WO2017179103A1 - Oximetry sensor and oximetry apparatus - Google Patents

Oximetry sensor and oximetry apparatus Download PDF

Info

Publication number
WO2017179103A1
WO2017179103A1 PCT/JP2016/061707 JP2016061707W WO2017179103A1 WO 2017179103 A1 WO2017179103 A1 WO 2017179103A1 JP 2016061707 W JP2016061707 W JP 2016061707W WO 2017179103 A1 WO2017179103 A1 WO 2017179103A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light sources
oxygen saturation
sensor
pad
Prior art date
Application number
PCT/JP2016/061707
Other languages
French (fr)
Japanese (ja)
Inventor
宏信 前多
晴雄 山村
Original Assignee
株式会社フジタ医科器械
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジタ医科器械 filed Critical 株式会社フジタ医科器械
Priority to JP2016543205A priority Critical patent/JP6060321B1/en
Priority to PCT/JP2016/061707 priority patent/WO2017179103A1/en
Priority to US15/117,785 priority patent/US10499836B2/en
Publication of WO2017179103A1 publication Critical patent/WO2017179103A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to an oxygen saturation measurement sensor and an oxygen saturation measurement device, and more particularly, to an oxygen saturation measurement sensor and an oxygen saturation for measuring oxygen saturation in blood in a living body in a non-invasive manner using near infrared rays. It relates to a measuring device.
  • Oxygen taken up by respiration is combined with hemoglobin (Hb) in the blood by gas exchange in the alveoli.
  • Oxygen taken into the blood is sent to the whole body by arterial blood and taken into cells by capillaries.
  • the oxygen state of the skull, especially the cerebral cortex is measured in real time, especially during surgery such as the heart, or during heart massage due to cardiac arrest. Therefore, it is desirable to constantly check the state of brain cells.
  • an oxygen saturation measuring apparatus for measuring oxygen saturation in blood in a living body using a near-infrared ray by attaching a pad to the head of a human body.
  • an oxygen saturation measuring apparatus for measuring oxygen saturation in blood in a living body using a near-infrared ray by attaching a pad to the head of a human body.
  • the above-described conventional sensor uses a single light source and two photodetectors to subtract information on a shallow part from information on a deep part of the human head to obtain information on a deep part.
  • the center (line) based on the separation distance between one light source and one photodetector is shifted from the center (line) based on the separation distance between one shared light source and the other photodetector.
  • the part where the near infrared light passes is different in the center between the deep position and the shallow position, and in the part where the blood vessel arrangement in the living body is different, it is difficult to say that information is accurate only in the deep part, and the reliability is low. was there.
  • an object of the present invention is to provide an oxygen saturation measuring sensor and an oxygen saturation measuring device capable of improving the reliability of information on parts having different depths. .
  • an oxygen saturation measurement sensor includes a pad that can be attached to a human body, a plurality of light sources that are arranged adjacent to the pad in a separated state and irradiate near infrared rays, and a pad.
  • a plurality of light sources that are adjacent to each other in a separated state and are arranged so as to have a one-to-one correspondence with a plurality of light sources on the basis of a common center with a plurality of light sources, and receive transmitted light from the corresponding light sources.
  • a light receiving element, and a ROM unit that measures light transmitted by the phantom in advance and stores it as a reference value and stores the amount of light received by the plurality of light receiving elements.
  • the centers (lines) of the separation distances between the plurality of light sources and the plurality of light receiving elements corresponding to the respective light sources on a one-to-one basis are the same, the reliability of the information on the parts having different depths Can be improved.
  • FIG. 5 shows another oxygen saturation measurement sensor according to an embodiment of the present invention, wherein (A) is an explanatory diagram of a pad in which two light receiving elements are arranged in one light source, and (B) is a pair of light sources on the left and right sides; FIG. 6C is an explanatory diagram of pads in which light receiving elements are arranged, and FIG. 8C is an explanatory diagram of pads arranged in a one-to-one correspondence with a plurality of light sources and a plurality of light receiving elements at the same center (line).
  • FIG. 2 shows a schematic configuration of a pad, where (A) is an explanatory diagram of a curved surface non-following type, and (B) is an explanatory diagram of a curved surface tracking type. It is explanatory drawing which shows the relationship between the cross-sectional structure of a human head, and sensor sensitivity. (A) is explanatory drawing of the cuvette used at the time of calibration curve creation, (B) is explanatory drawing of the phantom used at the time of calibration curve creation.
  • the oxygen saturation measuring apparatus 1 includes, for example, a sensor unit 2 and a main body unit 3 that are attached to the surface of the skull.
  • the sensor unit 2 includes a pad 21 that can be attached to a human body, and a plurality of light sources 22A and 22B (hereinafter also referred to as “light source 22”) that are disposed adjacent to the pad 21 in a separated state and emit near-infrared rays. Arranged so as to correspond to the plurality of light sources 22A, 22B on a one-to-one basis with the center P as a reference adjacent to the pad 21 in a separated state and shared with the innermost light source 22B among the plurality of light sources 22A, 22B.
  • light source 22 Arranged so as to correspond to the plurality of light sources 22A, 22B on a one-to-one basis with the center P as a reference adjacent to the pad 21 in a separated state and shared with the innermost light source 22B among the plurality of light sources 22A, 22B.
  • a plurality of light receiving elements 23A and 23B (hereinafter also referred to as “light receiving elements 23”) that receive the transmitted light from the plurality of light sources 22A and 22B, and a ROM unit that measures the transmitted light by the phantom in advance and stores it as a reference value 24.
  • the plurality of light sources 22A and 22B and the plurality of light receiving elements 23A and 23B correspond one-to-one with the light source 22A and the light receiving element 23A, and between the light source 22B and the light receiving element 23B.
  • the combination of the light source (22A, 22B) and the light receiving element (23A, 23B) is also simply referred to as “sensor”.
  • sensor A particularly when referring to the combination of the light source 22A and the light receiving element 23A, it is also referred to as “sensor A”, and when regarding the combination of the light source 22B and the light receiving element 23B, it is also referred to as “sensor B”.
  • the plurality of light sources 22A and 22B and the plurality of light receiving elements 23A and 23B are arranged such that the plurality of light sources 22A and 22B are spaced apart by an equal distance on one side of the center P, and the plurality of light receptions are performed on the other side of the center P. Elements 23A and 23B are spaced apart by an equal distance. Furthermore, the center p1 between the separation distance (center distance) between the light source 22A and the light source 22B and the center p2 between the separation distance (center distance) between the light receiving element 23A and the light receiving element 23B are at the center P. It is in a symmetrical position.
  • the light source 22A and the light source 22B, the light source 22B and the light receiving element 23B, and the light receiving element 23A and the light receiving element 23B are arranged so that the respective separation distances (center distances) are all equal.
  • the light source 22A and the light receiving element 23A having a long separation distance are set to have a separation distance (for example, 40 mm) so as to acquire information on a deep part of the skull.
  • the light source 22B and the light receiving element 23B having a short separation distance are set to have a separation distance (for example, 20 mm) so as to acquire information on a shallow portion of the skull.
  • “deep / shallow” refers to a case where a pair of sensors is compared.
  • the distance between the light sources 22A and 22B and the light receiving elements 23A and 23B varies depending on the size and thickness of the skull, such as for adults, middle-aged (children to adults), and children.
  • the light source 22A and the light source 22B use LEDs, and project, for example, near infrared rays having a predetermined wavelength 10 times per second per wavelength with a pulse of 0.2 mSec.
  • the light receiving elements 23A and 23B use photodiodes, detect oxyhemoglobin, deoxyhemoglobin, and near infrared rays of respective wavelengths corresponding to their cross points, and amplify the signals to calculate measured values. It has become.
  • the light source 22A and the light source 22B have wavelength characteristics of near infrared absorption spectrum characteristics, and are set to 805 nm at which the absorbances of oxygen hemoglobin and reduced hemoglobin substantially coincide with each other, 770 nm smaller than that, and 870 nm larger than that.
  • the wavelength 770 nm and the wavelength 870 nm are used as the R / IR ratio in the calculation of the oxygen saturation by the combination thereof.
  • the wavelength of 805 nm is used when measuring changes in the amount and concentration of the entire hemoglobin. That is, the wavelength of 805 nm is the wavelength where the extinction coefficient of human oxyhemoglobin / deoxyhemoglobin is equal and correlates with the total amount or concentration of hemoglobin regardless of the oxygen saturation, so it is used as an index of blood volume as a hemoglobin index To do.
  • R / R is obtained by using two wavelengths 770 nm and 870 nm that have opposite extinction coefficients across the same extinction coefficient of human oxyhemoglobin and deoxyhemoglobin of wavelength 805 nm. From IR, it is possible to accurately measure oxygen saturation from low oxygen saturation to high oxygen saturation.
  • the intensity of light decreases in inverse proportion to the square of the distance as the distance from the light source 22A to the light receiving element 23A and from the light source 22B to the light receiving element 23B increases.
  • the intensity of light is weak, the light passes near the scalp and skull near the shallow part of the cranium, and as the intensity increases, the light reaches the cerebral cortex at a deep part of the cranium.
  • the main unit 3 is connected to the sensor unit 2 in a circuit.
  • a / D conversion unit 3D for converting, arithmetic processing unit 3E for calculating data, screen display unit 3F for displaying data, storage unit 3G for storing data, and LEDs that are light sources 22A and 22B of sensor unit 2 are driven and controlled.
  • the main body unit 3 instructs the LED driving unit 3H to emit and receive light by the arithmetic processing unit 3E. Then, light of a predetermined wavelength is output from the two light sources 22A and 22B of the sensor unit 2 while changing the intensity between strong and weak, and the transmitted light of the light is received by the two light receiving elements 23A and 23B, respectively. To do.
  • the light reception signals by the light receiving elements 23A and 23B are amplified by the amplifier unit 3C, and the amplified signal is converted into a digital signal by the A / D conversion unit 3D and input to the arithmetic processing unit 3E.
  • the arithmetic processing unit 3E calculates the oxygen saturation rSO2 and the like in real time according to Bare Lambert's law from these light emission signals and light reception signals, and stores them in the storage unit 3G and displays them on the screen display unit 3F. Specifically, the arithmetic processing unit 3E measures the oxygen saturation rSO2 and hemoglobin index HbI of blood in the brain.
  • the two light sources 22A and 22B and the light receiving elements 23A and 23B of the sensor unit 2 are mounted in contact with the surface of the skull. Thereafter, a light signal is output to the light sources 22A and 22B to irradiate the inside of the skull. Then, the light transmitted through the skull is received by the light receiving elements 23A and 23B, respectively. A light reception signal obtained by scattering and reflecting the blood mainly by hemoglobin is required with high accuracy. Thereafter, arithmetic processing is performed in the arithmetic processing unit.
  • the measuring apparatus 1 irradiates the skull with near-infrared light, and the amount of absorbed light is proportional to the concentration of incident light and solute. According to the Lambert-Beer law, the oxygen saturation level of hemoglobin in the brain region And measure changes in concentration. Using the difference in light absorption spectrum between oxyhemoglobin and deoxyhemoglobin, the absorbance is obtained from the light detected by the light receiving element through the skull at different wavelengths (770 nm and 870 nm), and the local oxygen saturation (rSO2 ).
  • the information obtained by the sensor is information on the entire optical path of the paired light source (22A, 22B) and light receiving element (23A, 23B), and if the center is different, it is evaluated as accurate information on the center of the sensor. Cannot be performed or information with low reliability is obtained. In particular, since the arrangement of blood vessels varies depending on the site in a living body, this difference cannot be ignored.
  • the arithmetic processing unit 3E subtracts the information of the sensor B from the information of the sensor A, it is possible to obtain information from about 16 mm shallow to 40 mm deep of the skull.
  • the fact that the depth of the part to be measured can be varied is known from experiments in which the separation distance of sensor A and the separation distance of sensor B are different. That is, since the light beam emitted from the light source (22A, 22B) immediately becomes scattered light, the path of light from the light source (22A, 22B) to the light receiving element (23A, 23B) is different (for example, in Monte Carlo simulation) Called Banana Shape). Generally, the deepest part of the light passing through is near the apex of an isosceles triangle. Considering this, the light receiving element of the sensor B is located immediately above the apex of the sensor A (separation distance 40 mm), which is different from the center (line) of the sensor B.
  • the result obtained by subtracting the sensor B from the sensor A is information only for the deep part of the skull, but it is better if the whole including the shallow part of the skull can be known, so the deep part is targeted as the measurement channel.
  • a separation distance of 40 mm and a separation distance of 20 mm for a shallow part are separately measured. It is preferable that the difference between the information of 40 mm and the information of 20 mm can be separately calculated as information only for a deep part. In the conventional method using one light source and two light receiving elements, only deep part information is used.
  • FIG. 3 to Fig. 6 show the experimental data for confirming the measurement depth according to the sensor separation distance.
  • FIG. 3 and FIG. 4 are examples in which a deep part of the skull with a separation distance of 40 mm is targeted, and a black rubber sheet and a cuvette containing water (described later) are inserted under the sensor. Experimental data confirming how deep the detection signal can be detected is shown.
  • the separation distance between the light source and the light receiving element is 40 mm (FIGS. 3 and 4)
  • the depth of 28 mm to 32 mm can be confirmed as the detection limit.
  • it has been found that depths from 70% to a maximum of 80% of the distance between the light source and the light receiving element can be detected at a separation distance of 30 mm (FIG. 5) and 20 mm (FIG. 6).
  • the light sources 22A and 22B and the light receiving elements 23A and 23B are configured in a pair, and the separation distance between the sensor A (the light source 22A and the light receiving element 23A) is 40 mm, and the sensor B ( The distance between the light source 22B and the light receiving element 23B) is set to 20 mm, and the respective irradiation and light reception are operated alternately so that the sensor A can acquire information up to the deep part of the skull and the sensor B can acquire information about the shallow part of the skull. did. Since the two centers (center line P) of these sensors A and B are the same, information having different depths can be independently acquired at the same measurement site.
  • the same measurement site is not the same measurement site in a strict sense because the depth is different, but here the center (center line P) of the sensor A and the sensor B provided on the pad 21 is the same. For this reason, the measurement site is substantially the same in the sense of measurement in the vicinity of the center.
  • the information obtained by the light when the cranium is the target is the solvent in the portion where the light projected from the light source to the light receiving element has passed through the cranium.
  • the information of the part that has not passed through the skull is not reflected.
  • the farthest part is the apex of an equilateral triangle connecting the light source, the light receiving element, and the inside of the skull And coincides with the center (center line P) of the separation distance between the light source and the light receiving element.
  • the configuration of the pad 21 will be described.
  • the pasting portion is basically a curved surface. Therefore, as shown in FIG. 7A, a printed circuit board 4 is employed for mass production, and a chip-like light source 22 and a light receiving element 23 are placed on the surface of the substrate 4 and soldered. Furthermore, since the surfaces of the light source 22 and the light receiving element 23 are separated from the printed board 4 by the thickness of each element, the surface of the element is finished to be entirely flush with the foamed rubber 5. At this time, it is an essential condition that the element is in close contact with the living body H.
  • the light cannot be detected unless the light emitting surface and the light receiving surface of each element are directed on the printed circuit board 4, and the living body H is a curved surface. Therefore, the element is difficult to be in close contact with the curved surface of the living body H. It will cause an error.
  • Sensor unit 2 can measure the amount of hemoglobin and oxygen saturation in blood inside living body H using near infrared rays. From the above experimental results, the sensor has a depth that can be monitored from 70% to 80% of the separation distance. On the other hand, as shown in FIG. 8, it is said that the thickness of the skull in the case of an adult is about 8 mm to 10 mm, and the thickness from the epidermis to the skull is about 5 mm to 8 mm.
  • the sensor separation distance is 18.5 mm. 25.7 mm, or 16.2 mm to 22.5 mm.
  • the thickness of the skull (8 to 10 mm) is taken into consideration, it is considered that information in the skull is not included if the distance of light transmission and reception is 20 mm.
  • information obtained by a sensor having a separation distance of 40 mm includes information on the inside and outside of the cranium. Therefore, information on the light transmission / reception 20 mm outside the skull is obtained from the information obtained when the separation distance is 40 mm. If deducted, it is considered that the information is only in the cranium.
  • the signal of the light receiving element (23A) of the sensor having a separation distance of 40 mm is more affected by absorption and scattering than the signal of the light receiving element (23B) of the 20 mm sensor. It is necessary to increase the amplification factor by about 40 times. From this, when calculating the amount of absorption by hemoglobin, the separation distance of 40 mm has a larger absorption amount, so if the R / IR ratio is calculated after subtracting the absorption amount of the separation distance of 20 mm from the absorption amount of the separation distance of 40 mm, Only the deep oxygen saturation can be calculated.
  • the distance in the depth direction to the muscle is 12-20 mm, the epidermis and the fat layer
  • a combination of a separation distance of 10 mm and a separation distance of 30 mm is optimal for optimal muscle blood flow measurement.
  • the oxygen saturation can be obtained from the R / IR ratio according to the theory described above from the light absorption obtained in this manner.
  • the hemoglobin index is a value in which the amount of absorption is directly correlated with HbI as a relative value. In this way, by aligning the center position and independently obtaining the upper part in the depth direction, blood flow information of a target region can be selectively obtained by applying these ideas to other than the skull. .
  • the blood of the brain exists in capillaries and the like, and the concentration seen from the whole tissue is about 54 ml / min with respect to 100 g brain tissue, and the hemoglobin concentration seen from the brain tissue is about 5 g / dl. Therefore, in the above measurement, blood was diluted to about 1/3 with heparin physiological saline.
  • a calibration curve for sensor calibration can be created using that blood.
  • the tonated blood was filled in a cuvette with a thickness of about 1 mm, the voltage of the received light signal was measured at two different wavelengths, and the absorbance from the measured voltage was Bear Lambert. Calculate from the law. If the ratio (R / IR) of each light absorption amount is known for each oxygen saturation of tonated blood, the calibration curve for the relationship between oxygen saturation and R / IR can be obtained by connecting R / IR points.
  • the R / IR absorption ratio is measured by filling the tonated blood (measurement and confirmation of oxygen saturation and hemoglobin concentration using a CO oximeter) in a cuvette 6 as shown in FIG. In a dark state where no external light enters, the sensor having the light source 22 and the light receiving element 23 of the same wavelength to be used can measure the light absorption characteristics for each wavelength of each light.
  • the cuvette 6 was positioned directly below the sensors 22 and 23, and the cuvette 6 was sandwiched between hams 7 or the like simulating a living body.
  • the tonated blood was finely made from 0% to 100%, and a calibration curve was created from the measurement result of each.
  • the measured value is not a theoretical value but a more practical reproducible value.
  • the blood uses a cuvette 6 with a thickness of around 1 mm for standard oxygen saturation measurements.
  • the blood inside the cuvette 6 is checked for oxygen saturation with a CO oximeter before and after the measurement.
  • Oxygen saturation is made every 5% from 0% to 100% and measured 10 times or more each time. From these measurement results, the R / IR ratio is calculated by wavelength, and a curve of oxygen saturation and correlation of the CO oximeter is created.
  • the sensor element to be used satisfies the same specification as that actually used as a product, or a device to be evaluated is used. As described above, the wavelengths used are 770 nm, 805 nm, and 870 nm.
  • the reference value at this time is a non-invasive reference value for the oxygen saturation and the amount of hemoglobin in the living body, and needs to be a reference value that can accurately evaluate the blood information in the living body. .
  • a living body is a strongly scattering substance for light. Although the scattering coefficient and the diffusion coefficient can be measured, the living body constantly changes, so it is difficult to always maintain a constant state.
  • some resins have the same scattering, diffusion, and absorption coefficient as living organisms, so select those with the same optical characteristics as living organisms and overlay them in multiple layers like living organisms. Made up a phantom.
  • the phantom has optical characteristics similar to those of, for example, the forehead of the adult, the skull, and the cortex, by alternately combining resin plates having the same scattering and absorption characteristics as the living body.
  • the actual structure is as follows: -One surface of absorbing plate 0.5t-5 scattering plates 2t below it-1 sheet of absorbing plate 0.5t below it-6 sheets of scattering plate 2t below it-1 sheet of polished aluminum plate 1t below- Under this, one foamed rubber plate 5t was stored in a light-shielded black metal case.
  • the scattering plate to be used is a well-known light fixture cover, and a point light source with strong light diffusivity was selected. Since a living body is known as a strong scatterer and light cannot travel straight, it is desirable to select a material that can obtain the same effect.
  • the absorption plate is positioned between the surface and the surface of a substance that absorbs light, such as melanin. The scattering plate and the light absorption plate are combined as described above, and placed in a light-shielding box to avoid external light.
  • the measurement principle of oxygen saturation utilizes the fact that two different types of light are absorbed and attenuated by hemoglobin in the living body. According to Bear Lambert's law, the degree of attenuation is proportional to the amount of hemoglobin contained in the optical path. If the amount of oxygenated hemoglobin is HbO 2 and the amount of deoxygenated hemoglobin is HbR, the oxygen saturation can be expressed as (HbO 2 / (HbO 2 + HbR)) ⁇ 100%. When the oxygen saturation is 50%, HbO 2 and HbR are equal. From the absorbance curves for HbO 2 and HbR, the two hemoglobins show the same extinction coefficient at a wavelength of 805 nm.
  • the R / IR ratio on the phantom if the degree of absorption of the two infrared rays is the same according to Bare-Lambert's law, the amount of each hemoglobin is The oxygen saturation is 50% at 1.0. Even when the absorption coefficient of the wavelength to be used is different, correction is possible by multiplying the ratio of the absorption coefficient by the R / IR ratio.
  • K ⁇ cd
  • c concentration of solvent
  • d optical path length Absorbance at a certain wavelength is as follows.
  • the absorbance of R K770 is 0.576 cd
  • the absorbance of IR K870 is 0.479 cd
  • the absorbance of R increases.
  • the calculation formula (theoretical value) of rSO2 is as described above.
  • such an oxygen saturation measuring device 1 and an oxygen saturation measuring sensor 2 can be applied to all cases that require numerical values related to oxygen saturation and hemoglobin amount based on hemoglobin change information by near infrared light. it can.
  • Brain protection during surgery For example, when there is a state where blood does not go to the brain temporarily due to circulatory arrest in cardiac surgery or carotid artery blockage in brain surgery, the oxygen saturation measurement sensor 2 is attached to the forehead part to Information on blood oxygen saturation and blood volume can be acquired, and it is possible to easily grasp whether or not it is in a dangerous state, which can be useful for brain protection and prevention of brain damage.
  • the oxygen saturation measurement sensor 2 described above can reflect information on all hemoglobins in the optical path through which the near infrared light has passed.
  • blood exists only in blood vessels, but for example, in the case of subarachnoid hemorrhage or intracranial hemorrhage, hemoglobin overflows outside the blood vessel, so the amount of hemoglobin in the measurement optical path is extraordinarily large in the blood vessel. From the phantom reference HbI value, it can be easily determined whether or not there is bleeding.
  • the oxygen saturation measurement sensor according to the present invention has an effect of improving the reliability of information on parts having different depths, and is non-invasive using near infrared rays. It is useful for oxygen saturation measuring sensors and oxygen saturation measuring devices in general for measuring oxygen saturation in blood.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The purpose of the present invention is to provide an oximetry sensor capable of improving the reliability of information relating to sites differing in depth. This oximetry sensor is provided with: a pad attachable to a human body; a plurality of light sources which are disposed adjacent to but spaced from one another on the pad and emit near infrared radiation; a plurality of light-receiving elements which are disposed adjacent to but spaced from one another on the pad and arranged relative to a center common with the innermost one of the plurality of light sources in a one-to-one correspondence with the light sources, and receive transmitted light from the corresponding light sources; and a ROM unit which preliminarily measures transmitted light using a phantom and stores the result as a reference value as well as stores the amount of transmitted light received by the light receiving elements.

