WO2017179147A1 - Isomer analysis method using mass spectrometry, and tandem mass spectrometer - Google Patents

Isomer analysis method using mass spectrometry, and tandem mass spectrometer Download PDF

Info

Publication number
WO2017179147A1
WO2017179147A1 PCT/JP2016/061876 JP2016061876W WO2017179147A1 WO 2017179147 A1 WO2017179147 A1 WO 2017179147A1 JP 2016061876 W JP2016061876 W JP 2016061876W WO 2017179147 A1 WO2017179147 A1 WO 2017179147A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
isomer
collision energy
unit
compound
Prior art date
Application number
PCT/JP2016/061876
Other languages
French (fr)
Japanese (ja)
Inventor
雄紀 坂本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2016/061876 priority Critical patent/WO2017179147A1/en
Publication of WO2017179147A1 publication Critical patent/WO2017179147A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry

Definitions

  • the isomers are roughly classified into structural isomers and stereoisomers.
  • Structural isomers often have very different chemical properties.
  • isomers with different main chains and isomers with different functional groups such as chain compounds, mass spectra and gas chromatograph tandems obtained by scanning measurement with a gas chromatograph mass spectrometer (GC-MS)
  • GC-MS gas chromatograph mass spectrometer
  • identification is possible by using a mass spectrum obtained by product ion scan measurement in a scanning mass spectrometer (GC-MS / MS).
  • the structural isomers are identified as follows, for example (see Patent Document 1).
  • Various components in the sample to be measured are separated by a gas chromatograph and introduced into a triple quadrupole mass spectrometer in which a quadrupole mass filter is arranged before and after the collision cell.
  • product ion scan measurement is repeated.
  • ions having a specific mass-to-charge ratio are selected by the quadrupole mass filter in the previous stage, and the selected ions are dissociated in the collision cell. Produces product ions.
  • the product ions are separated for each mass-to-charge ratio by a quadrupole mass filter at the subsequent stage and detected by an ion detector. Based on the detection signal, the data processing unit creates a mass spectrum in which the relative intensity with respect to the peak (base peak) in the mass-to-charge ratio at which the maximum signal intensity is obtained is the intensity of the peak in each mass-to-charge ratio.
  • Iu (m / z) is the relative intensity of the peak at the mass-to-charge ratio m / z on the mass spectrum for an unknown sample, and It (m / z) is on the mass spectrum of a specific compound registered in the library.
  • the isomers having different main chains and functional groups as described above since there is often a certain difference in the similarity SI between the isomers, it is relatively easy to identify the isomers.
  • NMR nuclear magnetic resonance apparatus
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to make it possible to easily identify regioisomers that have been difficult to identify using mass spectrometry. It is therefore an object of the present invention to provide an isomer analysis method capable of easily identifying isomers at low cost without preparing a standard sample, and a tandem mass spectrometer for the same.
  • An isomer analysis method made to solve the above problems is a tandem mass spectrometer capable of dissociating ions derived from a compound and performing mass analysis of product ions generated thereby.
  • An analysis method for identifying positional isomers of a given compound comprising: a) Product ion scan measurement in which one of the ion dissociation conditions is changed by a predetermined range within a range of values according to the target compound, and the mass-to-charge ratio according to the target compound is used as the mass-to-charge ratio of the precursor ion.
  • a tandem mass spectrometer which has been made to solve the above problems, is a mass spectrometer for carrying out the isomer analysis method according to the present invention, and ionizes a compound in a sample.
  • a tandem mass spectrometer comprising: a) While changing one of the ion dissociation conditions in the collision cell within a range of a value corresponding to the target compound with a predetermined width, the mass-to-charge ratio corresponding to the target compound was
  • An analysis control unit for controlling the operation of each unit so as to obtain a mass spectrum by performing a product ion scan measurement; b) For mass spectra for different ion dissociation condition values obtained under the control of the analysis control unit, the intensity ratio of specific peaks according to the target compound with respect to changes in the ion dissociation condition values Or a data processing unit that determines which of the plurality of positional isomers of the target compound is based on a change in at least one of the magnitude relationships of the strengths; It is characterized by having.
  • the tandem mass spectrometer used in the isomer analysis method according to the present invention or the tandem mass spectrometer according to the present invention is typically a quadrupole mass filter in both the former mass separator and the latter mass separator.
  • a triple quadrupole mass spectrometer, or a front mass separator is a quadrupole mass filter, and a rear quadrupole separator is a Q-TOF mass spectrometer which is a time-of-flight mass spectrometer.
  • the voltage applied to the inlet electrode of the collision cell or the like may be changed, and the collision energy is immediately switched by the change. Therefore, in order to collect necessary data in a short time, it is better to perform product ion scan measurement while changing the collision energy.
  • the fragment patterns differ slightly depending on the isomer, so the magnitude of the peak intensity at multiple specific mass-to-charge ratios is reversed or the relative intensity ratio is noticeable.
  • the value of the collision energy that changes varies depending on the isomer.
  • the collision energy value at which such a change occurs is affected by fluctuations in the collision gas pressure, etc., a plurality of specific mass-to-charge ratios as described above are obtained from a mass spectrum under a specific collision energy value. It is difficult to grasp the magnitude relationship of peak intensities and the difference in relative intensity ratio.
  • product ion scan measurement is performed while changing the collision energy within a predetermined range within a predetermined collision energy range corresponding to the target compound, for example, cresol. Since a plurality of mass spectra obtained by performing the above are utilized, even if the collision energy value at which the magnitude relationship of the peak intensity and the relative intensity ratio change at a plurality of specific mass-to-charge ratios change to some extent, It is possible to reliably determine the collision energy value at which the change occurs. And it becomes possible to determine an isomer based on the collision energy value.
  • the analysis control unit includes a condition determining unit that determines a range of collision energy to be changed and a change width thereof according to a target compound. For each compound in which positional isomers exist, it is possible to experimentally determine the range of collision energy and the range of change appropriate for identifying the positional isomers. By storing the information in the storage unit, the condition determination unit can easily obtain an appropriate collision energy range corresponding to the target compound and its change range from the storage unit.
  • the data processing unit is a collision in which a change that matches a criterion set in advance according to a target compound is generated based on a plurality of mass spectra for different collision energy values. It can be set as the structure which extracts an energy value and determines a positional isomer using the extracted energy value.
  • the “predetermined criterion” is, for example, a change in the magnitude relationship of peak intensities at a plurality of specific mass-to-charge ratios described above.
  • Such a determination criterion may be stored in the storage unit together with a collision energy range suitable for identifying the above-described positional isomers and a change width thereof.
  • the ionization unit preferably performs ionization by an electron ionization method.
  • the isomer analysis method and the tandem mass spectrometer it is possible to identify positional isomers that are difficult to identify from a peak pattern of a certain mass spectrum.
  • This identification eliminates the need for the user to prepare a standard sample in advance because the standard sample does not need to be analyzed in advance, which saves the labor of the standard sample and enables isomer analysis of compounds that are generally difficult to obtain. It becomes.
  • isomers can be easily identified at low cost.
  • FIG. 1 is a schematic configuration diagram of an embodiment of a GC-MS / MS system for carrying out an isomer identification method according to the present invention.
  • the conceptual diagram which shows an example of the setting range of the collision energy at the time of measuring in the GC-MS / MS system of a present Example.
  • the flowchart which shows the procedure of the isomer identification process in the GC-MS / MS system of a present Example. Explanatory drawing of the isomer identification processing method in the GC-MS / MS system of a present Example.
  • a triple quadrupole mass spectrometer which will be described later, is used as a tandem mass spectrometer for measuring a sample.
  • a Q-TOF mass spectrometer or the like can be used. Obviously, it may be used.
  • collision energy used for ion dissociation in a triple quadrupole mass spectrometer is called low energy CID, and the collision energy is in the range of several eV to several tens eV.
  • the unit of collision energy is eV.
  • the collision energy is determined by the acceleration voltage when ions are incident on the collision cell. Therefore, the collision energy is conventionally expressed by this acceleration voltage. . Therefore, in the following description, the collision energy is expressed by the value of the acceleration voltage.
  • FIG. 8 shows the collision energy of a precursor ion having a mass-to-charge ratio of 108 for isomers of ortho (o), meta (m), and para (p) positions of cresol, which is a typical example of aromatic disubstituted compounds.
  • This is an example of a mass spectrum obtained by performing product ion scan measurement by changing the measurement (hereinafter, the mass spectrum refers to a product ion spectrum).
  • the collision energy is set in three stages of 10V, 15V, and 20V. Comparing the patterns of the three mass spectra for each collision energy shows little difference in the observed mass-to-charge ratio of the ions and the relative intensity ratio of the peaks of the ions, from which the three isomers are identified. It is difficult.
  • FIGS. 5 to 7 are actual mass spectra of three isomers of cresol, which were collected by performing product ion scan measurement while changing the collision energy (CE) with a finer step width.
  • FIG. 5 is a mass spectrum in the range of CE: 21V to 27V.
  • CE 23V
  • CE 21 V
  • the p-cresol specificity as described above is difficult to grasp by looking at the mass spectrum at a certain collision energy as in the example shown in FIG. 8, but the value of the collision energy with a fine step width. It is possible to grasp by extracting the above-mentioned feature points from the mass spectrum collected while changing and capturing the change. Specifically, by obtaining a collision energy value with an intensity ratio exceeding 1 from the graph as shown in FIG.
  • the mode of ion dissociation is also affected by factors other than collision energy, such as the collision gas pressure in the collision cell and the type of gas.
  • the collision energy value that causes a specific change in the positional isomer as described above may fluctuate (fluctuate) due to such a variation in conditions or a difference in apparatus.
  • the collision energy value that causes a specific change in the positional isomer as described above may fluctuate (fluctuate) due to such a variation in conditions or a difference in apparatus.
  • the relative intensity ratio is about 30%, which is about twice as large. Yes.
  • no significant difference is seen in the relative intensity ratio with the collision energy far from the CE value.
  • the mass spectrum is collected while changing the collision energy with a fine step width in a predetermined collision energy range including CE: 28V to 29V, the relative intensity ratio is calculated, and the change is observed to detect o-cresol. It can be distinguished from the other two isomers.
  • FIG. 7 shows mass spectra of CE: 41V and 42V.
  • FIG. 1 is a schematic configuration diagram of the GC-MS / MS system of the present embodiment
  • FIG. 2 is a conceptual diagram showing an example of a collision energy setting range
  • FIG. 3 is an isomer identification process in the GC-MS / MS of the present embodiment.
  • FIG. 4 is an explanatory diagram of an isomer identification processing method in GC-MS / MS of this example.
  • the GC-MS / MS system of this embodiment includes a GC unit 1 and an MS / MS unit 2.
  • the GC unit 1 includes a sample vaporizing chamber 10 that vaporizes a small amount of sample, a column 12 that separates compounds in the sample in a time direction, and a column oven 11 that controls the temperature of the column 12.
  • the MS / MS unit 2 includes an ionization unit 21 that ionizes a compound by an electron ionization (EI) method in a chamber 20 that is evacuated by a vacuum pump (not shown), and a front quadrupole that includes four rod electrodes.
  • EI electron ionization
  • the control unit 4 to which the input unit 6 and the display unit 7 that are user interfaces are connected operates the power supply unit 5 that applies a predetermined voltage to each unit of the GC unit 1 and each unit of the MS / MS unit 2. Each has a function to control.
  • the control unit 4 includes an isomer identification time control unit 40 and a compound correspondence MS / MS condition storage unit 41 as characteristic blocks in the system of this embodiment.
  • the data processing unit 3 includes a spectrum data collection unit 30 that collects and stores data obtained by measurement, a compound database (DB) 32, and a compound DB 32 as characteristic blocks of the system of the present embodiment.
  • a compound identification unit 31 that identifies a target compound by using, an isomer identification information storage unit 34 that stores information for identifying an isomer of a predetermined compound, and an isomer identification information storage unit 34. And an isomer identification unit 33 for identifying an isomer by using the existing information.
  • mass spectra obtained by product ion scan measurement using a plurality of characteristic ion species as precursor ions are recorded in advance for various compounds.
  • control unit 4 and the data processing unit 3 may be embodied by executing a dedicated control / processing software installed in the computer using a personal computer as hardware. it can.
  • the input unit 6 is a keyboard or a pointing device (such as a mouse)
  • the display unit 7 is a display monitor.
  • the operation of the product ion scan measurement which is one of the MS / MS analyzes in the GC-MS / MS system of the present embodiment will be schematically described.
  • the sample liquid is vaporized in a short time, and the compound in the sample is sent into the column 12 on a carrier gas such as helium.
  • a carrier gas such as helium.
  • each compound in the sample reaches the outlet of the column 12 with a different delay.
  • the column oven 11 is heated according to a predetermined temperature profile.
  • the ionization unit 21 sequentially ionizes compounds in the gas supplied from the column 12 outlet. Since the ionization unit 21 is an EI ion source, a part of the compound bond is cleaved during ionization (that is, fragmentation occurs), and ions of various fragments derived from one compound are generated.
  • the power supply unit 5 applies a voltage that allows ions having a specific mass-to-charge ratio to pass through the rod electrodes of the front-stage quadrupole mass filter 22 and the rear-stage quadrupole mass filter 25. Apply. Thereby, ions having a specific mass-to-charge ratio among various ions derived from the compound pass through the front quadrupole mass filter 22 and are introduced into the collision cell 23. A collision gas is introduced into the collision cell 23, and the ions introduced into the collision cell 23 come into contact with the collision gas and are cleaved by collision-induced dissociation.
  • the analysis conditions such as the mass-to-charge ratio of the target precursor ion and the retention time range in which the corresponding compound is introduced into the MS / MS unit 2 are associated with the compound, and the MS / MS corresponding to the compound
  • the analysis conditions corresponding to the compound are read from the compound correspondence MS / MS condition storage unit 41, It is set in the isomer identification control unit 40.
  • the analysis conditions as described above can be checked by the user through experiments and registered in the storage unit 41. In general, however, the manufacturer who provides the system checks through experiments and the like when providing the system. Alternatively, it can be registered in the storage unit 41 at an appropriate time after the system is provided.
  • the isomer identification information storage unit 34 information necessary for identifying the isomer when the mass spectrum of the product ion scan measurement is acquired while the collision energy is changed with a fine step width as described above. (Hereinafter referred to as “isomer identification information”) is stored in association with the compound.
  • the isomer identification information includes index value calculation information for calculating an index value used for identifying the isomer, and determination conditions such as a threshold value and a range for determining the index value.
  • the determination of the collision energy value is index value calculation information, and the collision energy range in which it can be determined that the measurement target cresol is p-cresol is determined.
  • the determination condition may be determined with an appropriate margin in consideration of, for example, a change in collision gas pressure within a range in which isomers can be identified.
  • the analysis conditions corresponding to the compound are read from the compound correspondence MS / MS condition storage unit 41 and the isomer is read out.
  • the isomer identification information corresponding to the compound is read from the isomer identification information storage unit 34 and set in the isomer identification unit 33 (step S1).
  • the isomer identification control unit 40 changes the collision energy within the holding time range set as the analysis condition by the step width ⁇ CE set in order from the lower limit CEmin of the collision energy range. While reaching the upper limit CEmax (see FIG. 2), the product ion scan measurement is performed for each collision energy.
  • the spectrum data collection unit 30 acquires and stores mass spectrum data over a predetermined mass-to-charge ratio range for each product ion scan measurement (step S2). Thereby, a large number of mass spectrum data are obtained.
  • the compound identification unit 31 identifies the compound by collating the peak pattern of one or a plurality of mass spectra obtained with the peak pattern of the mass spectrum in the compound database 32 (step S3). This makes it possible to confirm whether the measured compound is indeed the measurement target compound.
  • the isomer cannot be determined here, for example, it is not clear which isomer is the compound to be measured, but it can only be confirmed as cresol.
  • the isomer identification unit 33 calculates an index value for identifying the isomer based on the index value calculation information from the mass spectra respectively obtained corresponding to different collision energies (step S4). Then, the isomer is determined by comparing the obtained index value with the determination condition (step S5), and the isomer identification result is output from the display unit 7 (step S6).
  • o-cresol and m-cresol can be determined according to different index values and determination conditions. Based on the determination results, it is determined which isomer is finally attributed. It may be. Of course, it may be judged that it is not assigned to any isomer.
  • the GC-MS / MS system was used on the assumption that the sample contains various compounds other than the measurement target compound for which isomers are to be identified. If there is, it is not necessary to separate the components in the GC unit 1, and the vaporized sample may be directly introduced into the MS / MS unit 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

