WO2017177419A1 - 信息传输方法、设备及系统 - Google Patents

信息传输方法、设备及系统 Download PDF

Info

Publication number
WO2017177419A1
WO2017177419A1 PCT/CN2016/079286 CN2016079286W WO2017177419A1 WO 2017177419 A1 WO2017177419 A1 WO 2017177419A1 CN 2016079286 W CN2016079286 W CN 2016079286W WO 2017177419 A1 WO2017177419 A1 WO 2017177419A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
area
tti
configuration information
communication device
Prior art date
Application number
PCT/CN2016/079286
Other languages
English (en)
French (fr)
Inventor
张兴炜
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018554035A priority Critical patent/JP2019511889A/ja
Priority to RU2018139833A priority patent/RU2712431C1/ru
Priority to EP16898237.9A priority patent/EP3432669A4/en
Priority to BR112018071013-0A priority patent/BR112018071013A2/pt
Priority to PCT/CN2016/079286 priority patent/WO2017177419A1/zh
Priority to KR1020187032059A priority patent/KR20180132118A/ko
Priority to CN201680084596.5A priority patent/CN109314971B/zh
Publication of WO2017177419A1 publication Critical patent/WO2017177419A1/zh
Priority to US16/159,708 priority patent/US20190053208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to the field of communications, and in particular, to an information transmission method, device and system.
  • LTE Long Term Evolution
  • 3rd Generation Partnership Project International: 3rd Generation Partnership Project, 3GPP
  • enhanced long-term evolution English: Long Term Evolution-Advanced (LTE-A) system
  • time-frequency resources are divided into multiple radio frames in the time domain for transmitting information
  • one radio frame is 10 milliseconds (English: Millisecond, referred to as ms).
  • the system includes 10 1ms subframes, and one subframe includes 12 or 14 orthogonal frequency division multiplexing (OFDM: OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • a plurality of channels such as a physical downlink control channel (English: Physical Downlink Control Channel, referred to as PDCCH), may be transmitted in a time domain indicated by a subframe, that is, a Transmission Time Interval (TTI). ), physical downlink shared channel (English: Physical Downlink Shared CHannel, referred to as: PDSCH).
  • TTI Transmission Time Interval
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • the DCI information is used to indicate resource allocation, modulation and demodulation, and the like.
  • the PDCCH occupies the first 1-3 OFDM symbols of one subframe.
  • the specific resource location of the DCI in the PDCCH cannot be obtained, and the control used by the PDCCH corresponding to the DCI of the receiving end is used.
  • the aggregation level of the channel unit (English: Control Channel Element, CCE for short) (English: Aggregation level, abbreviated as: AL). Therefore, the receiving end needs to perform blind detection to obtain DCI, that is, different resource locations and DCI lengths.
  • the aggregation level continuously tries to detect the PDCCH until the DCI is correctly decoded.
  • a TTI can occupy only half of the subframe or a plurality of OFDM symbols. In the application scenario of the packet service, each TTI still includes an independent PDCCH, which causes excessive control signaling overhead.
  • the DCI information is embedded into the PDSCH transmission, that is, a part of the resources occupied by the PDSCH is used to transmit the DCI information.
  • the DCI is used to indicate uplink data transmission, since the data transmission of a certain TTI after the current TTI is scheduled, there is no The PDSCH can be embedded, so it still needs to be sent on the PDCCH, which requires resources reserved for the PDCCH. If too many resources are reserved for the PDCCH, the resources are wasted and the reserved resources are too small. When the number of UEs to be scheduled is large, the resources may not be sufficient.
  • the DCI may be in the PDSCH. It is possible that in the PDCCH, the receiving end needs to detect DCI information in both the PDSCH and the PDSCH.
  • the receiving end has higher detection complexity and higher power consumption for DCI.
  • the present invention provides an information transmission method, device and system.
  • the technical solution is as follows:
  • the present invention provides an information transmission method, the method comprising:
  • the first communication device acquires the first configuration information, where the first configuration information is used to indicate that the first communication device detects the downlink control information DCI in the first region, where the first region is a time-frequency resource region in the first transmission time interval TTI;
  • the first communication device detects the DCI in a first region in the first TTI.
  • the length of the first TTI is less than one subframe.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the PDCCH may be a normal PDCCH, an enhanced PDCCH (EPDCCH), or a short physical downlink control channel sPDCCH (for a PDCCH in a TTI whose length is less than one subframe).
  • the first area is a time-frequency resource area occupied by the PDCCH of the first TTI type, or the first area is a time-frequency resource area occupied by the PDSCH of the first TTI type.
  • the first region includes a preset orthogonal frequency division multiplexing OFDM symbol or resource block RB.
  • the first area may be an odd-numbered resource block RB in the first TTI, or the first area is an even-numbered RB in the first TTI, or the first area is in the first TTI
  • the first few RBs, or the first region is the last few RBs in the first TTI.
  • the first area may be pre-stored by the first communications device, the first configuration information is only used to indicate that the DCI is detected in the first area, or the first area is included in the first configuration information.
  • the first configuration information is also used to indicate the format of the DCI, the format of the DCI. Includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4.
  • the first configuration information may include the DCI format, or the first configuration information does not include the DCI format, and the specific indication manner is not limited by the present invention.
  • the first configuration information may not include the DCI format, and the first area may correspond to some of the DCI formats.
  • the first configuration information indicates that the first area is detected, the first communications device detects only the first area.
  • the first configuration information includes a DCI format that the first communication device needs to detect.
  • the specific field of the first configuration information may be used to indicate a DCI format that needs to be detected. Of course, this is only an example.
  • the first communications device acquires the first configuration information, including:
  • the first communication device receives the first configuration information sent by the second communication device.
  • the first communication device stores the first configuration information in advance.
  • the first configuration information is transmitted to the first communications device on the RRC signaling, the system information block SIB, or the medium access control MAC signaling.
  • the first communications device receives the first configuration information sent by the second communications device, including:
  • the first communication device detects the first configuration information in the second area, where the second area is a time-frequency resource area included in the PDCCH in the first TTI, or the second area is a time-frequency resource included in the PDSCH in the first TTI region.
  • the second area may be a time-frequency resource occupied by the first configuration information, and the first communications device may directly decode the first configuration information in the second area.
  • the length of the first configuration information may be a fixed length, or the length of the first configuration information may be consistent with the length of the DCI.
  • the second area may include a preset orthogonal frequency division multiplexing OFDM symbol or a resource block RB.
  • the second area may be an odd-numbered resource block RB in the second TTI, or the second area.
  • An even-numbered RB in the second TTI, or the second area is the first RBs in the second TTI, or the second area is the last RBs in the second TTI.
  • the second TTI is the same TTI as the first TTI, or the second TTI is a TTI before the first TTI.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the method before the first communications device detects the DCI in the first region of the first TTI, the method further includes:
  • the first communication device acquires first length information, where the first length information is used to indicate a length of the DCI;
  • the first communications device detects the DCI in the first region of the first TTI, including:
  • the first communication device detects the DCI according to the length indicated by the first length information in the first region in the first TTI.
  • the first communication device stores the first length information in advance, that is, the DCI length detected by the first communication device is fixed for a certain period of time.
  • the first area is a time-frequency resource occupied by the DCI, that is, the first area is a specific resource location of the DCI in the first TTI;
  • the first communications device detects the DCI in the first region of the first TTI, including:
  • the first communications device decodes the DCI in a first region of the first TTI.
  • the first region when the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is an interval [1] , an integer within 14].
  • the first region when the DCI is used to indicate an uplink grant of the first communications device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer in the interval [1, 14] .
  • N is 1 and M is 1.
  • the present invention provides an information transmission method, the method comprising:
  • the second communication device sends the first configuration information to the first communication device, where the first configuration information is used to indicate that the first communication device detects the downlink control information DCI in the first area, where the first area is the time frequency in the first transmission time interval TTI Resource area
  • the second communication device transmits the DCI to the first communication device in the first region indicated by the first configuration information.
  • the first region includes a preset orthogonal frequency division multiplexing OFDM symbol or resource block RB.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the length of the first TTI is less than one subframe.
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4. item.
  • the first configuration information is transmitted to the first communications device on the RRC signaling, the system information block SIB, or the medium access control MAC signaling.
  • the first configuration information is located in the second area
  • the second area is a time-frequency resource area included in the PDCCH in the first TTI
  • the second area is included in the PDSCH in the first TTI. Time-frequency resource area.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the first area is a time-frequency resource occupied by the DCI.
  • the first region when the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is an interval [1] , an integer within 14].
  • the first region when the DCI is used to indicate an uplink grant of the first communications device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer in the interval [1, 14] .
  • the present invention provides a first communications device, including:
  • An acquiring unit configured to acquire first configuration information, where the first configuration information is used to indicate that the first communications device detects the downlink control information DCI in the first region, where the first region is a time-frequency resource region in the first transmission time interval TTI;
  • a receiving unit configured to detect the DCI in the first area in the first TTI.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the first region includes a preset orthogonal frequency division multiplexing OFDM symbol or resource block RB.
  • the length of the first TTI is less than one subframe.
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4. item.
  • the receiving unit is further configured to receive the first configuration information sent by the second communications device.
  • the first configuration information is transmitted to the first communications device on the RRC signaling, the system information block SIB, or the medium access control MAC signaling.
  • the receiving unit is further configured to detect the first configuration information in the second area, where the second area is a time-frequency resource area included in the PDCCH in the first TTI, or the second area is the first The time-frequency resource region included in the PDSCH in the TTI.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the acquiring unit is further configured to acquire first length information, where the first length information is used to indicate a length of the DCI;
  • the receiving unit is further configured to detect the DCI according to the length indicated by the first length information in the first area in the first TTI.
  • the first area is a time-frequency resource occupied by the DCI
  • the receiving unit is further configured to decode the DCI in the first region in the first TTI.
  • the first region when the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is an interval [1] , an integer within 14].
  • the first region when the DCI is used to indicate an uplink grant of the first communications device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer in the interval [1, 14] .
  • the present invention provides a second communications device, including:
  • a sending unit configured to send first configuration information to the first communications device, where the first configuration information is used to indicate that the first communications device detects downlink control information DCI in the first region, where the first region is in the first transmission time interval TTI Frequency resource area;
  • the sending unit is further configured to send the DCI to the first communications device in the first area indicated by the first configuration information.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the first region includes a preset orthogonal frequency division multiplexing OFDM symbol or resource block RB.
  • the length of the first TTI is less than one subframe.
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4. item.
  • the first configuration information is transmitted to the first communications device on the RRC signaling, the system information block SIB, or the medium access control MAC signaling.
  • the first configuration information is located in the second area, the second area is a time-frequency resource area included in the PDCCH in the first TTI, or the second area is in the first TTI The time-frequency resource area included in the PDSCH.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the first area is a time-frequency resource occupied by the DCI.
  • the first region when the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is an interval [1] , an integer within 14].
  • the first region when the DCI is used to indicate an uplink grant of the first communications device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer in the interval [1, 14] .
  • the present invention provides a first communication device, including: a processor, a memory, and a receiver; a processor, a memory, and a receiver are connected to each other, and the processor is configured to execute a program stored in the memory;
  • the processor is configured to obtain the first configuration information, where the first configuration information is used to indicate that the first communications device detects the downlink control information DCI in the first region, where the first region is a time-frequency resource region in the first transmission time interval TTI;
  • the processor is further configured to detect the DCI in the first region in the first TTI by the receiver.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the first region includes a preset orthogonal frequency division multiplexing OFDM symbol or resource block RB.
  • the length of the first TTI is less than one subframe.
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4. item.
  • the processor is further configured to receive, by the receiver, the first configuration information sent by the second communications device.
  • the first configuration information is transmitted to the first communications device on the RRC signaling, the system information block SIB, or the medium access control MAC signaling.
  • the processor is further configured to detect the first configuration information in the second area, where the second area is a time-frequency resource area included in the PDCCH in the first TTI, or the second area is the first The time-frequency resource region included in the PDSCH in the TTI.
  • the first configuration information includes a radio network temporary identifier RNTI field
  • the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the processor is further configured to acquire first length information, where the first length information is used to indicate a length of the DCI, and the first length information in the first TTI is received by the receiver according to the first length information.
  • the length of the indication detects the DCI.
  • the first area is a time-frequency resource occupied by the DCI
  • the processor is further configured to decode the DCI by using the first region in the first TTI.
  • the first region when the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is an interval [1] , an integer within 14].
  • the first region when the DCI is used to indicate an uplink grant of the first communications device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer in the interval [1, 14] .
