルスルホコハク酸ナトリウム塩、ジミリスチルスルホコハク酸ナトリウム塩、ジステアリルスルホコハク酸ナトリウム塩等を挙げることができる。
 前記アルキルスルホコハク酸塩(C6)の塩としては、特に限定はないが、例えば、ナトリウム塩、カリウム塩及びアンモニウム塩が挙げられる。
In the alkylsulfosuccinate (C6), the alkyl group is preferably 1-30, more preferably 4-22, and even more preferably 6-18, from the viewpoint of improving processability. The alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed. The two alkyl groups may be the same or different.
The alkylsulfosuccinate (C6) is not particularly limited. For example, dioctylsulfosuccinate sodium salt, didodecenylsulfosuccinate sodium salt, di-2-ethylhexylsulfosuccinate sodium salt, dilaurylsulfosuccinate sodium salt, Examples include dimyristyl sulfosuccinic acid sodium salt and distearyl sulfosuccinic acid sodium salt.
The salt of the alkylsulfosuccinate (C6) is not particularly limited, and examples thereof include sodium salts, potassium salts, and ammonium salts.
 前記脂肪酸金属塩(C7)は、工程通過性向上の観点から、アルキル基が1~30であることが好ましく、4~22がより好ましく、6~18がさらに好ましい。当該アルキル基は、直鎖若しくは分岐又は飽和若しくは不飽和又は脂肪族若しくは芳香族のいずれであってもよく、分布があってもよい。
 前記脂肪酸金属塩(C7)としては、特に限定はないが、例えば、酢酸、カプロン酸、ラウリン酸、2-エチルヘキサン酸、イソステアリン酸、オレイン酸、エルカ酸、マロン酸、アジピン酸、セバシン酸、ペンタデセニルコハク酸等のカリウム塩、ナトリウム塩、アンモニウム塩等が挙げられる。
 前記多価アルコール脂肪酸エステルサルフェート塩(C8)は、多価アルコール脂肪酸エステル(c)を硫酸化及び中和して得られる構造を有したサルフェート塩である。
 硫酸化の方法は、特に限定されず、発煙硫酸、濃硫酸、クロルスルホン酸、三酸化硫黄ガス等により、公知の方法を用いることができる。
 中和の方法は、特に限定されず、公知の方法を用いることができる。中和に用いる塩基性物質としては、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物、酸化カルシウム、水酸化カルシウム、酸化マグネシウム、水酸化マグネシウム等のアルカリ土類金属の酸化物及び水酸化物、アンモニア、ヒドロキシアルキル鎖の炭素原子数が2~4の、モノ、ジ及びトリアルカノールアミン、アルキル鎖の炭素原子数が1~4の、1級、2級及び3級アルキルアミン等である。塩基性物質は二種以上併用してもよい。
The fatty acid metal salt (C7) preferably has an alkyl group of 1 to 30, more preferably 4 to 22, and even more preferably 6 to 18 from the viewpoint of improving process passability. The alkyl group may be linear or branched, saturated or unsaturated, aliphatic or aromatic, and may be distributed.
The fatty acid metal salt (C7) is not particularly limited. For example, acetic acid, caproic acid, lauric acid, 2-ethylhexanoic acid, isostearic acid, oleic acid, erucic acid, malonic acid, adipic acid, sebacic acid, Examples include potassium salts such as pentadecenyl succinic acid, sodium salts, ammonium salts, and the like.
The polyhydric alcohol fatty acid ester sulfate salt (C8) is a sulfate salt having a structure obtained by sulfating and neutralizing the polyhydric alcohol fatty acid ester (c).
The method of sulfation is not particularly limited, and a known method can be used with fuming sulfuric acid, concentrated sulfuric acid, chlorosulfonic acid, sulfur trioxide gas or the like.
The neutralization method is not particularly limited, and a known method can be used. Examples of basic substances used for neutralization include alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal bicarbonates such as sodium bicarbonate and potassium bicarbonate, sodium hydroxide, potassium hydroxide and lithium hydroxide. Alkali metal hydroxides, calcium oxides, calcium hydroxides, magnesium oxides, oxides and hydroxides of alkaline earth metals such as magnesium hydroxides, ammonia, monoalkyl having 2 to 4 carbon atoms in the hydroxyalkyl chain, Di- and trialkanolamines, primary, secondary and tertiary alkylamines having 1 to 4 carbon atoms in the alkyl chain. Two or more basic substances may be used in combination.
 前記多価アルコール脂肪酸エステル(c)は、多価アルコールと脂肪酸とがエステル結合した構造を有するエステル化合物であり、合成品であっても、天然品であってもよい。
 前記多価アルコール脂肪酸エステル(c)は、分子内のヒドロキシル基又は炭素-炭素不飽和結合が多い方が、前記サルフェート塩(A)1分子あたりのサルフェート基が多くなり、スカム抑制が良好になる。したがって、多価アルコール脂肪酸エステル(c)を構成する脂肪酸において、当該脂肪酸に対する不飽和脂肪酸含有量は、30重量%以上が好ましく、40重量%以上がより好ましく、70重量%以上がさらに好ましく、当該脂肪酸に対する不飽和脂肪酸含有量の上限値は、100重量%が好ましく、99重量%がさらに好ましい。
The polyhydric alcohol fatty acid ester (c) is an ester compound having a structure in which a polyhydric alcohol and a fatty acid are ester-bonded, and may be a synthetic product or a natural product.
In the polyhydric alcohol fatty acid ester (c), the more the hydroxyl groups or carbon-carbon unsaturated bonds in the molecule, the more sulfate groups per molecule of the sulfate salt (A), and the better the scum suppression. . Therefore, in the fatty acid constituting the polyhydric alcohol fatty acid ester (c), the unsaturated fatty acid content with respect to the fatty acid is preferably 30% by weight or more, more preferably 40% by weight or more, further preferably 70% by weight or more, The upper limit of the unsaturated fatty acid content relative to the fatty acid is preferably 100% by weight, more preferably 99% by weight.
 前記多価アルコール脂肪酸エステル(c)の合成品に用いる多価アルコールは、ヒドロキシル基を2つ以上有する多価アルコールであり、たとえば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール等のジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンポリプロピレングリコール等のポリアルキレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、エリスリトール、ジグリセリン、ポリグリセリン、ソルビタン、ソルビトール、ジトリメチロールプロパン、ジペンタエリスリトール、ショ糖等が挙げられ、低起泡性及びスカム抑制の観点から、グリセリン、ソルビタンがより好ましく、グリセリンがさらに好ましい。 The polyhydric alcohol used in the synthetic product of the polyhydric alcohol fatty acid ester (c) is a polyhydric alcohol having two or more hydroxyl groups, such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6 -Diols such as hexanediol and diethylene glycol, polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polyethylene polypropylene glycol, glycerin, trimethylolpropane, pentaerythritol, erythritol, diglycerin, polyglycerin, sorbitan, sorbitol, ditrimethylolpropane, di Pentaerythritol, sucrose, etc., and glycerin and sorbitan are more preferable from the viewpoint of low foaming property and scum suppression, and glycerin is more preferable. Preferred.
 前記多価アルコール脂肪酸エステル(c)の合成品に用いる脂肪酸は、飽和脂肪酸、不飽和脂肪酸、ヒドロキシ脂肪酸及びヒドロキシ不飽和脂肪酸のいずれであってもよい。このような脂肪酸としては、たとえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘン酸等、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸、ラノリン脂肪酸、ヒドロキシカプリル酸、ヒドロキシカプリン酸、ヒドロキシウンデカン酸、ヒドロキシラウリン酸、ヒドロキシステアリン酸、リシノール酸、リノレン酸等が挙げられる。これらの中でも、分子内のヒドロキシル基又は炭素-炭素不飽和結合が多い方が、前記サルフェート塩1分子あたりのサルフェート基が多くなることでスカム抑制が良好になるという理由から、オレイン酸、ヒドロキシカプリル酸、ヒドロキシカプリン酸、ヒドロキシウンデカン酸、ヒドロキシラウリン酸、ヒドロキシステアリン酸、リシノール酸、リノレン酸が好ましく、リノレン酸がさらに好ましい。 The fatty acid used for the synthetic product of the polyhydric alcohol fatty acid ester (c) may be any of saturated fatty acid, unsaturated fatty acid, hydroxy fatty acid and hydroxy unsaturated fatty acid. Examples of such fatty acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, Examples include behenic acid, lignoceric acid, nervonic acid, serotic acid, montanic acid, mellic acid, lanolin fatty acid, hydroxycaprylic acid, hydroxycapric acid, hydroxyundecanoic acid, hydroxylauric acid, hydroxystearic acid, ricinoleic acid, linolenic acid, etc. It is done. Among these, oleic acid and hydroxycapryl are preferred because the more hydroxyl groups or carbon-carbon unsaturated bonds in the molecule, the more the sulfate groups per molecule of the sulfate salt, the better the suppression of scum. Acid, hydroxycapric acid, hydroxyundecanoic acid, hydroxylauric acid, hydroxystearic acid, ricinoleic acid and linolenic acid are preferred, and linolenic acid is more preferred.
 前記多価アルコール脂肪酸エステル(c)は、分子量が大きい程、低起泡性が良好である。従って、前記多価アルコール脂肪酸エステル(c)の総炭素数は23以上が好ましく、27以上がより好ましく、31以上がさらに好ましく、39以上が特に好ましい。前記多価アルコール脂肪酸エステル(c)の総炭素数の好ましい上限値は100であり、90がより好ましく、80がさらに好ましい。前記多価アルコール脂肪酸エステル(c)の総炭素数が100を越えると、スカム抑制が低下する可能性がある。 The polyhydric alcohol fatty acid ester (c) has a lower foaming property as the molecular weight is larger. Therefore, the total carbon number of the polyhydric alcohol fatty acid ester (c) is preferably 23 or more, more preferably 27 or more, still more preferably 31 or more, and particularly preferably 39 or more. The preferable upper limit of the total carbon number of the polyhydric alcohol fatty acid ester (c) is 100, more preferably 90, and still more preferably 80. When the total carbon number of the polyhydric alcohol fatty acid ester (c) exceeds 100, scum suppression may be lowered.
 前記多価アルコール脂肪酸エステル(c)の天然品としては、牛脂、豚脂、馬脂、羊脂、鳥脂、鯨油、海豚油、鰯油、鱈油、鮫油、ひまし油、菜種油、綿実油、胡麻油、オリーブ油、大豆油、やし油、パーム油、パーム核油、落花生油、トウモロコシ油、ひまわり油等が挙げられる。中でも、低起泡性の観点から、牛脂や菜種油が好ましい。 Natural products of the polyhydric alcohol fatty acid ester (c) include beef tallow, pork tallow, horse tallow, sheep tallow, bird fat, whale oil, sea pig oil, cocoon oil, cocoon oil, cocoon oil, castor oil, rapeseed oil, cottonseed oil, sesame oil Olive oil, soybean oil, palm oil, palm oil, palm kernel oil, peanut oil, corn oil, sunflower oil and the like. Among these, beef tallow and rapeseed oil are preferable from the viewpoint of low foaming property.
