WO2014148804A1 - 플라즈마 버너 - Google Patents

플라즈마 버너 Download PDF

Info

Publication number
WO2014148804A1
WO2014148804A1 PCT/KR2014/002288 KR2014002288W WO2014148804A1 WO 2014148804 A1 WO2014148804 A1 WO 2014148804A1 KR 2014002288 W KR2014002288 W KR 2014002288W WO 2014148804 A1 WO2014148804 A1 WO 2014148804A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
fuel
air
plasma burner
nozzle
Prior art date
Application number
PCT/KR2014/002288
Other languages
English (en)
French (fr)
Inventor
이대훈
송영훈
김관태
이재옥
허민
강우석
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130031021A external-priority patent/KR20140115831A/ko
Priority claimed from KR1020130031023A external-priority patent/KR20140115832A/ko
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2014148804A1 publication Critical patent/WO2014148804A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99005Combustion techniques using plasma gas

Definitions

  • the present invention relates to a plasma burner that stabilizes the flame and increases the flow rate of the processable fuel.
  • a plasma burner is constructed based on a rotating arc.
  • the plasma burner supplies discharge air to one side and injects fuel around the discharge gap to burn fuel by plasma discharge.
  • the amount of air supplied to the plasma burner is a value insufficient for the fuel equivalent ratio of the supplied fuel. That is, incomplete combustion occurs in rich combustion that lacks air.
  • the exhaust gas line of the engine is connected to the rear end of the plasma burner to burn unburned fuel remaining without reacting in the plasma burner with the air contained in the exhaust gas additionally supplied from the rear end of the plasma burner.
  • the exhaust gas additionally supplied to the rear end of the plasma burner has a low flow rate and thus cannot be smoothly mixed with the unburned fuel contained in the flame discharged from the plasma burner. Incomplete mixing of exhaust gas and unburned fuel does not sufficiently burn unburned fuel.
  • the flow rate of the fuel processable in the plasma burner is limited by the size of the passage for supplying the discharge air, the fuel supply method, and the like.
  • a first housing including a cylindrical portion to which discharge air is supplied and an expansion portion connected to one end of the cylindrical portion and gradually expanded to communicate with the cylindrical portion; An electrode provided inside the first housing to form a discharge gap between the first housing; A first fuel nozzle installed in the expansion part and supplying fuel to the discharge gap so as to be mixed with the discharge air to form an ignition flame; A second housing connected to an end of the expansion part and formed to gradually expand; And an air nozzle installed in the second housing to supply air into the second housing.
  • the discharge gap may be formed at a boundary between the cylindrical portion and the expansion portion.
  • the electrode may be formed of an ellipsoid.
  • the distance between the electrode and the first housing may be gradually smaller as it approaches the discharge gap.
  • It may further include a second fuel nozzle installed in the second housing for supplying fuel to the ignition flame.
  • the second fuel nozzle may be located between the air nozzle and the first fuel nozzle.
  • At least one of the first fuel nozzles may be installed and installed to inject fuel in a circumferential direction to an inner surface of the expansion part at one side in the radial direction of the expansion part.
  • the first fuel nozzle may be installed to be inclined by a first angle set in a direction in which the expansion part is enlarged based on the radial direction of the expansion part.
  • At least one second fuel nozzle may be installed and installed to inject fuel in a circumferential direction to an inner surface of the second housing at one radial direction of the second housing.
  • the second fuel nozzle may be installed to be inclined by a second angle set in a direction in which the second housing is enlarged based on a radial direction of the second housing.
  • the air nozzle at least one is installed, may be installed to inject air in the circumferential direction on the inner surface of the second housing from one side in the radial direction of the second housing.
  • the air nozzle may be installed to be inclined by a third angle set in a direction in which the second housing is enlarged based on the radial direction of the second housing.
  • the mounting portion is installed on the inner side of the cylindrical portion It may further include.
  • the display device may further include a third housing connected to an end of the second housing so as to communicate with the second housing and forming an expanded space than the second housing.
  • the third housing is connected to an exhaust gas line, and in the third housing, the unburned fuel discharged from the second housing may be combusted with air included in the exhaust gas supplied from the exhaust gas line.
  • the third housing may include a tubular body having a plurality of vent holes, and both ends of the tubular body may be open in the longitudinal direction of the third housing, and the inside and the outside may be connected to the vent holes in the radial direction.
  • discharge air is supplied between the first housing and the electrode, and fuel is supplied between the first housing and the electrode to cause plasma discharge to burn the fuel to form a flame, and then pass through the second housing. Since air is further supplied to the flame, the flame discharged via the first and second housings is stabilized. Therefore, when additional fuel is required, there is an effect of stabilizing the flame by supplying more air.
  • the air contained in the exhaust gas is further supplied to the flame containing the unburned fuel, so that the flow rate of the exhaust gas is low. Nevertheless, there is an effect of sufficiently burning the unburned fuel contained in the flame discharged at high speed while causing a swirl in the second housing.
  • the flame discharged at a high speed while causing a swirl including air supplied from the second housing may not be greatly affected by the conditions of the exhaust gas supplied from the exhaust gas line. have.
  • a plurality of fuel nozzles are provided in the first and second housings to form a ignition flame with discharge air and fuel, and the ignition flame
  • the atomized fuel is additionally evaporated, the atomized evaporated fuel reacts with the air injected by the air nozzle to further form a flame in the expanded space of the third housing, thereby increasing the flow rate of the processable fuel.
  • FIG. 1 is an exploded perspective view of a plasma burner according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 2.
  • FIG. 5 is a cross-sectional view of the plasma burner according to the second embodiment of the present invention.
  • FIG. 6 is an exploded perspective view of a plasma burner according to a third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along line II-II of FIG. 6.
  • FIG. 8 is a cross-sectional view taken along line III-III of FIG. 7.
  • FIG. 9 is a cross-sectional view taken along line IV-IV of FIG. 7.
  • FIG. 10 is a cross-sectional view of a plasma burner according to a fourth embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a plasma burner according to a first embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along the line II-II of FIG. 1 and 2
  • the plasma burner 100 according to the first embodiment of the present invention may include a first housing 10, a second housing 20, a mounting portion 40, an electrode 50, and a fuel nozzle. 60 and an air nozzle 70.
  • the first housing 10 includes a cylindrical portion 11 and an expansion portion 12 that gradually expands at one end of the cylindrical portion 11.
  • the air supply port 13 which supplies discharge air to the cylindrical part 11 is provided.
  • the expansion part 12 is provided with a fuel nozzle 60 for supplying fuel.
  • the second housing 20 is connected to the extension 12 of the first housing 10, and in this case, the second housing 20 is extended to correspond to the extension 12.
  • An air nozzle 70 for supplying air to the second housing 20 is connected.
  • the first and second housings 10 and 20 face each other with the flanges 14 and 24 provided on the outside, and are connected by fastening the flanges 14 and 24 with the bolts 15 and the nuts 25. At this time, the inner surface of the first housing 10 and the inner surface of the second housing 20 are connected to the inclined surface having a structure gradually expanding away from the electrode 50.
  • Mounting portion 40 is coupled to the end of the cylindrical portion 11 of the first housing 10 is installed over the inside and outside of the cylindrical portion 11 to seal the end of the cylindrical portion (11).
  • the mounting portion 40 forms a coupling groove 41 and the first housing 10 has a protrusion 101 coupled to the coupling groove 41.
  • one side of the mounting portion 40 and the cylindrical portion 11 is sealed by the coupling groove 41 and the protrusion 101, and the mounting portion 40 and the cylindrical portion 11 forms a passage.
  • the passage is connected to the air supply port 13 to supply discharge air between the first housing 10 and the electrode 50.
  • the electrode 50 is provided at the inner end of the mounting portion 40 via the insulating material 51. At this time, the mounting portion 40 and the insulating material 51 forms an airtight structure.
  • a discharge gap G is formed between the electrode 50 and the first housing 10.
  • the discharge gap G is formed between the electrode 50 and the cylindrical part 11, or as shown in FIG. 2, the discharge gap G is the cylindrical part 11 and the expansion part 12. As shown in FIG. Is formed at the boundary.
  • the high voltage HV for discharging is applied to the electrode 50 through the electric wire 52 provided inside the mounting portion 40.
  • the first housing 10 corresponding to the electrode 50 is grounded. Therefore, a high voltage for discharging is set between the inner surface of the first housing 10 and the outer surface of the electrode 50.
  • the electrode 50 is formed of an ellipsoid, and the ellipsoid corresponds to the boundary between the cylindrical portion 11 and the expansion portion 12 inside the first housing 10. Therefore, the distance between the electrode 50 and the cylindrical portion 11 gradually decreases as it approaches the discharge gap G, and the distance between the electrode 50 and the expansion part 12 gradually increases as it moves away from the discharge gap G. Becomes larger.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 2.
  • at least one fuel nozzle 60 is formed in the first housing 10 to supply fuel to the discharge gap G and the surroundings thereof.
  • the fuel nozzles 60 are formed in a pair so as to inject fuel in the circumferential direction on the inner surface of the extension 12 on both sides in the radial direction of the extension 12. That is, the fuel nozzle 60 injects fuel in a tangential direction of the inner surface of the extension 12 or in a set angle ⁇ that crosses the tangential line.
  • the fuel injected from the fuel nozzle 60 generates plasma by the high voltage applied between the first housing 10 and the electrode 50 while being mixed with the discharge gap G and the discharged air supplied in front of the discharge gap G. Burning while burning.
  • the fuel nozzle 60 generates a swirl in the circumferential direction in the extension 12 to enable uniform mixing of fuel and discharge air.
  • the fuel mixed with the discharge air is burned while generating plasma by the arc generated in the discharge gap G.
  • the fuel nozzle 60 may be installed to be inclined at a first angle ⁇ 1 set with respect to the radial direction of the extension 12 (see FIG. 2). That is, the fuel nozzle 60 may be installed to be inclined by the first angle ⁇ 1 in the direction in which the extension 12 is enlarged based on the radial direction. Therefore, the fuel injected from the fuel nozzle 60 generates a swirling force in the longitudinal direction of the extension part 12 while generating a swirl in the circumferential direction in the extension part 12. Therefore, the flame discharged from the first housing 10 may be discharged at high speed by receiving a driving force.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 2.
