WO2017177891A1 - 一种多层体及其制备方法和用途 - Google Patents

一种多层体及其制备方法和用途 Download PDF

Info

Publication number
WO2017177891A1
WO2017177891A1 PCT/CN2017/080055 CN2017080055W WO2017177891A1 WO 2017177891 A1 WO2017177891 A1 WO 2017177891A1 CN 2017080055 W CN2017080055 W CN 2017080055W WO 2017177891 A1 WO2017177891 A1 WO 2017177891A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer body
body according
layer
water
substrate
Prior art date
Application number
PCT/CN2017/080055
Other languages
English (en)
French (fr)
Inventor
朱嘉
李秀强
徐炜超
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US16/092,432 priority Critical patent/US10829390B2/en
Priority to EP17781867.1A priority patent/EP3444228B1/en
Publication of WO2017177891A1 publication Critical patent/WO2017177891A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/80Solar heat collectors using working fluids comprising porous material or permeable masses directly contacting the working fluids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • F24S10/17Solar heat collectors using working fluids the working fluids forming pools or ponds using covers or floating solar absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • F24S2080/013Foams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • F24S2080/014Carbone, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/60Thermal insulation
    • F24S80/65Thermal insulation characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the field of light absorption, and in particular relates to a multilayer body and a preparation method and use thereof.
  • the shortage of freshwater resources has become one of the most pressing issues of the modern era.
  • Desalination of seawater is an effective way to obtain fresh water resources.
  • the seawater desalination method mainly includes a distillation method, a membrane method, a crystallization method, a solvent extraction method, and an ion exchange method.
  • the method of solar distillation to desalinate seawater has the advantages of clean, green and low carbon, and is a promising solution for producing fresh water.
  • Water has high reflectance and transmittance, and it cannot efficiently use solar energy when directly irradiated with sunlight, and efficiently generates water vapor.
  • a relatively high absorbance material is used as a light absorber to absorb light energy, and then the absorbed light energy is converted into heat energy to be transferred to the water body to achieve temperature rise and evaporation of the water body.
  • a nanoparticle is used as a light absorber, and a nanoparticle having a high absorbance is dispersed in water, and the nanoparticle is used to absorb heat and heat the water to achieve efficient evaporation of water.
  • a person uses a porous material as a light absorber, covers a porous material having a high light absorption rate on a water surface, absorbs light by a porous material, and heats the water body to achieve efficient evaporation of water.
  • the inventors have found that most of the light absorbers used in the prior art have complicated preparation processes, high costs, and are not easy to realize large-scale production and application.
  • the inventors have combined carbon materials (carbon materials including one or more of the following materials: graphite, graphene, graphene oxide, chemical functional group-modified graphene and carbon nanotubes) with a water-permeable matrix to obtain more Layer body.
  • the multilayer body can be used as a light absorber for absorbing light energy evaporating liquid.
  • the multi-layer preparation process is simple, low in cost, and easy to realize large-scale production and application.
  • the inventors have further improved the matrix of the multilayer body to prepare a substrate which is water permeable and has a low thermal conductivity after water absorption.
  • the multilayer body using the substrate exhibits higher water vapor generation efficiency and higher solar energy utilization.
  • a first aspect of the invention provides a multilayer body comprising a substrate and a layer of carbon material on the substrate, wherein the substrate is water permeable;
  • the carbon material includes one or more of the following materials: graphite, graphene, graphene oxide, chemical functional group modified graphene, and carbon nanotubes.
  • a second aspect of the invention provides a method for preparing a multilayer body, comprising:
  • the carbon material includes one or more of the following materials: graphite, graphene, graphene oxide, chemical functional group modified graphene, and carbon nanotubes.
  • a third aspect of the invention provides a multilayer body prepared by the method for producing a multilayer body according to any of the inventions.
  • a fourth aspect of the invention provides the use of the multilayer body of any of the inventions as a light absorber.
  • a fifth aspect of the invention provides a use of a carbon material layer as a light absorber.
  • the preparation method of the multilayer body and/or multilayer body of the invention has one or more of the following beneficial effects:
  • the preparation method of the multilayer body of the invention is simple and low in cost
  • the multilayer body of the invention has good hydrophilicity
  • the multilayer body of the invention has high strength, especially good folding resistance, and is convenient for transportation and deployment;
  • the multilayer body of the present invention has high water vapor generation efficiency as a light absorber
  • the multilayer body of the present invention has high solar energy utilization rate as a light absorber
  • the multilayer body of the present invention as a light absorber can achieve higher water vapor generation efficiency and/or solar energy utilization rate at a lower optical power density
  • the multilayer body of the invention is durable and has stable cycle performance
  • the multilayer body of the invention has good heat insulation property and has low thermal conductivity after water absorption;
  • the multilayer body of the present invention has a porous structure, and the porous structure provides a good passage for absorbing moisture and vapor emission;
  • the carbon material layer has a convex shape, such as a tapered shape; the multilayer body is used for distilling liquid, has the advantages of small footprint, high light utilization efficiency, and outdoor Acceptable when used Sunlight from different angles has a higher light absorption per unit area and higher distillation efficiency.
  • Figure 1 is a schematic view showing the structure of a multilayer body-1
  • FIG. 2 is a schematic structural view of a multilayer body-2
  • 3 is a schematic structural view of a partial substrate of the multilayer body-2
  • Figure 4 is an XPS spectrum of a graphene oxide film
  • Figure 5 is a SEM photograph of a cross section of a graphene oxide film
  • Figure 6 is a pore size distribution curve of a graphene oxide film
  • Figure 8 is a schematic photograph of a multilayer body-1 folding test
  • Figure 9 is a schematic photograph of the assembly process of the multilayer body-2.
  • Figure 10 is a schematic view of the multilayer body-1 (a of Figure 10) and the multilayer body-2 (b of Figure 10) floating in water;
  • Figure 11 is a graph showing the mass change-time curve of water in the steam generation experiment 1;
  • Figure 12 is a graph showing the mass change-time curve of water in the steam generation experiment 2;
  • Figure 13 is a temperature-time curve of the water surface and water vapor under the illumination of the water-filled Dewar provided with the multilayer body-2;
  • Figure 14 is a temperature-time curve of the water surface and water vapor under the illumination of the water-filled beaker provided with the multilayer body-2;
  • Figure 15 is a water surface temperature-time curve of a water-filled Dewar and a beaker provided with a multilayer body-1 under illumination;
  • Figure 16 is a schematic view of the multilayer body 810, 80, 830 placed in a water beaker;
  • FIG. 17 are mass change-time curves of three beakers containing the multilayer bodies 810, 820, and 830, respectively, in the dark and under illumination, and (d) of Fig. 17 is shown.
  • FIG. 18 shows a graph of temperature and humidity as a function of time in the outdoor distillation test
  • (b) of FIG. 18 shows a graph of solar energy density as a function of time on the day.
  • the invention provides the following specific embodiments and all possible combinations between them.
  • the present application does not describe various specific combinations of the embodiments one by one, but it should be considered that the present application specifically recites and discloses all possible combinations of the specific embodiments.
  • the present invention provides a multilayer body comprising a substrate and a layer of carbon material on the substrate, wherein the substrate is water permeable;
  • the carbon material includes one or more of the following materials: graphite, graphene, graphene oxide, chemical functional group modified graphene, and carbon nanotubes.
  • the invention provides a multilayer body comprising graphene oxide.
  • the invention provides a multilayer body comprising a layer of graphene oxide.
  • the present invention provides a multilayer body in which a plurality of single-layer graphene oxides are laminated.
  • the invention provides a multilayer body, the carbon material layer and/or substrate being thermally insulated.
  • the present invention provides a multilayer body having a thermal conductivity in at least one direction (for example, perpendicular to the surface of the layer) after water absorption of less than 1 W/(m ⁇ K), preferably lower than 0.2 W/(m ⁇ K), and more preferably less than 0.1 W/(m ⁇ K).
  • the present invention provides a multilayer body having a thermal conductivity of at least one direction (e.g., perpendicular to the surface of the layer) after water absorption is less than 1 W/(m ⁇ K), preferably low. At 0.2W/(m ⁇ K).
  • the present invention provides a multilayer body having a thermal conductivity of at least 1 W/(m ⁇ K) in at least one direction (for example, perpendicular to a layer surface direction of the multilayer body) after water absorption, It is preferably less than 0.2 W/(m ⁇ K), and still more preferably less than 0.1 W/(m ⁇ K).
  • the invention provides a multilayer body that is water permeable in at least one direction (eg, perpendicular to the surface of the layer).
  • the present invention provides a multilayer body that, when positioned on a surface of the water, is not in direct contact with the water surface, but is in fluid connection with the water surface through the substrate.
  • the invention provides a multilayer body wherein the carbon material layer is hydrophilic.
  • the invention provides a multilayer body wherein the layer of carbon material is water permeable.
  • the invention provides a multilayer body wherein the carbon material layer comprises a porous structure.
  • the invention provides a multilayer body wherein the matrix is hydrophilic.
  • the invention provides a multilayer body wherein the matrix comprises a porous structure.
  • the present invention provides a multilayer body, the porous structure being a porous capillary structure
  • the present invention provides a multilayer body having a porous capillary structure capable of delivering water to a layer of carbon material by capillary force when the multilayer body is on the surface of the water.
  • the present invention provides a multilayer body, wherein the substrate comprises: a water absorbing material with capillary pores and a low thermal conductivity material.
  • the present invention provides a multilayer body in which the capillary-containing water absorbing material and the low thermal conductivity material are combined.
  • the present invention provides a multilayer body wherein the capillary-containing water absorbing material encapsulates the low thermal conductivity material.
  • the present invention provides a multilayer body in which the low thermal conductivity material is penetrated by a capillary permeable water absorbing material.
  • the present invention provides a multilayer body, the capillary-containing water absorbing material being porous cellulose or hydrophilic fibers.
  • the invention provides a multilayer body, the cellulose being cellulose acetate, nitrocellulose or mixed cellulose.
  • the invention provides a multilayer body, the hydrophilic fibers being natural hydrophilic fibers and/or synthetic hydrophilic fibers.
  • Natural hydrophilic fibers are, for example, vegetable fibers (for example cotton fibers, hemp fibers or wood fibers) or animal fibers (for example silk, wool).
  • the present invention provides a multilayer body in which the capillary pores have a pore diameter of from 1 to 1000 ⁇ m, for example from 10 to 100 ⁇ m.
  • the present invention provides a multilayer body having a thermal conductivity of less than 1 W/(m ⁇ K), preferably less than 0.2 W/(m ⁇ K), and more preferably less than 0.1. W / (m ⁇ K).
  • the present invention provides a multilayer body, the low thermal conductivity material being one or more selected from the group consisting of polyurethane (foam), rubber, glass wool, and aluminum silicate.
  • the invention provides a multilayer body wherein the substrate further comprises other water permeable materials.
  • the invention provides a multilayer body wherein the other water permeable material is in contact with the carbon material layer.
  • the invention provides a multilayer body wherein the other water permeable material is in contact with the graphene oxide layer.
  • the invention provides a multilayer body wherein the other water permeable material is a mixed cellulose film.
  • the present invention provides a multilayer body wherein the mixed cellulose filter membrane is a porous polyvinylidene fluoride-polypropylene mixed cellulose filter.
  • the present invention provides a multilayer body having a carbon material layer having a thickness of from 1 to 100 microns, such as from 1 to 10 microns.
  • the present invention provides a multilayer body having a porous structure (for example, a capillary porous structure) having a pore diameter of 10 to 1000 nm, preferably 10 to 120 nm, and more preferably 40 to 80 nm.
  • a porous structure for example, a capillary porous structure
  • the present invention provides a multilayer body in which pores having a pore diameter of 40 to 80 nm have a pore volume of 0.01 to 100 cm 3 /g.
  • the present invention provides a multilayer body in which pores having a pore diameter of 40 to 80 nm have a pore volume of 0.01 to 10 cm 3 /g.
  • XPS X-ray photoelectron spectroscopy
  • the invention provides a multilayer body, graphene oxide synthesized by the Hummers process.
  • the present invention provides a multilayer body obtained by a wet chemical process to obtain a layer of carbon material.
  • the invention provides a multilayer body, the wet chemical method being spin coating, spray coating or liquid phase deposition.
  • the invention provides a multilayer body having a thickness of from 0.1 to 10 cm, preferably from 1 to 5 cm.
  • the present invention provides a multilayer body having a porous structure (e.g., a capillary porous structure) having a pore diameter of preferably from 1 to 1000 ⁇ m, more preferably from 10 to 100 ⁇ m.
  • a porous structure e.g., a capillary porous structure having a pore diameter of preferably from 1 to 1000 ⁇ m, more preferably from 10 to 100 ⁇ m.
  • the present invention provides a multilayer body that is capable of floating on the surface of the water.
  • the invention provides a multilayer body that is used under illumination.
  • the present invention provides a multilayer body that is used on a liquid under floating light.
  • the present invention provides a method of preparing a multilayer body comprising:
  • the carbon material includes one or more of the following materials: graphite, graphene, graphene oxide, chemical functional group modified graphene, and carbon nanotubes.
  • the present invention provides a method for producing a multilayer body, wherein the carbon material of step a) has a size in at least one dimension of from 1 nm to 1000 ⁇ m, such as from 1 to 1000 nm, and further, for example, 1 to 1000 microns.
  • the invention provides a method of making a multilayer body comprising graphene oxide.
  • the invention provides a method of making a multilayer body, wherein the coating of step b) is spin coating or spraying.
  • the invention provides a method of making a multilayer body, wherein the deposition of step b) is a filtration deposition or a suction filtration deposition.
  • the present invention provides a method of producing a multilayer body, wherein step a) comprises the step of synthesizing graphene oxide by the Hummers method.
  • the present invention provides a method of preparing a multilayer body, wherein the dispersion of graphene oxide in step a) is a dispersion of graphene oxide in water.
  • the present invention provides a method for producing a multilayer body, wherein the concentration of the dispersion of graphene oxide in step a) is from 1 to 10 mg/mL.
  • the present invention provides a multilayer body prepared by the production method of any of the present invention.
  • the invention provides the use of the multilayer body of any of the inventions as a light absorber.
  • the present invention provides the use of a carbon material film as a light absorber comprising one or more of the following materials: graphite, graphene, graphene oxide, chemical functional group modified graphene, and Carbon nanotubes.
  • the invention provides the use of a carbon material film as a light absorber, the carbon material comprising graphene oxide.
  • the invention provides the use of a carbon material film as a light absorber having one or more of the following characteristics:
  • the carbon material film is 1 to 100 microns in thickness, for example 1 to 10 microns;
  • the carbon material film has a pore diameter of 10 to 120 nm, preferably 40 to 80 nm.
  • the pore volume of the 40 to 80 nm pores is 0.01 to 100 cm 3 /g, preferably 0.01 to 10 cm 3 /g.
  • the light absorber can be used to absorb a light energy evaporating liquid.
  • the light absorber can also be used for seawater desalination, sewage purification, separation of different solvents, generation of hot steam.