 前記多価アルコール脂肪酸エステル(c)としては、前記天然品に加えて、前記天然品を水素添加した構造を有する硬化油や半硬化油等も挙げられ、たとえば、硬化やし油、硬化パーム油、半硬化パ-ム油、硬化パ-ム核油、硬化大豆油、硬化菜種油、硬化ひまし油、硬化牛脂、半硬化牛脂、硬化豚脂、半硬化鰯油、硬化鰯油、硬化鱈油、半硬化鱈油、硬化鮫油、半硬化鮫油等が挙げられる。 Examples of the polyhydric alcohol fatty acid ester (c) include hardened oil and semi-hardened oil having a structure obtained by hydrogenating the natural product in addition to the natural product. For example, hardened palm oil, hardened palm oil Semi-hardened palm oil, hardened palm kernel oil, hardened soybean oil, hardened rapeseed oil, hardened castor oil, hardened beef tallow, semi-hardened beef tallow, hardened pork fat, semi-hardened koji oil, hardened koji oil, hardened koji oil, semi Examples include hardened soot, hardened soot, and semi-hardened soot.
(一無水アルジトールと脂肪酸とのエステル化合物(D))
 一無水アルジトールと脂肪酸とのエステル化合物(D)(以後、化合物(D)と記載することがある。)は、前記化合物(A)及び成分(B)と併用すると、スカム抑制効果が高まる成分である。化合物(D)は、前記成分(B1)とは、ポリオキシアルキレン基が付加されていない点で異なる。
 前記化合物(D)を、前記化合物(A)及び成分(B)と併用した際にスカム抑制効果が高まる要因としては定かではないが、前記化合物(D)と成分(B)と併用した処理剤では、スカム抑制効果は見られないが、前記化合物(A)及び成分(B)と併用した処理剤に前記化合物(D)を加えると、スカム抑制効果がさらに向上することが確認できることから、化合物(D)は、化合物(A)及び成分(B)の相溶性を向上させることにより、スカム抑制効果が高まるものと推定している。
(Ester compound of monoanhydride alditol and fatty acid (D))
An ester compound (D) of monoanhydroalditol and a fatty acid (hereinafter sometimes referred to as compound (D)) is a component that increases the scum-inhibiting effect when used in combination with compound (A) and component (B). is there. The compound (D) is different from the component (B1) in that a polyoxyalkylene group is not added.
Although it is not certain that the compound (D) is used in combination with the compound (A) and the component (B), the scum-inhibiting effect is increased. However, the compound (D) and the component (B) are used in combination. Thus, although no scum-inhibiting effect is observed, it can be confirmed that when the compound (D) is added to the treatment agent used in combination with the compound (A) and the component (B), the scum-inhibiting effect is further improved. (D) presumes that the scum suppressing effect is enhanced by improving the compatibility of the compound (A) and the component (B).
 前記化合物(D)は、アルジトールと脂肪酸とをモル比1:1~1:2でエステル化して得られる際にアルジトール脂肪酸エステル化合物(A)との混合品として得られる。
 反応条件によりエステル化合物(A)と前記化合物(D)との比率を調整することが可能であるが、エステル化反応時間を短く、温度を低温にする程エステル化合物(A)の比率が高くなる。
The compound (D) is obtained as a mixture with the alditol fatty acid ester compound (A) when it is obtained by esterifying alditol and fatty acid at a molar ratio of 1: 1 to 1: 2.
Although it is possible to adjust the ratio of the ester compound (A) to the compound (D) depending on the reaction conditions, the ratio of the ester compound (A) increases as the esterification reaction time is shortened and the temperature is lowered. .
 前記化合物(D)を構成する一無水アルジトールとしては、特に限定はないが、ソルビタン及び/又はマンニタンが挙げられる。
 前記化合物(D)を構成する脂肪酸としては、酪酸、クロトン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、ペンタデカン酸、パルミチン酸、パルミトレイン酸、イソセチル酸、マルガリン酸、ステアリン酸、イソステアリン酸、オレイン酸、エライジン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、イソエイコサ酸、ガドレイン酸、エイコセン酸、ドコサン酸、イソドコサン酸、エルカ酸、テトラコサン酸、イソテトラコサン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸等が挙げられる。
 これらの中でも、絡合性向上の観点から、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、ペンタデカン酸、パルミチン酸などの炭素数C16以下の飽和脂肪酸、パルミトレイン酸、マルガリン酸、オレイン酸、リノール酸、リノレン酸、エライジン酸、バクセン酸、ガドレイン酸、エルカ酸、ネルボン酸などの不飽和脂肪酸、イソセチル酸、イソステアリン酸、イソエイコサ酸、イソドコサン酸、イソテトラコサン酸などの分岐鎖脂肪酸が好ましい。
The monoanhydroalditol constituting the compound (D) is not particularly limited, and examples thereof include sorbitan and / or mannitan.
Examples of the fatty acid constituting the compound (D) include butyric acid, crotonic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristoleic acid, pentadecanoic acid, and palmitic acid. , Palmitoleic acid, isocetyl acid, margaric acid, stearic acid, isostearic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, isoeicosaic acid, gadoleic acid, eicosenoic acid, docosanoic acid, isodocosanoic acid, elca Examples include acid, tetracosanoic acid, isotetracosanoic acid, nervonic acid, serotic acid, montanic acid, melicic acid and the like.
Among these, from the viewpoint of improving entanglement, saturated fatty acids having 16 or less carbon atoms such as caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, palmitoleic acid, margarine Unsaturated fatty acids such as acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, vaccenic acid, gadoleic acid, erucic acid, and nervonic acid; Is preferred.
 前記化合物(D)としては、特に限定されないが、例えば、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソルビタンモノパルミテート、ソルビタンジパルミテート、ソルビタントリパルミテート、ソルビタンモノミリスチレート、ソルビタンジミリスチレート、ソルビタントリミリスチレート、ソルビタンモノオレエート、ソルビタンジオレエート、ソルビタントリオレエート、マンニタンモノパルミテート、マンニタンモノステアレート、マンニタンモノオレエート等が挙げられる。
 これらの中でも、本願効果を奏する観点から、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソルビタンモノパルミテート、ソルビタンジパルミテート、ソルビタントリパルミテート、ソルビタンモノミリスチレート、ソルビタンジミリスチレート、ソルビタントリミリスチレート、ソルビタンモノオレエート、ソルビタンジオレエート、ソルビタントリオレエートが、好ましい。
Although it does not specifically limit as said compound (D), For example, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monopalmitate, sorbitan dipalmitate, sorbitan tripalmitate, sorbitan monomyristate Sorbitan dimyristate, sorbitan trimyristate, sorbitan monooleate, sorbitan dioleate, sorbitan trioleate, mannitan monopalmitate, mannitan monostearate, mannitan monooleate and the like.
Among these, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, sorbitan monopalmitate, sorbitan dipalmitate, sorbitan tripalmitate, sorbitan monomyristylate, sorbitan dimmilliate from the viewpoint of achieving the effect of the present application. Stylate, sorbitan trimyristate, sorbitan monooleate, sorbitan dioleate, sorbitan trioleate are preferred.
〔不織布製造用処理剤〕
 本発明の不織布製造用処理剤は、不織布の製造に用いる短繊維に処理するものである。繊維については後述する。
 本発明の不織布製造用処理剤は、アルジトール脂肪酸エステル化合物(A1)及び二無水アルジトールと脂肪酸とのエステル化合物(A2)から選ばれる少なくとも1種であるエステル化合物(A)と、ポリオキシアルキレン多価アルコール脂肪酸エステル(B1)、ポリアルキレングリコール脂肪酸エステル(B2)、鉱物油(B3)及び1価アルコール脂肪酸エステル(B4)から選ばれる少なくとも1種である成分(B)とを含み、前記化合物(A1)を構成するアルジトールの水酸基の価数が4以上である、不織布製造用処理剤である。
 本発明の不織布製造用処理剤は、エステル化合物(A)と成分(B)とを併用することで、合成繊維の製造及び後加工工程にてスカム抑制及び低起泡性に優れる効果が得られる。
[Treatment agent for non-woven fabric production]
The processing agent for nonwoven fabric manufacture of this invention processes to the short fiber used for manufacture of a nonwoven fabric. The fiber will be described later.
The processing agent for nonwoven fabric production of the present invention comprises an alditol fatty acid ester compound (A1) and an ester compound (A) which is at least one selected from an ester compound (A2) of dianhydride alditol and a fatty acid, and a polyoxyalkylene polyvalent A component (B) that is at least one selected from an alcohol fatty acid ester (B1), a polyalkylene glycol fatty acid ester (B2), a mineral oil (B3), and a monohydric alcohol fatty acid ester (B4), and the compound (A1 ) In which the valence of the hydroxyl group of alditol is 4 or more.
The treatment agent for producing a nonwoven fabric according to the present invention provides an effect of excellent scum suppression and low foaming in synthetic fiber production and post-processing steps by using the ester compound (A) and the component (B) in combination. .
 処理剤の不揮発分に対する前記化合物(A)の重量割合は、0.1~20重量%が好ましく、0.5~15重量%がより好ましく、1~10重量%がさらに好ましく、1~5重量%が特に好ましい。0.1重量%未満では、起泡を抑制できないことがあり、20重量%超ではスカム抑制に劣ることがある。 The weight ratio of the compound (A) to the nonvolatile content of the treating agent is preferably 0.1 to 20% by weight, more preferably 0.5 to 15% by weight, further preferably 1 to 10% by weight, and 1 to 5% by weight. % Is particularly preferred. If it is less than 0.1% by weight, foaming may not be suppressed, and if it exceeds 20% by weight, scum suppression may be inferior.
 処理剤の不揮発分に対する、前記化合物(A)及び前記成分(B)の重量割合の合計の上限値は、本願効果が得られやすい観点から、99重量%が好ましく、95重量%がより好ましく、90重量%がさらに好ましく、85重量%が特に好ましく、80重量%が最も好ましい。
 処理剤の不揮発分に対する、前記化合物(A)及び前記成分(B)の重量割合の合計の下限値は、本願効果が得られやすい観点から、20重量%が好ましく、40重量%がより好ましく、50重量%がさらに好ましく、55重量%が特に好ましく、60重量%が最も好ましい。
The upper limit of the total weight ratio of the compound (A) and the component (B) with respect to the non-volatile content of the treating agent is preferably 99% by weight, more preferably 95% by weight, from the viewpoint of easily obtaining the effect of the present application. 90% by weight is more preferred, 85% by weight is particularly preferred, and 80% by weight is most preferred.
The lower limit of the total weight ratio of the compound (A) and the component (B) with respect to the nonvolatile content of the treatment agent is preferably 20% by weight, more preferably 40% by weight, from the viewpoint of easily obtaining the effect of the present application. 50% by weight is more preferred, 55% by weight is particularly preferred, and 60% by weight is most preferred.
 処理剤の不揮発分に対する前記アニオン性界面活性剤(C)の重量割合は、0.1~60重量%が好ましく、0.5~50重量%がより好ましく、1~40重量%がさらに好ましく、2~30重量%が特に好ましい。0.1重量%未満では、工程通過性が低下することがあり、20重量%超ではスカム抑制に劣ることがある。 The weight ratio of the anionic surfactant (C) to the non-volatile content of the treating agent is preferably 0.1 to 60% by weight, more preferably 0.5 to 50% by weight, still more preferably 1 to 40% by weight, 2 to 30% by weight is particularly preferred. If it is less than 0.1% by weight, the process passability may be lowered, and if it exceeds 20% by weight, scum suppression may be inferior.
 一無水アルジトールと脂肪酸とのエステル化合物(D)をさらに含むと、スカム抑制効果が高まるため、好ましい。
 本発明の不織布製造用処理剤が、一無水アルジトールと脂肪酸とのエステル化合物(D)をさらに含む場合、化合物(D)の化合物(A)及び成分(B)の相溶性を向上させることにより、スカム抑制効果が高まる観点から、前記化合物(A)と前記化合物(D)との重量比(A/D)の下限値は、0.1が好ましく、0.2がより好ましく、0.3がさらに好ましく、0.4が特に好ましい。前記化合物(A)と前記化合物(D)との重量比(A/D)の上限値は、1000が好ましく、200がより好ましく、10がさらに好ましく、2が特に好ましい。
It is preferable to further include an ester compound (D) of monoanhydroalditol and a fatty acid because the scum suppressing effect is enhanced.