  • at least one air nozzle 70 is installed in the second housing 20 to supply air to a flame generated by plasma discharge and discharged from the first housing 10.
  • the air nozzles 70 are formed in a pair so as to inject air in the circumferential direction to the inner surface of the second housing 20 on both sides in the radial direction of the second housing 20. That is, the air nozzle 70 injects fuel in a tangential direction of the inner surface of the second housing 20 or in a set angle ⁇ that crosses the tangential line.
  • the air injected from the air nozzle 70 is mixed with the flame discharged and discharged to the outside of the flame in the second housing 20, and stabilizes the flame surrounding the flame.
  • the air nozzle 70 generates a swirl in the circumferential direction in the second housing 20 to enable uniform mixing of flame and air. Flames and air can further burn unburned fuel contained in the flames.
  • the air nozzle 70 is installed inclined at a third angle ⁇ 3 set with respect to the radial direction of the second housing 20 (see FIG. 2). That is, the air nozzle 60 may be installed to be inclined by the third angle ⁇ 3 in the direction in which the second housing 20 is enlarged based on the radial direction.
  • the third angle ⁇ 3 of the air nozzle 70 may be set to fix the air nozzle 70 perpendicular to the second housing 20.
  • the air injected from the air nozzle 70 generates a swirling force in the longitudinal direction of the second housing 20 while generating a swirl in the circumferential direction in the second housing 20. Therefore, the flame discharged from the second housing 20 may be discharged at a high speed by receiving a driving force while being stabilized.
  • the air nozzle 70 may be installed in the second housing 20 in a structure capable of adjusting the third angle ⁇ 3. According to the position and length of the flame, the injection direction of the air nozzle 70, that is, the third angle ⁇ 3, may be adjusted to optimize combustion characteristics.
  • the third angle ⁇ 3 when the third angle ⁇ 3 is set to be large, a flame may be formed in a direction in which the second housing 20 is enlarged.
  • combustion when the third angle ⁇ 3 is set small, combustion can be promoted in the second housing 20.
  • the plasma burner 100 may stabilize the discharged flame by further supplying air to the air nozzle 70.
  • the plasma burner 200 according to the second embodiment further includes a third housing 30 connected to an end of the second housing 20 of the plasma burner 100 of the first embodiment.
  • the third housing 30 is connected to the exhaust gas line 80 to convert unburned fuel included in the flame discharged from the second housing 20 into air contained in the exhaust gas supplied from the exhaust gas line 80. Burn more. At this time, the exhaust gas supplied to the exhaust gas line 80 is supplied at a low speed, but a flame containing unburned fuel discharged from the second housing 20 is discharged at a high speed while causing a swirl.
  • the low-speed exhaust gas containing air can be further combusted unburned fuel while being mixed with the unburned fuel contained in the high speed flame.
  • the complete combustion of the supplied fuel is mainly made by the air supplied to the air nozzle 70 may not be sensitively reacted by the exhaust gas supplied to the exhaust gas line (80).
  • FIG. 6 is an exploded perspective view of a plasma burner according to a third embodiment of the present invention
  • FIG. 7 is a cross-sectional view taken along line II-II of FIG. 6.
  • the plasma burner 300 according to the third embodiment of the present invention may include a first housing 10, a second housing 20, a third housing 30, an electrode 50, The first and second fuel nozzles 61 and 62 and the air nozzle 70 are included.
  • the expansion part 12 of the first housing 10 is provided with a first fuel nozzle 61 for supplying fuel, and the second housing 20 for supplying fuel. 2 fuel nozzles 62 are provided.
  • the air nozzles 70 are provided behind the first and second fuel nozzles 61 and 62 to supply air. That is, the second fuel nozzle 62 is located between the first fuel nozzle 61 and the air nozzle 70.
  • the 'back' is defined based on the discharge direction of the flame.
  • the air nozzle 70 is installed in the second housing 20, as shown, may be installed in the third housing 30, although not shown.
  • the air nozzle 70 further sets the flow rate of air.
  • the first fuel nozzle 61 supplies fuel to the discharge gap G and is mixed with the discharge air to form an ignition flame.
  • the second fuel nozzle 62 supplies fuel to the complexed flame to atomize and evaporate it.
  • the second fuel nozzle 62 further sets the amount of fuel set by the first fuel nozzle 61.
  • the third housing 30 is connected to form an expanded space than the second housing 20 at the end of the second housing 20. Also, although not shown, the connection of the third housing 30 and the second housing 20 may be connected by a flange as in the connection of the first housing 10 and the second housing 20.
  • the air nozzle 70 additionally supplies air at the rear of the second fuel nozzle 62 to allow the atomized evaporated fuel to react with the air to eject a flame, which is further formed, into the space of the third housing 30. . Therefore, the flow rate of the processable fuel can be increased.
  • FIG. 8 is a cross-sectional view taken along line III-III of FIG. 7.
  • the first fuel nozzle 61 is installed in the first housing 10 to supply fuel to the discharge gap G and the surroundings thereof.
  • the first fuel nozzles 61 are formed in a pair so as to inject fuel in the circumferential direction on the inner surface of the extension 12 on both sides in the radial direction of the extension 12. That is, the first fuel nozzle 61 injects fuel in a tangential direction on the inner surface of the extension 12 or in a set angle ⁇ 11 that crosses the tangential line.
  • the fuel injected from the first fuel nozzle 61 is mixed with the discharge gap G and the discharge air supplied and supplied in front of the discharge gap G, and the plasma is discharged by the high voltage applied between the first housing 10 and the electrode 50. While forming a complex flame.
  • the first fuel nozzle 61 since the first fuel nozzle 61 generates a swirl in the circumferential direction in the extension 12, it is possible to uniformly mix fuel and discharge air.
  • the first fuel nozzle 61 may be installed to be inclined at a first angle ⁇ 1 set with respect to the radial direction of the extension 12 (see FIG. 7). That is, the first fuel nozzle 61 may be installed to be inclined by the first angle ⁇ 1 in the direction in which the extension 12 is enlarged based on the radial direction. Therefore, the fuel injected from the first fuel nozzle 61 generates a swirling force in the longitudinal direction of the extension part 12 while generating a swirl in the circumferential direction in the extension part 12. Therefore, the ignition flame discharged from the first housing 10 may be discharged at high speed toward the second housing 20.
  • the second fuel nozzle 62 is installed to inject fuel in the circumferential direction to the inner surface of the second housing 20 on both sides in the radial direction of the second housing 20. That is, the second fuel nozzle 62 injects fuel in a tangential direction of the inner surface of the second housing 20 or in a set angle ⁇ 12 that crosses the tangential line (see FIG. 9).
  • the second fuel nozzle 62 is installed at the rear where the ignition flame proceeds to supply fuel to the ignition flame, so that the additionally supplied fuel can be atomized and evaporated. At this time, the second fuel nozzle 62 generates a swirl in the circumferential direction in the second housing 20, thereby enabling uniform mixing of the fuel and the ignition flame.
  • the 2nd fuel nozzle 62 is installed inclined at the 2nd angle (theta) 2 set with respect to the radial direction of the 2nd housing 20 (refer FIG. 7). That is, the second fuel nozzle 62 may be installed to be inclined by the second angle ⁇ 2 in the direction in which the second housing 20 is enlarged based on the radial direction. Therefore, the fuel injected from the second fuel nozzle 62 generates swirl in the longitudinal direction of the second housing 20 while generating swirl in the circumferential direction in the second housing 20. Therefore, the ignition flame discharged from the second housing 20 and the fuel atomized and evaporated may be discharged at high speed toward the third housing 30.
  • FIG. 9 is a cross-sectional view taken along line IV-IV of FIG. 7.
  • the air nozzle 70 is installed at the rear of the second fuel nozzle 62 to atomize and evaporate the fuel discharged from the second housing 20 by atomization and evaporation by the ignition flame generated by the plasma discharge. Supply.
  • the air nozzles 70 are formed in a pair so as to inject air in the circumferential direction to the inner surface of the second housing 20 on both sides in the radial direction of the second housing 20. That is, the air nozzle 70 injects fuel in a tangential direction of the inner surface of the second housing 20 or in a set angle ⁇ 13 that crosses the tangential line.
  • the air injected from the air nozzle 70 is injected into the ignition flame and the outside of the fuel atomized and evaporated in the second housing 20, and mixed with the ignition flame, atomized and evaporated fuel in the third housing 30. Further combustion to form and maintain flames. At this time, the air nozzle 70 generates a swirl in the circumferential direction in the second housing 20 to enable uniform mixing of the ignition flame, atomized and evaporated fuel and air.
  • the plasma burner 300 includes the second fuel nozzle 62 and the air nozzle 70 in addition to the first fuel nozzle 61 to increase the throughput of the fuel.
  • the third embodiment illustrates two first fuel nozzles 61 and a second fuel nozzle 62 as fuel nozzles, but may have a larger number of fuel nozzles.
  • a fourth embodiment of the present invention will be described below. Compared with the third embodiment, the same configuration will be omitted and different configurations will be described.
  • FIG. 10 is a cross-sectional view of a plasma burner according to a fourth embodiment of the present invention.
  • the plasma burner 400 according to the fourth embodiment is configured by further connecting the exhaust gas line 80 to the third housing 30 of the plasma burner 300 of the third embodiment.
  • the third housing 30 is connected to the exhaust gas line 80 to further burn the unburned fuel included in the flame discharged from the second housing 20 with the air contained in the exhaust gas.
  • the exhaust gas line 80 is connected to the third housing 30 by a plurality of inlets 81, thereby preventing excessive inflow of exhaust gas into the third housing 30.
  • the third housing 30 has a tubular body 32 having a plurality of vent holes 31 in the inner space.
  • the tubular body 32 opens the both ends in the longitudinal direction of the third housing 30 to enable the flow of flame and exhaust gas inside the third housing 30, and vent holes 31 inside and outside in the radial direction.
  • the exhaust gas of the engine supplied to the exhaust gas line 80 is introduced into the third housing 30 through the inlet 81, and the inside of the tubular body 32 through the vent holes 31 of the tubular body 32. Flows into. At this time, the flow rate of the exhaust gas is controlled so that unburned fuel contained in the flame can be stably combusted.
  • vent holes 31 of the tubular body 32 reduce the flow rate of the exhaust gas by diversifying the inflow path of the exhaust gas, and prevent the excessive inflow of the exhaust gas according to the large-capacity application conditions to prevent the flame in the tubular 32. Can be stabilized.
  • the tubular body 32 and the vents 31 realize additional stability of the flame.
  • first housing 11 cylindrical part
  • first and second fuel nozzles 70 air nozzle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명의 목적은 화염을 안정시키고, 처리 가능한 연료의 유량을 증대시키는 플라즈마 버너를 제공하는 것이다. 본 발명의 일 실시예에 따른 플라즈마 버너는, 내부로 방전 공기가 공급되는 원통부 및 원통부와 연통되도록 원통부의 일단부에 연결되며 점진적으로 확대되는 형태로 형성되는 확장부를 포함하는 제 1 하우징; 제 1 하우징의 내부에 설치되어 제 1 하우징과의 사이에 방전 간극을 형성하는 전극; 확장부에 설치되며 방전 공기와 혼합되어 착화 화염을 형성하도록 상기 방전 간극에 연료를 공급하는 제 1 연료 노즐; 확장부의 단부에 연결되어 점진적으로 확대되는 형태로 형성되는 제 2 하우징; 및 제 2 하우징에 설치되어 제 2 하우징 내부로 공기를 공급하는 공기 노즐을 포함한다.