  • the present invention provides a second communication device, including: a processor, a memory, and a transmitter; a processor, a memory, and a transmitter are connected to each other, and the processor is configured to execute a program stored in the memory;
  • a processor configured to send, by using a transmitter, first configuration information to the first communications device, where the first configuration information is used to indicate that the first communications device detects the downlink control information DCI in the first region, where the first region is the first transmission time interval TTI Time-frequency resource area;
  • the processor is further configured to send, by the transmitter, the DCI to the first communications device in the first area indicated by the first configuration information.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the first region includes a preset orthogonal frequency division multiplexing OFDM symbol or resource block RB.
  • the length of the first TTI is less than one subframe.
  • the first region when the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is an interval [1] , an integer within 14].
  • the first region when the DCI is used to indicate an uplink grant of the first communications device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer in the interval [1, 14] .
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4. item.
  • the first configuration information is transmitted to the first communications device on the RRC signaling, the system information block SIB, or the medium access control MAC signaling.
  • the first configuration information is located in the second area
  • the second area is a time-frequency resource area included in the PDCCH in the first TTI
  • the second area is included in the PDSCH in the first TTI. Time-frequency resource area.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the first area is a time-frequency resource occupied by the DCI.
  • the first region when the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is an interval [1] , an integer within 14].
  • the first region when the DCI is used to indicate an uplink grant of the first communications device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer in the interval [1, 14] .
  • the present invention provides an information transmission system, including: a first communication device and a second communication device;
  • the first communication device is the first communication device described in the third aspect or any one of the possible implementations of the third aspect, the second communication device being described in the fourth aspect or any one of the possible implementations of the fourth aspect Second communication device;
  • the first communication device is the first communication device described in the fifth aspect or any one of the possible implementations of the fifth aspect, the second communication device being described in the sixth aspect or any one of the possible implementations of the sixth aspect The second communication device.
  • the first communication device acquires first configuration information, where the first configuration information is used to instruct the first communication device to detect downlink control information DCI in the first region; A region detects DCI.
  • the first communication setting only needs to be detected in the first area, and the PDSCH channel and the PDCCH channel are not separately detected, which solves the problem of the receiving end in the prior art.
  • the DCI performs the problem of high detection complexity and large power consumption.
  • FIG. 1 is a schematic flowchart of an information transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a time-frequency resource location of a DCI in a TTI according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first communication device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a second communication device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a first communication device according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a second communication device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an information transmission system according to an embodiment of the present invention.
  • the information transmission method, device and system provided by the embodiments of the present invention can be applied to a wireless network communication system, such as a Long Term Evolution (LTE) system, and a third generation partnership project (English: 3rd Generation Partnership) Project, referred to as 3GPP) system, Enhanced Long Term Evolution-Advanced (LTE-A) system.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • LTE-A Enhanced Long Term Evolution-Advanced
  • a base station English: Evolved Node B, eNB for short
  • UE User Equipment
  • DCI Downlink Control Information
  • the time-frequency resource is divided into multiple radio frames for transmitting information in the time domain, and one radio frame is 10 milliseconds (English: Millisecond, referred to as ms), including 10 subframes of 1 ms, and one subframe includes 12 subframes. Or 14 orthogonal frequency division multiplexing (English: Orthogonal Frequency Division, OFDM for short) symbols.
  • the transmission time interval (English: Transmission Time Interval, TTI for short) is the granularity of resource scheduling
  • the radio frame/subframe/slot/symbol is the time of the radio resource.
  • the scale when the network device is ready to send data on the radio resource, is sent in units of TTI, and the TTI and the radio resource may have a corresponding relationship.
  • the eNB transmits information to the UE in units of Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • the TTI may be one subframe, but one TTI may include only half of the subframe or several OFDM symbols.
  • the time-frequency resources in a TTI can be used to transmit different channels, and are classified into different types according to the functions of the transmission information, such as a physical downlink control channel (English: Physical Downlink Control Channel, PDCCH for short), and a physical downlink shared channel (English: Physical Downlink Shared CHannel, referred to as: PDSCH).
  • Downlink control information (English: Downlink Control Information, DCI) can be transmitted in the PDCCH channel.
  • the DCI information is used to indicate resource allocation, modulation and demodulation, and the like. Each channel occupies several OFDM symbols for transmission of information.
  • DCI Downlink Control Information
  • An embodiment of the present invention provides an information transmission method, where the information transmission method is applied to a first communication device, where the first communication device is a receiving device in information transmission.
  • the first communication device may be a UE.
  • the information transmission of the first TTI in the first TTI is taken as an example.
  • the first TTI is a TTI, which can be used to indicate the TTI of the current transmission information, and is not different from the general TTI. For the sake of clarity, it does not represent any limitation on the TTI.
  • the information transmission method provided in this embodiment includes the following steps:
  • the first communications device acquires first configuration information.
  • the first configuration information is used to indicate that the first communications device detects the DCI in the first region, where the first region is a time-frequency resource region in the first TTI.
  • the first area includes a preset OFDM symbol or a resource block (English: Resource Block, RB for short), and the first area may be an odd-numbered symbol or RB in the first TTI, or the first area An even-numbered symbol or RB in a TTI, or the first few symbols or RBs in the first TTI, or the last few symbols or RBs in the first TTI.
  • a preset OFDM symbol or a resource block (English: Resource Block, RB for short)
  • the first area may be an odd-numbered symbol or RB in the first TTI, or the first area An even-numbered symbol or RB in a TTI, or the first few symbols or RBs in the first TTI, or the last few symbols or RBs in the first TTI.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the PDCCH may be a normal PDCCH, an enhanced physical downlink control channel (English: Envolved Physical Downlink Control Channel, EPDCCH for short), or a short physical downlink control channel (English: Short Physical Downlink Control Channel, referred to as sPDCCH). ), sPDCCH is used in a TTI whose length is less than one subframe.
  • the first configuration information is used to indicate that the first communications device detects the DCI in the first area, where the first configuration information includes one bit, and is used to indicate Whether the DCI is in the PDCCH or the PDSCH; or the first area may be pre-stored by the first communications device, the first configuration information is only used to indicate whether the DCI is detected in the first area, or the first configuration information includes the specific part of the first area.
  • Time-frequency position In a specific implementation manner, the first area is a time-frequency resource area occupied by the PDCCH of the first TTI type, or the first area is a time-frequency resource area occupied by the PDSCH of the first TTI type.
  • the first region when the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing in the first TTI (English: Orthogonal Frequency Division) , abbreviated as: OFDM) symbol, N is an integer in the interval [1, 14]; when the DCI is used to indicate an uplink grant of the first communication device (English: Uplink grant), the first region includes the first TTI
  • OFDM symbols is an integer in the interval [1, 14]
  • N and M are both 1.
  • the time length of the first TTI is less than one subframe, and may be half a subframe or several OFDM symbols in one subframe.
  • DCI may also be used. Transmission through the PDSCH channel, as shown in Figure 2.
  • the DCI information is used to indicate the downlink grant of the first communications device
  • the data transmitted through the PDSCH needs to be demodulated by detecting the acquired DCI, so the DCI can be placed in the first OFDM symbols in the first TTI.
  • the DCI information is used to indicate the uplink path grant of the first communication device
  • the PUSCH scheduled by the DCI is the TTI after the current TTI, so the DCI can be placed in the last OFDM symbols of the first TTI type.
  • the DCI can also be transmitted in the PDCCH.
  • the first configuration information is intended to indicate the location of the DCI, so that the first communication device determines the area for detecting the DCI, thereby reducing the complexity of detection and reducing. The power consumption of the first communication device.
  • the first configuration information is further used to indicate a format of the DCI (English: Format), and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4.
  • the format 0/4 is used to schedule a physical uplink shared channel (English: Physical Uplink Shared Channel, PUSCH for short) to indicate an uplink grant; format 1/1A/1B/1C/ 1D/2/2A/2B/2C is used to schedule the PDSCH for indicating downlink grants. Therefore, when the first configuration information indicates the format of the DCI, the first communication device only needs to detect the indicated DCI format when detecting the DCI, which greatly reduces the complexity of the detection.
  • the first configuration information may include the DCI format, or the first configuration information does not include the DCI format, and the specific indication manner is not limited by the present invention.
  • the first configuration information may not include the DCI format, and may be The first area corresponds to some formats in the DCI format.
  • the first communications device detects only the DCI formats corresponding to the first area; or, the first configuration information
  • the DCI format that the first communication device needs to detect is included.
  • the specific field of the first configuration information may be used to indicate the DCI format to be detected. Of course, this is only an example.
  • the first configuration information may be configured in advance, and may be pre-stored in the first communication device, or may be sent to the first communication device in the second communication device. For this reason, the present invention is not limited.
  • the description of the three specific ways of obtaining the first configuration information is not limited to the present invention.
  • the first communications device receives the first configuration information sent by the second communications device, and the first configuration information is transmitted to the first communications device on the high layer signaling.
  • the first configuration information may be carried in Radio Resource Control (RRC) signaling, System Information Block (SIB) or Media Access Control (English: The MediaAccess Control (MAC) signaling is transmitted to the first communication device.
  • RRC Radio Resource Control
  • SIB System Information Block
  • MAC Media Access Control
  • the first configuration information is stored in the first communication device in advance.
  • the first area indicated by the first configuration information may be specified by using a network communication protocol, so that the first communication device only needs to be in the first area.
  • the DCI performs detection, which reduces the complexity of the detection.
  • the first communications device detects the first configuration information in the second region, where the second region is a time-frequency resource region included in the PDCCH in the first TTI, or the second region is a PDSCH in the first TTI.
  • the first configuration information is transmitted to the first communications device by using physical layer signaling, so the first configuration information needs to be detected first and the first configuration information is obtained. In this way, the adjustment of the first area is more flexible, that is, the position of the DCI can be flexibly adjusted. At the same time, since the first area and the second area both limit the detection range, the detection is also reduced to some extent. the complexity.
  • the second area may be a time-frequency resource occupied by the first configuration information, and the first communication device may directly decode the first configuration information in the second area.
  • the length of the first configuration information may be a fixed length, or the length of the first configuration information may be consistent with the length of the DCI.
  • the second area may include a preset orthogonal frequency division multiplexing OFDM symbol or a resource block RB.
  • the second area may be an odd-numbered resource block RB in the second TTI, or The second area is an even-numbered RB in the second TTI, or the second area is the first few RBs in the second TTI, or the second area is the last RB in the second TTI.
  • the second TTI is the same TTI as the first TTI, or the second TTI is a TTI before the first TTI.
  • the first configuration information includes a radio network temporary identifier (English: Radio Network Temporary Identity, RNTI) field, or the first configuration information includes a cyclic redundancy code that is scrambled by the RNTI (English: Cyclic Redundancy Code, Abbreviation: CRC).
  • RNTI Radio Network Temporary Identity
  • CRC Cyclic Redundancy Code
  • the first communications device detects the DCI in a first region of the first TTI.
  • the first configuration information is detected, and the DCI or the first configuration information is received, and the received information is blindly detected, and the detection is to correctly receive, decode, and acquire the information.
  • the manner of implementation is merely illustrative of the meaning of the detection in the present invention, and does not mean that the invention is limited thereto.
  • the first communications device may obtain the first length information, where the first length information is used to indicate the length of the DCI, and when performing step 102, the first communications device may The first region in the first TTI detects the DCI based on the length indicated by the first length information.
  • the first communication device may pre-store the first length information, that is, the DCI length detected by the first communication device is fixed for a certain period of time. Thus, the first communication device only needs to detect a fixed length of DCI, which reduces the detection complexity.
  • the first area is a time-frequency resource occupied by the DCI; and the first communications device may decode the DCI in the first area in the first TTI. Because the time-frequency resource occupied by the DCI directly indicated by the first area, that is, the first area is a specific resource location of the DCI in the first TTI, the first communication device can directly decode the DCI, thereby improving the efficiency of receiving data. .
  • the first communication device acquires the first configuration information, where the first configuration information is used to indicate that the first communication device detects the downlink control information DCI in the first region, and the first region detection in the first TTI DCI.
  • the first communication device only needs to perform detection in the first region, and does not need to detect the PDSCH channel and the PDCCH channel separately, especially in the length of the first TTI.
  • the application scenario of less than one subframe solves the problem that the receiving end has high detection complexity and large power consumption in the DCI.
  • another embodiment of the present invention provides an information transmission method, where the information transmission method is applied to a second communication device, where the second communication device is a transmission end in information transmission.
  • the first communication device may be an eNB.