When the processing agent for producing a nonwoven fabric of the present invention further contains an ester compound (D) of monoanhydroalditol and a fatty acid, by improving the compatibility of the compound (A) and the component (B) of the compound (D), From the viewpoint of increasing the scum suppressing effect, the lower limit of the weight ratio (A / D) between the compound (A) and the compound (D) is preferably 0.1, more preferably 0.2, and 0.3. More preferably, 0.4 is particularly preferable. The upper limit of the weight ratio (A / D) between the compound (A) and the compound (D) is preferably 1000, more preferably 200, still more preferably 10, and particularly preferably 2.
[その他の成分]
 本発明の不織布製造用処理剤は、必要に応じて水および/または溶剤を含有していてもよい。本発明に使用する水としては、純水、蒸留水、精製水、軟水、イオン交換水、水道水等のいずれであってもよい。
 本発明の不織布製造用処理剤には、更に所望によりN-トリアルキルグリシンやN-トリアルキルスルフォベタインなどの乳化剤、カルナバワックス等の潤滑剤等を添加してもよい。また、必要があれば適切な防腐剤、防錆剤、消泡剤を添加してもよい。
 本発明の不織布製造用処理剤の製造方法としては、特に限定なく、公知の方法を採用できる。処理剤は、通常、構成する前記の各成分を任意の順番で添加混合することによって製造される。
[Other ingredients]
The processing agent for nonwoven fabric manufacture of this invention may contain water and / or a solvent as needed. The water used in the present invention may be any of pure water, distilled water, purified water, soft water, ion exchange water, tap water and the like.
If desired, an emulsifier such as N-trialkylglycine and N-trialkylsulfobetaine, a lubricant such as carnauba wax, and the like may be added to the treatment agent for producing a nonwoven fabric of the present invention. Further, if necessary, an appropriate preservative, rust inhibitor, and antifoaming agent may be added.
As a manufacturing method of the processing agent for nonwoven fabric manufacture of this invention, there is no limitation and a well-known method is employable. The treating agent is usually produced by adding and mixing the above-mentioned components constituting in any order.
[短繊維]
 本発明の短繊維は、原料短繊維本体とこれに付着した上記不織布製造用処理剤とから構成される繊維をいい、一般的には所定の長さに切断した短繊維である。
 不織布製造用処理剤の付与量は、原料短繊維に対して、0.05~2.0重量%が好ましく、0.06~1.5重量%がより好ましく、0.07~1.0重量%がさらに好ましく、0.08~0.7重量%が特に好ましい。0.05%未満では、静電気防止性が不足する可能性があり、2.0重量%超では、脱落によるスカムが増加する可能性がある。
[Short fiber]
The short fiber of the present invention refers to a fiber composed of a raw material short fiber main body and the treatment agent for producing a nonwoven fabric attached thereto, and is generally a short fiber cut into a predetermined length.
The applied amount of the processing agent for producing a nonwoven fabric is preferably 0.05 to 2.0% by weight, more preferably 0.06 to 1.5% by weight, and 0.07 to 1.0% by weight based on the raw material short fibers. % Is more preferable, and 0.08 to 0.7% by weight is particularly preferable. If it is less than 0.05%, the antistatic property may be insufficient, and if it exceeds 2.0% by weight, scum due to dropping may increase.
 本発明の短繊維の繊維長は、不織布加工態様により次のように異なる。
 スパンレース法及びニードルパンチ法による不織布製造に供する短繊維の場合は、2~100mmが好ましく、10~64mmがより好ましく、20~60mmがさらに好ましく、31~55mmが特に好ましい。繊維長が2mm未満及び100mm超であると、絡合性が低下する可能性がある。
 エアレイド法及び抄紙法による不織布製造に供する短繊維の場合は、1~40mmが好ましく、2~20mmがより好ましく、3~10mmがさらに好ましい。繊維長が40mm以下だと均一分散が達成され易く、さらに不織布の地合が良好になりやすい。繊維長が1mm以上だと、不織布に加工したときの不織布強力が良好である。
The fiber length of the short fiber of the present invention varies as follows depending on the nonwoven fabric processing mode.
In the case of short fibers used for the production of nonwoven fabrics by the spunlace method and the needle punch method, 2 to 100 mm is preferable, 10 to 64 mm is more preferable, 20 to 60 mm is further preferable, and 31 to 55 mm is particularly preferable. If the fiber length is less than 2 mm or more than 100 mm, the entanglement may be reduced.
In the case of a short fiber used for producing a nonwoven fabric by the airlaid method and the papermaking method, 1 to 40 mm is preferable, 2 to 20 mm is more preferable, and 3 to 10 mm is further preferable. When the fiber length is 40 mm or less, uniform dispersion is easily achieved, and the formation of the nonwoven fabric is likely to be good. When the fiber length is 1 mm or more, the strength of the nonwoven fabric when processed into a nonwoven fabric is good.
 本発明の短繊維の太さは、一般にデシテックス(以後、dtexで表現する)という単位で表されるが、0.7~4.0dtexが好ましく、0.8~3.0dtexがより好ましく、0.9~2.0dtexがさらに好ましく、1.0~1.5dtexが特に好ましい。0.7dtex未満では、カード通過性が低下する可能性がある。4.0dtex超では、絡合性が低下する可能性がある。 The thickness of the short fiber of the present invention is generally expressed in units of decitex (hereinafter expressed as dtex), preferably 0.7 to 4.0 dtex, more preferably 0.8 to 3.0 dtex, 0 Is more preferably 0.9 to 2.0 dtex, and particularly preferably 1.0 to 1.5 dtex. If it is less than 0.7 dtex, the card passing property may be lowered. If it exceeds 4.0 dtex, the entanglement may be reduced.
 本発明の不織布製造用処理剤は、そのまま希釈等せずに原料短繊維本体に付着させてもよく、水等で不揮発分全体の重量割合が0.2~15重量%となる濃度に希釈してエマルションとして原料短繊維本体に付着させてもよい。不織布製造用処理剤を原料短繊維本体へ付着させる工程及び本発明の不織布製造用処理剤を原料短繊維本体に付着させる手段は、原料短繊維の種類によって異なる。
 ポリオレフィン繊維、ポリエステル繊維、ポリアミド繊維、アクリル繊維、ポリ塩化ビニル繊維の場合には、不織布製造用処理剤を原料短繊維本体へ付着させる工程は、原料短繊維本体の紡糸工程、延伸工程、捲縮工程、切断工程手前等のいずれであってもよく、付着させる手段は、ローラー給油、ノズルスプレー給油、ディップ給油等のいずれであってもよい。
 レーヨン繊維、キュプラ繊維、アセテート繊維等の再生繊維の場合には、不織布製造用処理剤を原料短繊維本体へ付着させる工程は繊維の切断工程後であり、付着させる手段は、均一に付着し、処理剤の性能が発揮され易い観点から、ディップ-ニップ給油が好ましい。
 以上に限定されず、短繊維の製造工程やその特性に合わせ、より均一に効率よく目的の付着率が得られる方法を採用すればよい。また、乾燥の方法としては、熱風および赤外線により乾燥させる方法、熱源に接触させて乾燥させる方法等を用いてよい。
The treatment agent for producing a nonwoven fabric of the present invention may be attached to the raw material short fiber body without being diluted as it is, and diluted with water or the like to a concentration such that the weight ratio of the entire nonvolatile content is 0.2 to 15% by weight. It may be attached to the raw material short fiber body as an emulsion. The step of attaching the processing agent for manufacturing nonwoven fabric to the raw material short fiber body and the means for attaching the processing agent for manufacturing nonwoven fabric of the present invention to the raw material short fiber body differ depending on the type of raw material short fiber.
In the case of polyolefin fiber, polyester fiber, polyamide fiber, acrylic fiber, and polyvinyl chloride fiber, the process of attaching the processing agent for nonwoven fabric production to the raw material short fiber body is the spinning process, drawing process, crimping of the raw material short fiber body. Any of the process and the cutting process may be performed, and the means for attaching may be any of roller lubrication, nozzle spray lubrication, dip lubrication, and the like.
In the case of regenerated fibers such as rayon fiber, cupra fiber, acetate fiber, the process of attaching the processing agent for nonwoven fabric production to the raw material short fiber body is after the fiber cutting process, and the means for attaching is uniformly attached, From the viewpoint of easy performance of the treatment agent, dip-nip oiling is preferable.
The method is not limited to the above, and a method of obtaining a desired adhesion rate more uniformly and efficiently in accordance with the short fiber manufacturing process and its characteristics may be adopted. Moreover, as a drying method, you may use the method of drying with a hot air and infrared rays, the method of making it contact with a heat source, and drying.
 本発明の原料短繊維としては、木綿繊維、晒し処理された木綿繊維等の天然繊維、レーヨン繊維、キュプラ繊維、アセテート繊維等の再生繊維、ポリオレフィン繊維、ポリエステル繊維、ポリアミド繊維、アクリル繊維、ポリ塩化ビニル繊維、2種類以上の熱可塑性樹脂からなる複合繊維等の合成繊維が挙げられる。ポリアミド繊維としては、6-ナイロン繊維、6,6-ナイロン繊維、芳香族ポリアミド繊維等が挙げられる。
 これらの中でも、レーヨン繊維は繊維表面が皺のある凸凹型を有することにより、絡合性が不足し易いため、本願発明の不織布製造用処理剤の効果が発揮され易い観点から、本願発明の不織布製造用処理剤は、レーヨン繊維用であると好ましく、本願発明の短繊維はレーヨン短繊維であると好ましく、本願発明の不織布は、レーヨン短繊維を含むものが好ましい。
The raw material short fibers of the present invention include cotton fibers, natural fibers such as bleached cotton fibers, regenerated fibers such as rayon fibers, cupra fibers, acetate fibers, polyolefin fibers, polyester fibers, polyamide fibers, acrylic fibers, polychlorinated fibers. Examples thereof include synthetic fibers such as vinyl fibers and composite fibers composed of two or more kinds of thermoplastic resins. Examples of the polyamide fiber include 6-nylon fiber, 6,6-nylon fiber, and aromatic polyamide fiber.
Among these, since the rayon fiber has an uneven shape with a wrinkle on the fiber surface, the entanglement tends to be insufficient, so that the effect of the treatment agent for producing the nonwoven fabric of the present invention can be easily exerted. The manufacturing treatment agent is preferably for rayon fibers, the short fibers of the present invention are preferably rayon short fibers, and the nonwoven fabric of the present invention preferably contains rayon short fibers.
