WO2017175786A1 - Light guide plate, surface light source body provided with same, aromatic polycarbonate-based resin composition, and light diffusive moulded article - Google Patents

Light guide plate, surface light source body provided with same, aromatic polycarbonate-based resin composition, and light diffusive moulded article Download PDF

Info

Publication number
WO2017175786A1
WO2017175786A1 PCT/JP2017/014198 JP2017014198W WO2017175786A1 WO 2017175786 A1 WO2017175786 A1 WO 2017175786A1 JP 2017014198 W JP2017014198 W JP 2017014198W WO 2017175786 A1 WO2017175786 A1 WO 2017175786A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidity improver
resin composition
polycarbonate resin
acid
aromatic polycarbonate
Prior art date
Application number
PCT/JP2017/014198
Other languages
French (fr)
Japanese (ja)
Inventor
秀輔 吉原
圭香 服部
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016076235A external-priority patent/JP2017187616A/en
Priority claimed from JP2016076236A external-priority patent/JP2017186446A/en
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2017175786A1 publication Critical patent/WO2017175786A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to a light guide plate that can be used in a wide range of applications without being restricted in use environment and has excellent transferability, and a surface light source body including the same.
  • the present invention also relates to an aromatic polycarbonate resin composition and a light diffusible molded article having improved fluidity during molding without impairing the transparency and light diffusibility of the obtained molded article.
  • Backlight devices such as instrument panels, tail lamps, blinkers, etc. for in-vehicle use have light guide plates that emit uniform light.
  • liquid crystal display devices used in personal computers, mobile phones, PDAs, etc. are also equipped with a light guide plate to cope with demands for thinning, lightening, power saving, high brightness and high definition. It is.
  • a light guide plate constitutes a surface light source body together with a light source or the like and is used in various devices.
  • the light guide plate is preferably made of a material with low light attenuation, and polymethyl methacrylate (PMMA), which is lighter in weight and excellent in moldability, has been optimally used.
  • PMMA polymethyl methacrylate
  • PMMA is inferior in heat resistance, impact resistance, flame retardancy, etc.
  • it has a problem that the use environment of the light guide plate is limited.
  • an in-vehicle lighting device requires a light guide plate having heat resistance and impact resistance.
  • devices such as personal computers, mobile phones, and PDAs tend to increase the heat generated inside them, so materials with higher heat resistance are required, and more recently, especially for mobile phones.
  • the light plate is also required to have improved impact resistance.
  • polycarbonate resins having excellent mechanical properties such as impact resistance, heat resistance, and electrical properties have recently begun to be used in place of PMMA.
  • the polycarbonate resin has such excellent characteristics, but has a high melt viscosity. Therefore, the polycarbonate resin has a drawback of poor fluidity and inferior moldability, and sufficient transferability may not be obtained.
  • Patent Document 1 As a method for improving the melt fluidity of the aromatic polycarbonate resin composition, for example, in Patent Document 1, by using a copolyester carbonate resin having an aliphatic segment as a fluidity improver for a polycarbonate resin, It describes that transparency and mechanical strength are maintained.
  • Aromatic polycarbonate resins have excellent mechanical and thermal properties, so OA (office automation) equipment, information / communication equipment, electronic / electric equipment, home appliances, automotive components, building materials, etc. Widely used industrially.
  • a light diffusible molded product made of a resin composition in which a light diffusing agent such as inorganic fine particles or polymer fine particles is blended with an aromatic polycarbonate resin is more heat resistant and dimension than a light diffusible molded product made of acrylic resin. Because of its excellent stability, it is used in light covers for electric lamp covers, meters, signboards (particularly internally lit), resin window glass, image reading devices or image display devices (for example, backlight modules such as liquid crystal display devices).
  • light diffusing films for example, high transmission light diffusing films used for improving the brightness of liquid crystal display devices, etc.
  • light diffusive molded products, especially light diffusion plates and light diffusion films used in image display devices are also used.
  • Patent Document 2 describes that fluidity is improved by adding a pentaerythritol ester compound and reducing the molecular weight of an aromatic polycarbonate resin by transesterification.
  • Patent Document 1 in order to improve fluidity, the total amount of the resin composition obtained by combining the polycarbonate resin and the copolyestercarbonate resin is 100 parts by weight, and the blending amount of the copolyestercarbonate resin is 75 parts by weight. It is necessary to use more.
  • the present invention contains a fluidity improver for improving fluidity during molding without impairing the original properties (transparency, impact resistance, high rigidity, mechanical strength, heat resistance, etc.) of the polycarbonate resin.
  • An object of the present invention is to provide a light guide plate comprising a highly fluid polycarbonate resin composition, usable in a wide range of applications without being restricted in use environment, and having excellent transferability, and a surface light source body provided with the same.
  • Patent Document 2 can improve the fluidity without greatly impairing various properties, but the impact strength is not sufficiently maintained, and there is a concern about yellowing due to transesterification.
  • aromatic polycarbonate is also used for aliphatic esters of phthalic acid such as dioctyl phthalate and dibutyl phthalate, which are commonly used as plasticizers, and phosphate esters such as tricresyl phosphate and diphenyl cresyl phosphate. There is a problem of lack of affinity with the base resin and significantly lowering mechanical and thermal properties.
  • Another object of the present invention is to provide an aromatic polycarbonate resin composition and a light diffusible molded article having improved fluidity during molding without impairing the transparency and light diffusibility of the resulting molded article. To do.
  • the inventors of the present invention are made of a polyester obtained by polycondensing a bisphenol component and an aliphatic dicarboxylic acid component and optionally a biphenol component at a specific ratio in order to improve the fluidity of the polycarbonate resin.
  • a fluidity improver and melt-kneading the fluidity improver and the polycarbonate resin the fluidity during molding can be improved without impairing the useful properties (particularly transparency and impact strength) of the polycarbonate resin.
  • the present inventors have found that a light guide plate excellent in transferability can be provided, and have completed the present invention. That is, the present invention relates to the inventions shown in the following 1) to 6).
  • a resin composition comprising a polycarbonate resin and a fluidity improver,
  • the fluidity improver is The following general formula (1)
  • X 1 to X 4 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • X 1 to X 4 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • X 5 to X 8 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • Y represents a methylene group, an isopropylidene group, a cyclic group.
  • R 1 represents a divalent linear substituent which has 2 to 18 main chain atoms and may be branched.
  • the light guide plate is a polycondensation product of the following formula:
  • the part corresponding to R 1 of the part consisting of component (C) in the fluidity improver is a straight-chain saturated aliphatic hydrocarbon chain, 1) or 2) Light guide plate.
  • the portion corresponding to R 1 of the portion (C) component in the fluidity improver is any one of (CH 2 ) 8 , (CH 2 ) 10 , and (CH 2 ) 12 1) 4.
  • the light guide plate according to any one of items 3 to 3.
  • a surface light source body comprising: the light guide plate according to any one of 1) to 5); and a light source that emits light toward the light guide plate.
  • the present inventors have also studied from a polyester obtained by polycondensing a bisphenol component and an aliphatic dicarboxylic acid component, and optionally a biphenol component at a specific ratio, in order to improve the fluidity of the polycarbonate resin.
  • This fluidity improver is melt-kneaded with this fluidity improver, polycarbonate resin, and light diffusing agent, so that the fluidity during molding can be reduced without impairing the transparency and light diffusibility of the resulting molded product.
  • the present inventors have found that an improved aromatic polycarbonate resin composition and a light diffusible molded article can be provided, and have completed the present invention. That is, the present invention also relates to the inventions shown in the following 1) to 7).
  • a biphenol component (A) represented by 0 to 55 mol%, The following general formula (2)
  • X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • Y represents a methylene group, an isopropylidene group, a cyclic group.
  • a resin composition having improved fluidity during resin molding is used without impairing the original properties (transparency, impact resistance, high rigidity, mechanical strength, heat resistance, etc.) of the polycarbonate resin.
  • the term “damage” here means that the resin is deteriorated so as not to satisfy the characteristics required for the resin. That is, even when some of the properties of the polycarbonate resin are reduced by adding the fluidity improver in the present invention, the original properties of the polycarbonate resin are as long as the properties required in the application in which the resin is used are satisfied. It was not damaged. Therefore, the description can be rephrased as “without substantially impairing the original properties of the polycarbonate resin”.
  • the aromatic polycarbonate resin composition of the present invention has a melt fluidity (moldability) as compared with the conventional one without impairing the excellent properties (transparency, light diffusibility, etc.) of the obtained light diffusible molded product. ).
  • the term “damage” here means that the resin is deteriorated so as not to satisfy the characteristics required for the resin. That is, even when some of the properties of the aromatic polycarbonate resin composition are reduced by adding the fluidity improver in the present invention, the application in which the resin composition is used (such as a light diffusing molded article). As long as the characteristics required in the above are satisfied, the original characteristics of the aromatic polycarbonate resin composition are not impaired. Therefore, the description can be rephrased as “without substantially impairing the excellent characteristics of the obtained light diffusible molded article”.
  • the light diffusive molded product of the present invention is excellent in transparency and light diffusibility, and can be increased in size, thinned (lightened), complicated in shape, and improved in performance.
  • the fluidity improver in the present invention comprises a polyester obtained by polycondensing a bisphenol component, an aliphatic dicarboxylic acid component, and optionally a biphenol component at a specific ratio.
  • X 1 to X 4 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • X 5 to X 8 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • Y represents a methylene group, an isopropylidene group, a cyclic group.
  • R 1 represents a divalent linear substituent which has 2 to 18 main chain atoms and may be branched.
  • the fluidity improver in the present invention is a polyester produced by polycondensation of a diol component consisting of a bisphenol component (B) and an optional biphenol component (A) and a dicarboxylic acid component which is a component (C). .
  • the fluidity improver is not a low-molecular compound, it is possible to suppress the occurrence of bleed out when molding a polycarbonate resin composition to which the fluidity improver is added.
  • the fluidity improver having the molecular structure is highly compatible with the polycarbonate resin, the fluidity of the resin composition obtained by adding the fluidity improver to the polycarbonate resin is efficiently improved. In addition, various properties such as transparency and impact strength inherent to the polycarbonate resin are not impaired.
  • the biphenol component (A) contained in the fluidity improver is preferably 0 to 55 mol%, more preferably 10 to 40 mol%, and most preferably 20 to 30 mol%.
  • the bisphenol component (B) is preferably contained in an amount of 5 to 60 mol%, more preferably 10 to 50 mol%, and most preferably 20 to 30 mol%.
  • the dicarboxylic acid component (C) is preferably contained in an amount of 40 to 60 mol%, more preferably 45 to 55 mol%.
  • the molar ratio ((A) / (B)) of the component (A) to the component (B) is preferably 1/9 to 9/1. More preferably, it is 1/7 to 7/1, more preferably 1/5 to 5/1, and most preferably 1/3 to 3/1.
  • (A) / (B) is further less than 1/9 and the component (A) is less, the polyester itself becomes completely amorphous and has a low glass transition temperature. May cause fusion of pellets.
  • phase separation may occur at the central portion of the thickness during the slow cooling.
  • X 1 to X 4 in the general formula (1) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. It is more preferable that all of X 1 to X 4 are hydrogen atoms in order to improve the handleability such as improving the crystallinity of the fluidity improver itself and preventing fusion during pellet storage.
  • X 5 to X 8 in the general formula (2) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. In order to enhance the compatibility with the polycarbonate resin, it is more preferable that all of X 5 to X 8 are hydrogen atoms.
  • Y represents a methylene group, an isopropylidene group, a cyclic alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group or —SO 2 —.
  • 2,2-bis (4-hydroxyphenyl) propane (common name: bisphenol A) is particularly preferable in terms of increasing compatibility with the polycarbonate resin.
  • dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-1-methylphenyl) propane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis ( 4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) propane, 2,2- Bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propa Bis (
  • Dihydroxydiaryl sulfides dihydroxydiaryl sulfoxides such as 4,4′-dihydroxydiphenyl sulfoxide and 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide; 4,4′-dihydroxydiphenyl sulfone, 4,4′- And dihydroxydiaryl sulfones such as dihydroxy-3,3′-dimethyldiphenyl sulfone; and dihydroxydiphenyls such as 4,4′-dihydroxydiphenyl.
  • These bisphenol components may be used singly or as a mixture of two or more of them without losing the effect of the present invention.
  • the terminal structure of the fluidity improver in the present invention is not particularly limited, but particularly suppresses transesterification with a polycarbonate resin, and suppresses yellowing of the resin composition obtained by adding the fluidity improver to the polycarbonate resin. Therefore, in order to suppress hydrolysis and ensure long-term stability, it is preferably sealed with a monofunctional low molecular compound.
  • the sealing rate with respect to all ends of the molecular chain is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, and most preferably 90% or more.
  • the end-capping rate of the fluidity improver can be determined by the following formula (4) by measuring the number of sealed end functional groups and the number of end functional groups not sealed.
  • 1 H-NMR is used to determine the number of each terminal group from the integral value of the characteristic signal corresponding to each terminal group.
  • the method of calculating the terminal blocking rate using (4) is preferable in terms of accuracy and simplicity.
  • Terminal sealing rate (%) ⁇ [number of sealed terminal functional groups] / ([number of sealed terminal functional groups] + [number of unsealed terminal functional groups]) ⁇ ⁇ 100 (4)
  • the monofunctional low molecular compound used for sealing include monohydric phenol, monoamine having 1 to 20 carbon atoms, aliphatic monocarboxylic acid, carbodiimide, epoxy or oxazoline.
  • Specific examples of monohydric phenol include phenol, p-cresol, pt-butylphenol, pt-octylphenol, p-cumylphenol, p-nonylphenol, pt-amylphenol, 4-hydroxybiphenyl, And any mixture thereof.
  • pt-butylphenol and p-cumylphenol are preferred because they have a high boiling point and are easy to polymerize.
  • aliphatic monocarboxylic acids include fatty acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid.
  • monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and any of these A mixture etc. are mentioned.
  • carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, bis-2,6-diisopropyl Phenylcarbodiimide, poly (2,4,6-triisopropylphenylene-1,3-diisocyanate), 1,5- (diisopropylbenzene) polycarbodiimide, 2,6,2 ', 6'-tetraisopropyldiphenylcarbodiimide and their Arbitrary mixtures etc.
  • Examples of epoxies include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, triethylolpropane polyglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, sorbitol polyglycidyl ether, bisphenol A- Diglycidyl ether, hydrogenated bisphenol A-glycidyl ether, 4,4'-diphenylmethane diglycidyl ether, terephthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, methacrylic acid glycidyl ester, methacrylic acid glycidyl ester polymer, Examples thereof include a sidyl ester polymer-containing compound and an arbitrary mixture thereof.
  • Examples of oxazolines include styrene-2
  • R 1 therein represents a divalent linear substituent which may have 2 to 18 main chain atoms and may be branched.
  • the number of main chain atoms is the number of atoms in the main chain skeleton.
  • R 1 is preferably a straight-chain substituent that does not contain a branch, and further, a straight-chain aliphatic hydrocarbon chain that does not contain a branch. Is preferred.
  • R 1 may be saturated or unsaturated, but is preferably a saturated aliphatic hydrocarbon chain.
  • R 1 is preferably a straight-chain saturated aliphatic hydrocarbon chain having 2 to 18 carbon atoms from the viewpoint that both the ease of polymerization of the fluidity improver and the improvement of the glass transition point can be achieved. More preferably, it is a straight chain saturated aliphatic hydrocarbon chain having 4 to 16 carbon atoms, more preferably a straight chain saturated aliphatic hydrocarbon chain having 8 to 14 carbon atoms, and a straight chain having 8 carbon atoms. Most preferred is a saturated aliphatic hydrocarbon chain.
  • the improvement of the glass transition point of the fluidity improver leads to the improvement of the heat resistance of the resin composition obtained by adding the fluidity improver to the polycarbonate resin.
  • the number of main chain atoms of R 1 is preferably an even number in that the melt viscosity of the fluidity improver itself decreases.
  • R 1 is particularly preferably one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 —.
  • a dicarboxylic acid component may be used independently and may mix 2 or more types in the range which does not lose the effect of this invention.
  • the fluidity improver in the present invention may be copolymerized with other monomers to such an extent that the effect is not lost.
  • Other monomers include, for example, aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines, aromatic diamines, aromatic aminocarboxylic acids or caprolactams, caprolactones, aliphatic dicarboxylic acids, fatty acids Aromatic diols, aliphatic diamines, alicyclic dicarboxylic acids, and alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, and aromatic mercaptophenols.
  • the content of the other monomer constituting the fluidity improver is less than 50 mol%, preferably less than 30 mol%, more preferably, relative to the total number of moles of the fluidity improver. Less than 10 mol%, most preferably less than 5 mol%.
  • the content of the other monomer is 50 mol% or more based on the total number of moles of the fluidity improver, the compatibility of the fluidity improver with the polycarbonate resin is reduced, and the fluidity is reduced. It becomes difficult for the improver to be compatible with the polycarbonate resin.
  • aromatic hydroxycarboxylic acid examples include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-5-naphthoic acid, 2-hydroxy -7-naphthoic acid, 2-hydroxy-3-naphthoic acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid, and their And alkyl, alkoxy or halogen-substituted products.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 3 , 4′-dicarboxybiphenyl, 4,4 ′′ -dicarboxyterphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenoxy) butane, bis (4-carboxyphenyl) ethane, bis (3-carboxy Phenyl) ether, bis (3-carboxyphenyl) ethane, and alkyl, alkoxy or halogen substituents thereof.
  • aromatic diol examples include pyrocatechol, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 3,3′-dihydroxybiphenyl, 3,4′- Examples include dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxybiphenol ether, bis (4-hydroxyphenyl) ethane, 2,2′-dihydroxybinaphthyl, and alkyl, alkoxy or halogen substituents thereof. It is done.
  • aromatic hydroxyamine examples include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4-amino- 4′-hydroxybiphenyl, 4-amino-4′-hydroxybiphenyl ether, 4-amino-4′-hydroxybiphenylmethane, 4-amino-4′-hydroxybiphenyl sulfide, 2,2′-diaminobinaphthyl, and their Examples thereof include alkyl, alkoxy, and halogen-substituted products.
  • aromatic diamine and aromatic aminocarboxylic acid include 1,4-phenylenediamine, 1,3-phenylenediamine, N-methyl-1,4-phenylenediamine, N, N′-dimethyl-1,4. -Phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminobiphenylsulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminobiphenoxyethane 4,4′-diaminobiphenylmethane (methylenedianiline), 4,4′-diaminobiphenyl ether (oxydianiline), 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino-2-naphthoic acid, 7-amino-2-naphthoic acid and their alkyl, alkoxy or halogen substituted products.
  • aliphatic dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, fumaric acid, maleic acid Etc.
  • aliphatic diamine examples include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, 1,8-octanediamine, 1,9- Nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine and the like can be mentioned.
  • alicyclic dicarboxylic acid examples include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, cis-1,4-cyclohexanediol, and trans-1,4-cyclohexane.
  • aromatic mercaptocarboxylic acid, aromatic dithiol and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene-1,4- Dithiol, benzene-1,3-dithiol, 2,6-naphthalene-dithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercapto-2-hydroxynaphthalene, 7-mercapto-2 -Hydroxynaphthalene, and reactive derivatives thereof.
  • the fluidity improver in the present invention may contain a phosphite antioxidant in advance in that a resin composition having a good color tone can be obtained.
  • the fluidity improver containing a phosphite antioxidant in advance means a mixture of a phosphite antioxidant and a fluidity improver.
  • This phosphite-based antioxidant functions as an antioxidant even in the resin composition. That is, the simplest production method of the resin composition of the present invention is to mix three components of polycarbonate resin, fluidity improver and phosphite antioxidant at one time, but “polycarbonate resin” and “phosphite”. Mixing the “mixture of the system antioxidant and the fluidity improver” is also included in the embodiment of the present invention.
  • the reason for this is to prevent discoloration of the fluidity improver itself, and when the polymerization catalyst used for the polymerization of the fluidity improver is deactivated and the fluidity improver and the polycarbonate resin are mixed. This is considered to be because it is possible to prevent discoloration due to transesterification or hydrolysis reaction between the polyester and the polycarbonate resin contained in the fluidity improver. As a result, a decrease in the molecular weight of the polycarbonate resin can be more effectively suppressed, so that the resin composition containing the fluidity improver can improve only the fluidity without impairing the original properties of the polycarbonate resin. it can.
  • the content of the phosphite antioxidant in the fluidity improver is preferably 0.005 to 5% by mass and preferably 0.01 to 2% by mass with respect to the weight of the fluidity improver. More preferably, the content is 0.01 to 1% by mass, and most preferably 0.02 to 0.05% by mass.
  • the content of the phosphite antioxidant is less than 0.005% by mass, the content of the phosphite antioxidant is small, and coloring occurs when the fluidity improver is added to the polycarbonate resin. There is.
  • there is more content of a phosphite type antioxidant than 5 mass% the impact strength of the resin composition obtained by adding the said fluid improvement agent to polycarbonate resin may be reduced.
  • phosphite antioxidants such as “Antioxidant Handbook” published by Taiseisha, “Degradation and Stabilization of Polymer Materials” (pages 235 to 242) published by CMC Publishing, etc. Although not limited to various compounds described in (1).
  • phosphite antioxidants include tris (2,4-di-t-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester Phosphoric acid, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-) 4-methylphenyl) pentaerythritol di-phosphite and the like.
  • the product names include ADK STAB PEP-36, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-8F, ADK STAB PEP-8W, ADK STAB PEP-11C, ADK STAB PEP-24G, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB P, ADK STAB QL, ADK STAB 522A, ADK STAB 329K, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 13510, ADK STAB 3010 (all of which are manufactured by ADEKA CORPORATION), Irgafos 38, Irgafos 126, Irgafos 126 As mentioned above, BASFBAJAPAN LTD.) And the like can be exemplified.
  • Adeka Stub PEP-36, Adeka Stub HP-10 are particularly effective in suppressing the transesterification reaction and hydrolysis reaction, and the antioxidant itself has a high melting point and hardly volatilizes from the resin. More preferable are ADK STAB 2112, ADK STAB PEP-24G, Irgafos 126 and the like.
  • the fluidity improver in the present invention may contain a hindered phenol antioxidant in advance in that a polycarbonate resin composition having a good color tone can be obtained.
  • the content of the hindered phenolic antioxidant in the fluidity improver is preferably 0.005 to 5% by mass, and 0.01 to 2% by mass with respect to the weight of the fluidity improver. Is more preferably 0.01 to 1% by mass, and most preferably 0.02 to 0.5% by mass.
  • the content of the hindered phenolic antioxidant is less than 0.005% by mass, the content of the hindered phenolic antioxidant is small, and coloring occurs when the fluidity improver is added to the polycarbonate resin. May occur.
  • the content of the hindered phenol antioxidant is more than 5% by mass, the impact strength of the resin composition obtained by adding the above fluidity improver to the polycarbonate resin may be lowered.