Description

플라즈마 버너
본 발명은 화염을 안정시키고, 처리 가능한 연료의 유량을 증대시키는 플라즈마 버너에 관한 것이다.
일반적으로 플라즈마 버너는 회전 아크를 기반으로 구성된다. 플라즈마 버너는 일측으로 방전 공기를 공급하고 방전 간극의 주위에 연료를 분사하여 플라즈마 방전으로 연료를 연소시킨다.
플라즈마 버너에 공급되는 공기량은 공급된 연료의 연료 당량비에 부족한 값이다. 즉 공기가 부족한 농후 연소에서 불완전한 연소가 일어난다.
따라서 엔진의 배기가스 라인을 플라즈마 버너의 후단에 연결하여, 플라즈마 버너의 후단에서 추가로 공급되는 배기가스에 포함된 공기로 플라즈마 버너에서 반응하지 않고 남은 미연소 연료를 연소시킨다.
그러나 이 경우, 플라즈마 버너의 후단에 추가로 공급되는 배기가스는 낮은 유속을 가지므로 플라즈마 버너에서 토출되는 화염 속에 포함된 미연소 연료와 원활하게 혼합될 수 없다. 배기가스와 미연소 연료의 불완전한 혼합은 미연소 연료를 충분히 연소시키지 못한다.
한편, 플라즈마 버너에서 처리 가능한 연료의 유량은 방전 공기를 공급하는 통로의 크기 및 연료 공급 방식 등에 의하여 한정된다.
본 발명의 목적은 화염을 안정시키는 플라즈마 버너를 제공하는 것이다. 본 발명의 다른 목적은 화염을 안정시키고 배기가스에 포함된 공기를 이용하여 분출되는 화염에 포함된 미연소 연료를 충분히 연소시키는 플라즈마 버너를 제공하는 것이다.
또한, 본 발명의 목적은 처리 가능한 연료의 유량을 증대시키는 플라즈마 버너를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 내부로 방전 공기가 공급되는 원통부 및 상기 원통부와 연통되도록 상기 원통부의 일단부에 연결되며 점진적으로 확대되는 형태로 형성되는 확장부를 포함하는 제 1 하우징; 상기 제 1 하우징의 내부에 설치되어 상기 제 1 하우징과의 사이에 방전 간극을 형성하는 전극; 상기 확장부에 설치되며 상기 방전 공기와 혼합되어 착화 화염을 형성하도록상기 방전 간극에 연료를 공급하는 제 1 연료 노즐; 상기 확장부의 단부에 연결되어 점진적으로 확대되는 형태로 형성되는 제 2 하우징; 및 상기 제 2 하우징에 설치되어 상기 제 2 하우징 내부로 공기를 공급하는 공기 노즐을 포함하는, 플라즈마 버너가 제공된다.
상기 방전 간극은, 상기 원통부와 상기 확장부의 경계에 형성될 수 있다.
상기 전극은 타원체로 형성될 수 있다.
상기 전극과 상기 제 1 하우징 사이 간격은 상기 방전 간극에 근접할수록 점진적으로 작아질 수 있다.
상기 제 2 하우징에 설치되어 상기 착화 화염에 연료를 공급하는 제 2 연료 노즐을 더 포함할 수 있다.
상기 제 2 연료 노즐은, 상기 공기 노즐과 상기 제 1 연료 노즐의 사이에 위치될 수 있다.
상기 제 1 연료 노즐은, 적어도 하나가 설치되며, 상기 확장부의 직경 방향 일측에서 상기 확장부의 내면에 원주 방향으로 연료를 분사하도록 설치될 수 있다.
상기 제 1 연료 노즐은, 상기 확장부의 직경 방향을 기준으로 상기 확장부가 확대되는 방향으로 설정된 제 1 각도만큼 경사지게 설치될 수 있다.
상기 제 2 연료 노즐은, 적어도 하나가 설치되며, 상기 제 2 하우징의 직경 방향 일측에서 상기 제 2 하우징의 내면에 원주 방향으로 연료를 분사하도록 설치될 수 있다.
상기 제 2 연료 노즐은, 상기 제 2 하우징의 직경 방향을 기준으로 상기 제 2 하우징이 확대되는 방향으로 설정된 제 2 각도만큼 경사지게 설치될 수 있다.
상기 공기 노즐은, 적어도 하나가 설치되며, 상기 제 2 하우징의 직경 방향 일측에서 상기 제 2 하우징의 내면에 원주 방향으로 공기를 분사하도록 설치될 수 있다.
상기 공기 노즐은, 상기 제 2 하우징의 직경 방향을 기준으로 상기 제 2 하우징이 확대되는 방향으로 설정된 제 3 각도만큼 경사지게 설치될 수 있다.
상기 원통부의 타단부에 결합 및 밀폐되어 상기 원통부의 내부와 외부에 걸쳐 설치되고, 상기 원통부와의 사이에 방전 공기를 공급하는 통로를 형성하며, 상기 원통부의 내부 측에 전극이 설치되는 장착부를 더 포함할 수 있다.
상기 제 2 하우징과 연통되도록 상기 제 2 하우징의 단부에 연결되며, 상기 제 2 하우징보다 확장된 공간을 형성하는 제 3 하우징을 더 포함할 수 있다.
상기 제 3 하우징은 배기가스 라인에 연결되며, 상기 제 3 하우징에서는, 상기 제 2 하우징에서 배출되는 미연소 연료를 상기 배기가스 라인에서 공급되는 배기가스에 포함된 공기로 연소시킬 수 있다.
상기 제 3 하우징은, 복수의 통기공들을 구비한 관체를 내장하며, 상기 관체는, 상기 제 3 하우징의 길이 방향으로 양단이 개방되고 직경 방향으로 내부와 외부가 상기 통기공으로 연결될 수 있다.
이와 같이 본 발명의 일 실시예는, 제 1 하우징과 전극 사이로 방전 공기를 공급하고 제 1 하우징과 전극 사이에 연료를 공급하여 플라즈마 방전을 일으켜 연료를 연소시켜 화염을 형성하고, 제 2 하우징을 통과하는 화염에 공기를 더 공급하므로 제 1, 제 2 하우징을 경유하여 토출되는 화염을 안정시키는 효과가 있다. 따라서 추가 연료 요구시, 공기를 더 공급함으로써 화염을 안정시키는 효과가 있다.
제 2 하우징의 단부에 제 3 하우징을 연결하고 제 3 하우징에 배기가스 라인을 연결하여, 미연소된 연료를 포함하는 화염에 배기가스에 포함된 공기를 더 공급함으로써, 배기가스의 유속이 낮음에도 불구하고 제 2 하우징에서 스월을 일으키면서 고속으로 토출되는 화염에 포함된 미연소 연료를 충분히 연소시키는 효과가 있다.
이 때, 미연소 연료를 연소시킴에 있어서, 제 2 하우징에서 공급되는 공기를 포함하여 스월을 일으키면서 고속으로 토출되는 화염은, 배기가스 라인으로부터 공급되는 배기가스의 조건에 크게 영향을 받지 않을 수 있다.
또한, 본 발명의 일 실시예는, 제 1, 제 2 하우징에 복수의 연료 노즐(예를 들면, 제 1, 제 2 연료 노즐)을 설치하여 방전 공기와 연료로 착화 화염을 형성하고, 착화 화염에 추가로 분사되는 연료를 미립화 증발시킨 후, 미립화 증발된 연료에 공기 노즐로 분사된 공기를 반응시켜 제 3 하우징의 확장된 공간에서 화염을 더 형성하므로 처리 가능한 연료의 유량을 증대시킬 수 있다.