 又、原料繊維がポリオレフィン繊維及びポリエステル繊維であれば、繊維が撥水性であるためにスパンレース法による不織布製造時により高い水圧が必要であり、起泡性低減がさらに必要との観点から、原料繊維がポリオレフィン繊維及びポリエステル繊維であることが、好ましい。
 上記レーヨン繊維としては、ビスコースレーヨン繊維(強力レーヨン繊維、高強力レーヨン繊維、高湿潤弾性レーヨン繊維、ポリノジック繊維を含む)、溶剤紡糸レーヨン繊維等が挙げられる。
 複合繊維の組み合わせとしては、ポリオレフィン系樹脂/ポリオレフィン系樹脂の場合、例えば、高密度ポリエチレン/ポリプロピレン、直鎖状高密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/ポリプロピレン、プロピレンと他のα-オレフィンとの二元共重合体または三元共重合体/ポリプロピレン、直鎖状高密度ポリエチレン/高密度ポリエチレン、低密度ポリエチレン/高密度ポリエチレン等が挙げられる。また、ポリオレフィン系樹脂/ポリエステル系樹脂の場合、例えば、ポリプロピレン/ポリエチレンテレフタレート、高密度ポリエチレン/ポリエチレンテレフタレート、直鎖状高密度ポリエチレン/ポリエチレンテレフタレート、低密度ポリエチレン/ポリエチレンテレフタレート等が挙げられる。また、ポリエステル系樹脂/ポリエステル系樹脂の場合、例えば、共重合ポリエステル/ポリエチレンテレフタレート等が挙げられる。さらにポリアミド系樹脂/ポリエステル系樹脂、ポリオレフィン系樹脂/ポリアミド系樹脂等からなる繊維も挙げられる。
 これらの中でも、原料繊維が撥水性であるためにスパンレース法による不織布製造時により高い水圧が必要であり、起泡性低減がさらに必要との観点から、ポリオレフィン系樹脂/ポリオレフィン系樹脂、ポリオレフィン系樹脂/ポリエステル系樹脂、ポリエステル系樹脂/ポリエステル系樹脂がさらに好ましい。
 後述するエアレイド法又は抄紙法による不織布製造工程に本発明の短繊維を供する場合には、原料繊維が熱融着繊維を含むと、熱融着繊維以外の繊維と混合した後、熱融着することで不織布となるため、好ましい。
 前記熱融着繊維としては、不織布製造工程において溶融・融着が可能な熱可塑性繊維であればよく、低融点ポリエステル、低融点ビニロン、低融点ナイロンなどの単体繊維、あるいは芯がポリエチレン、ポリプロピレンあるいはポリエステルで、鞘がポリエステル、エチレン・酢酸ビニル共重合体のような所謂芯-鞘型の複合繊維などを単独で用いてもよいし、あるいはこれらの二種以上を併用してもよい。
Moreover, if the raw material fibers are polyolefin fibers and polyester fibers, since the fibers are water-repellent, a higher water pressure is required at the time of manufacturing the nonwoven fabric by the spunlace method, and from the viewpoint that foaming reduction is further necessary, It is preferable that the fibers are polyolefin fibers and polyester fibers.
Examples of the rayon fibers include viscose rayon fibers (including strong rayon fibers, high strength rayon fibers, high wet elastic rayon fibers, and polynosic fibers), solvent-spun rayon fibers, and the like.
As the combination of the composite fibers, in the case of polyolefin resin / polyolefin resin, for example, high density polyethylene / polypropylene, linear high density polyethylene / polypropylene, low density polyethylene / polypropylene, two types of propylene and other α-olefins are used. Examples thereof include an original copolymer or ternary copolymer / polypropylene, linear high-density polyethylene / high-density polyethylene, and low-density polyethylene / high-density polyethylene. In the case of polyolefin resin / polyester resin, for example, polypropylene / polyethylene terephthalate, high-density polyethylene / polyethylene terephthalate, linear high-density polyethylene / polyethylene terephthalate, and low-density polyethylene / polyethylene terephthalate. Moreover, in the case of polyester-type resin / polyester-type resin, copolymer polyester / polyethylene terephthalate etc. are mentioned, for example. Furthermore, the fiber which consists of polyamide-type resin / polyester-type resin, polyolefin-type resin / polyamide-type resin, etc. is mentioned.
Among these, since the raw material fibers are water-repellent, a higher water pressure is required at the time of producing the nonwoven fabric by the spunlace method, and from the viewpoint of further reducing foaming properties, polyolefin resins / polyolefin resins, polyolefin resins A resin / polyester resin and a polyester resin / polyester resin are more preferable.
When the short fiber of the present invention is used for the nonwoven fabric manufacturing process by the airlaid method or papermaking method described later, if the raw material fiber includes a heat-bonded fiber, it is mixed with a fiber other than the heat-bonded fiber and then heat-bonded. Since it becomes a nonwoven fabric by this, it is preferable.
The heat-fusible fiber may be any thermoplastic fiber that can be melted and fused in the nonwoven fabric manufacturing process, and a single fiber such as low-melting polyester, low-melting vinylon, and low-melting nylon, or a core made of polyethylene, polypropylene, or Polyester having a sheath with polyester, a so-called core-sheath type composite fiber such as an ethylene / vinyl acetate copolymer may be used alone, or two or more of these may be used in combination.
[不織布及び不織布の製造方法]
 背景技術で既述したとおり、不織布加工態様は、多様化しており、スパンレース法、ニードルパンチ法、ケミカルボンド法、抄紙法及びエアレイド法がある。また、それらの不織布製造方法を組み合わせても良い。
 本発明の不織布は、以下に記載する方法で作製した不織布である。
[Nonwoven fabric and method for producing nonwoven fabric]
As described in the background art, the nonwoven fabric processing modes are diversified, and there are a spunlace method, a needle punch method, a chemical bond method, a papermaking method, and an airlaid method. Moreover, you may combine those nonwoven fabric manufacturing methods.
The nonwoven fabric of the present invention is a nonwoven fabric produced by the method described below.
(スパンレース法)
 スパンレース法の場合には、本発明の短繊維を開繊工程にて開繊し、2以上の種類の短繊維を使用する場合には混綿し、不織布加工機によるカーディングにて繊維ウェブを作製する。
 繊維ウェブを作製するには、繊維を不織布加工機に供給し、不織布加工機から排出されるフリースを適宜積層すればよい。不織布加工機としては、フリース中の繊維がほぼ一方向に配列するパラレル不織布加工機、フリース中の繊維が無配向となるランダム不織布加工機、前二者の中間程度の配向となるセミランダム不織布加工機、従来綿繊維の開繊に最も一般的に使用されているフラット不織布加工機等を使用することができる。不織布加工機から排出されたフリースを、そのまま多数枚重ねて、一方向に繊維が配列したウェブまたは繊維が無配向となっている繊維ウェブとしてもよい。また、一方向に繊維が配列したフリースを、各フリースの繊維が直交する状態で多数枚重ねて、縦・横均一な繊維ウェブとしてもよい。本発明においては、縦・横の引張強度が同等である方が好ましいので、繊維ウェブとしても、繊維が無配向となっている繊維ウェブまたは各フリース間の繊維が直交している繊維ウェブを採用することが好ましい。
 不織布加工機によるカーディング工程は、繊維束状となったスライバーではなく、繊維ウェブを作製する点で、紡績時のカーディング工程と異なる。そのため、不織布加工機によるカーディング工程では、紡績時のカーディング工程では見られなかった風綿が発生し易い。係る理由から、本願発明の不織布製造用処理剤は、紡績用処理剤と異なり、絡合性の要求度が極めて高い。
(Spanlace method)
In the case of the spunlace method, the short fibers of the present invention are opened in the opening process, and when two or more kinds of short fibers are used, they are mixed, and the fiber web is formed by carding with a nonwoven fabric processing machine. Make it.
In order to produce a fiber web, the fibers are supplied to a nonwoven fabric processing machine, and a fleece discharged from the nonwoven fabric processing machine is appropriately laminated. Nonwoven fabric processing machines include a parallel nonwoven fabric processing machine in which the fibers in the fleece are arranged in almost one direction, a random nonwoven fabric processing machine in which the fibers in the fleece are non-oriented, and a semi-random nonwoven fabric processing that has an intermediate orientation between the former two. A flat nonwoven fabric processing machine or the like that is most commonly used for the opening of conventional cotton fibers can be used. A large number of fleeces discharged from the nonwoven fabric processing machine may be stacked as they are to form a web in which fibers are arranged in one direction or a fiber web in which fibers are not oriented. Alternatively, a plurality of fleeces in which fibers are arranged in one direction may be stacked in a state where the fibers of each fleece are perpendicular to each other to form a longitudinal and lateral uniform fiber web. In the present invention, since it is preferable that the longitudinal and lateral tensile strengths are equal, a fiber web in which fibers are non-oriented or fibers between each fleece are orthogonal is used as the fiber web. It is preferable to do.
The carding process by the nonwoven fabric processing machine is different from the carding process at the time of spinning in that a fiber web is produced instead of a sliver in a fiber bundle shape. For this reason, in the carding process by the nonwoven fabric processing machine, fluff that is not found in the carding process at the time of spinning tends to occur. For this reason, the nonwoven fabric manufacturing treatment agent of the present invention has a very high degree of entanglement requirement, unlike the spinning treatment agent.
 次に、スパンレース処理が繊維ウェブに施される。スパンレース処理は、繊維ウェブに高圧水流を衝突させるという絡合処理手段である。この手段によって、高圧水流のエネルギーが、繊維ウェブ中の繊維に与えられ、繊維はこのエネルギーによって運動させられ、その結果、繊維相互間に三次元的絡合が発現してくるのである。高圧水流は、例えば、孔径が0.05~2.0mm程度、特に0.1~0.4mmの噴射孔から、噴射圧力5~150kg/cm・G程度で、水または温水等の液体を噴出させれば、容易に得ることができる。スパンレース処理は、一般的に、この噴射孔が0.3~10mm間隔で一列または複数列に多数配列した装置を、繊維ウェブの進行方向と噴射孔の列とが直交するように配置し、進行する繊維ウェブ上に、高圧水流を衝突させることによって行われる。噴射孔と繊維ウェブ間との距離は、1~15cm程度が好ましい。この距離が1cm未満であると、繊維ウェブに高圧水流が衝突したときのエネルギーが大きすぎて、得られる不織布の地合が乱れるおそれがある。一方、15cmを超えると、繊維ウェブに高圧水流が衝突したときのエネルギーが小さくなって、繊維に十分な運動エネルギーを与えることができず、三次元的絡合が不十分になる傾向が生じる。 Next, a spunlace treatment is applied to the fiber web. The spunlace treatment is an entanglement treatment means in which a high-pressure water stream is made to collide with the fiber web. By this means, the energy of the high-pressure water stream is imparted to the fibers in the fiber web and the fibers are moved by this energy, resulting in a three-dimensional entanglement between the fibers. The high-pressure water stream is, for example, a liquid such as water or warm water from an injection hole having a hole diameter of about 0.05 to 2.0 mm, particularly 0.1 to 0.4 mm, at an injection pressure of about 5 to 150 kg / cm 2 · G. If it is ejected, it can be easily obtained. In the spunlace treatment, generally, a device in which a large number of the injection holes are arranged in one or a plurality of rows at intervals of 0.3 to 10 mm is arranged so that the traveling direction of the fiber web is orthogonal to the rows of the injection holes. This is done by impinging a high-pressure water stream on the traveling fiber web. The distance between the injection hole and the fiber web is preferably about 1 to 15 cm. If this distance is less than 1 cm, the energy when the high-pressure water stream collides with the fiber web is too large, and the resulting nonwoven fabric may be disturbed. On the other hand, if it exceeds 15 cm, the energy when the high-pressure water stream collides with the fiber web becomes small, and sufficient kinetic energy cannot be given to the fiber, and the three-dimensional entanglement tends to be insufficient.
 繊維ウェブにスパンレース処理を施す際、繊維ウェブは、通常、支持体に担持されている。すなわち、スパンレース処理が施される側とは、反対面に支持体が置かれている。この支持体は、繊維ウェブに施された高圧水流を良好に通過させるものであれば、どのようなものでも使用でき、例えばメッシュスクリーンや有孔板等が採用される。一般的には、金網等のメッシュスクリーンが採用され、また孔の大きさは、20~100メッシュ程度であるのが好ましい。 When the spunlace treatment is applied to the fiber web, the fiber web is usually supported on a support. In other words, the support is placed on the side opposite to the side subjected to the spunlace treatment. Any material can be used as the support so long as it allows a high-pressure water flow applied to the fiber web to pass well. For example, a mesh screen or a perforated plate is used. In general, a mesh screen such as a wire mesh is adopted, and the size of the hole is preferably about 20 to 100 mesh.