In the present invention, measurement conditions such as the precursor ion m/z, collision energy (CE) range, and the CE step width, are determined according to the compound for isomer identification (S1). Mass spectrums are obtained through product ion scan measurement of the target sample while the CE is changed in accordance with the conditions (S2). A prescribed value, such as the peak intensity ratio at a specific m/z, is determined from the obtained mass spectrums, and an isomer is identified through the comparison of the variation of the prescribed value in relation to the CE variation with a prescribed reference (S3-S5). For example, of the three positional isomers of cresol, the size relationship between the peak intensities when m/z = 77 and m/z = 79 reverses within a lower CE value range for the p- isomer than for the m- and o- isomers. Further, the increase in the intensity of the peak when m/z = 89 in relation to a base peak in the range of CE = 28-29 V is more pronounced for the o- isomer than for the p- and m- isomers. Thus, multiple conditions such as these are comprehensively assessed to identify the positional isomer of the target sample.

Description

質量分析を用いた異性体分析方法及びタンデム型質量分析装置Isomer analysis method using mass spectrometry and tandem mass spectrometer
 本発明は、タンデム型質量分析装置を利用して所定の化合物の異性体を分析する異性体分析方法及びその方法を実施するためのタンデム型質量分析装置に関し、さらに詳しくは、主鎖や環構造に結合している物質の結合位置のみが異なる位置異性体を識別するための分析方法及びタンデム型質量分析装置に関する。 The present invention relates to an isomer analysis method for analyzing an isomer of a predetermined compound using a tandem mass spectrometer and a tandem mass spectrometer for carrying out the method, and more particularly, a main chain and a ring structure The present invention relates to an analysis method and a tandem mass spectrometer for identifying regioisomers that differ only in the bonding position of a substance bonded to the.
 医薬品や農薬、或いは薬物などの化合物では、組成が同じで構造が相違する異性体によって薬理的な作用や効果が異なるものが多い。そのため、こうした化合物の異性体を識別することは、医薬品や農薬の開発、又は製造や品質管理などのうえで非常に重要である。また、薬物取締法でも特定の異性体においてのみ規制されている化合物もあり、違法薬物の検査等の分野においても異性体を正確に識別することは重要である。 Many compounds such as pharmaceuticals, agricultural chemicals, and drugs have different pharmacological actions and effects depending on isomers having the same composition but different structures. Therefore, it is very important to identify isomers of such compounds in the development of pharmaceuticals and agricultural chemicals, production, and quality control. In addition, some compounds are regulated only in specific isomers by the Drug Control Law, and it is important to accurately identify isomers in fields such as illegal drug testing.
 異性体には大別して構造異性体と立体異性体とがあり、構造異性体は特に化学的性質が大きく異なることがよくある。構造異性体のうち、例えば鎖式化合物などで主鎖が異なる異性体や官能基が異なる異性体などは、ガスクロマトグラフ質量分析装置(GC-MS)におけるスキャン測定で得られるマススペクトルやガスクロマトグラフタンデム型質量分析装置(GC-MS/MS)におけるプロダクトイオンスキャン測定で得られるマススペクトルを利用することで識別が可能であることが多い。 The isomers are roughly classified into structural isomers and stereoisomers. Structural isomers often have very different chemical properties. Among the structural isomers, for example, isomers with different main chains and isomers with different functional groups, such as chain compounds, mass spectra and gas chromatograph tandems obtained by scanning measurement with a gas chromatograph mass spectrometer (GC-MS) In many cases, identification is possible by using a mass spectrum obtained by product ion scan measurement in a scanning mass spectrometer (GC-MS / MS).
 具体的には、上記のような構造異性体の識別は例えば次のように行われる(特許文献1等参照)。
 測定対象である試料中の各種成分はガスクロマトグラフで分離され、コリジョンセルを挟んで前後に四重極マスフィルタが配置された三連四重極型質量分析装置に導入される。三連四重極型質量分析装置ではプロダクトイオンスキャン測定が繰り返し行われる。即ち、イオン化部で生成された試料由来のイオンの中で特定の質量電荷比を有するイオンが前段の四重極マスフィルタで選択され、その選択されたイオンをコリジョンセル内で解離させることで各種のプロダクトイオンを生成する。そのプロダクトイオンが後段の四重極マスフィルタで質量電荷比毎に分離されイオン検出器で検出される。データ処理部では、その検出信号に基づいて、最も大きな信号強度が得られる質量電荷比におけるピーク(ベースピーク)に対する相対強度を各質量電荷比におけるピークの強度としたマススペクトルが作成される。
Specifically, the structural isomers are identified as follows, for example (see Patent Document 1).
Various components in the sample to be measured are separated by a gas chromatograph and introduced into a triple quadrupole mass spectrometer in which a quadrupole mass filter is arranged before and after the collision cell. In a triple quadrupole mass spectrometer, product ion scan measurement is repeated. In other words, among the ions derived from the sample generated in the ionization section, ions having a specific mass-to-charge ratio are selected by the quadrupole mass filter in the previous stage, and the selected ions are dissociated in the collision cell. Produces product ions. The product ions are separated for each mass-to-charge ratio by a quadrupole mass filter at the subsequent stage and detected by an ion detector. Based on the detection signal, the data processing unit creates a mass spectrum in which the relative intensity with respect to the peak (base peak) in the mass-to-charge ratio at which the maximum signal intensity is obtained is the intensity of the peak in each mass-to-charge ratio.
 データ処理部では、こうして得られた実測のマススペクトルと、各種化合物についての標準的なマススペクトルをデータベース化したライブラリに記憶されているマススペクトルとの類似度SIを、例えば次の(1)式に示すような計算式に従って計算する。
  SI={1-[Σ|Iu(m/z)-It(m/z)|]/[Σ|Iu(m/z)+It(m/z)|]}  …(1)
ここで、Iu(m/z)は未知試料に対するマススペクトル上の質量電荷比m/zにおけるピークの相対強度、It(m/z)はライブラリに登録されている特定の化合物のマススペクトル上の質量電荷比m/zにおけるピークの相対強度、である。また、(1)式中のΣは全てのm/zの総和である。
 一般には、上記類似度SIに基づいて未知試料が特定の化合物であるか否かが判定され、該未知試料が同定(定性)される。上述した主鎖や官能基が相違するような異性体では、異性体間で上記類似度SIに或る程度明確な差が生じるものが多いため、異性体の識別が比較的容易である。
In the data processing unit, the similarity SI between the measured mass spectrum obtained in this way and the mass spectrum stored in a library in which standard mass spectra for various compounds are stored in a database is expressed by, for example, the following equation (1): Calculate according to the formula shown in
SI = {1− [Σ | Iu (m / z) −It (m / z) |] / [Σ | Iu (m / z) + It (m / z) |]} (1)
Here, Iu (m / z) is the relative intensity of the peak at the mass-to-charge ratio m / z on the mass spectrum for an unknown sample, and It (m / z) is on the mass spectrum of a specific compound registered in the library. The relative intensity of the peak at the mass to charge ratio m / z. Further, Σ in the equation (1) is the sum of all m / z.
In general, it is determined whether the unknown sample is a specific compound based on the similarity SI, and the unknown sample is identified (qualitative). Among the isomers having different main chains and functional groups as described above, since there is often a certain difference in the similarity SI between the isomers, it is relatively easy to identify the isomers.
 ところが、例えば芳香族化合物の二置換体や三置換体などの置換位置のみが相違するようないわゆる位置異性体では、異性体間でマススペクトルのピークパターンに顕著な差がつきにくい。上記(1)式では、マススペクトル上での僅かな相対強度の差異は類似度SIに大きな影響を与えないため、相対強度に顕著な差異が出にくい位置異性体では類似度SIに基づく識別は困難である。こうしたことから、従来、位置異性体はクロマトグラフィによる保持時間の差異によって識別されることが多い。そのためには、測定対象である目的試料と同じ分析条件の下で標準試料を測定することによって各位置異性体の保持時間を正確に把握しておく必要がある。 However, in the case of so-called positional isomers that differ only in the substitution positions, such as disubstituted and trisubstituted aromatic compounds, it is difficult to make a significant difference in the peak pattern of the mass spectrum between the isomers. In the above equation (1), a slight difference in relative intensity on the mass spectrum does not significantly affect the similarity SI. Have difficulty. Therefore, conventionally, regioisomers are often identified by the difference in retention time by chromatography. For this purpose, it is necessary to accurately grasp the retention time of each positional isomer by measuring a standard sample under the same analysis conditions as the target sample to be measured.
 しかしながら、医薬品製造工程の中間体や違法薬物の場合、標準試料が販売されていないケースが多い。そのため、こうした化合物においては、クロマトグラフィによる保持時間情報から位置異性体を識別することは通常、困難である。クロマトグラフィ以外に位置異性体の識別に有効な手段としては核磁気共鳴装置(NMR)があるが、該装置はかなり高価であるうえに、NMRスペクトルを適切に解析するには特別な技能や経験が必要である。また、NMRで測定を行うには対象となる化合物を単離精製する必要があるため、分析可能な試料に制約がある。 However, in the case of intermediates and illegal drugs in the pharmaceutical manufacturing process, there are many cases where standard samples are not sold. Therefore, in such compounds, it is usually difficult to distinguish positional isomers from retention time information by chromatography. In addition to chromatography, an effective means for recognizing positional isomers is a nuclear magnetic resonance apparatus (NMR), which is quite expensive and requires special skills and experience to properly analyze NMR spectra. is necessary. In addition, since it is necessary to isolate and purify the target compound in order to perform the measurement by NMR, there are restrictions on the samples that can be analyzed.
国際公開第2015/033397号International Publication No. 2015/033397
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、従来は識別が困難であった位置異性体の識別を質量分析を用いて容易に行えるようにすることで、標準試料を用意する必要がなく低廉なコストで手軽に異性体の識別が可能な異性体分析方法、及びそのためのタンデム型質量分析装置を提供することにある。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to make it possible to easily identify regioisomers that have been difficult to identify using mass spectrometry. It is therefore an object of the present invention to provide an isomer analysis method capable of easily identifying isomers at low cost without preparing a standard sample, and a tandem mass spectrometer for the same.
 上記課題を解決するために成された本発明に係る異性体分析方法は、化合物由来のイオンを解離させ、それにより生成されたプロダクトイオンの質量分析を行うことが可能なタンデム型質量分析装置を用いて所定の化合物の位置異性体を識別する分析方法であって、
 a)イオン解離条件の一つを目的化合物に応じた値の範囲内で所定幅で以て変化させつつ、前記目的化合物に応じた質量電荷比をプリカーサイオンの質量電荷比としたプロダクトイオンスキャン測定をそれぞれ実行してマススペクトルを取得する測定実行ステップと、
 b)測定実行ステップで得られた異なるイオン解離条件の値に対するマススペクトルについて、そのイオン解離条件の値の変化に対する、前記目的化合物に応じた特定の複数のピークの強度比又は強度の大小関係の少なくともいずれかの変化に基づいて、該目的化合物の複数の位置異性体のいずれであるのかを判定する処理ステップと、
 を有することを特徴としている。
An isomer analysis method according to the present invention made to solve the above problems is a tandem mass spectrometer capable of dissociating ions derived from a compound and performing mass analysis of product ions generated thereby. An analysis method for identifying positional isomers of a given compound, comprising:
a) Product ion scan measurement in which one of the ion dissociation conditions is changed by a predetermined range within a range of values according to the target compound, and the mass-to-charge ratio according to the target compound is used as the mass-to-charge ratio of the precursor ion. A measurement execution step of acquiring a mass spectrum by executing