도 1은 본 발명의 제 1 실시예에 따른 플라즈마 버너의 분해 사시도이다.
도 2는 도 1의 Ⅱ-Ⅱ 선에 따른 단면도이다.
도 3은 도 2의 Ⅲ-Ⅲ 선에 따른 단면도이다.
도 4는 도 2의 Ⅳ-Ⅳ 선에 따른 단면도이다.
도 5는 본 발명의 제 2 실시예에 따른 플라즈마 버너의 단면도이다.
도 6은 본 발명의 제 3 실시예에 따른 플라즈마 버너의 분해 사시도이다.
도 7는 도 6의 Ⅱ-Ⅱ 선에 따른 단면도이다.
도 8은 도 7의 Ⅲ-Ⅲ 선에 따른 단면도이다.
도 9는 도 7의 Ⅳ-Ⅳ 선에 따른 단면도이다.
도 10는 본 발명의 제 4 실시예에 따른 플라즈마 버너의 단면도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
도 1은 본 발명의 제 1 실시예에 따른 플라즈마 버너의 분해 사시도이고, 도 2는 도 1의 Ⅱ-Ⅱ 선에 따른 단면도이다. 도 1 및 도 2를 참조하면, 본 발명의 제 1 실시예에 따른 플라즈마 버너(100)는 제 1 하우징(10), 제 2 하우징(20), 장착부(40), 전극(50), 연료 노즐(60) 및 공기 노즐(70)을 포함한다.
제 1 하우징(10)은 원통부(11)와, 원통부(11)의 일측 단부에서 점진적으로 확대되는 확장부(12)를 포함한다. 원통부(11)에 방전 공기를 공급하는 공기 공급 포트(13)를 구비한다. 확장부(12)에는 연료를 공급하는 연료 노즐(60)이 설치된다.
제 2 하우징(20)은 제 1 하우징(10)의 확장부(12)에 연결되며, 이때, 확장부(12)에 대응하여 확장 형성된다. 제 2 하우징(20)에 공기를 공급하는 공기 노즐(70)이 연결된다.
제 1, 제 2 하우징(10, 20)은 외측에 구비되는 플랜지(14, 24)를 서로 마주하고, 플랜지(14, 24)를 볼트(15), 너트(25)로 체결함으로써, 연결된다. 이 때, 제 1 하우징(10)의 내면과 제 2 하우징(20)의 내면은 전극(50)에서 멀어지면서 점진적으로 확장되는 구조를 가지고 경사면으로 연결된다.
장착부(40)는 제 1 하우징(10)의 원통부(11)의 단부에 결합되어 원통부(11)의 단부를 밀폐하도록 원통부(11)의 내부와 외부에 걸쳐서 설치된다. 장착부(40)는 결합홈(41)을 형성하고 제 1 하우징(10)은 결합홈(41)에 결합되는 돌출부(101)를 구비한다.
따라서 장착부(40)와 원통부(11)의 일측은 결합홈(41)과 돌출부(101)에 의하여 밀폐되고, 장착부(40)와 원통부(11) 사이는 통로를 형성한다. 통로는 공기 공급 포트(13)에 연결되어 방전 공기를 제 1 하우징(10)과 전극(50) 사이로 공급한다.
전극(50)은 절연재(51)를 개재하여 장착부(40)의 내측 단부에 설치된다. 이때, 장착부(40)와 절연재(51)는 기밀 구조를 형성한다. 또한 전극(50)과 제 1 하우징(10) 사이에 방전 간극(G)이 형성된다. 예를 들면, 전극(50)과 원통부(11) 사이에 방전 간극(G)이 형성되거나, 또는 도 2에 도시된 바와 같이, 방전 간극(G)은 원통부(11)와 확장부(12)의 경계에 형성된다.
장착부(40)의 내측에 구비되는 전선(52)을 통하여 방전을 위한 고전압(HV)이 전극(50)에 인가된다. 전극(50)에 대응하는 제 1 하우징(10)은 접지된다. 따라서 제 1 하우징(10)의 내면과 전극(50)의 외면 사이에 방전을 위한 고전압이 설정된다.
예를 들면, 전극(50)은 타원체로 형성되며, 타원체는 제 1 하우징(10)의 내측에서 원통부(11)와 확장부(12)의 경계에 대응한다. 따라서 전극(50)과 원통부(11) 사이 간격은 방전 간극(G)에 근접할수록 점진적으로 작아지고, 전극(50)과 확장부(12) 사이 간격은 방전 간극(G)에서 멀어질수록 점진적으로 커진다.
도 3은 도 2의 Ⅲ-Ⅲ 선에 따른 단면도이다. 도 3을 참조하면, 연료 노즐(60)은 적어도 하나로 형성되어 제 1 하우징(10)에 설치되어 방전 간극(G) 및 그 주위에 연료를 공급한다.
예를 들면, 연료 노즐(60)은 1쌍으로 형성되어 확장부(12)의 직경 방향 양측에서 확장부(12)의 내면에 원주 방향으로 연료를 분사하도록 설치된다. 즉 연료 노즐(60)은 확장부(12) 내면의 접선 방향 또는 접선에 교차하는 설정각(θ) 방향으로 연료를 분사한다.
따라서 연료 노즐(60)에서 분사된 연료는 방전 간극(G) 및 이의 전방에 분사되어 공급되는 방전 공기와 혼합되면서 제 1 하우징(10)과 전극(50) 사이에 인가되는 고전압에 의하여 플라즈마를 발생시키면서 연소된다.
연료 노즐(60)은 확장부(12) 내에서 원주 방향으로 스월(swirl)을 발생시키므로 연료와 방전 공기의 균일한 혼합을 가능하게 한다. 방전 공기와 혼합된 연료는 방전 간극(G)에서 발생되는 아크에 의하여 플라즈마를 발생시키면서 연소된다.
또한, 연료 노즐(60)은 확장부(12)의 직경 방향에 대하여 설정된 제 1 각도(θ1)로 경사지게 설치될 수 있다(도 2 참조). 즉, 연료 노즐(60)은 직경 방향을 기준으로 확장부(12)가 확대되는 방향으로 제 1 각도(θ1)만큼 경사지게 설치될 수 있다. 따라서 연료 노즐(60)에서 분사되는 연료는 확장부(12) 내에서 원주 방향으로 스월을 발생시키면서 동시에 확장부(12)의 길이 방향으로 분사력을 발생시킨다. 따라서 제 1 하우징(10)에서 토출되는 화염은 추진력을 받아서 고속으로 토출될 수 있다.
도 4는 도 2의 Ⅳ-Ⅳ 선에 따른 단면도이다. 도 4를 참조하면, 공기 노즐(70)은 적어도 하나로 형성되어 제 2 하우징(20)에 설치되어 플라즈마 방전으로 발생되어 제 1 하우징(10)으로부터 토출되는 화염에 공기를 공급한다.
예를 들면, 공기 노즐(70)은 1쌍으로 형성되어 제 2 하우징(20)의 직경 방향 양측에서 제 2 하우징(20)의 내면에 원주 방향으로 공기를 분사하도록 설치된다. 즉 공기 노즐(70)은 제 2 하우징(20) 내면의 접선 방향 또는 접선에 교차하는 설정각(θ) 방향으로 연료를 분사한다.
따라서 공기 노즐(70)에서 분사된 공기는 제 2 하우징(20) 내에서 화염의 외곽으로 분사되어 토출되는 화염과 혼합되고 화염을 둘러싸면서 화염을 안정시킨다.