 繊維ウェブにスパンレース処理を施した後、繊維ウェブには液体流として使用した水や温水等の液体が含浸された状態になっており、この液体を従来公知の方法で除去して、不織布が得られるのである。ここで、液体を除去する方法としては、まず、マングルロール等の絞り装置を用いて、過剰の液体を機械的に除去し、引き続き連続熱風乾燥機等の乾燥装置を用いて、残余の液体を除去する方法等が用いられる。以上のようにして得られた不織布は、繊維相互間の三次元的絡合が十分になされており、おしぼりや手拭き等の素材として使用するのに十分な引張強度を持つものである。 After the spunlace treatment is applied to the fiber web, the fiber web is impregnated with a liquid such as water or warm water used as a liquid flow. The liquid is removed by a conventionally known method to obtain a nonwoven fabric. It is obtained. Here, as a method of removing the liquid, first, excess liquid is mechanically removed using a squeezing device such as a mangle roll, and then the remaining liquid is removed using a drying device such as a continuous hot air dryer. A removal method or the like is used. The nonwoven fabric obtained as described above has sufficient three-dimensional entanglement between fibers, and has sufficient tensile strength for use as a material for hand towels, hand towels, and the like.
(ニードルパンチ法)
 繊維ウェブを作製する方法は、スパンレース法と同様である。
 ニードルパンチ法による不織布製造方法は、一般的には繊維束に対して垂直な方向に棘を持った針が上下運動して、針の先端あるいは、棘に引っかかった繊維束が押し込められて立体的な絡み合いを生じさせることにより不織布を製造する工程(ニードルパンチ工程ということもある)を含む。ニードルパンチの回数、密度、針の形を最適化して、所望の結束力を得ることができる。
 繊維ウェブをニードルパンチ法により不織布を製造するに際し、積層ウェブまたは不織布の少なくとも両端部を固定し、繊維移動を惹起しない状態にすることもできる。
(Needle punch method)
The method for producing the fiber web is the same as the spunlace method.
The nonwoven fabric manufacturing method by the needle punch method is generally a three-dimensional structure in which a needle with barbs moves up and down in a direction perpendicular to the fiber bundle and the fiber bundle caught by the needle tip or barb is pushed in. Including a step of producing a non-woven fabric by causing entanglement (sometimes referred to as a needle punching step). The number of needle punches, the density, and the shape of the needle can be optimized to obtain a desired binding force.
When the nonwoven fabric is produced from the fiber web by the needle punch method, at least both end portions of the laminated web or the nonwoven fabric can be fixed so as not to cause fiber movement.
(抄紙法)
 抄紙法による不織布製造方法は、本発明の処理剤が処理された短繊維を水中に分散させて抄紙する工程(抄紙工程ということもある)を含むものである。該短繊維は、抄紙工程において、撹拌・分散時、繊維同士が絡みにくく、速やかに沈降して単繊維に分散し、安定分散性も良好である。
 抄紙工程としては、常法の湿式抄紙工程を採用できる。湿式抄紙工程としては、上記工程で本発明の処理剤が処理された短繊維をパルパーに投入して水中で撹拌・分散し、懸濁させる。この時、水に低シェアで分散され、気泡が抑制されるので、繊維が均一に分散することで、地合いの良好な抄紙を得ることができる。次に、抄き網に供給し、湿紙とする。そして、湿紙を乾燥させる乾燥工程を経て、ロール状に巻取り、湿式抄紙不織布を得る。抄き網は円網、短網が一般的であるが、長網、ロトフォーマー、ハイドロフォーマー、パーチフォーマーなどでも構わない。乾燥工程は複数の回転加熱ローラー式(多筒式)あるいはヤンキードラム式のいずれでも構わない。
 また、本発明の抄紙不織布の製造方法は、抄紙工程で、原料短繊維を本発明の処理剤を含む水中に分散させて抄紙してもよい。
(Paper making method)
The nonwoven fabric manufacturing method by the papermaking method includes a step of making paper by dispersing the short fibers treated with the treatment agent of the present invention in water (sometimes referred to as a papermaking step). In the paper making process, the short fibers are less likely to get entangled with each other during stirring and dispersion, settle quickly and disperse into single fibers, and have a good stable dispersibility.
As the papermaking process, a conventional wet papermaking process can be employed. In the wet papermaking process, the short fiber treated with the treatment agent of the present invention in the above process is put into a pulper, stirred and dispersed in water, and suspended. At this time, since it is dispersed in water with a low share and air bubbles are suppressed, paper making with a good texture can be obtained by uniformly dispersing the fibers. Next, the paper is supplied to a paper net and used as wet paper. And after the drying process which dries a wet paper, it winds up in roll shape and obtains a wet papermaking nonwoven fabric. The netting net is generally a circular net or a short net, but may be a long net, a rotoformer, a hydroformer, a perchformer, or the like. The drying process may be a plurality of rotary heating roller type (multi-cylinder type) or Yankee drum type.
Moreover, the manufacturing method of the papermaking nonwoven fabric of this invention may disperse | distribute raw material short fiber in the water containing the processing agent of this invention at a papermaking process.
(エアレイド法)
 エアレイド法による不織布製造方法は、本発明の短繊維を篩、またはスクリーンを通して該短繊維が均一分散した繊維ウェブとなるよう降り積もらせる工程(エアレイド工程ということもある)を含むものである。
 本発明の短繊維が、上記熱融着性繊維を含む場合、例えば、レーヨン繊維、パルプ繊維及び熱融着繊維からなる場合には、前記エアレイド工程により繊維ウェブを得た後、加熱による熱融着又は熱接着により不織布を製造する工程が好ましい。
 又、本発明の短繊維が熱融着性繊維を含まない場合、例えば、レーヨン繊維単独である場合には、前記エアレイド工程により繊維ウェブを得た後、エマルションバインダーを付与し、繊維同士の交点を結合させて不織布を製造する工程が好ましい。
 前記エマルションバインダーとしては、アクリロニトリル-ブタジエンゴム、スチレン-ブタジエンゴム、ポリ酢酸ビニル、ポリエチレン酢酸ビニル、ポリアクリレート等が用いられる。
(Airlaid method)
The nonwoven fabric manufacturing method by the air laid method includes a step (sometimes referred to as an air laid step) in which the short fibers of the present invention are passed through a sieve or a screen to form a fiber web in which the short fibers are uniformly dispersed.
When the short fiber of the present invention includes the above heat-fusible fiber, for example, when the fiber is composed of rayon fiber, pulp fiber, and heat-fusible fiber, after obtaining the fiber web by the airlaid process, heat fusion by heating is performed. The process of manufacturing a nonwoven fabric by adhesion or thermal bonding is preferred.
In addition, when the short fiber of the present invention does not contain a heat-fusible fiber, for example, when it is a rayon fiber alone, after obtaining a fiber web by the airlaid process, an emulsion binder is applied and the intersection of the fibers The process of manufacturing the nonwoven fabric by bonding the slag is preferred.
Examples of the emulsion binder include acrylonitrile-butadiene rubber, styrene-butadiene rubber, polyvinyl acetate, polyethylene vinyl acetate, and polyacrylate.
 エアレイド法に用いられるウェブ製造装置としては、例えば、前後、左右、上下、水平円状等のいずれかに振動し短繊維をふるいの目から分散落下させる箱形篩いタイプの装置が使用できる。また、ネット状の金属多孔板が円筒状に成形され、且つその側面に繊維の投入口を有し、繊維をそのふるいの目から分散・落下させるネット状円筒型タイプの装置も使用できる。
 エアレイド法で製造されたマット状の繊維ウェブにおいては、繊維は全方向に均一分散しているので、かさ高の繊維集合体となるし、繊維が均一分散されているので、強度の高い不織布が得られる。
As a web manufacturing apparatus used in the airlaid method, for example, a box-type sieve type apparatus that vibrates in any of front and rear, left and right, upper and lower, horizontal circles, etc., and disperses and drops short fibers from the sieve eyes can be used. Further, a net-like cylindrical type apparatus in which a net-like metal perforated plate is formed into a cylindrical shape, has a fiber inlet on the side surface thereof, and disperses / drops the fiber from its sieve eyes can be used.
In the mat-like fiber web manufactured by the airlaid method, the fibers are uniformly dispersed in all directions, so that a bulky fiber aggregate is formed and the fibers are uniformly dispersed. can get.
(繊維ウェブの重量(目付))
 スパンレース法の場合、繊維ウェブの重量(目付)は、10~150g/m程度であるのが好ましい。目付が10g/m未満であると、繊維密度が小さくなって、三次元的絡合が不十分になる傾向が生じる。一方、目付が150g/mを超える場合も、単位面積当りの繊維量が多すぎて、三次元的絡合が不十分になる傾向が生じる。
 ニードルパンチ法の場合、繊維ウェブの重量(目付)は、20~1300g/m程度と幅広く用途により選択できるが、20~500g/mが好ましく、30~400g/mがより好ましい。目付が20g/m未満及び1300g/m超であると、不織布の地合いが低下することがある。
 エアレイド法の場合、繊維ウェブの重量(目付)は、10~150g/m程度であるのが好ましい。目付が10g/m未満又は150g/mを超える場合も、単位面積当りの繊維量が適正でないことにより、不織布の厚さが不均一となる可能性がある。
(Fiber web weight (weight))
In the case of the spunlace method, the weight (weight per unit area) of the fiber web is preferably about 10 to 150 g / m 2 . When the basis weight is less than 10 g / m 2 , the fiber density becomes small, and the three-dimensional entanglement tends to be insufficient. On the other hand, when the basis weight exceeds 150 g / m 2 , the amount of fibers per unit area is too large, and the three-dimensional entanglement tends to be insufficient.
When the needle punch method, the weight of the fiber web (basis weight) can select a wide range of applications as 20 ~ 1300g / m 2 approximately, preferably 20 ~ 500g / m 2, more preferably 30 ~ 400g / m 2. If the basis weight is less than 20 g / m 2 and more than 1300 g / m 2 , the texture of the nonwoven fabric may be lowered.
In the case of the airlaid method, the weight (weight) of the fiber web is preferably about 10 to 150 g / m 2 . Even when the basis weight is less than 10 g / m 2 or more than 150 g / m 2 , there is a possibility that the thickness of the nonwoven fabric becomes non-uniform due to an inappropriate amount of fibers per unit area.
 本発明の不織布は、スパンレース法及び抄紙法による不織布製造工程で起泡が少ないという特徴があるため、不織布上の泡により、繊維が乱れて目付けが不均一になることがなく、高品質である。又、スパンレース法の高圧水流を循環水にて行なう場合にも、スカム発生によるフィルターやノズル詰まり等の弊害がないため、不織布の生産性を向上させることができる。
 本発明の不織布は、スパンレース法及びニードルパンチ法による不織布製造工程で、絡合性に優れることにより風綿が少ないため、ウェブが均一となることにより、高品質である。
 本発明の不織布は、エアレイド法による不織布製造工程で、スカム抑制に優れることにより、ウェブが均一となることにより、高品質である。
The non-woven fabric of the present invention is characterized by low foaming in the non-woven fabric manufacturing process by the spunlace method and the papermaking method. is there. Even when the high-pressure water flow of the spunlace method is performed with circulating water, the productivity of the nonwoven fabric can be improved because there is no harmful effect such as filter or nozzle clogging due to scum generation.