Description

酸素飽和度測定センサ及び酸素飽和度測定装置Oxygen saturation measuring sensor and oxygen saturation measuring device
 本発明は、酸素飽和度測定センサ及び酸素飽和度測定装置に関し、特に、近赤外線を用いた無侵襲で生体内の血液中の酸素飽和度を測定するための酸素飽和度測定センサ及び酸素飽和度測定装置に関する。 The present invention relates to an oxygen saturation measurement sensor and an oxygen saturation measurement device, and more particularly, to an oxygen saturation measurement sensor and an oxygen saturation for measuring oxygen saturation in blood in a living body in a non-invasive manner using near infrared rays. It relates to a measuring device.
 生体としての人体の呼吸による酸素の供給は、循環する血液によって運搬、交換が行われる。呼吸によって取り込まれた酸素は、肺胞におけるガス交換によって血液中のヘモグロビン(Hb)と結合する。血液に取り込まれた酸素は、動脈血によって全身へと送られ、毛細血管によって細胞に取り込まれる。 The supply of oxygen by the breathing of the human body as a living body is carried and exchanged by circulating blood. Oxygen taken up by respiration is combined with hemoglobin (Hb) in the blood by gas exchange in the alveoli. Oxygen taken into the blood is sent to the whole body by arterial blood and taken into cells by capillaries.
 血液中の酸素により各部の細胞が生存しているため、特に、心臓等の手術の際、或は、心停止による心臓マッサージの際、には頭蓋、とりわけ大脳皮質の酸素状態をリアルタイムで計測して、脳細胞の状態を常時チェックすることが望ましい。 Since the cells in each part survive due to oxygen in the blood, the oxygen state of the skull, especially the cerebral cortex, is measured in real time, especially during surgery such as the heart, or during heart massage due to cardiac arrest. Therefore, it is desirable to constantly check the state of brain cells.
 この大脳皮質の酸素状態を計測する方法として、人体の頭部にパッドを貼り付けて近赤外線を用いた無侵襲で生体内の血液中の酸素飽和度を測定する酸素飽和度測定装置が知られている(例えば、特許文献1参照)。 As a method for measuring the oxygen state of the cerebral cortex, there is known an oxygen saturation measuring apparatus for measuring oxygen saturation in blood in a living body using a near-infrared ray by attaching a pad to the head of a human body. (For example, refer to Patent Document 1).
特開2016-000240号公報JP 2016-000240 A
 ところで、上述した従来のセンサは、一つの光源と二つの光検出器とを用いて、人体の頭部の深い部位の情報から浅い部位の情報を差し引き、深い部位の情報としている。この際、一つの光源の一方の光検出器との離間距離に基づく中心(線)と、共有する一つの光源と他方の光検出器との離間距離に基づく中心(線)とがずれている。 By the way, the above-described conventional sensor uses a single light source and two photodetectors to subtract information on a shallow part from information on a deep part of the human head to obtain information on a deep part. In this case, the center (line) based on the separation distance between one light source and one photodetector is shifted from the center (line) based on the separation distance between one shared light source and the other photodetector. .
 このため、近赤外光の通過する部位が、深い位置と浅い位置とで中心が異なり、生体における血管配置が異なる部位では正確な深い部分のみの情報とは言い難く、信頼性が低いという問題があった。 For this reason, the part where the near infrared light passes is different in the center between the deep position and the shallow position, and in the part where the blood vessel arrangement in the living body is different, it is difficult to say that information is accurate only in the deep part, and the reliability is low. was there.
 本発明は、上述のような課題を解決するために、深さの異なる部位の情報の信頼性を向上することができる酸素飽和度測定センサ及び酸素飽和度測定装置を提供することを目的とする。 In order to solve the above-described problems, an object of the present invention is to provide an oxygen saturation measuring sensor and an oxygen saturation measuring device capable of improving the reliability of information on parts having different depths. .
 本発明に係る酸素飽和度測定センサは、上記目的を達成のため、人体に貼り付け可能なパッドと、パッドに離間状態で隣接して配置するとともに近赤外線を照射する複数の光源と、パッドに離間状態で隣接しかつ複数の光源のうち最内側とで共通の中心を基準に複数の光源と1対1で対応するように配置し、対応する複数の光源からの透過光を受光する複数の受光素子と、予めファントムによる透過光を測定して基準値として記憶するとともに複数の受光素子で受光した透過光の受光量を記憶するROM部と、を備えるものである。 In order to achieve the above object, an oxygen saturation measurement sensor according to the present invention includes a pad that can be attached to a human body, a plurality of light sources that are arranged adjacent to the pad in a separated state and irradiate near infrared rays, and a pad. A plurality of light sources that are adjacent to each other in a separated state and are arranged so as to have a one-to-one correspondence with a plurality of light sources on the basis of a common center with a plurality of light sources, and receive transmitted light from the corresponding light sources. A light receiving element, and a ROM unit that measures light transmitted by the phantom in advance and stores it as a reference value and stores the amount of light received by the plurality of light receiving elements.
 本発明によれば、複数の光源及びこの各光源と1対1で対応する複数の受光素子との離間距離の中心(線)が同一であることから、深さの異なる部位の情報の信頼性を向上することができる。 According to the present invention, since the centers (lines) of the separation distances between the plurality of light sources and the plurality of light receiving elements corresponding to the respective light sources on a one-to-one basis are the same, the reliability of the information on the parts having different depths Can be improved.
本発明の一実施の形態に係る酸素飽和度測定装置のブロック図である。It is a block diagram of the oxygen saturation measuring apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る他の酸素飽和度測定センサを示し、(A)は一つの光源に二つの受光素子を配置したパッドの説明図、(B)は左右一対二組の光源及び受光素子を配置したパッドの説明図、(C)は同一中心(線)で複数の光源と複数の受光素子とを1対1で対応させた配置のパッドの説明図である。FIG. 5 shows another oxygen saturation measurement sensor according to an embodiment of the present invention, wherein (A) is an explanatory diagram of a pad in which two light receiving elements are arranged in one light source, and (B) is a pair of light sources on the left and right sides; FIG. 6C is an explanatory diagram of pads in which light receiving elements are arranged, and FIG. 8C is an explanatory diagram of pads arranged in a one-to-one correspondence with a plurality of light sources and a plurality of light receiving elements at the same center (line). 離間距離40mmの場合の水入りキュベット及びゴムをサンプルとする測定電圧と測定深度との関係を示すグラフ図である。It is a graph which shows the relationship between the measurement voltage and measurement depth which use a water-containing cuvette and rubber | gum in the case of the separation distance of 40 mm. 離間距離40mmの場合の水入りキュベット及びゴムをサンプルとする受光強度と測定深度との関係を示すグラフ図である。It is a graph which shows the relationship between the light reception intensity | strength which uses a cuvette with water and rubber | gum in the case of separation distance 40mm as a sample, and measurement depth. 離間距離30mmの場合の水入りキュベット及びゴムをサンプルとする受光強度と測定深度との関係を示すグラフ図である。It is a graph which shows the relationship between the light reception intensity | strength which uses a cuvette with water and rubber | gum in the case of separation distance 30mm, and a measurement depth. 離間距離20mmの場合の水入りキュベット及びゴムをサンプルとする受光強度と測定深度との関係を示すグラフ図である。It is a graph which shows the relationship between the light reception intensity | strength which uses a cuvette with water and rubber | gum in the case of separation distance 20mm, and a measurement depth. パッドの概略略構成を示し、(A)は曲面非追従型の説明図、(B)は曲面追従型の説明図である。FIG. 2 shows a schematic configuration of a pad, where (A) is an explanatory diagram of a curved surface non-following type, and (B) is an explanatory diagram of a curved surface tracking type. 人間頭部の断面構造とセンサ感度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the cross-sectional structure of a human head, and sensor sensitivity. (A)は校正曲線作成時に用いるキュベットの説明図、(B)は校正曲線作成時に用いるファントムの説明図、である。(A) is explanatory drawing of the cuvette used at the time of calibration curve creation, (B) is explanatory drawing of the phantom used at the time of calibration curve creation.
 次に、本発明に係る一実施の形態について図面を参照して説明する。 Next, an embodiment according to the present invention will be described with reference to the drawings.
 図1に示すように、酸素飽和度測定装置1は、例えば、頭蓋の表面に装着されるセンサ部2及び本体部3を備える。 As shown in FIG. 1, the oxygen saturation measuring apparatus 1 includes, for example, a sensor unit 2 and a main body unit 3 that are attached to the surface of the skull.
 センサ部2は、人体に貼り付け可能なパッド21と、パッド21に離間状態で隣接して配置するとともに近赤外線を照射する複数の光源22A,22B(以下、「光源22」とも称する)と、パッド21に離間状態で隣接しかつ複数の光源22A,22Bのうち最内側の光源22Bとで共通の中心Pを基準に複数の光源22A,22Bと1対1で対応するように配置し、対応する複数の光源22A,22Bからの透過光を受光する複数の受光素子23A,23B(以下、「受光素子23」とも称する)と、予めファントムによる透過光を測定して基準値として記憶するROM部24と、を備える。 The sensor unit 2 includes a pad 21 that can be attached to a human body, and a plurality of light sources 22A and 22B (hereinafter also referred to as “light source 22”) that are disposed adjacent to the pad 21 in a separated state and emit near-infrared rays. Arranged so as to correspond to the plurality of light sources 22A, 22B on a one-to-one basis with the center P as a reference adjacent to the pad 21 in a separated state and shared with the innermost light source 22B among the plurality of light sources 22A, 22B. A plurality of light receiving elements 23A and 23B (hereinafter also referred to as “light receiving elements 23”) that receive the transmitted light from the plurality of light sources 22A and 22B, and a ROM unit that measures the transmitted light by the phantom in advance and stores it as a reference value 24.
 複数の光源22A,22Bと複数の受光素子23A,23Bとは、光源22Aと受光素子23A,光源22Bと受光素子23Bとで1対1で対応している。なお、以下の説明において、光源(22A,22B)と受光素子(23A,23B)との組み合わせを、単に「センサ」とも称する。この際、特に光源22Aと受光素子23Aとの組み合わせに関する場合には「センサA」、光源22Bと受光素子23Bとの組み合わせに関する場合には「センサB」とも称する。 The plurality of light sources 22A and 22B and the plurality of light receiving elements 23A and 23B correspond one-to-one with the light source 22A and the light receiving element 23A, and between the light source 22B and the light receiving element 23B. In the following description, the combination of the light source (22A, 22B) and the light receiving element (23A, 23B) is also simply referred to as “sensor”. In this case, particularly when referring to the combination of the light source 22A and the light receiving element 23A, it is also referred to as “sensor A”, and when regarding the combination of the light source 22B and the light receiving element 23B, it is also referred to as “sensor B”.
 また、複数の光源22A,22Bと複数の受光素子23A,23Bとは、中心Pの一方側に複数の光源22A,22Bを等距離だけ離間して配置し、中心Pの他方側に複数の受光素子23A,23Bを等距離だけ離間して配置している。さらに、光源22Aと光源22Bとの離間距離(中心間距離)の間の中心p1と、受光素子23Aと受光素子23Bとの離間距離(中心間距離)の間の中心p2とは、中心Pに対して対称位置にある。 In addition, the plurality of light sources 22A and 22B and the plurality of light receiving elements 23A and 23B are arranged such that the plurality of light sources 22A and 22B are spaced apart by an equal distance on one side of the center P, and the plurality of light receptions are performed on the other side of the center P. Elements 23A and 23B are spaced apart by an equal distance. Furthermore, the center p1 between the separation distance (center distance) between the light source 22A and the light source 22B and the center p2 between the separation distance (center distance) between the light receiving element 23A and the light receiving element 23B are at the center P. It is in a symmetrical position.