b) Regarding the mass spectrum for different ion dissociation condition values obtained in the measurement execution step, the intensity ratio or intensity magnitude relationship of specific peaks according to the target compound with respect to the change of the ion dissociation condition value A processing step of determining which of the plurality of positional isomers of the target compound is based on at least any change;
It is characterized by having.
 また上記課題を解決するために成された本発明に係るタンデム型質量分析装置は、上記本発明に係る異性体分析方法を実施するための質量分析装置であって、試料中の化合物をイオン化するイオン化部と、該イオン化部で生成されたイオンを質量電荷比に応じて分離する前段質量分離部と、該前段質量分離部で選択された特定の質量電荷比を有するイオンを所定のコリジョンエネルギの下で解離させるコリジョンセルと、該コリジョンセルで生成された各種プロダクトイオンを質量電荷比に応じて分離する後段質量分離部と、該後段質量分離部で分離されたプロダクトイオンを検出するイオン検出部と、を具備するタンデム型質量分析装置において、
 a)前記コリジョンセルにおけるイオン解離条件の一つを目的化合物に応じた値の範囲内で所定幅で以て変化させつつ、前記目的化合物に応じた質量電荷比をプリカーサイオンの質量電荷比としたプロダクトイオンスキャン測定をそれぞれ実行してマススペクトルを取得するように前記各部の動作を制御する分析制御部と、
 b)前記分析制御部による制御の下で得られた、異なるイオン解離条件の値に対するマススペクトルについて、そのイオン解離条件の値の変化に対する、前記目的化合物に応じた特定の複数のピークの強度比又は強度の大小関係の少なくともいずれかの変化に基づいて、該目的化合物の複数の位置異性体のいずれであるのかを判定するデータ処理部と、
 を備えることを特徴としている。
A tandem mass spectrometer according to the present invention, which has been made to solve the above problems, is a mass spectrometer for carrying out the isomer analysis method according to the present invention, and ionizes a compound in a sample. An ionization unit, a pre-stage mass separation unit that separates ions generated by the ionization unit according to a mass-to-charge ratio, and ions having a specific mass-to-charge ratio selected by the pre-stage mass separation unit with a predetermined collision energy A collision cell to be dissociated below, a rear-stage mass separation unit that separates various product ions generated in the collision cell according to a mass-to-charge ratio, and an ion detection unit that detects product ions separated by the rear-stage mass separation unit A tandem mass spectrometer comprising:
a) While changing one of the ion dissociation conditions in the collision cell within a range of a value corresponding to the target compound with a predetermined width, the mass-to-charge ratio corresponding to the target compound was set as the mass-to-charge ratio of the precursor ion. An analysis control unit for controlling the operation of each unit so as to obtain a mass spectrum by performing a product ion scan measurement;
b) For mass spectra for different ion dissociation condition values obtained under the control of the analysis control unit, the intensity ratio of specific peaks according to the target compound with respect to changes in the ion dissociation condition values Or a data processing unit that determines which of the plurality of positional isomers of the target compound is based on a change in at least one of the magnitude relationships of the strengths;
It is characterized by having.
 本発明に係る異性体分析方法で用いられるタンデム型質量分析装置又は本発明に係るタンデム型質量分析装置は、典型的には、前段質量分離部、後段質量分離部ともに四重極マスフィルタである三連四重極型質量分析装置、又は、前段質量分離部が四重極マスフィルタ、後段四重極分離部は飛行時間型質量分析装置であるQ-TOF型質量分析装置である。 The tandem mass spectrometer used in the isomer analysis method according to the present invention or the tandem mass spectrometer according to the present invention is typically a quadrupole mass filter in both the former mass separator and the latter mass separator. A triple quadrupole mass spectrometer, or a front mass separator is a quadrupole mass filter, and a rear quadrupole separator is a Q-TOF mass spectrometer which is a time-of-flight mass spectrometer.
 こうしたタンデム型質量分析装置では、コリジョンセルにおいてイオンを解離させるために該イオンに付与するコリジョンエネルギを変化させると、又は、コリジョンセル内のコリジョンガス(一般的にはアルゴン)のガス圧を変化させると、イオンの解離の態様が異なることが知られている。したがって、「コリジョンセルにおけるイオン解離条件の一つ」とはコリジョンエネルギ又はコリジョンガス圧のいずれかとすることができる。ただし、コリジョンセル内のガス圧を変更するにはコリジョンセルへのガス供給量やガス供給圧を変化させる必要があるが、これを変化させてもコリジョンセル内のコリジョンガス圧は直ぐには所望値に落ち着かない。これに対し、コリジョンエネルギを変更するには、コリジョンセルの入口電極等に印加する電圧を変化させればよく、その変化によってコリジョンエネルギは即座に切り替わる。したがって、短時間で必要なデータを収集するには、コリジョンエネルギを変化させつつプロダクトイオンスキャン測定を行ったほうがよい。 In such a tandem mass spectrometer, when the collision energy applied to the ions is changed in order to dissociate the ions in the collision cell, or the gas pressure of the collision gas (generally argon) in the collision cell is changed. It is known that the mode of ion dissociation is different. Therefore, “one of the ion dissociation conditions in the collision cell” can be either collision energy or collision gas pressure. However, in order to change the gas pressure in the collision cell, it is necessary to change the gas supply amount and gas supply pressure to the collision cell. However, even if this is changed, the collision gas pressure in the collision cell immediately becomes a desired value. I'm not settled down. On the other hand, in order to change the collision energy, the voltage applied to the inlet electrode of the collision cell or the like may be changed, and the collision energy is immediately switched by the change. Therefore, in order to collect necessary data in a short time, it is better to perform product ion scan measurement while changing the collision energy.
 例えば三種類の位置異性体が知られているクレゾールでは、異性体によってフラグメントパターンが微妙に異なるために、複数の特定の質量電荷比におけるピークの強度の大小が反転したり相対強度比が顕著に変化したりするコリジョンエネルギの値が異性体によって異なる。ただし、このような変化が生じるコリジョンエネルギの値はコリジョンガス圧変動などの影響を受けるため、特定の一つのコリジョンエネルギ値の下でのマススペクトルから、上述したような複数の特定の質量電荷比におけるピークの強度の大小関係や相対強度比の相違を把握するのは困難である。 For example, in cresols, which are known for three types of positional isomers, the fragment patterns differ slightly depending on the isomer, so the magnitude of the peak intensity at multiple specific mass-to-charge ratios is reversed or the relative intensity ratio is noticeable. The value of the collision energy that changes varies depending on the isomer. However, since the collision energy value at which such a change occurs is affected by fluctuations in the collision gas pressure, etc., a plurality of specific mass-to-charge ratios as described above are obtained from a mass spectrum under a specific collision energy value. It is difficult to grasp the magnitude relationship of peak intensities and the difference in relative intensity ratio.
 これに対し本発明に係る異性体分析方法及びタンデム型質量分析装置では、目的化合物である例えばクレゾールに対応した所定のコリジョンエネルギ範囲内で所定幅で以てコリジョンエネルギを変化させつつプロダクトイオンスキャン測定を行って得られた複数のマススペクトルを利用しているため、複数の特定の質量電荷比におけるピークの強度の大小関係や相対強度比が変化するコリジョンエネルギ値が或る程度変動しても、その変化が生じるコリジョンエネルギ値を確実に求めることができる。そして、そのコリジョンエネルギ値に基づいて異性体を判定することが可能となる。もちろん、クレゾールにおいて三以上の種類の異性体を識別するには少なくとも二以上の異なる変化に対応したコリジョンエネルギ値を判定に利用することが必要である。また、二種類の異性体を識別する場合でも、判定の信頼性を高めるために二以上の異なる変化に対応したコリジョンエネルギ値を判定に利用することが望ましい。 In contrast, in the isomer analysis method and tandem mass spectrometer according to the present invention, product ion scan measurement is performed while changing the collision energy within a predetermined range within a predetermined collision energy range corresponding to the target compound, for example, cresol. Since a plurality of mass spectra obtained by performing the above are utilized, even if the collision energy value at which the magnitude relationship of the peak intensity and the relative intensity ratio change at a plurality of specific mass-to-charge ratios change to some extent, It is possible to reliably determine the collision energy value at which the change occurs. And it becomes possible to determine an isomer based on the collision energy value. Of course, in order to distinguish three or more kinds of isomers in cresol, it is necessary to use a collision energy value corresponding to at least two or more different changes for determination. Even when two types of isomers are identified, it is desirable to use a collision energy value corresponding to two or more different changes for determination in order to increase the reliability of the determination.
 また本発明に係るタンデム型質量分析装置において、好ましくは、前記分析制御部は、変化させるコリジョンエネルギの範囲及びその変化幅を目的化合物に応じて決定する条件決定部を含む構成とするとよい。位置異性体が存在する化合物毎に、その位置異性体を識別するのに適切なコリジョンエネルギの範囲やその変化幅を予め実験的に求めておくことができるから、そうして実験的に求めた情報を記憶部に格納しておくことで、条件決定部は目的化合物に対応した適切なコリジョンエネルギの範囲及びその変化幅を該記憶部から容易に取得することができる。 In the tandem mass spectrometer according to the present invention, it is preferable that the analysis control unit includes a condition determining unit that determines a range of collision energy to be changed and a change width thereof according to a target compound. For each compound in which positional isomers exist, it is possible to experimentally determine the range of collision energy and the range of change appropriate for identifying the positional isomers. By storing the information in the storage unit, the condition determination unit can easily obtain an appropriate collision energy range corresponding to the target compound and its change range from the storage unit.
 また本発明に係るタンデム型質量分析装置において、前記データ処理部は、異なるコリジョンエネルギ値に対する複数のマススペクトルに基づいて、目的化合物に応じて予め設定されている判定基準に合致する変化が生じるコリジョンエネルギ値を抽出し、その抽出されたエネルギ値を用いて位置異性体を判定する構成とすることができる。
 なお、ここでいう「予め設定されている判定基準」とは例えば上述した複数の特定の質量電荷比におけるピークの強度の大小関係の変化などである。こうした判定基準も上述した位置異性体を識別するのに適切なコリジョンエネルギの範囲やその変化幅などと共に記憶部に格納しておけばよい。
Further, in the tandem mass spectrometer according to the present invention, the data processing unit is a collision in which a change that matches a criterion set in advance according to a target compound is generated based on a plurality of mass spectra for different collision energy values. It can be set as the structure which extracts an energy value and determines a positional isomer using the extracted energy value.
Here, the “predetermined criterion” is, for example, a change in the magnitude relationship of peak intensities at a plurality of specific mass-to-charge ratios described above. Such a determination criterion may be stored in the storage unit together with a collision energy range suitable for identifying the above-described positional isomers and a change width thereof.
 この構成によれば、位置異性体を特徴付ける変化を生じるコリジョンエネルギ値が或る程度変動した場合でも、自動的にその変化を見つけて異性体を的確に判定することができる。 According to this configuration, even when the collision energy value that causes the change characterizing the positional isomer fluctuates to some extent, the change can be automatically found and the isomer can be accurately determined.
 なお、本発明に係る異性体分析方法で以て位置異性体を識別できるようなマススペクトルを取得するには、イオン化の際にフラグメントが生じ、それによって生成されたフラグメントイオンの一つをコリジョンセル内で解離させてプロダクトイオンスキャン測定を行うことが望ましい。そこで、本発明に係るタンデム型質量分析装置において、前記イオン化部は電子イオン化法によるイオン化を行うものとすることが好ましい。 In addition, in order to obtain a mass spectrum that can identify positional isomers by the isomer analysis method according to the present invention, a fragment is generated during ionization, and one of the fragment ions generated thereby is collision cell. It is desirable to perform product ion scan measurement after dissociation in the inside. Therefore, in the tandem mass spectrometer according to the present invention, the ionization unit preferably performs ionization by an electron ionization method.