공기 노즐(70)은 제 2 하우징(20) 내에서 원주 방향으로 스월을 발생시키므로 화염과 공기의 균일한 혼합을 가능하게 한다. 화염과 공기는 화염에 포함된 미연소 연료를 더 연소시킬 수 있다.
또한, 공기 노즐(70)은 제 2 하우징(20)의 직경 방향에 대하여 설정된 제 3 각도(θ3)로 경사지게 설치된다(도 2 참조). 즉, 공기 노즐(60)은 직경 방향을 기준으로 제 2 하우징(20)이 확대되는 방향으로 제 3 각도(θ3)만큼 경사지게 설치될 수 있다. 예를 들어, 공기 노즐(70)의 제 3 각도(θ3)는 제 2 하우징(20)에 공기 노즐(70)을 수직한 상태로 고정되도록 설정될 수 있다.
따라서 공기 노즐(70)에서 분사되는 공기는 제 2 하우징(20) 내에서 원주 방향으로 스월을 발생시키면서 동시에 제 2 하우징(20)의 길이 방향으로 분사력을 발생시킨다. 따라서 제 2 하우징(20)에서 토출되는 화염은 안정되면서 추진력을 받아서 고속으로 토출될 수 있다.
도시하지는 않았지만, 공기 노즐(70)은 제 3 각도(θ3)를 조절할 수 있는 구조로 제 2 하우징(20)에 설치될 수 있다. 화염의 위치와 길이에 따라 공기 노즐(70)의 분사 방향, 즉 제 3 각도(θ3)가 조절되어 연소 특성을 최적화할 수 있다.
예를 들면, 제 3 각도(θ3)가 크게 설정되면, 제 2 하우징(20)이 확대되는 방향으로 화염을 형성할 수 있다. 또한, 제 3 각도(θ3)가 작게 설정되면, 제 2 하우징(20) 내에서 연소를 촉진할 수 있다.
이와 같은 플라즈마 버너(100)는 연료 노즐(60)로 공급되는 연료를 추가로 요구할 때, 공기 노즐(70)로 공기를 더 공급함으로써 토출되는 화염을 안정시킬 수 있다.
이하 본 발명의 제 2 실시예에 대하여 설명한다. 제 1 실시예와 비교하여 동일한 구성에 대해서는 설명을 생략하고 서로 다른 구성에 대하여 설명한다.
도 5는 본 발명의 제 2 실시예에 따른 플라즈마 버너의 단면도이다. 도 5를 참조하면, 제 2 실시예에 따른 플라즈마 버너(200)는 제 1 실시예의 플라즈마 버너(100)의 제 2 하우징(20) 단부에 연결되는 제 3 하우징(30)을 더 포함한다.
제 3 하우징(30)은 배기가스 라인(80)에 연결되어, 제 2 하우징(20)에서 배출되는 화염에 포함된 미연소 연료를 배기가스 라인(80)에서 공급되는 배기가스에 포함된 공기로 더 연소시킨다. 이 때, 배기가스 라인(80)으로 공급되는 배기가스는 저속으로 공급되지만 제 2 하우징(20)에서 배출되는 미연소 연료를 포함하는 화염이 스월을 일으키면서 고속으로 토출된다.
따라서 공기를 포함하는 저속의 배기가스는 고속의 화염에 포함된 미연소 연료와 혼합되면서 미연소 연료를 추가적으로 연소시킬 수 있다. 이 때, 공급된 연료의 완전 연소는 주로 공기 노즐(70)로 공급되는 공기에 의하여 이루어지므로 배기가스 라인(80)으로 공급되는 배기가스에 의하여 민감하게 반응하지 않을 수 있다.
이하, 본 발명의 제 3 실시예에 대하여 설명한다. 제 1 실시예와 비교하여 동일한 구성에 대해서는 설명을 생략하고 서로 다른 구성에 대하여 설명한다.
도 6은 본 발명의 제 3 실시예에 따른 플라즈마 버너의 분해 사시도이고, 도 7은 도 6의 Ⅱ-Ⅱ 선에 따른 단면도이다. 도 6 및 도 7을 참조하면, 본 발명의 제 3 실시예에 따른 플라즈마 버너(300)는 제 1 하우징(10), 제 2 하우징(20), 제 3 하우징(30), 전극(50), 제 1, 제 2 연료 노즐(61, 62) 및 공기 노즐(70)을 포함한다.
본 발명의 제 3 실시예에 따르면, 제 1 하우징(10)의 확장부(12)에는 연료를 공급하는 제 1 연료 노즐(61)이 설치되고, 제 2 하우징(20)에는 연료를 공급하는 제 2 연료 노즐(62)이 설치된다.
공기 노즐(70)은 제 1, 제 2 연료 노즐(61, 62)의 후방에 설치되어, 공기를 공급한다. 즉, 제 2 연료 노즐(62)은 제 1 연료 노즐(61)과 공기 노즐(70)의 사이에 위치된다. 본 명세서에서 '후방'은 화염의 토출 방향을 기준으로 정의한다.
따라서 공기 노즐(70)은 도시된 바와 같이, 제 2 하우징(20)에 설치되며, 도시하지 않았지만 제 3 하우징(30)에 설치될 수도 있다. 공기 노즐(70)은 공기의 유량을 추가로 설정한다.
제 1 연료 노즐(61)은 방전 간극(G)에 연료를 공급하여 방전 공기와 혼합되어 착화 화염을 형성한다. 제 2 연료 노즐(62)은 착화된 화염에 연료를 공급하여 미립화 증발시킨다. 제 2 연료 노즐(62)은 제 1 연료 노즐(61)에 의하여 설정되는 연료량을 추가로 설정한다.
제 3 하우징(30)은 제 2 하우징(20)의 단부에서 제 2 하우징(20)보다 확장된 공간을 형성하여 연결된다. 또한 도시하지 않았지만 제 3 하우징(30)과 제 2 하우징(20)의 연결은 제 1 하우징(10)과 제 2 하우징(20)의 연결에서와 같이 플랜지로 연결될 수 있다.
공기 노즐(70)은 제 2 연료 노즐(62)의 후방에서 공기를 추가 공급하여, 미립화 증발된 연료와 공기를 반응시켜 더 형성되는 화염을 제 3 하우징(30)의 공간으로 분출할 수 있게 한다. 따라서 처리 가능한 연료의 유량이 증대될 수 있다.
도 8은 도 7의 Ⅲ-Ⅲ 선에 따른 단면도이다. 도 8을 참조하면, 제 1 연료 노즐(61)은 제 1 하우징(10)에 설치되어 방전 간극(G) 및 그 주위에 연료를 공급한다.
예를 들면, 제 1 연료 노즐(61)은 1쌍으로 형성되어 확장부(12)의 직경 방향 양측에서 확장부(12)의 내면에 원주 방향으로 연료를 분사하도록 설치된다. 즉 제 1 연료 노즐(61)은 확장부(12) 내면의 접선 방향 또는 접선에 교차하는 설정각(θ11) 방향으로 연료를 분사한다.
따라서 제 1 연료 노즐(61)에서 분사된 연료는 방전 간극(G) 및 이의 전방에 분사되어 공급되는 방전 공기와 혼합되면서 제 1 하우징(10)과 전극(50) 사이에 인가되는 고전압에 의하여 플라즈마를 발생시키면서 착화 화염을 형성한다. 이때 제 1 연료 노즐(61)은 확장부(12) 내에서 원주 방향으로 스월을 발생시키므로 연료와 방전 공기의 균일한 혼합을 가능하게 한다.