  • the information transmission method provided in this embodiment includes the following steps:
  • the second communications device sends the first configuration information to the first communications device.
  • the first configuration information is used to indicate that the first communication device detects the DCI in the first area, where the first area is a time-frequency resource area in the first transmission time interval TTI, and optionally, the first area is included in the PDCCH.
  • the frequency resource region, or the first region is a time-frequency resource region included in the PDSCH.
  • the length of time of the first TTI is less than one subframe.
  • the first area is a time-frequency resource occupied by the DCI.
  • the first area comprises a preset orthogonal frequency division multiplexing OFDM symbol or resource block RB.
  • the first region when the DCI is used to indicate the downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is in the interval [1, 14] An integer; when the DCI is used to indicate an uplink grant of the first communication device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer within the interval [1, 14].
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4.
  • the first configuration information may be carried on the RRC signaling, the SIB or the MAC signaling to the first communication device.
  • the first configuration information is located in the second area, and the second area is the time-frequency resource area included in the PDCCH in the first TTI. Or the second area is a time-frequency resource area included in the PDSCH in the first TTI.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the second communications device sends the DCI to the first communications device in the first region indicated by the first configuration information.
  • the second communication device sends the first configuration information to the first communication device, where the first configuration information is used to instruct the first communication device to detect the downlink control information DCI in the first region;
  • the first area indicated by the configuration information sends a DCI to the first communication device.
  • the second communication device clarifies the area where the first communication device detects the DCI by transmitting the first configuration information to the first communication device, and the first communication device only needs to perform detection in the first region, and does not need to channel the PDSCH.
  • the detection of the PDCCH channel and the PDCCH channel respectively solve the problem that the detection of the DCI by the receiving end is high and the power consumption is large.
  • the embodiment of the present invention provides a first communication device, which is used to perform the information transmission method described in the foregoing embodiment corresponding to FIG. 1.
  • the first communication device may be a UE.
  • the first communication device 40 includes an acquisition unit 401 and a reception unit 402.
  • the obtaining unit 401 is configured to acquire the first configuration information, where the first configuration information is used to indicate that the first communications device detects the downlink control information DCI in the first region, where the first region is the time-frequency resource in the first transmission time interval TTI. region;
  • the receiving unit 402 is configured to detect the DCI in the first area in the first TTI.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the first area includes a preset orthogonal frequency division multiplexing OFDM symbol or a resource block RB.
  • the length of the first TTI is less than one subframe.
  • the first region when the DCI is used to indicate the downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is in the interval [1, 14] An integer; when the DCI is used to indicate an uplink grant of the first communication device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer within the interval [1, 14].
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4.
  • the receiving unit 402 is further configured to receive the first configuration information sent by the second communications device.
  • the first configuration information may be transmitted to the first communications device by using the RRC signaling, the system information block (SIB), or the medium access control (MAC) signaling.
  • RRC radio resource control
  • SIB system information block
  • MAC medium access control
  • the obtaining unit 401 is further configured to detect the first configuration information in the second area, where the second area is a time-frequency resource area included in the PDCCH in the first TTI, or the second area is in the first TTI The time-frequency resource area included in the PDSCH.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the obtaining unit 401 is further configured to obtain first length information, where the first length information is used to indicate a length of the DCI.
  • the receiving unit 402 is further configured to detect the DCI according to the length indicated by the first length information in the first area in the first TTI.
  • the first area is a time-frequency resource occupied by the DCI
  • the receiving unit 402 is further used in the The first region in a TTI decodes the DCI.
  • the first communication device acquires the first configuration information, where the first configuration information is used to indicate that the first communication device detects the downlink control information DCI in the first region, and the first region in the first TTI detects the DCI.
  • the first communication device only needs to detect in the first region, and does not need to detect the PDSCH channel and the PDCCH channel separately, especially in the length of the first TTI.
  • the application scenario of less than one subframe solves the problem that the receiving end has high detection complexity and large power consumption in the DCI.
  • the embodiment of the present invention provides a second communication device, which is used to perform the information transmission method described in the foregoing embodiment corresponding to FIG. 3.
  • the second communication device may be an eNB.
  • the second communication device 50 includes a transmitting unit 501.
  • the sending unit 501 is configured to send the first configuration information to the first communications device, where the first configuration information is used to indicate that the first communications device detects the downlink control information DCI in the first region, where the first region is in the first transmission time interval TTI Time-frequency resource area;
  • the sending unit 501 is further configured to send the DCI to the first communications device in the first area indicated by the first configuration information.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the first area includes a preset orthogonal frequency division multiplexing OFDM symbol or a resource block RB.
  • the length of the first TTI is less than one subframe.
  • the first region When the DCI is used to indicate a downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is an integer in the interval [1, 14]; When the DCI is used to indicate an uplink grant of the first communication device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer in the interval [1, 14].
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4.
  • the first configuration information may be transmitted to the first communications device by using the RRC signaling, the system information block (SIB), or the medium access control (MAC) signaling.
  • RRC radio resource control
  • SIB system information block
  • MAC medium access control
  • the first configuration information is located in the second area, the second area is a time-frequency resource area included in the PDCCH in the first TTI, or the second area is a time-frequency resource included in the PDSCH in the first TTI. region.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration
  • the set information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the first area may be a time-frequency resource occupied by the DCI.
  • the second communication device provided by the embodiment sends the first configuration information to the first communication device, where the first configuration information is used to instruct the first communication device to detect the downlink control information DCI in the first region;
  • the indicated first area transmits a DCI to the first communication device.
  • the second communication device clarifies the area where the first communication device detects the DCI by transmitting the first configuration information to the first communication device, and the first communication device only needs to perform detection in the first region, and does not need to channel the PDSCH.
  • the detection of the PDCCH channel and the PDCCH channel respectively solve the problem that the detection of the DCI by the receiving end is high and the power consumption is large.
  • the first communication device 60 includes a processor 601, a memory 602 and a receiver 603; a processor 601, a memory 602 and a receiver 603 are connected to each other, and the processor 601 is configured to execute a program stored in the memory 602. .
  • the receiver 603 can be controlled by an independent program.
  • the receiver 603 can have a separate chip, or the receiver 603 simply receives the signal, and further data processing is completed by the processor 601.
  • the processor 601 calls the program to receive information through the receiver 604 as an example for description.
  • the processor 601 is configured to obtain the first configuration information, where the first configuration information is used to indicate that the first communications device detects the downlink control information DCI in the first region, where the first region is a time-frequency resource in the first transmission time interval TTI. region;
  • the processor 601 is further configured to detect the DCI in the first area in the first TTI by the receiver 603.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the first area includes a preset orthogonal frequency division multiplexing OFDM symbol or a resource block RB.
  • the length of the first TTI is less than one subframe.
  • the first region when the DCI is used to indicate the downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is in the interval [1, 14] An integer; when the DCI is used to indicate an uplink grant of the first communication device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer within the interval [1, 14].
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes a format. At least one of 1/1A/1B/1C/1D/2/2A/2B/2C/0/4.
  • the processor 601 is further configured to receive, by the receiver 603, the first configuration information that is sent by the second communications device.
  • the first configuration information may be transmitted to the first communications device by using the RRC signaling, the system information block (SIB), or the medium access control (MAC) signaling.
  • RRC radio resource control
  • SIB system information block
  • MAC medium access control
  • the processor 601 is further configured to detect the first configuration information in the second area, where the second area is a time-frequency resource area included in the PDCCH in the first TTI, or the second area is in the first TTI The time-frequency resource area included in the PDSCH.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the processor 601 is further configured to acquire first length information, where the first length information is used to indicate the length of the DCI, and the first area in the first TTI is received by the receiver 603 according to the first length information. Length detection DCI.
  • the first area is a time-frequency resource occupied by the DCI
  • the processor 601 is further configured to decode the DCI by using the first region in the first TTI.
  • the first communication device acquires the first configuration information, where the first configuration information is used to indicate that the first communication device detects the downlink control information DCI in the first region, and the first region in the first TTI detects the DCI.
  • the first communication device only needs to detect in the first region, and does not need to detect the PDSCH channel and the PDCCH channel separately, especially in the length of the first TTI.
  • the application scenario of less than one subframe solves the problem that the receiving end has high detection complexity and large power consumption in the DCI.
  • the first communication device 70 includes a processor 701, a memory 702 and a transmitter 703.
  • the processor 701, the memory 702 and the transmitter 703 are connected to each other, and the processor 701 is configured to execute a program stored in the memory 702. .
  • the transmitter 703 can be controlled by an independent program.
  • the transmitter 703 can have a separate chip, or the transmitter 703 simply transmits a signal, and further data processing is completed by the processor 701.
  • the processor 701 calls the program to send information through the transmitter 703 as an example for description.
  • the processor 701 is configured to send, by using the transmitter 703, first configuration information to the first communications device, where a configuration information is used to indicate that the first communications device detects the downlink control information DCI in the first region, where the first region is a time-frequency resource region in the first transmission time interval TTI;
  • the processor 701 is further configured to send, by the transmitter 703, the DCI to the first communications device in the first area indicated by the first configuration information.
  • the first area is a time-frequency resource area included in the physical downlink control channel PDCCH, or the first area is a time-frequency resource area included in the physical downlink shared channel PDSCH.
  • the first area includes a preset orthogonal frequency division multiplexing OFDM symbol or a resource block RB.
  • the length of the first TTI is less than one subframe.
  • the first region when the DCI is used to indicate the downlink grant of the first communications device, the first region includes the first N orthogonal frequency division multiplexing OFDM symbols in the first TTI, where N is in the interval [1, 14] An integer; when the DCI is used to indicate an uplink grant of the first communication device, the first region includes the last M OFDM symbols in the first TTI, and M is an integer within the interval [1, 14].
  • the first configuration information is further used to indicate a format of the DCI, and the format of the DCI includes at least one of the formats 1/1A/1B/1C/1D/2/2A/2B/2C/0/4.
  • the first configuration information may be transmitted to the first communications device by using the RRC signaling, the system information block (SIB), or the medium access control (MAC) signaling.
  • RRC radio resource control
  • SIB system information block
  • MAC medium access control
  • the first configuration information is located in the second area, the second area is a time-frequency resource area included in the PDCCH in the first TTI, or the second area is a time-frequency resource included in the PDSCH in the first TTI. region.
  • the first configuration information includes a radio network temporary identifier RNTI field, or the first configuration information includes a cyclic redundancy code CRC scrambled by the RNTI.
  • the first area is a time-frequency resource occupied by the DCI.
  • the second communication device provided by the embodiment sends the first configuration information to the first communication device, where the first configuration information is used to instruct the first communication device to detect the downlink control information DCI in the first region;
  • the indicated first area transmits a DCI to the first communication device.
  • the second communication device clarifies the area where the first communication device detects the DCI by transmitting the first configuration information to the first communication device, and the first communication device only needs to perform detection in the first region, and does not need to channel the PDSCH.
  • the detection of the PDCCH channel and the PDCCH channel respectively solve the problem that the detection of the DCI by the receiving end is high and the power consumption is large.
  • An embodiment of the present invention provides an information transmission system for performing the information transmission method described in the embodiments corresponding to FIG. 1 and FIG. 3, which is described above with reference to FIG.
  • the information transmission system 80 provided in this embodiment includes: a first communication device 801 and a second communication device 802.
  • the first communication device 801 can be a UE
  • the second communication device 802 can be an eNB.
  • the first communication device 801 is the first communication device described in the embodiment corresponding to FIG. 4, and the second communication device is the second communication device described in the embodiment corresponding to FIG. 5;
  • the first communication device 801 is the first communication device described in the embodiment corresponding to FIG. 6, and the second communication device is the second communication device described in the embodiment corresponding to FIG.
  • the first communication device acquires the first configuration information
  • the first configuration information is used to instruct the first communication device to detect the downlink control information DCI in the first region
  • the first region in the first TTI detects the DCI .
  • the DCI performs the problem of high detection complexity and large power consumption.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明公开了信息传输方法、设备及系统,涉及通信领域,能够解决现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。具体方案为:第一通信设备获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI;第一通信设备在第一TTI中的第一区域检测DCI。本发明用于信息传输。