The nonwoven fabric of the present invention is of high quality because the web becomes uniform because the nonwoven fabric is produced by the spunlace method and the needle punch method, because the web is uniform because of its excellent entanglement.
The nonwoven fabric of the present invention is of high quality because the web becomes uniform due to excellent scum suppression in the nonwoven fabric manufacturing process by the airlaid method.
 本発明の不織布の用途としては、各種不織布製造方法により次のように適した用途がある。
 スパンレース法による不織布製造方法で得られた不織布は、製造工程でスパンレース処理をしていることにより、不織布製造用処理剤の残存量が少ない観点と、繊維間空隙が大きく、柔軟性に優れるという観点とから、直接、肌に触れる用途や拭き布として好適に用いられている。マスク、空気フィルター、水、コーヒーならびにティーバッグ、液体カートリッジならびにバッグフィルター、真空バッグ、アレルゲン膜、幼児用おむつ、女性用衛生ナプキン、成人失禁用製品、個人用衛生ふき取り繊維、包帯、外傷用包帯、空気フィルター、液体フィルター、家庭用ふき取り繊維、店舗用タオル、電池セパレーター、真空洗浄剤バッグ、化粧品パッド、食品パッケージ、衣類、衣服、医療用の衣類、および使い捨て下着等が挙げられる。
Applications of the nonwoven fabric of the present invention include the following suitable applications according to various nonwoven fabric manufacturing methods.
The nonwoven fabric obtained by the nonwoven fabric manufacturing method by the spunlace method is spunlaced in the manufacturing process, so that the remaining amount of the processing agent for nonwoven fabric production is small, the inter-fiber gap is large, and the flexibility is excellent. From this point of view, it is preferably used as an application or a wiping cloth that directly touches the skin. Masks, air filters, water, coffee and tea bags, liquid cartridges and bag filters, vacuum bags, allergen membranes, baby diapers, feminine hygiene napkins, adult incontinence products, personal hygiene wipes, bandages, wound dressings, Examples include air filters, liquid filters, household wipes, store towels, battery separators, vacuum cleaner bags, cosmetic pads, food packages, clothes, clothes, medical clothes, and disposable underwear.
 エアレイド法による不織布製造方法で得られた不織布は、かさ高の繊維集合体となるし、繊維が均一分散されているので、強度の高い不織布が得られるため、化粧用パフ、衛材用、皮膚清浄用シート、ワイパー用、食品ドリップ吸収シート、キッチンペーパー、各種包装材、緩衝材、吸着性シート、吸音材、エアフィルターなどに有用である。 The nonwoven fabric obtained by the airlaid method is a bulky fiber aggregate, and the fibers are uniformly dispersed, so a high-strength nonwoven fabric can be obtained, so that cosmetic puffs, hygiene materials, skin It is useful for cleaning sheets, wipers, food drip absorption sheets, kitchen paper, various packaging materials, cushioning materials, adsorbent sheets, sound absorbing materials, air filters and the like.
 抄紙法による不織布製造方法で得られた不織布は、地合いが均一でかつ優れた柔軟性を有しているので、衛生材料用または医療材料用または家庭用品用に有用である。具体的には、肌当て用基材、マスク、貼付剤用基材、化粧落とし用基材、衣料用芯地、ワイパー、合皮用基材などに有用である。 The nonwoven fabric obtained by the non-woven fabric manufacturing method by the papermaking method has a uniform texture and excellent flexibility, and is therefore useful for sanitary materials, medical materials, and household products. Specifically, it is useful for a base material for skin contact, a mask, a base material for a patch, a base material for makeup removal, an interlining for clothing, a wiper, a base material for leather.
 化粧用パフ、化粧落とし用基材、皮膚清浄用シート、貼付剤用基材、マスク、キッチンペーパー、食品ドリップ吸収シート等の人体に関わる不織布を製造するために使用する本願発明の不織布製造用処理剤は、人体への安全性の観点から、前記エステル化合物(A)、前記ポリオキシアルキレン多価アルコール脂肪酸エステル(B1)、前記鉱物油(B2)及び前記化合物(D)を含むと好ましい。 Non-woven fabric manufacturing process of the present invention used for manufacturing non-woven fabrics related to the human body, such as cosmetic puffs, base materials for makeup removal, skin cleaning sheets, base materials for patches, masks, kitchen paper, food drip absorption sheets, etc. From the viewpoint of safety to the human body, the agent preferably contains the ester compound (A), the polyoxyalkylene polyhydric alcohol fatty acid ester (B1), the mineral oil (B2), and the compound (D).
 以下に本発明を実施例によって説明するが、本発明はこれに限定されるものではない。尚、各実施例、比較例における評価項目と評価方法は以下の通りである。又、各実施例、比較例における処理剤の明細と評価結果を表1~表3にまとめて示す。処理剤の明細中、配合比率はいずれも重量%を表す。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited thereto. In addition, the evaluation items and the evaluation method in each example and comparative example are as follows. In addition, Tables 1 to 3 collectively show the details and evaluation results of the treatment agents in each Example and Comparative Example. In the description of the treatment agent, the blending ratios all represent weight percent.
[エステル化合物(A)の製造]
(製造例1)
(ソルビトールモノステアレートの製造)
 撹拌翼、温度センサー、窒素ガス導入口、真空ラインを備えた2000mLの四つ口フラスコに、ソルビトールの80重量%水溶液455gとステアリン酸メチル720gを仕込み、窒素気流下90℃にて常圧で2時間、さらに6.67kPa以下で1時間脱水を行って、系内の水分含量が0.2%となった。そこに20重量%に調製したナトリウムメトキシドのメタノール溶液を15.2g、次亜リン酸ナトリウム0.30gを添加し、窒素気流下160℃まで常圧で2時間かけて昇温、そのまま窒素気流下160℃、常圧で反応を行い、7時間で系内がI相になったことを確認した。その後、窒素気流下160℃にて4.00kPa前後でさらに2時間反応を行い、薄層クロマトグラフィー(TLC)でステアリン酸メチルのスポットが消失したことを確認して反応終了とした。冷却後、80℃でキョーワード#700を1.0重量%添加し、26.7kPa以下で1時間吸着処理した後、ろ過してソルビトールモノステアレート(A1-1)を得た。
[Production of ester compound (A)]
(Production Example 1)
(Manufacture of sorbitol monostearate)
A 2000 mL four-necked flask equipped with a stirring blade, a temperature sensor, a nitrogen gas inlet, and a vacuum line was charged with 455 g of an 80% by weight aqueous solution of sorbitol and 720 g of methyl stearate. The water content in the system was 0.2% after dehydration for 1 hour at a time of 6.67 kPa or less. Thereto was added 15.2 g of a methanol solution of sodium methoxide prepared to 20% by weight and 0.30 g of sodium hypophosphite, and the temperature was raised to 160 ° C. at normal pressure over 2 hours under a nitrogen stream. The reaction was carried out at 160 ° C. and atmospheric pressure, and it was confirmed that the system became phase I in 7 hours. Thereafter, the reaction was further carried out at around 4.00 kPa at 160 ° C. under a nitrogen stream for 2 hours, and the reaction was terminated after confirming that the methyl stearate spots had disappeared by thin layer chromatography (TLC). After cooling, 1.0% by weight of Kyoward # 700 was added at 80 ° C., adsorbed for 1 hour at 26.7 kPa or less, and then filtered to obtain sorbitol monostearate (A1-1).
(製造例2)
(マンニトールジパルミテートの製造)
 撹拌翼、温度センサー、窒素ガス導入口、サンプリング口を備えた2000mLの四ッ口フラスコに、マンニトール455g(2.5モル)、パルミチン酸1280g(5モル)、触媒として炭酸カリウムを8g、カラメル生成抑制のため酸化防止剤8g(旭電化製アデカスタブAO-70)を仕込み、窒素気流下225℃にて常圧で3時間反応させた。酸価が5.0以下であることを確認して反応終了とした。約1500gのマンニトールジパルミテート(A1-2)を得た。
(Production Example 2)
(Manufacture of mannitol dipalmitate)
In a 2000 mL four-necked flask equipped with a stirring blade, temperature sensor, nitrogen gas inlet and sampling port, 455 g (2.5 mol) of mannitol, 1280 g (5 mol) of palmitic acid, 8 g of potassium carbonate as a catalyst, and caramel formation For suppression, 8 g of an antioxidant (Adeka Stub AO-70 manufactured by Asahi Denka) was charged and reacted at 225 ° C. under normal pressure for 3 hours under a nitrogen stream. After confirming that the acid value was 5.0 or less, the reaction was terminated. About 1500 g of mannitol dipalmitate (A1-2) was obtained.
(製造例3)
(イソソルビドモノステアレートの製造)
 蒸留器を備えた撹拌装置中に、146g(1モル)のイソソルビド及び284g(1モル)のステアリン酸を、80℃で、0.38gの苛性ソーダ(18重量%濃度)と一緒に投入した。撹拌、窒素置換下で、最初に反応混合物を180℃1時間加熱し、水の留去をしつつ、時間で190℃に加熱し、さらに2時間で210℃に加熱した。210℃に到達後、1mgKOH/gの酸価に達するまでエステル化した。385gの琥珀色のイソソルビドステアレート(A2-1)が得られた。
(Production Example 3)
(Production of isosorbide monostearate)
In a stirrer equipped with a still, 146 g (1 mol) of isosorbide and 284 g (1 mol) of stearic acid were charged at 80 ° C. together with 0.38 g of caustic soda (18% strength by weight). Under stirring and nitrogen substitution, the reaction mixture was first heated to 180 ° C. for 1 hour, heated to 190 ° C. over time with water being distilled off, and further heated to 210 ° C. for 2 hours. After reaching 210 ° C., esterification was performed until an acid value of 1 mg KOH / g was reached. 385 g of amber isosorbide stearate (A2-1) was obtained.