  • hindered phenol antioxidant examples include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di, or tri) ( ⁇ -methylbenzyl) phenol, 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amyl Hydroquinone, triethylene glycol Bis- [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate], 2,
  • the trade names are Nocrack 200, Nocrack M-17, Nocrack SP, Nocrack SP-N, Nocrack NS-5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7, Nocrack DAH (all above) Ouchi Shinsei Chemical Co., Ltd.), ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-616, ADK STAB AO-635, ADK STAB AO-658, ADK STAB AO-80, ADK STAB AO-15, ADK STAB AO-18, ADK STAB 328, ADK STAB AO-330, ADK STAB AO-37 (all of which are manufactured by ADK), IRGANOX-245, IRGANOX-259, IRGANOX-5 5, IRGANOX-1010, IRGANOX-1024, IRGANOX-1035, IRGANOX-1076,
  • Adeka Stub AO-60 and Adeka Stub AO-330 are particularly difficult to discolor, and the coloration of the resin can be efficiently suppressed by the combined use with a phosphite antioxidant.
  • IRGANOX-1010 is more preferable.
  • a monoacrylate phenol-based stabilizer having both an acrylate group and a phenol group can also be used as a phenol-based antioxidant.
  • monoacrylate phenol-based stabilizers include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate (trade name: Sumilizer GM), 2 , 4-di-t-amyl-6- [1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate (trade name: Sumilizer GS).
  • ADK STAB PEP-36 As a combination of a phosphite antioxidant and a hindered phenol antioxidant, a combination of ADK STAB PEP-36, ADK STAB 2112 and Irgafos 126, ADK STAB AO-60, ADK STAB AO-330 and IRGANOX-1010 is used. It is preferable at the point which can suppress especially coloring.
  • the number average molecular weight of the fluidity improver in the present invention refers to a mixed solvent having a volume ratio of p-chlorophenol and toluene of 3: 8 using polystyrene as a standard substance, and the resin in the present invention having a concentration of 0.25 mass. It is a value measured at 80 ° C. by GPC using a solution prepared by dissolving to be%.
  • the number average molecular weight of the polyester in the present invention is preferably 2000 to 30000, more preferably 3000 to 20000, and still more preferably 4000 to 15000.
  • the fluidity improver may bleed out when a resin composition obtained by adding the fluidity improver to the polycarbonate resin is molded.
  • the number average molecular weight of the fluidity improver exceeds 30000, the melt viscosity of the fluidity improver itself increases, and the resin composition obtained by adding the fluidity improver to the polycarbonate resin is processed. Sometimes the fluidity of the time cannot be improved effectively.
  • the fluidity improver in the present invention may be produced by any known method.
  • the hydroxyl group of the monomer is individually or collectively made into a lower fatty acid ester using a lower fatty acid such as acetic anhydride, and then removed from the carboxylic acid in another reaction vessel or the same reaction vessel.
  • the method of making a lower fatty acid polycondensation reaction is mentioned.
  • the polycondensation reaction is carried out in the presence of an inert gas such as nitrogen gas in the presence of an inert gas, usually at a temperature of 220 to 330 ° C., preferably 240 to 310 ° C. in the substantial absence of a solvent. It is performed for 0.5 to 5 hours.
  • the reaction temperature is lower than 220 ° C., the reaction proceeds slowly, and when it is higher than 330 ° C., side reactions such as decomposition tend to occur.
  • the pressure is rapidly reduced to a high degree of vacuum, the dicarboxylic acid monomer and the low molecular weight compound used for end-capping may volatilize, and a resin having a desired composition or molecular weight may not be obtained.
  • the ultimate vacuum is preferably 40 Torr or less, more preferably 30 Torr or less, further preferably 20 Torr or less, and particularly preferably 10 Torr or less.
  • the polycondensation reaction may employ a multi-stage reaction temperature. If necessary, the reaction product may be withdrawn in a molten state and recovered as soon as the temperature rises or when the maximum temperature is reached.
  • the obtained polyester resin may be used as it is, or solid phase polymerization may be further performed for the purpose of removing unreacted raw materials or improving physical properties.
  • the obtained polyester resin is mechanically pulverized into particles having a particle size of 3 mm or less, preferably 1 mm or less, and an inert gas such as nitrogen gas at 100 to 350 ° C. in a solid state.
  • the treatment is preferably performed in an atmosphere or under reduced pressure for 1 to 30 hours.
  • the particle diameter of the polyester resin particles is larger than 3 mm, the treatment is not sufficient, and problems with physical properties are caused, which is not preferable. It is preferable to select the treatment temperature and the rate of temperature increase during solid-phase polymerization so that the polyester resin particles do not cause fusion.
  • Examples of the lower fatty acid anhydride used in the production of the fluidity improver in the present invention include lower fatty acid anhydrides having 2 to 5 carbon atoms such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, Examples include trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, and pivalic anhydride.
  • acetic anhydride, propionic anhydride, and trichloroacetic anhydride are particularly preferably used.
  • the amount of the lower fatty acid anhydride used is 1.01 to 1.5 times equivalent, preferably 1.02 to 1.2 times equivalent to the total of the monomers used and the functional groups such as hydroxyl groups of the terminal blocking agent. It is. When the amount of the lower fatty acid anhydride used is less than 1.01 equivalents, the lower fatty acid anhydride is volatilized, so that the functional group such as a hydroxyl group does not completely react with the lower fatty acid anhydride. In some cases, a low molecular weight resin may be obtained.
  • a polymerization catalyst may be used for the production of the fluidity improver in the present invention.
  • conventionally known catalysts can be used as polyester polymerization catalysts, such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide.
  • metal salt catalysts such as metal salt catalysts, organic compound catalysts such as N, N-dimethylaminopyridine and N-methylimidazole.
  • sodium acetate, potassium acetate, and magnesium acetate are more preferable because discoloration of the fluidity improver itself can be prevented and discoloration of the polycarbonate resin composition can be prevented.
  • the addition amount of the polymerization catalyst is usually 0 to 100 ⁇ 10 ⁇ 2 mass%, preferably 0.5 ⁇ 10 ⁇ 3 to 50 ⁇ 10 ⁇ 2 mass%, based on the total weight of the polyester resin. is there.
  • the shape of the fluidity improver in the present invention is not particularly limited, and examples thereof include pellets, flakes, and powders.
  • the particle diameter should just be as small as it can be thrown into the extruder melt-kneaded with polycarbonate resin, and it is preferable that it is 6 mm or less.
  • the resin composition obtained by adding the fluidity improver in the present invention to the polycarbonate resin contains 70 to 99.9% by mass of the polycarbonate resin and 0.1 to 30% by mass of the fluidity improver in the present invention. .
  • the content of the fluidity improver in the resin composition (100% by mass) is more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 3% by mass or more.
  • the content of the fluidity improver in the resin composition (100% by mass) is more preferably 30% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the content rate of the fluidity improver in a resin composition (100 mass%) is 0.1 mass% or more, the fluidity
  • the content of the fluidity improver in the resin composition (100% by mass) is 30% by mass or less, the heat resistance and mechanical properties of the polycarbonate resin are not significantly impaired.
  • the flowability improver in the present invention has a glass transition temperature lower than that of the polycarbonate resin, it lowers the glass transition point of the resin composition obtained by being dissolved in the polycarbonate resin. Therefore, if the fluidity improver in the present invention is contained in excess of 30% by mass, the heat resistance of the resulting resin composition may be lowered.
  • the resin composition obtained by adding the fluidity improver in the present invention to the polycarbonate resin is further protected regardless of whether the fluidity improver contains a phosphite antioxidant in advance.
  • An agent may be included separately.
  • the content of the phosphite antioxidant is 0 with respect to the total mass of the polycarbonate resin and the fluidity improver. 0.005 to 5% by mass, preferably 0.01 to 2% by mass, more preferably 0.01 to 1% by mass, and 0.02 to 0.5% by mass. Most preferably it is.
  • a hindered phenolic antioxidant may be additionally contained.
  • the content of the hindered phenol antioxidant is based on the total mass of the polycarbonate resin and the fluidity improver. 0.005 to 5% by mass, preferably 0.01 to 2% by mass, more preferably 0.01 to 1% by mass, and 0.02 to 0.5% by mass. % Is most preferred.
  • the polycarbonate resin is not particularly limited, and polycarbonate resins having various structural units can be used.
  • a polycarbonate resin produced by a method of interfacial polycondensation of divalent phenol and carbonyl halide, a method of melt polymerization (transesterification) of divalent phenol and carbonic acid diester, or the like can be used.
  • divalent phenol that is a raw material for the polycarbonate resin
  • divalent phenol examples include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ) Ketone, hydroquinone, resorcin, catechol, etc.
  • divalent phenols bis (hydroxyphenyl) alkanes are preferred, and divalent phenols mainly composed of 2,2-bis (4-hydroxyphenyl) propane are particularly preferred.
  • the carbonate precursor include carbonyl halide, carbonyl ester, haloformate and the like.
  • diaryl carbonates such as dihaloformates of divalent phenols, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate; dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dibutyl carbonate, dia
  • aliphatic carbonate compounds such as mil carbonate and dioctyl carbonate.
  • the polycarbonate resin may be a resin having a branched structure in addition to a resin in which the molecular structure of the polymer chain is a linear structure.
  • a branching agent for introducing such a branched structure 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3, And 5-triisopropylbenzene, phloroglucin, trimellitic acid, isatin bis (o-cresol), etc.
  • molecular weight regulators phenol, pt-butylphenol, pt-octylphenol, p-cumylphenol, etc. Can be used.
  • the polycarbonate resin used in the present invention is a copolymer having a polycarbonate structural unit and a polyorganosiloxane structural unit in addition to a homopolymer produced using only the above divalent phenol, or a homopolymer thereof.
  • a resin composition comprising a copolymer.
  • it may be a polyester-polycarbonate resin obtained by conducting a polymerization reaction of a divalent phenol or the like in the presence of an ester precursor such as a bifunctional carboxylic acid such as terephthalic acid or an ester-forming derivative thereof.
  • a resin composition obtained by melt-kneading a polycarbonate resin having various structural units can also be used.
  • the fluidity improver as a component other than the polycarbonate resin, the fluidity improver, and the antioxidant (phosphite antioxidant, hindered phenol antioxidant), any other depending on the purpose
  • Ingredients such as reinforcing agents, thickeners, mold release agents, coupling agents, flame retardants, flame retardants, pigments, colorants, light diffusing agents and other auxiliary agents, or fillers of the present invention. It can be added as long as the effect is not lost.
  • the amount of these additives used is preferably in the range of 0 to 100 parts by weight in total with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the polycarbonate resin.
  • the amount of the flame retardant used is preferably 7 to 80 parts by weight, more preferably 10 to 60 parts by weight with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the polycarbonate resin. Is more preferably 12 to 40 parts by weight.
  • Various compounds are known as flame retardants, for example, various compounds described in “Technology and Application of Polymer Flame Retardation” (pages 149 to 221) published by CMC Publishing Co., Ltd. It is not limited. Among these flame retardants, phosphorus flame retardants, halogen flame retardants, and inorganic flame retardants can be preferably used.
  • phosphorus-based flame retardants include phosphate esters, halogen-containing phosphate esters, condensed phosphate esters, polyphosphates, and red phosphorus. These phosphorus flame retardants may be used alone or in combination of two or more.
  • halogen flame retardant examples include brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride polymer, brominated epoxy resin, brominated phenoxy resin, deca Examples thereof include bromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, and brominated crosslinked aromatic polymers. Of these, brominated polystyrene and brominated polyphenylene ether are particularly preferred. These halogen flame retardants may be used alone or in combination of two or more. The halogen element content of these halogen flame retardants is preferably 15 to 87%.
  • an inorganic filler may be further added in order to improve mechanical strength, dimensional stability, etc., or for the purpose of increasing the amount.