Description

信息传输方法、设备及系统 技术领域
本发明涉及通信领域,特别涉及信息传输方法、设备及系统。
背景技术
在无线网络通信系统中,例如长期演进(英文:Long Term Evolution,简称:LTE)系统,第三代合作伙伴计划(英文:3rd Generation Partnership Project,简称:3GPP)系统,增强型长期演进(英文:Long Term Evolution-Advanced,简称:LTE-A)系统,时频资源在时域上被划分为多个无线帧用于传输信息,通常一个无线帧为10毫秒(英文:Millisecond,简称:ms),包括10个1ms的子帧,一个子帧包括12或14个正交频分复用(英文:Orthogonal Frequency Division,简称:OFDM)符号。在一个子帧所指示的时域内,即一个传输时间间隔(英文:Transmission Time Interval,简称:TTI)内,可以传输多个信道,例如物理下行控制信道(英文:Physical Downlink Control Channel,简称:PDCCH),物理下行共享信道(英文:Physical Downlink Shared CHannel,简称:PDSCH)等。PDCCH信道中可以传输下行控制信息(英文:Downlink Control Information,简称:DCI),DCI信息用于指示数据的资源分配、调制解调方式等。通常情况下,PDCCH占用了一个子帧的前1-3个OFDM符号,对于一个接收端而言,无法获取其DCI在PDCCH中的具体资源位置,以及该接收端的DCI对应的PDCCH所使用的控制信道单元(英文Control Channel Element,简称:CCE)的汇聚级别(英文:Aggregation level,简称:AL),因此,接收端需要进行盲检测以获取DCI,即以不同的资源位置、DCI长度(当需要解码多个DCI时)和汇聚级别不断尝试检测PDCCH,直到正确译码DCI。而为了支持小包业务,一个TTI可以只占半个子帧或若干个OFDM符号,而在这种小包业务的应用场景下,每个TTI仍包括独立的PDCCH,就会造成控制信令开销过大。
现有技术中,在TTI比较短的时候,将DCI信息嵌入到PDSCH传输,即将PDSCH所占的资源中的一部分资源用于传输DCI信息。但如果DCI用于指示上行数据传输,由于调度的是当前TTI之后的某个TTI的数据传输,没有 PDSCH可以嵌入,所以仍然需要在PDCCH上发送,这就需要为PDCCH预留资源。如果为PDCCH预留资源太多,会造成资源浪费,而预留资源太少,则当需要调度的UE数量多时可能资源不够用,为均衡起见,现有技术中,DCI可能在PDSCH中,也可能在PDCCH中,接收端需要在PDSCH和PDSCH中都检测DCI信息。
在实现上述信息传输的过程中,发明人发现,现有技术中接收端对DCI进行检测复杂度较高,功耗较大。
发明内容
为了解决现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题,本发明提供了信息传输方法、设备及系统。所述技术方案如下:
第一方面,本发明提供一种信息传输方法,该方法包括:
第一通信设备获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
第一通信设备在第一TTI中的第一区域检测DCI。
在一种可能的实现中,该第一TTI的时间长度小于一个子帧。
在一种可能的实现中,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。可选的,该PDCCH可以为普通的PDCCH、增强型PDCCH(EPDCCH)、或者短物理下行控制信道sPDCCH(用于长度小于一个子帧的TTI中的PDCCH)。在一种具体的实现方式中,第一区域是第一TTI种的PDCCH所占用的时频资源区域,或者,第一区域是第一TTI种的PDSCH所占用的时频资源区域。
在一种可能的实现中,第一区域包含预设的正交频分复用OFDM符号或资源块RB。示例性的,该第一区域可以是该第一TTI中的奇数序号的资源块RB,或者第一区域是该第一TTI中的偶数序号的RB,或者该第一区域是该第一TTI中的前几个RB,或者该第一区域是该第一TTI中的最后几个RB。
示例性的,第一区域可以是第一通信设备预先存储的,第一配置信息只用于指示在第一区域检测DCI,或者,第一区域包含于第一配置信息之中。
在一种可能的实现中,第一配置信息还用于指示DCI的格式,DCI的格式 包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。示例性的,第一配置信息可以包含DCI格式,或者,第一配置信息不包含DCI格式,其具体指示方式,本发明不作限制。例如,第一配置信息可以不包含DCI格式,可以是第一区域与DCI格式中的某几个格式对应,当第一配置信息指示检测第一区域时,第一通信设备就只检测第一区域对应的这几个DCI格式。或者,第一配置信息包含第一通信设备需要检测的DCI格式,具体的,可以是第一配置信息的特定字段用于指示需要检测的DCI格式,当然,此处只是举例说明。
在一种可能的实现中,第一通信设备获取第一配置信息,包括:
第一通信设备接收第二通信设备发送的第一配置信息。
在一种可能的实现中,第一通信设备预先存储第一配置信息。
在一种可能的实现中,第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
在一种可能的实现中,第一通信设备接收第二通信设备发送的第一配置信息,包括:
第一通信设备在第二区域检测第一配置信息,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
在一种具体的实现方式中,该第二区域可以是第一配置信息所占用的时频资源,第一通信设备可以直接在第二区域对第一配置信息进行译码。第一配置信息的长度可以是固定的长度,或者,第一配置信息的长度可以和DCI长度一致。
可选的,第二区域可以包含预先设定的正交频分复用OFDM符号或资源块RB,例如,该第二区域可以是第二TTI中的奇数序号的资源块RB,或者第二区域是该第二TTI中的偶数序号的RB,或者该第二区域是该第二TTI中的前几个RB,或者该第二区域是该第二TTI中的最后几个RB。优选的,该第二TTI与第一TTI是同一个TTI,或者,该第二TTI为第一TTI之前的一个TTI。
在一种可能的实现中,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
在一种可能的实现中,第一通信设备在第一TTI中的第一区域检测DCI之前,方法还包括:
第一通信设备获取第一长度信息,第一长度信息用于指示DCI的长度;
第一通信设备在第一TTI中的第一区域检测DCI,包括:
第一通信设备在第一TTI中的第一区域根据第一长度信息所指示的长度检测DCI。
示例性的,第一通信设备预先存储该第一长度信息,即在一定时间段内,第一通信设备检测的DCI长度固定。
在一种可能的实现中,第一区域为DCI所占用的时频资源,即第一区域为DCI在第一TTI中具体的资源位置;
第一通信设备在第一TTI中的第一区域检测DCI,包括:
第一通信设备在第一TTI中的第一区域对DCI进行译码。
在一种可能的实现中,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
在一种可能的实现中,当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
示例性的,N为1,M为1。
第二方面,本发明提供一种信息传输方法,该方法包括:
第二通信设备向第一通信设备发送第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
第二通信设备在第一配置信息所指示的第一区域向第一通信设备发送DCI。
在一种可能的实现中,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
在一种可能的实现中,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
在一种可能的实现中,该第一TTI的时间长度小于一个子帧。
在一种可能的实现中,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
在一种可能的实现中,第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
在一种可能的实现中,第一配置信息位于第二区域内,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
在一种可能的实现中,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
在一种可能的实现中,第一区域为DCI所占用的时频资源。
在一种可能的实现中,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
在一种可能的实现中,当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
第三方面,本发明提供一种第一通信设备,包括:
获取单元,用于获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
接收单元,用于在第一TTI中的第一区域检测DCI。
在一种可能的实现中,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
在一种可能的实现中,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
在一种可能的实现中,该第一TTI的时间长度小于一个子帧。
在一种可能的实现中,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
在一种可能的实现中,接收单元,还用于接收第二通信设备发送的第一配置信息。
在一种可能的实现中,第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
在一种可能的实现中,接收单元,还用于在第二区域检测第一配置信息,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
在一种可能的实现中,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
在一种可能的实现中,获取单元,还用于获取第一长度信息,第一长度信息用于指示DCI的长度;
接收单元,还用于在第一TTI中的第一区域根据第一长度信息所指示的长度检测DCI。
在一种可能的实现中,第一区域为DCI所占用的时频资源;
接收单元,还用于在第一TTI中的第一区域对DCI进行译码。
在一种可能的实现中,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
在一种可能的实现中,当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
第四方面,本发明提供一种第二通信设备,包括:
发送单元,用于向第一通信设备发送第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
发送单元,还用于在第一配置信息所指示的第一区域向第一通信设备发送DCI。
在一种可能的实现中,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
在一种可能的实现中,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
在一种可能的实现中,该第一TTI的时间长度小于一个子帧。
在一种可能的实现中,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
在一种可能的实现中,第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
在一种可能的实现中,第一配置信息位于第二区域内,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的 PDSCH所包括的时频资源区域。
在一种可能的实现中,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
在一种可能的实现中,第一区域为DCI所占用的时频资源。
在一种可能的实现中,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
在一种可能的实现中,当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
第五方面,本发明提供一种第一通信设备,包括:处理器,存储器和接收器;处理器、存储器和接收器相互连接,处理器用于执行存储器中存储的程序;
处理器,用于获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
处理器,还用于通过接收器在第一TTI中的第一区域检测DCI。
在一种可能的实现中,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
在一种可能的实现中,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
在一种可能的实现中,该第一TTI的时间长度小于一个子帧。
在一种可能的实现中,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
在一种可能的实现中,处理器,还用于通过接收器接收第二通信设备发送的第一配置信息。
在一种可能的实现中,第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
在一种可能的实现中,处理器,还用于在第二区域检测第一配置信息,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
在一种可能的实现中,第一配置信息包括无线网络临时标识RNTI字段, 或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
在一种可能的实现中,处理器,还用于获取第一长度信息,第一长度信息用于指示DCI的长度;并通过接收器在第一TTI中的第一区域根据第一长度信息所指示的长度检测DCI。
在一种可能的实现中,第一区域为DCI所占用的时频资源;
处理器,还用于第一TTI中的第一区域对DCI进行译码。
在一种可能的实现中,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
在一种可能的实现中,当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