  • the present invention provides a multilayer body including a substrate and a carbon material on the substrate a layer, wherein the substrate is liquid permeable;
  • the carbon material includes one or more of the following materials: graphite, graphene, graphene oxide, chemical functional group modified graphene, and carbon nanotubes.
  • the multilayer body of any of the present invention the carbon material layer has a convex shape.
  • the area of the convex surface of the carbon material layer is 1.2 times or more, preferably 1.5 times or more, the projected area of the convex surface.
  • the convex surface is a curved surface, a tapered surface or a folded surface.
  • the apex angle of the tapered surface is 60 to 120 degrees.
  • the apex angle of the tapered surface is 80 to 100 degrees.
  • the multilayer body of any of the present invention comprising a heat insulating material that is penetrated by the capillary liquid absorbing material.
  • the multilayer body of any of the present invention comprising a polystyrene foam threaded through a wick.
  • pores having a pore diameter of 40 to 80 nm have a pore volume of 0.01 to 10 cm 3 /g, preferably 0.01 to 1 cm 3 . Further, /g is further preferably 0.01 to 0.1 cm 3 /g.
  • the present invention provides a multilayer body having a carbon material layer having a thickness of from 1 to 20 microns, such as from 3 to 8 microns, and further such as from 4 to 5 microns.
  • the present invention provides a multilayer body having a carbon material having a particle size of from 0.01 to 10 microns, such as from 0.1 to 5 microns, and further such as from 0.5 to 2 microns.
  • the porous structure has a maximum pore diameter of 10 to 120 nm, preferably 20 to 100 nm, more preferably 40 to 80 nm, still more preferably 40 to 60 nm.
  • the pore volume of the pores having a pore diameter of 40 to 80 nm in the carbon material layer is 0.01 to 1 cm 3 /g, for example, 0.01 to 0.1 cm 3 /g, for example, 0.04 to 0.6 cm 3 /g.
  • the pore size distribution curve of the carbon material has a peak at a position of 20 to 60 nm on the abscissa, and preferably has a peak at a position of 30 to 50 nm.
  • the pore size distribution curve of the carbon material has only one peak at a position of 20 to 60 nm on the abscissa, and preferably has only one peak at a position of 30 to 50 nm.
  • the peak diameter of the carbon material has a peak peak of 0.01 to 0.1 cm 3 /g, preferably 0.03 to 0.08 cm 3 /g, more preferably 0.04 to 0.06 cm 3 /g, still more preferably 0.05 to 0.06 cm 3 /g.
  • the pore size distribution curve of the carbon material is a pore size distribution curve drawn according to the BJH theory.
  • the carbon material has a pore size distribution curve having an abscissa of D in units of nm and an ordinate of dV/dlogD in units of cm 3 /g, where V represents the pore volume and D represents the pore size.
  • the carbon material has a specific surface area of from 1 to 4000 m 2 /g, for example from 1 to 1000 m 2 /g, for example from 1 to 500 m 2 /g, for example from 1 to 100 m 2 /g, for example from 1 to 50 m 2 /g For example, it is 1 to 10 m 2 /g, for example, 10 to 30 m 2 /g.
  • the present invention provides a multilayer body comprising a substrate and a black layer on the substrate, wherein the substrate is liquid permeable, the black layer comprising a fabric and a black substance.
  • the black layer is liquid permeable.
  • the black layer is gas permeable.
  • the fabric comprises a woven or nonwoven fabric.
  • the fabric comprises one or more selected from the group consisting of denim, poplin, composite twill, canvas, and terry cloth.
  • the fabric comprises a nonwoven (also referred to as a nonwoven).
  • the nonwoven fabric is a sheet, web or batt that is formed by directing or randomly arranging fibers, by friction, cohesion, or bonding, or a combination of these methods.
  • the nonwoven fabric is obtained by a dry process (e.g., carded or airlaid process), a polymer extrusion process (e.g., a spunlaid process or a spray process), or a wet process.
  • a dry process e.g., carded or airlaid process
  • a polymer extrusion process e.g., a spunlaid process or a spray process
  • a wet process e.g., a nonwoven fabric polymer extrusion method (for example, a spin-laid method or a spray-melting method) is prepared.
  • Nonwoven fabrics can have high mechanical strength, large porosity and good hydrophilicity.
  • the multilayer body containing the nonwoven fabric exhibits a higher water vapor generation rate and solar evaporation efficiency.
  • the gram number of the fabric is from 20 to 200 g/m 2 , such as from 40 to 180 g/m 2 , such as from 60 to 160 g/m 2 , such as from 180 to 140 g/m 2 , such as from 100 to 120 g/m 2 .
  • the fabric contains fibers.
  • the fibers comprise natural fibers (such as cotton, hemp, wool or silk), synthetic fibers or carbon fibers.
  • the material of the synthetic fiber comprises one or more selected from the group consisting of polyester, polypropylene, nylon, spandex, and acrylic.
  • the black layer comprises one or more selected from the group consisting of a polyester nonwoven fabric, a polypropylene nonwoven fabric, a nylon nonwoven fabric, a spandex nonwoven fabric, and an acrylic nonwoven fabric.
  • the black substance comprises one or more selected from the group consisting of a black dye, a black powder, and a black fiber.
  • the carbon material comprises one or more of the following materials: graphite, graphene, graphene oxide, chemical functional group modified graphene, carbon nanotubes, and carbon black.
  • the black layer comprises a fabric to which a black substance is attached.
  • the black layer comprises a fabric covered with a black substance.
  • the black layer comprises a fabric that is blackened with a black dye.
  • the black layer and/or matrix is thermally insulating.
  • the black layer when the multilayer body is on the surface of the water, the black layer is not in direct contact with the water surface, but is achieved by a liquid connection between the substrate and the water surface.
  • the porous capillary structure of the substrate when the multilayer body is on the surface of the water, is capable of delivering water to the black layer by capillary force.
  • the black layer has a thickness of from 1 to 10,000 microns, such as from 1 to 5000 microns, such as from 1 to 2000 microns, such as from 1 to 1000 microns, such as from 1 to 100 microns, such as from 1 to 10 microns.
  • the fabric has a thickness of from 1 to 10,000 microns, such as from 1 to 5000 microns, such as from 1 to 2000 microns, such as from 1 to 1000 microns, such as from 1 to 100 microns, such as from 1 to 10 microns.
  • the black layer has a porous structure (e.g., a capillary porous structure) having a pore diameter of 10 to 1000 nm, preferably 10 to 120 nm, and more preferably 40 to 80 nm.
  • a porous structure e.g., a capillary porous structure having a pore diameter of 10 to 1000 nm, preferably 10 to 120 nm, and more preferably 40 to 80 nm.
  • the pores having a pore diameter of 40 to 80 nm in the black layer have a pore volume of 0.01 to 100 cm 3 /g, for example, 0.01 to 10 cm 3 /g, preferably 0.01 to 1 cm 3 /g, and further It is preferably 0.01 to 0.1 cm 3 /g.
  • the black layer or the black substance has a specific surface area of from 1 to 4000 m 2 /g, for example from 1 to 1000 m 2 /g, for example from 1 to 500 m 2 /g, for example from 1 to 100 m 2 /g, for example from 1 to 50 m 2 / g, for example, 1 to 10 m 2 /g, for example, 10 to 30 m 2 /g.
  • the fabric and/or black matter is hydrophilic.
  • the carbon material layer/black layer contains a binder or a hydrophilic substance.
  • the carbon material layer/black layer contains sodium alginate.
  • the black layer has a convex shape.
  • the area of the convex surface of the black layer is 1.2 times or more, preferably 1.5 times or more, of the projected area of the convex surface.
  • the convex surface is a curved surface, a tapered surface or a folded surface.
  • the apex angle of the tapered surface is from 60 to 120 degrees, such as from 80 to 100 degrees.
  • the layer of carbon material has a convex shape.
  • the area of the convex surface of the carbon material layer is 1.2 times the projected area of the convex surface Preferably, it is 1.5 times or more.
  • the convex surface is a curved surface, a tapered surface or a folded surface.
  • the apex angle of the tapered surface is from 60 to 120 degrees, such as from 80 to 100 degrees.
  • the substrate comprises a thermally insulating material that is penetrated by a capillary absorbent material.
  • the substrate comprises a polystyrene foam that is threaded through the wick.
  • a light absorbing device comprising the multilayer body of any of the inventions.
  • the light absorbing device further comprises a liquid transport component and/or a heat insulating component,
  • the liquid transporting member is in contact with the substrate
  • the heat insulating member completely or partially covers the substrate
  • the liquid transporting member comprises a capillary liquid absorbing material
  • the insulating component comprises a low thermal conductivity material.
  • the multilayer body, the substrate or the black layer is liquid permeable, such as water permeable.
  • the liquid comprises water.
  • the capillary wicking material comprises a capillary absorbent material.
  • the fabric comprises a cloth.
  • the multilayer body in the following embodiments includes a substrate and a carbon material layer on the substrate, wherein the substrate is water permeable; the carbon material layer is a graphene oxide layer.
  • Graphene oxide is prepared by the following method:
  • Raw materials flake graphite (30 mesh, Sinopharm Chemical Reagent Co., Ltd., purity 99.99% by weight), 98% concentrated sulfuric acid (analytically pure AR, Sinopharm Chemical Reagent Co., Ltd.), 30% by mass of hydrogen peroxide (Excellent grade pure GR, Sinopharm Chemical Reagent Co., Ltd.), potassium permanganate (excellent grade pure GR, Sinopharm Chemical Reagent Co., Ltd.), with a mass fraction of 36% hydrochloric acid (Excellent Grade GR, Sinopharm Chemical Reagent Co., Ltd.) ).
  • High-temperature reaction stage The beaker containing the mixed solution was placed in a constant temperature water bath at 98 ° C and continuously stirred for 30 minutes. A hydrogen peroxide aqueous solution having a mass fraction of 3.5% was prepared, and the mixed solution in a constant temperature water bath was taken out, and 150 mL of a 3.5% by mass aqueous solution of hydrogen peroxide was added, and the mixture was bright yellow.
  • the above solution is filtered while hot to remove most of the water and strong acid, etc., and then washed with a hydrochloric acid solution of 5% by mass to remove metal ions, and finally washed repeatedly with distilled water until neutral, and placed in an oven to be sufficiently dried for use. .
  • the multilayer body 1 is a schematic view of the multilayer body-1 of Example 1. As shown, the multilayer body 1 includes a substrate 2 and a graphene oxide layer 1 on the substrate 2. Specifically, the substrate 2 is a porous mixed cellulose film.
  • the preparation steps of the multilayer body-1 include:
  • the matrix of the multilayer body-1 is a porous mixed cellulose film.
  • the porous mixed cellulose membrane is hydrophilic, water permeable, and has a porous capillary structure.
  • the porous capillary structure of the matrix is capable of transporting water to the graphene oxide layer by capillary force.
  • the graphene oxide layer was peeled off from the porous mixed cellulose film to obtain a peeled graphene oxide film, and the exfoliated graphene oxide film was subjected to XPS, SEM and pore size. Distribution analysis:
  • XPS X-ray photoelectron spectroscopy
  • the spectrometer is equipped with a single-color Al Ka X-ray source measuring a vacuum of 5 x 10 -9 Torr.
  • 4 is an X-ray fluorescence spectrum (XPS) chart of a graphene oxide film.
  • XPS X-ray fluorescence spectrum
  • the C1s spectrum of the X-ray photoelectron spectroscopy (XPS) of the graphene oxide layer includes four types of carbon bonds: the peak at about 284.9 eV represents the CC bond in the aromatic ring at about 286.9 eV.
  • the peak represents the CO bond of the hydroxyl group and the epoxy group
  • graphene oxide has excellent hydrophilicity and can be stably dispersed in an aqueous solution. Therefore, a large-scale production method, such as spraying or spin coating, can be applied to a large-area substrate by coating a dispersion of graphene oxide to realize mass production of a multilayer body.
  • the graphene oxide film is hydrophilic, which is favorable for the inflow of moisture.
  • the morphology of the cross section of the graphene oxide film was analyzed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • 5 is a scanning electron micrograph of a cross section of a graphene oxide film of the multilayer body 1.
  • the graphene oxide film has a thickness of about 4 ⁇ m and has a remarkable layered structure.
  • the graphene oxide film is composed of a plurality of A single layer of graphene oxide sheets having a thickness of about 1 nm is stacked layer by layer.
  • the above layered structure is advantageous for increasing the thermal resistance of the graphene oxide film, in particular, the thermal resistance perpendicular to the surface direction of the film, and the thermal conductivity perpendicular to the surface of the graphene oxide film is about 0.2 W/mK.
  • Fig. 6 is a graph showing pore volume of a graphene oxide film as a function of pore diameter. As shown, the 40 nm pore has the highest pore volume of about 0.05 cm 3 /g. Therefore, a typical pore size in the graphene oxide film is 40 nm. It can be seen from the BET analysis that the graphene oxide film has a porous (capillary) structure which provides an efficient passage for moisture inflow and vapor escaping.
  • the specific surface area of the graphene oxide film was analyzed by the BET method to be about 28 m 2 /g.
  • the multilayer body 1 was also subjected to an absorbance test. Specifically, after the multilayer body-1 was wetted with water, the side of the graphene oxide layer was irradiated with AM 1.5G standard sunlight (wavelength range: 200-2500 nm) using an ultraviolet/visible spectrometer, and the wet multilayer body was analyzed. -1 light absorption rate.
  • Curve 1 of Figure 7 (corresponding to the right axis) is a plot of the energy density (W/(m 2 ⁇ nm)) of AM 1.5G standard sunlight as a function of wavelength.
  • Curve 2 of Fig. 7 (corresponding to the left ordinate axis) is a curve of the light absorptivity (%) of the multilayer body-1 as a function of wavelength.
  • the average light absorption rate of the water-soaked multilayer body-1 to AM 1.5G standard sunlight was 94%. This indicates that the multilayer body-1 (particularly a graphene oxide film) has a high light absorptivity over a wide wavelength range and is suitable as a light absorber.
  • the multilayer body-1 was also subjected to a folding resistance test. Specifically, the multilayer body was repeatedly folded 50 times and then observed.
  • Figure 8 is a schematic photograph of the folding process.
  • Fig. 8(a) is a photograph after folding
  • Fig. 8(b) is a photograph of the multilayer body-1 which is repeatedly folded 50 times.
  • 50 folds did not cause significant damage to the multilayer body-1. Therefore, the multilayer body-1 has excellent folding resistance, which allows it to be folded up during transportation, and then deployed after reaching the destination, which is very convenient for transportation and deployment. Therefore, the multilayer body-1 is suitable for large-scale application, for example, a multi-layered multi-layered body-1 can be transported to the seashore, and spread over a large area on the surface of the seawater for evaporative desalination of seawater.
  • the multilayer body-2 is a schematic view showing the structure of the multilayer body-2 of Example 2.
  • the multilayer body-2 comprises a substrate 2 and a graphene oxide layer 1 on the substrate 2.
  • the substrate 2 includes a porous mixed cellulose film 210 and a hydrophilic cellulose film-wrapped polystyrene foam plate 220.
  • the porous mixed cellulose film 210 is located between the graphene oxide layer 1 and the hydrophilic cellulose film-wrapped polystyrene foam sheet 220.
  • 3 is a schematic structural view of a polystyrene foam board 220 wrapped with a hydrophilic cellulose film.
  • the hydrophilic cellulose film-wrapped polystyrene foam board 220 includes: a polystyrene foam board 221 And the hydrophilic cellulose film 222, the polystyrene foam board 221 is wrapped by the hydrophilic cellulose film 222.
  • the preparation steps of the multilayer body 2 include:
  • a polystyrene foam board (having a thermal conductivity of about 0.04 W/mK, Nanjing Shengnuoda New Material Co., Ltd.) having a thickness of about 1.6 cm and a diameter of about 3 cm was used, and a hydrophilic cellulose film of about 50 ⁇ m thick was used (the composition includes lignin). ) wrap the foam board. Then, the porous mixed cellulose film deposited with the graphene oxide layer and the polystyrene foam sheet coated with the hydrophilic cellulose film are laminated, and the porous mixed cellulose film is located on the graphene oxide layer and the hydrophilic cellulose film-coated polyphenylene. Between the vinyl foam sheets, the multilayer body-2 of Example 2 was obtained.
  • Figure 9 shows a schematic photograph of the assembly procedure of the multilayer body-2
  • (a) of Figure 9 is a polystyrene foam board
  • (b) of Figure 9 is a polystyrene foam board wrapped with a hydrophilic cellulose film.
  • (c) On the basis of the polystyrene foam board coated with the hydrophilic cellulose film, a porous mixed cellulose film in which a graphene oxide layer was deposited was further laminated to obtain a multilayer body-2.
  • the matrix of the multilayer body-2 includes a hydrophilic cellulose film-wrapped polystyrene foam, and a porous mixed cellulose film. Since the hydrophilic cellulose membrane and the porous mixed cellulose membrane are both hydrophilic, water permeable, and have a porous capillary structure, the matrix of the multilayer body-2 is hydrophilic, water permeable, and porous. Capillary structure.
  • the porous capillary structure of the matrix is capable of transporting water to the graphene oxide layer by capillary force.
  • the polystyrene foam has a low thermal conductivity (for example, about 0.04 W/(m ⁇ ° C.)), and the matrix of the multilayer body-2 is composed of a low thermal conductivity material (polystyrene foam) and a capillary porous material (hydrophilic fiber).