 本発明に係る異性体分析方法及びタンデム型質量分析装置によれば、或る一つのマススペクトルのピークパターンからは識別が困難であった、位置異性体の識別が可能となる。こうした識別では、標準試料を事前に分析する必要がないのでユーザーが標準試料を用意せずに済み、その手間が省けるのみならず、標準試料が一般に入手しにくいような化合物の異性体分析も可能となる。また、試料に対する分析は通常の質量分析と何ら変わらないので、低廉なコストで手軽に異性体の識別を行うことができる。 According to the isomer analysis method and the tandem mass spectrometer according to the present invention, it is possible to identify positional isomers that are difficult to identify from a peak pattern of a certain mass spectrum. This identification eliminates the need for the user to prepare a standard sample in advance because the standard sample does not need to be analyzed in advance, which saves the labor of the standard sample and enables isomer analysis of compounds that are generally difficult to obtain. It becomes. In addition, since analysis for a sample is not different from ordinary mass spectrometry, isomers can be easily identified at low cost.
本発明に係る異性体識別方法を実施するためのGC-MS/MSシステムの一実施例の概略構成図。1 is a schematic configuration diagram of an embodiment of a GC-MS / MS system for carrying out an isomer identification method according to the present invention. 本実施例のGC-MS/MSシステムにおいて測定を行う際のコリジョンエネルギの設定範囲の一例を示す概念図。The conceptual diagram which shows an example of the setting range of the collision energy at the time of measuring in the GC-MS / MS system of a present Example. 本実施例のGC-MS/MSシステムにおける異性体識別処理の手順を示すフローチャート。The flowchart which shows the procedure of the isomer identification process in the GC-MS / MS system of a present Example. 本実施例のGC-MS/MSシステムにおける異性体識別処理方法の説明図。Explanatory drawing of the isomer identification processing method in the GC-MS / MS system of a present Example. p-クレゾールの識別が可能であるプロダクトイオンスペクトルの実測例を示す図。The figure which shows the actual measurement example of the product ion spectrum which can identify p-cresol. o-クレゾールの識別が可能であるプロダクトイオンスペクトルの実測例を示す図。The figure which shows the actual measurement example of the product ion spectrum which can identify o-cresol. m-クレゾールの識別が可能であるプロダクトイオンスペクトルの実測例を示す図。The figure which shows the actual measurement example of the product ion spectrum which can identify m-cresol. 複数のコリジョンエネルギで以て実測したクレゾールの各異性体のプロダクトイオンスペクトルを示す図。The figure which shows the product ion spectrum of each isomer of cresol measured by the several collision energy.
 まず、本発明に係る異性体識別方法における異性体識別の原理を説明する。ここでは、試料を測定するタンデム型質量分析装置として後述する三連四重極型質量分析装置を用いるものとするが、同様のマススペクトルが取得できさえすればQ-TOF型質量分析装置等を用いてもよいことは明らかである。 First, the principle of isomer identification in the isomer identification method according to the present invention will be described. Here, a triple quadrupole mass spectrometer, which will be described later, is used as a tandem mass spectrometer for measuring a sample. However, if a similar mass spectrum can be obtained, a Q-TOF mass spectrometer or the like can be used. Obviously, it may be used.
 三連四重極型質量分析装置では、イオンをコリジョンセル内で解離させる際に該イオンに付与するコリジョンエネルギ(CE)を変えると解離の態様が相違し、その結果、プロダクトイオンスキャン測定で得られるマススペクトルのパターンに変化が生じる。一般に三連四重極型質量分析装置においてイオン解離に利用される衝突誘起解離(CID)は低エネルギCIDと呼ばれ、コリジョンエネルギは数eV~数十eV程度の範囲である。なお、コリジョンエネルギの単位はeVであるが、通常、コリジョンエネルギはイオンがコリジョンセル内に入射する際の加速電圧によって決まるため、慣用的には、この加速電圧で以てコリジョンエネルギが表される。そこで、以下の説明でも、加速電圧の値でコリジョンエネルギを表す。 In triple quadrupole mass spectrometers, when the collision energy (CE) applied to the ions is changed when the ions are dissociated in the collision cell, the dissociation mode is different. A change occurs in the pattern of the obtained mass spectrum. In general, collision induced dissociation (CID) used for ion dissociation in a triple quadrupole mass spectrometer is called low energy CID, and the collision energy is in the range of several eV to several tens eV. The unit of collision energy is eV. Usually, the collision energy is determined by the acceleration voltage when ions are incident on the collision cell. Therefore, the collision energy is conventionally expressed by this acceleration voltage. . Therefore, in the following description, the collision energy is expressed by the value of the acceleration voltage.
 図8は、芳香族の二置換体の代表例であるクレゾールのオルト(o)、メタ(m)、パラ(p)位の異性体について、プリカーサイオンの質量電荷比を108としコリジョンエネルギを段階的に変えてプロダクトイオンスキャン測定を行って得られたマススペクトル(以下、マススペクトルとはプロダクトイオンスペクトルのことをいう)の一例である。ここでは、コリジョンエネルギを10V、15V、20Vの三段階に設定している。各コリジョンエネルギに対する三つのマススペクトルのパターンを比較しても、観測されるイオンの質量電荷比及びそのイオンのピークの相対強度比共に殆ど差は見られず、これから三種の異性体を識別するのは困難である。 FIG. 8 shows the collision energy of a precursor ion having a mass-to-charge ratio of 108 for isomers of ortho (o), meta (m), and para (p) positions of cresol, which is a typical example of aromatic disubstituted compounds. This is an example of a mass spectrum obtained by performing product ion scan measurement by changing the measurement (hereinafter, the mass spectrum refers to a product ion spectrum). Here, the collision energy is set in three stages of 10V, 15V, and 20V. Comparing the patterns of the three mass spectra for each collision energy shows little difference in the observed mass-to-charge ratio of the ions and the relative intensity ratio of the peaks of the ions, from which the three isomers are identified. It is difficult.
 図5~図7は、コリジョンエネルギ(CE)をより細かいステップ幅で変化させつつプロダクトイオンスキャン測定を行って採取した、クレゾールの三種類の異性体に対する実測のマススペクトルである。 FIGS. 5 to 7 are actual mass spectra of three isomers of cresol, which were collected by performing product ion scan measurement while changing the collision energy (CE) with a finer step width.
 図5はCE:21V~27Vの範囲のマススペクトルである。CE=22Vのときにm/z=77のピークとm/z=79のピークとで相対強度を比較すると、o-クレゾール及びm-クレゾールではm/z=79のピークのほうが信号強度が大きいのに対し、p-クレゾールではm/z=77のほうが信号強度が大きい。このCE値の前後のコリジョンエネルギをみると、CE=23Vのときには全ての異性体でm/z=77のピークのほうが信号強度が大きい。またCE=21Vのときには、逆に全ての異性体でm/z=79のピークのほうが信号強度が大きい。 FIG. 5 is a mass spectrum in the range of CE: 21V to 27V. When the relative intensity is compared between the peak at m / z = 77 and the peak at m / z = 79 when CE = 22V, the signal intensity is higher at the peak at m / z = 79 for o-cresol and m-cresol. On the other hand, with p-cresol, m / z = 77 has a higher signal strength. Looking at the collision energy before and after the CE value, when CE = 23V, the signal intensity is higher at the peak of m / z = 77 for all isomers. On the other hand, when CE = 21 V, the signal intensity is higher at the peak of m / z = 79 for all isomers.
 例えばいまm/z=77のピーク強度I(77)とm/z=79のピーク強度I(79)との比I(77)/I(79)とCE値:22V前後のコリジョンエネルギとの関係をグラフで示すと図4のようになる。即ち、コリジョンエネルギを20V程度から少しずつ上げていくと、三種類の異性体共に、その途中でm/z=77のピークとm/z=79のピークの相対強度の大小関係が逆転する(つまりは強度比が1を超える)が、p-クレゾールはo-クレゾール及びm-クレゾールに比べてその逆転が最も早く、つまりは最も低いコリジョンエネルギで起こることが分かる。 For example, the ratio I (77) / I (79) between the peak intensity I (77) at m / z = 77 and the peak intensity I (79) at m / z = 79 and the CE energy: collision energy around 22V The relationship is shown in a graph as shown in FIG. That is, when the collision energy is gradually increased from about 20 V, the magnitude relationship between the relative intensities of the m / z = 77 peak and the m / z = 79 peak is reversed in the middle of the three types of isomers ( In other words, the intensity ratio exceeds 1), but it can be seen that p-cresol has the fastest reversal compared to o-cresol and m-cresol, that is, the lowest collision energy.
 また、CE=26Vのときに強度が最大となるベースピークを探索すると、o-クレゾール及びm-クレゾールのベースピークはm/z=77のピークであるのに対し、p-クレゾールのベースピークはm/z=107のピークである。このCE値の前後のコリジョンエネルギをみると、CE=25Vのときには全ての異性体でm/z=107のピークがベースピークである。またCE=27Vのときには、逆に全ての異性体でm/z=77のピークがベースピークである。即ち、コリジョンエネルギを25Vから27Vに上げていくと、三種類の異性体共に、その途中でベースピークの質量電荷比がm/z=107からm/z=79に入れ替わるが、p-クレゾールはo-クレゾール及びm-クレゾールに比べてその入れ替わりが最も遅く、つまりは最も高いコリジョンエネルギで起こることが分かる。この関係も図4と同様のグラフで表すことができる。 Further, when searching for a base peak having the maximum intensity when CE = 26 V, the base peak of o-cresol and m-cresol is a peak of m / z = 77, whereas the base peak of p-cresol is The peak is m / z = 107. Looking at the collision energy before and after this CE value, when CE = 25 V, the peak of m / z = 107 is the base peak for all isomers. On the other hand, when CE = 27V, the peak at m / z = 77 is the base peak for all isomers. That is, when the collision energy is increased from 25 V to 27 V, the mass-to-charge ratio of the base peak is changed from m / z = 107 to m / z = 79 in the middle of the three isomers. It can be seen that the turnover is the slowest compared to o-cresol and m-cresol, that is, occurs at the highest collision energy. This relationship can also be expressed by a graph similar to FIG.
 上述したようなp-クレゾールの特異性は図8に示した例のように或る一つのコリジョンエネルギにおけるマススペクトルを見ても把握するのは困難であるが、細かいステップ幅でコリジョンエネルギの値を変化させつつ採取したマススペクトルから上述した特徴点を抽出してその変化を捉えることで把握が可能となる。具体的には、図4に示したようなグラフから強度比が1を超えるコリジョンエネルギ値を求めることで、その特異性の把握が可能である。また、イオンの解離の態様はコリジョンエネルギ以外の要素、例えばコリジョンセル内のコリジョンガス圧、該ガスの種類などの影響も受ける。このため、そうした条件のばらつきや装置の相違などによって、上述したような位置異性体に特異的な変化が生じるコリジョンエネルギの値自体が前後する(変動)可能性がある。その場合でも、そうした変動を予め想定した所定のコリジョンエネルギ範囲の中で細かいステップ幅で各コリジョンエネルギに対するマススペクトルを取得することで、位置異性体に特異的な変化を漏らさず見つけることができる。 The p-cresol specificity as described above is difficult to grasp by looking at the mass spectrum at a certain collision energy as in the example shown in FIG. 8, but the value of the collision energy with a fine step width. It is possible to grasp by extracting the above-mentioned feature points from the mass spectrum collected while changing and capturing the change. Specifically, by obtaining a collision energy value with an intensity ratio exceeding 1 from the graph as shown in FIG. The mode of ion dissociation is also affected by factors other than collision energy, such as the collision gas pressure in the collision cell and the type of gas. For this reason, there is a possibility that the collision energy value that causes a specific change in the positional isomer as described above may fluctuate (fluctuate) due to such a variation in conditions or a difference in apparatus. Even in such a case, by acquiring a mass spectrum for each collision energy with a fine step width within a predetermined collision energy range in which such variation is assumed in advance, it is possible to find a change specific to the positional isomer without leaking.