  • the inorganic filler examples include zinc sulfate, potassium hydrogen sulfate, aluminum sulfate, antimony sulfate, sulfate ester, potassium sulfate, cobalt sulfate, sodium hydrogen sulfate, iron sulfate, copper sulfate, sodium sulfate, nickel sulfate, barium sulfate, Metal sulfate compounds such as magnesium sulfate and ammonium sulfate; Titanium compounds such as titanium oxide; Carbonate compounds such as potassium carbonate; Metal hydroxide compounds such as aluminum hydroxide and magnesium hydroxide; Silica compounds such as synthetic silica and natural silica; Calcium aluminate, dihydrate gypsum, zinc borate, barium metaborate, borax; nitrate compounds such as sodium nitrate, molybdenum compounds, zirconium compounds, antimony compounds and their modified products; composite fine particles of silicon dioxide and aluminum oxide Etc.
  • inorganic fillers include, for example, potassium titanate whiskers, mineral fibers (rock wool, etc.), glass fibers, carbon fibers, metal fibers (stainless fibers, etc.), aluminum borate whiskers, silicon nitride whiskers, boron fibers. , Tetrapotted zinc oxide whisker, talc, clay, kaolin clay, natural mica, synthetic mica, pearl mica, aluminum foil, alumina, glass flakes, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, silica Examples include calcium acid, titanium oxide, zinc oxide, silica, asbestos, and quartz powder.
  • These inorganic fillers may be untreated, or may be subjected to chemical or physical surface treatment in advance.
  • the surface treatment agent used for the surface treatment include compounds such as silane coupling agent, higher fatty acid, fatty acid metal salt, unsaturated organic acid, organic titanate, resin acid, and polyethylene glycol. It is done.
  • the method for producing the resin composition in the present invention is not particularly limited.
  • the resin composition is, for example, a flow improver, a polycarbonate resin, and a necessary resin using a device such as a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a two-roll, a kneader, or a Brabender.
  • a device such as a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a two-roll, a kneader, or a Brabender.
  • an additive such as a light diffusing agent is blended and melt kneaded.
  • the melt kneading temperature is preferably as low as possible for the purpose of suppressing the transesterification reaction between the polyester and the polycarbonate resin contained in the fluidity improver and the yellowing of the resin composition due to thermal degradation of the polycarbonate resin.
  • the molded product of the present invention can be molded into shapes such as various irregular extrusion molded products, sheets and films by extrusion molding, for example.
  • the various extrusion molding methods include cold runner and hot runner molding methods, as well as injection compression molding, injection press molding, gas assist injection molding, foam molding (including the case of supercritical fluid injection), inserts. Examples thereof include injection molding methods such as molding, in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • an inflation method, a calendar method, a casting method, or the like can be used for forming a sheet or a film.
  • it can be formed as a heat-shrinkable tube by applying a specific stretching operation.
  • it is also possible to make a hollow molded product by molding the resin composition of the present invention by rotational molding, blow molding or the like.
  • the light guide plate of the present invention is manufactured from the above-described resin composition by a known injection molding method.
  • a light guide plate having a wedge-shaped cross section in which one surface is an inclined surface having a uniform inclination, and a prism-shaped uneven pattern is applied to the inclined surface to form a diffusely reflecting portion can be formed.
  • Such a light guide plate can be manufactured by using an injection mold having a concavo-convex portion formed in a cavity and performing injection molding while transferring the concavo-convex portion.
  • a method of providing the uneven portion in the cavity of the injection mold a method of forming the uneven portion in the nest is simple and preferable.
  • a mobile phone By providing at least such a light guide plate and a light source that emits light toward the light guide plate, a mobile phone, a mobile terminal, a camera, a watch, a laptop computer, a display, illumination, a signal, a car tail lamp, a head lamp, An edge-type surface light source body used for displaying a thermal power of an electromagnetic cooker can be configured.
  • a self-luminous material such as a fluorescent lamp, a cold cathode tube, an LED, or an organic EL can be used.
  • the light guide plate of the present invention is made of a resin composition having high fluidity without impairing transparency and mechanical strength, it can be used in a wide range of applications without being restricted in use environment, and has a fine injection mold. Unevenness and the like are sufficiently transferred and molded well. Therefore, by using such a light guide plate, an industrially useful surface light source body can be provided.
  • a polycarbonate resin produced by a method of interfacial polycondensation of divalent phenol and carbonyl halide, a method of melt polymerization (transesterification) of divalent phenol and carbonic acid diester, or the like can be used.
  • Examples of the divalent phenol that is a raw material of the aromatic polycarbonate resin (I) include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl).
  • Ethane 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, Bis (4-hydroxyphenyl) ketone, hydroquinone, resorcin, potassium Call, and the like.
  • divalent phenols bis (hydroxyphenyl) alkanes are preferred, and divalent phenols mainly composed of 2,2-bis (4-hydroxyphenyl) propane are particularly preferred.
  • the carbonate precursor include carbonyl halide, carbonyl ester, haloformate and the like.
  • diaryl carbonates such as dihaloformates of divalent phenols, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate; dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dibutyl carbonate, dia
  • aliphatic carbonate compounds such as mil carbonate and dioctyl carbonate.
  • the aromatic polycarbonate resin (I) may be a resin having a branched structure in addition to a resin having a linear molecular chain structure.
  • a branching agent for introducing such a branched structure 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3, And 5-triisopropylbenzene, phloroglucin, trimellitic acid, isatin bis (o-cresol), etc.
  • molecular weight regulators phenol, pt-butylphenol, pt-octylphenol, p-cumylphenol, etc. Can be used.
  • the aromatic polycarbonate resin (I) used in the present invention is a copolymer having a polycarbonate structural unit and a polyorganosiloxane structural unit, in addition to a homopolymer produced using only the above divalent phenol.
  • the resin composition which consists of these homopolymers and a copolymer may be sufficient.
  • it may be a polyester-polycarbonate resin obtained by conducting a polymerization reaction of a divalent phenol or the like in the presence of an ester precursor such as a bifunctional carboxylic acid such as terephthalic acid or an ester-forming derivative thereof.
  • the molecular weight of the aromatic polycarbonate-based resin (I) is a viscosity average molecular weight calculated from a solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent from the viewpoint of obtaining a resin composition having high fluidity, and is 12000. It is preferable to use those having a molecular weight of ⁇ 40000, more preferably 12,000 to 25000, and particularly preferably 12,000 to 18000.
  • a resin composition obtained by melt-kneading a polycarbonate resin having various structural units can also be used.
  • the resin material containing the aromatic polycarbonate resin (A) an aromatic polycarbonate polymer alloy in which the aromatic polycarbonate resin (A) and another resin or elastomer described later are combined may be used.
  • the aromatic polycarbonate resin composition does not impair the excellent transparency, impact resistance, heat resistance, dimensional stability, self-extinguishing properties (flame retardant), etc. inherent in the aromatic polycarbonate resin (A).
  • other resins or elastomers may be blended in the range of 50 parts by mass or less with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • PSt polystyrene
  • AS resin acrylonitrile-styrene resin
  • graft copolymers acrylonitrile-butadiene-
  • Styrene resins such as styrene resin (ABS resin), acrylonitrile-ethylene propylene rubber-styrene resin (AES resin), acrylonitrile-acrylate-styrene resin (AAS resin), high impact polystyrene (HIPS), etc .; polyethylene terephthalate (PET) , Polyesters such as polybutylene terephthalate (PBT) and copolymers thereof; acrylic resins such as polymethyl methacrylate (PMMA) and copolymers having methyl methacrylate units; polypropylene (PP) and polyethylene Olefin resins such as ethylene (PE) and ethylene- (meth) acrylic acid copolymers; polyurethanes; silicone resins; syndiotactic PS; polyamides such as 6-nylon and 6,6-nylon; polyarylate; polyphenylene sulfide; Various general-purpose resins or engineering plastics such as polyether ketone; polysulf
  • Elastomers include isobutylene-isoprene rubber; polyester elastomer; styrene-butadiene rubber, polystyrene-polybutadiene-polystyrene (SBS), polystyrene-poly (ethylene-butylene) -polystyrene (SEBS), polystyrene-polyisoprene-polystyrene (SIS).
  • SBS polystyrene-polybutadiene-polystyrene
  • SEBS polystyrene-poly (ethylene-butylene) -polystyrene
  • SIS polystyrene-polyisoprene-polystyrene
  • Styrene elastomer such as polystyrene-poly (ethylene-propylene) -polystyrene (SEPS); polyolefin elastomer such as ethylene-propylene rubber; polyamide elastomer; acrylic elastomer; diene rubber, acrylic rubber, silicone rubber, etc. Containing methyl methacrylate-butadiene-styrene resin (MBS resin), methyl methacrylate-acrylonitrile-styrene resin (MAS tree) ) Impact modifiers such as core-shell type represented by like.
  • the fluidity improver (II) in the present invention comprises a polyester obtained by polycondensing a bisphenol component, an aliphatic dicarboxylic acid component, and optionally a biphenol component at a specific ratio.
  • the structure of the main chain of the fluidity improver which is one form of the present invention, includes the following general formula (1)
  • X 1 to X 4 each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, which may be the same or different.
  • X 1 to X 4 each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, which may be the same or different.
  • X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • Y represents a methylene group, an isopropylidene group, a cyclic group.
  • R 1 represents a divalent linear substituent having 2 to 18 main chain atoms which may contain a branch.
  • the fluidity improver (II) in the present invention is produced by polycondensing a diol component consisting of a bisphenol component (B) and an optional biphenol component (A) and a dicarboxylic acid component which is a component (C). Polyester.
  • the fluidity improver is not a low-molecular compound, it is possible to suppress the occurrence of bleed out when molding a polycarbonate resin composition to which the fluidity improver is added.
  • the fluidity improver having the molecular structure is highly compatible with the polycarbonate resin, the fluidity of the resin composition obtained by adding the fluidity improver to the polycarbonate resin is efficiently improved. In addition, various properties such as transparency and impact strength inherent to the polycarbonate resin are not impaired.
  • the biphenol component (A) contained in the fluidity improver is preferably 0 to 55 mol%, more preferably 10 to 40 mol%, and most preferably 20 to 30 mol%.
  • the bisphenol component (B) is preferably contained in an amount of 5 to 60 mol%, more preferably 10 to 50 mol%, and most preferably 20 to 30 mol%.
  • the dicarboxylic acid component (C) is preferably contained in an amount of 40 to 60 mol%, more preferably 45 to 55 mol%.
  • the molar ratio ((A) / (B)) of the component (A) to the component (B) is preferably 1/9 to 9/1. More preferably, it is 1/7 to 7/1, more preferably 1/5 to 5/1, and most preferably 1/3 to 3/1.
  • the polyester itself becomes completely amorphous and has a low glass transition temperature. May cause fusion of pellets.
  • (A) / (B) is further less than 9/1, the component (B) is less compatible with the aromatic polycarbonate resin, and a fluidity improver is added to the aromatic polycarbonate resin.
  • phase separation may occur at the central portion of the thickness while being gradually cooled.
  • X 1 to X 4 in the general formula (1) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. It is more preferable that all of X 1 to X 4 are hydrogen atoms in order to improve the handleability such as improving the crystallinity of the fluidity improver itself and preventing fusion during pellet storage.
  • X 5 to X 8 in the general formula (2) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. In order to enhance the compatibility with the aromatic polycarbonate resin, it is more preferable that all of X 5 to X 8 are hydrogen atoms.
  • Y represents a methylene group, an isopropylidene group, a cyclic alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group or —SO 2 —.
  • 2,2-bis (4-hydroxyphenyl) propane (common name: bisphenol A) is preferable in terms of increasing compatibility with the aromatic polycarbonate resin. is there.
  • dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-1-methylphenyl) propane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis ( 4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) propane, 2,2- Bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromopheny
  • Dihydroxydiaryl sulfides dihydroxydiaryl sulfoxides such as 4,4′-dihydroxydiphenyl sulfoxide and 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide; 4,4′-dihydroxydiphenyl sulfone, 4,4′- And dihydroxydiaryl sulfones such as dihydroxy-3,3′-dimethyldiphenyl sulfone; and dihydroxydiphenyls such as 4,4′-dihydroxydiphenyl.
  • These bisphenol components may be used singly or as a mixture of two or more of them without losing the effect of the present invention.
  • the terminal structure of the fluidity improver (II) in the present invention is not particularly limited, and is particularly obtained by suppressing transesterification with an aromatic polycarbonate resin and adding the fluidity improver to the aromatic polycarbonate resin.
  • it is preferably sealed with a monofunctional low molecular compound.
  • the sealing rate with respect to all ends of the molecular chain is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, and most preferably 90% or more.
  • the end-capping rate of the fluidity improver can be determined by the following formula (4) by measuring the number of sealed end functional groups and the number of end functional groups not sealed.
  • 1 H-NMR is used to determine the number of each terminal group from the integral value of the characteristic signal corresponding to each terminal group.
  • the method of calculating the terminal blocking rate using (4) is preferable in terms of accuracy and simplicity.
  • Terminal sealing rate (%) ⁇ [number of sealed terminal functional groups] / ([number of sealed terminal functional groups] + [number of unsealed terminal functional groups]) ⁇ ⁇ 100 (4)
  • the monofunctional low molecular compound used for sealing include monohydric phenol, monoamine having 1 to 20 carbon atoms, aliphatic monocarboxylic acid, carbodiimide, epoxy or oxazoline.
  • Specific examples of monohydric phenol include phenol, p-cresol, pt-butylphenol, pt-octylphenol, p-cumylphenol, p-nonylphenol, pt-amylphenol, 4-hydroxybiphenyl, And any mixture thereof.
  • aliphatic monocarboxylic acids include fatty acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid.
  • monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and any of these A mixture etc. are mentioned.
  • carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, bis-2,6-diisopropyl Phenylcarbodiimide, poly (2,4,6-triisopropylphenylene-1,3-diisocyanate), 1,5- (diisopropylbenzene) polycarbodiimide, 2,6,2 ', 6'-tetraisopropyldiphenylcarbodiimide and their Arbitrary mixtures etc.
  • Examples of epoxies include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, triethylolpropane polyglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, sorbitol polyglycidyl ether, bisphenol A- Diglycidyl ether, hydrogenated bisphenol A-glycidyl ether, 4,4'-diphenylmethane diglycidyl ether, terephthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, methacrylic acid glycidyl ester, methacrylic acid glycidyl ester polymer, Examples thereof include a sidyl ester polymer-containing compound and an arbitrary mixture thereof.
  • Examples of oxazolines include styrene-2
  • R 1 therein represents a divalent linear substituent which may have 2 to 18 main chain atoms and may be branched.
  • the number of main chain atoms is the number of atoms in the main chain skeleton.
  • R 1 is preferably a straight-chain substituent that does not contain a branch, and further, a straight-chain aliphatic hydrocarbon chain that does not contain a branch. Is preferred.
  • R 1 may be saturated or unsaturated, but is preferably a saturated aliphatic hydrocarbon chain. When the unsaturated bond is included, the fluidity improver may not be sufficiently flexible, and may increase the melt viscosity of the fluidity improver itself.
  • R 1 is preferably a straight-chain saturated aliphatic hydrocarbon chain having 2 to 18 carbon atoms from the viewpoint that both the ease of polymerization of the fluidity improver and the improvement of the glass transition point can be achieved. More preferably, it is a straight chain saturated aliphatic hydrocarbon chain having 4 to 16 carbon atoms, more preferably a straight chain saturated aliphatic hydrocarbon chain having 8 to 14 carbon atoms, and a straight chain having 8 carbon atoms.
  • R 1 is particularly preferably one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 —.
  • a dicarboxylic acid component may be used independently and may mix 2 or more types in the range which does not lose the effect of this invention.
  • the fluidity improver (II) in the present invention may be copolymerized with other monomers to such an extent that the effect is not lost.
  • Other monomers include, for example, aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines, aromatic diamines, aromatic aminocarboxylic acids or caprolactams, caprolactones, aliphatic dicarboxylic acids, fatty acids Aromatic diols, aliphatic diamines, alicyclic dicarboxylic acids, and alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, and aromatic mercaptophenols.
  • the content of the other monomer constituting the fluidity improver is less than 50 mol%, preferably less than 30 mol%, more preferably, relative to the total number of moles of the fluidity improver. Less than 10 mol%, most preferably less than 5 mol%.
  • the content of the other monomer is 50 mol% or more based on the total number of moles of the fluidity improver, the compatibility of the fluidity improver with the aromatic polycarbonate resin decreases. It becomes difficult for the fluidity improver to be compatible with the aromatic polycarbonate resin.
  • aromatic hydroxycarboxylic acid examples include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-5-naphthoic acid, 2-hydroxy -7-naphthoic acid, 2-hydroxy-3-naphthoic acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid, and their And alkyl, alkoxy or halogen-substituted products.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 3 , 4′-dicarboxybiphenyl, 4,4 ′′ -dicarboxyterphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenoxy) butane, bis (4-carboxyphenyl) ethane, bis (3-carboxy Phenyl) ether, bis (3-carboxyphenyl) ethane, and alkyl, alkoxy or halogen substituents thereof.
  • aromatic diol examples include pyrocatechol, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 3,3′-dihydroxybiphenyl, 3,4′- Examples include dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxybiphenol ether, bis (4-hydroxyphenyl) ethane, 2,2′-dihydroxybinaphthyl, and alkyl, alkoxy or halogen substituents thereof. It is done.
  • aromatic hydroxyamine examples include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4-amino- 4′-hydroxybiphenyl, 4-amino-4′-hydroxybiphenyl ether, 4-amino-4′-hydroxybiphenylmethane, 4-amino-4′-hydroxybiphenyl sulfide, 2,2′-diaminobinaphthyl, and their Examples thereof include alkyl, alkoxy, and halogen-substituted products.
  • aromatic diamine and aromatic aminocarboxylic acid include 1,4-phenylenediamine, 1,3-phenylenediamine, N-methyl-1,4-phenylenediamine, N, N′-dimethyl-1,4. -Phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminobiphenylsulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminobiphenoxyethane 4,4′-diaminobiphenylmethane (methylenedianiline), 4,4′-diaminobiphenyl ether (oxydianiline), 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino-2-naphthoic acid, 7-amino-2-naphthoic acid and their alkyl, alkoxy or halogen substituted products.
  • aliphatic dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, fumaric acid, maleic acid Etc.
  • aliphatic diamine examples include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, 1,8-octanediamine, 1,9- Nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine and the like can be mentioned.
  • alicyclic dicarboxylic acid examples include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, cis-1,4-cyclohexanediol, and trans-1,4-cyclohexane.
  • aromatic mercaptocarboxylic acid, aromatic dithiol and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene-1,4- Dithiol, benzene-1,3-dithiol, 2,6-naphthalene-dithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercapto-2-hydroxynaphthalene, 7-mercapto-2 -Hydroxynaphthalene, and reactive derivatives thereof.
  • the fluidity improver in the present invention may contain a phosphite antioxidant in advance in that a resin composition having a good color tone can be obtained.
  • the fluidity improver containing a phosphite antioxidant in advance means a mixture of a phosphite antioxidant and a fluidity improver.
  • This phosphite-based antioxidant functions as an antioxidant even in the resin composition. That is, the simplest production method of the resin composition of the present invention is to mix three components of polycarbonate resin, fluidity improver and phosphite antioxidant at one time, but “polycarbonate resin” and “phosphite”. Mixing the “mixture of the system antioxidant and the fluidity improver” is also included in the embodiment of the present invention.
  • the reason for this is to prevent discoloration of the fluidity improver itself and to deactivate the polymerization catalyst used for the polymerization of the fluidity improver and mix the fluidity improver and the aromatic polycarbonate resin. This is considered to be because discoloration due to transesterification or hydrolysis reaction between the polyester contained in the fluidity improver and the aromatic polycarbonate resin, which may occur in the fluidity improver, can be prevented. As a result, a decrease in the molecular weight of the aromatic polycarbonate resin can be more effectively suppressed, so that the resin composition containing the fluidity improver is fluid without impairing the original properties of the aromatic polycarbonate resin. Can only improve.
  • the content of the phosphite antioxidant in the fluidity improver is preferably 0.005 to 5% by mass and preferably 0.01 to 2% by mass with respect to the weight of the fluidity improver. More preferably, the content is 0.01 to 1% by mass, and most preferably 0.02 to 0.05% by mass.
  • the content of the phosphite-based antioxidant is less than 0.005% by mass, the content of the phosphite-based antioxidant is small, and coloring occurs when the fluidity improver is blended with the aromatic polycarbonate-based resin. May occur.
  • the content of the phosphite antioxidant is more than 5% by mass, the impact strength of the resin composition obtained by adding the fluidity improver to the aromatic polycarbonate resin may be reduced. is there.
  • phosphite antioxidants such as “Antioxidant Handbook” published by Taiseisha, “Degradation and Stabilization of Polymer Materials” (pages 235 to 242) published by CMC Publishing, etc. Although not limited to various compounds described in (1).
  • phosphite antioxidants include tris (2,4-di-t-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester Phosphoric acid, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-) 4-methylphenyl) pentaerythritol di-phosphite and the like.
  • the product names include ADK STAB PEP-36, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-8F, ADK STAB PEP-8W, ADK STAB PEP-11C, ADK STAB PEP-24G, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB P, ADK STAB QL, ADK STAB 522A, ADK STAB 329K, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 13510, ADK STAB 3010 (all of which are manufactured by ADEKA CORPORATION), Irgafos 38, Irgafos 126, Irgafos 126 As mentioned above, BASFBAJAPAN LTD.) And the like can be exemplified.
  • Adeka Stub PEP-36, Adeka Stub HP-10 are particularly effective in suppressing the transesterification reaction and hydrolysis reaction, and the antioxidant itself has a high melting point and hardly volatilizes from the resin. More preferable are ADK STAB 2112, ADK STAB PEP-24G, Irgafos 126 and the like.
  • the fluidity improver in the present invention may contain a hindered phenol antioxidant in advance in that a polycarbonate resin composition having a good color tone can be obtained.
  • the content of the hindered phenolic antioxidant in the fluidity improver is preferably 0.005 to 5% by mass, and 0.01 to 2% by mass with respect to the weight of the fluidity improver. Is more preferably 0.01 to 1% by mass, and most preferably 0.02 to 0.05% by mass.
  • the content of the hindered phenolic antioxidant is less than 0.005% by mass, the content of the hindered phenolic antioxidant is small, and the fluidity improver is blended with the aromatic polycarbonate resin. May be colored.
  • the content of the hindered phenol antioxidant is more than 5% by mass, the impact strength of the resin composition obtained by adding the fluidity improver to the aromatic polycarbonate resin may be lowered. .
  • hindered phenol antioxidant examples include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di, or tri) ( ⁇ -methylbenzyl) phenol, 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amyl Hydroquinone, triethylene glycol Bis- [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate], 2,
  • the trade names are Nocrack 200, Nocrack M-17, Nocrack SP, Nocrack SP-N, Nocrack NS-5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7, Nocrack DAH (all above) Ouchi Shinsei Chemical Co., Ltd.), ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-616, ADK STAB AO-635, ADK STAB AO-658, ADK STAB AO-80, ADK STAB AO-15, ADK STAB AO-18, ADK STAB 328, ADK STAB AO330, ADK STAB AO-37 (all of which are manufactured by ADK), IRGANOX-245, IRGANOX-259, IRGANOX-56 , IRGANOX-1010, IRGANOX-1024, IRGANOX-1035, IRGANOX-1076
  • ADK STAB AO-60, IRGANOX-1010, and the like since the antioxidant itself is particularly difficult to discolor, and the coloration of the resin can be efficiently suppressed by the combined use with a phosphite antioxidant. Is more preferable.
