WO2017175958A1 - 산업용 연소기 - Google Patents

산업용 연소기 Download PDF

Info

Publication number
WO2017175958A1
WO2017175958A1 PCT/KR2017/000884 KR2017000884W WO2017175958A1 WO 2017175958 A1 WO2017175958 A1 WO 2017175958A1 KR 2017000884 W KR2017000884 W KR 2017000884W WO 2017175958 A1 WO2017175958 A1 WO 2017175958A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection nozzle
housing
body part
pilot fuel
fuel
Prior art date
Application number
PCT/KR2017/000884
Other languages
English (en)
French (fr)
Inventor
박희호
Original Assignee
한화테크윈주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화테크윈주식회사 filed Critical 한화테크윈주식회사
Publication of WO2017175958A1 publication Critical patent/WO2017175958A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels

Definitions

  • the present invention relates to a combustor, and more particularly to an industrial combustor.
  • a general industrial combustor may be connected to a turbine to operate the turbine by supplying combusted gas to the turbine.
  • the turbine may be connected to a generator or an external device or the like.
  • the industrial combustor as described above may include a housing having a space formed therein and an ejector installed in the housing to inject fuel into the housing.
  • a plurality of ejectors may be provided, and the plurality of ejectors may be disposed to be spaced apart from each other on one surface of the housing. In this case, when the ejector fails, only the failed ejector can be separated from the housing and replaced or repaired.
  • Embodiments of the present invention seek to provide an industrial combustor.
  • a first injection nozzle is installed to be inserted into the housing, and a part of the housing, and a pilot fuel is supplied to the housing, and a part of the first injection nozzle is installed to be inserted into the housing. It is arranged to wrap, it can be provided an industrial combustor including a second injection nozzle for supplying a main fuel to the housing.
  • Embodiments of the present invention can provide an industrial combustor having a simple design and excellent performance by having a single mixer.
  • FIG. 1 is a conceptual diagram showing a part of an industrial combustor according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating a part of an industrial combustor according to another embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating an industrial combustor according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the mixer shown in FIG. 3.
  • a first injection nozzle is installed to be inserted into the housing, and a part of the housing, and a pilot fuel is supplied to the housing, and a part of the first injection nozzle is installed to be inserted into the housing. It is arranged to wrap, it can be provided an industrial combustor including a second injection nozzle for supplying a main fuel to the housing.
  • cross-sectional area of the second injection nozzle perpendicular to the length direction of the first injection nozzle may vary along the length direction of the first injection nozzle.
  • a portion of the second injection nozzle inserted into the housing may be formed with a main fuel supply hole for supplying the main fuel of the second injection nozzle to the housing.
  • the second injection nozzle may be spaced apart from an outer surface of the first injection nozzle to form a first flow path through which air moves.
  • the apparatus may further include a first body configured to surround the first injection nozzle downstream of the pilot fuel based on a flow direction of the pilot fuel, and to guide air passing through the first flow path to an end of the first injection nozzle. Can be.
  • the apparatus may further include a mixing swirler disposed between the first body part and the first injection nozzle to mix the main fuel and the air.
  • the apparatus may further include a swirler disposed between the first body part and the second injection nozzle to pivot air introduced through the first flow path.
  • the first injection nozzle may be branched to selectively supply the main fuel or the pilot fuel.
  • Another aspect of the present invention includes a housing and a mixer installed in the housing, wherein the mixer includes a first body part installed to be partially inserted into the housing and having one side opened, and the first body part.
  • a first injection nozzle installed inside and supplying a first pilot fuel to the opened portion of the first body portion, a second body portion formed to surround the first body portion, and formed to open at one side thereof, and the first
  • a second injection nozzle disposed between the body part and the second body part to supply a second pilot fuel to the opened part of the second body part, and installed to surround the second body part and formed to open one side;
  • An industrial connection including a third body portion and a third connection portion connected to the third body portion to supply a main fuel between the second body portion and the third body portion to an open portion of the third body portion; It can provide groups.
  • the mixer may further include a swirler disposed on the third body portion.
  • FIG. 1 is a conceptual diagram showing a part of an industrial combustor according to an embodiment of the present invention.
  • the industrial combustor 100 may include a housing 110 and a mixer 120.
  • the housing 110 may have a space formed therein, and the fuel and air may be mixed and combusted in the space inside the housing 110. At this time, the housing 110 may be installed with an igniter (not shown) that applies the initial energy to the fuel.
  • the housing 110 may be connected to a plurality of flow paths. At this time, air may enter through a flow path connected to the housing 110. In particular, the air may be air compressed through a compressor (not shown).
  • the mixer 120 may be installed to at least partially insert the housing 110 into the housing 110.
  • the mixer 120 may supply air, a pilot fuel, and a main fuel.
  • the mixer 120 may sequentially supply the pilot fuel and the main fuel, and at least one of the pilot fuel and the main fuel may be mixed with air.
  • the mixer 120 may be connected to a pilot fuel supply unit 130 for supplying a pilot fuel.
  • the pilot fuel supply unit 130 may include a pilot fuel supply pipe 131 connected to the mixer 120 and a first intermittent valve 132 installed in the pilot fuel supply pipe 131.
  • the mixer 120 may be connected to the main fuel supply unit 140 for supplying the main fuel.
  • the main fuel supply unit 140 may include a main fuel supply pipe 141 connected to the mixer 120 and a second intermittent valve 142 installed in the main fuel supply pipe 141.
  • the mixer 120 may include a first injection nozzle 121 connected to the pilot fuel supply pipe 131.
  • the first injection nozzle 121 may supply a pilot fuel to the housing 110.
  • the mixer 120 may include a second injection nozzle 122 installed in the housing 110 to surround the outer surface of the first injection nozzle 121.
  • the second injection nozzle 122 may supply the main fuel to the housing 110.
  • the first injection nozzle 121 and the second injection nozzle 122 as described above may be installed so that at least a part of the injection nozzle 121 is inserted into the housing 110.
  • the second injection nozzle 122 may have a cross-sectional area perpendicular to the length direction of the first injection nozzle 121 varying along the length direction of the first injection nozzle 121.
  • the cross-sectional area of the second injection nozzle 122 which is perpendicular to the longitudinal direction of the first injection nozzle 121 may become smaller along the length direction of the first injection nozzle 121.
  • the cross-sectional area of the second injection nozzle 122 may be sequentially reduced.
  • An injection hole 122-1 through which the main fuel is injected may be formed in the second injection nozzle 122.
  • the injection holes 122-1 may be provided in plural along the outer surface of the second injection nozzle 122, and the plurality of injection holes 122-1 may be spaced apart from each other by a predetermined interval. Can be formed.
  • the plurality of injection holes 122-1 may be formed to inject the main fuel into the housing 110.
  • the plurality of injection holes 122-1 may be disposed to be symmetrical with respect to the center of the second injection nozzle 122.
  • the second injection nozzle 122 may be disposed to be spaced apart from the outer surface of the first injection nozzle 121.
  • the main fuel may be injected through the injection hole 122-1 by being formed to be closed at the end of the second injection nozzle 122.
  • the pilot fuel may be supplied when the industrial combustor 100 starts.
  • the first intermittent valve 132 operates to open the pilot fuel supply pipe 131
  • the second intermittent valve 142 operates to close the main fuel supply pipe 141, thereby piloting through the mixer 120.
  • Fuel may be supplied into the housing 110.
  • the pilot fuel supply pipe 131 may be connected to a pilot fuel supply chamber (not shown) for supplying a pilot fuel
  • the main fuel supply pipe 141 may be connected to a main fuel supply chamber (not shown) for supplying a main fuel. Can be.
  • the pilot fuel and the main fuel may be simultaneously supplied by opening the main fuel supply pipe 141 by operating the second intermittent valve 142 when the industrial combustor 100 starts up as described above.
  • the second intermittent valve 142 when the industrial combustor 100 starts up as described above.
  • the pilot fuel may be formed in various forms.
  • the pilot fuel can be a liquid fuel or a gaseous fuel.
  • the liquid fuel may be liquefied natural gas (LNG), liquefied propane gas (LPG), and the like, and the gaseous fuel may be in the form of sprayed with natural gas and liquefied propane gas.
  • LNG liquefied natural gas
  • LPG liquefied propane gas
  • the pilot fuel will be described in detail with reference to the case of the liquid fuel for convenience of description.
  • the pilot fuel When the pilot fuel is supplied as described above, the pilot fuel may be supplied into the housing 110 through the first injection nozzle 121 and may be combusted according to the operation of the igniter. In this case, the air may enter the housing 110 through a flow path formed in the housing 110.
  • the first intermittent valve 132 may close the pilot fuel supply pipe 131.
  • the second intermittent valve 142 may open the main fuel supply pipe 141.
  • the main fuel may be supplied to the second injection nozzle 122 through the main fuel supply pipe 141.
  • the main fuel may be a gaseous fuel.
  • the main fuel may be supplied into the housing 110 through the second injection nozzle 122. At this time, the main fuel may be supplied into the housing 110 through the end of the injection hole 122-1 and the second injection nozzle 122. In particular, the main fuel may be sprayed into the housing 110 through the injection hole 122-1 and the second injection nozzle 122.
  • combustion may continue in the housing 110.
  • the combustion generated as described above may be supplied to a turbine (not shown) to generate energy such as electric power by operating the turbine.
  • a separate mixer does not have a complicated structure and a cost may be high in production.
  • the industrial combustor 100 may be driven by using a variety of fuels as described above, and may be manufactured in a simple structure through only one mixer 120.
  • the industrial combustor 100 may start using pilot fuel and start combustion using the main fuel to start a complete combustion, thereby reducing NOx generated during combustion.
  • the industrial combustor 100 may use the mixer 120 having a simple structure, the structure of the industrial combustor 100 may be simply configured, and thus the design may be simple and excellent performance may be secured.
  • FIG. 2 is a conceptual diagram illustrating a part of an industrial combustor according to another embodiment of the present invention.
  • the mixer 120A may include a first injection nozzle 121A, a second injection nozzle 122A, a body portion 123A, a swirler 124A, and a mixing swirler 125A. .
  • the first injection nozzle 121A may be connected to a pilot fuel supply unit (not shown), and may supply pilot fuel into the housing 110A.
  • the second injection nozzle 122A may be connected to the main fuel supply unit (not shown), and may supply the main fuel into the housing 110A.
  • a first intermittent valve 141A for blocking or passing the pilot fuel supplied from the pilot fuel supply unit may be disposed in the first injection nozzle 121A as described above.
  • the second injection nozzle 122A may be disposed to be spaced apart from an outer surface of the first injection nozzle 121A.