  • the composite film is made of a composite film, so it has both heat insulation and capillary water absorption properties. When the multilayer body-2 floats on the water surface, the heat-insulating substrate can concentrate heat near the graphene oxide layer to prevent heat from being lost to the water.
  • Container Dewar.
  • the multilayer body floats parallel to the water surface, and the base side of the multilayer body contacts the water surface on one side (downward), and the side of the graphene oxide layer faces upward (upward) water surface.
  • the water can penetrate the matrix of the multilayer body-1 and the multilayer body-2, and is in contact with the graphene oxide layer to wet the graphene oxide layer.
  • the above three Dewars were irradiated with simulated sunlight.
  • the simulated sunlight is obtained as follows: the light generated by the solar simulator (Newport 94043A) is filtered through a filter to obtain simulated sunlight conforming to the AM1.5G spectral standard, and the optical power (P in ) is adjusted to 1 kW ⁇ m. -2 .
  • FIG. 11 is a graph showing the mass change-time curves of three Dewars, wherein curves 1, 2 and 3 respectively represent a multi-layer body-1, a multi-layer body-2 and a water-filled Dewar without a multi-layer body.
  • Mass change - time curve According to the curve of Fig. 11, the mass loss rate of water, i.e., the water vapor generation rate by mass, is calculated in units of kg/(m 2 h).
  • the water vapor generation rate was calculated from the data of the amount of water vapor generation measured after 1800-2700 seconds from the start of illumination. The rate of water vapor generation under simulated solar is expressed in m S .
  • the water vapor generation rate in dark was also measured, expressed in m D .
  • thermocouples are respectively disposed on the upper surface and the water surface of the multilayer body to measure the generation.
  • Steam temperature T S (°C)
  • water surface temperature T W (°C).
  • Figure 13 is a graph of water surface temperature and water vapor temperature as a function of time for a multilayer body-2 in a Dewar, where curve 1 represents the water surface temperature-time curve and curve 2 represents the water vapor temperature-time curve.
  • Curve 1 of Fig. 15 is a water surface temperature-time curve of the multilayer body-1 in a water-filled Dewar when illuminated.
  • the solar energy utilization ( ⁇ ) of solar energy converted to water vapor.
  • m the net rate of water vapor generation
  • m rate of water vapor generation under light (m S ) - rate of water vapor generation in the dark (m D ).
  • h LV is the liquid-vapor phase transition total enthalpy of water (latent heat ⁇ + sensible heat ⁇ ), wherein the latent heat enthalpy of water is 2260 J/g, and the sensible heat enthalpy is 4.2 J/gK.
  • P in is the optical power density of the simulated sunlight.
  • the ambient temperature is 16 ° C and the humidity is 60%.
  • Container beaker.
  • Figure 12 is a mass change-time curve of three water-filled beakers in 0 to 2700 seconds under simulated sunlight, wherein curves 1, 2 and 3 respectively represent a multilayer body-1, a multilayer body-2 and The mass change-time curve of the water-filled beaker without the multi-layer body.
  • Figure 14 is a graph of water surface temperature and water vapor temperature as a function of time for a multilayer body-2 in a beaker under illumination.
  • Curve 1 represents the water surface temperature-time curve and curve 2 represents the water vapor temperature-time curve.
  • Curve 2 of Fig. 15 is a graph showing changes in water surface temperature when the multilayer body-1 is in a water-filled beaker under illumination.
  • the water vapor generation rate and solar energy utilization data are shown in Table 2, and the water surface and water vapor temperature change data are shown in 3.
  • the properties of the multilayer body-1 and the multilayer body-2 were further analyzed by the data of Tables 2 and 3 below.
  • the substrate 2 of the multilayer body-1 is a porous cellulose filter; the substrate 2 of the multilayer body-2 includes a porous cellulose filter 210, and a polystyrene foam plate 221 surrounded by a hydrophilic cellulose film 222.
  • the graphene oxide layer 1 of the multilayer body-2 is not in direct contact with the water surface 3, but is in a liquid connection with the water surface 3 via the water permeable substrate 2.
  • This structure facilitates the concentration of heat in the graphene oxide layer to prevent heat from being lost to the water surface 3, thereby facilitating efficient evaporation of water and efficient use of energy.
  • the base 2 may also contain a material having a lower thermal conductivity (for example, a polystyrene foam board 221) to further facilitate heat concentration.
  • the graphene oxide film is suitable as a light absorber.
  • the graphene oxide film as a light absorber has the following advantages: First, the graphene oxide film It has a high light absorption rate in a wide wavelength range; secondly, the porous structure of the graphene oxide film provides a good passage for moisture inflow and vapor emission; and third, the graphene oxide film is perpendicular to the film. The direction of the membrane surface has a lower thermal conductivity and helps to avoid heat loss into the water.
  • the graphene oxide film is hydrophilic, water permeable, and has a porous capillary structure, which readily absorbs water and disperses steam when it is used as a light absorber.
  • the hydrophilicity of the graphene oxide makes it easy to stably disperse in an aqueous solution at the time of preparation, which facilitates the large-scale preparation of a multi-membrane body.
  • the multilayer body-2 exhibited the highest water vapor generation rate and the highest solar energy utilization rate under illumination even in the Dewar or in the beaker.
  • the water vapor generation rate of the multilayer body-2 under illumination is about 1.45 kg / (m 2 h), which is about twice that of the Dewar with the multilayer body-1, which is not set much. 6 times the layer of Dewar.
  • the solar energy utilization rates were 84% and 78%, respectively, which were higher than 50% and 39% when the multilayer body-1 was provided.
  • the above data comparison shows that the structure of the multilayer body-2 is more favorable for obtaining a higher water vapor generation rate and a higher solar energy utilization rate.
  • the temperature difference between the upper and lower surfaces of the multilayer body, the thickness of the multilayer body, and the heat transferred through the multilayer body per unit time are known.
  • the thermal conductivity of the entire multilayer body-2 can be calculated. It is about 0.03 W/mK. Therefore, the multilayer body-2 and its matrix still have a low thermal conductivity after water absorption.
  • Example 4 The water-containing beaker provided with the multilayer body-1 and the multilayer body-2 was irradiated with simulated sunlight, and the temperatures of the graphene oxide layers of the multilayer body-1 and the multilayer body-2 were separately observed by an infrared imager. The temperature of the graphene oxide layer after 1 min and 45 min was measured at the beginning of the experiment (initial value), and the measurement results are shown in Table 4 below.
  • the temperature of the multilayer body-2 was rapidly increased from 12.9 ° C to 32.1 ° C within 1 minute from the start of the illumination experiment, and the temperature was raised to 38.8 ° C after 45 minutes.
  • Multilayer-1 increased the temperature from 14.4 to 19.9 °C within 1 minute of the start of the light experiment, and the temperature rose to 30.7 °C after 45 minutes.
  • the temperature of the graphene oxide layer can be raised to a higher temperature under illumination of 1 kW ⁇ m -2 .
  • the multilayer body-2 heats up quickly, and the temperature is high when it is stable, which is advantageous for rapid generation of water vapor and rapid evaporation.
  • both the multilayer body-1 and the multilayer body-2 exhibit high water vapor generation efficiency and light absorption rate in the water evaporation tests 1 and 2. This indicates that the graphene oxide layer is suitable as a light absorber. Further, the matrix of the multilayer body-2 has a better heat insulating effect, so that the multilayer body-2 exhibits (1) a higher water vapor generation rate; (2) a higher solar energy utilization rate; (3) High water vapor temperature; (4) higher graphene oxide layer heating rate and stable temperature; (5) lower surface temperature change.
  • the multilayer body-2 can be used for seawater desalination, and the seawater is desalted by the multilayer body of the present invention, and the salt content is low.
  • the water evaporation beaker provided with the multilayer body-2 was subjected to a light evaporation cycle test in accordance with the procedure of Example 4. A total of 10 cycles were performed, and each cycle was subjected to a light evaporation test of 1 hour or more.
  • Table 6 records the water vapor generation rate m S per cycle, in units of kg/(m 2 h).
  • the multilayer body-2 has good cycle stability, and maintains a stable water vapor generation rate after a long time of repeated light irradiation experiments.
  • Example 8 tested the light absorption efficiency of multilayer bodies of different configurations.
  • Figure 16 is a schematic illustration of the multilayer bodies 810, 80, 830 placed in a water beaker.
  • the multilayer body 810 includes a carbon material layer 1 and a base material, and the carbon material layer 1 is a graphene oxide layer prepared in the same manner as in Example 1, and has a planar shape.
  • the substrate is a porous mixed cellulose film laminated with the carbon material layer 1.
  • the multilayer body 810 has a diameter of about 4.5 cm.
  • the multilayer body 820 includes a carbon material layer 1 and a base material, and the carbon material layer 1 is a graphene oxide prepared by the method of Example 1, having a planar shape.
  • the substrate includes a porous mixed cellulose film laminated with a layer of carbon material.
  • the base further comprises a polystyrene foam 823 (thermal conductivity of 0.03 W/mK) having a thickness of 5 cm and a diameter of 4.5 cm.
  • the polystyrene foam 823 is internally provided with a cylindrical cotton core 822 having a diameter of about 7 mm. One end is in contact with the porous mixed cellulose membrane.
  • the multilayer body 830 includes a carbon material layer 831 which is a graphene oxide prepared in the same manner as in Example 1, and a base material having a convex shape.
  • the substrate includes a porous mixed cellulose film laminated with the carbon material layer 1.
  • the convex surface of the carbon material layer 831 of the multilayer body is a tapered surface, the apex angle of the tapered surface is about 90 degrees, and the bottom diameter is about 4.5 cm.
  • the base further comprises a polystyrene foam 833 (thermal conductivity of 0.03 W/mK) having a thickness of 1 cm and a diameter of 4.5 cm.
  • the polystyrene foam is internally provided with a cylindrical cotton core 822 having a diameter of about 7 mm and a height of about 6 cm. One end is in contact with the porous mixed cellulose membrane.
  • Container beaker. Take three beakers with an inner diameter of about 4.5 cm and a height of about 5 cm, and the same amount of water (about 60 mL) is placed on the surface of the beaker to float the layers 810, 820, and 830, and the side of the graphene oxide layer. Upper) facing away from the water surface, the base side of the multilayer body (downward) contacts the water surface. After the multilayer body is placed on the water surface, water can pass through the substrate to wet the graphene oxide layer.
  • Fig. 17 (a), (b) and (c) are mass change-time curves of three beakers containing the multilayer bodies 810, 820, and 830, respectively, in the dark and under illumination.
  • the water vapor generation rate by mass is obtained in units of kg/(m 2 h).
  • the measured water vapor generation data is used to calculate the water vapor generation rate.
  • the rate of water vapor generation under simulated solar is expressed in m S
  • m D the rate of water vapor generation in dark is expressed in m D , as shown in Table 7 below:
  • the multilayer body 830 has a higher water vapor generation efficiency than the multilayer bodies 810 and 820 under illumination and in the dark.
  • the matrix of the multilayer body 820 includes a polystyrene foam layer which is more thermally insulating and thus has a higher water vapor generation rate than the multilayer body 810.
  • the experiment time is from October 8th, 2016 to 86:00.
  • (a) of FIG. 18 shows a graph of temperature and humidity of the day as a function of time
  • (b) of FIG. 18 shows a graph of solar energy density of the day as a function of time.
  • FIG. 17 (d) illustrates a multilayer body 810, is provided with a beaker containing water vapor generation efficiency outdoors under sunlight, respectively 0.8Kg / m 2 h, 1.4Kg / m 2 h and 2.0Kg/m 2 h,.
  • the multilayer body 830 having a convex carbon surface has a larger light receiving area under the same footprint and can absorb more light than the multilayer body 810 or 820 in which the carbon material layer is flat. With light heat Take advantage of the higher efficiency.
  • the carbon material layer of the convex surface (especially the tapered surface) can make full use of the sunlight irradiated from different angles, and the dependence on the angle of the sunlight is small.
  • the calculated amount of light per unit area of the multilayer body 830 is At 700 W/m 2 , the multilayered body 810 has a light absorption per unit area of 565 W/m 2 . That is, the multilayer body 830 absorbs about 25% more light outdoors than the multilayer body 810.
  • the multilayer body-3 of Example 11 comprises a substrate and a black layer on the substrate.
  • the black layer is a nonwoven fabric layer coated with carbon black on the surface, and the size and preparation method are as follows:
  • Non-woven fabric (Guangdong Jiaxinda, gram weight 120g/m 2 ): Meltblown non-woven fabric, mainly made of polyester; the size is 4.5cm in diameter and 0.8mm thick.
  • the surface of the non-woven fabric was coated with carbon black powder (Printex U, Germany) and the thickness of the coating was about 0.8 mm.
  • carbon black powder Printex U, Germany
  • the thickness of the coating was about 0.8 mm.
  • Sodium alginate is a hydrophilic binder, which can enhance the adhesion of carbon black particles, improve the service life of materials, and improve the hydrophilicity of materials.
  • the base body is a polystyrene foam (thermal conductivity of 0.03 W/mK) having a thickness of 2 cm and a diameter of 4.5 cm.
  • the polystyrene foam is internally provided with a cylindrical cotton core having a diameter of about 7 mm and a height of about 3 cm. One end of the cotton core is The porous mixed cellulose membrane is in contact.
  • Carbon black parameters carbon black grade: ordinary pigment bath method carbon black RCC, blackness My value: 244, relative tinting strength (%, IRB3): 108, volatile matter %: 6, oil absorption g / 100g: 420, pH PH Value: 4, sieve residue content 0.044 mm (PPM mesh diameter): ⁇ 300, ash content %: 0.04, toluene extraction amount %: 0.15, powder compaction g/l: 130, BET specific surface area m 2 / g : 100, primary particle size nm: 25.
  • the multilayer body-4 of Example 12 includes a substrate and a black layer on the substrate.
  • the black layer is a nonwoven fabric layer blackened with a black dye
  • the size and preparation method are as follows:
  • Non-woven fabric (Guangdong Jiaxinda, gram weight 100g/m 2 ): Melt-blown non-woven fabric, mainly made of polyester; the size is 4.5cm in diameter and 0.6mm thick. The black layer is obtained by dyeing the nonwoven fabric with a dye.
  • the base body is a polystyrene foam (thermal conductivity of 0.03 W/mK) having a thickness of 2 cm and a diameter of 4.5 cm.
  • the polystyrene foam is internally provided with a cylindrical cotton core having a diameter of about 7 mm and a height of about 3 cm. One end of the cotton core is The porous mixed cellulose membrane is in contact.
  • Container beaker. Take three beakers with an inner diameter of about 4.8 cm and a height of about 5 cm. The same amount of water (about 60 mL) is placed on the surface of the beaker to float the multilayer body-3 and the multilayer body-4, respectively. The side of the cloth layer (upward) faces away from the water surface, and the side of the base body of the multilayer body (downward) contacts the water surface. After the multilayer body is placed on the water surface, the water can pass through the substrate to wet the nonwoven fabric layer.
  • the water vapor generation rate by mass is obtained in units of kg/(m 2 h).
  • the measured water vapor generation data is used to calculate the water vapor generation rate.
  • the rate of water vapor generation under simulated solar is expressed in m S
  • the rate of water vapor generation in dark is expressed in m D , as shown in Table 8 below:
  • both the multilayer body-3 and the multilayer body-4 exhibited a high water vapor generation rate and solar energy utilization rate.
  • Example 11 or 12 water vapor generation experiments were carried out outdoors using black denim, black poplin cotton, black composite twill, black canvas and black terry cloth as black layers, respectively.
  • the experimental time is December 30, 2016, the outdoor temperature is 0-9 ° C, the total amount of light is 9.43 MJ/m 2 , the humidity is about 40%, and the liquid to be distilled is water.
  • the test results are shown in Table 9:
  • the multilayer body containing the woven fabric as a light absorbing body can exhibit a high water vapor generation amount and solar energy utilization rate by absorbing the light energy evaporation liquid.
  • the multilayer body-3 and the multilayer body-4 exhibit a higher water vapor generation amount and solar energy utilization rate, which means that the nonwoven fabric is more suitable as a light absorber to absorb light energy evaporation than other materials. liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种多层体,包括基体(2)以及基体(2)上的碳材料层(1),其中,基体(2)是水可渗透的;碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。还公开了一种多层体的制备方法,一种多层体的用途和一种包含多层体的吸光器件。