 図6はCE:28V、29Vのマススペクトルである。各マススペクトルの下には、m/z=77のベースピークに対するm/z=89のピークの相対強度比を示している。CE:28V~29Vのとき、m-クレゾール及びp-クレゾールでは上記相対強度比が十数%にすぎないのに対し、o-クレゾールでは上記相対強度比は約30%と2倍程度大きくなっている。なお、ここでは示していないが、このCE値から離れたコリジョンエネルギでは上記相対強度比にそれほど大きな差異はみられない。したがって、CE:28V~29Vを含む所定のコリジョンエネルギ範囲で細かいステップ幅でコリジョンエネルギを変化させつつマススペクトルを採取し、上記相対強度比を計算してその変化を観測することでo-クレゾールを他の二種の異性体と識別することができる。 FIG. 6 shows mass spectra of CE: 28V and 29V. Below each mass spectrum, the relative intensity ratio of the peak at m / z = 89 to the base peak at m / z = 77 is shown. When CE: 28V to 29V, m-cresol and p-cresol have a relative intensity ratio of only a few dozen%, whereas in o-cresol, the relative intensity ratio is about 30%, which is about twice as large. Yes. Although not shown here, no significant difference is seen in the relative intensity ratio with the collision energy far from the CE value. Therefore, the mass spectrum is collected while changing the collision energy with a fine step width in a predetermined collision energy range including CE: 28V to 29V, the relative intensity ratio is calculated, and the change is observed to detect o-cresol. It can be distinguished from the other two isomers.
 図7はCE:41V、42Vのマススペクトルである。CE=41V、42Vのときにm/z=39のピークとm/z=51のピークとで相対強度を比較すると、o-クレゾール及びp-クレゾールではm/z=51のピークのほうが信号強度が大きいのに対し、m-クレゾールではm/z=39のほうが信号強度が大きい。ここでは示していないが、このCE値から離れたコリジョンエネルギでは、いずれの異性体ともm/z=51のピークのほうが信号強度が大きい。したがって、CE:41V~42Vを含む所定のコリジョンエネルギ範囲で細かいステップ幅でコリジョンエネルギを変化させつつマススペクトルを採取し、m/z=39、51のピークの信号強度の大小関係の変化の有無を観測することでm-クレゾールを他の二種の異性体と識別することができる。 FIG. 7 shows mass spectra of CE: 41V and 42V. When the relative intensity is compared between the peak at m / z = 39 and the peak at m / z = 51 when CE = 41V and 42V, the signal intensity is higher at the peak at m / z = 51 for o-cresol and p-cresol. On the other hand, in m-cresol, the signal intensity is larger at m / z = 39. Although not shown here, at the collision energy far from the CE value, the signal intensity is larger at the peak of m / z = 51 for any isomer. Therefore, the mass spectrum is sampled while changing the collision energy with a fine step width within a predetermined collision energy range including CE: 41V to 42V, and whether there is a change in the magnitude relationship of the signal intensity at the peak of m / z = 39, 51 Can be distinguished from the other two isomers.
 クレゾールの場合には、上述した三つの互いに離れたコリジョンエネルギ範囲でのマススペクトル上で把握可能な特徴を組み合わせることで、三種の位置異性体を識別することができる。
 このように、単一のコリジョンエネルギにおけるマススペクトルを観測しただけでは識別が難しい位置異性体でも、細かい幅の複数のコリジョンエネルギの下でそれぞれマススペクトルを採取し、ベースピークの質量電荷比の入れ替わりや特定の質量電荷比におけるピークの相対強度の比や大小関係の変化などを調べることで、位置異性体の識別が可能である。
 また、これらのマススペクトルは従来の類似度計算では差がつきにくいが、特定の複数の質量電荷比における信号強度を比較する指標を予め決定しておくことによって、位置異性体に特有な差異を判断することが可能である。上記例はクレゾールであるが、同じ芳香族二置換体であるキシレンなどにおいても同様の手法で識別が可能であると推測できる。
In the case of cresol, three kinds of positional isomers can be identified by combining features that can be grasped on the mass spectrum in the above-described three mutually separated collision energy ranges.
In this way, even for positional isomers that are difficult to identify simply by observing the mass spectrum at a single collision energy, each mass spectrum is collected under multiple collision energies with a narrow width, and the mass-to-charge ratio of the base peak is switched. The position isomers can be identified by examining the relative intensity ratio of peaks and the change in the magnitude relationship at a specific mass-to-charge ratio.
In addition, these mass spectra are unlikely to differ in the conventional similarity calculation, but by determining in advance an index for comparing signal intensities at a plurality of specific mass-to-charge ratios, differences specific to positional isomers can be obtained. It is possible to judge. Although the above example is cresol, it can be presumed that the same aromatic di-substituted product such as xylene can be identified by the same method.
 以下、上述した原理に基づく異性体識別処理を実行するGC-MS/MSシステムの一実施例について説明する。図1は本実施例のGC-MS/MSシステムの概略構成図、図2はコリジョンエネルギの設定範囲の一例を示す概念図、図3は本実施例のGC-MS/MSにおける異性体識別処理の手順を示すフローチャート、図4本実施例のGC-MS/MSにおける異性体識別処理方法の説明図である。 Hereinafter, an embodiment of a GC-MS / MS system that executes isomer identification processing based on the above-described principle will be described. FIG. 1 is a schematic configuration diagram of the GC-MS / MS system of the present embodiment, FIG. 2 is a conceptual diagram showing an example of a collision energy setting range, and FIG. 3 is an isomer identification process in the GC-MS / MS of the present embodiment. FIG. 4 is an explanatory diagram of an isomer identification processing method in GC-MS / MS of this example.
 本実施例のGC-MS/MSシステムは、GC部1と、MS/MS部2とを含む。GC部1は、微量の試料を気化させる試料気化室10と、試料中の化合物を時間方向に分離するカラム12と、カラム12を温調するカラムオーブン11と、を備える。MS/MS部2は、図示しない真空ポンプにより真空排気されるチャンバ20の内部に、化合物を電子イオン化(EI)法によりイオン化するイオン化部21と、それぞれ4本のロッド電極から成る前段四重極マスフィルタ22及び後段四重極マスフィルタ25と、内部に多重極型イオンガイド24が配設されたコリジョンセル23と、イオンを検出してイオン量に応じた検出信号を出力する検出器26と、を備える。 The GC-MS / MS system of this embodiment includes a GC unit 1 and an MS / MS unit 2. The GC unit 1 includes a sample vaporizing chamber 10 that vaporizes a small amount of sample, a column 12 that separates compounds in the sample in a time direction, and a column oven 11 that controls the temperature of the column 12. The MS / MS unit 2 includes an ionization unit 21 that ionizes a compound by an electron ionization (EI) method in a chamber 20 that is evacuated by a vacuum pump (not shown), and a front quadrupole that includes four rod electrodes. A mass filter 22 and a subsequent quadrupole mass filter 25; a collision cell 23 in which a multipole ion guide 24 is disposed; and a detector 26 that detects ions and outputs a detection signal corresponding to the amount of ions. .
 ユーザーインタフェイスである入力部6及び表示部7が接続されている制御部4は、GC部1の各部やMS/MS部2の各部にそれぞれ所定の電圧を印加する電源部5などの動作をそれぞれ制御する機能を有する。この制御部4は、本実施例のシステムに特徴的なブロックとして、異性体識別時制御部40と化合物対応MS/MS条件記憶部41とを含む。また、データ処理部3は、本実施例のシステムに特徴的なブロックとして、測定により得られたデータを収集して記憶するスペクトルデータ収集部30と、化合物データベース(DB)32と、化合物DB32を利用して目的化合物を同定する化合物同定部31と、所定の化合物の異性体を識別するための情報が記憶された異性体識別情報記憶部34と、異性体識別情報記憶部34に格納されている情報を利用して異性体を識別する異性体識別部33と、を含む。化合物DB32には、様々な化合物についてそれぞれ、複数の特徴的なイオン種をプリカーサイオンとしたプロダクトイオンスキャン測定によって得られるマススペクトルが予め収録される。 The control unit 4 to which the input unit 6 and the display unit 7 that are user interfaces are connected operates the power supply unit 5 that applies a predetermined voltage to each unit of the GC unit 1 and each unit of the MS / MS unit 2. Each has a function to control. The control unit 4 includes an isomer identification time control unit 40 and a compound correspondence MS / MS condition storage unit 41 as characteristic blocks in the system of this embodiment. The data processing unit 3 includes a spectrum data collection unit 30 that collects and stores data obtained by measurement, a compound database (DB) 32, and a compound DB 32 as characteristic blocks of the system of the present embodiment. A compound identification unit 31 that identifies a target compound by using, an isomer identification information storage unit 34 that stores information for identifying an isomer of a predetermined compound, and an isomer identification information storage unit 34. And an isomer identification unit 33 for identifying an isomer by using the existing information. In the compound DB 32, mass spectra obtained by product ion scan measurement using a plurality of characteristic ion species as precursor ions are recorded in advance for various compounds.
 なお、制御部4やデータ処理部3の少なくとも一部は、パーソナルコンピュータをハードウエアとして、該コンピュータにインストールされた専用の制御・処理ソフトウエアを実行することにより具現化されるものとすることができる。この場合、入力部6はキーボードやポインティングデバイス(マウス等)であり、表示部7はディスプレイモニタである。 Note that at least a part of the control unit 4 and the data processing unit 3 may be embodied by executing a dedicated control / processing software installed in the computer using a personal computer as hardware. it can. In this case, the input unit 6 is a keyboard or a pointing device (such as a mouse), and the display unit 7 is a display monitor.
 本実施例のGC-MS/MSシステムにおけるMS/MS分析の一つであるプロダクトイオンスキャン測定の動作を概略的に説明する。
 試料気化室10内に少量の試料液が滴下されると、試料液は短時間で気化し、該試料中の化合物はヘリウム等のキャリアガスに乗ってカラム12中に送り込まれる。カラム12を通過する間に、試料中の各化合物はそれぞれ異なる時間だけ遅れてカラム12出口に達する。カラムオーブン11は予め決められた温度プロファイルに従って加熱される。イオン化部21は、カラム12出口から供給されるガス中の化合物を順次イオン化する。なお、イオン化部21はEIイオン源であるため、イオン化の際に化合物の結合の一部が切断され(つまりはフラグメンテーションが生じ)、1つの化合物由来の様々な断片のイオンが生成される。
The operation of the product ion scan measurement which is one of the MS / MS analyzes in the GC-MS / MS system of the present embodiment will be schematically described.
When a small amount of sample liquid is dropped into the sample vaporizing chamber 10, the sample liquid is vaporized in a short time, and the compound in the sample is sent into the column 12 on a carrier gas such as helium. While passing through the column 12, each compound in the sample reaches the outlet of the column 12 with a different delay. The column oven 11 is heated according to a predetermined temperature profile. The ionization unit 21 sequentially ionizes compounds in the gas supplied from the column 12 outlet. Since the ionization unit 21 is an EI ion source, a part of the compound bond is cleaved during ionization (that is, fragmentation occurs), and ions of various fragments derived from one compound are generated.
 制御部4の制御の下で電源部5は、前段四重極マスフィルタ22及び後段四重極マスフィルタ25の各ロッド電極にそれぞれ、特定の質量電荷比を有するイオンを通過させるような電圧を印加する。これにより、化合物由来の各種イオンの中で特定の質量電荷比を有するイオンが前段四重極マスフィルタ22を通り抜けてコリジョンセル23に導入される。コリジョンセル23内にはコリジョンガスが導入されており、コリジョンセル23内に導入されたイオンはコリジョンガスに接触して衝突誘起解離により開裂する。 Under the control of the control unit 4, the power supply unit 5 applies a voltage that allows ions having a specific mass-to-charge ratio to pass through the rod electrodes of the front-stage quadrupole mass filter 22 and the rear-stage quadrupole mass filter 25. Apply. Thereby, ions having a specific mass-to-charge ratio among various ions derived from the compound pass through the front quadrupole mass filter 22 and are introduced into the collision cell 23. A collision gas is introduced into the collision cell 23, and the ions introduced into the collision cell 23 come into contact with the collision gas and are cleaved by collision-induced dissociation.
 この開裂により生じた各種プロダクトイオンは多重極型イオンガイド24により収束されつつ後段四重極マスフィルタ25に導入され、特定の質量電荷比を有するプロダクトイオンが後段四重極マスフィルタ25を通り抜けて検出器26に到達する。検出器26による検出信号はデータ処理部3に入力され、データ処理部3ではマススペクトルやマスクロマトグラム等が作成されるとともに、後述するような化合物同定処理が実施される。 Various product ions generated by this cleavage are introduced into the rear quadrupole mass filter 25 while being converged by the multipole ion guide 24, and product ions having a specific mass-to-charge ratio pass through the rear quadrupole mass filter 25. The detector 26 is reached. A detection signal from the detector 26 is input to the data processing unit 3, and the data processing unit 3 creates a mass spectrum, a mass chromatogram, and the like, and performs a compound identification process as described later.
 次に、本実施例のGC-MS/MSシステムにおいて実施される特徴的な化合物同定処理及び異性体識別処理について説明する。上記クレゾールの例で示したように、複数種類の異性体を識別するには、複数の異なるコリジョンエネルギ範囲において細かいステップ幅でコリジョンエネルギを変化させつつプロダクトイオンスキャン測定を実行する必要がある。このコリジョンエネルギ範囲、ステップ幅のほか、ターゲットとするプリカーサイオンの質量電荷比、該当化合物がMS/MS部2に導入される保持時間範囲などの分析条件が化合物に対応付けて化合物対応MS/MS条件記憶部41に予め格納されており、測定対象の化合物がユーザーにより入力部6から指定されると、該化合物に対応した上記分析条件が化合物対応MS/MS条件記憶部41から読み出され、異性体識別時制御部40に設定されるようになっている。