  • the second injection nozzle 122A may be disposed to surround the outer surface of the first injection nozzle 121A.
  • a first flow path P may be formed between the first injection nozzle 121A and the second injection nozzle 122A.
  • a third intermittent valve 143A may be disposed in the second injection nozzle 122A, and the third intermittent valve 143A may selectively open and close the second injection nozzle 122A.
  • the body portion 123A may be disposed at an end portion of the first injection nozzle 121A. At this time, the body portion 123A may be installed to surround the first injection nozzle 121A, and the cross-sectional area of the body portion 123A surrounding the end of the first injection nozzle 121A is based on the flow direction of the main fuel. It can become smaller from upstream to downstream. In this case, in particular, by increasing the speed of the air passing through the body portion 123A, it is possible to accelerate the molecularization of the main fuel.
  • the swirler 124A may be disposed in the first flow path P.
  • the swirler 124A may be installed at a portion where the second injection nozzle 122A and the first flow path P are joined together.
  • the swirler 124A may be formed in a spiral wing shape.
  • the mixing swirler 125A may be disposed at a portion where the first flow path P and the body portion 123A are connected. In this case, the mixing swirler 125A is disposed between the body part 123A and the first injection nozzle 121A to rotate the air supplied into the body part 123A to spray at the end of the first injection nozzle 121A.
  • the pilot fuel may be molecularized or a mixture of air and pilot fuel may be induced.
  • the mixing swirler 125A may be formed in a spiral wing shape in the same or similar manner as the swirler 124A.
  • compressed air may be supplied through a first flow path P connected to an external compressor (not shown).
  • a pilot fuel may be supplied through the pilot fuel supply unit.
  • the pilot fuel and the main fuel may be supplied into the housing 110A through the pilot fuel supply unit and the main fuel supply unit.
  • it will be described in detail focusing on the case where only the pilot fuel is supplied to the housing 110A at the start of the industrial combustor for convenience of description.
  • the pilot fuel may be supplied into the housing 110A through the first injection nozzle 121A.
  • the air may pass through the first flow path P and pass through the swirler 124A and the mixing swirler 125A to form a turning motion.
  • the air passing through the swirler 124A may move inside the housing 110A while making a pivoting motion.
  • the air passing through the mixing waller 125A may be supplied to the end of the first injection nozzle 121A through the body portion 123A.
  • the pilot fuel may be injected into the housing 110A while being injected from the first injection nozzle 121A and mixed with air.
  • the housing 110A may be provided with an igniter (not shown) to combust the pilot fuel.
  • the main fuel may be supplied to the second injection nozzle 122A through the main fuel supply unit.
  • the pilot fuel supply unit may stop the supply of the pilot fuel.
  • the main fuel may move to the swirler 124A through the second injection nozzle 122A, and the air may move to the swirler 124A along the first flow path P.
  • the main fuel and air may be mixed through the swirler 124A, and may be supplied to the housing 110A in a mixed state.
  • the main fuel may be combusted in the housing 110A, and an industrial combustor (not shown) may be supplied to a turbine (not shown) to produce energy.
  • the main fuel supply unit may be connected to the first injection nozzle 121A.
  • pilot fuel may be supplied to the first injection nozzle 121A into the housing 110A.
  • the main fuel may be supplied into the housing 110A.
  • a second intermittent valve 142A may be disposed in the first injection nozzle 121A to block or pass the main fuel supplied from the main fuel supply unit.
  • the industrial combustor may be started using at least one of a pilot fuel, which is a liquid fuel, and a main fuel, which is a gaseous fuel at startup, and may suppress generation of NOx generated at startup or during operation by using a gaseous fuel after startup.
  • a pilot fuel which is a liquid fuel
  • a main fuel which is a gaseous fuel at startup
  • the industrial combustor can be started quickly by using liquid fuel, it is possible to reduce the time to reach a steady state combustion.
  • FIG. 3 is a conceptual diagram illustrating an industrial combustor according to another embodiment of the present invention.
  • 4 is a cross-sectional view showing the mixer shown in FIG. 3.
  • the industrial combustor 100C may include an external housing 160C, a housing 110C, and a mixer 120C.
  • the outer housing 160C may form an outer surface and may be disposed to be spaced apart from the outside of the housing 110C. In this case, the outer housing 160C may be disposed to surround the housing 110C, and may be connected to the housing 110C. In addition, in the outer housing 160C, an inlet port 160C-1 through which a compressed air is introduced may be formed in connection with a compressor (not shown).
  • the housing 110C may have a combustion space formed therein.
  • the housing 110C may be provided with a supply hole 110C-1 such that air introduced into the space between the outer housing 160C is supplied to the inside.
  • the outer surface of the housing 110C may be formed in a pleated form, and a small hole may be formed in the pleated so that air may be introduced therein. At this time, air between the outer housing 160C and the housing 110C is introduced into the housing 110C through a small hole, thereby forming an air layer on the inner surface of the housing 110C, thereby preventing a rapid temperature rise of the housing 110C. .
  • the mixer 120 includes a first body part 121C, a first injection nozzle 122C, a second body part 123C, a second injection nozzle 124C, a third body part 125C, and a connection part 126C. It may include.
  • the first body part 121C may have a space formed therein and may be formed so that one side thereof is opened.
  • the opened portion of the first body portion 121C may be disposed in the housing 110C.
  • the first injection nozzle 122C may be integrally formed with the first body part 121C or may be separately formed. In this case, the first injection nozzle 122C may supply the first pilot fuel. In addition, the first injection nozzle 122C may spray the first pilot fuel into the housing 110C. In particular, the first pilot fuel may be in liquid form.
  • the first injection nozzle 122C when the first injection nozzle 122C is integrally formed with the first body part 121C, the first injection nozzle 122C is a space in which the first pilot fuel moves inside the first body part 121C. This can be formed to form a flow path.
  • the first injection nozzle 122C when the first injection nozzle 122C is formed separately from the first body part 121C, the first injection nozzle 122C may be installed to be inserted into the first body part 121C in the form of a pipe. .
  • the first injection nozzle 122C will be described in detail with reference to a case where the first injection nozzle 122C is installed to be inserted in a pipe form inside the first body part 121C.
  • the first pilot fuel supply unit 130C may be connected to the first injection nozzle 122C.
  • the first pilot fuel supply unit 130C is installed in the first pilot fuel supply pipe 131C and the first pilot fuel supply pipe 131C connected to the first injection nozzle 122C, and the first pilot fuel supply pipe 131C. It may include a first intermittent valve (132C) for opening and closing the.
  • the second body part 123C may be installed to surround the first body part 121C.
  • the second body part 123C may be spaced apart from the outer surface of the first body part 121C so that a space may be formed between the first body part 121C and the second body part 123C.
  • one side of the second body portion 123C may be formed to be opened, and the opened portion of the second body portion 123C may be formed in the housing 110C together with the opened portion of the first body portion 121C. Can be arranged.
  • the second injection nozzle 124C may be formed integrally with the second body part 123C or may be separately formed.
  • the second spray nozzle 124C may be disposed in the second body portion 123C.
  • the second injection nozzle 124C may inject the second pilot fuel into the opened portion of the second body portion 123C along the space between the first body 121C and the second body portion 123C. have.
  • the second pilot fuel may be in gaseous form.
  • the second injection nozzle 124C is formed inside the second body part 123C to allow the second pilot fuel to flow. It may be in the form of a flow path.
  • the second injection nozzle 124C will be described in detail with reference to a case where the second body part 123C is formed separately.
  • the second pilot fuel supply unit 140C may be connected to the second injection nozzle 124C.
  • the second pilot fuel supply unit 140C is installed in the second pilot fuel supply pipe 141C and the second pilot fuel supply pipe 141C connected to the second injection nozzle 124C, and the second pilot fuel supply pipe 141C is installed. It may include a second intermittent valve (142C) for opening and closing the.
  • the third body part 125C may be installed to surround the second body part 123C. At this time, the inner surface of the third body portion 125C is disposed to be spaced apart from the outer surface of the second body portion 123C by a predetermined degree so that a space may be formed between the third body portion 125C and the second body portion 123C. have. In addition, one side of the third body portion 125C may be formed to be opened, and the opened portion may be disposed in the housing 110C.
  • the connection part 126C may be connected to the third body part 125C.
  • the main fuel may be supplied through the connection part 126C.
  • an air inlet hole 125C-1 through which air between the outer housing 160C and the housing 110C flows may be formed in the third body part 125C.
  • the air inlet hole 125C-1 may be formed in the downstream third body portion 125C with respect to the flow direction of the first pilot fuel.
  • the air inlet hole 125C-1 may communicate with not only the third body portion 125C but also the second body portion 123C.
  • a hole may be formed in the second body part 123C to be connected to the air inlet hole 125C-1.
  • the air inlet hole 125C-1 will be described in detail with reference to a case where only the third body portion 125C is formed.
  • the main fuel supply unit 150C may be connected to the connection unit 126C. At this time, the main fuel supply unit 150C is installed in the main fuel supply pipe 151C and the main fuel supply pipe 151C connected to the connecting portion 126C, and the third intermittent valve 152C for opening and closing the main fuel supply pipe 151C. ) May be included.
  • a swirler 127C may be disposed in the third body portion 125C.
  • the swirler 127C may connect the third body portion 125C and the second body portion 123C, and may have a spiral wing shape.
  • the swirler 127C may mix the main fuel and air.
  • the first pilot fuel and the second pilot fuel are first injected into the housing 110C and the second injection nozzle 122C when the industrial combustor 100C starts up. 124C).
  • the first pilot fuel may be in a liquid state as described above, and the second pilot fuel may be in a gas state.
  • the igniter 170C installed in the housing 110C may operate to burn the first pilot fuel and the second pilot fuel.
  • the first pilot valve 132C and the second pilot valve 142C are operated to operate the first pilot fuel supply pipe 131C and the second pilot fuel supply pipe 141C.
  • the third intermittent valve 152C may be operated to open the main fuel supply pipe 151C, and the main fuel may be supplied through the connection part 126C. At this time, the main fuel may be a gas state.
  • combustion may be continuously performed in the housing 110C.
  • the industrial combustor 100C can start by using the first pilot fuel, which is a liquid fuel, and the second pilot fuel, which is a gaseous fuel, at the same time, and can suppress the generation of NOx generated during operation by using the gaseous fuel after starting. .
  • the industrial combustor (100C) can be started quickly by using liquid fuel, it is possible to reduce the time to reach the steady state combustion.
  • embodiments of the present invention can be applied to an engine, a turbo engine, an engine for an aircraft, an industrial generator including a combustor, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