[化合物(D)の製造]
(製造例4)
(ソルビタンモノステアレートの製造)
 四つ口フラスコに、D-ソルビトール液520g(2.0モル)を仕込み、400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸560g(2.0モル)を仕込み、水酸化ナトリウム10w/v%水溶液10mLを加え、常圧下、窒素ガス気流中220℃で、3時間エステル化反応を行った。得られた反応混合物を170℃まで冷却し、リン酸(85質量%)2.3gを添加して触媒を中和し、次に、反応混合物を約150℃まで冷却し、グリセリン800gを加えて均一に混合後その温度で約1時間放置し、分離したグリセリン相約640gを除去した。得られたソルビタン脂肪酸エステルを、160℃、250Paの条件で減圧蒸留して残留するグリセリンを留去し、ソルビタンモノステアレート(D-1)800gを得た(酸価3.1、水酸基価:252)
[Production of Compound (D)]
(Production Example 4)
(Manufacture of sorbitan monostearate)
A four-necked flask was charged with 520 g (2.0 mol) of D-sorbitol solution, and dehydrated at 75 ° C. for about 10 minutes under a reduced pressure of 400 Pa. Next, 560 g (2.0 mol) of stearic acid was added, 10 mL of a 10 w / v% sodium hydroxide aqueous solution was added, and an esterification reaction was performed at 220 ° C. in a nitrogen gas stream under normal pressure for 3 hours. The resulting reaction mixture was cooled to 170 ° C., 2.3 g of phosphoric acid (85% by weight) was added to neutralize the catalyst, then the reaction mixture was cooled to about 150 ° C. and 800 g of glycerin was added. After uniform mixing, the mixture was left at that temperature for about 1 hour to remove about 640 g of the separated glycerin phase. The obtained sorbitan fatty acid ester was distilled under reduced pressure at 160 ° C. and 250 Pa to distill away the remaining glycerin to obtain 800 g of sorbitan monostearate (D-1) (acid value 3.1, hydroxyl value: 252)
 尚、表中の各成分は、以下のものを用いた。
A1-1 ソルビトールモノステアレート
A1-2 マンニトールジパルミテート
A1-3 ソルビトールトリステアレート
A1-4 ソルビトールモノオレエート
A1-5 ソルビトール・トリ・オレエート
A2-1 イソソルビドモノステアレート
A2-2 イソマンニドモノパルミテート
A2-3 イソソルビドモノミリスチレート
A2-4 イソソルビドモノオレエート
B1-1 ポリオキシエチレン(付加モル数:20)ソルビタンモノステアレート
B1-2 ポリオキシエチレン(付加モル数:20)ソルビタンモノオレエート
B1-3 ポリオキシエチレン(付加モル数:30)ひまし油エーテル
B1-4 ポリオキシエチレン(付加モル数:10)ひまし油エーテル
B1-5 ポリオキシエチレン(付加モル数:20)ソルビタントリステアレート
B1-6 ポリオキシエチレン(付加モル数:20)ソルビタンモノパルミテート
B2-1 ポリエチレングリコール(分子量:400)モノオレエート
B2-2 ポリエチレングリコール(分子量:1540)モノステアレート
B2-3 ポリエチレングリコール(分子量:200)ジラウレート
B2-4 ポリエチレングリコール(分子量:600)モノオレエート
B2-5 ポリエチレングリコール(分子量:400)モノラウレート
B3-1 鉱物油(粘度60秒)
B3-2 鉱物油(粘度120秒)
B3-3 鉱物油(粘度500秒)
B4-1 イソトリデシルステアレート
B4-2 イソオクチルパルミテート
C-1  菜種油サルフェートNa塩
C-2  ラウリルサルフェートNa塩
C-3  オレイルサルフェートNa塩
C-4  セチルサルフェートNa塩
D-1  ソルビタンモノステアレート
D-2  マンニタンモノパルミテート
D-3  ソルビタンモノミリスチレート
D-4  ソルビタントリステアレート
D-5  ソルビタンモノオレエート
D-6  ソルビタントリオレエート
G-1  グリセリンモノオレエート(アルジトールの水酸基の価数が3のアルジトール脂肪酸エステル)
G-2  エリスリトールジカプリレート(アルジトールの水酸基の価数が4のアルジトール脂肪酸エステル)
In addition, the following were used for each component in the table.
A1-1 Sorbitol monostearate A1-2 Mannitol dipalmitate A1-3 Sorbitol tristearate A1-4 Sorbitol monooleate A1-5 Sorbitol trioleate A2-1 Isosorbide monostearate A2-2 Isomannide mono Palmitate A2-3 Isosorbide monomyristate A2-4 Isosorbide monooleate B1-1 Polyoxyethylene (added moles: 20) sorbitan monostearate B1-2 Polyoxyethylene (added moles: 20) sorbitan monoole Ate B1-3 polyoxyethylene (added moles: 30) castor oil ether B1-4 polyoxyethylene (added moles: 10) castor oil ether B1-5 polyoxyethylene (added moles: 20) sorbitan tristeale B1-6 Polyoxyethylene (added mole number: 20) sorbitan monopalmitate B2-1 polyethylene glycol (molecular weight: 400) monooleate B2-2 polyethylene glycol (molecular weight: 1540) monostearate B2-3 polyethylene glycol (molecular weight: 200) Dilaurate B2-4 Polyethylene glycol (molecular weight: 600) monooleate B2-5 Polyethylene glycol (molecular weight: 400) monolaurate B3-1 Mineral oil (viscosity 60 seconds)
B3-2 Mineral oil (viscosity 120 seconds)
B3-3 Mineral oil (viscosity 500 seconds)
B4-1 Isotridecyl stearate B4-2 Isooctyl palmitate C-1 Rapeseed oil sulfate Na salt C-2 Lauryl sulfate Na salt C-3 Oleyl sulfate Na salt C-4 Cetyl sulfate Na salt D-1 Sorbitan monostearate D-2 Mannitan monopalmitate D-3 Sorbitan monomyristate D-4 Sorbitan tristearate D-5 Sorbitan monooleate D-6 Sorbitan trioleate G-1 Glycerine monooleate (valency of hydroxyl group of alditol Is an alditol fatty acid ester of 3)
G-2 Erythritol dicaprylate (Alditol fatty acid ester having a valence of 4 hydroxyl groups in alditol)
[試料綿の作製]
 次に、予め脱脂しておき、処理剤が付着していない1.7dtex×44mmの原料RBレーヨン短繊維を用い、原料短繊維に対する処理剤の不揮発分の付着量が0.2重量%になるように、前記処理剤のエマルションを給油し、当該原綿を80℃、2時間で乾燥した。得られた処理剤付与綿を下記の各評価に供した。
[Production of sample cotton]
Next, the raw material RB rayon short fiber of 1.7 dtex × 44 mm that has been degreased in advance and has no treatment agent attached thereto is used, and the non-volatile content of the treatment agent on the raw material short fiber is 0.2% by weight. Thus, the emulsion of the said processing agent was oiled and the said raw cotton was dried at 80 degreeC for 2 hours. The obtained treatment agent-added cotton was subjected to the following evaluations.
[絡合性(風綿)評価]
 処理剤付与綿3kgを大和機工社製ミニチュアローラーカード機で処理し、飛散した風綿をニューマーで吸引して集積し、その重量が30g未満であれば絡合性(風綿)が良好であると判断した。
  絡合性(風綿)の判断の指標
   ◎(非常に良好):風綿の重量が10g未満
   ○(良好)   :風綿の重量が10g以上30g未満
   △(不良)   :風綿の重量が30g以上60g未満
   ×(非常に不良):風綿の重量が60g以上
[Evaluation of entanglement (cotton)]
3kg of cotton with treatment agent applied is treated with a miniature roller card machine manufactured by Yamato Kikko Co., and the scattered cotton is sucked and accumulated with a pneumatic knives. If the weight is less than 30 g, the entanglement (wind cotton) is good. It was judged.
Index of determination of entanglement (cotton) ◎ (very good): the weight of the cotton is less than 10 g ○ (good): the weight of the cotton is from 10 g to less than 30 g △ (defect): the weight of the cotton is 30 g Or more and less than 60 g x (very bad): the weight of the fluff is 60 g or more
[スカム抑制性評価]
 処理剤付与綿3kgを大和機工社製ミニチュアローラーカード機で処理し、ケーシング内側に付着したスカムを下記の4段階で目視判定し、◎~○であればスカム抑制効果が良好であると判断した。
  スカムの目視判定の指標
   ◎(非常に良好):ケーシングの内側の2割未満の範囲にスカムが付着。
   ○(良好)   :ケーシングの内側の2割以上5割未満の範囲にスカムが付着。
   △(不良)   :ケーシングの内側の5割以上8割未満の範囲にスカムが付着。
   ×(非常に不良):ケーシングの内側の8割以上の範囲にスカムが付着。
[Scum suppression evaluation]
Treated 3kg of cotton with treatment agent with a miniature roller card machine manufactured by Yamato Kiko Co., Ltd., and visually judged the scum adhering to the inside of the casing in the following four stages. If ◎ to ○, it was judged that the scum suppressing effect was good. .
Indicator for visual judgment of scum ◎ (very good): Scum adheres to less than 20% of the inside of the casing.
○ (Good): Scum adheres in the range of 20% to less than 50% inside the casing.
Δ (defect): Scum adheres in the range of 50% to less than 80% inside the casing.
X (very bad): Scum adheres to an area of 80% or more inside the casing.
[低起泡性]
 処理剤付与綿30gを500mlのビーカーに入れ、その上に常温のイオン交換水300gを注ぎ入れ、ラップで蓋をして4時間放置後、イオン交換水に浸漬した処理剤付与綿から別の300mlビーカーに浸漬液200mlを搾り出した。次に、その搾り液30mlを100m1の栓付きメスシリンダーに入れて、10回強振した後、その5分後の泡の高さを測定した。泡の高さが1.0cm未満で低起泡性が良好であると判断した。
  低起泡性の判断の指標(泡の高さ(cm))
   ◎(非常に良好):泡の高さが0.5cm未満。
   ○(良好)   :泡の高さが0.5cm以上1.0cm未満。
   △(不良)   :泡の高さが1.0cm以上2.0cm未満。
   ×(非常に不良):泡の高さが2.0cm以上。
[Low foaming property]
30 g of treatment agent-added cotton is put into a 500 ml beaker, and 300 g of ion-exchange water at room temperature is poured onto it, covered with a wrap, left for 4 hours, and then treated with another 300 ml of treatment-agent-added cotton soaked in ion-exchange water. 200 ml of immersion liquid was squeezed into a beaker. Next, 30 ml of the squeezed solution was placed in a 100 ml stoppered measuring cylinder and shaken 10 times, and the height of the foam after 5 minutes was measured. It was judged that the foam height was less than 1.0 cm and the low foaming property was good.
Low foaming index (bubble height (cm))
A (very good): The height of the foam is less than 0.5 cm.
○ (Good): The height of the foam is 0.5 cm or more and less than 1.0 cm.
Δ (defect): The height of the foam is 1.0 cm or more and less than 2.0 cm.
X (very bad): The height of the foam is 2.0 cm or more.
[不織布の地合評価]
(スパンレース法)
 処理剤付与綿40gをそれぞれ大和機工社製開繊機(型式OP-400)により開繊処理を施した。次いで、開繊処理された処理剤付与綿をランダム不織布加工機に供給し、排出されたフリースを積層して、目付100g/mの繊維ウェブを得た。この繊維ウェブを、金属製ネットよりなる支持体上に配置し、噴射圧力15kg/cm・Gで第一段階のスパンレース処理を施し、綿繊維相互間を予備的に三次元絡合させた。引き続き、噴射圧力100kg/cm・Gで第二段階のスパンレース処理を施し、乾燥して不織布をそれぞれ得た。得られたスパンレース法による不織布の地合を目視判定にて評価した。
 不織布の地合の判断の指標
  ◎:不織布の地合の乱れがなく、見た目が非常に良好である。
  ○:不織布の地合の乱れが少なく、見た目が良好である。
  △:不織布の地合に若干の乱れが見られる。
  ×:不織布の地合に乱れが見られる。
[Evaluation of formation of nonwoven fabric]
(Spanlace method)
Each 40 g of treatment-applied cotton was subjected to a fiber opening treatment using a fiber spreader (model OP-400) manufactured by Daiwa Kikko Co., Ltd. Subsequently, the treatment agent-added cotton subjected to the fiber opening treatment was supplied to a random nonwoven fabric processing machine, and the discharged fleece was laminated to obtain a fiber web having a basis weight of 100 g / m 2 . This fiber web was placed on a support made of a metal net, subjected to a first stage spunlace treatment at an injection pressure of 15 kg / cm 2 · G, and the cotton fibers were preliminarily three-dimensionally entangled. . Subsequently, a second stage spunlace treatment was applied at an injection pressure of 100 kg / cm 2 · G and dried to obtain nonwoven fabrics. The formation of the nonwoven fabric obtained by the spunlace method was evaluated by visual judgment.
Index of determination of the formation of the nonwoven fabric A: There is no disturbance of the formation of the nonwoven fabric, and the appearance is very good.
○: There is little disorder of the formation of the nonwoven fabric, and the appearance is good.
(Triangle | delta): Some disorder is seen in the formation of a nonwoven fabric.