 したがって、光源22Aと光源22B、光源22Bと受光素子23B、受光素子23Aと受光素子23Bとは、各離間距離(中心間距離)が全て等しいように配置している。この際、離間距離の長い光源22Aと受光素子23Aとは、頭蓋の深い部分の情報を取得するように離間距離が設定(例えば、40mm)されている。一方、離間距離の短い光源22Bと受光素子23Bとは、頭蓋の浅い部分の情報を取得するように離間距離が設定(例えば、20mm)されている。なお、本実施の形態における深い・浅いとは、1対2組のセンサの間で比較した場合である。また、例えば、1対3組以上のセンサを配置した場合には、最も深い位置と最も浅い位置とその間を等分する一つ以上の中間の深さの情報を取得するように構成することができる。なお、光源22A,22Bと受光素子23A,23Bとの距離は、成人用、中人(子供~成人)用、小児用等のように頭蓋の大きさや薄さ等によって異なる。 Therefore, the light source 22A and the light source 22B, the light source 22B and the light receiving element 23B, and the light receiving element 23A and the light receiving element 23B are arranged so that the respective separation distances (center distances) are all equal. At this time, the light source 22A and the light receiving element 23A having a long separation distance are set to have a separation distance (for example, 40 mm) so as to acquire information on a deep part of the skull. On the other hand, the light source 22B and the light receiving element 23B having a short separation distance are set to have a separation distance (for example, 20 mm) so as to acquire information on a shallow portion of the skull. In this embodiment, “deep / shallow” refers to a case where a pair of sensors is compared. In addition, for example, when one or more pairs of sensors are arranged, it is possible to obtain information of one or more intermediate depths equally dividing the deepest position and the shallowest position. it can. Note that the distance between the light sources 22A and 22B and the light receiving elements 23A and 23B varies depending on the size and thickness of the skull, such as for adults, middle-aged (children to adults), and children.
 光源22Aと光源22BとはLEDを用いており、例えば、所定波長の近赤外線を1波長あたり毎秒10回、0.2mSecのパルスで投射する。受光素子23Aと受光素子23Bとはフォトダイオードを用いており、オキシヘモグロビンとデオキシヘモグロビン及びそれらのクロスポイントに対応した各波長の近赤外線を検知し、その信号を増幅して測定値を計算するようになっている。したがって、光源22Aと光源22Bとは、波長特性を近赤外線の吸収スペクトル特性として、酸素ヘモグロビンと還元ヘモグロビンの吸光度が略一致する805nmと、それより小さい770nm及びそれより大きい870nmに設定されている。 The light source 22A and the light source 22B use LEDs, and project, for example, near infrared rays having a predetermined wavelength 10 times per second per wavelength with a pulse of 0.2 mSec. The light receiving elements 23A and 23B use photodiodes, detect oxyhemoglobin, deoxyhemoglobin, and near infrared rays of respective wavelengths corresponding to their cross points, and amplify the signals to calculate measured values. It has become. Therefore, the light source 22A and the light source 22B have wavelength characteristics of near infrared absorption spectrum characteristics, and are set to 805 nm at which the absorbances of oxygen hemoglobin and reduced hemoglobin substantially coincide with each other, 770 nm smaller than that, and 870 nm larger than that.
 なお、波長の役割としては、波長770nmと波長870nmとは、その組み合わせにより酸素飽和度の計算にR/IR比として使用する。一方、波長805nmは、ヘモグロビン全体の量や濃度の変化を測定する場合に使用する。すなわち、波長805nmは、ヒトのオキシヘモグロビン・デオキシヘモグロビンの吸光係数が等しい波長であり、酸素飽和度に関係なくヘモグロビン全体の量又は濃度と相関しているので、ヘモグロビンインデックスとして血液量の指標に使用する。これにより、酸素飽和度を測定する際には波長805nmというヒトのオキシヘモグロビン・デオキシヘモグロビンの等しい吸光係数を挟んで吸光係数が逆になる2つの波長770nmと波長870nmとを使用することによってR/IRから酸素飽和度を低い酸素飽和度から、高い酸素飽和度まで精度よく測定することができる。 In addition, as the role of the wavelength, the wavelength 770 nm and the wavelength 870 nm are used as the R / IR ratio in the calculation of the oxygen saturation by the combination thereof. On the other hand, the wavelength of 805 nm is used when measuring changes in the amount and concentration of the entire hemoglobin. That is, the wavelength of 805 nm is the wavelength where the extinction coefficient of human oxyhemoglobin / deoxyhemoglobin is equal and correlates with the total amount or concentration of hemoglobin regardless of the oxygen saturation, so it is used as an index of blood volume as a hemoglobin index To do. As a result, when measuring oxygen saturation, R / R is obtained by using two wavelengths 770 nm and 870 nm that have opposite extinction coefficients across the same extinction coefficient of human oxyhemoglobin and deoxyhemoglobin of wavelength 805 nm. From IR, it is possible to accurately measure oxygen saturation from low oxygen saturation to high oxygen saturation.
 頭蓋の表面にパッド21を装着すると、光源22Aから受光素子23A及び光源22Bから受光素子23Bまでの距離が遠くなるほど、その距離の2乗に反比例して光の強度が減少する。また、光の強度が弱いとその光は頭蓋の浅い部位の頭皮や頭蓋骨の付近を通過し、強度が強いほどその光は頭蓋の深い部位の大脳皮質にまで達する。 When the pad 21 is attached to the surface of the skull, the intensity of light decreases in inverse proportion to the square of the distance as the distance from the light source 22A to the light receiving element 23A and from the light source 22B to the light receiving element 23B increases. In addition, when the intensity of light is weak, the light passes near the scalp and skull near the shallow part of the cranium, and as the intensity increases, the light reaches the cerebral cortex at a deep part of the cranium.
 本体部3は、センサ部2に回路接続しており、電源部3A、電源部3Aの電圧を制御する電源制御部3B、測定データを増幅するアンプ部3C、データを計算できるようにデジタル信号に変換するA/D変換部3D、データを計算する演算処理部3E、データを表示する画面表示部3F、データを記憶する記憶部3G、センサ部2の光源22A,22BであるLEDを駆動制御するLED駆動部3H、LED駆動部3Hに対してパルス信号の同期を取るためのクロック部3I、外部で操作するための入力部3J、外部にデータを有線(例えば、USB)又は無線で出力する出力部3K、によって構成されている。 The main unit 3 is connected to the sensor unit 2 in a circuit. The power unit 3A, a power control unit 3B that controls the voltage of the power unit 3A, an amplifier unit 3C that amplifies the measurement data, and a digital signal so that the data can be calculated. A / D conversion unit 3D for converting, arithmetic processing unit 3E for calculating data, screen display unit 3F for displaying data, storage unit 3G for storing data, and LEDs that are light sources 22A and 22B of sensor unit 2 are driven and controlled. LED drive unit 3H, clock unit 3I for synchronizing pulse signals to LED drive unit 3H, input unit 3J for external operation, output for outputting data to the outside by wire (for example, USB) or wirelessly Part 3K.
 本体部3は、電源部3Aをスイッチ操作すると、演算処理部3EによりLED駆動部3Hに発光と受光を指示する。そして、センサ部2の2個の光源22A,22Bから所定の波長の光を、強度を強、弱に変化して出力し、この光の透過光を2個の受光素子23A,23Bでそれぞれ受光する。 When the power source unit 3A is switched, the main body unit 3 instructs the LED driving unit 3H to emit and receive light by the arithmetic processing unit 3E. Then, light of a predetermined wavelength is output from the two light sources 22A and 22B of the sensor unit 2 while changing the intensity between strong and weak, and the transmitted light of the light is received by the two light receiving elements 23A and 23B, respectively. To do.
 受光素子23A,23Bによる受光信号は、アンプ部3Cで増幅し、増幅した信号をA/D変換部3Dによりデジタル信号に変換して演算処理部3Eに入力する。演算処理部3Eは、これら発光信号、受光信号等によりベアーランバートの法則で酸素飽和度rSO2等をリアルタイムで演算し、それを記憶部3Gに記憶し、かつ画面表示部3Fに表示する。具体的に、演算処理部3Eは、脳内血液の酸素飽和度rSO2とヘモグロビンインデックスHbIとを測定する。 The light reception signals by the light receiving elements 23A and 23B are amplified by the amplifier unit 3C, and the amplified signal is converted into a digital signal by the A / D conversion unit 3D and input to the arithmetic processing unit 3E. The arithmetic processing unit 3E calculates the oxygen saturation rSO2 and the like in real time according to Bare Lambert's law from these light emission signals and light reception signals, and stores them in the storage unit 3G and displays them on the screen display unit 3F. Specifically, the arithmetic processing unit 3E measures the oxygen saturation rSO2 and hemoglobin index HbI of blood in the brain.
 上記構成の測定装置を使用する場合について説明する。まず、センサ部2の2個の光源22A,22Bと受光素子23A,23Bを、頭蓋の表面に接して装着する。その後、光源22A,22Bに光の信号を出力して頭蓋の内部に照射する。そして、頭蓋において透過した光を受光素子23A,23Bでそれぞれ受光信号を得る。その血液の主としてヘモグロビンにより散乱、反射することによる受光信号が高い精度で求められる。その後、演算処理部で演算処理が行われる。 The case where the measuring apparatus having the above configuration is used will be described. First, the two light sources 22A and 22B and the light receiving elements 23A and 23B of the sensor unit 2 are mounted in contact with the surface of the skull. Thereafter, a light signal is output to the light sources 22A and 22B to irradiate the inside of the skull. Then, the light transmitted through the skull is received by the light receiving elements 23A and 23B, respectively. A light reception signal obtained by scattering and reflecting the blood mainly by hemoglobin is required with high accuracy. Thereafter, arithmetic processing is performed in the arithmetic processing unit.
 測定装置1は、近赤外線の光を頭蓋に照射し、吸収される光の量は入射光と溶質の濃度に比例するという、「ランバートベールの法則」によって脳内局所でのヘモグロビンの酸素飽和度と濃度の変化を測定する。オキシヘモグロビンとデオキシヘモグロビンとの光の吸収スペクトルの差を利用し、異なる波長(770nm、870nm)で頭蓋内を通過して受光素子で検出された光から吸光度を求め、局所の酸素飽和度(rSO2)を計算する。 The measuring apparatus 1 irradiates the skull with near-infrared light, and the amount of absorbed light is proportional to the concentration of incident light and solute. According to the Lambert-Beer law, the oxygen saturation level of hemoglobin in the brain region And measure changes in concentration. Using the difference in light absorption spectrum between oxyhemoglobin and deoxyhemoglobin, the absorbance is obtained from the light detected by the light receiving element through the skull at different wavelengths (770 nm and 870 nm), and the local oxygen saturation (rSO2 ).
 ここで、センサで得られる情報は、対となる光源(22A,22B)と受光素子(23A,23B)との光路全体の情報であり、中心が異なると正確にセンサの中心の情報としては評価ができない、若しくは、信頼性の薄い情報となってしまう。特に、生体ではその部位によって血管配置は異なるので、この違いは無視できる範疇とはならない。 Here, the information obtained by the sensor is information on the entire optical path of the paired light source (22A, 22B) and light receiving element (23A, 23B), and if the center is different, it is evaluated as accurate information on the center of the sensor. Cannot be performed or information with low reliability is obtained. In particular, since the arrangement of blood vessels varies depending on the site in a living body, this difference cannot be ignored.
 例えば、センサAの離間距離を40mm、センサBの離間距離を20mmとした場合、センサAでは頭蓋の深さ32mm程度までの情報を反映し、センサBでは頭蓋の深さ16mm程度までの情報を反映することができる。そこで、演算処理部3Eは、センサAの情報からセンサBの情報を差し引けば、頭蓋の浅い16mm程度から深い40mmまでの情報を得ることが可能となる。 For example, when the separation distance of the sensor A is 40 mm and the separation distance of the sensor B is 20 mm, the sensor A reflects information up to about 32 mm in the skull depth, and the sensor B reflects information up to about 16 mm in the skull height. Can be reflected. Therefore, if the arithmetic processing unit 3E subtracts the information of the sensor B from the information of the sensor A, it is possible to obtain information from about 16 mm shallow to 40 mm deep of the skull.
 ここで、図2(A)に示すように、従来技術で示した一つの光源と2つの受光素子とで中心(線)が異なる既知の構成は、光源が1か所なので、光源から遠い一方の受光素子までの離間距離をセンサAと同じ40mm、光源に近い他方の受光素子までの離間距離を20mmとした場合、各中心p3,p4が10mmずれているので、正確に頭蓋の同じ位置で深さが異なる情報を取得したとはいい難く、信頼性が低いものとなっていた。 Here, as shown in FIG. 2A, in the known configuration in which the center (line) is different between one light source and two light receiving elements shown in the prior art, there is only one light source. When the distance to the light receiving element is 40 mm, which is the same as sensor A, and the distance to the other light receiving element close to the light source is 20 mm, the centers p3 and p4 are displaced by 10 mm. It was difficult to say that information with different depths was acquired, and the reliability was low.