  • a monoacrylate phenol-based stabilizer having both an acrylate group and a phenol group can also be used as a phenol-based antioxidant.
  • monoacrylate phenol-based stabilizers include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate (trade name: Sumilizer GM), 2 , 4-di-t-amyl-6- [1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate (trade name: Sumilizer GS).
  • a combination of a phosphite antioxidant and a hindered phenol antioxidant particularly suppresses coloring of the resin. It is preferable in that it can be performed.
  • the number average molecular weight of the fluidity improver in the present invention refers to a mixed solvent having a volume ratio of p-chlorophenol and toluene of 3: 8 using polystyrene as a standard substance, and the resin in the present invention having a concentration of 0.25 mass. It is a value measured at 80 ° C. by GPC using a solution prepared by dissolving to be%.
  • the number average molecular weight of the polyester in the present invention is preferably 2000 to 30000, more preferably 3000 to 25000, and further preferably 4000 to 20000.
  • the fluidity improver may bleed out when a resin composition obtained by adding the fluidity improver to the aromatic polycarbonate resin is molded. is there. Further, when the number average molecular weight of the fluidity improver exceeds 30000, the melt viscosity of the fluidity improver itself is increased, and the resin composition obtained by adding the fluidity improver to the aromatic polycarbonate resin. In some cases, the fluidity during the molding process cannot be improved effectively.
  • the fluidity improver (II) in the present invention may be produced by any known method.
  • the hydroxyl group of the monomer is individually or collectively made into a lower fatty acid ester using a lower fatty acid such as acetic anhydride, and then removed from the carboxylic acid in another reaction vessel or the same reaction vessel.
  • the method of making a lower fatty acid polycondensation reaction is mentioned.
  • the polycondensation reaction is carried out in the presence of an inert gas such as nitrogen gas in the presence of an inert gas, usually at a temperature of 220 to 330 ° C., preferably 240 to 310 ° C. in the substantial absence of a solvent. It is performed for 0.5 to 5 hours.
  • the reaction temperature is lower than 220 ° C., the reaction proceeds slowly, and when it is higher than 330 ° C., side reactions such as decomposition tend to occur.
  • the pressure is rapidly reduced to a high degree of vacuum, the dicarboxylic acid monomer and the low molecular weight compound used for end-capping may volatilize, and a resin having a desired composition or molecular weight may not be obtained.
  • the ultimate vacuum is preferably 40 Torr or less, more preferably 30 Torr or less, further preferably 20 Torr or less, and particularly preferably 10 Torr or less.
  • the polycondensation reaction may employ a multi-stage reaction temperature. If necessary, the reaction product may be withdrawn in a molten state and recovered as soon as the temperature rises or when the maximum temperature is reached.
  • the obtained polyester resin may be used as it is, or solid phase polymerization may be further performed for the purpose of removing unreacted raw materials or improving physical properties.
  • the obtained polyester resin is mechanically pulverized into particles having a particle size of 3 mm or less, preferably 1 mm or less, and an inert gas such as nitrogen gas at 100 to 350 ° C. in a solid state.
  • the treatment is preferably performed in an atmosphere or under reduced pressure for 1 to 30 hours.
  • the particle diameter of the polyester resin particles is larger than 3 mm, the treatment is not sufficient, and problems with physical properties are caused, which is not preferable. It is preferable to select the treatment temperature and the rate of temperature increase during solid-phase polymerization so that the polyester resin particles do not cause fusion.
  • Examples of the lower fatty acid anhydride used in the production of the fluidity improver in the present invention include lower fatty acid anhydrides having 2 to 5 carbon atoms such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, Examples include trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, and pivalic anhydride.
  • acetic anhydride, propionic anhydride, and trichloroacetic anhydride are particularly preferably used.
  • the amount of the lower fatty acid anhydride used is 1.01 to 1.5 times equivalent, preferably 1.02 to 1.2 times equivalent to the total of the monomers used and the functional groups such as hydroxyl groups of the terminal blocking agent. It is. When the amount of the lower fatty acid anhydride used is less than 1.01 equivalents, the lower fatty acid anhydride is volatilized, so that the functional group such as a hydroxyl group does not completely react with the lower fatty acid anhydride. In some cases, a low molecular weight resin may be obtained.
  • a polymerization catalyst may be used for the production of the fluidity improver in the present invention.
  • conventionally known catalysts can be used as polyester polymerization catalysts, such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide.
  • metal salt catalysts such as metal salt catalysts, organic compound catalysts such as N, N-dimethylaminopyridine and N-methylimidazole.
  • sodium acetate, potassium acetate, and magnesium acetate are more preferable because discoloration of the fluidity improver itself can be prevented and discoloration of the polycarbonate resin composition can be prevented.
  • the addition amount of the polymerization catalyst is usually 0 to 100 ⁇ 10 ⁇ 2 mass%, preferably 0.5 ⁇ 10 ⁇ 3 to 50 ⁇ 10 ⁇ 2 mass%, based on the total weight of the polyester resin. is there.
  • the light diffusing agent (III) is a fine particle having a light diffusing ability. Examples of such fine particles include inorganic fine particles and polymer fine particles.
  • inorganic fine particles examples include glass filler, calcium carbonate, barium sulfate, silica, talc, mica, wollastonite, titanium oxide and the like. Of these, calcium carbonate is preferred.
  • the shape of the inorganic fine particles is preferably granular (including indeterminate) or plate-like rather than fibrous.
  • a glass filler glass beads, glass balloons, glass milled fibers, glass flakes, ultrathin glass flakes (manufactured by a sol-gel method), amorphous glass and the like can be mentioned.
  • other inorganic fine particles having various shapes can be employed.
  • the inorganic fine particles may be surface-treated with various silicone compounds such as silane coupling agents and polyorganohydrogensiloxane compounds, fatty acid ester compounds, olefin compounds and the like.
  • silicone compounds such as silane coupling agents and polyorganohydrogensiloxane compounds, fatty acid ester compounds, olefin compounds and the like.
  • the surface-treated inorganic fine particles are effective in improving thermal stability and hydrolysis resistance.
  • the refractive index of the inorganic fine particles is preferably 1.4 to 1.8. When the refractive index of the inorganic fine particles is within this range, both light diffusibility and total light transmittance are good.
  • the refractive index of inorganic fine particles is known from various documents, and can be easily measured by a liquid immersion method or the like.
  • the polymer fine particles are preferably spherical from the viewpoint of light diffusibility, and the closer to a true spherical shape, the more preferable.
  • polymer fine particles organic crosslinked particles obtained by polymerizing a non-crosslinkable monomer and a crosslinkable monomer; silicone-based crosslinked particles; amorphous heat-resistant polymer particles such as polyethersulfone particles; epoxy resin particles, urethane resin Examples thereof include particles, melamine resin particles, benzoguanamine resin particles, and phenol resin particles.
  • amorphous heat-resistant polymer particles the shape of the particles is not impaired when kneading with the aromatic polycarbonate resin (I) while heating, and thus a crosslinkable monomer is not necessarily required.
  • organic crosslinked particles are particularly preferred.
  • non-crosslinkable monomers used for organic crosslinked particles include non-crosslinkable vinyl monomers such as acrylic monomers, styrene monomers, and acrylonitrile monomers; olefin monomers.
  • acrylic monomers examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, Examples include phenyl methacrylate. Of these, methyl methacrylate is particularly preferred.
  • styrene monomer examples include alkyl styrene such as styrene, ⁇ -methyl styrene, methyl styrene (vinyl toluene), ethyl styrene, and halogenated styrene such as brominated styrene. Of these, styrene is particularly preferred.
  • acrylonitrile monomers examples include acrylonitrile and methacrylonitrile.
  • olefin monomer examples include ethylene and various norbornene type compounds.
  • Examples of other copolymerizable monomers include glycidyl methacrylate, N-methylmaleimide, maleic anhydride, and the like, and as a result, the organic crosslinked particles may have units such as N-methylglutarimide.
  • These monomers may be used alone or in combination of two or more.
  • crosslinkable monomer used in the organic crosslinked particles examples include divinylbenzene, allyl methacrylate, triallyl cyanurate, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and propylene glycol (meth).
  • Examples of the method for producing organic crosslinked particles include an emulsion polymerization method, a suspension polymerization method, a soap-free polymerization method using an initiator such as potassium persulfate, a seed polymerization method, and a two-stage swelling polymerization method.
  • a suspension polymerization method a water phase and a monomer phase are individually maintained and both are accurately supplied to a continuous disperser, and the particle diameter is controlled by the rotation speed of the disperser;
  • a method in which the monomer phase is supplied by passing it through a small diameter orifice of several to several tens of ⁇ m or a porous filter in an aqueous liquid having dispersibility to control the particle diameter can also be adopted.
  • Silicone-based crosslinked particles are those having a siloxane bond as the main skeleton and an organic substituent on the silicon atom, and those having a high degree of crosslinking represented by polymethylsilsesquioxane and those crosslinked by methylsilicone rubber particles. There is a low degree. In the present invention, those having a high degree of crosslinking represented by polymethylsilsesquioxane are preferred.
  • Examples of the organic substituent bonded to the silicon atom of the silicone-based crosslinked particles include alkyl groups such as methyl group, ethyl group, propyl group, and butyl group; aryl groups such as phenyl group; aralkyl groups such as benzyl group; carboxyl group, carbonyl Group, ester group, ether group and the like.
  • Examples of the method for producing the silicone-based crosslinked particles include a method of forming three-dimensionally crosslinked particles while growing siloxane bonds by hydrolysis and condensation reaction of trifunctional alkoxysilane or the like in water.
  • the particle diameter of the silicone-based crosslinked particles can be controlled by the amount of alkali serving as a catalyst, stirring conditions, and the like.
  • polymer fine particle production methods include spray drying, submerged curing (coagulation), phase separation (coacervation), solvent evaporation, and reprecipitation. Further, a nozzle vibration method or the like may be combined with these methods.
  • polymer fine particles examples include a single-phase structure, a core-shell structure, and an IPN structure in which two or more components are entangled with each other.
  • composite particles having inorganic fine particles as a core and organic crosslinked particles as a shell, and composite particles having organic crosslinked particles as a core and epoxy resin, urethane resin or the like as a shell may be used.
  • the refractive index of the polymer fine particles is usually about 1.33 to 1.7. When the refractive index of the polymer fine particles is within this range, a sufficient light diffusing function is exhibited in a state of being blended in the resin composition.
  • polymer fine particles are preferable to inorganic fine particles. By using the polymer fine particles, it is possible to realize both the light diffusibility and the total light transmittance at a higher level.
  • the average particle size of the light diffusing agent (III) is preferably 0.01 to 50 ⁇ m, more preferably 0.1 to 10 ⁇ m, and further preferably 0.1 to 8 ⁇ m.
  • the average particle diameter is represented by 50% (D50) of the cumulative distribution of particle sizes obtained by the laser light scattering method.
  • the light diffusing agent (III) preferably has a narrow particle size distribution, and more preferably has such a distribution that fine particles in the range of an average particle size of ⁇ 2 ⁇ m are 70% by mass or more of the whole.
  • the absolute value of the difference between the refractive index of the light diffusing agent (III) and the refractive index of the aromatic polycarbonate resin (I) is preferably 0.02 to 0.2. When the difference in refractive index is within this range, it is possible to achieve both light diffusibility and total light transmittance at a high level.