X: Disturbance is seen in the formation of a nonwoven fabric.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3から分かるように、実施例1~14の不織布製造用処理剤は、アルジトール脂肪酸エステル化合物(A1)及び二無水アルジトールと脂肪酸とのエステル化合物(A2)から選ばれる少なくとも1種であるエステル化合物(A)と、ポリオキシアルキレン多価アルコール脂肪酸エステル(B1)、ポリアルキレングリコール脂肪酸エステル(B2)、鉱物油(B3)及び1価アルコール脂肪酸エステル(B4)から選ばれる少なくとも1種である成分(B)とを含み、前記化合物(A1)を構成するアルジトールの水酸基の価数が5以上であるために、不織布製造用処理剤を付与した短繊維は、絡合性及びスカム抑制に優れ且つ起泡が少ない。
 一方、比較例1~6において、前記エステル化合物(A)がない場合(比較例1、3、5及び6)、前記成分(B)がない場合(比較例2及び4)、アルジトール脂肪酸エステル化合物であっても、水酸基の価数が4以下の場合(比較例5及び6)には、本願課題の内のすくなくとも1つが解決できていない。
As can be seen from Tables 1 to 3, the treatment agents for nonwoven fabric production of Examples 1 to 14 are at least one selected from alditol fatty acid ester compound (A1) and ester compound (A2) of dianhydride alditol and fatty acid. It is at least one selected from an ester compound (A), a polyoxyalkylene polyhydric alcohol fatty acid ester (B1), a polyalkylene glycol fatty acid ester (B2), a mineral oil (B3), and a monohydric alcohol fatty acid ester (B4). Since the valence of the hydroxyl group of the alditol constituting the compound (A1) containing the component (B) is 5 or more, the short fiber provided with the treatment agent for producing a nonwoven fabric is excellent in entanglement and scum suppression. And there is little foaming.
On the other hand, in Comparative Examples 1 to 6, when there is no ester compound (A) (Comparative Examples 1, 3, 5 and 6), when there is no component (B) (Comparative Examples 2 and 4), alditol fatty acid ester compound However, when the valence of the hydroxyl group is 4 or less (Comparative Examples 5 and 6), at least one of the problems of the present application cannot be solved.

Claims (9)

  1.  アルジトール脂肪酸エステル化合物(A1)及び二無水アルジトールと脂肪酸とのエステル化合物(A2)から選ばれる少なくとも1種であるエステル化合物(A)と、
    ポリオキシアルキレン多価アルコール脂肪酸エステル(B1)、ポリアルキレングリコール脂肪酸エステル(B2)、鉱物油(B3)及び1価アルコール脂肪酸エステル(B4)から選ばれる少なくとも1種である成分(B)とを含み、
    前記化合物(A1)を構成するアルジトールの水酸基の価数が5以上である、不織布製造用処理剤。
    An ester compound (A) which is at least one selected from an alditol fatty acid ester compound (A1) and an ester compound (A2) of dianhydride alditol and a fatty acid;
    A component (B) which is at least one selected from polyoxyalkylene polyhydric alcohol fatty acid ester (B1), polyalkylene glycol fatty acid ester (B2), mineral oil (B3) and monohydric alcohol fatty acid ester (B4). ,
    The processing agent for nonwoven fabric manufacture whose valence of the hydroxyl group of the alditol which comprises the said compound (A1) is 5 or more.
  2.  アニオン性界面活性剤(C)をさらに含む、請求項1に記載の不織布製造用処理剤。 The processing agent for manufacturing a nonwoven fabric according to claim 1, further comprising an anionic surfactant (C).
  3.  一無水アルジトールと脂肪酸とのエステル化合物(D)をさらに含む、請求項1又は2に記載の不織布製造用処理剤。 The processing agent for nonwoven fabric manufacture according to claim 1 or 2, further comprising an ester compound (D) of monoanhydride alditol and a fatty acid.
  4.  処理剤の不揮発分に対する前記化合物(A)の重量割合が0.1~20重量%である、請求項1~3のいずれかに記載の不織布製造用処理剤。 The treatment agent for producing a nonwoven fabric according to any one of claims 1 to 3, wherein the weight ratio of the compound (A) to the nonvolatile content of the treatment agent is 0.1 to 20% by weight.
  5.  前記化合物(A)と前記化合物(D)との重量比(A/D)が0.1~1000である、請求項3に記載の不織布製造用処理剤。 The treatment agent for producing a nonwoven fabric according to claim 3, wherein a weight ratio (A / D) of the compound (A) to the compound (D) is 0.1 to 1000.
  6.  前記化合物(A)を構成するアルジトールが、アラビトール、キシリトール、リビトール、ソルビトール、マンニトール及びガラクチトールから選ばれる少なくとも1種である、請求項1~5のいずれかに記載の不織布製造用処理剤。 The treatment agent for producing a nonwoven fabric according to any one of claims 1 to 5, wherein the alditol constituting the compound (A) is at least one selected from arabitol, xylitol, ribitol, sorbitol, mannitol and galactitol.
  7.  原料短繊維に対して、請求項1~6のいずれかに記載の不織布製造用処理剤を付与してなる、短繊維。 Short fibers obtained by applying the nonwoven fabric manufacturing treatment agent according to any one of claims 1 to 6 to raw material short fibers.
  8.  請求項7に記載の短繊維を含有する、不織布。 A nonwoven fabric containing the short fiber according to claim 7.
  9.  請求項7に記載の短繊維を集積させて繊維ウェブを作製し、該繊維ウェブをスパンレース法で処理する工程を含む、不織布の製造方法。 A method for producing a nonwoven fabric, comprising a step of accumulating the short fibers according to claim 7 to produce a fiber web and treating the fiber web by a spunlace method.
PCT/JP2017/012241 2016-04-12 2017-03-27 Processing agent for manufacturing non-woven fabric and use thereof WO2017179405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018511954A JP6871238B2 (en) 2016-04-12 2017-03-27 Nonwoven fabric manufacturing treatment agent and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-079446 2016-04-12
JP2016079446 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017179405A1 true WO2017179405A1 (en) 2017-10-19

Family

ID=60041527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012241 WO2017179405A1 (en) 2016-04-12 2017-03-27 Processing agent for manufacturing non-woven fabric and use thereof

Country Status (2)

Country Link
JP (1) JP6871238B2 (en)
WO (1) WO2017179405A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893584A (en) * 2020-06-16 2020-11-06 杭州千芝雅卫生用品有限公司 Water-resistant environment-friendly fiber filter material and preparation method thereof
CN113373687A (en) * 2020-02-25 2021-09-10 三吉油脂株式会社 Agent for treating artificial silk ear barrel and artificial silk ear barrel using same
WO2022163716A1 (en) * 2021-01-27 2022-08-04 旭化成株式会社 Hydrophilizing agent for fibers, and nonwoven fabric
JP7311196B1 (en) 2022-10-31 2023-07-19 竹本油脂株式会社 Treatment agent for rayon spunlace, composition containing treatment agent for rayon spunlace, first treatment agent for rayon spunlace, composition containing first treatment agent for rayon spunlace, method for producing spunlace nonwoven fabric

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291466A (en) * 1995-04-17 1996-11-05 Chisso Corp Water-repelling fiber and nonwoven fabric made thereof
JPH101875A (en) * 1996-04-17 1998-01-06 Chisso Corp Low-temperature adhesive fiber and nonwoven fabric made of the same
WO2016104106A1 (en) * 2014-12-24 2016-06-30 松本油脂製薬株式会社 Treating agent for nonwoven-fabric production and use thereof
WO2017047369A1 (en) * 2015-09-18 2017-03-23 松本油脂製薬株式会社 Synthetic fiber treatment agent and application therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291466A (en) * 1995-04-17 1996-11-05 Chisso Corp Water-repelling fiber and nonwoven fabric made thereof
JPH101875A (en) * 1996-04-17 1998-01-06 Chisso Corp Low-temperature adhesive fiber and nonwoven fabric made of the same
WO2016104106A1 (en) * 2014-12-24 2016-06-30 松本油脂製薬株式会社 Treating agent for nonwoven-fabric production and use thereof
WO2017047369A1 (en) * 2015-09-18 2017-03-23 松本油脂製薬株式会社 Synthetic fiber treatment agent and application therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373687A (en) * 2020-02-25 2021-09-10 三吉油脂株式会社 Agent for treating artificial silk ear barrel and artificial silk ear barrel using same
CN111893584A (en) * 2020-06-16 2020-11-06 杭州千芝雅卫生用品有限公司 Water-resistant environment-friendly fiber filter material and preparation method thereof
WO2022163716A1 (en) * 2021-01-27 2022-08-04 旭化成株式会社 Hydrophilizing agent for fibers, and nonwoven fabric
JP7448764B2 (en) 2021-01-27 2024-03-13 エム・エーライフマテリアルズ株式会社 Hydrophilic agents for textiles and nonwoven fabrics
JP7311196B1 (en) 2022-10-31 2023-07-19 竹本油脂株式会社 Treatment agent for rayon spunlace, composition containing treatment agent for rayon spunlace, first treatment agent for rayon spunlace, composition containing first treatment agent for rayon spunlace, method for producing spunlace nonwoven fabric

Also Published As

Publication number Publication date
JPWO2017179405A1 (en) 2019-02-14
JP6871238B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6720083B2 (en) Nonwoven fabric manufacturing treatment agent and its use
JP6605833B2 (en) Non-woven fabric manufacturing agent and its use
JP6871238B2 (en) Nonwoven fabric manufacturing treatment agent and its use
JP4691429B2 (en) Synthetic fiber treatment agent and method for manufacturing nonwoven fabric and nonwoven fabric manufacturing fabric
JP6057489B1 (en) Polyolefin synthetic fiber treatment agent, aqueous solution thereof, polyolefin synthetic fiber treatment method, polyolefin synthetic fiber, and thermal bond nonwoven fabric
JP6533020B1 (en) Process for producing short fiber treating agent, short fiber and spunlace nonwoven fabric
JP6322040B2 (en) Permeability imparting agent
JP6298506B2 (en) Polyolefin-based synthetic fiber treatment agent, polyolefin-based synthetic fiber, thermal bond nonwoven fabric and laminate
JP6818384B2 (en) Fiber treatment agent, method of manufacturing water-permeable fiber and non-woven fabric to which it is attached
JP6408186B1 (en) Polyolefin synthetic fiber treatment agent and polyolefin synthetic fiber
CN110892108B (en) Fiber treatment agent for nonwoven fabric and nonwoven fabric using same
JP6096061B2 (en) Fiber treatment agent for high pressure water entanglement and its use
DE102014119334A1 (en) Composition for permanent hydrophilic finishing of textile fibers and textile products
JP2022173264A (en) Fiber processing agent and liquid permeable nonwoven fabric containing same
WO2016102470A1 (en) Composition for the permanent hydrophilic finishing of textile fibres and textile products
JP6773534B2 (en) Permeability imparting agent and its use
JP2011030940A (en) Surface sheet of absorbent article
JP5469429B2 (en) Hydrophilic fiber and method for producing the same, and fiber assembly using the same
JP2011084824A (en) Hydrophilizing agent for fiber and fiber containing the same
JP2011202301A (en) Polyester fiber for spunlace nonwoven fabric
DE102004020083A1 (en) Polyolefin-containing wipes
JP3489341B2 (en) Hydrophilic fiber and cloth
JP4709327B2 (en) Synthetic fiber treatment agent for papermaking, method for producing papermaking synthetic fiber, and method for producing papermaking nonwoven fabric
CN114207210B (en) Fiber treating agent for nonwoven fabric
JP2006077379A (en) Dispersant for papermaking

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782223

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782223

Country of ref document: EP

Kind code of ref document: A1