 ここで、測定する部位の深さを異ならせることができる旨は、センサAの離間距離とセンサBの離間距離とを異ならせた実験により既知である。すなわち、光源(22A,22B)から出射した光束は、直ちに散乱光となるため、光源(22A,22B)から受光素子(23A,23B)に達するまでの光の通り道が異なる(例えば、モンテカルロシュミレーションではバナナシェイプと称している)。一般的に、通過する光の最も深い部分は2等辺三角形の頂点付近になる。これから考えると、センサA(離間距離40mm)の頂点の真上にはセンサBの受光素子が位置しており、センサBの中心(線)とは異なる。正確に離間距離40mmとした場合のセンサで深部の真上の浅い部分の情報を取るためには、離間距離20mmとした場合のセンサの中心を離間距離40mmのセンサの中心と合わせる必要がある。このように、異なる離間距離の複数のセンサ、例えば、離間距離40mmとしたセンサAの間に離間距離20mmのセンサB、を位置させるとともに、それらの中心を一致させることにより、正確に深い部分の真上の浅い部分の情報をも測定することができ、よって深い部分のみの情報よりも正確な情報を得ることが可能となる。 Here, the fact that the depth of the part to be measured can be varied is known from experiments in which the separation distance of sensor A and the separation distance of sensor B are different. That is, since the light beam emitted from the light source (22A, 22B) immediately becomes scattered light, the path of light from the light source (22A, 22B) to the light receiving element (23A, 23B) is different (for example, in Monte Carlo simulation) Called Banana Shape). Generally, the deepest part of the light passing through is near the apex of an isosceles triangle. Considering this, the light receiving element of the sensor B is located immediately above the apex of the sensor A (separation distance 40 mm), which is different from the center (line) of the sensor B. In order to accurately obtain information on a shallow portion directly above the deep portion with a sensor when the separation distance is 40 mm, it is necessary to match the center of the sensor when the separation distance is 20 mm with the center of the sensor whose separation distance is 40 mm. In this way, by positioning a plurality of sensors having different separation distances, for example, the sensor B having a separation distance of 20 mm between the sensors A having a separation distance of 40 mm, and matching the centers thereof, it is possible to accurately Information on the shallow portion directly above can also be measured, so that it is possible to obtain more accurate information than information on only the deep portion.
 センサAからセンサBを引いて得られる結果は、頭蓋の深い部位だけの情報になるが、頭蓋の浅い部位を含む全体を知ることができればより良いので、測定のチャンネルとして深い部位を対象とする離間距離40mmと浅い部位を対象とする離間距離20mmとを分けて各々で測定する。深い部位だけ情報として、40mmの情報と20mmの情報との差分は別に算出を可能とするのが好ましい。なお、一つの光源と二つの受光素子とを用いた従来の方法では、深い部位の情報のみとしている。 The result obtained by subtracting the sensor B from the sensor A is information only for the deep part of the skull, but it is better if the whole including the shallow part of the skull can be known, so the deep part is targeted as the measurement channel. A separation distance of 40 mm and a separation distance of 20 mm for a shallow part are separately measured. It is preferable that the difference between the information of 40 mm and the information of 20 mm can be separately calculated as information only for a deep part. In the conventional method using one light source and two light receiving elements, only deep part information is used.
 センサの離間距離による測定深度の確認実験データを図3~図6に示す。この実験例のうち、図3及び図4では、離間距離40mmの頭蓋の深い部位を対象とした場合の例で、黒いゴムシートと水を入れたキュベット(後述する)とをセンサの下に挿入してその検出信号がどの程度の深さまで検出できるのかを確認した実験データを示す。この結果、光源と受光素子との離間距離を40mmとした場合(図3及び図4)では深さ28mmから32mmが検出限界と確認できる。同様に、離間距離30mm(図5),20mm(図6)の各々で光源-受光素子の離間距離の70%から最大で80%までの深さが検出可能であることが判明した。 Fig. 3 to Fig. 6 show the experimental data for confirming the measurement depth according to the sensor separation distance. Of these experimental examples, FIG. 3 and FIG. 4 are examples in which a deep part of the skull with a separation distance of 40 mm is targeted, and a black rubber sheet and a cuvette containing water (described later) are inserted under the sensor. Experimental data confirming how deep the detection signal can be detected is shown. As a result, when the separation distance between the light source and the light receiving element is 40 mm (FIGS. 3 and 4), the depth of 28 mm to 32 mm can be confirmed as the detection limit. Similarly, it has been found that depths from 70% to a maximum of 80% of the distance between the light source and the light receiving element can be detected at a separation distance of 30 mm (FIG. 5) and 20 mm (FIG. 6).
 そこで、図2(C)に示すように、光源22A,22Bと受光素子23A,23Bとを一対二組で構成し、センサA(光源22Aと受光素子23A)の離間距離を40mm、センサB(光源22Bと受光素子23B)の離間距離を20mmとして、各々の照射・受光を交互に動作させることによって、センサAでは頭蓋の深い所まで、センサBでは頭蓋の浅いところの情報を取得するようにした。これらセンサA及びセンサBの二組の中心(中心線P)は同一なので同じ測定部位で深さの異なる情報を独立して取得することができる。ここで、深い部分の情報から浅い部分の情報を減算すれば、深い部分のみの情報とすることができる。なお、この同じ測定部位とは、深さが異なるために厳密な意味での同じ測定部位とはならないが、ここではパッド21に設けたセンサAとセンサBとの中心(中心線P)が同じであるために、この中心の直下付近を検出対象とする測定という意味で実質的に同じ測定部位とする。 Therefore, as shown in FIG. 2C, the light sources 22A and 22B and the light receiving elements 23A and 23B are configured in a pair, and the separation distance between the sensor A (the light source 22A and the light receiving element 23A) is 40 mm, and the sensor B ( The distance between the light source 22B and the light receiving element 23B) is set to 20 mm, and the respective irradiation and light reception are operated alternately so that the sensor A can acquire information up to the deep part of the skull and the sensor B can acquire information about the shallow part of the skull. did. Since the two centers (center line P) of these sensors A and B are the same, information having different depths can be independently acquired at the same measurement site. Here, if information on the shallow part is subtracted from information on the deep part, information on only the deep part can be obtained. The same measurement site is not the same measurement site in a strict sense because the depth is different, but here the center (center line P) of the sensor A and the sensor B provided on the pad 21 is the same. For this reason, the measurement site is substantially the same in the sense of measurement in the vicinity of the center.
 したがって、図2(A)に示すように、中心p3,p4がずれている場合や、図2(B)に示すように、左右別々のセンサ構成として中心p5,p6がずれている場合は「同じ測定部位」とはならない。これら図2(A)~図2(C)の各構成において、頭蓋を対象とした場合の光によって得られる情報とは、光源から受光素子に投射した光が頭蓋内を通過してきた部分の溶媒の情報となり、頭蓋内を通過してこなかった部位の情報は反映されない。 Therefore, when the centers p3 and p4 are shifted as shown in FIG. 2A or when the centers p5 and p6 are shifted as shown in FIG. It is not the same measurement site. In each of the configurations shown in FIGS. 2 (A) to 2 (C), the information obtained by the light when the cranium is the target is the solvent in the portion where the light projected from the light source to the light receiving element has passed through the cranium. The information of the part that has not passed through the skull is not reflected.
 光源から受光素子に光が到達する光路はモンテカルロシュミレーションによってバナナシェイプと称される形状を呈すると考えられているため、一番遠い部分は光源と受光素子と頭蓋内とを結んだ正三角形の頂点となり光源と受光素子との離間距離の中心(中心線P)と一致することとなる。 Since the light path from the light source to the light receiving element is considered to have a shape called a banana shape by Monte Carlo simulation, the farthest part is the apex of an equilateral triangle connecting the light source, the light receiving element, and the inside of the skull And coincides with the center (center line P) of the separation distance between the light source and the light receiving element.
 ここで、パッド21の構成について説明する。パッド21は、頭蓋を対象とした場合、基本的に貼り付け部位は曲面となっている。そこで、図7(A)に示すように、量産をするためにプリント基板4を採用して、この基板4の表面にチップ状の光源22及び受光素子23を載せて半田付けを行う。さらに、光源22及び受光素子23の表面はプリント基板4から各素子の厚み分だけ離れているため、発砲ゴム5により素子の表面を全体的に面一となるように仕上げる。この際、素子は生体Hに密着させることが必須条件となる。すなわち、各素子の発光面及び受光面をプリント基板4の上に向けないと光が検出できないうえ、生体Hが曲面なので、素子が生体Hの曲面に密着し難く、外来光が混入して測定エラーの原因となってしまう。 Here, the configuration of the pad 21 will be described. When the pad 21 is intended for the cranium, the pasting portion is basically a curved surface. Therefore, as shown in FIG. 7A, a printed circuit board 4 is employed for mass production, and a chip-like light source 22 and a light receiving element 23 are placed on the surface of the substrate 4 and soldered. Furthermore, since the surfaces of the light source 22 and the light receiving element 23 are separated from the printed board 4 by the thickness of each element, the surface of the element is finished to be entirely flush with the foamed rubber 5. At this time, it is an essential condition that the element is in close contact with the living body H. That is, the light cannot be detected unless the light emitting surface and the light receiving surface of each element are directed on the printed circuit board 4, and the living body H is a curved surface. Therefore, the element is difficult to be in close contact with the curved surface of the living body H. It will cause an error.
 そこで、図7(B)に示すように、光源22と受光素子23をマウントする際にプリント基板4に光源22と受光素子23と同一の大きさの穴を明け、光源22と受光素子23とがともにプリント基板4のベース面(銅箔面)と同一面となるようし、プリント基板4の裏面側に発砲ゴム5を設けることにより、生体Hの曲面に対する追従性(密着性)を確保することができ、安定した測定結果を得ることができる。 Therefore, as shown in FIG. 7B, when mounting the light source 22 and the light receiving element 23, a hole having the same size as the light source 22 and the light receiving element 23 is made in the printed circuit board 4. Are made flush with the base surface (copper foil surface) of the printed circuit board 4 and the foamed rubber 5 is provided on the back surface side of the printed circuit board 4 to ensure followability (adhesion) to the curved surface of the living body H. And stable measurement results can be obtained.
 次に、図8を参照しつつ頭蓋内の情報を深い所から浅い所まで、浅い所及び深い所で独立して測定する測定例を説明する。 Next, with reference to FIG. 8, a measurement example in which information in the skull is measured independently from a deep place to a shallow place, at a shallow place and a deep place will be described.
 センサ部2は、近赤外線を使用して生体Hの内部における血液のヘモグロビンの量と酸素飽和度とを測定することができる。上述した実験結果から、センサは離間距離の70%から80%がモニタ可能な深さである。一方、図8に示すように、成人の場合の頭蓋骨の厚さは8mmから10mm、表皮から頭蓋骨までの厚さは5mmから8mm程度であるといわれている。 Sensor unit 2 can measure the amount of hemoglobin and oxygen saturation in blood inside living body H using near infrared rays. From the above experimental results, the sensor has a depth that can be monitored from 70% to 80% of the separation distance. On the other hand, as shown in FIG. 8, it is said that the thickness of the skull in the case of an adult is about 8 mm to 10 mm, and the thickness from the epidermis to the skull is about 5 mm to 8 mm.
 ここで、頭蓋外の情報だけを測定するには、深さ13mmから18mmまでの情報を測定すればよいから、70%から80%がモニタ可能範囲とすればセンサの離間距離は18.5mmから25.7mm、又は16.2mmから22.5mmとなる。そのうえで、頭蓋骨の厚さ(8~10mm)を考慮すると、投受光の距離が20mmであれば頭蓋内の情報は含まれないと考えられる。 Here, in order to measure only the information outside the skull, it is only necessary to measure information from a depth of 13 mm to 18 mm, so if 70% to 80% is within the monitorable range, the sensor separation distance is 18.5 mm. 25.7 mm, or 16.2 mm to 22.5 mm. In addition, when the thickness of the skull (8 to 10 mm) is taken into consideration, it is considered that information in the skull is not included if the distance of light transmission and reception is 20 mm.