第六方面,本发明提供一种第二通信设备,包括:处理器,存储器和发送器;处理器、存储器和发送器相互连接,处理器用于执行存储器中存储的程序;
处理器,用于通过发送器向第一通信设备发送第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
处理器,还用于通过发送器在第一配置信息所指示的第一区域向第一通信设备发送DCI。
在一种可能的实现中,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
在一种可能的实现中,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
在一种可能的实现中,该第一TTI的时间长度小于一个子帧。
在一种可能的实现中,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
在一种可能的实现中,当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
在一种可能的实现中,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
在一种可能的实现中,第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
在一种可能的实现中,第一配置信息位于第二区域内,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
在一种可能的实现中,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
在一种可能的实现中,第一区域为DCI所占用的时频资源。
在一种可能的实现中,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
在一种可能的实现中,当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
第七方面,本发明提供一信息传输系统,包括:第一通信设备和第二通信设备;
第一通信设备为第三方面或第三方面的任意一种可能的实现中所描述的第一通信设备,第二通信设备为第四方面或第四方面的任意一种可能的实现中所描述的第二通信设备;
第一通信设备为第五方面或第五方面的任意一种可能的实现中所描述的第一通信设备,第二通信设备为第六方面或第六方面的任意一种可能的实现中所描述的第二通信设备。
本发明提供的信息传输方法、设备及系统,第一通信设备获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI;在第一TTI中的第一区域检测DCI。这样,当DCI可以在PDSCH信道,或者PDCCH信道传输时,第一通信设只需要在第一区域内进行检测,不需要对PDSCH信道和PDCCH信道分别进行检测,解决了现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种信息传输方法流程示意图;
图2是本发明实施例提供的一种DCI在TTI中的时频资源位置示意图;
图3是本发明另一实施例提供的一种信息传输方法流程示意图;
图4是本发明实施例提供的一种第一通信设备结构示意图;
图5是本发明实施例提供的一种第二通信设备结构示意图;
图6是本发明另一实施例提供的一种第一通信设备结构示意图;
图7是本发明另一实施例提供的一种第二通信设备结构示意图;
图8是本发明实施例提供的一种信息传输系统结构示意图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明实施例提供的信息传输方法、设备及系统可以应用在无线网络通信系统中,例如长期演进(英文:Long Term Evolution,简称:LTE)系统,第三代合作伙伴计划(英文:3rd Generation Partnership Project,简称:3GPP)系统,增强型长期演进(英文:Long Term Evolution-Advanced,简称:LTE-A)系统。优选的,可以应用于基站(英文:Evolved Node B,简称:eNB)和用户设备(英文:User Equipment,简称:UE)之间的信息传输,例如,当eNB向UE传输下行控制信息(英文:Downlink Control Information,简称:DCI)时。通常,时频资源在时域上被划分为多个无线帧用于传输信息,一个无线帧为10毫秒(英文:Millisecond,简称:ms),包括10个1ms的子帧,一个子帧包括12或14个正交频分复用(英文:Orthogonal Frequency Division,简称:OFDM)符号。需要说明是的,传输时间间隔(英文:Transmission Time Interval,简称:TTI)是资源调度的颗粒度,无线帧/子帧/时隙/符号是无线资源的时间 刻度,当网络设备准备在无线资源上发送数据时,以TTI为单位发送,TTI和无线资源可以存在对应关系。eNB以传输时间间隔(英文:Transmission Time Interval,简称:TTI)为单位向UE传输信息,此时,TTI可以为一个子帧,但一个TTI也可以只包括半个子帧或若干个OFDM符号。一个TTI中的时频资源可以用于传输不同信道,根据传输信息的功能不同分为不同种类,例如物理下行控制信道(英文:Physical Downlink Control Channel,简称:PDCCH),物理下行共享信道(英文:Physical Downlink Shared CHannel,简称:PDSCH)等。PDCCH信道中可以传输下行控制信息(英文:Downlink Control Information,简称:DCI),DCI信息用于指示数据的资源分配、调制解调方式等。每个信道会占用若干个OFDM符号用以传输信息。当然,此处只是举例说明,并不代表本发明局限于此。
本发明实施例提供一种信息传输方法,该信息传输方法应用于第一通信设备,该第一通信设备为信息传输中的接收端设备,优选的,该第一通信设备可以是UE。本实施例以第一通信设备在第一TTI的信息传输为例进行说明,该第一TTI是一个TTI,可以用于表示当前传输信息的TTI,与泛意的一个TTI并无区别,此处只是为表述清楚,并不代表对TTI的任何限定,参照图1所示,本实施例提供的信息传输方法包括以下步骤:
101、第一通信设备获取第一配置信息。
第一配置信息用于指示第一通信设备在第一区域对DCI进行检测,第一区域为第一TTI中的时频资源区域。
可选的,第一区域包含预设的OFDM符号或资源块(英文:Resource Block,简称:RB),该第一区域可以是该第一TTI中的奇数序号的符号或RB,或者是该第一TTI中的偶数序号的符号或RB,或者是该第一TTI中的前几个符号或RB,或者是该第一TTI中的最后几个符号或RB。
第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。可选的,该PDCCH可以为普通的PDCCH、增强型物理下行控制信道(英文:Envolved Physical Downlink Control Channel,简称:EPDCCH)、或者短物理下行控制信道(英文:Short Physical Downlink Control Channel,简称:sPDCCH),sPDCCH用于长度小于一个子帧的TTI中。可选的,第一配置信息用于指示第一通信设备在第一区域对DCI进行检测,可以是第一配置信息中包含1比特,用于指示 DCI是在PDCCH还是PDSCH;或者,第一区域可以是第一通信设备预先存储的,第一配置信息只用于指示是否在第一区域检测DCI,或者,第一配置信息包含第一区域的具体时频位置。在一种具体的实现方式中,第一区域是第一TTI种的PDCCH所占用的时频资源区域,或者,第一区域是第一TTI种的PDSCH所占用的时频资源区域。
可选的,当DCI用于指示第一通信设备的下行链路许可(英文:Downlink grant)时,第一区域包括第一TTI中的前N个正交频分复用(英文:Orthogonal Frequency Division,简称:OFDM)符号,N为区间[1,14]内的整数;当DCI用于指示第一通信设备的上行链路许可(英文:Uplink grant)时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数,优选的,N和M均为1。
需要说明的是,本发明中第一TTI的时间长度小于一个子帧,可以是半个子帧或者一个子帧中的若干个OFDM符号,为了节省控制信令所占用的时频资源,DCI也可以通过PDSCH信道传输,如图2所示。
优选的,如果DCI信息用于指示第一通信设备的下行链路许可,则需要通过检测获取DCI才能解调通过PDSCH传输的数据,所以可以将DCI置于第一TTI中的前几个OFDM符号;而如果DCI信息用于指示第一通信设备的上行链路路许可,则DCI所调度的PUSCH为当前TTI之后的TTI,所以,可以将DCI置于第一TTI种的最后几个OFDM符号。当然,此处只是举例说明,DCI也可以在PDCCH中传输,第一配置信息旨在指示DCI的位置,以使第一通信设备确定对DCI进行检测的区域,进而减少检测的复杂度,减小第一通信设备的功耗。
可选的,第一配置信息还用于指示DCI的格式(英文:Format),DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。可选的,DCI的格式中,格式0/4用于调度物理上行共享信道(英文:Physical Uplink Shared Channel,简称:PUSCH),用于指示上行链路许可;格式1/1A/1B/1C/1D/2/2A/2B/2C用于调度PDSCH,用于指示下行链路许可。因此,当第一配置信息指示了DCI的格式时,第一通信设备对DCI进行检测时只需要检测所指示的DCI格式,大大降低了检测的复杂度。需要说明的是,第一配置信息可以包含DCI格式,或者,第一配置信息不包含DCI格式,其具体指示方式,本发明不作限制。例如,第一配置信息可以不包含DCI格式,可以是 第一区域与DCI格式中的某几个格式对应,当第一配置信息指示检测第一区域时,第一通信设备就只检测第一区域对应的这几个DCI格式;或者,第一配置信息包含第一通信设备需要检测的DCI格式,具体的,可以是第一配置信息的特定字段用于指示需要检测的DCI格式,当然,此处只是举例说明。
对于第一配置信息,可以是提前配置好的,预先存储于第一通信设备中,也可以是第二通信设备发送至第一通信设备的,对此,本发明不作限制,此处,本实施例列举三种具体获取第一配置信息的方式进行说明,并不代表本发明局限于此。
第一种方式、第一通信设备接收第二通信设备发送的第一配置信息,且该第一配置信息承载在高层信令上传输至第一通信设备。优选的,该第一配置信息可以承载在无线资源控制(英文:Radio Resource Control,简称:RRC)信令、系统信息块(英文:System Information Block,简称:SIB)或媒体接入控制(英文:MediaAccess Control,简称:MAC)信令上传输至第一通信设备。因为高层信令传输频率较低,利用如RRC信令或SIB这种高层信令传输第一配置信息可以减少信令开销,而且又可以灵活调整DCI的位置,不会因为DCI位置固定而对数据传输产生影响。
第二种方式,第一配置信息提前存储于第一通信设备,例如,可以通过网络通信协议规定第一配置信息所指示的第一区域,这样,第一通信设备只需要在第一区域内对DCI进行检测,降低了检测的复杂度。
第三种方式,第一通信设备在第二区域检测第一配置信息,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。第三种方式中,第一配置信息通过物理层信令传输至第一通信设备,因此需要首先对第一配置信息进行检测并获取该第一配置信息。这种方式对于第一区域的调整更加灵活,即DCI的位置可以灵活的调整,同时,因为第一区域和第二区域都对检测的范围进行了限定,也在一定程度上减小了检测的复杂度。示例性的,该第二区域可以是第一配置信息所占用的时频资源,第一通信设备可以直接在第二区域对第一配置信息进行译码。第一配置信息的长度可以是固定的长度,或者,第一配置信息的长度可以和DCI长度一致。
可选的,第二区域可以包含预先设定的正交频分复用OFDM符号或资源块RB,例如,该第二区域可以是第二TTI中的奇数序号的资源块RB,或者第 二区域是该第二TTI中的偶数序号的RB,或者该第二区域是该第二TTI中的前几个RB,或者该第二区域是该第二TTI中的最后几个RB。优选的,该第二TTI与第一TTI是同一个TTI,或者该第二TTI是第一TTI之前的一个TTI。
可选的,第一配置信息包括无线网络临时标识(英文:Radio Network Temporary Identity,简称:RNTI)字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码(英文:Cyclic Redundancy Code,简称:CRC)。
102、第一通信设备在第一TTI中的第一区域检测DCI。
需要说明的是,本发明中所说的检测DCI或者是检测第一配置信息,是接收DCI或第一配置信息,并对接收的信息进行盲检测,检测是正确接收、解码、获取信息的具体实现方式,当然,此处只是举例说明本发明中检测的含义,并不代表本发明局限于此。
可选的,在一种优选的实现方式中,步骤102之前,第一通信设备可以获取第一长度信息,第一长度信息用于指示DCI的长度,在执行步骤102时,第一通信设备可以在第一TTI中的第一区域根据第一长度信息所指示的长度检测DCI。第一通信设备可以预先存储该第一长度信息,即在一定时间段内,第一通信设备检测的DCI长度固定。这样第一通信设备只需要检测固定长度的DCI,减少了检测复杂度。
另外,可选的,在另一种优选的实现方式中,第一区域为DCI所占用的时频资源;第一通信设备可以在第一TTI中的第一区域对DCI进行译码。因为第一区域直接指示的时DCI所占用的时频资源,即第一区域为DCI在第一TTI中具体的资源位置,第一通信设备可以直接对DCI进行译码,提高了接收数据的效率。
本实施例提供的信息传输方法,第一通信设备获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI;在第一TTI中的第一区域检测DCI。这样,当DCI可以在PDSCH信道,或者PDCCH信道传输时,第一通信设备只需要在第一区域内进行检测,不需要对PDSCH信道和PDCCH信道分别进行检测,尤其是在第一TTI的时间长度小于一个子帧的应用场景,解决了现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。
结合上述图1对应的实施例,本发明另一实施例提供一种信息传输方法,该信息传输方法应用于第二通信设备,该第二通信设备为信息传输中的发送端 设备,优选的,该第一通信设备可以是eNB。参照图3所示,本实施例提供的信息传输方法包括以下步骤:
301、第二通信设备向第一通信设备发送第一配置信息。
第一配置信息用于指示第一通信设备在第一区域对DCI进行检测,第一区域为第一传输时间间隔TTI中的时频资源区域,可选的,第一区域是PDCCH所包括的时频资源区域,或者,第一区域是PDSCH所包括的时频资源区域。优选的,第一TTI的时间长度小于一个子帧。在一种优选的实现方式中,第一区域为DCI所占用的时频资源。
优选的,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
可选的,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数;当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
可选的,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
对应图1对应的实施例中所描述的第一种传输第一配置信息的方式,第一配置信息可以承载在RRC信令、SIB或MAC信令上传输至第一通信设备。
对应图1对应的实施例中所描述的第三种传输第一配置信息的方式,第一配置信息位于第二区域内,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
可选的,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
302、第二通信设备在第一配置信息所指示的第一区域向第一通信设备发送DCI。
本实施例提供的信息传输方法,第二通信设备向第一通信设备发送第一配置信息,第一配置信息用于指示第一通信设备在第一区域对下行控制信息DCI进行检测;在第一配置信息所指示的第一区域向第一通信设备发送DCI。这样,第二通信设备通过向第一通信设备发送第一配置信息,明确了第一通信设备对DCI进行检测的区域,第一通信设只需要在第一区域内进行检测,不需要对PDSCH信道和PDCCH信道分别进行检测,解决了现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。
基于上述图1对应的实施例,本发明实施例提供一种第一通信设备,用于执行上述图1对应的实施例中所描述的信息传输方法,优选的,该第一通信设备可以是UE。参照图4所示,该第一通信设备40包括:获取单元401和接收单元402。
其中,获取单元401,用于获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
接收单元402,用于在第一TTI中的第一区域检测DCI。
可选的,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
可选的,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
可选的,该第一TTI的时间长度小于一个子帧。
可选的,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数;当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
可选的,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
可选的,接收单元402,还用于接收第二通信设备发送的第一配置信息。
可选的,第一配置信息可以承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
可选的,获取单元401,还用于在第二区域检测第一配置信息,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
可选的,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
可选的,获取单元401,还用于获取第一长度信息,第一长度信息用于指示DCI的长度;
接收单元402,还用于在第一TTI中的第一区域根据第一长度信息所指示的长度检测DCI。
可选的,第一区域为DCI所占用的时频资源;接收单元402,还用于在第 一TTI中的第一区域对DCI进行译码。
本实施例提供的第一通信设备,获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI;在第一TTI中的第一区域检测DCI。这样,当DCI可以在PDSCH信道,或者PDCCH信道传输时,第一通信设只需要在第一区域内进行检测,不需要对PDSCH信道和PDCCH信道分别进行检测,尤其是在第一TTI的时间长度小于一个子帧的应用场景,解决了现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。
基于上述图3对应的实施例,本发明实施例提供一种第二通信设备,用于执行上述图3对应的实施例中所描述的信息传输方法,优选的,该第二通信设备可以是eNB。参照图5所示,该第二通信设备50包括:发送单元501。
发送单元501,用于向第一通信设备发送第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
发送单元501,还用于在第一配置信息所指示的第一区域向第一通信设备发送DCI。
可选的,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
可选的,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
可选的,该第一TTI的时间长度小于一个子帧。
当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数;当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
可选的,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
可选的,第一配置信息可以承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
可选的,第一配置信息位于第二区域内,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
可选的,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配 置信息包括通过RNTI加扰的循环冗余码CRC。
可选的,第一区域可以是DCI所占用的时频资源。
本实施例提供的第二通信设备,向第一通信设备发送第一配置信息,第一配置信息用于指示第一通信设备在第一区域对下行控制信息DCI进行检测;在第一配置信息所指示的第一区域向第一通信设备发送DCI。这样,第二通信设备通过向第一通信设备发送第一配置信息,明确了第一通信设备对DCI进行检测的区域,第一通信设只需要在第一区域内进行检测,不需要对PDSCH信道和PDCCH信道分别进行检测,解决了现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。
基于上述图1对应的实施例,本发明另一实施例提供一种第一通信设备,用于执行上述图1对应的实施例中所描述的信息传输方法,优选的,该第一通信设备可以是UE。参照图6所示,该第一通信设备60包括:处理器601,存储器602和接收器603;处理器601、存储器602和接收器603相互连接,处理器601用于执行存储器602中存储的程序。需要说明的是,接收器603可以有独立的程序进行控制,例如,接收器603可以有单独的芯片,或者,接收器603只是单纯地接收信号,进一步的数据处理过程由处理器601调用程序完成,对此本发明不做限制。本实施例中,以处理器601调用程序通过接收器604接收信息为例进行说明。
其中,处理器601,用于获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
处理器601,还用于通过接收器603在第一TTI中的第一区域检测DCI。
可选的,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
可选的,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
可选的,该第一TTI的时间长度小于一个子帧。
可选的,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数;当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
可选的,第一配置信息还用于指示DCI的格式,DCI的格式包括格式 1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
可选的,处理器601,还用于通过接收器603接收第二通信设备发送的第一配置信息。
可选的,第一配置信息可以承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
可选的,处理器601,还用于在第二区域检测第一配置信息,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
可选的,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
可选的,处理器601,还用于获取第一长度信息,第一长度信息用于指示DCI的长度;并通过接收器603在第一TTI中的第一区域根据第一长度信息所指示的长度检测DCI。
可选的,第一区域为DCI所占用的时频资源;
处理器601,还用于第一TTI中的第一区域对DCI进行译码。
本实施例提供的第一通信设备,获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI;在第一TTI中的第一区域检测DCI。这样,当DCI可以在PDSCH信道,或者PDCCH信道传输时,第一通信设只需要在第一区域内进行检测,不需要对PDSCH信道和PDCCH信道分别进行检测,尤其是在第一TTI的时间长度小于一个子帧的应用场景,解决了现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。
基于上述图3对应的实施例,本发明另一实施例提供一种第二通信设备,用于执行上述图3对应的实施例中所描述的信息传输方法,优选的,该第二通信设备可以是eNB。参照图5所示,该第一通信设备70包括:处理器701,存储器702和发送器703;处理器701、存储器702和发送器703相互连接,处理器701用于执行存储器702中存储的程序。需要说明的是,发送器703可以有独立的程序进行控制,例如,发送器703可以有单独的芯片,或者,发送器703只是单纯地发送信号,进一步的数据处理过程由处理器701调用程序完成,对此本发明不做限制。本实施例中,以处理器701调用程序通过发送器703发送信息为例进行说明。
处理器701,用于通过发送器703向第一通信设备发送第一配置信息,第 一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI,第一区域为第一传输时间间隔TTI中的时频资源区域;
处理器701,还用于通过发送器703在第一配置信息所指示的第一区域向第一通信设备发送DCI。
可选的,第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
可选的,第一区域包含预设的正交频分复用OFDM符号或资源块RB。
可选的,该第一TTI的时间长度小于一个子帧。
可选的,当DCI用于指示第一通信设备的下行链路许可时,第一区域包括第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数;当DCI用于指示第一通信设备的上行链路许可时,第一区域包括第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
可选的,第一配置信息还用于指示DCI的格式,DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
可选的,第一配置信息可以承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至第一通信设备。
可选的,第一配置信息位于第二区域内,第二区域是第一TTI中的PDCCH所包括的时频资源区域,或者,第二区域是第一TTI中的PDSCH所包括的时频资源区域。
可选的,第一配置信息包括无线网络临时标识RNTI字段,或者,第一配置信息包括通过RNTI加扰的循环冗余码CRC。
可选的,第一区域为DCI所占用的时频资源。
本实施例提供的第二通信设备,向第一通信设备发送第一配置信息,第一配置信息用于指示第一通信设备在第一区域对下行控制信息DCI进行检测;在第一配置信息所指示的第一区域向第一通信设备发送DCI。这样,第二通信设备通过向第一通信设备发送第一配置信息,明确了第一通信设备对DCI进行检测的区域,第一通信设只需要在第一区域内进行检测,不需要对PDSCH信道和PDCCH信道分别进行检测,解决了现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。
基于上述图1和图3对应的实施例,本发明实施例提供一种信息传输系统,用于执行上述图1和图3对应的实施例中所描述的信息传输方法,参照图8所 示,本实施例提供的信息传输系统80包括:第一通信设备801和第二通信设备802,优选的,该第一通信设备801可以是UE,该第二通信设备802可以是eNB。
具体的,第一通信设备801为图4对应的实施例中所描述的第一通信设备,第二通信设备为图5对应的实施例中所描述的第二通信设备;
或者,第一通信设备801为图6对应的实施例中所描述的第一通信设备,第二通信设备为图7对应的实施例中所描述的第二通信设备。
本发明提供的信息传输系统,第一通信设备获取第一配置信息,第一配置信息用于指示第一通信设备在第一区域检测下行控制信息DCI;在第一TTI中的第一区域检测DCI。这样,当DCI可以在PDSCH信道,或者PDCCH信道传输时,第一通信设只需要在第一区域内进行检测,不需要对PDSCH信道和PDCCH信道分别进行检测,解决了现有技术中接收端对DCI进行检测复杂度较高,功耗较大的问题。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (51)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    第一通信设备获取第一配置信息,所述第一配置信息用于指示所述第一通信设备在第一区域检测下行控制信息DCI,所述第一区域为第一传输时间间隔TTI中的时频资源区域;