 なお、上記のような分析条件はユーザーが実験により調べて記憶部41に登録しておくことも可能であるが、一般的には、本システムを提供するメーカーが実験等により調べてシステム提供時に又はシステム提供後の適宜の時期に記憶部41に登録することができる。
Next, characteristic compound identification processing and isomer identification processing performed in the GC-MS / MS system of this example will be described. As shown in the cresol example, in order to identify a plurality of types of isomers, it is necessary to perform a product ion scan measurement while changing the collision energy with a fine step width in a plurality of different collision energy ranges. In addition to the collision energy range and step width, the analysis conditions such as the mass-to-charge ratio of the target precursor ion and the retention time range in which the corresponding compound is introduced into the MS / MS unit 2 are associated with the compound, and the MS / MS corresponding to the compound When the measurement target compound is stored in advance in the condition storage unit 41 and specified by the user from the input unit 6, the analysis conditions corresponding to the compound are read from the compound correspondence MS / MS condition storage unit 41, It is set in the isomer identification control unit 40.
The analysis conditions as described above can be checked by the user through experiments and registered in the storage unit 41. In general, however, the manufacturer who provides the system checks through experiments and the like when providing the system. Alternatively, it can be registered in the storage unit 41 at an appropriate time after the system is provided.
 一方、異性体識別情報記憶部34には、上述したように細かいステップ幅でコリジョンエネルギが変化されつつプロダクトイオンスキャン測定のマススペクトルが取得されたときに、異性体を識別するために必要な情報(以下「異性体識別情報」という)が化合物に対応付けて格納されている。異性体識別情報は、異性体を識別する際に用いる指標値を算出するための指標値算出情報と、該指標値を判定する閾値や範囲などの判定条件とを含む。 On the other hand, in the isomer identification information storage unit 34, information necessary for identifying the isomer when the mass spectrum of the product ion scan measurement is acquired while the collision energy is changed with a fine step width as described above. (Hereinafter referred to as “isomer identification information”) is stored in association with the compound. The isomer identification information includes index value calculation information for calculating an index value used for identifying the isomer, and determination conditions such as a threshold value and a range for determining the index value.
 例えば、上述したように、p-クレゾールと他の二種のクレゾールとを識別するには、m/z=77のピークとm/z=79のピークとの強度比が1未満である状態から1を超える状態になるときのコリジョンエネルギ値を判定すればよいが、このコリジョンエネルギ値の求めた方が指標値算出情報、測定対象のクレゾールがp-クレゾールであると判定できるコリジョンエネルギ範囲を判定条件とする。この判定条件は異性体の識別が可能な範囲で、例えばコリジョンガス圧の変動などを考慮して適宜にマージンを以て決定しておけばよい。 For example, as described above, in order to distinguish between p-cresol and the other two cresols, the intensity ratio between the peak at m / z = 77 and the peak at m / z = 79 is less than 1. It is sufficient to determine the collision energy value when the state exceeds 1. However, the determination of the collision energy value is index value calculation information, and the collision energy range in which it can be determined that the measurement target cresol is p-cresol is determined. Condition. The determination condition may be determined with an appropriate margin in consideration of, for example, a change in collision gas pressure within a range in which isomers can be identified.
 いま或る化合物の異性体の識別を行いたい場合にユーザーが入力部6からその化合物を指定すると、その化合物に対応した分析条件が化合物対応MS/MS条件記憶部41から読み出されて異性体識別時制御部40に設定される一方、その化合物に対応した異性体識別情報が異性体識別情報記憶部34から読み出されて異性体識別部33に設定される(ステップS1)。そして、分析が開始されると、異性体識別時制御部40は分析条件として設定されている保持時間範囲において、コリジョンエネルギ範囲の下限CEminから順に設定されているステップ幅ΔCEでコリジョンエネルギを変化させつつ上限CEmaxに達するまで(図2参照)、各コリジョンエネルギに対するプロダクトイオンスキャン測定をそれぞれ実行する。スペクトルデータ収集部30はプロダクトイオンスキャン測定毎に所定の質量電荷比範囲に亘るマススペクトルデータを取得し記憶する(ステップS2)。これにより多数のマススペクトルデータが得られる。 When it is desired to identify an isomer of a certain compound, when the user designates the compound from the input unit 6, the analysis conditions corresponding to the compound are read from the compound correspondence MS / MS condition storage unit 41 and the isomer is read out. On the other hand, the isomer identification information corresponding to the compound is read from the isomer identification information storage unit 34 and set in the isomer identification unit 33 (step S1). When the analysis is started, the isomer identification control unit 40 changes the collision energy within the holding time range set as the analysis condition by the step width ΔCE set in order from the lower limit CEmin of the collision energy range. While reaching the upper limit CEmax (see FIG. 2), the product ion scan measurement is performed for each collision energy. The spectrum data collection unit 30 acquires and stores mass spectrum data over a predetermined mass-to-charge ratio range for each product ion scan measurement (step S2). Thereby, a large number of mass spectrum data are obtained.
 分析が終了すると、化合物同定部31は得られたマススペクトルのうちの一つ又は複数のマススペクトルのピークパターンを化合物データベース32中のマススペクトルのピークパターンと照合することにより化合物を同定する(ステップS3)。これにより、測定した化合物が確かに測定対象の化合物であるかの確認が可能となる。ただし、ここでは異性体の判定はできないので、例えば測定対象の化合物がいずれの異性体かは不明であるがクレゾールであると確認できるだけである。
When the analysis is completed, the compound identification unit 31 identifies the compound by collating the peak pattern of one or a plurality of mass spectra obtained with the peak pattern of the mass spectrum in the compound database 32 (step S3). This makes it possible to confirm whether the measured compound is indeed the measurement target compound. However, since the isomer cannot be determined here, for example, it is not clear which isomer is the compound to be measured, but it can only be confirmed as cresol.
 そのあと、異性体識別部33は異なるコリジョンエネルギに対応してそれぞれ得られたマススペクトルから指標値算出情報に基づき異性体を識別するための指標値を算出する(ステップS4)。そして、得られた指標値を判定条件に照らすことで異性体を判定し(ステップS5)、その異性体識別結果を表示部7から出力する(ステップS6)。 Thereafter, the isomer identification unit 33 calculates an index value for identifying the isomer based on the index value calculation information from the mass spectra respectively obtained corresponding to different collision energies (step S4). Then, the isomer is determined by comparing the obtained index value with the determination condition (step S5), and the isomer identification result is output from the display unit 7 (step S6).
 上記のクレゾールの例でいえば、ステップS4においてm/z=77のピークとm/z=79のピークとの強度比が1未満である状態から1を超える状態になるときのコリジョンエネルギ値等が算出される。そして、ステップS5では、指標値として得られた上記コリジョンエネルギ値が所定の範囲に収まっていればp-クレゾールであると判定する。上述したように、p-クレゾールはCE:25~27V付近におけるm/z=107のピークとm/z=79のピークとの強度比に基づいても判定可能であるから、判定の信頼性を高めるために、二つの条件をいずれも満たしたときにp-クレゾールであると判定してもよい。また、上述したように別の指標値及び判定条件によりo-クレゾール、m-クレゾールの判定も行えるが、そうした複数の判定結果に基づき最終的にいずれの異性体に帰属されるかを判定するようにしてもよい。もちろん、いずれの異性体にも帰属されないとの判定結果となることもあり得る。 In the case of the above cresol, the collision energy value when the intensity ratio of the peak of m / z = 77 and the peak of m / z = 79 is changed from less than 1 to more than 1 in step S4. Is calculated. Then, in step S5, if the collision energy value obtained as the index value is within a predetermined range, it is determined as p-cresol. As described above, p-cresol can also be determined based on the intensity ratio between the peak at m / z = 107 and the peak at m / z = 79 in the vicinity of CE: 25 to 27 V. In order to increase, p-cresol may be determined when both of the two conditions are satisfied. In addition, as described above, o-cresol and m-cresol can be determined according to different index values and determination conditions. Based on the determination results, it is determined which isomer is finally attributed. It may be. Of course, it may be judged that it is not assigned to any isomer.
 以上のように、本実施例のGC-MS/MSシステムによれば、従来は識別が困難であった位置異性体の識別を行うことができる。上記説明から明らかであるように、上記のような異性体識別を行うには、コリジョンエネルギを変えながら順次プロダクトイオンスキャン測定を実行するという特徴的な測定と、この測定結果を受けた特徴的なデータ処理とを行えばよいので、それら制御部4やデータ処理部3を構成するコンピュータにインストールするソフトウエア(プログラム)を変えることで対応可能である。 As described above, according to the GC-MS / MS system of the present embodiment, it is possible to identify regioisomers that were conventionally difficult to identify. As is clear from the above description, in order to identify the isomer as described above, a characteristic measurement in which the product ion scan measurement is sequentially performed while changing the collision energy, and a characteristic measurement based on the measurement result are received. Data processing may be performed, and this can be dealt with by changing software (programs) installed in the computers constituting the control unit 4 and the data processing unit 3.
 また、上記実施例では、異性体を識別したい測定対象化合物以外の様々な化合物が試料に含まれることを想定してGC-MS/MSシステムを用いていたが、測定対象化合物のみを含む試料であればGC部1で成分分離する必要はなく、気化させた試料を直接、MS/MS部2へ導入しても構わない。 In the above examples, the GC-MS / MS system was used on the assumption that the sample contains various compounds other than the measurement target compound for which isomers are to be identified. If there is, it is not necessary to separate the components in the GC unit 1, and the vaporized sample may be directly introduced into the MS / MS unit 2.
 また、上記実施例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜変更、修正、追加を行っても本願特許請求の範囲に包含されることも当然である。 Further, the above-described embodiment is merely an example of the present invention, and it will be understood that the present invention is encompassed in the scope of the claims of the present application even if it is appropriately changed, modified, or added within the scope of the present invention.
1…GC部
10…試料気化室
11…カラムオーブン
12…カラム
2…MS/MS部
20…チャンバ
21…イオン化部
22…前段四重極マスフィルタ
23…コリジョンセル
24…多重極型イオンガイド
25…後段四重極マスフィルタ
26…検出器
3…データ処理部
30…スペクトルデータ記憶部
31…化合物同定部
32…化合物データベース(DB)
33…異性体識別部
34…異性体識別情報記憶部
4…制御部
40…異性体識別時制御部
41…化合物対応MS/MS条件記憶部
5…電源部
6…入力部
7…表示部
DESCRIPTION OF SYMBOLS 1 ... GC part 10 ... Sample vaporization chamber 11 ... Column oven 12 ... Column 2 ... MS / MS part 20 ... Chamber 21 ... Ionization part 22 ... Pre-stage quadrupole mass filter 23 ... Collision cell 24 ... Multipole ion guide 25 ... Subsequent quadrupole mass filter 26 ... detector 3 ... data processing unit 30 ... spectral data storage unit 31 ... compound identification unit 32 ... compound database (DB)
33 ... Isomer identification unit 34 ... Isomer identification information storage unit 4 ... Control unit 40 ... Isomer identification control unit 41 ... Compound-compatible MS / MS condition storage unit 5 ... Power supply unit 6 ... Input unit 7 ... Display unit