Description

一种多层体及其制备方法和用途 技术领域
本发明属于光吸收领域,特别涉及一种多层体及其制备方法和用途。
背景技术
淡水资源的短缺已成为当今时代最为紧迫的问题之一。淡化海水是获得淡水资源的有效途径。海水淡化方法主要有蒸馏法、膜法、结晶法、溶剂萃取法和离子交换法等。其中,太阳能蒸馏淡化海水的方法具有清洁、绿色、低碳的优点,是一种生产淡水的有前景的解决方案。
水的反射率和透射率都较高,直接被阳光照射时不能高效地利用太阳能,以及高效地产生水蒸气。为了提高太阳能利用率和水蒸气产生效率,人们使用吸光率相对较高材料作为光吸收体吸收光能,再将吸收的光能转化为热能传递给水体,以实现水体的升温蒸发。
现有技术中,有人使用纳米颗粒作为光吸收体,在水中分散吸光率较高的纳米颗粒,通过纳米粒子吸光发热,并加热水体,以实现水的高效蒸发。
现有技术中,还有人使用多孔材料作为光吸收体,在水面覆盖吸光率较高的多孔材料,通过多孔材料吸光发热,并加热水体,以实现水的高效蒸发。
发明内容
发明人发现,现有技术中采用的光吸收体大多制备工艺复杂、成本较高、且不容易实现大规模的生产和应用。
发明人首次将碳材料(碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管)与水可渗透的基体复合,获得多层体。该多层体可作为光吸收体用于吸收光能蒸发液体。该多层体制备的工艺简便、成本低、容易实现大规模的生产和应用
发明人还进一步对多层体的基体进行了改良,制备了水可渗透的且吸水后热导率较低的基体。使用该基体的多层体表现出较高的水蒸气产生效率和较高的太阳能利用率。
本发明的一个目的是提供一种多层体。本发明的又一个目的是提供一种能够吸收光能蒸发液体的多层体。本发明的再一个目的是提供一种多层体的制备方法。本发明 的再一个目的是提供一种碳材料(碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管)的用途。
为了实现上述一个或多个目的,本发明第一方面提供一种多层体,其包括基体以及所述基体上的碳材料层,其中,所述基体是水可渗透的;
所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。
本发明第二方面提供一种多层体的制备方法,其包括:
a)获得碳材料的分散液;
b)将碳材料的分散液涂覆或沉积在基体上,所述基体是水可渗透的;
所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。
本发明第三方面提供一种多层体,该多层体由本发明任一项的多层体的制备方法制备而成。
本发明第四方面提供一种本发明任一项的多层体作为光吸收体的用途。
本发明第五方面提供一种碳材料层作为光吸收体的用途。
本发明的有益效果
本发明多层体和/或多层体的制备方法具有以下一项或多项有益效果:
(1)本发明多层体制备方法简便、成本低;
(2)本发明多层体有较好的亲水性;
(3)本发明多层体强度高,尤其有较好的耐折叠性,便于运输和部署;
(4)本发明多层体作为光吸收体水蒸气产生效率高;
(5)本发明多层体作为光吸收体太阳能利用率高;
(6)本发明多层体作为光吸收体能够在较低的光功率密度下实现较高的水蒸气产生效率和/或太阳能利用率;
(7)本发明多层体持久耐用、循环性能稳定;
(8)本发明多层体具有很好的绝热性,吸水后具有较低的热导率;
(9)本发明多层体具有多孔结构,多孔结构为吸收水分和蒸汽的散出提供了良好通道;
(10)一个或多个实施例的多层体,碳材料层具有凸面形状,例如锥面形状;该多层体用于蒸馏液体,具有占地面积小,光利用率高的优点,在室外使用时,可接收 来自不同角度的阳光,具有较高的单位面积吸光量和较高的蒸馏效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分。在附图中:
图1为多层体-1的结构示意图;
图2为多层体-2的结构示意图;
图3为多层体-2的部分基体的结构示意图;
图4为氧化石墨烯膜的XPS图谱;
图5为氧化石墨烯膜横截面的SEM照片;
图6为氧化石墨烯膜的孔径分布曲线;
图7为AM1.5G模拟太阳光光谱和氧化石墨烯膜的光吸收率曲线;
图8为多层体-1折叠测试的示意照片;
图9为多层体-2组装过程的示意照片;
图10为多层体-1(图10的a)和多层体-2(图10的b)在水中漂浮的示意图;
图11为水蒸气产生实验1中水的质量变化-时间曲线;
图12为水蒸气产生实验2中水的质量变化-时间曲线;
图13为设置了多层体-2的盛水杜瓦瓶在光照下,水面及水蒸气的温度-时间曲线;
图14为设置了多层体-2的盛水烧杯在光照下,水面及水蒸气的温度-时间曲线;
图15为设置了多层体-1的盛水杜瓦瓶和烧杯在光照下,水面温度-时间曲线;
图16为多层体810、80、830置于盛水烧杯中的示意图;
图17的(a)(b)(c)分别为盛有多层体810、820、830的三支烧杯在暗处和在光照下的质量变化-时间曲线,图17的(d)示出了设置有多层体810、820、830的盛水烧杯在室外阳光照射下的水蒸气产生效率;
图18的(a)示出了室外蒸馏测试的温度和湿度随时间变化的曲线,图18的(b)示出了当天的太阳能能量密度随时间变化的曲线。
具体实施方案
本发明提供了如下的具体实施方案以及他们之间的所有可能的组合。出于简洁的目的,本申请没有逐一记载实施方案的各种具体组合方式,但应当认为本申请具体记载并公开了所述具体实施方案的所有可能的组合方式。
在一个实施方案中,本发明提供一种多层体,其包括基体以及所述基体上的碳材料层,其中,所述基体是水可渗透的;
所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。
在一个实施方案中,本发明提供一种多层体,所述碳材料包括氧化石墨烯。
在一个实施方案中,本发明提供一种多层体,所述碳材料层包括氧化石墨烯层。
在一个实施方案中,本发明提供一种多层体,所述氧化石墨烯层由多个单层氧化石墨烯层叠而成。
在一个实施方案中,本发明提供一种多层体,所述碳材料层和/或基体是隔热的。
在一个实施方案中,本发明提供一种多层体,该多层体吸水后在至少一个方向(例如垂直于层表面方向)的热导率低于1W/(m·K),优选低于0.2W/(m·K),再优选低于0.1W/(m·K)。
在一个实施方案中,本发明提供一种多层体,所述碳材料层吸水后在至少一个方向(例如垂直于层表面方向)的热导率低于1W/(m·K),优选低于0.2W/(m·K)。
在一个实施方案中,本发明提供一种多层体,所述基体吸水后在至少一个方向(例如垂直于多层体的层表面方向)的热导率低于1W/(m·K),优选低于0.2W/(m·K),再优选低于0.1W/(m·K)。
在一个实施方案中,本发明提供一种多层体,所述多层体在至少一个方向(例如垂直于层表面方向)是水可渗透的。
在一个实施方案中,本发明提供一种多层体,该多层体位于在水面时,碳材料层不与水面直接接触,而是通过基体与水面实现液体连接。
在一个实施方案中,本发明提供一种多层体,其中,所述碳材料层是亲水的。
在一个实施方案中,本发明提供一种多层体,其中,所述碳材料层是水可渗透的。
在一个实施方案中,本发明提供一种多层体,其中,所述碳材料层包括多孔结构。
在一个实施方案中,本发明提供一种多层体,其中,所述基体是亲水的。
在一个实施方案中,本发明提供一种多层体,其中,所述基体包括多孔结构。
在一个实施方案中,本发明提供一种多层体,所述多孔结构是多孔毛细结构
在一个实施方案中,本发明提供一种多层体,该多层体位于在水面上时,基体的多孔毛细结构能够利用毛细管力将水输送给碳材料层。
在一个实施方案中,本发明提供一种多层体,其中,所述基体包括:带毛细孔的吸水材料和低热导率材料。
在一个实施方案中,本发明提供一种多层体,其中,所述带毛细孔的吸水材料和所述低热导率材料复合结合。
在一个实施方案中,本发明提供一种多层体,其中,所述带毛细孔的吸水材料包裹所述低热导率材料。
在一个实施方案中,本发明提供一种多层体,其中,所述低热导率材料被带毛细孔的吸水材料贯穿。
在一个实施方案中,本发明提供一种多层体,所述带毛细孔的吸水材料是多孔纤维素或亲水纤维。
在一个实施方案中,本发明提供一种多层体,所述纤维素是醋酸纤维素、硝酸纤维素或混合纤维素。
在一个实施方案中,本发明提供一种多层体,所述亲水纤维是天然亲水纤维和/或合成亲水纤维。天然亲水纤维例如是植物纤维(例如棉纤维、麻纤维或木纤维)或动物纤维(例如丝、毛)。
在一个实施方案中,本发明提供一种多层体,所述带毛细孔的吸水材料中,毛细孔的孔径为1~1000微米,例如10~100微米。
在一个实施方案中,本发明提供一种多层体,低热导率材料的热导率低于1W/(m·K),优选低于0.2W/(m·K),再优选低于0.1W/(m·K)。
在一个实施方案中,本发明提供一种多层体,低热导率材料为选自聚氨酯(泡沫)、橡胶、玻璃棉和硅酸铝中的一种或多种。
在一个实施方案中,本发明提供一种多层体,其中,所述基体还包括其它的水可渗透材料。
在一个实施方案中,本发明提供一种多层体,其中,所述其它的水可渗透材料与所述碳材料层接触。
在一个实施方案中,本发明提供一种多层体,其中,所述其它的水可渗透材料与所述氧化石墨烯层接触。
在一个实施方案中,本发明提供一种多层体,其中,所述其它的透水材料为混合纤维素膜。
在一个实施方案中,本发明提供一种多层体,其中所述混合纤维素滤膜为多孔聚偏氟乙烯-聚丙烯混合纤维素滤膜。
在一个实施方案中,本发明提供一种多层体,碳材料层的厚度为1~100微米,例如1~10微米。
在一个实施方案中,本发明提供一种多层体,所述碳材料层有多孔结构(例如毛细多孔结构),多孔结构的孔径为10~1000纳米,优选为10~120纳米,再优选为40~80纳米。
在一个实施方案中,本发明提供一种多层体,所述碳材料层中,孔径为40~80纳米的孔的孔体积为0.01~100cm3/g。
在一个实施方案中,本发明提供一种多层体,所述碳材料层中,孔径为40~80纳米的孔的孔体积为0.01~10cm3/g。
在一个实施方案中,氧化石墨烯有下述一种或多种官能团(或化学键):C-C、C-O、C=O和O-C=O。
在一个实施方案中,本发明提供一种多层体,氧化石墨烯的X射线光电子光谱(XPS)的C1s谱图中有:C-C、C-O、C=O和O-C=O官能团(或化学键)的峰。
在一个实施方案中,本发明提供一种多层体,氧化石墨烯由Hummers法合成。
在一个实施方案中,本发明提供一种多层体,采用湿化学的方法获得碳材料层。
在一个实施方案中,本发明提供一种多层体,所述湿化学的方法是旋涂、喷涂或液相沉积。
在一个实施方案中,本发明提供一种多层体,基体的厚度为0.1~10cm,优选为1~5cm。
在一个实施方案中,本发明提供一种多层体,基体有多孔结构(例如毛细多孔结构),多孔结构的孔径优选为1~1000微米,再优选为10~100微米。
在一个实施方案中,本发明提供一种多层体,该多层体能够漂浮在水面上。
在一个实施方案中,本发明提供一种多层体,该多层体是在光照下使用。
在一个实施方案中,本发明提供一种多层体,该多层体是在光照下漂浮在液体上使用。
在一个实施方案中,本发明提供一种多层体的制备方法,其包括:
a)获得碳材料的分散液;
b)将碳材料的分散液涂覆或沉积在基体上,所述基体是水可渗透的;
所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。
在一个实施方案中,本发明提供一种多层体的制备方法,其中,步骤a)的碳材料的在至少一个维度的尺寸为1纳米~1000微米,例如1~1000纳米,再例如1~1000微米。
在一个实施方案中,本发明提供一种多层体的制备方法,所述碳材料包括氧化石墨烯。
在一个实施方案中,本发明提供一种多层体的制备方法,其中,步骤b)的涂覆是旋涂或喷涂。
在一个实施方案中,本发明提供一种多层体的制备方法,其中,步骤b)的沉积是过滤沉积或抽滤沉积。
在一个实施方案中,本发明提供一种多层体的制备方法,其中,步骤a)包括用Hummers法合成氧化石墨烯的步骤。
在一个实施方案中,本发明提供一种多层体的制备方法,步骤a)中氧化石墨烯的分散液是氧化石墨烯在水中的分散液。
在一个实施方案中,本发明提供一种多层体的制备方法,步骤a)中氧化石墨烯的分散液的浓度为1~10mg/mL。
在一个实施方案中,本发明提供一种多层体,由本发明任一项的制备方法制备得到。
在一个实施方案中,本发明提供本发明任一项的多层体作为光吸收体的用途。
在一个实施方案中,本发明提供碳材料膜作为光吸收体的用途,所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。
在一个实施方案中,本发明提供碳材料膜作为光吸收体的用途,碳材料包括氧化石墨烯。
在一个实施方案中,本发明提供碳材料膜作为光吸收体的用途,所述碳材料膜具有以下一项或多项特征:
a)所述碳材料膜是厚度为1~100微米,例如1~10微米;
b)所述碳材料膜的孔径为10~120纳米,优选为40~80纳米。
c)所述碳材料膜中,40~80纳米孔的孔体积为0.01~100cm3/g,优选为0.01~10cm3/g。
在一个实施方案中,本发明任一项的用途,所述光吸收体能够用于吸收光能蒸发液体。
在一个实施方案中,本发明任一项的用途,所述光吸收体还能够用于海水淡化、污水提纯、不同溶剂分离、产生热蒸汽。
在一个实施方案中,本发明提供一种多层体,其包括基体以及所述基体上的碳材 料层,其中,所述基体是液体可渗透的;
所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。
在一个实施方案中,本发明任一项的多层体,所述碳材料层具有凸面形状。
在一个实施方案中,本发明任一项的多层体,碳材料层的凸面的面积是该凸面的投影面积的1.2倍以上,优选1.5倍以上。
在一个实施方案中,本发明任一项的多层体,所述凸面是弧面、锥面或折面。
在一个实施方案中,本发明任一项的多层体,所述锥面的顶角为60~120度。
在一个实施方案中,本发明任一项的多层体,所述锥面的顶角为80~100度。
在一个实施方案中,本发明任一项的多层体,所述基体包括被毛细吸液材料贯穿的绝热材料。
在一个实施方案中,本发明任一项的多层体,所述基体包括被棉芯贯穿的聚苯乙烯泡沫。
在一个实施方案中,本发明任一项所述的多层体,所述碳材料层中,孔径为40~80纳米的孔的孔体积为0.01~10cm3/g,优选为0.01~1cm3/g,再优选为0.01~0.1cm3/g。
在一个实施方案中,本发明提供一种多层体,碳材料层的厚度为1~20微米,例如3~8微米,再例如4~5微米。
在一个实施方案中,本发明提供一种多层体,碳材料的粒径为0.01~10微米,例如0.1~5微米,再例如0.5~2微米。
在一个实施方案中,多孔结构的最可几孔径为10~120纳米,优选为20~100nm,再优选为40~80纳米,再优选为40~60nm。
在一个实施方案中,所述碳材料层中,孔径为40~80纳米的孔的孔体积为0.01~1cm3/g,例如0.01~0.1cm3/g,例如0.04~0.6cm3/g
在一个实施方案中,碳材料的孔径分布曲线在横坐标20~60nm的位置有峰,优选为30~50nm的位置有峰。
在一个实施方案中,碳材料的孔径分布曲线仅在横坐标20~60nm的位置有一个峰,优选仅在30~50nm的位置有一个峰。