  • the refractive index of the light diffusing agent (III) is more preferably lower than the refractive index of the aromatic polycarbonate resin (I).
  • the compounding amount of the light diffusing agent (III) is 0.1 to 30 with respect to 100 parts by mass in total of the aromatic polycarbonate resin (I), another resin and / or elastomer and the fluidity improver (II). Mass parts are preferred, 0.3 to 20 parts by mass are more preferred, 0.4 to 15 parts by mass are more preferred, and 0.5 to 10 parts by mass are particularly preferred. When the blending amount of the light diffusing agent (III) is within this range, a high light diffusing function is exhibited.
  • the resin composition of the present invention contains 70 to 99.9% by mass of the aromatic polycarbonate resin (I) and 0.1 to 30% by mass of the fluidity improver (II).
  • the content of the fluidity improver (II) is preferably 0.5% by mass or more, more preferably 1% by mass or more. A mass% or more is particularly preferred.
  • the upper limit of the content of the fluidity improver is more preferably 20% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less. If the content rate of a fluid improvement agent is 0.1 mass% or more, the fluidity
  • the fluidity improver in the present invention lowers the glass transition point of the resin composition obtained by being dissolved in the polycarbonate resin. Therefore, if the fluidity improver in the present invention is contained in excess of 30% by mass, the heat resistance of the resulting resin composition may be lowered.
  • the resin composition obtained by adding the fluidity improver in the present invention to the aromatic polycarbonate resin is further phosphite regardless of whether the fluidity improver contains a phosphite antioxidant in advance.
  • a system antioxidant may be included separately.
  • the content of the phosphite antioxidant is based on the total mass of the aromatic polycarbonate resin and the fluidity improver. It is preferably 0.005 to 5% by mass, more preferably 0.01 to 2% by mass, still more preferably 0.01 to 1% by mass, and 0.02 to 0.05% by mass. Most preferably, it is mass%.
  • a hindered phenolic antioxidant may be additionally contained.
  • the content of the hindered phenol antioxidant is the total mass of the aromatic polycarbonate resin and the fluidity improver. Is preferably 0.005 to 5% by mass, more preferably 0.01 to 2% by mass, still more preferably 0.01 to 1% by mass, and 0.02 to 0%. Most preferably, it is 0.05 mass%.
  • the resin composition of the present invention further includes a component other than the aromatic polycarbonate resin, the fluidity improver, the light diffusing agent, and the antioxidant (phosphite antioxidant, hindered phenol antioxidant).
  • any other components such as reinforcing agents, thickeners, mold release agents, coupling agents, flame retardants, flame retardants, pigments, colorants, other auxiliaries, or fillers, It can be added as long as the effects of the present invention are not lost.
  • the amount of these additives used is preferably in the range of 0 to 100 parts by weight in total with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the polycarbonate resin.
  • the amount of the flame retardant used is more preferably 7 to 80 parts by weight with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the aromatic polycarbonate resin. More preferred is 12 to 40 parts by weight.
  • Various compounds are known as flame retardants, for example, various compounds described in “Technology and Application of Polymer Flame Retardation” (pages 149 to 221) published by CMC Publishing Co., Ltd. It is not limited. Among these flame retardants, phosphorus flame retardants, halogen flame retardants, and inorganic flame retardants can be preferably used.
  • phosphorus-based flame retardants include phosphate esters, halogen-containing phosphate esters, condensed phosphate esters, polyphosphates, and red phosphorus. These phosphorus flame retardants may be used alone or in combination of two or more.
  • halogen flame retardant examples include brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride polymer, brominated epoxy resin, brominated phenoxy resin, deca Examples thereof include bromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, and brominated crosslinked aromatic polymers. Of these, brominated polystyrene and brominated polyphenylene ether are particularly preferred. These halogen flame retardants may be used alone or in combination of two or more. The halogen element content of these halogen flame retardants is preferably 15 to 87%.
  • an inorganic filler may be further added in order to improve mechanical strength, dimensional stability, etc., or for the purpose of increasing the amount.
  • the inorganic filler examples include zinc sulfate, potassium hydrogen sulfate, aluminum sulfate, antimony sulfate, sulfate ester, potassium sulfate, cobalt sulfate, sodium hydrogen sulfate, iron sulfate, copper sulfate, sodium sulfate, nickel sulfate, barium sulfate, Metal sulfate compounds such as magnesium sulfate and ammonium sulfate; Titanium compounds such as titanium oxide; Carbonate compounds such as potassium carbonate; Metal hydroxide compounds such as aluminum hydroxide and magnesium hydroxide; Silica compounds such as synthetic silica and natural silica; Calcium aluminate, dihydrate gypsum, zinc borate, barium metaborate, borax; nitrate compounds such as sodium nitrate, molybdenum compounds, zirconium compounds, antimony compounds and their modified products; composite fine particles of silicon dioxide and aluminum oxide Etc.
  • inorganic fillers include, for example, potassium titanate whiskers, mineral fibers (rock wool, etc.), glass fibers, carbon fibers, metal fibers (stainless fibers, etc.), aluminum borate whiskers, silicon nitride whiskers, boron fibers. , Tetrapotted zinc oxide whisker, talc, clay, kaolin clay, natural mica, synthetic mica, pearl mica, aluminum foil, alumina, glass flakes, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, silica Examples include calcium acid, titanium oxide, zinc oxide, silica, asbestos, and quartz powder.
  • These inorganic fillers may be untreated, or may be subjected to chemical or physical surface treatment in advance.
  • the surface treatment agent used for the surface treatment include compounds such as silane coupling agent, higher fatty acid, fatty acid metal salt, unsaturated organic acid, organic titanate, resin acid, and polyethylene glycol. It is done.
  • the method for producing the resin composition in the present invention is not particularly limited.
  • the resin composition is, for example, an aromatic polycarbonate-based resin, a fluidity improver using an apparatus such as a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a two roll, a kneader, or a Brabender. And an additive such as a light diffusing agent and the like, and a known method of melt kneading.
  • the melt kneading temperature is as low as possible in order to suppress the transesterification reaction between the polyester contained in the fluidity improver and the aromatic polycarbonate resin, and the yellowing of the resin composition due to thermal degradation of the aromatic polycarbonate resin. It is preferable that
  • the molded product of the present invention can be molded into shapes such as various irregular extrusion molded products, sheets and films by extrusion molding, for example.
  • the various extrusion molding methods include cold runner and hot runner molding methods, as well as injection compression molding, injection press molding, gas assist injection molding, foam molding (including the case of supercritical fluid injection), inserts. Examples thereof include injection molding methods such as molding, in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • an inflation method, a calendar method, a casting method, or the like can be used for forming a sheet or a film.
  • it can be formed as a heat-shrinkable tube by applying a specific stretching operation.
  • it is also possible to make a hollow molded product by molding the resin composition of the present invention by rotational molding, blow molding or the like.
  • Examples of the light diffusing molded article of the present invention include light diffusing plates, light diffusing films, electronic / electric equipment, OA equipment parts, vehicle parts, machine parts, agricultural materials, fishery materials, transport containers, packaging containers, sundries, etc. Can be mentioned.
  • a light diffusing plate for an image display device a light diffusing plate used for a backlight module such as a liquid crystal display device, a light diffusing plate used for a screen of a projection display device such as a projector television
  • an image reading device Light diffuser plates, electric light covers, meters, signboards (particularly internally lit), resin window glass, vehicle roofing materials, marine roofing materials, residential roofing materials, solar cell covers, and the like.
  • a backlight module such as a liquid crystal display device, various light sources (cold cathode tube, LED, etc.) can be used.
  • the aromatic polycarbonate resin composition of the present invention is particularly suitable for producing a large and thin light diffusion plate (particularly a light diffusion plate for an image display device).
  • a light diffusion plate having a surface area of 500 to 50000 cm 2 can be obtained.
  • the surface area of the light diffusing plate is preferably 1000 to 25000 cm 2 , and the thickness is preferably 0.3 to 3 mm.
  • the light diffusing plate may be a single-layer plate having a surface shape such as a Fresnel lens shape or a cylindrical lens shape, and another material having a surface shape such as a Fresnel lens shape or a cylindrical lens shape is laminated on the light diffusing plate.
  • a laminated board may be sufficient.
  • a single-layer plate having a surface shape such as a Fresnel lens shape or a cylindrical lens shape is formed by molding the aromatic polycarbonate resin composition of the present invention into a desired shape by an injection molding method, a compression molding method, an extrusion molding method, or the like. Can be manufactured.
  • a method of forming a Fresnel lens shape (uneven shape) on the surface (i) a method of providing unevenness corresponding to the Fresnel lens shape on the mold cavity surface or the transfer roll surface, and transferring the unevenness to the surface of the molded product; ) Insert another material with irregularities corresponding to the shape of the Fresnel lens into the mold cavity, or laminate it at the time of extrusion to integrate the different material and the molded product, and then remove the other material. And a method of transferring irregularities on the surface of the molded product.
  • a concavo-convex shape such as a Fresnel lens shape may be omitted by laminating a layer containing a bright pigment on the light diffusion plate.
  • the light diffusing plate for an image display device is formed by forming various light reflection preventing films on the light source side surface (surface opposite to the observer) to prevent reflection of light from the light source. Also good.
  • the light diffusive molded article of the present invention can be subjected to surface modification, and as a result, other functions can be imparted.
  • Surface modification means a new layer on the surface of light diffusive moldings by vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. It means to provide.
  • the surface modification method a known surface modification method employed in ordinary resin molded products can be used.
  • Examples of the surface modification method for providing a metal layer or metal oxide layer on the surface of the light diffusive molded article include vapor deposition methods (physical vapor deposition method and chemical vapor deposition method), thermal spraying method, plating method and the like.
  • Examples of physical vapor deposition include vacuum vapor deposition, sputtering, ion plating, and the like.
  • Examples of the chemical vapor deposition (CVD) method include a thermal CVD method, a plasma CVD method, and a photo CVD method.
  • Examples of the thermal spraying method include an atmospheric pressure plasma spraying method and a low pressure plasma spraying method.
  • Examples of the plating method include an electroless plating (chemical plating) method, a hot dipping method, and an electroplating method.
  • Examples of the electroplating method include laser plating.
  • a vapor deposition method or a plating method is preferable.
  • a metal oxide layer is provided on the surface of the light diffusible molded article.
  • a vapor deposition method is used. Is preferred.
  • the vapor deposition method and the plating method may be used in combination. For example, a method of performing electroplating using a metal layer formed by vapor deposition can be employed.
  • the polyester contained in the fluidity improver of the present invention is mixed in a mixed solvent having a volume ratio of p-chlorophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and toluene of 3: 8 so that the concentration becomes 0.25% by mass.
  • a sample solution The standard material was polystyrene, and a similar sample solution was prepared.
  • measurement was performed using a high temperature GPC (manufactured by Viscotek: 350 HT-GPC System) under conditions of a column temperature of 80 ° C. and a flow rate of 1.00 mL / min.
  • a differential refractometer (RI) was used as a detector.
  • the spiral flow (mm) of the resin composition was evaluated using an injection molding machine (IS-100, manufactured by Toshiba Machine Co., Ltd.).
  • the polycarbonate resin composition had a molding temperature of 280 ° C., a mold temperature of 100 ° C., and an injection pressure of 200 MPa.
  • the thickness of the molded product was 1 mm and the width was 10 mm.
  • IZOD impact strength measurement method In accordance with ASTM D256, a notched test piece of the resin composition was prepared, and the IZOD impact strength (J / m) of this test piece was measured.
  • a test piece having a length of 4 cm, a width of 4 cm, and a thickness of 2 mm was prepared by injection molding, and using a haze meter HZ-V3 (manufactured by Suga Test Instruments Co., Ltd.), the total light transmittance (%) and haze ( %).