본 발명은 산업용 연소기를 개시한다. 본 발명은, 하우징과, 상기 하우징에 일부가 삽입되도록 설치되며, 파일럿 연료를 상기 하우징에 공급하는 제1 분사노즐과, 상기 하우징에 일부가 삽입되도록 설치되며, 상기 제1 분사노즐을 감싸도록 배치되며, 메인연료를 상기 하우징에 공급하는 제2 분사노즐을 포함한다.

Description

산업용 연소기
본 발명은 연소기에 관한 것으로서, 보다 상세하게는 산업용 연소기에 관한 것이다.
일반적인 산업용 연소기는 터빈과 연결되어 터빈에 연소된 기체를 공급함으로써 터빈을 작동시킬 수 있다. 이때, 터빈에는 발전기가 연결되거나 외부의 장치 등이 연결될 수 있다.
상기와 같은 산업용 연소기는 내부에 공간이 형성된 하우징과, 하우징에 설치되어 하우징 내부로 연료를 분사하는 이젝터를 포함할 수 있다. 이때, 이젝터는 복수개 구비될 수 있으며, 복수개의 이젝터는 하우징의 일면에 서로 이격되도록 배치될 수 있다. 상기와 같은 경우 이젝터가 고장나는 경우 고장난 이젝터만 하우징으로부터 분리하여 교체하거나 수리할 수 있다.
그러나 상기와 같은 일반적인 산업용 연소기의 경우 액체 연료를 사용하거나 액체 연료와 기체 연료를 동시에 사용하지 못하는 문제가 있다. 특히 이러한 경우 산업용 연소기에서 발생하는 오염물질인 녹스(NOx)가 다량 발행함으로써 환경오염을 유발할 수 있다.
이러한 산업용 연소기와 관련하여서 한국공개특허공보 제1999-0056352호(발명의 명칭 : 듀얼 연료시스템, 출원인 : 삼성항공산업 주식회사)에 구체적으로 개시되어 있다.
본 발명의 실시예들은 산업용 연소기를 제공하고자 한다.
본 발명의 일 측면은, 하우징과, 상기 하우징에 일부가 삽입되도록 설치되며, 파일럿 연료를 상기 하우징에 공급하는 제1 분사노즐과, 상기 하우징에 일부가 삽입되도록 설치되며, 상기 제1 분사노즐을 감싸도록 배치되며, 메인연료를 상기 하우징에 공급하는 제2 분사노즐을 포함하는 산업용 연소기를 제공할 수 있다.
본 발명의 실시예들은 하나의 혼합기를 구비함으로써 설계가 간편하고 성능이 우수한 산업용 연소기를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 산업용 연소기의 일부를 보여주는 개념도이다.
도 2는 본 발명의 다른 실시예에 따른 산업용 연소기의 일부를 보여주는 개념도이다.
도 3은 본 발명의 또 다른 실시예에 따른 산업용 연소기를 보여주는 개념도이다.
도 4는 도 3에 도시된 혼합기를 보여주는 단면도이다.
본 발명의 일 측면은, 하우징과, 상기 하우징에 일부가 삽입되도록 설치되며, 파일럿 연료를 상기 하우징에 공급하는 제1 분사노즐과, 상기 하우징에 일부가 삽입되도록 설치되며, 상기 제1 분사노즐을 감싸도록 배치되며, 메인연료를 상기 하우징에 공급하는 제2 분사노즐을 포함하는 산업용 연소기를 제공할 수 있다.
또한, 상기 제1 분사노즐의 길이 방향과 수직한 상기 제2 분사노즐의 단면적은 상기 제1 분사노즐의 길이 방향을 따라 가변할 수 있다.
또한, 상기 제2 분사노즐 중 상기 하우징에 삽입된 부분에는 상기 제2 분사노즐의 메인연료를 상기 하우징으로 공급하는 메인연료공급홀이 형성될 수 있다.
또한, 상기 제2 분사노즐은 상기 제1 분사노즐의 외면으로부터 이격되도록 배치되어 공기가 이동하는 제1 유로를 형성할 수 있다.
또한, 상기 파일럿 연료의 흐름 방향을 기준으로 하류 측 상기 제1 분사노즐을 감싸도록 설치되며, 상기 제1 유로를 통과한 공기를 상기 제1 분사노즐의 끝단으로 안내하는 제1 바디부를 더 포함할 수 있다.
또한, 상기 제1 바디부와 상기 제1 분사노즐 사이에 배치되어 상기 메인연료와 상기 공기를 혼합하는 믹싱스월러를 더 포함할 수 있다.
또한, 상기 제1 바디부와 상기 제2 분사노즐 사이에 배치되어 상기 제1 유로를 통하여 유입되는 공기를 선회시키는 스월러를 더 포함할 수 있다.
또한, 상기 제1 분사노즐은 분지되도록 형성되어 메인연료 또는 파일럿연료를 선택적으로 공급할 수 있다.
본 발명의 다른 측면은, 하우징과, 상기 하우징에 설치되는 혼합기를 포함하고, 상기 혼합기는, 상기 하우징에 일부가 삽입되도록 설치되며, 일측이 개구되도록 형성된 제1 바디부와, 상기 제1 바디부 내부에 설치되어 상기 제1 바디부의 개구된 부분으로 제1 파일럿 연료를 공급하는 제1 분사노즐과, 상기 제1 바디부를 감싸도록 설치되며, 일측이 개구되도록 형성된 제2 바디부와, 상기 제1 바디부와 상기 제2 바디부 사이에 배치되어 제2 파일럿 연료를 상기 제2 바디부의 개구된 부분으로 공급하는 제2 분사노즐과, 상기 제2 바디부를 감싸도록 설치되며, 일측이 개구되도록 형성된 제3 바디부와, 상기 제3 바디부와 연결되어 상기 제2 바디부와 상기 제3 바디부 사이로 메인연료를 공급하여 상기 제3 바디부의 개구된 부분으로 연결부를 포함하는 산업용 연소기를 제공할 수 있다.
또한, 상기 혼합기는 상기 제3 바디부에 배치되는 스월러를 더 포함할 수 있다.
본 발명은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(Aomprises)" 및/또는 "포함하는(Aomprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
도 1은 본 발명의 일 실시예에 따른 산업용 연소기의 일부를 보여주는 개념도이다.
도 1을 참고하면, 산업용 연소기(100)는 하우징(110) 및 혼합기(120)를 포함할 수 있다.
하우징(110)은 내부에 공간이 형성될 수 있으며, 하우징(110) 내부의 공간에서는 연료와 공기가 혼합되어 연소될 수 있다. 이때, 하우징(110)에는 연료에 초기 에너지를 가하는 점화기(미도시)가 설치될 수 있다.
하우징(110)은 복수개의 유로가 연결될 수 있다. 이때, 하우징(110)에 연결된 유로를 통하여 공기가 진입할 수 있다. 특히 공기는 압축기(미도시) 등을 통하여 압축된 공기일 수 있다.
혼합기(120)는 하우징(110)에 적어도 일부부이 삽입되도록 설치될 수 있다. 이때, 혼합기(120)는 공기, 파일럿 연료 및 메인연료를 공급할 수 있다. 특히 혼합기(120)는 파일럿 연료 및 메인연료를 순차적으로 공급할 수 있으며, 파일럿 연료 및 메인연료 중 적어도 하나는 공기와 혼합될 수 있다.
혼합기(120)에는 파일럿 연료를 공급하는 파일럿연료공급부(130)가 연결될 수 있다. 이때, 파일럿연료공급부(130)는 혼합기(120)에 연결되는 파일럿연료공급배관(131) 및 파일럿연료공급배관(131)에 설치되는 제1 단속밸브(132)를 포함할 수 있다.
혼합기(120)에는 메인연료를 공급하는 메인연료공급부(140)가 연결될 수 있다. 이때, 메인연료공급부(140)는 혼합기(120)에 연결되는 메인연료공급배관(141) 및 메인연료공급배관(141)에 설치되는 제2 단속밸브(142)를 포함할 수 있다.