 したがって、図8に示すように、離間距離が40mmのセンサで得られる情報は頭蓋内外の情報を含むこととなるので、離間距離が40mmで得られた情報から頭蓋外の投受光20mmの情報を差し引けば頭蓋内だけの情報になると考えられる。 Therefore, as shown in FIG. 8, information obtained by a sensor having a separation distance of 40 mm includes information on the inside and outside of the cranium. Therefore, information on the light transmission / reception 20 mm outside the skull is obtained from the information obtained when the separation distance is 40 mm. If deducted, it is considered that the information is only in the cranium.
 実験結果から、同じ特性の素子を使用した場合、離間距離40mmのセンサの受光素子(23A)の信号は、20mmのセンサの受光素子(23B)の信号と比べて吸収、散乱による影響が大きいので、増幅率を40倍程度大きくする必要がある。このことから、ヘモグロビンによる吸光量として計算する場合は離間距離40mmのほうが、吸収量が大きいので離間距離40mmの吸光量から離間距離20mmの吸光量を差し引いてからそのR/IR比を求めれば、深いところのみの酸素飽和度を算出することができる。 From the experimental results, when elements having the same characteristics are used, the signal of the light receiving element (23A) of the sensor having a separation distance of 40 mm is more affected by absorption and scattering than the signal of the light receiving element (23B) of the 20 mm sensor. It is necessary to increase the amplification factor by about 40 times. From this, when calculating the amount of absorption by hemoglobin, the separation distance of 40 mm has a larger absorption amount, so if the R / IR ratio is calculated after subtracting the absorption amount of the separation distance of 20 mm from the absorption amount of the separation distance of 40 mm, Only the deep oxygen saturation can be calculated.
 頭蓋内の情報以外でも表皮下の脂肪層までの浅い部位の情報を削除して筋肉のみの血流を評価したい場合などは、筋肉までの深さ方向の距離が12~20mm、表皮と脂肪層までの厚さが6mm等と考えると、最適な筋血流測定には離間距離10mmと離間距離30mmの組み合わせが最適である。 If you want to evaluate the blood flow only in the muscle by deleting the information of the shallow part to the subepidermal fat layer other than the intracranial information, the distance in the depth direction to the muscle is 12-20 mm, the epidermis and the fat layer When the thickness up to 6 mm is considered, a combination of a separation distance of 10 mm and a separation distance of 30 mm is optimal for optimal muscle blood flow measurement.
 具体的には、吸光量Kλは、Log10(1000/測定電圧)で求められるので、離間距離40mmの測定電圧はそのまま使用し、離間距離20mmの測定電圧を、増幅率40倍をかけてその差を頭蓋の深い部分とする。なお、上式のLog10(1000/測定電圧)の1000は実験結果から光源(22A,22B)の電圧を受光素子(23A,23B)で測定された電圧から、対数グラフで逆算すると1000倍に相当することから計算式に採用した。深い部分の吸光量は、
 KD=log10(1000/40mm)-log10(1000/(20mm×40))
で求める。
Specifically, since the amount of light absorption Kλ is determined by Log 10 (1000 / measurement voltage), the measurement voltage with a separation distance of 40 mm is used as it is, and the measurement voltage with a separation distance of 20 mm is multiplied by an amplification factor of 40 times to obtain the difference. Is the deep part of the skull. Log 10 (1000 / measurement voltage) in the above equation is equivalent to 1000 times when the voltage of the light source (22A, 22B) is calculated back from the voltage measured by the light receiving element (23A, 23B) using a logarithmic graph from the experimental result. Therefore, it was adopted in the calculation formula. The light absorption in the deep part is
KD = log 10 (1000/40 mm) −log 10 (1000 / (20 mm × 40))
Ask for.
 このようにして求めた吸光量から前述した理論によって、酸素飽和度はR/IR比から求められる。ヘモグロビンインデックスは吸光量がそのまま相対値としてHbIと相関する値となる。このように、中心位置を整合させ、その深さ方向の上方を独立して得ることによって、頭蓋以外でもこれらの考え方を応用すれば選択的に目標とする部位の血流情報を得ることができる。 The oxygen saturation can be obtained from the R / IR ratio according to the theory described above from the light absorption obtained in this manner. The hemoglobin index is a value in which the amount of absorption is directly correlated with HbI as a relative value. In this way, by aligning the center position and independently obtaining the upper part in the depth direction, blood flow information of a target region can be selectively obtained by applying these ideas to other than the skull. .
 次に、校正曲線を得る方法について説明する。無侵襲で生体内の血液の酸素飽和度や、血液量の変化を測定する基準を正確に評価する場合、正確な血液の酸素飽和度が分かっているものを測定して、COオキシメータで同じ血液を測定し、どの装置の値でもCOオキシメータの値との整合性が正確に評価するのが好ましい。 Next, a method for obtaining a calibration curve will be described. When accurately assessing the non-invasive blood oxygen saturation level or the standard for measuring changes in blood volume, measure the oxygen saturation level of the blood accurately and measure with the CO oximeter. It is preferable to measure blood and accurately evaluate the consistency of any device value with the CO oximeter value.
 この際、血液を任意の酸素飽和度に調整する場合、例えば、血液の酸素飽和度を上げる場合には血液を空気に触れさせ、血液の酸素飽和度を下げる場合には還元剤として亜ジチオン酸ナトリウム(Na)を用いて還元する。また、全血状態ではヘモグロビンが濃いために光が吸収されてしまうため、血液(全血)を生理食塩水で3倍に希釈して使用(生体内での血管の生体内での最大密度は脳血管であり、約30%と計算されている)する。脳の血液は毛細血管等に存在し、組織全体から見た濃度は100gの脳組織に対して54ml/min程度であり、脳組織から見たヘモグロビン濃度は約5g/dl程度となる。そこで、上記の測定には、血液を1/3程度にヘパリン生理食塩水で希釈して使用した。 At this time, when adjusting the blood to an arbitrary oxygen saturation, for example, when raising the oxygen saturation of the blood, the blood is exposed to air, and when reducing the oxygen saturation of the blood, dithionite as a reducing agent. Reduction with sodium (Na 2 S 2 O 4 ). In addition, since hemoglobin is concentrated in the whole blood state, light is absorbed, so blood (whole blood) is diluted 3 times with physiological saline and used (the maximum density of blood vessels in vivo is Cerebrovascular, calculated to be about 30%). The blood of the brain exists in capillaries and the like, and the concentration seen from the whole tissue is about 54 ml / min with respect to 100 g brain tissue, and the hemoglobin concentration seen from the brain tissue is about 5 g / dl. Therefore, in the above measurement, blood was diluted to about 1/3 with heparin physiological saline.
 酸素飽和度を測定する際に酸素飽和度が既知のトノメートされた血液を作成することができれば、その血液を使ってセンサのキュリブレーションのための校正曲線を作成することができる。実際のセンサと同一の素子を使用して、トノメートされた血液を厚さ1mm程度のキュベットに充たし、2つの異なった波長で受光信号の電圧を測定して、測定電圧から吸光量がベアーランバートの法則から計算する。各々の吸光量の比率(R/IR)がトノメートされた血液の酸素飽和度毎に判れば、R/IRの点を結んで酸素飽和度とR/IRの関係校正曲線とすることができる。 If, when measuring oxygen saturation, tonated blood with known oxygen saturation can be created, a calibration curve for sensor calibration can be created using that blood. Using the same element as the actual sensor, the tonated blood was filled in a cuvette with a thickness of about 1 mm, the voltage of the received light signal was measured at two different wavelengths, and the absorbance from the measured voltage was Bear Lambert. Calculate from the law. If the ratio (R / IR) of each light absorption amount is known for each oxygen saturation of tonated blood, the calibration curve for the relationship between oxygen saturation and R / IR can be obtained by connecting R / IR points.
 R/IR吸光比の測定は、センサで図9(A)に示すようなキュベット6にトノメートした血液(COオキシメータを使用して酸素飽和度、ヘモグロビン濃度を測定確認します)を充填し、外部の光が入らない暗黒の状態で、使用する同じ波長の光源22と受光素子23を備えたセンサで、各光の波長ごとの吸光特性を測定することができる。 The R / IR absorption ratio is measured by filling the tonated blood (measurement and confirmation of oxygen saturation and hemoglobin concentration using a CO oximeter) in a cuvette 6 as shown in FIG. In a dark state where no external light enters, the sensor having the light source 22 and the light receiving element 23 of the same wavelength to be used can measure the light absorption characteristics for each wavelength of each light.
 図9(B)に示すように、キュベット6は、センサ22,23の直下に位置させ、キュベット6の上下を生体に模擬したハム7等で挟んだものを使用した。トノメートした血液を0%から100%まで細かく作り、その各々で測定した結果から校正曲線を作成した。このようにして酸素飽和度を測定するために理論値ではなくより実用的な再現性のある測定値とする。 As shown in FIG. 9 (B), the cuvette 6 was positioned directly below the sensors 22 and 23, and the cuvette 6 was sandwiched between hams 7 or the like simulating a living body. The tonated blood was finely made from 0% to 100%, and a calibration curve was created from the measurement result of each. Thus, in order to measure the oxygen saturation, the measured value is not a theoretical value but a more practical reproducible value.
 (その他の条件)
 血液は、基準の酸素飽和度測定のために厚さ1mm前後のキュベット6を使用する。キュベット6の内部の血液は測定の前後にCOオキシメータで酸素飽和度を確認する。酸素飽和度は、0%から100%まで5%おきに作成して各々10回以上測定する。これらの測定結果から、波長でR/IR比を算出し、COオキシメータの酸素飽和度と相関の曲線を作成する。使用するセンサ素子は実際に商品とするものと同じ仕様を満たすもの又は、評価する装置を使用する。使用する波長は、上述したように、770nm、805nm、870nmとする。
(Other conditions)
The blood uses a cuvette 6 with a thickness of around 1 mm for standard oxygen saturation measurements. The blood inside the cuvette 6 is checked for oxygen saturation with a CO oximeter before and after the measurement. Oxygen saturation is made every 5% from 0% to 100% and measured 10 times or more each time. From these measurement results, the R / IR ratio is calculated by wavelength, and a curve of oxygen saturation and correlation of the CO oximeter is created. The sensor element to be used satisfies the same specification as that actually used as a product, or a device to be evaluated is used. As described above, the wavelengths used are 770 nm, 805 nm, and 870 nm.
 次に、基準値を決定するためのファントムの構成例を説明する。この際の基準値とは、無侵襲で生体内の血液の酸素飽和度及びヘモグロビン量の基準値であって、生体内の血液の情報を正確に評価することができる基準値とする必要がある。 Next, a configuration example of a phantom for determining the reference value will be described. The reference value at this time is a non-invasive reference value for the oxygen saturation and the amount of hemoglobin in the living body, and needs to be a reference value that can accurately evaluate the blood information in the living body. .
 一般に、生体は光に対して強散乱物質であることが知られている。その散乱係数や拡散係数は測定可能であるものの、生体は絶えず変化してしまうので、常に一定の状態を維持することは困難である。一方、樹脂の中には生体と同じ程度の散乱や拡散、吸収係数を持ったものが存在するため、生体と同様の光学特性を持ったものを選択するとともに、生体と同様に多層に重ね合わせたファントムを構成した。 In general, it is known that a living body is a strongly scattering substance for light. Although the scattering coefficient and the diffusion coefficient can be measured, the living body constantly changes, so it is difficult to always maintain a constant state. On the other hand, some resins have the same scattering, diffusion, and absorption coefficient as living organisms, so select those with the same optical characteristics as living organisms and overlay them in multiple layers like living organisms. Made up a phantom.
 (ファントム(校正器)の構成)
 ファントムは、生体と同様の散乱吸収特性を有する樹脂板を交互に組み合わせて、たとえば成人の前額部から頭蓋、皮質まで、とほぼ同様の光学的特性を持たせた。実際の構造は以下の通りで、
 ・表面に吸収板0.5t 1枚
 ・その下に散乱板2t 5枚
 ・その下に吸収板0.5t 1枚
 ・その下に散乱板2t 6枚
 ・その下に磨きアルミ板1t 1枚
 ・その下に発泡ゴム板5t 1枚
を遮光した黒い金属ケースに収納した。
(Configuration of phantom (calibrator))
The phantom has optical characteristics similar to those of, for example, the forehead of the adult, the skull, and the cortex, by alternately combining resin plates having the same scattering and absorption characteristics as the living body. The actual structure is as follows:
-One surface of absorbing plate 0.5t-5 scattering plates 2t below it-1 sheet of absorbing plate 0.5t below it-6 sheets of scattering plate 2t below it-1 sheet of polished aluminum plate 1t below- Under this, one foamed rubber plate 5t was stored in a light-shielded black metal case.