또한, 제 1 연료 노즐(61)은 확장부(12)의 직경 방향에 대하여 설정된 제 1 각도(θ1)로 경사지게 설치될 수 있다(도 7 참조). 즉, 제 1 연료 노즐(61)은 직경 방향을 기준으로 확장부(12)가 확대되는 방향으로 제 1 각도(θ1)만큼 경사지게 설치될 수 있다. 따라서 제 1 연료 노즐(61)에서 분사되는 연료는 확장부(12) 내에서 원주 방향으로 스월을 발생시키면서 동시에 확장부(12)의 길이 방향으로 분사력을 발생시킨다. 따라서 제 1 하우징(10)에서 토출되는 착화 화염은 제 2 하우징(20)을 향하여 고속으로 토출될 수 있다.
다시 도 7 및 도 9를 참조하면, 제 2 연료 노즐(62)은 제 2 하우징(20)의 직경 방향 양측에서 제 2 하우징(20)의 내면에 원주 방향으로 연료를 분사하도록 설치된다. 즉 제 2 연료 노즐(62)은 제 2 하우징(20) 내면의 접선 방향 또는 접선에 교차하는 설정각(θ12) 방향으로 연료를 분사한다(도 9 참조).
따라서 제 2 연료 노즐(62)은 착화 화염이 진행되는 후방에 설치되어 착화 화염에 연료를 공급하여, 추가로 공급되는 연료를 미립화 및 증발시킬 수 있게 한다. 이 때 제 2 연료 노즐(62)은 제 2 하우징(20) 내에서 원주 방향으로 스월을 발생시키므로 연료와 착화 화염의 균일한 혼합을 가능하게 한다.
또한 제 2 연료 노즐(62)은 제 2 하우징(20)의 직경 방향에 대하여 설정된 제 2 각도(θ2)로 경사지게 설치된다(도 7 참조). 즉, 제 2 연료 노즐(62)은 직경 방향을 기준으로 제 2 하우징(20)이 확대되는 방향으로 제 2 각도(θ2)만큼 경사지게 설치될 수 있다. 따라서 제2 연료 노즐(62)에서 분사되는 연료는 제 2 하우징(20) 내에서 원주 방향으로 스월을 발생시키면서 동시에 제 2 하우징(20)의 길이 방향으로 분사력을 발생시킨다. 따라서 제 2 하우징(20)에서 토출되는 착화 화염과 미립화 및 증발되는 연료는 제 3 하우징(30)을 향하여 고속으로 토출될 수 있다.
도 9는 도 7의 Ⅳ-Ⅳ 선에 따른 단면도이다. 도 9를 참조하면, 공기 노즐(70)은 제 2 연료 노즐(62)의 후방에 설치되어 플라즈마 방전으로 발생된 착화 화염에 의하여 미립화 및 증발되어 제 2 하우징(20)으로부터 토출되는 연료에 공기를 공급한다.
예를 들면, 공기 노즐(70)은 1쌍으로 형성되어 제 2 하우징(20)의 직경 방향 양측에서 제 2 하우징(20)의 내면에 원주 방향으로 공기를 분사하도록 설치된다. 즉 공기 노즐(70)은 제 2 하우징(20) 내면의 접선 방향 또는 접선에 교차하는 설정각(θ13) 방향으로 연료를 분사한다.
따라서 공기 노즐(70)에서 분사된 공기는 제 2 하우징(20) 내에서 착화 화염과 미립화 및 증발된 연료의 외곽으로 분사되고, 제 3 하우징(30)에서 착화 화염, 미립화 및 증발된 연료와 혼합되어 더 연소 작용하여 화염을 형성하고 유지시킨다. 이 때 공기 노즐(70)은 제 2 하우징(20) 내에서 원주 방향으로 스월을 발생시키므로 착화 화염, 미립화 및 증발된 연료와 공기의 균일한 혼합을 가능하게 한다.
이와 같이, 본 발명의 제 3 실시예에 따른 플라즈마 버너(300)는 제 1 연료 노즐(61)에 더하여, 제 2 연료 노즐(62)과 공기 노즐(70)을 구비하므로 연료의 처리량을 증대시킬 수 있다. 편의상, 제 3 실시예는 연료 노즐로 2개의 제 1 연료 노즐(61), 제 2 연료 노즐(62)을 예시하고 있으나, 더 많은 개수의 연료 노즐을 구비할 수 있다.
이하 본 발명의 제 4 실시예에 대하여 설명한다. 제 3 실시예와 비교하여 동일한 구성에 대해서는 설명을 생략하고 서로 다른 구성에 대하여 설명한다.
도 10은 본 발명의 제 4 실시예에 따른 플라즈마 버너의 단면도이다. 도 10을 참조하면, 제 4 실시예에 따른 플라즈마 버너(400)는 제 3 실시예의 플라즈마 버너(300)의 제 3 하우징(30)에 배기가스 라인(80)을 더 연결하여 구성된다.
제 3 하우징(30)은 배기가스 라인(80)에 연결되어, 제 2 하우징(20)에서 배출되는 화염에 포함된 미연소 연료를 배기가스에 포함된 공기로 더 연소시킬 수 있게 한다.
배기가스 라인(80)은 제 3 하우징(30)에 복수의 유입구(81)로 연결되어, 제 3 하우징(30)으로 내부로 배기가스의 과도한 유입을 방지한다. 또한 제 3 하우징(30)은 내부 공간에 복수의 통기공들(31)을 구비한 관체(32)를 내장한다. 관체(32)는 제 3 하우징(30)의 길이 방향으로 양단을 개방하여 제 3 하우징(30) 내부에서 화염 및 배기가스의 흐름을 가능하게 하고, 직경 방향으로 내부와 외부를 통기공(31)으로 연결한다.
따라서 배기가스 라인(80)으로 공급되는 엔진의 배기가스는 유입구(81)를 통하여 제 3 하우징(30)으로 유입되고, 관체(32)의 통기공들(31)을 통하여 관체(32)의 내부로 유입된다. 이 때 배기가스의 유입량이 제어되어 화염에 포함된 미연소 연료가 안정적으로 연소될 수 있다.
즉 관체(32)의 통기공들(31)은 배기가스의 유입 경로를 다변화하여 배기가스의 유속을 낮추어, 대용량 적용 조건에 따라 배기가스가 과도하게 유입되는 것을 방지하여 관체(32) 내에서 화염을 안정화시킬 수 있다. 공기 노즐(70)에 더하여, 관체(32) 및 통기공들(31)은 화염의 추가적인 안정을 구현한다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
[부호의 설명]
10: 제1 하우징 11: 원통부
12: 확장부 13: 공기 공급 포트
14, 24: 플랜지 15: 볼트
20: 제2 하우징 25: 너트
30: 제3 하우징 31: 통기공
32: 관체 40: 장착부
41: 결합홈 50: 전극
51: 절연재 52: 전선
61, 62: 제1, 제2 연료 노즐 70: 공기 노즐
80: 배기가스 라인 81: 유입구
100, 200, 300, 400: 플라즈마 버너
101: 돌출부 G: 방전 간극
θ1, θ2, θ3: 제 1, 제 2, 제 3 각도
θ, θ11, θ12, θ13: 설정각

Claims (16)

  1. 내부로 방전 공기가 공급되는 원통부 및 상기 원통부와 연통되도록 상기 원통부의 일단부에 연결되며 점진적으로 확대되는 형태로 형성되는 확장부를 포함하는 제 1 하우징;
    상기 제 1 하우징의 내부에 설치되어 상기 제 1 하우징과의 사이에 방전 간극을 형성하는 전극;
    상기 확장부에 설치되며 상기 방전 공기와 혼합되어 착화 화염을 형성하도록상기 방전 간극에 연료를 공급하는 제 1 연료 노즐;
    상기 확장부의 단부에 연결되어 점진적으로 확대되는 형태로 형성되는 제 2 하우징; 및
    상기 제 2 하우징에 설치되어 상기 제 2 하우징 내부로 공기를 공급하는 공기 노즐을 포함하는, 플라즈마 버너.
  2. 제 1 항에 있어서,
    상기 방전 간극은,
    상기 원통부와 상기 확장부의 경계에 형성되는, 플라즈마 버너.
  3. 제 1 항에 있어서,
    상기 전극은 타원체로 형성되는, 플라즈마 버너.
  4. 제 3 항에 있어서,
    상기 전극과 상기 제 1 하우징 사이 간격은 상기 방전 간극에 근접할수록 점진적으로 작아지는, 플라즈마 버너.
  5. 제 1 항에 있어서,
    상기 제 2 하우징에 설치되어 상기 착화 화염에 연료를 공급하는 제 2 연료 노즐을 더 포함하는, 플라즈마 버너.
  6. 제 5 항에 있어서,
    상기 제 2 연료 노즐은,
    상기 공기 노즐과 상기 제 1 연료 노즐의 사이에 위치되는, 플라즈마 버너.
  7. 제 1 항에 있어서,
    상기 제 1 연료 노즐은,
    적어도 하나가 설치되며,
    상기 확장부의 직경 방향 일측에서 상기 확장부의 내면에 원주 방향으로 연료를 분사하도록 설치되는, 플라즈마 버너.
  8. 제 7 항에 있어서,
    상기 제 1 연료 노즐은,
    상기 확장부의 직경 방향을 기준으로 상기 확장부가 확대되는 방향으로 설정된 제 1 각도만큼 경사지게 설치되는, 플라즈마 버너.
  9. 제 5 항에 있어서,
    상기 제 2 연료 노즐은,
    적어도 하나가 설치되며,
    상기 제 2 하우징의 직경 방향 일측에서 상기 제 2 하우징의 내면에 원주 방향으로 연료를 분사하도록 설치되는, 플라즈마 버너.
  10. 제 9 항에 있어서,
    상기 제 2 연료 노즐은,
    상기 제 2 하우징의 직경 방향을 기준으로 상기 제 2 하우징이 확대되는 방향으로 설정된 제 2 각도만큼 경사지게 설치되는, 플라즈마 버너.
  11. 제 1 항에 있어서,
    상기 공기 노즐은
    적어도 하나가 설치되며,
    상기 제 2 하우징의 직경 방향 일측에서 상기 제 2 하우징의 내면에 원주 방향으로 공기를 분사하도록 설치되는, 플라즈마 버너.
  12. 제 11 항에 있어서,
    상기 공기 노즐은,
    상기 제 2 하우징의 직경 방향을 기준으로 상기 제 2 하우징이 확대되는 방향으로 설정된 제 3 각도만큼 경사지게 설치되는, 플라즈마 버너.
  13. 제 1 항에 있어서,
    상기 원통부의 타단부에 결합 및 밀폐되어 상기 원통부의 내부와 외부에 걸쳐 설치되고, 상기 원통부와의 사이에 방전 공기를 공급하는 통로를 형성하며, 상기 원통부의 내부 측에 전극이 설치되는 장착부를 더 포함하는, 플라즈마 버너.
  14. 제 1 항 또는 제 5 항에 있어서,
    상기 제 2 하우징과 연통되도록 상기 제 2 하우징의 단부에 연결되며, 상기 제 2 하우징보다 확장된 공간을 형성하는 제 3 하우징을 더 포함하는, 플라즈마 버너.
  15. 제 14 항에 있어서,
    상기 제 3 하우징은 배기가스 라인에 연결되며,
    상기 제 3 하우징에서는,
    상기 제 2 하우징에서 배출되는 미연소 연료를 상기 배기가스 라인에서 공급되는 배기가스에 포함된 공기로 연소시키는, 플라즈마 버너.
  16. 제 15 항에 있어서,
    상기 제 3 하우징은,
    복수의 통기공들을 구비한 관체를 내장하며,
    상기 관체는,
    상기 제 3 하우징의 길이 방향으로 양단이 개방되고 직경 방향으로 내부와 외부가 상기 통기공으로 연결되는, 플라즈마 버너.
PCT/KR2014/002288 2013-03-22 2014-03-18 플라즈마 버너 WO2014148804A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130031021A KR20140115831A (ko) 2013-03-22 2013-03-22 플라즈마 버너
KR10-2013-0031021 2013-03-22
KR1020130031023A KR20140115832A (ko) 2013-03-22 2013-03-22 플라즈마 버너
KR10-2013-0031023 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148804A1 true WO2014148804A1 (ko) 2014-09-25

Family

ID=51580408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002288 WO2014148804A1 (ko) 2013-03-22 2014-03-18 플라즈마 버너

Country Status (1)

Country Link
WO (1) WO2014148804A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765061A (zh) * 2017-01-05 2017-05-31 东方电气集团东方锅炉股份有限公司 燃烧器区域变截面适应灵活性调峰的煤粉锅炉炉膛
CN107477611A (zh) * 2017-07-20 2017-12-15 中国科学院工程热物理研究所 燃烧器
CN110439691A (zh) * 2019-08-06 2019-11-12 中国人民解放军空军工程大学 基于航空发动机加力燃烧室的等离子体值班火焰点火器
CN113217196A (zh) * 2021-03-03 2021-08-06 中国人民解放军空军工程大学 凹腔火焰稳定器自引气滑动弧等离子体射流点火器及点火方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265109A (ja) * 1993-03-15 1994-09-20 Nippon Steel Corp プラズマ助燃燃焼炉用バーナー
KR20110078454A (ko) * 2009-12-31 2011-07-07 에이치케이엠엔에스(주) 듀얼인젝션을 구비한 버너장치 조립체

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265109A (ja) * 1993-03-15 1994-09-20 Nippon Steel Corp プラズマ助燃燃焼炉用バーナー
KR20110078454A (ko) * 2009-12-31 2011-07-07 에이치케이엠엔에스(주) 듀얼인젝션을 구비한 버너장치 조립체

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765061A (zh) * 2017-01-05 2017-05-31 东方电气集团东方锅炉股份有限公司 燃烧器区域变截面适应灵活性调峰的煤粉锅炉炉膛
CN107477611A (zh) * 2017-07-20 2017-12-15 中国科学院工程热物理研究所 燃烧器
CN107477611B (zh) * 2017-07-20 2019-08-09 中国科学院工程热物理研究所 燃烧器
CN110439691A (zh) * 2019-08-06 2019-11-12 中国人民解放军空军工程大学 基于航空发动机加力燃烧室的等离子体值班火焰点火器
CN110439691B (zh) * 2019-08-06 2020-06-23 中国人民解放军空军工程大学 基于航空发动机加力燃烧室的等离子体值班火焰点火器
CN113217196A (zh) * 2021-03-03 2021-08-06 中国人民解放军空军工程大学 凹腔火焰稳定器自引气滑动弧等离子体射流点火器及点火方法

Similar Documents

Publication Publication Date Title
WO2014148804A1 (ko) 플라즈마 버너
WO2016036041A1 (ko) 플라즈마 에스씨알 시스템
US3751911A (en) Air inlet arrangement for gas turbine engine combustion chamber
WO2014104750A1 (ko) 엔진의 흡기구 구조
JPH11311415A (ja) 燃料噴射器及び燃料噴射器用のノズルアセンブリ
WO2022124751A1 (ko) 역화현상을 방지할 수 있는 수소가스 연소장치
JP2009517621A (ja) 燃焼装置
WO2017175918A1 (ko) 초 저공해 연소기
WO2015156500A1 (ko) 플라즈마 노즐 및 이를 포함하는 플라즈마 에스씨알 시스템
WO2016208952A1 (ko) 실링구조를 포함하는 연료공급노즐
CA2310389C (en) Combustor for gas turbine
WO2015023042A1 (ko) 선회기
WO2013180424A1 (ko) 회전식 분사장치를 이용한 연료 공기 예 혼합기 및 이러한 연료 공기 예 혼합기가 장착된 가스터빈 연소기
WO2016093429A1 (ko) 스월러 어셈블리
KR20140115831A (ko) 플라즈마 버너
WO2024112001A1 (ko) 수소연료 역화를 방지할 수 있는 보일러용 부분 예혼합형 버너
WO2016093430A1 (ko) 스월러 어셈블리
WO2017175958A1 (ko) 산업용 연소기
WO2012165742A1 (ko) 램제트엔진용 회전형 연료분사장치 및 이를 구비한 램제트엔진
WO2017007068A1 (ko) 연소기
WO2018062849A1 (ko) 연료 효율 향상장치
WO2023121108A1 (ko) 연료농도 구배를 이용한 공업용 가스연소기 및 그 작동방법
WO2018155735A1 (ko) 복합형 저녹스 버너
WO2019225810A1 (ko) 연료 기화 가속형 플라즈마 점화기
WO2023121107A1 (ko) 내부 배기가스 재순환 예혼합형 공업용 가스연소기 및 그 작동방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769014

Country of ref document: EP

Kind code of ref document: A1