혼합기(120)는 파일럿연료공급배관(131)과 연결되는 제1 분사노즐(121)을 포함할 수 있다. 이때, 제1 분사노즐(121)은 하우징(110)으로 파일럿 연료를 공급할 수 있다.
혼합기(120)는 제1 분사노즐(121)의 외면을 감싸도록 하우징(110)에 설치되는 제2 분사노즐(122)을 포함할 수 있다. 이때, 제2 분사노즐(122)은 메인연료를 하우징(110)에 공급할 수 있다.
상기와 같은 제1 분사노즐(121)과 제2 분사노즐(122)은 하우징(110)에 적어도 일부분이 삽입되도록 설치될 수 있다. 이때, 제2 분사노즐(122)은 제1 분사노즐(121)의 길이 방향과 수직한 단면적이 제1 분사노즐(121)의 길이 방향을 따라 가변할 수 있다. 예를 들면, 제1 분사노즐(121)의 길이 방향과 수직한 제2 분사노즐(122)의 단면적은 제1 분사노즐(121)의 길이 방향을 따라 점점 작아질 수 있다. 이때, 제2 분사노즐(122)의 단면적은 순차적으로 작아질 수 있다.
제2 분사노즐(122)에는 메인연료가 외부로 분사되는 분사홀(122-1)이 형성될 수 있다. 이때, 분사홀(122-1)은 제2 분사노즐(122)의 외면을 따라 복수개 구비될 수 있으며, 복수개의 분사홀(122-1)은 서로 일정 간격 이격되도록 제2 분사노즐(122)에 형성될 수 있다. 또한, 복수개의 분사홀(122-1)은 메인연료를 하우징(110) 내부로 분사하도록 형성될 수 있다. 이때, 복수개의 분사홀(122-1)은 제2 분사노즐(122)의 중심을 기준으로 서로 대칭되도록 배치될 수 있다.
제2 분사노즐(122)은 제1 분사노즐(121)의 외면으로부터 이격되도록 배치될 수 있다. 이때, 제2 분사노즐(122)의 끝단막히도록 형성됨으로써 분사홀(122-1)을 통하여 메인연료를 분사할 수 있다.
상기와 같은 산업용 연소기(100)의 작동을 살펴보면, 우선 산업용 연소기(100)의 시동 시 파일럿 연료가 공급될 수 있다. 이때, 제1 단속밸브(132)가 작동하여 파일럿연료공급배관(131)을 개방하고, 제2 단속밸브(142)가 작동하여 메인연료공급배관(141)이 폐쇄됨으로써 혼합기(120)를 통하여 파일럿 연료가 하우징(110) 내부로 공급될 수 있다. 특히 파일럿연료공급배관(131)은 파일럿 연료를 공급하는 파일럿연료공급챔버(미도시)와 연결될 수 있으며, 메인연료공급배관(141)은 메인연료를 공급하는 메인연료공급챔버(미도시)와 연결될 수 있다.
다른 실시예로써 상기와 같이 산업용 연소기(100)의 시동 시 제2 단속밸브(142)가 작동하여 메인연료공급배관(141)을 개방함으로써 파일럿 연료와 메인연료를 동시에 공급하는 것도 가능하다. 다만, 이하에서는 설명의 편의를 위하여 산업용 연소기(100)의 시동 시 파일럿 연료만 공급되는 경우를 중심으로 상세히 설명하기로 한다.
파일럿 연료는 다양한 형태로 형성될 수 있다. 예를 들면, 파일럿 연료는 액체 연료 또는 기체 연료일 수 있다. 이때, 액체 연료는 액화 천연가스(LNG), 액화 프로판 가스(LPG) 등일 수 있으며, 기체 연료는 천연가스, 액화 프로판 가스가 분무된 형태 등일 수 있다. 다만, 이하에서는 설명의 편의를 위하여 파일럿 연료는 액체 연료인 경우를 중심으로 상세히 설명하기로 한다.
상기와 같이 파일럿 연료가 공급되면, 파일럿 연료는 제1 분사노즐(121)을 통과하여 하우징(110) 내부로 공급될 수 있으며, 상기 점화기의 작동에 따라서 연소될 수 있다. 이때, 공기는 하우징(110)에 형성된 유로를 통하여 하우징(110) 내부로 진입할 수 있다.
상기와 같이 하우징(110) 내부에서 연소가 발생되면, 제1 단속밸브(132)는 파일럿연료공급배관(131)을 폐쇄할 수 있다. 또한, 제2 단속밸브(142)는 메인연료공급배관(141)을 개방할 수 있다. 이러한 경우 메인연료공급배관(141)을 통하여 제2 분사노즐(122)로 메인연료가 공급될 수 있다. 이때, 메인연료는 기체 연료일 수 있다.
메인연료는 제2 분사노즐(122)을 통하여 하우징(110) 내부로 공급될 수 있다. 이때, 메인연료는 분사홀(122-1) 및 제2 분사노즐(122)의 끝단을 통하여 하우징(110) 내부로 공급될 수 있다. 특히 메인연료는 분사홀(122-1) 및 제2 분사노즐(122)을 통하여 하우징(110) 내부로 분무될 수 있다.
상기와 같이 메인연료가 공급되는 경우 하우징(110) 내부에서는 계속해서 연소가 발생할 수 있다. 상기와 같이 발생하는 연소는 터빈(미도시)으로 공급되어 상기 터빈을 작동시킴으로써 전력 등과 같은 에너지를 생성할 수 있다.
특히 일반적인 산업용 연소기의 경우 연료를 공급하는 노즐과, 공기를 공급하는 노즐이 별도로 복수개 구비되고, 별도의 혼합기를 구비하지 않음으로써 구조가 복잡해지고 생산 시 비용이 많이 소요될 수 있다.
그러나 산업용 연소기(100)는 상기에서 설명한 것과 같이 혼합기(120)를 구비함으로써 다양한 연료를 사용하여 구동이 가능하고, 하나의 혼합기(120)만을 통하여 간단한 구조로 제작하는 것이 가능하다.
따라서 산업용 연소기(100)는 시동 시 파일럿 연료를 사용하여 시동한 후 메인연료를 사용하여 연소함으로써 완전 연소를 구현할 수 있어 연소시 발생하는 녹스(NOx)를 저감시킬 수 있다.
또한, 산업용 연소기(100)는 간단한 구조의 혼합기(120)를 사용할 수 있으므로 산업용 연소기(100)의 구조를 간단하게 구성할 수 있으므로 설계가 간편하고 우수한 성능을 확보할 수 있다.
도 2는 본 발명의 다른 실시예에 따른 산업용 연소기의 일부를 보여주는 개념도이다.
도 2를 참고하면, 혼합기(120A)는 제1 분사노즐(121A), 제2 분사노즐(122A), 바디부(123A), 스월러(124A) 및 믹싱스월러(125A)를 포함할 수 있다.
제1 분사노즐(121A)은 파일럿연료공급부(미도시)와 연결될 수 있으며, 파일럿 연료를 하우징(110A) 내부로 공급할 수 있다. 제2 분사노즐(122A)은 메인연료공급부(미표기)와 연결될 수 있으며, 메인연료를 하우징(110A) 내부로 공급할 수 있다.
상기와 같은 제1 분사노즐(121A)에는 상기 파일럿연료공급부로부터 공급되는 파일럿 연료를 차단하거나 통과시키는 제1 단속밸브(141A)가 배치될 수 있다.
제2 분사노즐(122A)은 제1 분사노즐(121A)의 외면으로부터 이격되도록 배치될 수 있다. 또한, 제2 분사노즐(122A)은 제1 분사노즐(121A)의 외면을 감싸도록 배치될 수 있다. 이때, 제1 분사노즐(121A)과 제2 분사노즐(122A) 사이에는 제1 유로(P)가 형성될 수 있다.
제2 분사노즐(122A)에는 제3 단속밸브(143A)가 배치될 수 있으며, 제3 단속밸브(143A)는 제2 분사노즐(122A)를 선택적으로 개폐시킬 수 있다.