Claims (7)

  1.  化合物由来のイオンを解離させ、それにより生成されたプロダクトイオンの質量分析を行うことが可能なタンデム型質量分析装置を用いて所定の化合物の位置異性体を識別する分析方法であって、
     a)イオン解離条件の一つを目的化合物に応じた値の範囲内で所定幅で以て変化させつつ、前記目的化合物に応じた質量電荷比をプリカーサイオンの質量電荷比としたプロダクトイオンスキャン測定をそれぞれ実行してマススペクトルを取得する測定実行ステップと、
     b)該測定実行ステップで得られた異なるイオン解離条件の値に対するマススペクトルについて、そのイオン解離条件の値の変化に対する、前記目的化合物に応じた特定の複数のピークの強度比又は強度の大小関係の少なくともいずれかの変化に基づいて、該目的化合物の複数の位置異性体のいずれであるのかを判定する処理ステップと、
     を有することを特徴とする、質量分析を用いた異性体分析方法。
    An analysis method for identifying positional isomers of a predetermined compound using a tandem mass spectrometer capable of dissociating ions derived from a compound and performing mass analysis of product ions generated thereby,
    a) Product ion scan measurement in which one of the ion dissociation conditions is changed by a predetermined range within a range of values according to the target compound, and the mass-to-charge ratio according to the target compound is used as the mass-to-charge ratio of the precursor ion. A measurement execution step of acquiring a mass spectrum by executing
    b) Regarding the mass spectrum for different ion dissociation condition values obtained in the measurement execution step, the intensity ratio or the magnitude relationship of the intensity of specific peaks according to the target compound with respect to the change of the ion dissociation condition value A processing step of determining which of a plurality of positional isomers of the target compound is based on at least any change in
    An isomer analysis method using mass spectrometry, comprising:
  2.  請求項1に記載の質量分析を用いた異性体分析方法であって、
     前記イオン解離条件の一つとはイオンを解離させる際のコリジョンエネルギであることを特徴とする、質量分析を用いた異性体分析方法。
    An isomer analysis method using mass spectrometry according to claim 1,
    One of the ion dissociation conditions is a collision energy when dissociating ions, and the isomer analysis method using mass spectrometry.
  3.  試料中の化合物をイオン化するイオン化部と、該イオン化部で生成されたイオンを質量電荷比に応じて分離する前段質量分離部と、該前段質量分離部で選択された特定の質量電荷比を有するイオンを所定のコリジョンエネルギの下で解離させるコリジョンセルと、該コリジョンセルで生成された各種プロダクトイオンを質量電荷比に応じて分離する後段質量分離部と、該後段質量分離部で分離されたプロダクトイオンを検出するイオン検出部と、を具備するタンデム型質量分析装置において、
     a)前記コリジョンセルにおけるイオン解離条件の一つを目的化合物に応じた値の範囲内で所定幅で以て変化させつつ、前記目的化合物に応じた質量電荷比をプリカーサイオンの質量電荷比としたプロダクトイオンスキャン測定をそれぞれ実行してマススペクトルを取得するように前記各部の動作を制御する分析制御部と、
     b)前記分析制御部による制御の下で得られた、異なるイオン解離条件の値に対するマススペクトルについて、そのイオン解離条件の値の変化に対する、前記目的化合物に応じた特定の複数のピークの強度比又は強度の大小関係の少なくともいずれかの変化に基づいて、該目的化合物の複数の位置異性体のいずれであるのかを判定するデータ処理部と、
     を備えることを特徴とするタンデム型質量分析装置。
    An ionization unit that ionizes a compound in a sample, a pre-stage mass separation unit that separates ions generated in the ionization part according to a mass-to-charge ratio, and a specific mass-to-charge ratio selected by the pre-stage mass separation unit A collision cell that dissociates ions under a predetermined collision energy, a rear-stage mass separation unit that separates various product ions generated in the collision cell according to a mass-to-charge ratio, and a product separated by the rear-stage mass separation unit In a tandem mass spectrometer having an ion detector that detects ions,
    a) While changing one of the ion dissociation conditions in the collision cell within a range of a value corresponding to the target compound with a predetermined width, the mass-to-charge ratio corresponding to the target compound was set as the mass-to-charge ratio of the precursor ion. An analysis control unit for controlling the operation of each unit so as to obtain a mass spectrum by performing a product ion scan measurement;
    b) For mass spectra for different ion dissociation condition values obtained under the control of the analysis control unit, the intensity ratio of specific peaks according to the target compound with respect to changes in the ion dissociation condition values Or a data processing unit that determines which of the plurality of positional isomers of the target compound is based on a change in at least one of the magnitude relationships of the strengths;
    A tandem mass spectrometer comprising:
  4.  請求項3に記載のタンデム型質量分析装置であって、
     前記イオン解離条件の一つとはイオンを解離させる際のコリジョンエネルギであることを特徴とするタンデム型質量分析装置。
    The tandem mass spectrometer according to claim 3,
    One of the ion dissociation conditions is a collision energy for dissociating ions, and a tandem mass spectrometer.
  5.  請求項4に記載のタンデム型質量分析装置であって、
     前記分析制御部は、変化させるコリジョンエネルギの範囲及びその変化幅を目的化合物に応じて決定する条件決定部を含むことを特徴とするタンデム型質量分析装置。
    The tandem mass spectrometer according to claim 4,
    The analysis control unit includes a condition determination unit that determines a range of collision energy to be changed and a change width thereof according to a target compound.
  6.  請求項4に記載のタンデム型質量分析装置であって、
     前記データ処理部は、異なるコリジョンエネルギ値に対する複数のマススペクトルに基づいて、目的化合物に応じて予め設定されている判定基準に合致する変化が生じるコリジョンエネルギ値を抽出し、その抽出されたエネルギ値を用いて位置異性体を判定することを特徴とするタンデム型質量分析装置。
    The tandem mass spectrometer according to claim 4,
    The data processing unit extracts, based on a plurality of mass spectra for different collision energy values, a collision energy value that causes a change that matches a determination criterion set in advance according to the target compound, and the extracted energy value A tandem mass spectrometer characterized by determining a positional isomer using
  7.  請求項3~6のいずれか1項に記載のタンデム型質量分析装置であって、
     前記イオン化部は電子イオン化法によるイオン化を行うものであることを特徴とするタンデム型質量分析装置。
    A tandem mass spectrometer according to any one of claims 3 to 6,
    The tandem mass spectrometer is characterized in that the ionization unit performs ionization by an electron ionization method.
PCT/JP2016/061876 2016-04-13 2016-04-13 Isomer analysis method using mass spectrometry, and tandem mass spectrometer WO2017179147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061876 WO2017179147A1 (en) 2016-04-13 2016-04-13 Isomer analysis method using mass spectrometry, and tandem mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061876 WO2017179147A1 (en) 2016-04-13 2016-04-13 Isomer analysis method using mass spectrometry, and tandem mass spectrometer