 また、使用する散乱板は照明器具のカバー等で周知のもので、点光源でも光の拡散性が強いものを選択した。生体は強散乱体として知られ、光は直進できないので、これと同じ効果が得られる材料を選択するのが望ましい。吸収板は、メラニン等光を吸収する物質を模擬して表面と、中間に位置させる。散乱板と吸光板とを上記のように組み合わせ、外光を避けるために遮光性の箱に入れる。 Also, the scattering plate to be used is a well-known light fixture cover, and a point light source with strong light diffusivity was selected. Since a living body is known as a strong scatterer and light cannot travel straight, it is desirable to select a material that can obtain the same effect. The absorption plate is positioned between the surface and the surface of a substance that absorbs light, such as melanin. The scattering plate and the light absorption plate are combined as described above, and placed in a light-shielding box to avoid external light.
 酸素飽和度の測定原理は異なった2種類の光が生体内のヘモグロビンによって吸収され減弱されることを利用する。ベアーランバートの法則によれば、減弱される程度は光路に含まれるヘモグロビンの量に比例する。酸素化されたヘモグロビンの量をHbO,脱酸素化されたヘモグロビンの量をHbRとすれば、酸素飽和度は(HbO/(HbO+HbR))×100%で表すことができる。酸素飽和度が50%の場合はHbOとHbRとが等しい。HbOとHbRの吸光度曲線から、805nmの波長ではこの2つのヘモグロビンは同じ吸光係数を示す。この805nmの波長を挟んで、上下同じ吸光係数を示す波長を選択すればファントム上でR/IR比が(ベアーランバートの法則では2つの赤外線の吸収度合が同じであれば各々のヘモグロビンの量が同じと評価可能)1.0のときに酸素飽和度が50%となる。使用する波長の吸収係数が異なった場合でも、吸収係数の比率をR/IR比に乗じてやれば補正が可能である。 The measurement principle of oxygen saturation utilizes the fact that two different types of light are absorbed and attenuated by hemoglobin in the living body. According to Bear Lambert's law, the degree of attenuation is proportional to the amount of hemoglobin contained in the optical path. If the amount of oxygenated hemoglobin is HbO 2 and the amount of deoxygenated hemoglobin is HbR, the oxygen saturation can be expressed as (HbO 2 / (HbO 2 + HbR)) × 100%. When the oxygen saturation is 50%, HbO 2 and HbR are equal. From the absorbance curves for HbO 2 and HbR, the two hemoglobins show the same extinction coefficient at a wavelength of 805 nm. If the wavelength that shows the same extinction coefficient is selected across the 805 nm wavelength, the R / IR ratio on the phantom (if the degree of absorption of the two infrared rays is the same according to Bare-Lambert's law, the amount of each hemoglobin is The oxygen saturation is 50% at 1.0. Even when the absorption coefficient of the wavelength to be used is different, correction is possible by multiplying the ratio of the absorption coefficient by the R / IR ratio.
 (ファントムで校正ができることの証明)
 酸素飽和度はオキシ、デオキシヘモグロビンの比率が1.0であれば50%になる。ファントム上でR/IRが1.0のときに酸素飽和度が50%に校正するため、近赤外線の波長の吸光係数は以下の通りである。
 HbO2:770=0.150  805=0.196  870=0.248
 Hb  :770=0.350  805=0.196  870=0.168
 吸光係数ε=0.434K  K:吸光度
各波長の吸光度は以下の通りである。
 HbO2:770=0.346  805=0.369  870=0.571
 Hb  :770=0.806  805=0.369  870=0.387
ベアーランバートの法則ではK=εcd ここで c:溶媒の濃度  d:光路長
ある波長での吸光度は次のようになる。
 Kλ=(rSO2×KHbO2+(1-rSO2)×KHb)cd
使用している各波長の吸光度を求めると、
 R=K770=(rSO2×0.346+(1-rSO2)×0.806)cd
 IR=K870=(rSO2×0.571+(1-rSO2)×0.387)cd
 R/IR=(0.806-0.46rSO2)/(0.387+0.194rSO2)
ここで、R/IR=Aとおけば
 A(0.387+0.194rSO2)=(0.806-0.46rSO2)
rSO2を求めれば
 rSO2=(0.806-0.387A)/(0.46+0.194A)
となる。rSO2が0%から100%まで変化した場合のA=R/IRの理論値は以下となる。
 rSO2=0%   0=0.806-0.387A  A=2.083
 rSO2=100% 0.46+0.194A=0.806-0.387A
 A=0.346/0.581=0.596
rSO2=50%の時は各波長でrSO2=0.5として吸光度を計算する。
 Kλ=(rSO2×KHbO2+(1-rSO2)×KHb)cd   なので
 K770=(0.5×0.346+0.5×0.806)cd=0.576cd
 K870=(0.5×0.571+0.5×0.387)cd=0.479cd
これから、
 R/IR=A=1.2025
となる。
(Proof that phantom calibration is possible)
The oxygen saturation is 50% when the ratio of oxy and deoxyhemoglobin is 1.0. Since the oxygen saturation is calibrated to 50% when R / IR is 1.0 on the phantom, the extinction coefficient of the near-infrared wavelength is as follows.
HbO2: 770 = 0.150 805 = 0.196 870 = 0.248
Hb: 770 = 0.350 805 = 0.196 870 = 0.168
Absorption coefficient ε = 0.434K K: Absorbance Absorbance at each wavelength is as follows.
HbO2: 770 = 0.346 805 = 0.369 870 = 0.571
Hb: 770 = 0.806 805 = 0.369 870 = 0.387
In Bear Lambert's law, K = εcd where c: concentration of solvent d: optical path length Absorbance at a certain wavelength is as follows.
Kλ = (rSO2 × KHbO2 + (1-rSO2) × KHb) cd
When calculating the absorbance of each wavelength used,
R = K770 = (rSO2 × 0.346 + (1-rSO2) × 0.806) cd
IR = K870 = (rSO2 × 0.571 + (1-rSO2) × 0.387) cd
R / IR = (0.806-0.46rSO2) / (0.387 + 0.194rSO2)
Here, if R / IR = A, A (0.387 + 0.194rSO2) = (0.806-0.46rSO2)
When rSO2 is obtained, rSO2 = (0.806-0.387A) / (0.46 + 0.194A)
It becomes. The theoretical value of A = R / IR when rSO2 changes from 0% to 100% is as follows.
rSO2 = 0% 0 = 0.806-0.387A A = 2.083
rSO2 = 100% 0.46 + 0.194A = 0.806-0.387A
A = 0.346 / 0.581 = 0.596
When rSO2 = 50%, the absorbance is calculated with rSO2 = 0.5 at each wavelength.
Since Kλ = (rSO2 × KHbO2 + (1-rSO2) × KHb) cd, K770 = (0.5 × 0.346 + 0.5 × 0.806) cd = 0.576cd
K870 = (0.5 × 0.571 + 0.5 × 0.387) cd = 0.479 cd
from now on,
R / IR = A = 1.2025
It becomes.
 理論値では、rSO2=50%のときの各波長の吸光度は上記のとおりである。R=K770の吸光度は0.576cd、IR=K870の吸光度は0.479cdで、Rの吸光度が大きくなる。 Theoretically, the absorbance at each wavelength when rSO2 = 50% is as described above. The absorbance of R = K770 is 0.576 cd, the absorbance of IR = K870 is 0.479 cd, and the absorbance of R increases.
 そこで、770nmの波長の測定電圧に上記の吸光度の比率=1.2025をかけ補正する。これにより吸光度はK770で0.479cd、K870で0.479cdとなり、
R/IR=1:1になり50%に補正することができる。
Therefore, the measurement voltage having a wavelength of 770 nm is corrected by multiplying the absorbance ratio = 1.2525. As a result, the absorbance becomes 0.479 cd for K770 and 0.479 cd for K870,
R / IR = 1: 1 and can be corrected to 50%.
 このように補正することによって実機での測定値は、R/IR=1のときに、rSO2=50%となり、理論値と一致する。この補正を0%、100%でも行うと各々の吸光比A=R/IRは以下のようになる。なお、rSO2の計算式(理論値)は上記のとおりである。
 rSO2=(0.806-0.387A)/(0.46+0.194A)
なので、この式に補正のためのAを1.2025倍にすると、rSO2が0%、100%の場合、
 0%では(0.806-0.387×1.2025A)=0
 A=1.732
 100%では(0.46+0.194×1.2025A)=(0.806-0.387×1.2025A)
 A=0.495
となる。このように補正した理論値に基づく校正曲線の式は以下のようになる。
 A<1  rSO2=100×(1.495-A)/0.99  100~50%
A>1  rSO2=100×(1.732-A)/1.464   50~0%
By correcting in this way, the measured value in the actual machine becomes rSO2 = 50% when R / IR = 1, which matches the theoretical value. If this correction is performed even at 0% and 100%, the respective light absorption ratios A = R / IR are as follows. The calculation formula (theoretical value) of rSO2 is as described above.
rSO2 = (0.806-0.387A) / (0.46 + 0.194A)
So, if A for correction is multiplied by 1.2525 in this equation, when rSO2 is 0% and 100%,
At 0%, (0.806-0.387 × 1.2025A) = 0
A = 1.732
At 100%, (0.46 + 0.194 × 1.2025A) = (0.806−0.387 × 1.2025A)
A = 0.495
It becomes. The equation of the calibration curve based on the theoretical value corrected in this way is as follows.
A <1 rSO2 = 100 × (1.495-A) /0.99 100-50%
A> 1 rSO2 = 100 × (1.732-A) /1.464 50-0%
 使用する波長が異なる場合は各々の波長のオキシ、デオキシヘモグロビンに対する吸光係数εが分かっているので、その数値を下式に当てはめて計算し直す。
 吸光係数 ε=0.434K  K:吸光度
When different wavelengths are used, the extinction coefficient ε for oxy and deoxyhemoglobin at each wavelength is known, so that the numerical value is applied to the following equation and recalculated.
Absorption coefficient ε = 0.434K K: Absorbance
 ところで、このような酸素飽和度測定装置1及び酸素飽和度測定センサ2は、近赤外光によるヘモグロビンの変化情報から、酸素飽和度とヘモグロビン量に関する数値を必要とするケース全般に適用することができる。 By the way, such an oxygen saturation measuring device 1 and an oxygen saturation measuring sensor 2 can be applied to all cases that require numerical values related to oxygen saturation and hemoglobin amount based on hemoglobin change information by near infrared light. it can.
 (手術中の脳保護)
 例えば、心臓手術で循環停止や脳外科での頸動脈遮断などで一時的に脳に血液が行かない状態がある場合に、前額部に酸素飽和度測定センサ2を貼り付けることにより、脳内の血液の酸素飽和度と血液量の情報とを取得することができ、危険な状態であるか否かを容易に把握することが可能となり、脳保護や脳障害の防止に役立てることができる。
(Brain protection during surgery)
For example, when there is a state where blood does not go to the brain temporarily due to circulatory arrest in cardiac surgery or carotid artery blockage in brain surgery, the oxygen saturation measurement sensor 2 is attached to the forehead part to Information on blood oxygen saturation and blood volume can be acquired, and it is possible to easily grasp whether or not it is in a dangerous state, which can be useful for brain protection and prevention of brain damage.
 (心肺停止<AEDによる蘇生>)
 常温で心肺停止状態になると、急速に脳内の血液の酸素飽和度が低下し、意識を失うとされている。この場合、当然に拍動がないので、パルスオキシメータを使用することができない。近赤外を用いた酸素飽和度測定センサ2では、血液がそこにあれば酸素飽和度とHbIとを問題なく測定することができる。
(Cardiopulmonary arrest <resuscitation by AED>)
When cardiopulmonary arrest occurs at room temperature, the oxygen saturation of the blood in the brain rapidly decreases, causing loss of consciousness. In this case, of course, since there is no pulsation, the pulse oximeter cannot be used. The oxygen saturation measurement sensor 2 using the near infrared can measure the oxygen saturation and HbI without any problem if blood is present.
 そこで、例えば、所謂心臓マッサージのための胸部圧縮で心肺蘇生を試み、AEDを使用して心拍再開すれば酸素飽和度は40%台から60%台に上昇する。受傷者と接触時に酸素飽和度を知ることによって、社会復帰の可能性を知ることも可能になる。 Therefore, for example, if cardiopulmonary resuscitation is attempted by so-called chest compression for heart massage and heartbeat is resumed using AED, the oxygen saturation rises from 40% to 60%. Knowing the oxygen saturation at the time of contact with the injured person also makes it possible to know the possibility of rehabilitation.
 (脳内出血)
 上述した深い脳組織のみの血液の酸素飽和度測定では、頭蓋内出血の情報は差し引かれてしまうため、情報としては得られない。これに対し、上述した酸素飽和度測定センサ2では、近赤外光が通過した光路にあるすべてのヘモグロビンの情報を反映することができる。通常、血液は血管の中にしか存在しないが、例えば、くも膜下出血や、頭蓋内出血の場合は血管外にヘモグロビンがあふれ出てくるので、測定光路中のヘモグロビン量が血管内だけ桁外れに多くなり、ファントム基準のHbIの数値を見れば出血しているか否かを容易に判断することができる。
(Brain hemorrhage)
In the above-described blood oxygen saturation measurement of only deep brain tissue, information on intracranial hemorrhage is subtracted and cannot be obtained as information. In contrast, the oxygen saturation measurement sensor 2 described above can reflect information on all hemoglobins in the optical path through which the near infrared light has passed. Normally, blood exists only in blood vessels, but for example, in the case of subarachnoid hemorrhage or intracranial hemorrhage, hemoglobin overflows outside the blood vessel, so the amount of hemoglobin in the measurement optical path is extraordinarily large in the blood vessel. From the phantom reference HbI value, it can be easily determined whether or not there is bleeding.
 以上説明したように、本発明に係る酸素飽和度測定センサは、深さの異なる部位の情報の信頼性を向上することができるという効果を有し、近赤外線を用いた無侵襲で生体内の血液中の酸素飽和度を測定するための酸素飽和度測定センサ及び酸素飽和度測定装置全般に有用である。 As described above, the oxygen saturation measurement sensor according to the present invention has an effect of improving the reliability of information on parts having different depths, and is non-invasive using near infrared rays. It is useful for oxygen saturation measuring sensors and oxygen saturation measuring devices in general for measuring oxygen saturation in blood.
  2 センサ部(酸素飽和度測定センサ)
 21 パッド
 22 光源(22A,22B)
 23 受光素子(23A,23B)
 24 ROM
  3 本体部
 3E 演算処理部
2 Sensor unit (oxygen saturation measurement sensor)
21 Pad 22 Light source (22A, 22B)
23 Light receiving element (23A, 23B)
24 ROM
3 Main unit 3E Arithmetic processing unit

Claims (3)

  1.  人体に貼り付け可能なパッドと、
     前記パッドに離間状態で隣接して配置するとともに近赤外線を照射する複数の光源と、
     前記パッドに離間状態で隣接しかつ前記複数の光源のうち最内側とで共通の中心を基準に前記複数の光源と1対1で対応するように配置し、対応する前記複数の光源からの透過光を受光する複数の受光素子と、
     予めファントムによる透過光を測定して基準値として記憶するROM部と、
    を備える酸素飽和度測定センサ。
    A pad that can be attached to the human body,
    A plurality of light sources arranged adjacent to the pad in a separated state and irradiating near infrared rays;
    Arranged so as to have a one-to-one correspondence with the plurality of light sources on the basis of a center that is adjacent to the pad in a separated state and common to the innermost of the plurality of light sources, and transmits from the corresponding plurality of light sources A plurality of light receiving elements for receiving light; and
    ROM section for measuring the transmitted light by the phantom in advance and storing it as a reference value;
    An oxygen saturation measurement sensor comprising:
  2.  前記複数の光源と前記複数の受光素子とは、
     前記中心の一方側に前記複数の光源を等距離だけ離間して配置し、
     前記中心の他方側に前記複数の受光素子を等距離だけ離間して配置した、
    ことを特徴とする請求項1に記載の酸素飽和度測定センサ。
    The plurality of light sources and the plurality of light receiving elements are:
    The plurality of light sources are arranged equidistantly on one side of the center,
    The plurality of light receiving elements are spaced apart by an equal distance on the other side of the center,
    2. The oxygen saturation measuring sensor according to claim 1, wherein:
  3.  センサ部と本体部とからなり、
     前記センサ部は、
     人体に貼り付け可能なパッドと、
     前記パッドに離間状態で隣接して配置するとともに近赤外線を照射する複数の光源と、
     前記パッドに離間状態で隣接しかつ前記複数の光源のうち最内側とで共通の中心を基準に前記複数の光源と1対1で対応するように配置し、対応する前記複数の光源からの透過光を受光する複数の受光素子と、
     予めファントムによる透過光を測定して基準値として記憶するROM部と、
    を備え、
     前記本体部は、
     前記ROMに記憶した受光量に関する受光値と基準値とに基づいて実際の吸光度を算出するとともに、前記基準値と比較してベアーランバートの法則に適応して生体の酸素状態を演算する演算処理部を備える、酸素飽和度測定装置。
    It consists of a sensor part and a body part.
    The sensor unit is
    A pad that can be attached to the human body,
    A plurality of light sources arranged adjacent to the pad in a separated state and irradiating near infrared rays;
    Arranged so as to have a one-to-one correspondence with the plurality of light sources on the basis of a center that is adjacent to the pad in a separated state and common to the innermost of the plurality of light sources, and transmits from the corresponding plurality of light sources A plurality of light receiving elements for receiving light; and
    ROM section for measuring the transmitted light by the phantom in advance and storing it as a reference value;
    With
    The body part is
    An arithmetic processing unit that calculates the actual absorbance based on the received light value and the reference value related to the received light amount stored in the ROM, and calculates the oxygen state of the living body in accordance with the Bare-Lambert law in comparison with the reference value An oxygen saturation measuring device comprising:
PCT/JP2016/061707 2016-03-11 2016-04-11 Oximetry sensor and oximetry apparatus WO2017179103A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016543205A JP6060321B1 (en) 2016-04-11 2016-04-11 Oxygen saturation measuring sensor and oxygen saturation measuring device
PCT/JP2016/061707 WO2017179103A1 (en) 2016-04-11 2016-04-11 Oximetry sensor and oximetry apparatus
US15/117,785 US10499836B2 (en) 2016-03-11 2016-04-11 Oxygen saturation measuring sensor, and oxygen saturation measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061707 WO2017179103A1 (en) 2016-04-11 2016-04-11 Oximetry sensor and oximetry apparatus

Publications (1)

Publication Number Publication Date
WO2017179103A1 true WO2017179103A1 (en) 2017-10-19

Family

ID=57756276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061707 WO2017179103A1 (en) 2016-03-11 2016-04-11 Oximetry sensor and oximetry apparatus

Country Status (2)

Country Link
JP (1) JP6060321B1 (en)
WO (1) WO2017179103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021146671A1 (en) * 2020-01-17 2021-07-22 Capmet, Inc. Oxygen saturation measuring device, probe adapted to be used therefor, and oxygen saturation measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013403A (en) * 2017-10-20 2021-02-12 アルプスアルパイン株式会社 Biological information measuring apparatus, information processing apparatus, biological information measuring method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322821A (en) * 1995-05-31 1996-12-10 Shimadzu Corp Optical measurement instrument for light absorber
JP2004073559A (en) * 2002-08-20 2004-03-11 Hitachi Medical Corp Diagnostic imaging apparatus
JP2008064675A (en) * 2006-09-08 2008-03-21 Shimadzu Corp Light measuring apparatus
WO2011027548A1 (en) * 2009-09-04 2011-03-10 パナソニック株式会社 Probe and image reconstruction method using probe
JP2016000240A (en) * 2015-08-20 2016-01-07 株式会社フジタ医科器械 Hemoglobin relative concentration change and oxygen saturation measuring apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183811B2 (en) * 1994-09-14 2001-07-09 富士通株式会社 Inspection support device
US5913819A (en) * 1996-04-26 1999-06-22 Datex-Ohmeda, Inc. Injection molded, heat-sealed housing and half-etched lead frame for oximeter sensor
JP2004049579A (en) * 2002-07-19 2004-02-19 World Wide Network:Kk Medical measurement device
US20070085995A1 (en) * 2003-07-09 2007-04-19 Glucon, Inc. Wearable glucometer
US8239006B2 (en) * 2006-07-06 2012-08-07 The University Of Connecticut Method and apparatus for medical imaging using near-infrared optical tomography and fluorescence tomography combined with ultrasound
JP5192971B2 (en) * 2008-10-01 2013-05-08 浜松ホトニクス株式会社 Probe for optical biometric device and optical biometric device
US20110137177A1 (en) * 2009-06-10 2011-06-09 Tadamasa Toma Optical-combined imaging method, optical-combined imaging apparatus, program, and integrated circuit
US20130211208A1 (en) * 2011-03-08 2013-08-15 Vijay K. Varadan Smart materials, dry textile sensors, and electronics integration in clothing, bed sheets, and pillow cases for neurological, cardiac and/or pulmonary monitoring
JP6344725B2 (en) * 2013-05-24 2018-06-20 国立大学法人浜松医科大学 Near infrared oxygen concentration sensor for palpation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322821A (en) * 1995-05-31 1996-12-10 Shimadzu Corp Optical measurement instrument for light absorber
JP2004073559A (en) * 2002-08-20 2004-03-11 Hitachi Medical Corp Diagnostic imaging apparatus
JP2008064675A (en) * 2006-09-08 2008-03-21 Shimadzu Corp Light measuring apparatus
WO2011027548A1 (en) * 2009-09-04 2011-03-10 パナソニック株式会社 Probe and image reconstruction method using probe
JP2016000240A (en) * 2015-08-20 2016-01-07 株式会社フジタ医科器械 Hemoglobin relative concentration change and oxygen saturation measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021146671A1 (en) * 2020-01-17 2021-07-22 Capmet, Inc. Oxygen saturation measuring device, probe adapted to be used therefor, and oxygen saturation measuring method
JP2023512492A (en) * 2020-01-17 2023-03-27 キャプメット・インコーポレイテッド Oximetry device, probe configured for use therewith, and method for measuring oximetry
JP7418872B2 (en) 2020-01-17 2024-01-22 キャプメット・インコーポレイテッド Oxygen saturation measurement device, probe configured for use therewith, and method for oxygen saturation measurement
US11883168B2 (en) 2020-01-17 2024-01-30 Capmet, Inc. Oxygen saturation measuring device, probe adapted to be used therefor, and oxygen saturation measuring method

Also Published As

Publication number Publication date
JPWO2017179103A1 (en) 2018-04-19
JP6060321B1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP4465271B2 (en) Apparatus for noninvasively determining blood oxygen saturation in a target tissue
Zourabian et al. Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry
AU2011276961B2 (en) Non-invasive measurement of blood oxygen saturation
US8055321B2 (en) Tissue oximetry apparatus and method
KR101954451B1 (en) Diagnostic measuring device
US20130310669A1 (en) Pulmonary pulse oximetry method for the measurement of oxygen saturation in the mixed venous blood
US11116412B2 (en) Robust, clinical-grade transabdominal fetal pulse oximetry
TW201726060A (en) Systems, devices, and methods for performing trans-abdominal fetal oximetry and/or trans-abdominal fetal pulse oximetry
US10582885B2 (en) Device and method for noninvasively determining the hematocrit value of a subject
US10499836B2 (en) Oxygen saturation measuring sensor, and oxygen saturation measuring apparatus
WO2012161841A1 (en) Regional saturation determination using photoacoustic technique
JP5917756B2 (en) Apparatus for measuring the relative concentration change and oxygen saturation of hemoglobin
AU2013315993A1 (en) System and method for measuring cardiac output
JP6125821B2 (en) Oxygen saturation measuring apparatus and oxygen saturation calculating method
JP6060321B1 (en) Oxygen saturation measuring sensor and oxygen saturation measuring device
EP2211692B1 (en) Method and instrument for the non-invasive measurement of the oxygenation/saturation of biological tissue
Boatemaa et al. Non-invasive glucose estimation based on near infrared laser diode spectroscopy
TWI409050B (en) Pulse sensing device
Karlsson et al. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?
Kovacsova et al. Medical utility of nir monitoring
JP3016160U (en) Near infrared non-invasive biometric device
CN113891682A (en) Device for measuring optical or physiological parameters in scattering media, characterised by an optical contact detector
JP2001198111A (en) Probe and concentration measuring device of light absorbing substance in organismic tissue
JP3183811U (en) Apparatus for measuring the relative concentration change and oxygen saturation of hemoglobin
KR102290329B1 (en) Smart biological measurement system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016543205

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15117785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898563

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898563

Country of ref document: EP

Kind code of ref document: A1