바디부(123A)는 제1 분사노즐(121A)의 끝단부에 배치될 수 있다. 이때, 바디부(123A)는 제1 분사노즐(121A)을 감싸도록 설치될 수 있으며, 제1 분사노즐(121A)의 끝단부를 감싸는 바디부(123A) 부분의 단면적은 메인연료의 흐름 방향을 기준으로 상류에서 하류로 갈수록 작아질 수 있다. 특히 이러한 경우 바디부(123A)를 통과하는 공기의 속도를 증대시킴으로써 메인연료의 분자화를 가속화할 수 있다.
스월러(124A)는 제1 유로(P)에 배치될 수 있다. 이때, 스월러(124A)는 제2 분사노즐(122A)과 제1 유로(P)가 합쳐지는 부분에 설치될 수 있다. 스월러(124A)를 통과하는 경우 메인연료와 공기는 혼합될 수 있다. 이때, 스월러(124A)는 나선형의 날개 형태로 형성될 수 있다.
믹싱스월러(125A)는 제1 유로(P)와 바디부(123A)가 연결되는 부분에 배치될 수 있다. 이때, 믹싱스월러(125A)는 바디부(123A)와 제1 분사노즐(121A) 사이에 배치되어 바디부(123A) 내부로 공급되는 공기를 선회시킴으로써 제1 분사노즐(121A)의 끝단에서 분사되는 파일럿 연료를 분자화시키거나 공기와 파일럿 연료의 혼합을 유도할 수 있다. 믹싱스월러(125A)는 스월러(124A)와 동일 또는 유사하게 나선형의 날개 형태로 형성될 수 있다.
한편, 상기와 같은 혼합기(120A)의 작동을 살펴보면, 외부의 압축기(미도시) 등에 연결된 제1 유로(P)를 통하여 압축된 공기가 공급될 수 있다. 이때, 상기 파일럿연료공급부를 통하여 파일럿 연료가 공급될 수 있다. 다른 실시예로써 상기 파일럿연료공급부 및 상기 메인연료공급부를 통하여 파일럿 연료와 메인연료가 하우징(110A) 내부로 공급되는 것도 가능하다. 다만, 이하에서는 설명의 편의를 위하여 산업용 연소기의 시동 시 파일럿 연료만 하우징(110A)으로 공급되는 경우를 중심으로 상세히 설명하기로 한다.
파일럿 연료는 제1 분사노즐(121A)을 통과하여 하우징(110A) 내부로 공급될 수 있다. 이때, 공기는 제1 유로(P)를 통과하여 스월러(124A) 및 믹싱스월러(125A)를 통과하면서 선회 운동을 형성할 수 있다. 특히 스월러(124A)를 통과한 공기는 선회 운동을 하면서 하우징(110A) 내부로 이동할 수 있다. 또한, 믹싱스월러(125A)를 통과한 공기는 바디부(123A)를 통과하여 제1 분사노즐(121A)의 끝단으로 공급될 수 있다.
파일럿 연료는 제1 분사노즐(121A)에서 분사된 후 공기와 혼합되면서 하우징(110A) 내부로 공급될 수 있다. 이때, 하우징(110A)에는 상기에서 설명한 바와 같이 점화기(미도시)가 설치되어 파일럿 연료를 연소시킬 수 있다.
상기와 같은 과정이 완료되면, 상기 메인연료공급부를 통하여 메인연료를 제2 분사노즐(122A)로 공급할 수 있다. 이때, 상기 파일럿연료공급부는 파일럿 연료의 공급을 중단할 수 있다.
메인연료는 제2 분사노즐(122A)을 통하여 스월러(124A)로 이동할 수 있으며, 공기는 제1 유로(P)를 따라 스월러(124A)로 이동할 수 있다. 이때, 메인연료와 공기는 스월러(124A)를 통하여 혼합될 수 있으며, 혼합된 상태로 하우징(110A)으로 공급될 수 있다.
하우징(110A) 내부에서는 메인연료가 연소될 수 있으며, 산업용 연소기(미도시)는 터빈(미도시)로 공급하여 에너지를 생산하도록 할 수 있다.
본 발명의 실시예예에 따른 상기 산업용 연소기는 상기와 같은 경우 제1 분사노즐(121A)에는 상기 파일럿연료공급부 이외에도 상기 메인연료공급부가 연결되는 것도 가능하다. 이때, 제1 분사노즐(121A)에는 상기 산업용 연소기를 시동하는 경우 파일럿 연료를 하우징(110A) 내부로 공급할 수 있으며, 상기 산업용 연소기의 시동이 완료되면, 메인연료를 하우징(110A) 내부로 공급하는 것도 가능하다. 이때, 제1 분사노즐(121A)에는 상기 메인연료공급부로부터 공급되는 메인 연료를 차단하거나 통과시키는 제2 단속밸브(142A)가 배치될 수 있다.
이러한 경우 상기 산업용 연소기는 시동 시 액체연료인 파일럿 연료 및 기체연료인 메인연료 중 적어도 하나를 사용하여 시동하고, 시동 후 기체연료를 사용함으로써 시동 시나 운전 중 발생하는 NOx의 생성을 억제할 수 있다.
또한, 상기 산업용 연소기는 액체연료를 사용함으로써 빠른 시동이 가능하고, 정상상태의 연소에 도달하는 시간을 줄일 수 있다.
도 3은 본 발명의 또 다른 실시예에 따른 산업용 연소기를 보여주는 개념도이다. 도 4는 도 3에 도시된 혼합기를 보여주는 단면도이다.
도 3 및 도 4를 참고하면, 산업용 연소기(100C)는 외부하우징(160C), 하우징(110C) 및 혼합기(120C)를 포함할 수 있다.
외부하우징(160C)은 외면을 형성할 수 있으며, 하우징(110C)의 외부에 이격되도록 배치될 수 있다. 이때, 외부하우징(160C)은 하우징(110C)을 감싸도록 배치될 수 있으며, 하우징(110C)과 연결될 수 있다. 또한, 외부하우징(160C)에서는 압축기(미도시)와 연결되어 압축 공기가 유입되는 유입구(160C-1)가 형성될 수 있다.
하우징(110C)은 내부에 연소 공간이 형성될 수 있다. 또한, 하우징(110C)은 외부하우징(160C)과 사이의 공간으로 유입되는 공기가 내부로 공급되도록 공급홀(110C-1)이 형성될 수 있다.
하우징(110C)의 외부 표면은 주름 형태로 형성될 수 있으며, 주름에는 공기가 유입될 수 있도록 작은 홀이 형성될 수 있다. 이때, 작은 홀을 통하여 외부하우징(160C)과 하우징(110C) 사이의 공기가 하우징(110C) 내부로 유입되어 하우징(110C) 내면에 공기층을 형성함으로써 하우징(110C)의 급격한 온도 상승을 막을 수 있다.
혼합기(120)는 제1 바디부(121C), 제1 분사노즐(122C), 제2 바디부(123C), 제2 분사노즐(124C), 제3 바디부(125C) 및 연결부(126C)를 포함할 수 있다.
제1 바디부(121C)는 내부에 공간이 형성될 수 있으며, 일측이 개구되도록 형성될 수 있다. 제1 바디부(121C)의 개구된 부분은 하우징(110C) 내부에 배치될 수 있ㄷ.
제1 분사노즐(122C)은 제1 바디부(121C)와 일체로 형성되거나 별도로 형성될 수 있다. 이때, 제1 분사노즐(122C)은 제1 파일럿 연료를 공급할 수 있다. 또한, 제1 분사노즐(122C)은 제1 파일럿 연료를 하우징(110C) 내부로 분무할 수 있다. 특히 제1 파일럿 연료는 액체 형태일 수 있다.
예를 들면, 제1 분사노즐(122C)이 제1 바디부(121C)와 일체로 형성되는 경우 제1 분사노즐(122C)은 제1 바디부(121C) 내부에 제1 파일럿 연료가 이동하는 공간이 형성되어 유로를 형성할 수 있다. 다른 실시예로써 제1 분사노즐(122C)이 제1 바디부(121C)와 별도로 형성되는 경우 제1 분사노즐(122C)은 제1 바디부(121C) 내부에 배관 형태로 삽입되도록 설치될 수 있다. 이하에서는 설명의 편의를 위하여 제1 분사노즐(122C)이 제1 바디부(121C) 내부에 배관 형태로 삽입되게 설치되는 경우를 중심으로 상세히 설명하기로 한다.
제1 분사노즐(122C)에는 제1 파일럿연료공급부(130C)가 연결될 수 있다. 제1 파일럿연료공급부(130C)는 제1 분사노즐(122C)과 연결되는 제1 파일럿연료공급배관(131C) 및 제1 파일럿연료공급배관(131C)에 설치되어 제1 파일럿연료공급배관(131C)을 개폐하는 제1 단속밸브(132C)를 포함할 수 있다.
제2 바디부(123C)는 제1 바디부(121C)를 감싸도록 설치될 수 있다. 이때, 제2 바디부(123C)는 제1 바디부(121C)의 외면으로부터 이격되도록 배치됨으로써 제1 바디부(121C)와 제2 바디부(123C) 사이에는 공간이 형성될 수 있다. 또한, 제2 바디부(123C)의 일측은 개구되도록 형성될 수 있으며, 제2 바디부(123C)의 개구된 부분은 제1 바디부(121C)의 개구된 부분과 함께 하우징(110C) 내부에 배치될 수 있다.
제2 분사노즐(124C)는 제2 바디부(123C)와 일체로 형성되거나 별도로 형성될 수 있다. 예를 들면, 일 실시예로써 제2 분사노즐(124C)이 제2 바디부(123C)와 별도로 형성되는 경우 제2 분사노즐(124C)은 제2 바디부(123C) 내부에 배치될 수 있다. 이때, 제2 분사노즐(124C)은 제1 바디부(121C)와 제2 바디부(123C) 사이의 공간을 따라서 제2 바디부(123C)의 개구된 부분으로 제2 파일럿 연료를 분사할 수 있다. 특히 제2 파일럿 연료는 기체 형태일 수 있다. 다른 실시예로써 제2 분사노즐(124C)은 제2 바디부()와 일체로 형성되는 경우 제2 분사노즐(124C)은 제2 바디부(123C) 내부에 형성되어 제2 파일럿 연료가 유동하는 유로 형태일 수 있다. 다만, 이하에서는 설명의 편의를 위하여 제2 분사노즐(124C)이 제2 바디부(123C)와 별도로 형성되는 경우를 중심으로 상세히 설명하기로 한다.
제2 분사노즐(124C)에는 제2 파일럿연료공급부(140C)가 연결될 수 있다. 제2 파일럿연료공급부(140C)는 제2 분사노즐(124C)과 연결되는 제2 파일럿연료공급배관(141C) 및 제2 파일럿연료공급배관(141C)에 설치되어 제2 파일럿연료공급배관(141C)을 개폐하는 제2 단속밸브(142C)를 포함할 수 있다.
제3 바디부(125C)는 제2 바디부(123C)를 감싸도록 설치될 수 있다. 이때, 제3 바디부(125C)의 내면은 제2 바디부(123C)의 외면과 일정 정도 이격되도록 배치됨으로써 제3 바디부(125C)와 제2 바디부(123C) 사이는 공간이 형성될 수 있다. 또한, 제3 바디부(125C)의 일측은 개구되도록 형성될 수 있으며, 개구된 부분은 하우징(110C)의 내부에 배치될 수 있다.
연결부(126C)는 제3 바디부(125C)와 연결될 수 있다. 이때, 연결부(126C)를 통하여 메인연료가 공급될 수 있다. 또한, 제3 바디부(125C)에는 외부하우징(160C)과 하우징(110C) 사이의 공기가 유입되는 공기유입홀(125C-1)이 형성될 수 있다. 이때, 공기유입홀(125C-1)은 제1 파일럿 연료의 흐름 방향에 대해서 하류 측 제3 바디부(125C) 부분에 형성될 수 있다. 상기와 같은 공기유입홀(125C-1)은 제3 바디부(125C) 뿐만 아니라 제2 바디부(123C)의 내부로 연통되는 것도 가능하다. 이때, 제2 바디부(123C)에 공기유입홀(125C-1)과 연결되도록 홀이 형성될 수 있다. 다만, 이하에서는 공기유입홀(125C-1)이 제3 바디부(125C)에만 형성된 경우를 중심으로 상세히 설명하기로 한다.
연결부(126C)에는 메인연료공급부(150C)가 연결될 수 있다. 이때, 메인연료공급부(150C)는 연결부(126C)에 연결되는 메인연료공급배관(151C) 및 메인연료공급배관(151C)에 설치되어 메인연료공급배관(151C)을 개폐하는 제3 단속밸브(152C)를 포함할 수 있다.
제3 바디부(125C)에는 스월러(127C)가 배치될 수 있다. 이때, 스월러(127C)는 제3 바디부(125C)와 제2 바디부(123C)를 연결할 수 있으며, 나선형의 날개 형태로 형성될 수 있다. 특히 스월러(127C)는 메인연료와 공기를 혼합할 수 있다.
한편, 산업용 연소기(100C)의 작동을 살펴보면, 우선 산업용 연소기(100C)의 시동 시 제1 파일럿 연료 및 제2 파일럿 연료를 하우징(110C) 내부로 제1 분사노즐(122C) 및 제2 분사노즐(124C)을 통하여 분사할 수 있다. 이때, 제1 파일럿 연료는 상기에서 설명한 것과 같이 액체 상태일 수 있으며, 제2 파일럿 연료는 기체 상태일 수 있다.
상기와 같이 제1 파일럿 연료 및 제2 파일럿 연료가 하우징(110C) 내부로 공급되면, 하우징(110C)에 설치된 점화기(170C)가 작동하여 제1 파일럿 연료 및 제2 파일럿 연료를 연소시킬 수 있다.
상기와 같이 산업용 연소기(100C)의 연소가 시작되면, 제1 단속밸브(132C) 및 제2 단속밸브(142C)를 작동시켜 제1 파일럿연료공급배관(131C) 및 제2 파일럿연료공급배관(141C)을 폐쇄할 수 있다. 또한, 제3 단속밸브(152C)를 작동시켜 메인연료공급배관(151C)을 개방하고, 연결부(126C)를 통하여 메인연료를 공급할 수 있다. 이때, 메인연료는 기체 상태일 수 있다.
상기와 같이 메인연료가 공급되면, 하우징(110C) 내부에서는 연소가 지속적으로 수행될 수 있다.
따라서 산업용 연소기(100C)는 시동 시 액체연료인 제1 파일럿 연료와 기체연료인 제2 파일럿 연료를 동시에 사용하여 시동하고, 시동 후 기체연료를 사용함으로써 운전 중 발생하는 NOx의 생성을 억제할 수 있다.
또한, 산업용 연소기(100C)는 액체연료를 사용함으로써 빠른 시동이 가능하고, 정상상태의 연소에 도달하는 시간을 줄일 수 있다.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되었지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위에는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.
본 발명의 일 실시예에 의하면, 액체 연료를 사용하여 운전 시작이 가능한 산업용 연소기를 제공하여, 연소기가 포함된 엔진, 터보엔진, 항공기용 엔진, 산업용 발전기 등에 본 발명의 실시예들을 적용할 수 있다.