在一个实施方案中,碳材料的孔径分布曲线上,峰的峰值为0.01~0.1cm3/g,优选为0.03~0.08cm3/g,再优选为0.04~0.06cm3/g,再优选为0.05~0.06cm3/g。
在一个实施方案中,碳材料的孔径分布曲线为根据BJH理论绘制的孔径分布曲线。
在一个实施方案中,碳材料的孔径分布曲线的横坐标为D,单位为nm,纵坐标为dV/dlogD,单位为cm3/g,其中V表示孔体积,D表示孔径。
在一个实施方案中,碳材料的比表面积为1~4000m2/g,例如1~1000m2/g,例如1~500m2/g,例如1~100m2/g,例如1~50m2/g,例如1~10m2/g,例如10~30m2/g。
本发明提供一种多层体,其包括基体以及所述基体上的黑色层,其中,所述基体是液体可渗透的,所述黑色层包括织物和黑色物质。
在一个实施方案中,所述黑色层是液体可渗透的。
在一个实施方案中,所述黑色层是气体可渗透的。
在一个实施方案中,所述织物包括纺织物或无纺织物。
在一个实施方案中,所述织物包括选自牛仔布、府绸棉布、复合斜纹棉布、帆布、毛巾布中的一种或多种。
在一个实施方案中,织物包括无纺布(也称为非织造布)。
在一个实施方案中,无纺布是指定向或随机排列的纤维,通过摩擦、抱合、或粘合,或者这些方法的组合而相互结合制成的片状物、纤网或絮垫。
在一个实施方案中,无纺布通过干法(例如梳理成网法或气流成网法)、聚合物挤压法(例如纺丝成网法或喷熔法)或湿法制备获得。例如,无纺布聚合物挤压法(例如纺丝成网法或喷熔法)制备获得。
无纺布可以具有较高的机械强度,较大的孔隙率和良好的亲水性。
在一个实施方案中,含有无纺布的多层体表现出较高的水蒸气产生速率和太阳能蒸发效率。
在一个实施方案中,织物的克数为20~200g/m2,例如40~180g/m2,例如60~160g/m2,例如180~140g/m2,例如100~120g/m2
在一个实施方案中,所述织物含有纤维。
在一个实施方案中,所述纤维包括天然纤维(例如棉、麻、毛或丝)、合成纤维或碳纤维。
在一个实施方案中,所述合成纤维的材质包括选自涤纶、丙纶、锦纶、氨纶和腈纶中的一种或多种。
在一个实施方案中,所述黑色层包括选自涤纶无纺织物、丙纶无纺织物、锦纶无纺织物、氨纶无纺织物和腈纶无纺织物中的一种或多种。
在一个实施方案中,所述黑色物质包括选自黑色染料、黑色粉末、黑色纤维中的一种或多种。
在一个实施方案中,所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯、碳纳米管和炭黑。
在一个实施方案中,所述黑色层包括附着有黑色物质的织物。
在一个实施方案中,所述黑色层包括覆盖有黑色物质的织物。
在一个实施方案中,所述黑色层包括被黑色染料染黑的织物。
在一个实施方案中,所述黑色层和/或基体是隔热的。
在一个实施方案中,多层体位于在水面时,所述黑色层不与水面直接接触,而是通过基体与水面实现液体连接。
在一个实施方案中,多层体位于在水面上时,基体的多孔毛细结构能够利用毛细管力将水输送给黑色层。
在一个实施方案中,黑色层的厚度为1~10000微米,例如1~5000微米,例如1~2000微米,例如1~1000微米,例如1~100微米,例如1~10微米。
在一个实施方案中,织物的厚度为1~10000微米,例如1~5000微米,例如1~2000微米,例如1~1000微米,例如1~100微米,例如1~10微米。
在一个实施方案中,黑色层有多孔结构(例如毛细多孔结构),多孔结构的孔径为10~1000纳米,优选为10~120纳米,再优选为40~80纳米。
在一个实施方案中,所述黑色层中,孔径为40~80纳米的孔的孔体积为0.01~100cm3/g,例如为0.01~10cm3/g,优选为0.01~1cm3/g,再优选为0.01~0.1cm3/g。
在一个实施方案中,黑色层或黑色物质的比表面积为1~4000m2/g,例如1~1000m2/g,例如1~500m2/g,例如1~100m2/g,例如1~50m2/g,例如1~10m2/g,例如10~30m2/g。
在一个实施方案中,所述织物和/或黑色物质是亲水的。
在一个实施方案中,碳材料层/黑色层含有粘结剂或亲水物质。
在一个实施方案中,碳材料层/黑色层含有海藻酸钠。
在一个实施方案中,所述黑色层具有凸面形状。
在一个实施方案中,所述黑色层的凸面的面积是该凸面的投影面积的1.2倍以上,优选1.5倍以上。
在一个实施方案中,所述凸面是弧面、锥面或折面。
在一个实施方案中,所述锥面的顶角为60~120度,例如80~100度。
在一个实施方案中,所述碳材料层具有凸面形状。
在一个实施方案中,所述碳材料层的凸面的面积是该凸面的投影面积的1.2倍以 上,优选1.5倍以上。
在一个实施方案中,所述凸面是弧面、锥面或折面。
在一个实施方案中,所述锥面的顶角为60~120度,例如80~100度。
在一个实施方案中,所述基体包括被毛细吸液材料贯穿的绝热材料。
在一个实施方案中,所述基体包括被棉芯贯穿的聚苯乙烯泡沫。
一种吸光器件,包括本发明任一项的多层体。
在一个实施方案中,吸光器件,还包括液体传输部件和/或隔热部件,
优选地,所述液体传输部件与所述基体接触;
优选地,所述隔热部件全部或部分地包覆所述基体;
优选地,所述液体传输部件包括毛细吸液材料;
优选地,所述隔热部件包括低热导率材料。
在一个实施方案中,所述多层体、所述基体或所述黑色层是液体可渗透的,例如是水可渗透的。
在一个实施方案中,所述液体包括水。
在一个实施方案中,所述毛细吸液材料包括毛细吸水材料。
在一个实施方案中,所述织物包括布。
具体实施例
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。本发明的示意性实施例及其说明用于解释本发明,并不一定构成对本发明的限定。
下述实施例中的多层体包括:基体以及所述基体上的碳材料层,其中,所述基体是水可渗透的;所述碳材料层是氧化石墨烯层。
一、氧化石墨烯由下述方法制备:
采用Hummers方法制备的氧化石墨烯的分散液。
原料:鳞片石墨(30目,国药集团化学试剂有限公司,纯度为99.99重量%),质量分数为98%的浓硫酸(分析纯AR,国药集团化学试剂有限公司),质量分数为30%的双氧水(优级纯GR,国药集团化学试剂有限公司),高锰酸钾(优级纯GR,国药集团化学试剂有限公司),质量分数为36%盐酸(优级纯GR,国药集团化学试剂有限公司)。
低温反应阶段:在500mL的烧杯中小心倒入120mL的浓硫酸,然后把烧杯放入冰水中静置,待浓硫酸的温度降到0℃,搅拌中加入石墨5g。搅拌30min后,在混合液中缓慢加入0.75g的高锰酸钾,同时不断搅拌,并且控制温度不超过5℃。继 续搅拌30min后,在烧杯中缓慢加入15g的高锰酸钾,同时不断的搅拌,控制温度不超过5℃,连续搅拌30min。
中温反应阶段:将盛有混合液的烧杯放入35℃的水浴中,搅拌2h。搅拌完成后,取出水浴中的混合液样品,并缓慢地加入225mL去离子水。
高温反应阶段:将盛有混合液的烧杯放入98℃的恒温水浴中不断搅拌,保持30min。配制质量分数为3.5%的双氧水溶液,将恒温水浴中的混合液取出,加入150mL质量分数为3.5%的双氧水溶液,混合液呈亮黄色。
将上述溶液趁热过滤,除去大部分的水和强酸等,再用质量分数为5%的盐酸溶液洗涤,除去金属离子,最后用蒸馏水反复洗涤直至中性,放入烘箱中充分干燥以待用。
二、仪器和材料如下表1所示:
表1
Figure PCTCN2017080055-appb-000001
Figure PCTCN2017080055-appb-000002
实施例1
图1是实施例1的多层体-1的示意图,如图所示,多层体1包括:基体2以及基体2上的氧化石墨烯层1。具体地,基体2是多孔混合纤维素膜。
该多层体-1的制备步骤包括:
(1)氧化石墨烯分散液的制备:将0.4g烘干的氧化石墨烯分散在100mL去离子水中,超声3h,获得氧化石墨烯分散液,其中氧化石墨烯的浓度为4mg/mL。
(2)氧化石墨烯层的组装:采用湿化学的方法实现氧化石墨烯层的组装。具体地,以多孔混合纤维素膜(成分:PVDF-聚丙烯混合纤维素,直径50mm,孔径0.02mm)为基体。取30mL氧化石墨烯分散液,采用抽滤沉积的方法在多孔混合纤维素膜上沉积一层氧化石墨烯膜,抽滤的压力为0.07MPa。抽滤完成后,在60℃真空干燥5小时,获得实施例1的多层体-1。
多层体-1的基体是多孔混合纤维素膜。该多孔混合纤维素膜是亲水的、水可渗透的、且具有多孔毛细结构。基体的多孔毛细结构能够利用毛细管力将水输送给氧化石墨烯层。
为了测试氧化石墨烯层的物理或化学参数,将氧化石墨烯层从多孔混合纤维素膜上剥离,得到剥离后的氧化石墨烯膜,对剥离后的氧化石墨烯膜进行了XPS、SEM和孔径分布分析:
使用X射线光电子能谱(XPS)分析了氧化石墨烯中的功能基团。该能谱仪配备一个单色Al Ka X射线源,测量真空度为5×10-9Torr。图4为氧化石墨烯膜的X射线荧光光谱(XPS)图。如图所示,氧化石墨烯层的X射线光电子光谱(XPS)的C1s谱图包括4种类型的碳键:在约284.9eV处的峰代表芳香环中的C-C键,在约286.9eV处的峰代表了羟基和环氧基的C-O键,在约288.1eV处的峰代表羰基中的C=O键,以及在289.3eV处的峰代表羧基中的O-C=O键。由于具有上述4种键(或官能团),氧化石墨烯具有极好的亲水性,能够稳定地分散在水溶液中。因此,可以采用大规模的生产方法,例如喷涂或旋涂,将氧化石墨烯的分散液涂覆在大面积的基体上,实现多层体的大规模生产。同时,氧化石墨烯膜是亲水的,有利于水分的流入。
使用扫描电子显微镜(SEM)分析了氧化石墨烯膜横截面的形貌。图5为多层体1的氧化石墨烯膜的横截面的扫描电镜照片,如图所示,该氧化石墨烯膜的厚度为约4微米,具有明显的层状结构。结合氧化石墨烯的性质可知,该氧化石墨烯膜是由多个 厚度约为1nm的单层氧化石墨烯片层逐层堆积而成。上述层状结构有利于增大氧化石墨烯膜的热阻,尤其是垂直于膜表面方向的热阻,垂直于氧化石墨烯膜表面方向的热导率约为0.2W/mK。
使用比表面与孔隙度分析仪,通过BET法在-196℃分析了氧化石墨烯膜的孔径分布。图6是氧化石墨烯膜的孔体积随孔径变化的曲线。如图所示,40纳米的孔具有最高的孔体积,为约0.05cm3/g。因此氧化石墨烯膜中典型的孔径为40纳米。由BET分析可知,氧化石墨烯膜有多孔(毛细)结构,该多孔(毛细)结构为水分流入和蒸汽散出提供了高效的通道。
通过BET法分析了氧化石墨烯膜的的比表面积为约28m2/g。
另外,还对多层体1进行了吸光度测试。具体地,将多层体-1用水浸湿后,使用紫外/可见光光谱仪,用AM1.5G标准太阳光(波长范围:200-2500nm)照射氧化石墨烯层一侧,分析了湿的多层体-1的光吸收率。图7的曲线1(对应右侧坐标轴)为AM1.5G标准太阳光的能量密度(W/(m2·nm))随波长变化的曲线。图7的曲线2(对应左侧纵坐标轴)为多层体-1的光吸收率(%)随波长变化的曲线。经计算,水浸湿的多层体-1对AM1.5G标准太阳光(波长范围:200-2500nm)的平均光吸收率为94%。这说明多层体-1(特别是氧化石墨烯膜)在较宽的波长范围下具有较高的光吸收率,适合作为光吸收体。
另外,还对多层体-1进行耐折叠测试。具体地,将多层体反复折叠50次后展开观察。图8为折叠过程的示意照片。图8的(a)是折叠后的照片,图8的(b)将反复折叠50次后的多层体-1展开的照片。如图8的(b)所示,50次折叠没有对多层体-1造成明显的损坏。因此,多层体-1具有极好的耐折叠性,这使得它可以在运输时被折叠起来,到达目的地后再展开,非常便于运输和部署。因此,多层体-1适合大规模地应用,例如可以将大量折叠状态的多层体-1运输到海边,展开后大面积地铺放在海水表面,用于海水的蒸发脱盐。
实施例2
图2为实施例2的多层体-2的结构示意图。多层体-2包括:基体2以及基体2上的氧化石墨烯层1。基体2包括多孔混合纤维素膜210和亲水纤维素膜包裹的聚苯乙烯泡沫板220。多孔混合纤维素膜210位于氧化石墨烯层1和亲水纤维素膜包裹的聚苯乙烯泡沫板220之间。图3为亲水纤维素膜包裹的聚苯乙烯泡沫板220的结构示意图,如图所示,亲水纤维素膜包裹的聚苯乙烯泡沫板220包括:聚苯乙烯泡沫板221 和亲水纤维素膜222,聚苯乙烯泡沫板221被亲水纤维素膜222包裹。
多层体2的制备步骤包括:
(1)氧化石墨烯分散液的制备:将0.4g烘干的氧化石墨烯片分散在100mL去离子水中,超声3h,获得氧化石墨烯分散液,其中氧化石墨烯的浓度为4mg/mL。
(2)氧化石墨烯层的组装:采用湿化学的方法实现氧化石墨烯层的组装。具体地,取30mL氧化石墨烯分散液,采用抽滤沉积的方法在多孔混合纤维素膜(PVDF-聚丙烯混合纤维素,直径50mm,孔径0.02mm)上沉积一层氧化石墨烯,抽滤的压力为0.07MPa,抽滤完成后,在60℃真空干燥5小时。
取厚度约1.6cm、直径约3cm的聚苯乙烯泡沫板(热导率约0.04W/mK,南京胜诺达新型材料有限公司),用约50μm厚的亲水纤维素膜(成分包括木质素)包裹该泡沫板。再将上述沉积有氧化石墨烯层的多孔混合纤维素膜与亲水纤维素膜包裹的聚苯乙烯泡沫板层叠,多孔混合纤维素膜位于氧化石墨烯层与亲水纤维素膜包裹的聚苯乙烯泡沫板之间,获得实施例2的多层体-2。
图9示出了多层体-2的组装步骤示意照片,图9的(a)为聚苯乙烯泡沫板,图9的(b)为包裹了亲水纤维素膜的聚苯乙烯泡沫板,图9的(c)在包裹了亲水纤维素膜的聚苯乙烯泡沫板的基础上,进一步层叠了沉积了氧化石墨烯层的多孔混合纤维素膜,得到多层体-2。
多层体-2的基体包括亲水纤维素膜包裹的聚苯乙烯泡沫塑料,以及多孔混合纤维素膜。由于亲水纤维素膜和多孔混合纤维素膜都是亲水的、水可渗透的、且具有多孔毛细结构,因此多层体-2的基体是亲水的、水可渗透的、且具有多孔毛细结构。基体的多孔毛细结构能够利用毛细管力将水输送给氧化石墨烯层。
聚苯乙烯泡沫具有较低的热导率(例如约0.04W/(m·℃)),多层体-2的基体由低热导率材料(聚苯乙烯泡沫)和毛细多孔材料(亲水纤维素膜)复合而成,因此兼具隔热和毛细吸水的性质。当多层体-2漂浮在水面上时,隔热的基体能够使热量集中在氧化石墨烯层附近,避免热量散失到水中。
实施例3(水蒸气产生实验1)
环境温度16℃,湿度60%。容器:杜瓦瓶。
取三只杜瓦瓶盛相同量的水,一只杜瓦瓶中设置多层体-1,一只杜瓦瓶中设置多层体-2,一只杜瓦瓶中不设置多层体。对于设置了多层体的杜瓦瓶,多层体是平行于水面漂浮的,多层体的基体一侧(朝下)接触水面,氧化石墨烯层一侧(朝上)背向 水面。多层体置于水面上后,水能够渗透多层体-1和多层体-2的基体,并接触到氧化石墨烯层,将氧化石墨烯层浸湿。
使用模拟太阳光照射上述三支杜瓦瓶。模拟太阳光按如下方法获得:将太阳光模拟器(Newport94043A)产生的光经滤光片过滤后,获得符合AM1.5G光谱标准的模拟太阳光,并调整光功率(Pin)为1kW·m-2
用模拟太阳光照射上述三支杜瓦瓶,在0~2700秒通过分析天平实时测量杜瓦瓶水的质量变化(相当于水蒸汽产生量)。图11为三支杜瓦瓶质量变化-时间曲线,其中,曲线1、2和3分别代表设置了多层体-1、多层体-2和没有设置多层体的盛水杜瓦瓶的质量变化-时间曲线。根据图11的曲线,计算出水的质量损失速率,即以质量计的水蒸汽产生速率,单位为kg/(m2h)。为了得到稳定的蒸汽产生速率,以光照开始后1800-2700秒测得的水蒸气产生量的数据计算水蒸气产生速率。在模拟太阳光(Solar)下的水蒸气产生速率以mS表示。
对于设置了多层体-2和没有设置多层体的盛水杜瓦瓶,还测量了它们在黑暗(Dark)中的水蒸气产生速率,以mD表示。
对于设置了多层体-1和多层体-2的盛水杜瓦瓶,为了测量水体温度和产生水蒸气的温度,在多层体的上表面和水面处分别设置热电偶,以测量产生蒸汽(Steam)的温度TS(℃),以及水面(Water Surface)的温度TW(℃)。蒸发实验开始时水面的初始温度为TW0,水蒸气的初始温度为TS0;蒸发进行45分钟后水面的温度为TW45,水蒸气温度为TS45。从蒸发开始到进行45分钟,水面温度变化ΔTW=TW45-TW0。图13为光照时多层体-2在杜瓦瓶中,水面温度和水蒸气温度随时间变化的曲线,其中的曲线1代表水面温度-时间曲线,曲线2代表水蒸气温度-时间曲线。图15的曲线1为光照时多层体-1在盛水杜瓦瓶中,水面温度-时间曲线。
为了计算太阳能转化为水蒸气的太阳能利用率(η),此处引入公式。其中m为水蒸汽净产生速率,水蒸汽净产生速率(m)=光照下水蒸气产生速率(mS)-暗处水蒸气产生速率(mD)。hLV为水的液汽相变总焓(潜热焓+显热焓),其中水的潜热焓为2260J/g,显热焓为4.2J/gK。Pin为模拟太阳光的光功率密度。
对于设置了多层体-1、多层体-2和没有设置多层体的盛水杜瓦瓶,它们的水蒸汽产生速率、太阳能利用率数据参见表2,水面和水蒸气温度变化数据参见3。
实施例4(水蒸气产生实验2)
环境温度16℃,湿度60%。容器:烧杯。
对于水蒸气产生实验2,除了将水蒸气产生实验1中的杜瓦瓶替换为烧杯,其它实验步骤与水蒸气产生实验1相同。
图12为在模拟太阳光下,三支盛水烧杯在0~2700秒的质量变化-时间曲线,其中,曲线1、2和3分别代表设置了多层体-1、多层体-2和没有设置多层体的盛水烧杯的质量变化-时间曲线。
图14为光照下多层体-2在烧杯中,水面温度和水蒸气温度随时间变化的曲线。其中的曲线1代表水面温度-时间曲线,曲线2代表水蒸气温度-时间曲线。图15的曲线2为光照下多层体-1在盛水烧杯中时,水面温度变化的曲线。
对于设置了多层体-1、多层体-2和没有设置多层体的盛水烧杯,它们的水蒸汽产生速率、太阳能利用率数据参见表2,水面和水蒸气温度变化数据参见3。
以下通过表2和表3的数据,进一步分析多层体-1和多层体-2的性质。
表2水蒸气产生速率和太阳能利用率
Figure PCTCN2017080055-appb-000003
图10的(a)和(b)分别示出了多层体-1和多层体-2在水面3漂浮的状态。多层体-1的基体2为多孔纤维素滤膜;多层体-2的基体2包括多孔纤维素滤膜210,以及被亲水纤维素膜222包裹的聚苯乙烯泡沫板221。
如图10的(b)所示,多层体-2的氧化石墨烯层1不与水面3直接接触,而是以水可渗透的基体2为媒介与水面3建立液体连接。这种结构有利于热量集中在氧化石墨烯层中,避免热量散失到水面3,进而有利于水的高效蒸发和能量的高效利用。基体2中还可以含有热导率较低的材料(例如聚苯乙烯泡沫板221),进一步有利于热量的集中。
由表2可知,无论是在杜瓦瓶中还是在烧杯中,多层体-1和多层体-2的水蒸气产生效率都高于不设置多层体的情况。这说明氧化石墨烯膜适合作为光吸收体。同时,根据上文的测试,氧化石墨烯薄膜作为光吸收体有如下的优势:第一,氧化石墨烯膜 在较宽的波长范围具有较高的光吸收率;第二,氧化石墨烯膜膜的多孔结构为水分流入和蒸汽散出提供了良好的通道;第三,氧化石墨烯膜膜在垂直于膜膜表面的方向具有较低的热导率,有助于避免热量散失到水中。第四,氧化石墨烯膜是亲水的、水可渗透的、且具有多孔毛细结构,其在作为光吸收体时容易吸收水分散出蒸汽。第五,氧化石墨烯的亲水性使得而且在制备时容易它能够稳定分散在水溶液中,为大规模制备多膜体提供便利。
进一步,由表2可知,无论是在杜瓦瓶中还是在烧杯中,多层体-2在光照下都表现出最高的水蒸气产生速率和最高的太阳能利用率。例如,在杜瓦瓶中,多层体-2在光照下水蒸气产生速率为约1.45kg/(m2h),大约是设置多层体-1的杜瓦瓶的2倍,是不设置多层体的杜瓦瓶的6倍。而且,对于设置多层体-2的杜瓦瓶和烧杯,太阳能利用率分别为84%和78%,高于设置多层体-1时的50%和39%。上述数据对比说明,多层体-2的结构更有利于获得较高的水蒸气产生速率和较高的太阳能利用率。
表3水面和水蒸气温度变化
Figure PCTCN2017080055-appb-000004
如表3所示,对于设置了多层体-2的杜瓦瓶和烧杯,光照45分钟后,产生水蒸气的温度分别为约40℃和约39℃,水面温度只上升了0.9℃和0.6℃。相比之下,对于设置了多层体-1的杜瓦瓶和烧杯,光照45分钟后,水面温度上升了13.7℃和11.4℃。上述数据说明,多层体-2的结构更有利于热量的集中。氧化石墨烯层产生的热量被集中在多层体内部,而不是散失到水面。多层体-2漂浮在水面作为光吸收体时,在产生水蒸气(39~40℃)的同时,水面温度几乎没有变化。
根据表2和表3的数据,已知多层体上下表面温差,多层体厚度,单位时间内传递过多层体的热量,根据傅立叶定律,可计算出整个多层体-2的热导率约为0.03W/mK。因此,多层体-2及其基体在吸水后仍具有较低的热导率。
实施例5红外热成像实验
按照实施例4的步骤。用模拟太阳光照射设置有多层体-1和多层体-2的盛水烧杯,用红外成像仪分别观察测量多层体-1和多层体-2的氧化石墨烯层的温度。分别测量实验开始时(初始值),进行1min和进行45min后的氧化石墨烯层的温度,测量结果如下表4所示。
表4
Figure PCTCN2017080055-appb-000005
由表4可知,多层体-2在光照实验开始的1分钟内,温度由12.9℃迅速升高至32.1℃,45分钟后温度升高至38.8℃。多层体-1在光照实验开始的1分钟内,温度从14.4升高至19.9℃,45分钟后温度升高至30.7℃。这说明氧化石墨烯层升温在1kW·m-2的光照下能够升温至较高的温度。特别地,多层体-2升温快,而且稳定时温度高,有利于水蒸气的快速产生和快速蒸发。
综合表2、3和4的数据可知,在水蒸发试验1和2中,多层体-1和多层体-2都表现出较高的水蒸气产生效率和光吸收率。这说明氧化石墨烯层适合作为光吸收体。进一步,多层体-2的基体具有更好的隔热效果,使得多层体-2表现出(1)更高的水蒸气产生速率;(2)更高的太阳能利用率;(3)较高的水蒸气温度;(4)更高的氧化石墨烯层升温速度和稳定温度;(5)更低的水面温度变化。
实施例6海水脱盐实验
按照水蒸气产生实验4(容器为烧杯)的步骤,使用多层体-2蒸发三种模拟海水,并将蒸发后的水蒸气冷凝收集,获得脱盐海水。3种模拟海水分别为北海海水(NaCl含量1.4wt%)、红海海水(NaCl含量4.1wt%)和含盐量为全球平均值的全球海水(NaCl含量3.5%wt%)。上述三种海水脱盐前后的含盐量如下表5所示:
表5
  北海海水 红海海水 全球海水
脱盐前 5200mg/L 15228mg/L 13000mg/L
脱盐后 29mg/L 6.33mg/L 15.1mg/L
由表5可知,多层体-2能够用于海水脱盐,海水经本发明多层体脱盐后,含盐量较低。
实施例7光照蒸发循环试验
按照实施例4的步骤,对设置有多层体-2的盛水烧杯进行光照蒸发循环试验。总共进行10次循环,每次循环进行1小时以上的光照蒸发试验。表6记录了每次循环的水蒸气产生速率mS,单位kg/(m2h)。
表6
循环数 1 2 3 4 5
mS 1.158 1.157 1.152 1.136 1.112
循环数 6 7 8 9 10
mS 1.138 1.163 1.125 1.114 1.127
由表6的数据可知,多层体-2具有较好的循环稳定性,经长时间多次数的循环光照实验后,仍保持稳定的水蒸气产生速率。
实施例8
实施例8测试了不同构造的多层体的吸光效率。
图16为多层体810、80、830置于盛水烧杯中的示意图。
如图16的a所示,多层体810包括碳材料层1和基体,碳材料层1为按实施例1的方法制备的氧化石墨烯层,具有平面形状。基体为与碳材料层1层叠的多孔混合纤维素膜。多层体810的直径约4.5cm。
如图16的b所示,多层体820包括碳材料层1和基体,碳材料层1为按实施例1的方法制备的氧化石墨烯,具有平面形状。基体包括与碳材料层层叠的多孔混合纤维素膜。基体还包括厚度5cm,直径4.5cm的聚苯乙烯泡沫823(导热系数为0.03W/mK),该聚苯乙烯泡沫823内部贯穿地设置有直径约7mm的圆柱形棉芯822,棉芯822的一端与多孔混合纤维素膜接触。
如图16的c所示,多层体830包括碳材料层831和基体,碳材料层为按实施例1的方法制备的氧化石墨烯,具有凸面形状。基体包括与碳材料层1层叠的多孔混合纤维素膜。该多层体的碳材料层831的凸面为锥面,锥面的顶角为约90度,底部直径为约4.5cm。基体还包括厚度1cm,直径4.5cm的聚苯乙烯泡沫833(导热系数为0.03W/mK),该聚苯乙烯泡沫内部贯穿设置有直径约7mm、高度约6cm的圆柱形棉芯822,棉芯的一端与多孔混合纤维素膜接触。
实施例9(水蒸气产生实验4)
环境温度16℃,湿度60%。容器:烧杯。取三只内径约4.5cm、高约5cm的烧杯盛,相同量的水(约60mL),分别在烧杯中的水面上漂浮放置多层体810、820、830,氧化石墨烯层一侧(朝上)背向水面,多层体的基体一侧(朝下)接触水面。多层体置于水面上后,水能够通过基体,将氧化石墨烯层浸湿。
分别在暗处和模拟太阳光照射下对上述三支烧杯进行蒸馏实验。模拟太阳光参数同实施例3。在0~1800秒通过分析天平实时测量烧杯中水的质量变化(相当于水蒸汽产生量)。
图17的(a)(b)(c)分别为盛有多层体810、820、830的三支烧杯在暗处和在光照下的质量变化-时间曲线。根据水的质量损失速率,即获得以质量计的水蒸汽产生速率,单位为kg/(m2h)。测得的水蒸气产生量的数据计算水蒸气产生速率。在模拟太阳光(Solar)下的水蒸气产生速率以mS表示,在黑暗(Dark)中的水蒸气产生速率,以mD表示,如下表7所示:
表7
Figure PCTCN2017080055-appb-000006
由表7的数据可知,多层体830在光照下和在暗处,都具有比多层体810和820更高的水蒸气产生效率。另外,多层体820的基体包括聚苯乙烯泡沫层,隔热性较高,因而具有比多层体810更高的水蒸气产生速率。
实施例10
对实施例9的设置有多层体810、820、830的盛水烧杯进行了室外光照蒸馏实验。
实验时间为2016年10月份8:00~16:00。地点:南京。图18的(a)示出了当天的温度和湿度随时间变化的曲线,图18的(b)示出了当天的太阳能能量密度随时间变化的曲线。
图17的(d)示出了设置有多层体810、820、830的盛水烧杯在室外阳光照射下的水蒸气产生效率,分别为0.8Kg/m2h,1.4Kg/m2h和2.0Kg/m2h,。
由上述数据可知,与碳材料层为平面的多层体810或820相比,碳材料层为凸面的多层体830在相同占地面积下具有更大的受光面积,能够吸收更多的光,具有光热 利用效率更高的优点。另外,在室外环境,凸面(尤其是锥面)的碳材料层能够充分利用不同角度照射来的太阳光,对太阳光的角度的依赖性较小。
在室外自6:00至18:00期间(6:00日出,18:00日落),假设多层体散射15%的入射光,经计算,多层体830的单位占地面积吸光量为700W/m2,多层体810的单位占地面积吸光量为565W/m2。也就是说,多层体830在室外比多层体810多吸收约25%的光。
实施例11
实施例11的多层体-3包括基体以及基体上的黑色层。
具体地,黑色层为表面涂有炭黑的无纺布层,其尺寸及制备方法如下:
无纺布(广东嘉信达,克重120g/m2):熔喷无纺布,主要材质为涤纶;尺寸为直径4.5cm的圆,厚0.8mm。
无纺布一侧表面喷涂有炭黑粉末(德国德固赛Printex U),喷涂厚度约为0.8mm。具体地,称取一定质量的炭黑粉末和海藻酸钠粉末,按照炭黑∶海藻酸钠∶水=0.1g∶0.01g∶1ml的比例混合,在超声分散机里超声处理两个小时,再加热搅拌半小时,即可获得喷涂液。使用前超声分散半小时再摇匀,倒入喷涂机中,手动控制喷枪的喷涂速率和距离等,每平米需要喷涂2L喷涂液。
海藻酸钠是亲水粘结剂,即可以增强炭黑颗粒的粘附性,提高材料的使用寿命,还能提高材料的亲水性。
基体为厚度2cm,直径4.5cm的聚苯乙烯泡沫(导热系数为0.03W/mK),该聚苯乙烯泡沫内部贯穿设置有直径约7mm、高度约3cm的圆柱形棉芯,棉芯的一端与多孔混合纤维素膜接触。
炭黑参数:碳黑等级:普通色素槽法碳黑RCC,黑度My值:244,相对着色力(%,IRB3):108,挥发物%:6,吸油量g/100g:420,酸碱度PH值:4,筛余物含量0.044mm(PPM网径):≤300,灰含量%:0.04,甲苯萃取量%:0.15,粉状压紧密度g/l:130,BET比表面积m2/g:100,原生粒径nm:25。
实施例12
实施例12的多层体-4包括基体以及基体上的黑色层。
具体地,黑色层为被黑色染料染黑的无纺布层,其尺寸及制备方法如下:
无纺布(广东嘉信达,克重100g/m2):熔喷无纺布,主要材质为涤纶;尺寸为 直径4.5cm的圆,厚0.6mm。用染料将无纺布染黑,即可获得黑色层。
基体为厚度2cm,直径4.5cm的聚苯乙烯泡沫(导热系数为0.03W/mK),该聚苯乙烯泡沫内部贯穿设置有直径约7mm、高度约3cm的圆柱形棉芯,棉芯的一端与多孔混合纤维素膜接触。
实施例13(水蒸气产生实验5)
环境温度18℃,湿度50%。容器:烧杯。取三只内径约4.8cm、高约5cm的烧杯盛,相同量的水(约60mL),分别在烧杯中的水面上漂浮放置多层体多层体-3和多层体-4,无纺布层一侧(朝上)背向水面,多层体的基体一侧(朝下)接触水面。多层体置于水面上后,水能够通过基体,将无纺布层浸湿。
分别在暗处和模拟太阳光照射下对上述两支烧杯进行蒸馏实验。模拟太阳光参数同实施例3。在0~1800秒通过分析天平实时测量烧杯中水的质量变化(相当于水蒸汽产生量)。
根据水的质量损失速率,即获得以质量计的水蒸汽产生速率,单位为kg/(m2h)。测得的水蒸气产生量的数据计算水蒸气产生速率。在模拟太阳光(Solar)下的水蒸气产生速率以mS表示,在黑暗(Dark)中的水蒸气产生速率,以mD表示,如下表8所示:
表8
Figure PCTCN2017080055-appb-000007
由表8内容可知,多层体-3和多层体-4都表现出较高的水蒸气产生速率和太阳能利用率。
实施例14
参照实施例11或12的多层体尺寸参数,分别使用黑色牛仔布、黑色府绸棉布、黑色复合斜纹棉布、黑色帆布和黑色毛巾布作为黑色层在室外进行了水蒸气产生实验。
实验时间为2016年12月30日白天,室外温度为0~9℃,光照总量为9.43MJ/m2,湿度为约40%,待蒸馏液体为水。检测结果如表9所示:
表9
Figure PCTCN2017080055-appb-000008
由表9可知,含有织物的多层体作为光吸收体吸收光能蒸发液体能够表现出较高的水蒸气产生量和太阳能利用率。尤其是多层体-3和多层体-4表现更好高的水蒸气产生量和太阳能利用率,这说明相比于其他材质的织物,无纺布更适合作为光吸收体吸收光能蒸发液体。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (90)

  1. 一种多层体,其包括基体以及所述基体上的碳材料层,其中,所述基体是水可渗透的;
    所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。
  2. 根据权利要求1所述的多层体,所述碳材料包括氧化石墨烯。
  3. 根据权利要求1所述的多层体,所述碳材料层包括氧化石墨烯层。
  4. 根据权利要求1所述的多层体,所述氧化石墨烯层由多个单层氧化石墨烯层叠而成。
  5. 根据权利要求1所述的多层体,所述碳材料层和/或基体是隔热的。
  6. 根据权利要求1所述的多层体,该多层体吸水后在至少一个方向(例如垂直于层表面方向)的热导率低于1W/(m·K),优选低于0.2W/(m·K),再优选低于0.1W/(m·K)。
  7. 根据权利要求1所述的多层体,所述碳材料层吸水后在至少一个方向(例如垂直于层表面方向)的热导率低于1W/(m·K),优选低于0.2W/(m·K)。
  8. 根据权利要求1所述的多层体,所述基体吸水后在至少一个方向(例如垂直于多层体的层表面方向)的热导率低于1W/(m·K),优选低于0.2W/(m·K),再优选低于0.1W/(m·K)。
  9. 根据权利要求1所述的多层体,所述多层体在至少一个方向(例如垂直于层表面方向)是水可渗透的。
  10. 根据权利要求1所述的多层体,该多层体位于在水面时,碳材料层不与水面直接接触,而是通过基体与水面实现液体连接。
  11. 根据权利要求1所述的多层体,其中,所述碳材料层是亲水的。
  12. 根据权利要求1所述的多层体,其中,所述碳材料层是水可渗透的。
  13. 根据权利要求1所述的多层体,其中,所述碳材料层包括多孔结构。
  14. 根据权利要求1所述的多层体,其中,所述基体是亲水的。
  15. 根据权利要求1所述的多层体,其中,所述基体包括多孔结构。
  16. 根据权利要求1所述的多层体,所述多孔结构是多孔毛细结构。
  17. 根据权利要求1所述的多层体,该多层体位于在水面上时,基体的多孔毛细结构能够利用毛细管力将水输送给碳材料层。
  18. 根据权利要求1所述的多层体,其中,所述基体包括:带毛细孔的吸水材料和低热导率材料。
  19. 根据权利要求18所述的多层体,其中,所述带毛细孔的吸水材料和所述低热导率材料复合结合。
  20. 根据权利要求18所述的多层体,其中,所述带毛细孔的吸水材料包裹所述低热导率材料。
  21. 根据权利要求18所述的多层体,其中,所述低热导率材料被带毛细孔的吸水材料贯穿。
  22. 根据权利要求18所述的多层体,所述带毛细孔的吸水材料是多孔纤维素或亲水纤维。
  23. 根据权利要求22所述的多层体,所述纤维素是醋酸纤维素、硝酸纤维素或混合纤维素。
  24. 根据权利要求22所述的多层体,所述亲水纤维是天然亲水纤维和/或合成亲水纤维。
  25. 根据权利要求22所述的多层体,天然亲水纤维例如是植物纤维(例如棉纤维、麻纤维或木纤维)或动物纤维(例如丝、毛)。
  26. 根据权利要求18所述的多层体,所述带毛细孔的吸水材料中,毛细孔的孔径为1~1000微米,例如10~100微米。
  27. 根据权利要求18所述的多层体,低热导率材料的热导率低于1W/(m·K),优选低于0.2W/(m·K),再优选低于0.1W/(m·K)。
  28. 根据权利要求18所述的多层体,低热导率材料为选自聚氨酯(泡沫)、橡胶、玻璃棉和硅酸铝中的一种或多种。
  29. 根据权利要求1所述的多层体,其中,所述基体还包括其它的水可渗透材料。
  30. 根据权利要求29所述的多层体,其中,所述其它的水可渗透材料与所述碳材料层接触。
  31. 根据权利要求29所述的多层体,其中,所述其它的透水材料为混合纤维素膜。
  32. 根据权利要求31所述的多层体,其中所述混合纤维素滤膜为多孔聚偏氟乙烯-聚丙烯混合纤维素滤膜。
  33. 根据权利要求1所述的多层体,碳材料层的厚度为1~100微米,例如1~10微米。
  34. 根据权利要求1所述的多层体,所述碳材料层有多孔结构(例如毛细多孔结构),多孔结构的孔径为10~1000纳米,优选为10~120纳米,再优选为40~80纳米。
  35. 根据权利要求34所述的多层体,所述碳材料层中,孔径为40~80纳米的孔的孔体积为0.01~100cm3/g。
  36. 根据权利要求34所述的多层体,所述碳材料层中,孔径为40~80纳米的孔的孔体积为0.01~10cm3/g,优选为0.01~1cm3/g,再优选为0.01~0.1cm3/g。
  37. 根据权利要求1所述的多层体,氧化石墨烯有下述一种或多种官能团(或化学键):C-C、C-O、C=O和O-C=O。
  38. 根据权利要求1所述的多层体,氧化石墨烯的X射线光电子光谱(XPS)的C1s谱图中有:C-C、C-O、C=O和O-C=O官能团(或化学键)的峰。
  39. 根据权利要求1所述的多层体,氧化石墨烯由Hummers法合成。
  40. 根据权利要求1所述的多层体,采用湿化学的方法获得碳材料层。
  41. 根据权利要求40所述的多层体,所述湿化学的方法是旋涂、喷涂或液相沉积。
  42. 根据权利要求1所述的多层体,基体的厚度为0.1~10cm,优选为1~5cm。
  43. 根据权利要求1所述的多层体,基体有多孔结构(例如毛细多孔结构),多孔结构的孔径优选为1~1000微米,再优选为10~100微米。
  44. 根据权利要求1所述的多层体,该多层体能够漂浮在水面上。
  45. 根据权利要求1所述的多层体,该多层体是在光照下使用。
  46. 根据权利要求1所述的多层体,该多层体是在光照下漂浮在液体上使用。
  47. 一种多层体的制备方法,其包括:
    a)获得碳材料的分散液;
    b)将碳材料的分散液涂覆或沉积在基体上,所述基体是水可渗透的;
    所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯和碳纳米管。
  48. 根据权利要求47所述的多层体的制备方法,其中,步骤a)的碳材料的在至少一个维度的尺寸为1纳米~1000微米,例如1~1000纳米,再例如1~1000微米。
  49. 根据权利要求47所述的多层体的制备方法,所述碳材料包括氧化石墨烯。
  50. 根据权利要求47所述的多层体的制备方法,其中,步骤b)的涂覆是旋涂或喷涂。
  51. 根据权利要求47所述的多层体的制备方法,其中,步骤b)的沉积是过滤沉积或抽滤沉积。
  52. 根据权利要求47所述的多层体的制备方法,其中,步骤a)包括用Hummers法合成氧化石墨烯的步骤。
  53. 根据权利要求47所述的多层体的制备方法,步骤a)中氧化石墨烯的分散液是氧化石墨烯在水中的分散液。
  54. 根据权利要求47所述的多层体的制备方法,步骤a)中氧化石墨烯的分散液的浓度为1~10mg/mL。
  55. 根据权利要求1所述的多层体,其由权利要求47~54任一项的制备方法制备得到。
  56. 权利要求1~46、55任一项的多层体作为光吸收体的用途。
  57. 权利要求1~46、55任一项的光吸收体用于吸收光能蒸发液体的用途。
  58. 权利要求1~46、55任一项的光吸收体用于海水淡化、污水提纯、不同溶剂分离或产生热蒸汽的用途。
  59. 一种多层体,其包括基体以及所述基体上的黑色层,其中,所述基体是液体可渗透的,所述黑色层包括织物和黑色物质。
  60. 根据权利要求59所述的多层体,所述黑色层是水可渗透的。
  61. 根据权利要求59所述的多层体,所述黑色层是气体可渗透的。
  62. 根据权利要求59所述的多层体,所述织物包括纺织物或无纺织物。
  63. 根据权利要求59所述的多层体,所述织物含有纤维。
  64. 根据权利要求63所述的多层体,所述纤维包括天然纤维、合成纤维或碳纤维。
  65. 根据权利要求64所述的多层体,所述合成纤维的材质包括选自涤纶、丙纶、锦纶、氨纶和腈纶中的一种或多种。
  66. 根据权利要求63所述的多层体,所述黑色层包括选自涤纶无纺织物、丙纶无纺织物、锦纶无纺织物、氨纶无纺织物和腈纶无纺织物中的一种或多种。
  67. 根据权利要求59所述的多层体,所述黑色物质包括选自黑色染料、黑色粉末、黑色纤维中的一种或多种。
  68. 根据权利要求59所述的多层体,所述黑色物质包括碳材料。
  69. 根据权利要求68所述的多层体,所述碳材料包括下述材料的一种或多种:石墨、石墨烯、氧化石墨烯、化学官能团修饰的石墨烯、碳纳米管和炭黑。
  70. 根据权利要求59所述的多层体,所述黑色层包括附着有黑色物质的织物。
  71. 根据权利要求59所述的多层体,所述黑色层包括覆盖有黑色物质的织物。
  72. 根据权利要求59所述的多层体,所述黑色层包括被黑色染料染黑的织物。
  73. 根据权利要求59所述的多层体,所述黑色层和/或基体是隔热的。
  74. 根据权利要求59所述的多层体,该多层体位于在水面时,所述黑色层不与水面直接接触,而是通过基体与水面实现液体连接。
  75. 根据权利要求59所述的多层体,该多层体位于在水面上时,基体的多孔毛细结构能够利用毛细管力将水输送给黑色层。
  76. 根据权利要求59所述的多层体,黑色层的厚度为1~10000微米。
  77. 根据权利要求59所述的多层体,黑色层有多孔结构(例如毛细多孔结构),多孔结构的孔径为10~1000纳米,优选为10~120纳米,再优选为40~80纳米。
  78. 根据权利要求75所述的多层体,所述黑色层中,孔径为40~80纳米的孔的孔体积为0.01~100cm3/g,例如为0.01~10cm3/g,优选为0.01~1cm3/g,再优选为0.01~0.1cm3/g。
  79. 根据权利要求59所述的多层体,所述织物和/或黑色物质是亲水的。
  80. 权利要求59的多层体,所述黑色层具有凸面形状。
  81. 权利要求80的多层体,所述黑色层的凸面的面积是该凸面的投影面积的1.2倍以上,优选1.5倍以上。
  82. 权利要求81的多层体,所述凸面是弧面、锥面或折面。
  83. 权利要求82的多层体,所述锥面的顶角为60~120度,例如80~100度。
  84. 权利要求1的多层体,所述碳材料层具有凸面形状。
  85. 权利要求84的多层体,所述碳材料层的凸面的面积是该凸面的投影面积的1.2倍以上,优选1.5倍以上。
  86. 权利要求84的多层体,所述凸面是弧面、锥面或折面。
  87. 权利要求86的多层体,所述锥面的顶角为60~120度,例如80~100度。
  88. 权利要求1~46,59~87任一项的多层体,所述基体包括被毛细吸液材料贯穿的绝热材料。
  89. 权利要求1~46,59~87任一项的多层体,所述基体包括被棉芯贯穿的聚苯乙烯泡沫。
  90. 一种吸光器件,包括权利要求1~46、59~89任一项的多层体,
    优选地,所述吸光器件还包括液体传输部件和/或隔热部件;
    优选地,所述液体传输部件与所述基体接触;
    优选地,所述隔热部件全部或部分地包覆所述基体;
    优选地,所述液体传输部件包括毛细吸液材料;
    优选地,所述隔热部件包括低热导率材料。
PCT/CN2017/080055 2016-04-11 2017-04-11 一种多层体及其制备方法和用途 WO2017177891A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/092,432 US10829390B2 (en) 2016-04-11 2017-04-11 Multilayer body, preparation method therefor and use thereof
EP17781867.1A EP3444228B1 (en) 2016-04-11 2017-04-11 Multilayer body, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610222559.8 2016-04-11
CN201610222559.8A CN106256768B (zh) 2016-04-11 2016-04-11 一种多层体及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2017177891A1 true WO2017177891A1 (zh) 2017-10-19

Family

ID=57713883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080055 WO2017177891A1 (zh) 2016-04-11 2017-04-11 一种多层体及其制备方法和用途

Country Status (4)

Country Link
US (1) US10829390B2 (zh)
EP (1) EP3444228B1 (zh)
CN (1) CN106256768B (zh)
WO (1) WO2017177891A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085823A (zh) * 2018-01-12 2018-05-29 东华大学 线圈结构集热蒸发填充织物及其制备、使用方法和用途
CN113803892A (zh) * 2021-09-17 2021-12-17 曲阜师范大学 一种碳包覆高硅氧玻璃纤维光热转换材料及其制备方法、蒸汽生成器与应用
CN114891266A (zh) * 2022-07-13 2022-08-12 广东海洋大学 一种复合水凝胶海绵及其制备方法和应用、太阳能海水淡化装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106256768B (zh) * 2016-04-11 2018-10-26 南京大学 一种多层体及其制备方法和用途
CN108399350A (zh) * 2017-02-04 2018-08-14 上海箩箕技术有限公司 指纹成像模组和电子设备
CN107158967B (zh) * 2017-06-16 2020-04-14 上海海事大学 一种用于光蒸发水的含碳复合半透膜、其制备方法及用途
CN107311255B (zh) * 2017-07-19 2020-10-02 清华大学 一种基于碳纳米管薄膜的太阳能海水淡化或污水处理方法
CN107443823B (zh) * 2017-08-11 2020-06-09 中国林业科学研究院林产化学工业研究所 一种用于水处理的农林剩余物基光热转化材料、制备方法及其应用
CN107572626B (zh) * 2017-10-19 2020-08-11 青岛大学 一种兼具亲水性和自漂浮性能的黑色复合材料及制备方法和应用
CN107794750B (zh) * 2017-11-22 2020-12-01 东南大学 一种毛细管作用诱导的有序纳米纤维基柔性石墨烯薄膜的制备方法
CN108275737B (zh) * 2018-01-25 2020-10-30 浙江大学 一种基于气液界面加热淡化海水的方法
CN108862444A (zh) * 2018-06-01 2018-11-23 斌源材料科技(上海)有限公司 光热蒸发复合材料及其制备方法和用途
CN108793298A (zh) * 2018-06-13 2018-11-13 苏州大学 一种基于蜡烛灰的太阳能海水淡化装置
CN109292874B (zh) * 2018-10-31 2020-08-04 华中科技大学 一种基于毛细作用收集冷凝水的太阳能蒸馏器
CN110284323B (zh) * 2019-07-30 2021-05-25 清华大学 柔性光热转换材料及其制备方法、在海水淡化中的用途
CN110451986B (zh) * 2019-09-09 2021-12-10 中国人民解放军国防科技大学 光固化3D打印SiCN陶瓷先驱体材料及其应用
CN110655068B (zh) * 2019-10-29 2021-03-23 景德镇陶瓷大学 一种超亲水还原-氧化石墨烯涂层的制备方法及其产品
CN110873473A (zh) * 2019-11-25 2020-03-10 云南大学 一种光热转换材料及其制备方法及太阳能光热转换装置
CN111443572B (zh) * 2020-04-21 2023-11-03 武汉华星光电技术有限公司 光阻材料、显示面板及其制备方法
CN111637579B (zh) * 2020-04-28 2021-12-21 宁波奥克斯电气股份有限公司 一种加湿装置、加湿控制方法及空调器
CN111777252B (zh) * 2020-07-10 2022-07-15 陕西理工大学 一种基于石墨烯过滤的防堵海水淡化装置
CN112408377B (zh) * 2020-12-01 2021-12-28 江苏星途新材料科技有限公司 一种多孔的改性氧化石墨烯膜及其制备方法
CN114623605B (zh) * 2020-12-14 2023-08-22 清华大学 太阳能集热器及太阳能热水器
CN112830536A (zh) * 2021-01-05 2021-05-25 南京大学 一种耐盐的氧化石墨烯包裹的水处理吸收体
CN112897618B (zh) * 2021-01-25 2022-04-12 浙江大学 能高效处理盐水和废水的三维光热转换材料及装置和方法
CN114457584A (zh) * 2022-01-18 2022-05-10 苏州大学 界面光热水蒸发用碳材料单面涂层织物的制备和应用
WO2024112662A1 (en) * 2022-11-21 2024-05-30 Massachusetts Institute Of Technology Highly efficient, salt rejecting, wick-free solar evaporation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2389148Y (zh) * 1999-08-17 2000-07-26 吴刚 太阳能纯净水发生器
US20120255899A1 (en) * 2011-04-11 2012-10-11 Industry-University Cooperation Foundation Hanyang University Separation membrane including graphene
CN103030140A (zh) * 2012-12-21 2013-04-10 郑州大学 透明质酸修饰的氧化石墨烯及其药物组合物的制备方法与应用
CN104415669A (zh) * 2013-08-26 2015-03-18 中原大学 石墨烯衍生物复合薄膜及其制造方法和异丙醇分离薄膜
CN106256768A (zh) * 2016-04-11 2016-12-28 南京大学 一种多层体及其制备方法和用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182308A (en) * 1977-11-07 1980-01-08 Hazen Research, Inc. Solar energy collector
US4243021A (en) * 1978-01-09 1981-01-06 Vitek, Inc. Solar heat conversion panel and method of assembly
US9816729B2 (en) 2009-11-20 2017-11-14 Mark W Miles Solar flux conversion module with supported fluid transport
US10234172B2 (en) * 2013-09-06 2019-03-19 Massachusetts Institute Of Technology Localized solar collectors
US9459024B2 (en) 2013-09-06 2016-10-04 Massachusetts Institute Of Technology Localized solar collectors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2389148Y (zh) * 1999-08-17 2000-07-26 吴刚 太阳能纯净水发生器
US20120255899A1 (en) * 2011-04-11 2012-10-11 Industry-University Cooperation Foundation Hanyang University Separation membrane including graphene
CN103030140A (zh) * 2012-12-21 2013-04-10 郑州大学 透明质酸修饰的氧化石墨烯及其药物组合物的制备方法与应用
CN104415669A (zh) * 2013-08-26 2015-03-18 中原大学 石墨烯衍生物复合薄膜及其制造方法和异丙醇分离薄膜
CN106256768A (zh) * 2016-04-11 2016-12-28 南京大学 一种多层体及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444228A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108085823A (zh) * 2018-01-12 2018-05-29 东华大学 线圈结构集热蒸发填充织物及其制备、使用方法和用途
CN108085823B (zh) * 2018-01-12 2022-10-11 东华大学 线圈结构集热蒸发填充织物及其制备、使用方法和用途
CN113803892A (zh) * 2021-09-17 2021-12-17 曲阜师范大学 一种碳包覆高硅氧玻璃纤维光热转换材料及其制备方法、蒸汽生成器与应用
CN114891266A (zh) * 2022-07-13 2022-08-12 广东海洋大学 一种复合水凝胶海绵及其制备方法和应用、太阳能海水淡化装置
CN114891266B (zh) * 2022-07-13 2022-09-27 广东海洋大学 一种复合水凝胶海绵及其制备方法和应用、太阳能海水淡化装置

Also Published As

Publication number Publication date
CN106256768B (zh) 2018-10-26
EP3444228A4 (en) 2019-11-06
EP3444228A1 (en) 2019-02-20
US10829390B2 (en) 2020-11-10
EP3444228B1 (en) 2021-09-01
US20190106335A1 (en) 2019-04-11
CN106256768A (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2017177891A1 (zh) 一种多层体及其制备方法和用途
Qin et al. Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification
Wang et al. Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency
Chen et al. Plasmonic nanoparticle-embedded poly (p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation
Zang et al. Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination
Ma et al. Metal-organic framework derived porous carbon of light trapping structures for efficient solar steam generation
Qin et al. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination
Zhang et al. Superwetting and mechanically robust MnO 2 nanowire–reduced graphene oxide monolithic aerogels for efficient solar vapor generation
Qi et al. Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane
Shan et al. Porous reduced graphene oxide/nickel foam for highly efficient solar steam generation
Zhang et al. Carbon nanofibers enhanced solar steam generation device based on loofah biomass for water purification
Chen et al. Robust seawater desalination and sewage purification enabled by the solar-thermal conversion of the Janus-type graphene oxide evaporator
Zhao et al. Cobalt nanoparticle–carbon nanoplate as the solar absorber of a wood aerogel evaporator for continuously efficient desalination
Xu et al. Architecting a Janus biomass carbon/sponge evaporator with salt-rejection and ease of floatation for sustainable solar-driven desalination
Yang et al. Facile deflagration synthesis of hollow carbon nanospheres with efficient performance for solar water evaporation
Zhao et al. Enhanced solar evaporation efficiency based on the inserted preheating zone of silver nanowires
Chen et al. A 3D opened hollow photothermal evaporator for highly efficient solar steam generation
Guo et al. Carbonized loofah and MOF‐801 of synergistic effect for efficient solar steam generation
Cheng et al. A thermally insulated solar evaporator coupled with a passive condenser for freshwater collection
Wu et al. All-weather-available electrothermal and solar–thermal wood-derived porous carbon-based steam generators for highly efficient water purification
Han et al. Synergistic enhanced solar-driven water purification and CO2 reduction via photothermal catalytic membrane distillation
Yu et al. Bio-inspired core-shell structural aerogel with programmable water release capacity for efficient solar thermoelectricity-freshwater cogeneration
Su et al. Janus MXene-based photothermal membrane for efficient and durable water evaporation
Ma et al. Cone/plate structured photothermal evaporator with obviously improved evaporation properties by suppressing thermal conduction-caused heat loss
Jin et al. Iceberg-inspired solar water generator for enhanced thermoelectricity–freshwater synergistic production

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017781867

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017781867

Country of ref document: EP

Effective date: 20181112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781867

Country of ref document: EP

Kind code of ref document: A1