    所述第一通信设备在所述第一TTI中的所述第一区域检测所述DCI。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,所述第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一区域包含预设的正交频分复用OFDM符号或资源块RB。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    所述第一TTI的时间长度小于一个子帧。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,
    所述第一配置信息还用于指示所述DCI的格式,所述DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一通信设备获取第一配置信息,包括:
    所述第一通信设备接收第二通信设备发送的所述第一配置信息。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至所述第一通信设备。
  8. 根据权利要求6所述的方法,其特征在于,所述第一通信设备接收第二通信设备发送的所述第一配置信息,包括:
    所述第一通信设备在第二区域内检测所述第一配置信息,所述第二区域是所述第一TTI中的PDCCH所包括的时频资源区域,或者,所述第二区域是所述第一TTI中的PDSCH所包括的时频资源区域。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,
    所述第一配置信息包括无线网络临时标识RNTI字段,或者,所述第一配置信息包括通过所述RNTI加扰的循环冗余码CRC。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一通信设备在所述第一TTI中的所述第一区域检测所述DCI之前,所述方法还包括:
    所述第一通信设备获取第一长度信息,所述第一长度信息用于指示所述DCI的长度;
    所述第一通信设备在所述第一TTI中的所述第一区域检测所述DCI,包括:
    所述第一通信设备在所述第一TTI中的所述第一区域根据所述第一长度信息所指示的长度检测所述DCI。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一区域为所述DCI所占用的时频资源;
    所述第一通信设备在所述第一TTI中的所述第一区域检测所述DCI,包括:
    所述第一通信设备在所述第一TTI中的所述第一区域对所述DCI进行译码。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,
    当所述DCI用于指示所述第一通信设备的下行链路许可时,所述第一区域包括所述第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,
    当所述DCI用于指示所述第一通信设备的上行链路许可时,所述第一区域包括所述第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
  14. 一种信息传输方法,其特征在于,所述方法包括:
    第二通信设备向第一通信设备发送第一配置信息,所述第一配置信息用于指示所述第一通信设备在第一区域检测下行控制信息DCI,所述第一区域为第一传输时间间隔TTI中的时频资源区域;
    所述第二通信设备在所述第一配置信息所指示的第一区域向所述第一通信设备发送所述DCI。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,所述第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述第一区域包含预设的正交频分复用OFDM符号或资源块RB。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,
    所述第一TTI的时间长度小于一个子帧。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,
    所述第一配置信息还用于指示所述DCI的格式,所述DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,
    所述第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至所述第一通信设备。
  20. 根据权利要求14-18任一项所述的方法,其特征在于,
    所述第一配置信息位于第二区域内,所述第二区域是所述第一TTI中的PDCCH所包括的时频资源区域,或者,所述第二区域是所述第一TTI中的PDSCH所包括的时频资源区域。
  21. 根据权利要求14-20任一项所述的方法,其特征在于,
    所述第一配置信息包括无线网络临时标识RNTI字段,或者,所述第一配置信息包括通过所述RNTI加扰的循环冗余码CRC。
  22. 根据权利要求14-21任一项所述的方法,其特征在于,
    所述第一区域为所述DCI所占用的时频资源。
  23. 根据权利要求14-22任一项所述的方法,其特征在于,
    当所述DCI用于指示所述第一通信设备的下行链路许可时,所述第一区域包括所述第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
  24. 根据权利要求14-23所述的方法,其特征在于,
    当所述DCI用于指示所述第一通信设备的上行链路许可时,所述第一区域包括所述第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
  25. 一种第一通信设备,其特征在于,包括:
    获取单元,用于获取第一配置信息,所述第一配置信息用于指示所述第一通信设备在第一区域检测下行控制信息DCI,所述第一区域为第一传输时间间隔TTI中的时频资源区域;
    接收单元,用于在所述第一TTI中的所述第一区域检测所述DCI。
  26. 根据权利要求25所述的设备,其特征在于,
    所述第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者, 所述第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
  27. 根据权利要求25或26所述的设备,其特征在于,
    所述第一区域包含预设的正交频分复用OFDM符号或资源块RB。
  28. 根据权利要求25-27任一项所述的方法,其特征在于,
    所述第一TTI的时间长度小于一个子帧。
  29. 根据权利要求25-28任一项所述的设备,其特征在于,
    所述第一配置信息还用于指示所述DCI的格式,所述DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
  30. 根据权利要求25-29任一项所述的设备,其特征在于,
    所述接收单元,还用于接收所述第二通信设备发送的所述第一配置信息。
  31. 根据权利要求30所述的设备,其特征在于,
    所述第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至所述第一通信设备。
  32. 根据权利要求30所述的设备,其特征在于,
    所述接收单元,还用于在第二区域内检测所述第一配置信息,所述第二区域是所述第一TTI中的PDCCH所包括的时频资源区域,或者,所述第二区域是所述第一TTI中的PDSCH所包括的时频资源区域。
  33. 根据权利要求30-32任一项所述的设备,其特征在于,
    所述第一配置信息包括无线网络临时标识RNTI字段,或者,所述第一配置信息包括通过所述RNTI加扰的循环冗余码CRC。
  34. 根据权利要求25-33任一项所述的设备,其特征在于,
    所述获取单元,还用于获取第一长度信息,所述第一长度信息用于指示所述DCI的长度;
    所述接收单元,还用于在所述第一TTI中的所述第一区域根据所述第一长度信息所指示的长度检测所述DCI。
  35. 根据权利要求25-34任一项所述的设备,其特征在于,所述第一区域为所述DCI所占用的时频资源;
    所述接收单元,还用于在所述第一TTI中的所述第一区域对所述DCI进行译码。
  36. 根据权利要求25-35任一项所述的设备,其特征在于,
    当所述DCI用于指示所述第一通信设备的下行链路许可时,所述第一区域 包括所述第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
  37. 根据权利要求25-36任一项所述的设备,其特征在于,
    当所述DCI用于指示所述第一通信设备的上行链路许可时,所述第一区域包括所述第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
  38. 一种第二通信设备,其特征在于,包括:
    发送单元,用于向第一通信设备发送第一配置信息,所述第一配置信息用于指示所述第一通信设备在第一区域检测下行控制信息DCI,所述第一区域为第一传输时间间隔TTI中的时频资源区域;
    所述发送单元,还用于在所述第一配置信息所指示的第一区域向所述第一通信设备发送所述DCI。
  39. 根据权利要求38所述的设备,其特征在于,
    所述第一区域是物理下行控制信道PDCCH所包括的时频资源区域,或者,所述第一区域是物理下行共享信道PDSCH所包括的时频资源区域。
  40. 根据权利要求38或39所述的设备,其特征在于,
    所述第一区域包含预设的正交频分复用OFDM符号或资源块RB。
  41. 根据权利要求38-40任一项所述的方法,其特征在于,
    所述第一TTI的时间长度小于一个子帧。
  42. 根据权利要求38-41任一项所述的设备,其特征在于,
    所述第一配置信息还用于指示所述DCI的格式,所述DCI的格式包括格式1/1A/1B/1C/1D/2/2A/2B/2C/0/4中的至少一项。
  43. 根据权利要求38-42任一项所述的设备,其特征在于,
    所述第一配置信息承载在无线资源控制RRC信令、系统信息块SIB或媒体接入控制MAC信令上传输至所述第一通信设备。
  44. 根据权利要求38-43任一项所述的设备,其特征在于,
    所述第一配置信息位于第二区域内,所述第二区域是所述第一TTI中的PDCCH所包括的时频资源区域,或者,所述第二区域是所述第一TTI中的PDSCH所包括的时频资源区域。
  45. 根据权利要求38-44任一项所述的设备,其特征在于,
    所述第一配置信息包括无线网络临时标识RNTI字段,或者,所述第一配置 信息包括通过所述RNTI加扰的循环冗余码CRC。
  46. 根据权利要求38-45任一项所述的设备,其特征在于,
    所述第一区域为所述DCI所占用的时频资源。
  47. 根据权利要求38-46任一项所述的设备,其特征在于,
    当所述DCI用于指示所述第一通信设备的下行链路许可时,所述第一区域包括所述第一TTI中的前N个正交频分复用OFDM符号,N为区间[1,14]内的整数。
  48. 根据权利要求38-47任一项所述的设备,其特征在于,
    当所述DCI用于指示所述第一通信设备的上行链路许可时,所述第一区域包括所述第一TTI中的最后M个OFDM符号,M为区间[1,14]内的整数。
  49. 一种第一通信设备,其特征在于,所述第一通信设备包括:处理器、存储器及接收器,所述处理器、所述存储器及所述接收器相互连接,所述存储器用于存储程序和数据,所述处理器用于调用所述存储器存储的程序执行如权利要求1-13中任一项所述方法。
  50. 一种第二通信设备,其特征在于,所述第一通信设备包括:处理器、存储器及发送器,所述处理器、所述存储器及所述发送器相互连接,所述存储器用于存储程序和数据,所述处理器用于调用所述存储器存储的程序执行如权利要求14-24中任一项所述方法。
  51. 一种信息传输系统,其特征在于,包括:第一通信设备和第二通信设备;
    所述第一通信设备为权利要求25-37任一项所述的第一通信设备,所述第二通信设备为权利要求38-48任一项所述的第二通信设备;
    或者,所述第一所述第一通信设备为权利要求49所述的第一通信设备,所述第二通信设备为权利要求50所述的第二通信设备。
PCT/CN2016/079286 2016-04-14 2016-04-14 信息传输方法、设备及系统 WO2017177419A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018554035A JP2019511889A (ja) 2016-04-14 2016-04-14 情報送信方法及びシステム並びに装置
RU2018139833A RU2712431C1 (ru) 2016-04-14 2016-04-14 Способ и система передачи информации и устройство
EP16898237.9A EP3432669A4 (en) 2016-04-14 2016-04-14 METHOD, DEVICE AND SYSTEM FOR TRANSMITTING INFORMATION
BR112018071013-0A BR112018071013A2 (pt) 2016-04-14 2016-04-14 dispositivo, sistema e método de transmissão de informação
PCT/CN2016/079286 WO2017177419A1 (zh) 2016-04-14 2016-04-14 信息传输方法、设备及系统
KR1020187032059A KR20180132118A (ko) 2016-04-14 2016-04-14 정보 송신 방법 및 시스템, 및 디바이스
CN201680084596.5A CN109314971B (zh) 2016-04-14 2016-04-14 信息传输方法、设备及系统
US16/159,708 US20190053208A1 (en) 2016-04-14 2018-10-14 Information transmission method and system, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079286 WO2017177419A1 (zh) 2016-04-14 2016-04-14 信息传输方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/159,708 Continuation US20190053208A1 (en) 2016-04-14 2018-10-14 Information transmission method and system, and device

Publications (1)

Publication Number Publication Date
WO2017177419A1 true WO2017177419A1 (zh) 2017-10-19

Family

ID=60042277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079286 WO2017177419A1 (zh) 2016-04-14 2016-04-14 信息传输方法、设备及系统

Country Status (8)

Country Link
US (1) US20190053208A1 (zh)
EP (1) EP3432669A4 (zh)
JP (1) JP2019511889A (zh)
KR (1) KR20180132118A (zh)
CN (1) CN109314971B (zh)
BR (1) BR112018071013A2 (zh)
RU (1) RU2712431C1 (zh)
WO (1) WO2017177419A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170673A1 (zh) * 2017-03-20 2018-09-27 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
WO2019030346A1 (en) 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) ASSIGNMENT OF PHYSICAL SHORT LINK CONTROL (SPDCCH) PHYSICAL CHANNELS FOR SHORT TRANSMISSION TIME INTERVAL (STTI)
US11533716B2 (en) * 2017-08-11 2022-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Flexible short Transmission Time Interval (TTI) resource allocation
CN110719635B (zh) * 2018-07-13 2021-09-17 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
US11558873B2 (en) * 2019-11-22 2023-01-17 Samsung Electronics Co., Ltd. Method and apparatus for group scheduling for PDCCH overhead reduction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958058A (zh) * 2011-08-17 2013-03-06 上海贝尔股份有限公司 在异构网中用于通知动态上下行配置的方法和装置
WO2013112017A1 (en) * 2012-01-26 2013-08-01 Samsung Electronics Co., Ltd. Method and apparatus for scheduling communication for low capability devices
CN104955155A (zh) * 2014-03-31 2015-09-30 中国电信股份有限公司 PDSCH数据接收方法、发送方法、用户设备和eNB

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107985A1 (en) * 2008-02-28 2009-09-03 Lg Electronics Inc. Method for multiplexing data and control information
JP5209346B2 (ja) * 2008-03-05 2013-06-12 株式会社エヌ・ティ・ティ・ドコモ 送信装置、送信方法、受信装置及び受信方法
CN102036305B (zh) * 2009-09-30 2014-05-07 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
CN102238621B (zh) * 2010-04-29 2016-03-30 中兴通讯股份有限公司 基于物理下行共享信道传输公共数据的方法和系统
WO2012154014A2 (ko) * 2011-05-12 2012-11-15 엘지전자 주식회사 무선 접속 시스템에서 데이터 송수신 방법, 이를 위한 기지국 및 단말
US9374819B2 (en) * 2011-10-13 2016-06-21 Lg Electronics Inc. Method and device for receiving control information in wireless communication system
CN103312649B (zh) * 2012-03-16 2015-08-19 华为终端有限公司 传输下行控制信息的方法、基站和用户设备
GB2509161B (en) * 2012-12-21 2018-09-26 Sony Corp Telecommunications apparatus and method
CN104301065B (zh) * 2013-07-16 2018-12-11 电信科学技术研究院 一种上下行配置的指示、确定方法及基站、终端
US10356695B2 (en) * 2015-02-06 2019-07-16 Lg Electronics Inc. Method and user equipment for receiving system information, and method and base station for transmitting system information
WO2017091033A1 (ko) * 2015-11-25 2017-06-01 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 수신 방법 및 이를 위한 장치
US10805914B2 (en) * 2016-03-30 2020-10-13 Lg Electronics Inc. Method for receiving downlink control information in wireless communication system supporting unlicensed band, and device for supporting same
US20180145818A1 (en) * 2016-11-22 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing uplink channels in wireless cellular communication system
WO2019032997A1 (en) * 2017-08-10 2019-02-14 Kyungmin Park SYNCHRONIZATION OF RADIO RESOURCE CONFIGURATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958058A (zh) * 2011-08-17 2013-03-06 上海贝尔股份有限公司 在异构网中用于通知动态上下行配置的方法和装置
WO2013112017A1 (en) * 2012-01-26 2013-08-01 Samsung Electronics Co., Ltd. Method and apparatus for scheduling communication for low capability devices
CN104955155A (zh) * 2014-03-31 2015-09-30 中国电信股份有限公司 PDSCH数据接收方法、发送方法、用户设备和eNB

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432669A4 *

Also Published As

Publication number Publication date
EP3432669A1 (en) 2019-01-23
BR112018071013A2 (pt) 2019-02-12
US20190053208A1 (en) 2019-02-14
JP2019511889A (ja) 2019-04-25
CN109314971B (zh) 2021-08-20
CN109314971A (zh) 2019-02-05
RU2712431C1 (ru) 2020-01-28
EP3432669A4 (en) 2019-03-27
KR20180132118A (ko) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108605313B (zh) 终端装置、基站装置和通信方法
CN108141853B (zh) 终端装置、基站装置和通信方法
EP3099127B1 (en) User device, base-station device, integrated circuit, and communication method
AU2013296879B2 (en) Method and apparatus for receiving a control channel
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
EP3352517B1 (en) Terminal device, base station device and corresponding communication methods
CN108781444B (zh) 终端装置、基站装置和通信方法
WO2017047445A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
EP3352516B1 (en) Terminal device and communication method
JP6041295B2 (ja) 端末装置、基地局装置、および無線通信方法
WO2016002441A1 (ja) 移動局装置、および基地局装置
US10536246B2 (en) Dynamic demodulation indication
CN110121911B (zh) 用于子子帧操作中的半持久调度的方法以及网络节点
EP3099113B1 (en) User device, base-station device, integrated circuit, and communication method
WO2017177419A1 (zh) 信息传输方法、设备及系统
WO2017047444A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2018016619A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
EP3051869B1 (en) Terminal device, base station device, integrated circuit, and communication method for harq transmission
WO2014148442A1 (ja) 端末装置、基地局装置、集積回路および無線通信方法
CN115244960A (zh) 主信息块(mib)类型确定
JP2015070342A (ja) 基地局、端末、および通信方法
WO2019026443A1 (ja) 通信装置及び通信方法
WO2020087461A1 (en) Multi-pdsch decoding using downlink control information

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018554035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016898237

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018071013

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016898237

Country of ref document: EP

Effective date: 20181018

ENP Entry into the national phase

Ref document number: 20187032059

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018071013

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181011