Claims (9)

  1. 하우징;
    상기 하우징에 일부가 삽입되도록 설치되며, 파일럿 연료를 상기 하우징에 공급하는 제1 분사노즐; 및
    상기 하우징에 일부가 삽입되도록 설치되며, 상기 제1 분사노즐을 감싸도록 배치되며, 메인연료를 상기 하우징에 공급하는 제2 분사노즐;을 포함하는 산업용 연소기.
  2. 제 1 항에 있어서,
    상기 제2 분사노즐 중 상기 하우징에 삽입된 부분에는 상기 제2 분사노즐의 메인연료를 상기 하우징으로 공급하는 메인연료공급홀이 형성된 산업용 연소기.
  3. 제 1 항에 있어서,
    상기 제2 분사노즐은 상기 제1 분사노즐의 외면으로부터 이격되도록 배치되어 공기가 이동하는 제1 유로를 형성하는 산업용 연소기.
  4. 제 3 항에 있어서,
    상기 파일럿 연료의 흐름 방향을 기준으로 하류 측 상기 제1 분사노즐을 감싸도록 설치되며, 상기 제1 유로를 통과한 공기를 상기 제1 분사노즐의 끝단으로 안내하는 제1 바디부;를 더 포함하는 산업용 연소기.
  5. 제 4 항에 있어서,
    상기 제1 바디부와 상기 제1 분사노즐 사이에 배치되어 메인연료와 상기 공기를 혼합하는 믹싱스월러;를 더 포함하는 산업용 연소기.
  6. 제 4 항에 있어서,
    상기 제1 바디부와 상기 제2 분사노즐 사이에 배치되어 상기 제1 유로를 통하여 유입되는 공기를 선회시키는 스월러;를 더 포함하는 산업용 연소기.
  7. 제 3 항에 있어서,
    상기 제1 분사노즐은 분지되도록 형성되어 메인연료 또는 파일럿연료를 선택적으로 공급하는 산업용 연소기.
  8. 하우징;
    상기 하우징에 설치되는 혼합기;를 포함하고,
    상기 혼합기는,
    상기 하우징에 일부가 삽입되도록 설치되며, 일측이 개구되도록 형성된 제1 바디부;
    상기 제1 바디부 내부에 설치되어 상기 제1 바디부의 개구된 부분으로 제1 파일럿 연료를 공급하는 제1 분사노즐;
    상기 제1 바디부를 감싸도록 설치되며, 일측이 개구되도록 형성된 제2 바디부;
    상기 제1 바디부와 상기 제2 바디부 사이에 배치되어 제2 파일럿 연료를 상기 제2 바디부의 개구된 부분으로 공급하는 제2 분사노즐;
    상기 제2 바디부를 감싸도록 설치되며, 일측이 개구되도록 형성된 제3 바디부; 및
    상기 제3 바디부와 연결되어 상기 제2 바디부와 상기 제3 바디부 사이로 메인연료를 공급하여 상기 제3 바디부의 개구된 부분으로 연결부;를 포함하는 산업용 연소기.
  9. 제 8 항에 있어서,
    상기 혼합기는 상기 제3 바디부에 배치되는 스월러;를 더 포함하는 산업용 연소기.
PCT/KR2017/000884 2016-04-08 2017-01-25 산업용 연소기 WO2017175958A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160043505A KR102236267B1 (ko) 2016-04-08 2016-04-08 산업용 연소기
KR10-2016-0043505 2016-04-08

Publications (1)

Publication Number Publication Date
WO2017175958A1 true WO2017175958A1 (ko) 2017-10-12

Family

ID=60000507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000884 WO2017175958A1 (ko) 2016-04-08 2017-01-25 산업용 연소기

Country Status (2)

Country Link
KR (1) KR102236267B1 (ko)
WO (1) WO2017175958A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102044668B1 (ko) * 2018-11-30 2019-11-20 한국기계연구원 연소진동 저감용 노즐 가이드를 구비한 가스터빈 연소기
KR102306940B1 (ko) * 2020-07-14 2021-10-01 (주)충우엔지니어링 휘발성유기화합물질 처리용 화염연소장치
KR102477514B1 (ko) * 2021-03-12 2022-12-13 임종문 마이크로웨이브를 이용한 가연성 쓰레기의 가스화 연소장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080065935A (ko) * 2007-01-10 2008-07-15 제너럴 일렉트릭 캄파니 연료 가변형 3중 역회전 스월러 및 사용 방법
KR20100018604A (ko) * 2007-12-21 2010-02-17 미츠비시 쥬고교 가부시키가이샤 가스 터빈 연소기
KR20100037630A (ko) * 2007-08-29 2010-04-09 미츠비시 쥬고교 가부시키가이샤 가스 터빈 연소기
KR101471311B1 (ko) * 2011-03-16 2014-12-09 미츠비시 쥬고교 가부시키가이샤 가스 터빈 연소기 및 가스 터빈

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673009B2 (ja) * 1996-03-28 2005-07-20 株式会社東芝 ガスタービン燃焼器
KR100275378B1 (ko) 1997-12-29 2001-03-02 이중구 듀얼 연료시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080065935A (ko) * 2007-01-10 2008-07-15 제너럴 일렉트릭 캄파니 연료 가변형 3중 역회전 스월러 및 사용 방법
KR20100037630A (ko) * 2007-08-29 2010-04-09 미츠비시 쥬고교 가부시키가이샤 가스 터빈 연소기
KR20100018604A (ko) * 2007-12-21 2010-02-17 미츠비시 쥬고교 가부시키가이샤 가스 터빈 연소기
KR101471311B1 (ko) * 2011-03-16 2014-12-09 미츠비시 쥬고교 가부시키가이샤 가스 터빈 연소기 및 가스 터빈

Also Published As

Publication number Publication date
KR102236267B1 (ko) 2021-04-05
KR20170115819A (ko) 2017-10-18

Similar Documents

Publication Publication Date Title
WO2017175958A1 (ko) 산업용 연소기
EP1959196B1 (en) Combustor of a gas turbine
EP2206958A2 (en) Method and apparatus for fuel injection in a turbine engine
JP4785932B2 (ja) 燃焼装置
US8522554B2 (en) Fuel nozzle for a turbine engine with a passive purge air passageway
KR20160078284A (ko) 터보기계로부터 연료를 퍼지하기 위한 시스템 및 방법
CN106524224B (zh) 具有环形流动路径架构的系统和方法
WO2011155670A1 (ko) 디젤엔진과 가스엔진용 하이브리드형 노즐을 구비한 이중 연료분사밸브장치
JPH02146228A (ja) 燃料噴射器
BR112013011264A2 (pt) combustor de combustível de baixo poder calorífico para turbina a gás
ITTO981054A1 (it) Dispositivo di miscelazione di combustibile/aria per apparecchiatura di combustione.
EP1835231A1 (en) Burner in particular for a gas turbine combustor, and method of operating a burner
US20170299188A1 (en) Fuel injector and gas turbine
WO2014088192A1 (ko) 연소기기용 듀얼 벤츄리
KR20220151207A (ko) 버너 집합체, 가스 터빈 연소기 및 가스 터빈
WO2016093429A1 (ko) 스월러 어셈블리
WO2024112001A1 (ko) 수소연료 역화를 방지할 수 있는 보일러용 부분 예혼합형 버너
WO2014148804A1 (ko) 플라즈마 버너
WO2016093430A1 (ko) 스월러 어셈블리
WO2012165742A1 (ko) 램제트엔진용 회전형 연료분사장치 및 이를 구비한 램제트엔진
WO2019088376A1 (ko) 흡·배기용 램제트 발생기
WO2020050689A1 (ko) 액체 추진제 로켓 엔진의 추진장치
US6718769B2 (en) Gas-turbine engine combustor having venturi mixers for premixed and diffusive combustion
EP2204616A2 (en) Fuel plenum vortex breakers
WO2017150835A1 (ko) 덕트용 오일버너를 위한 착화용 버너

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779259

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779259

Country of ref document: EP

Kind code of ref document: A1