Publications (1)

Publication Number Publication Date
WO2017179147A1 true WO2017179147A1 (en) 2017-10-19

Family

ID=60042767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061876 WO2017179147A1 (en) 2016-04-13 2016-04-13 Isomer analysis method using mass spectrometry, and tandem mass spectrometer

Country Status (1)

Country Link
WO (1) WO2017179147A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611798A (en) * 2021-01-08 2021-04-06 中国计量科学研究院 Online mass spectrum detection method for isomerides
CN113056670A (en) * 2018-11-29 2021-06-29 英国质谱公司 Method for characterizing molecules by ion mobility spectrometry
WO2022045142A1 (en) * 2020-08-31 2022-03-03 株式会社島津製作所 Acylcarnitine analysis method and acylcarnitine analysis device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241390A (en) * 1999-02-17 2000-09-08 Japan Atom Energy Res Inst Charge exchange mass spectrometry using dissociation of neutral species
WO2013051148A1 (en) * 2011-10-07 2013-04-11 株式会社島津製作所 Method and device for analyzing mass analysis data
JP2015076338A (en) * 2013-10-11 2015-04-20 株式会社島津製作所 Tandem quadrupole mass spectrometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241390A (en) * 1999-02-17 2000-09-08 Japan Atom Energy Res Inst Charge exchange mass spectrometry using dissociation of neutral species
WO2013051148A1 (en) * 2011-10-07 2013-04-11 株式会社島津製作所 Method and device for analyzing mass analysis data
JP2015076338A (en) * 2013-10-11 2015-04-20 株式会社島津製作所 Tandem quadrupole mass spectrometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU YUPING ET AL.: "Gas-Phase Smiles Rearrangement Reactions of Deprotonated 2-(4,6- Dimethoxypyrimidin-2-Ylsulfanyl)-N- Phenylbenzamide and Its Derivatives in Electrospray Ionization Mass Spectrometry", JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, vol. 18, no. 10, October 2007 (2007-10-01), pages 1813 - 1820, XP022262073, ISSN: 1044-0305 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113056670A (en) * 2018-11-29 2021-06-29 英国质谱公司 Method for characterizing molecules by ion mobility spectrometry
WO2022045142A1 (en) * 2020-08-31 2022-03-03 株式会社島津製作所 Acylcarnitine analysis method and acylcarnitine analysis device
JPWO2022045142A1 (en) * 2020-08-31 2022-03-03
JP7229501B2 (en) 2020-08-31 2023-02-28 株式会社島津製作所 Acylcarnitine analysis method and acylcarnitine analyzer
CN112611798A (en) * 2021-01-08 2021-04-06 中国计量科学研究院 Online mass spectrum detection method for isomerides
CN112611798B (en) * 2021-01-08 2023-08-15 中国计量科学研究院 Online mass spectrum detection method for isomers

Similar Documents

Publication Publication Date Title
US8884218B2 (en) Method and systems for mass spectrometry for identification and structural analysis of unknown substance
JP6065983B2 (en) Data processing equipment for chromatographic mass spectrometry
JP5997650B2 (en) Analysis system
US10408803B2 (en) Mass spectrometer detection and analysis method
CN107077592A (en) The high-quality precision filter that high-resolution gaschromatographic mass spectrometry data are matched with the improvement spectrogram of unit resolution rate reference database
WO2008035419A1 (en) Mass spectrometry method
JP4758862B2 (en) Mass spectrometry method and apparatus
US9075073B1 (en) Compound-analyzing method, compound analyzer and computer readable medium recording a compound-analyzing program
US7529630B2 (en) Method of analyzing mass analysis data and apparatus for the method
JP6737396B2 (en) Mass spectrometer and chromatograph mass spectrometer
JP6702501B2 (en) Tandem mass spectrometer and program for the same
WO2017179147A1 (en) Isomer analysis method using mass spectrometry, and tandem mass spectrometer
WO2011058381A1 (en) Detection and/or quantification of a compound in a sample
CN109844522B (en) Gas chromatograph with vacuum ultraviolet detector and mass spectrometer or ion mobility spectrometer
US10768151B2 (en) Techniques for display and processing of mass spectral data
CN112014515A (en) Operating a mass spectrometer with a mass spectral database search
CN112014514A (en) Operating a mass spectrometer with a boost list
US20090326828A1 (en) Optimizing Selection of SRM Transitions for Analysis of Biomolecules by Tandem Mass Spectrometry
JP2008298517A (en) Apparatus and method for analyzing mass spectrometry data
JP7070692B2 (en) Mass spectrometer and mass spectrometry method
US10429364B2 (en) Detecting low level LCMS components by chromatographic reconstruction
CN115516301A (en) Method for processing chromatography mass spectrometry data, chromatography mass spectrometer, and program for processing chromatography mass spectrometry data
WO2013018211A1 (en) Method and equipment for mass spectrometry data analysis
WO2015104844A1 (en) Mass-spectrometry-data processing method and mass-spectrometry-data processing device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898607

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP