WO2017177543A1 - 阵列型预变形双层机械管的加工方法及衬里管预制件 - Google Patents

阵列型预变形双层机械管的加工方法及衬里管预制件 Download PDF

Info

Publication number
WO2017177543A1
WO2017177543A1 PCT/CN2016/086495 CN2016086495W WO2017177543A1 WO 2017177543 A1 WO2017177543 A1 WO 2017177543A1 CN 2016086495 W CN2016086495 W CN 2016086495W WO 2017177543 A1 WO2017177543 A1 WO 2017177543A1
Authority
WO
WIPO (PCT)
Prior art keywords
preform
pipe
lining
tube
critical defect
Prior art date
Application number
PCT/CN2016/086495
Other languages
English (en)
French (fr)
Inventor
王云孝
商伟军
张镇雄
Original Assignee
王云孝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王云孝 filed Critical 王云孝
Publication of WO2017177543A1 publication Critical patent/WO2017177543A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal

Definitions

  • the invention relates to a processing method of a double-layer pipeline and a structure thereof, and more particularly to a processing method of an array type pre-deformation double-layer mechanical pipe and a lining pipe preform.
  • the anti-corrosion pipe used in the petroleum industry, the outer pipe and the lining pipe are all metal materials.
  • English is MECHANICALLY LINED PIPE, abbreviated as MLP, this patent is translated into mechanical tube.
  • the mechanical tube is a thin anti-corrosion alloy lining layer inside the carrier tube to be composited into a bimetallic tube.
  • There is a technical bottleneck in the metal lining of the traditional mechanical pipe that is, when the mechanical pipe is subjected to a bending load, the metal lining layer is easily detached from the outer pipe.
  • a two-material layer mechanical composite product required for various reasons wherein the thinner layer inside is a lining layer.
  • the outer and inner layers are integrally formed by mechanical compounding. Mechanical compounding is a combination of physical aspects (such as by pressure) and no atomic bonding at the metallographic level.
  • This two-material layer mechanical composite product is suitable for a wide variety of structures, including boxes of any shape, such as a box, cylinder or sphere.
  • the inner and outer layers of the two-material layer mechanical composite product need to adopt different materials, so that the inner and outer layers each play their respective roles.
  • the outer tube is a high-strength steel to carry the load
  • the inner liner is an alloy. Antiseptic effect.
  • the inner and outer layers of the two-material layer mechanical composite product are usually made of different materials.
  • the outer pipe material is a common high-strength steel which is relatively cheap
  • the inner metal lining layer is an expensive alloy layer. Cost savings are achieved by designing a thinner metal lining layer.
  • the lining layer is a pure round tube, which adopts the same shape as the outer tube.
  • the starting point is that the two tubes of the two-material layer tube work as much as possible to become a tube, and if deformed, they are co-deformed.
  • the current process usually requires pre-grinding of the inner and outer tube joint surfaces in advance, ensuring that no gap is left between the inner and outer tubes, thereby making the inner and outer tubes integral.
  • the popular solution is to increase the thickness of the lining layer and increase the wall thickness of the pure tube lining layer in accordance with the need to resist bending instability.
  • the intention of the two-material layer mechanical composite product is to avoid the cost.
  • the object of the present invention is to provide a method for processing an array type pre-deformed double-layer mechanical tube and a lining tube preform.
  • the present invention adopts the following technical solutions:
  • a method of processing an array type pre-deformed double-layer mechanical tube includes the following steps:
  • Step 1 according to the shape and size of the outer tube, fabricating a lining tube preform that matches the outer tube;
  • Step 2 calculating a plurality of pre-deformation positions on an outer surface of the preform
  • Step 3 providing a reinforcing rib at a pre-deformation position, and inserting the preform into the outer tube;
  • step 4 an internal pressure is applied to the liner tube such that the preform is integral with the outer tube and the preform produces a slight plastic deformation at the periphery of the pre-deformed position.
  • the pre-deformation position is a critical defect position of the preform, and the critical defect is an artificial defect periodically set.
  • the step 2 includes:
  • W o (x, ⁇ ) W ocr ⁇ f ox (x) ⁇ f o ⁇ ( ⁇ ), where:
  • W o is a critical defect and is a function of the axial x coordinate and the circumferential ⁇ coordinate, where f ox (x) is an axial function.
  • L is the length of the pipe, m o is the number of axial half sine waves, and a is the index;
  • f o ⁇ ( ⁇ ) is a circumferential function
  • n o is the number of circumferential half sine waves
  • b is the index
  • W ocr is the critical defect value.
  • the critical defect value is K1, k2 and k3 are constants determined according to working conditions, R L is the lining radius, and L is the length of the pipe.
  • the outer tube and the preform are both metallic materials.
  • the pre-deformed positions are array shapes that are regularly arranged.
  • a lining tube preform for an array type pre-deformed double-layer mechanical tube includes a lining tube body, and a reinforcing rib is disposed at a pre-deformed position of an outer surface of the lining tube body, and an axial or circumferential array is formed arrangement.
  • the pre-deformation position is a critical defect position of the preform, and the critical defect is an artificial defect periodically set, and the calculation formula is as follows:
  • W o (x, ⁇ ) W ocr ⁇ f ox (x) ⁇ f o ⁇ ( ⁇ ), where:
  • W o is a critical defect and is a function of the axial x coordinate and the circumferential ⁇ coordinate,
  • f ox (x) is an axial function
  • L is the length of the pipe
  • m o is the number of axial half sine waves
  • a is the index
  • f o ⁇ ( ⁇ ) is a circumferential function
  • n o is the number of circumferential half sine waves
  • b is the index
  • W ocr is the critical defect value.
  • K1, k2 and k3 are constants determined according to working conditions, R L is the lining radius, and L is the length of the pipe.
  • the material of the reinforcing rib is high-strength steel, and the strength thereof is greater than or equal to the material of the outer tube.
  • the reinforcing ribs are regular discrete distributions, and the shape is a "ten" shape, a "one" shape or a "
  • Adjacent ribs are interconnected to form a continuous distribution of regular arrangements.
  • the processing method of the array type pre-deformation double-layer mechanical tube of the present invention and the lining tube preform change the contact between the lining tube and the outer tube by artificially setting a plurality of periodic and regular arrangement critical defects. Structure to avoid irregular defects randomly generated by the lining layer.
  • Figure 1 is a schematic view showing the structure of a conventional backing layer
  • Figure 2 is a schematic view showing the structure of the lining layer of the present invention.
  • Figure 3 is a schematic view of a pre-deformed axial array
  • Figure 4 is a schematic view of a pre-deformed circumferential array
  • Figure 5 is a flow chart of a processing method of the array type pre-deformed double-layer mechanical tube of the present invention.
  • 6A to 6C are schematic views of the reinforcing ribs.
  • the invention discloses a special type of new lining layer, a double-layer tube applying the lining layer, and a manufacturing method (processing method and reinforced rib thereof) of the double-layer tube.
  • the core of the invention is a lining layer, the full name of which is an array type pre-deformed lining layer, the English name is Grid-Lined Pre-Dimpled Liner, abbreviated as GPL, which is a lining layer pre-added with array deformation.
  • GPL Grid-Lined Pre-Dimpled Liner
  • a non-pure cylindrical lining layer which is deformed by minute irregularities arranged in a certain order in the axial direction and the circumferential direction is preliminarily processed.
  • FIG. 1 and Fig. 2 it is a schematic diagram of a circular tube lining represented by a grid.
  • the outer tube is not shown, wherein Fig. 1 is a pure circular tube, and Fig. 2 is artificially applied to the surface of a pure circular tube. Treatment results in a pre-strained liner.
  • a pure tube lining can withstand an infinite bending load while maintaining the state of the tube. But a pure round tube is impossible, because no matter what kind of processing technology, it will inevitably leave geometric defects.
  • the size of the geometric defect determines the load carrying capacity of the lining. When the actual geometric defect is less than the critical defect, the lining has an infinitely high bending resistance; and when the geometric defect is greater than the critical defect, the lining will gradually lose the bending resistance as the bending load increases.
  • a pre-deformed lining layer is defined as a lining layer to which a critical defect is applied.
  • the purpose of the pre-deformation applied by the pre-deformed lining is to avoid the random irregularities of the lining layer by artificially applying critical defects.
  • Critical defects are an optimized choice for a lining tube that has the highest resistance to bending.
  • the array type pre-deformation double-layer mechanical tube of the present invention comprises an outer tube 1 and a lining tube 2.
  • the outer wall of the lining tube 2 abuts against the inner wall of the outer tube 1, and there are a plurality of non-adhesive plastic deformations between the outer wall of the lining tube 2 and the inner wall of the outer tube 1.
  • Plastic deformation is set in the lining tube 2
  • the surface is recessed toward the center of the lining tube 2, the position of plastic deformation is the critical defect 3 position of the lining tube 2, and the critical defect 3 is an artificial defect periodically set.
  • the positions of the plastic deformation are regularly arranged array shapes, and the reinforcing ribs 4 may be provided at each plastic deformation.
  • the outer tube 1 and the lining tube 2 are both made of a metal material, and the strength of the outer tube 1 is greater than the strength of the lining tube 2.
  • the critical defect 3 is distributed over the surface of the liner, and the size of the defect varies with the axial and circumferential directions, namely:
  • W o is a critical defect and is a function of the axial x-coordinate and the circumferential ⁇ coordinate.
  • f o ⁇ ( ⁇ ) is a circumferential function
  • W ocr is the critical defect value
  • L is the length of the pipe
  • m o is the number of axial half sine waves
  • a is an index
  • n o is the number of circumferential half sine waves
  • b is an index
  • the critical defect value can be obtained from the energy method.
  • the critical defect value can be expressed as:
  • k1, k2 and k3 are constants determined according to working conditions, R L is the lining radius, and L is the pipe length.
  • the number of array type pre-deformations is usually expressed by m 0 , n 0 .
  • m 0 8
  • n 0 16.
  • the specific values of m 0 and n 0 depend on the parameters of the material, diameter and wall thickness of the inner and outer tubes 1 and 2, and need to be determined by analysis and calculation according to actual working conditions.
  • Pre-deformation can theoretically use an expanded sine wave such as with To express.
  • Each pre-deformation is very small and is a kind of micro-concave and convex in the radial direction of the lining tube 2 (can be compared to the dimple or sputum commonly found in the agenda life), so as not to affect the mechanical function of the pipeline.
  • the size of the pre-deformation is expressed in W ocr :
  • t L and t P are the wall thicknesses of the lining tube 2 and the outer tube 1, respectively, and R Li , R Lo and R L are the inner radius, the outer radius and the center line of the lining tube 2, respectively.
  • Radius, R PO is the outer diameter of the outer tube 1
  • R r and ⁇ can be taken as 1000R L and 0.001, respectively
  • ⁇ Lx , ⁇ L ⁇ , ⁇ PX and ⁇ P ⁇ are the axial and circumferential sides of the lining tube 2 and the outer tube 1 respectively
  • the coefficient of thermal expansion, ⁇ is the Poisson's ratio.
  • the pre-deformation under this condition is regularly arranged in the circumferential direction and the axial direction, as shown in Table 3:
  • the manufacturing process there are two different ways in the manufacturing process.
  • the first is to make the outer tube 1 and the lining tube 2 separately, and the other method is to adopt the array type pre-deformation lining processing method, as shown in Fig. 5, mainly including the following steps:
  • the ribs 4 are used in both the structure and the processing method of the double tube, as shown in Figs. 6A-6C, the ribs 4 are regular shaped members, arranged in a regular arrangement on the outer surface of the lining preform, for example An axial or circumferential array arrangement is formed.
  • the material of the reinforcing rib 4 is high-strength steel whose strength is greater than or equal to the material of the outer tube 1, and its shape is a cubic sheet or a spherical particle.
  • the ribs 4 can have various forms, and may be components that are discretely distributed according to a certain rule, or components that are continuously and regularly distributed.
  • the ribs 4 shown in Figs. 6A and 6B are regularly discretely distributed, the rib 4 shown in Fig. 6A is a cube, and the rib 4 shown in Fig. 6B is a "ten" shape, which may also be a "one" shape. Or "
  • the ribs 4 shown in Fig. 6C are continuously distributed, which is equivalent to extending each side of the cross shape of Fig. 6B, and the adjacent ribs 4 are connected to each other to form a network-like rib 4, thereby achieving continuous The regular arrangement of the distribution.
  • the thickness of the liner required for conventional mechanical tubes increases with increasing bending requirements, while the thickness of the liner of the double tube of the present invention requires only a thickness of 1 mm, or the minimum thickness required for the processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

一种阵列型预变形双层机械管的加工方法及衬里管预制件,该加工方法包括以下步骤:步骤1,根据外管(1)的形状和尺寸,制作与外管(1)相匹配的衬里管(2)预制件;步骤2,在预制件的外表面上计算多个预变形位置;步骤3,将预制件插入外管(1)之中;步骤4,在衬里管(2)内施加内压,使得预制件与外管(1)成为一体,且预制件在预变形位置的周边产生微小的塑性变形。加强筋(3)按一定规则排列设置于衬里预制件的外表面。阵列型预变形双层机械管的加工方法及衬里管(2)预制件通过人为地设置多个周期性、规则性排列的临界缺陷(3),改变了衬里管(2)和外管(1)的接触结构,从而避免衬里层随机产生的无规律的缺陷。

Description

阵列型预变形双层机械管的加工方法及衬里管预制件 技术领域
本发明涉及双层管道的加工方法及其结构,更具体地说,涉及一种阵列型预变形双层机械管的加工方法及衬里管预制件。
背景技术
在石油行业中使用的防腐管道,外管和衬里管都是金属材料。这是一种双金属衬里管,英文是MECHANICALLY LINED PIPE,缩写为MLP,本专利翻译成机械管。这种机械管是在承载管的里面套一个薄的防腐合金衬里层,从而复合成双金属管。传统机械管的金属衬里存在一个技术瓶颈,就是当机械管承受弯曲载荷时,金属衬里层容易从外管失稳脱落。
由于各种原因(比如上述的防腐)所需要的双材料层机械复合产品,其中里面较薄的一层是衬里层。外层和里层通过机械复合来一体成型。机械复合是一种物理层面上(比如通过压力)的结合,没有金相层面上原子间的结合。这种双材料层机械复合产品适用于各种各样的结构,包括箱体、圆柱体或者球体等任何形状的结构。
双材料层机械复合产品的内外层需要采用不同的材料,从而内外层各自起到各自的作用,比如在防腐管道里,外管是高强钢起到承载的作用,内衬里层是合金起到防腐的作用。双材料层机械复合产品的内外层通常采用价格不同的材质。比如前面提到的防腐管道,外管材料是价格相对便宜的普通高强钢,而里层金属衬里层是价格昂贵的合金层。通过设计使用较薄的金属衬里层,从而起到节省成本的目的。
到目前为止,衬里层是纯粹的圆管,采用和外管一模一样的形状,其出发点是使双材料层管的二个管尽最大努力成为一个管,如果变形则共同变形。
为了达到这个目的,在制造双材料层机械复合产品时,目前工艺通常需要预先在内外管结合面预先打磨光滑,确保在内外管之间不留任何缝隙,从而使内外管成为一个整体。
但是这种纯粹圆管衬里实际上很难达到不留任何缝隙的要求。无论加工精度如何高,内外材料层实际上都不可能加工成纯粹的圆柱形,即内外管之间存在“几何缺陷”,而且缺陷往往出现在不同的地方。这种微小的差别,导致传统双材料层机械复合产品的衬里层在受弯曲时,比如石油行业中的管道经过卷筒安装时,衬里层(衬里管)从外管失稳脱离,而脱落处即为“缺陷”所在的位置。
这种传统机械管技术存在严重工艺缺陷,因为光洁度是很难保证的,只有在理论上才有可能。只要在衬里管外表面或者外管内表面有微小缺陷,机械管难免会失稳。
面对失稳脱落问题,流行的解决方法是增加衬里层的厚度,将纯粹圆管衬里层按抗弯曲失稳需要而不断增加壁厚。但这和双材料层机械复合产品的本意是为了节省成本的出发点相悖。
发明内容
针对现有技术中存在的双层管的“缺陷”处极易发生脱落的问题,本发明的目的是提供一种阵列型预变形双层机械管的加工方法及衬里管预制件。
为实现上述目的,本发明采用如下技术方案:
一方面,一种阵列型预变形双层机械管的加工方法,包括以下步骤:
步骤1,根据外管的形状和尺寸,制作与外管相匹配的衬里管预制件;
步骤2,在所述预制件的外表面上计算多个预变形位置;
步骤3,在预变形位置上设置加强筋,并将所述预制件插入外管之中;
步骤4,在衬里管内施加内压,使得预制件与外管成为一体,且所述预制件在所述预变形位置的周边产生微小的塑性变形。
所述预变形位置为预制件的临界缺陷位置,所述临界缺陷为周期性设置的人工缺陷。
所述步骤2包括:
计算所述预制件的临界缺陷位置:
Wo(x,θ)=Wocr·fox(x)·foθ(θ),其中:
Wo为临界缺陷,是轴向x坐标和周向θ坐标的函数,其中fox(x)为轴向函数,
Figure PCTCN2016086495-appb-000001
L是管道长度,mo是轴向半正弦波个数,a是指数;
f(θ)为周向函数,
Figure PCTCN2016086495-appb-000002
no是周向半正弦波个数,b是指数;
Wocr为临界缺陷值,当a=b=2时,临界缺陷值为
Figure PCTCN2016086495-appb-000003
k1、k2和k3为按工况确定的常数,RL为衬里半径,L为管道长度。
所述外管和预制件均为金属材料。
所述预变形位置为规则排列的阵列形状。
另一方面,一种阵列型预变形双层机械管的衬里管预制件,包括衬里管本体,在衬里管本体的外表面的预变形位置设置有加强筋,并形成轴向或周向的阵列排列。
所述预变形位置为所述预制件的临界缺陷位置,所述临界缺陷为周期性设置的人工缺陷,计算公式如下:
Wo(x,θ)=Wocr·fox(x)·foθ(θ),其中:
Wo为临界缺陷,是轴向x坐标和周向θ坐标的函数,其中
fox(x)为轴向函数,
Figure PCTCN2016086495-appb-000004
L是管道长度,mo是轴向半正弦波个数,a是指数;
f(θ)为周向函数,
Figure PCTCN2016086495-appb-000005
no是周向半正弦波个数,b是指数;
Wocr为临界缺陷值,当a=b=2时,临界缺陷值为
Figure PCTCN2016086495-appb-000006
k1、k2和k3为按工况确定的常数,RL为衬里半径,L为管道长度。
所述加强筋的材料为高强钢,其强度大于或等于外管的材料。
所述加强筋为规则的离散分布,其形状为“十”字形、“一”字形或“|”字形。
相邻的加强筋之间相互连接,形成规则排列的连续分布。
在上述技术方案中,本发明的阵列型预变形双层机械管的加工方法及衬里管预制件通过人为地设置多个周期性、规则性排列的临界缺陷,改变了衬里管和外管的接触结构,从而避免衬里层随机产生的无规律的缺陷。
附图说明
图1是现有的衬里层的结构示意图;
图2是本发明衬里层的结构示意图;
图3是预变形轴向阵列示意图;
图4是预变形周向阵列示意图;
图5是本发明阵列型预变形双层机械管的加工方法的流程图;
图6A~6C是加强筋的示意图。
具体实施方式
下面结合附图和实施例进一步说明本发明的技术方案。
下面结合附图和实施例进一步说明本发明的技术方案。
本发明公开了一种特别类型的新型衬里层、应用该衬里层的双层管、以及该双层管的制造方法(加工方法及其配合的加强筋)。本发明的核心是衬里层,其中文名全称是阵列型预变形衬里层,英文名称全称是Grid-Lined Pre-Dimpled Liner,缩写为GPL,这是一种预加了阵列型变形的衬里层,比如预先加工了在轴向和周向同时按一定规律排列的微小凹凸变形的非纯粹圆柱型衬里层。
如图1和图2所示,是用网格表示的一截圆管衬里的示意图,外管没有画出,其中图1是纯粹的圆管,图2是人为地在纯粹圆管表面经过特别处理从而形成了预应变后的衬里。
阵型预变形衬里的理论基础是临界缺陷。
在理论上,纯粹圆管衬里可以承受无限大的弯曲载荷而保持圆管状态不变。但是纯粹圆管是不可能的,因为无论什么样的加工工艺,都难免会留下几何缺陷。几何缺陷的大小决定衬里的承载能力。当实际几何缺陷小于临界缺陷时,衬里具有无限高的抗弯曲能力;而当几何缺陷大于临界缺陷时,衬里将随着弯曲载荷的增加而逐渐丧失抗弯曲能力。
阵型预变形衬里层的定义是:施加了临界缺陷的衬里层。
预变形衬里所施加预变形的目的是通过人为地施加临界缺陷从而避免衬里层的随机产生的无规律的缺陷。临界缺陷是一个衬里管的一种最优化选择,其抗弯曲能力最大。
因此,如图2所示,本发明的阵列型预变形双层机械管,包括外管1和衬里管2。衬里管2的外壁紧贴外管1的内壁,且衬里管2的外壁和外管1的内壁之间具有多处不贴合的塑性变形。塑性变形设置于衬里管2的 表面,且朝向衬里管2的中心向下凹陷,塑性变形的位置为衬里管2的临界缺陷3位置,临界缺陷3为周期性设置的人工缺陷。
进一步地,如图2所示,塑性变形的位置为规则排列的阵列形状,并且在每一个塑性变形处均可以设有加强筋4。此外,外管1和衬里管2均为金属材料,外管1的强度大于衬里管2的强度。
具体来说,临界缺陷3分布于衬里表面,其缺陷大小随轴向和周向变化,即:
Wo(x,θ)=Wocr·fox(x)·foθ(θ)          (1)
式(1)中:
Wo为临界缺陷,是轴向x坐标和周向θ坐标的函数
fox(x)为轴向函数
f(θ)为周向函数
Wocr为临界缺陷值
轴向和周向函数取决于具体衬里的工况,一种近似计算方法是把轴向函数简化为:
Figure PCTCN2016086495-appb-000007
式(2)中,L是管道长度,mo是轴向半正弦波个数,a是指数。
同时可以把周向函数简化为:
Figure PCTCN2016086495-appb-000008
式(3)中,no是周向半正弦波个数,b是指数。
一旦轴向和周向函数确定,临界缺陷值就可以根据能量法求得,当a=b=2时,临界缺陷值可以表达为:
Figure PCTCN2016086495-appb-000009
式(4)中,k1、k2和k3为按工况确定的常数,RL为衬里半径,L为管道长度。
上述计算临界缺陷的方法还可以扩展为如下算法:
阵列型预变形的个数,通常用m0,n0来表达。
如图3中m0=8,图4中n0=16。具体m0和n0的大小取决于内外管1和2的材料、直径和壁厚等参数,而且需要根据实际工况决通过分析计算决定。
预变形在理论上可以用展开的正弦波比如
Figure PCTCN2016086495-appb-000010
Figure PCTCN2016086495-appb-000011
来表达。
每一个预变形都很细小,是一种在衬里管2径向的微凹凸(可以比喻成日程生活中常见的酒窝或者涟漪),从而不影响管道的机械功能。预变形的大小用Wocr来表达:
Figure PCTCN2016086495-appb-000012
式(5)中:μ2和μ3分别是:
Figure PCTCN2016086495-appb-000013
Figure PCTCN2016086495-appb-000014
式(6)中:
Figure PCTCN2016086495-appb-000015
αL2=α+ναLx          (9)
αP2=α+ναPx            (10)
Figure PCTCN2016086495-appb-000016
Figure PCTCN2016086495-appb-000017
Figure PCTCN2016086495-appb-000018
Cwoδw_b=π          (14)
在式(6)到式(14)中tL、tP分别是衬里管2和外管1的壁厚,RLi、RLo和RL分别是衬里管2的内半径、外半径和中线半径,RPO是外管1的外径,Rr和β可以分别取值1000RL和0.001,αLx、α、αPX和α分别是衬里管2和外管1在轴向和周向的热膨胀系数,ν是泊松比。
以一截0.3m长度海底管道为例,承受高温高压,其参数在表一和表二中给出:
表一:管道参数
Figure PCTCN2016086495-appb-000019
表二:热膨胀系数
Figure PCTCN2016086495-appb-000020
此工况下的预变形在周向和轴向按规律排列,如表三所示:
表三:预变形阵列安排
mo no wocr(mm)
7 25 0.1
对于本发明外管1和衬里管2的双层管结构,其在制作工艺上有两种不同的方式。其一是分别制作外管1和衬里管2,另外一种方法是采用阵列型预变形衬里加工方法,如图5所示,主要包括以下步骤:
S1:根据外管1的形状和尺寸,制作与外管1相匹配的衬里管2预制 件。
S2:在预制件的外表面上计算多个预变形位置,预变形位置即为预制件的临界缺陷3位置,临界缺陷3为周期性设置的人工缺陷。
S3:将预制件插入外管1之中,具体来说可以分为以下2个子步骤:
S3.1:在计算出的预变形位置设置加强筋4。
S3.2:将带有加强筋4的预制件插入外管1之中。
S4:在衬里管内施加内压,使得预制件与外管1成为一体,且预制件在预变形位置的周边产生微小的塑性变形。
在上述步骤中,计算临界缺陷3的方法如前所述,这里不再赘述。
此外,在双层管的结构及加工方法中均会用到加强筋4,如图6A-6C所示,加强筋4为规则形状部件,按一定规则排列设置于衬里预制件的外表面,例如形成轴向或周向的阵列排列。加强筋4的材料为高强钢,其强度大于或等于外管1的材料,其形状为立方体薄片或球体颗粒。
加强筋4可以有多种形态,既可以是按一定规则离散分布的部件,也可以是连续规则分布的部件。
图6A和6B所示的加强筋4是规则离散分布的,图6A所示的加强筋4为立方体,而图6B所示的加强筋4为”十”字形,也可以是”一”字形的或者”|”字形的。图6C所示的加强筋4是连续分布的,相当于把图6B的十字形的每条边分别延长,并且相邻的加强筋4之间相互连接形成网络状的加强筋4,从而实现连续分布的规则排列。
综上所述,机械管的衬里管外表面或者外管内表面的缺陷小于临界缺陷时,机械管在理论上永远不会失稳脱落。机械管道临界缺陷非常小,在几百丝的范围内。根据本发明的临界缺陷理论,传统机械管在工艺上根本 无法在允许的制造成本内控制制造精度来满足临界缺陷的要求。
因此,与其提高工艺来确保表面的光洁度来防止衬里层失稳脱落,不如按临界缺陷来引入缺陷,使得内衬层到处能够微小失稳脱落,从而防止局部失稳脱落。
传统机械管需要的内衬厚度随着对弯曲要求提高而增加厚度,而本发明的双层管的衬里厚度甚至只需要1mm厚度,或者使用加工工艺所需要的最小厚度。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (10)

  1. 一种阵列型预变形双层机械管的加工方法,其特征在于,包括以下步骤:
    步骤1,根据外管的形状和尺寸,制作与外管相匹配的衬里管预制件;
    步骤2,在所述预制件的外表面上计算多个预变形位置;
    步骤3,在预变形位置上设置加强筋,并将所述预制件插入外管之中;
    步骤4,在衬里管内施加内压,使得预制件与外管成为一体,且所述预制件在所述预变形位置的周边产生微小的塑性变形。
  2. 如权利要求1所述的阵列型预变形双层机械管的加工方法,其特征在于,所述预变形位置为预制件的临界缺陷位置,所述临界缺陷为周期性设置的人工缺陷。
  3. 如权利要求2所述的阵列型预变形双层机械管的加工方法,其特征在于,所述步骤2包括:
    计算所述预制件的临界缺陷位置:
    Wo(x,θ)=Wocr·fox(x)·f(θ),其中:
    Wo为临界缺陷,是轴向x坐标和周向θ坐标的函数,其中
    fox(x)为轴向函数,
    Figure PCTCN2016086495-appb-100001
    L是管道长度,mo 是轴向半正弦波个数,a是指数;
    f(θ)为周向函数,
    Figure PCTCN2016086495-appb-100002
    no是周向半正弦波个数,b是指数;
    Wocr为临界缺陷值,当a=b=2时,临界缺陷值为
    Figure PCTCN2016086495-appb-100003
    k1、k2和k3为按工况确定的常数,RL为衬里半径,L为管道长度。
  4. 如权利要求1所述的阵列型预变形双层机械管的加工方法,其特征在于,所述外管和预制件均为金属材料。
  5. 如权利要求1所述的阵列型预变形双层机械管的加工方法,其特征在于,所述预变形位置为规则排列的阵列形状。
  6. 一种阵列型预变形双层机械管的衬里管预制件,包括衬里管本体,其特征在于:在衬里管本体的外表面的预变形位置设置有加强筋,并形成轴向或周向的阵列排列。
  7. 如权利要求6所述的阵列型预变形双层机械管的衬里管预制件,其特征在于:所述预变形位置为所述预制件的临界缺陷位置,所述临界缺陷 为周期性设置的人工缺陷,计算公式如下:
    Wo(x,θ)=Wocr·fox(x)·f(θ),其中:
    Wo为临界缺陷,是轴向x坐标和周向θ坐标的函数,其中
    fox(x)为轴向函数,
    Figure PCTCN2016086495-appb-100004
    L是管道长度,mo是轴向半正弦波个数,a是指数;
    f(θ)为周向函数,
    Figure PCTCN2016086495-appb-100005
    no是周向半正弦波个数,b是指数;
    Wocr为临界缺陷值,当a=b=2时,临界缺陷值为
    Figure PCTCN2016086495-appb-100006
    k1、k2和k3为按工况确定的常数,RL为衬里半径,L为管道长度。
  8. 如权利要求6所述的阵列型预变形双层机械管的衬里管预制件,其特征在于,所述加强筋的材料为高强钢,其强度大于或等于外管的材料。
  9. 如权利要求6所述的阵列型预变形双层机械管的衬里管预制件,其特征在于,所述加强筋为规则的离散分布,其形状为“十”字形、“一”字形或“|”字形。
  10. 如权利要求9所述的阵列型预变形双层机械管的衬里管预制件,其特征在于,相邻的加强筋之间相互连接,形成规则排列的连续分布。
PCT/CN2016/086495 2016-04-13 2016-06-21 阵列型预变形双层机械管的加工方法及衬里管预制件 WO2017177543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610227811.4A CN107289203A (zh) 2016-04-13 2016-04-13 阵列型预变形双层机械管的加工方法及衬里管预制件
CN201610227811.4 2016-04-13

Publications (1)

Publication Number Publication Date
WO2017177543A1 true WO2017177543A1 (zh) 2017-10-19

Family

ID=60041872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086495 WO2017177543A1 (zh) 2016-04-13 2016-06-21 阵列型预变形双层机械管的加工方法及衬里管预制件

Country Status (2)

Country Link
CN (1) CN107289203A (zh)
WO (1) WO2017177543A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2576366A (en) * 2018-08-17 2020-02-19 Impressive Eng Ltd A method of manufacturing mechanically lined pipe for reeling and bending applications

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957086A (en) * 1973-06-29 1976-05-18 Bundy Corporation Corrosion resistant tubing
JPH0217948A (ja) * 1988-07-06 1990-01-22 Usui Internatl Ind Co Ltd 排気ガス浄化用触媒を担持するための金属製担持母体及びその製造方法
CN2434424Y (zh) * 2000-05-22 2001-06-13 侯贤忠 内镶金属防腐衬里的油田用油管
EP2017074A2 (de) * 2007-06-13 2009-01-21 TI Automotive (Heidelberg) GmbH Aluminiumbeschichtete Kraftfahrzeugrohrleitung aus Metall und Verfahren zur Herstellung einer Kraftfahrzeugrohrleitung mittels Schmelztauchbeschichten
CN102626714A (zh) * 2012-04-16 2012-08-08 新兴铸管股份有限公司 改善空心坯质量的预变形工艺
CN102649224A (zh) * 2012-05-09 2012-08-29 中国石油天然气股份有限公司 油管内衬加工工艺
CN204804702U (zh) * 2015-06-05 2015-11-25 李伟 一种隔热防腐耐磨复合油管
CN205605999U (zh) * 2016-04-13 2016-09-28 王云孝 阵列型预变形双层机械管及其衬里管
CN205605998U (zh) * 2016-04-13 2016-09-28 王云孝 阵列型预变形双层机械管的衬里管预制件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957086A (en) * 1973-06-29 1976-05-18 Bundy Corporation Corrosion resistant tubing
JPH0217948A (ja) * 1988-07-06 1990-01-22 Usui Internatl Ind Co Ltd 排気ガス浄化用触媒を担持するための金属製担持母体及びその製造方法
CN2434424Y (zh) * 2000-05-22 2001-06-13 侯贤忠 内镶金属防腐衬里的油田用油管
EP2017074A2 (de) * 2007-06-13 2009-01-21 TI Automotive (Heidelberg) GmbH Aluminiumbeschichtete Kraftfahrzeugrohrleitung aus Metall und Verfahren zur Herstellung einer Kraftfahrzeugrohrleitung mittels Schmelztauchbeschichten
CN102626714A (zh) * 2012-04-16 2012-08-08 新兴铸管股份有限公司 改善空心坯质量的预变形工艺
CN102649224A (zh) * 2012-05-09 2012-08-29 中国石油天然气股份有限公司 油管内衬加工工艺
CN204804702U (zh) * 2015-06-05 2015-11-25 李伟 一种隔热防腐耐磨复合油管
CN205605999U (zh) * 2016-04-13 2016-09-28 王云孝 阵列型预变形双层机械管及其衬里管
CN205605998U (zh) * 2016-04-13 2016-09-28 王云孝 阵列型预变形双层机械管的衬里管预制件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2576366A (en) * 2018-08-17 2020-02-19 Impressive Eng Ltd A method of manufacturing mechanically lined pipe for reeling and bending applications

Also Published As

Publication number Publication date
CN107289203A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
US5676176A (en) Bellows pipe
WO2017177543A1 (zh) 阵列型预变形双层机械管的加工方法及衬里管预制件
Wen On a new concept of rotary draw bend-die adaptable for bending tubes with multiple outer diameters under non-mandrel condition
Zhu et al. Size effect mechanism of cross-section deformation and section hollow coefficient-bending degree of the thin-walled composite bending tube
WO2017177544A1 (zh) 阵列型预变形双层机械管及其衬里管
JP2017150617A (ja) ピストンリング
Jeong et al. Theoretical and FE analysis for inconel 625 fine tube bending to predict springback
CN205605998U (zh) 阵列型预变形双层机械管的衬里管预制件
CN205605999U (zh) 阵列型预变形双层机械管及其衬里管
CN110378053B (zh) 管材二斜辊矫直工艺圆弧辊型最优矫直曲率的确定方法
CN112347583B (zh) 一种增压站含双缺陷弯管极限内压的计算方法
Ruan et al. Hydroforming process for an ultrasmall bending radius elbow
CN109550787A (zh) 分段式变过盈量组合式冷轧支承辊
CN209340554U (zh) 液压阀及其阀芯
CN111014526B (zh) 一种薄壁w截面异型密封结构内外复合滚压成形方法
JP4720344B2 (ja) 鋼管、該鋼管を用いたパイプライン
CN203035112U (zh) 一种油气井用新结构油管
JPS6224828A (ja) 拡管用マンドレル
CN112536370B (zh) 大角度回转体制件在渐进成形中的工艺孔结构设计方法
CN109163161B (zh) 一种用于制造弯管的直管、弯管和弯管的制造方法
CN113343389B (zh) 一种蛇形管加热器换热管适用的壁厚设计方法
Kataev et al. Ovality and Springing at the Piping System Forming
CN211371515U (zh) 一种机车机械结构无缝钢管
JP6740993B2 (ja) 内面樹脂ライニング薄肉鋼管およびその製造方法
CN113094918B (zh) 一种海洋深水湿式保温管设计外压的确定方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898358

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16898358

Country of ref document: EP

Kind code of ref document: A1