  • Example 2 As monomers, 4,4′-dihydroxybiphenyl, bisphenol A and sebacic acid are charged in a molar ratio of 30:20:50, and p-cumylphenol is used as an end-capping agent with respect to sebacic acid. .2 equivalents, 1.05 equivalents of acetic anhydride was added to the monomer and the phenolic hydroxyl group in the end-capping agent, and the time from the start of pressure reduction to the removal of the fluidity improver was 1.5 hours. A polyester was obtained in the same manner as in Example 1. The number average molecular weight of the obtained polyester was 3,900, and the terminal sealing rate was 90%. The obtained polyester is designated as (C-2).
  • Example 2 shows various physical properties of the resin composition.
  • Example 3 Polyester was prepared in the same manner as in Example 1 except that bisphenol A and sebacic acid were added as monomers in a molar ratio of 50:50, and the time from the start of decompression to the removal of the fluidity improver was 1 hour. Obtained. The number average molecular weight of the obtained polyester was 11,000. The obtained polyester is designated as (C-3). Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended in the proportions (parts by weight) shown in Table 1 and supplied to the twin-screw extruder, and the resin was melt-kneaded at 260 ° C. A composition was obtained. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 2 shows various physical properties of the resin composition.
  • Example 4 Comparative Example 1
  • Resin, antioxidant and polyester were blended in the proportions (parts by weight) shown in Table 1 and supplied to a twin screw extruder, and melt kneaded at 260 ° C. to obtain a resin composition.
  • the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition.
  • Table 2 shows various physical properties of the resin composition.
  • the fluidity improver (polyester) of the present invention is mixed in a mixed solvent having a volume ratio of p-chlorophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and toluene of 3: 8 so that the concentration becomes 0.25% by mass.
  • a sample solution was prepared by dissolution.
  • the standard material was polystyrene, and a similar sample solution was prepared.
  • measurement was performed using a high temperature GPC (manufactured by Viscotek: 350 HT-GPC System) under conditions of a column temperature of 80 ° C. and a flow rate of 1.00 mL / min.
  • a differential refractometer (RI) was used as a detector.
  • the spiral flow (mm) of the resin composition was evaluated using an injection molding machine (IS-100, manufactured by Toshiba Machine Co., Ltd.).
  • the polycarbonate resin composition had a molding temperature of 280 ° C., a mold temperature of 100 ° C., and an injection pressure of 200 MPa.
  • the thickness of the molded product was 1 mm and the width was 10 mm.
  • Polyester was prepared in the same manner as in Production Example 1 except that bisphenol A and sebacic acid were added as monomers in a molar ratio of 50:50, and the time from the start of decompression to the removal of the fluidity improver was 1 hour. Obtained. The number average molecular weight of the obtained polyester was 11,000. The obtained polyester is designated as (II-3).
  • the aromatic polycarbonate resin compositions obtained in Examples 5 to 7 have significantly improved fluidity, and the light diffusive molded product has a balance between total light transmittance and diffusivity. It was very good.
  • the light diffusing aromatic polycarbonate resin composition obtained in Comparative Example 2 did not contain a fluidity improver, and sufficient fluidity could not be obtained.
  • the fluidity at the time of molding can be improved without damaging the original properties (transparency, impact resistance, high rigidity, mechanical strength, surface peel resistance, heat resistance, chemical resistance, etc.) of the polycarbonate resin.
  • the improved resin composition it is possible to provide a light guide plate that can be used in a wide range of applications without being restricted in use environment and has excellent transferability, and a surface light source body including the same.
  • the aromatic polycarbonate resin composition of the present invention has improved melt fluidity (moldability) without impairing the excellent properties (transparency, light diffusibility) of the obtained light diffusible molded article. . Therefore, the light diffusive molded article comprising the aromatic polycarbonate resin composition of the present invention is excellent in transparency, light diffusibility, etc., and is large in size, thinned (light weight), complicated in shape, and high in performance.
  • a light diffusing plate for an image display device that is particularly required to be large and thin (for example, a light diffusing plate used in a backlight module such as a liquid crystal display device, a projection type such as a projection television)
  • a light diffusing plate used for a screen of a display device As a light diffusing plate used for a screen of a display device), a high-functional light diffusing film surface-treated by printing or the like (for example, a high transmission light diffusing film used for improving the brightness of a liquid crystal display device, etc.) Is preferred.
  • the light diffusion molded product of the present invention includes, for example, an electric lamp cover, a meter, a signboard (particularly internally lit), a resin window glass, and an image reading device.
  • Light diffusion plate vehicle roofing material, ship roofing material, residential roofing material, solar cell cover, electrical / electronic equipment parts, OA equipment parts, vehicle parts, machine parts, agricultural materials, fishery materials, transport containers, It is useful as a packaging container and miscellaneous goods, and has an extremely high industrial value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A fluidity improver, which is a polyester obtained as a result of the polycondensation of a monomer mixture comprising 0-55 mol% of a biphenol component, 5-60 mol% of a bisphenol component, and 40-60 mol% of a dicarboxylic acid component (C) (with the caveat that the sum total of monomers (A)-(C) is 100 mol%), is mixed with a polycarbonate resin. Furthermore, provided are: an aromatic polycarbonate-based resin composition which includes an aromatic polycarbonate-based resin (I), a fluidity improver (II) comprising a polyester having a specific structure, and a light diffusion agent (III); and a light diffusive moulded article obtained by moulding said aromatic polycarbonate-based resin composition.

Description

導光板、これを備えた面光源体、芳香族ポリカーボネート系樹脂組成物および光拡散性成形品Light guide plate, surface light source including the same, aromatic polycarbonate resin composition, and light diffusing molded article
 本発明は、使用環境が制限されることなく幅広い用途に使用でき、かつ転写性に優れた導光板およびこれを備えた面光源体に関する。 The present invention relates to a light guide plate that can be used in a wide range of applications without being restricted in use environment and has excellent transferability, and a surface light source body including the same.
 本発明はまた、得られる成形品の透明性、光拡散性を損なうことなく、成形加工時の流動性が向上した芳香族ポリカーボネート系樹脂組成物および光拡散性成形品に関する。 The present invention also relates to an aromatic polycarbonate resin composition and a light diffusible molded article having improved fluidity during molding without impairing the transparency and light diffusibility of the obtained molded article.
 車載搭載用のインストルメントパネル、テールランプ、ウィンカーなどのバック照明装置には、均一発光する導光板が組み込まれている。また、パーソナルコンピュータや携帯電話、PDAなどに使用される液晶表示装置にも、その薄型化、軽量化、省電力化、高輝度・高精細化の要求などに対処するために、導光板が組み込まれている。このような導光板は、光源などと共に面光源体を構成して各種装置に使用されている。 Backlight devices such as instrument panels, tail lamps, blinkers, etc. for in-vehicle use have light guide plates that emit uniform light. In addition, liquid crystal display devices used in personal computers, mobile phones, PDAs, etc. are also equipped with a light guide plate to cope with demands for thinning, lightening, power saving, high brightness and high definition. It is. Such a light guide plate constitutes a surface light source body together with a light source or the like and is used in various devices.
 導光板は光の減衰が少ない材質から形成されることが望ましく、さらに軽量で、成形加工性に優れたポリメチルメタクリレート(PMMA)が最適とされてきた。 The light guide plate is preferably made of a material with low light attenuation, and polymethyl methacrylate (PMMA), which is lighter in weight and excellent in moldability, has been optimally used.
 ところがPMMAは耐熱性、耐衝撃性、難燃性などに劣るため、導光板の使用環境が制限されるという問題点を有している。例えば車載搭載用照明装置には、耐熱性と耐衝撃性とを備えた導光板が必要である。また、パーソナルコンピュータや携帯電話、PDAなどの機器においても、その内部で発生する熱が大きくなる傾向にあることから、より耐熱性の高い材料が求められ、さらに最近では、特に携帯電話用の導光板にも耐衝撃性の改良が求められている。 However, since PMMA is inferior in heat resistance, impact resistance, flame retardancy, etc., it has a problem that the use environment of the light guide plate is limited. For example, an in-vehicle lighting device requires a light guide plate having heat resistance and impact resistance. Also, devices such as personal computers, mobile phones, and PDAs tend to increase the heat generated inside them, so materials with higher heat resistance are required, and more recently, especially for mobile phones. The light plate is also required to have improved impact resistance.
 このような事情から、最近では、耐衝撃性などの機械的性質、耐熱性、電気的性質に優れるポリカーボネート樹脂がPMMAに代わって使用され始めている。 For these reasons, polycarbonate resins having excellent mechanical properties such as impact resistance, heat resistance, and electrical properties have recently begun to be used in place of PMMA.
 しかしながらポリカーボネート樹脂は、このような優れた特性を備える一方で溶融粘度が高いため、流動性が悪く成形性に劣る欠点があり、十分な転写性が得られない場合があった。 However, the polycarbonate resin has such excellent characteristics, but has a high melt viscosity. Therefore, the polycarbonate resin has a drawback of poor fluidity and inferior moldability, and sufficient transferability may not be obtained.
 そこで、ポリカーボネート樹脂の優れた特性を損なうことなく、その溶融流動性を向上させ、転写性などの成形加工性を高める技術が求められている。 Therefore, there is a demand for a technique for improving the melt fluidity and improving the moldability such as transferability without impairing the excellent properties of the polycarbonate resin.
 芳香族ポリカーボネート系樹脂組成物の溶融流動性を向上させる方法としては、例えば、特許文献1には、脂肪族セグメントを有するコポリエステルカーボネート樹脂をポリカーボネート系樹脂の流動性向上剤として使用することで、透明性や機械強度を維持することが記載されている。 As a method for improving the melt fluidity of the aromatic polycarbonate resin composition, for example, in Patent Document 1, by using a copolyester carbonate resin having an aliphatic segment as a fluidity improver for a polycarbonate resin, It describes that transparency and mechanical strength are maintained.
 芳香族ポリカーボネート系樹脂は、優れた機械特性、熱的性質を有しているため、OA(オフィスオートメーション)機器、情報・通信機器、電子・電気機器、家庭電化機器、自動車用部材、建築材料等、工業的に広く利用されている。また、芳香族ポリカーボネート系樹脂に無機微粒子、高分子微粒子等の光拡散剤を配合した樹脂組成物からなる光拡散性成形品は、アクリル樹脂からなる光拡散性成形品に比べ、耐熱性および寸法安定性に優れることから、電灯カバー、メーター、看板(特に内照式)、樹脂窓ガラス、画像読取装置または画像表示装置用の光拡散板(例えば、液晶表示装置等のバックライトモジュールに使用される光拡散板、プロジェクターテレビ等の投影型表示スクリーンに使用される光拡散板等)、光拡散フィルム(例えば、液晶表示装置の輝度向上等に利用される高透過光拡散フィルム等)等、幅広い分野で使用されている。近年の画像表示装置の大型化、薄肉化(軽量化)、形状複雑化、高性能化等に伴って、光拡散性成形品、特に画像表示装置に用いられる光拡散板および光拡散フィルムにも、大型化、薄肉化(軽量化)、形状複雑化、高性能化等の要望が高まっており、成形加工時の流動性に優れた芳香族ポリカーボネート系樹脂組成物が求められている。 Aromatic polycarbonate resins have excellent mechanical and thermal properties, so OA (office automation) equipment, information / communication equipment, electronic / electric equipment, home appliances, automotive components, building materials, etc. Widely used industrially. In addition, a light diffusible molded product made of a resin composition in which a light diffusing agent such as inorganic fine particles or polymer fine particles is blended with an aromatic polycarbonate resin is more heat resistant and dimension than a light diffusible molded product made of acrylic resin. Because of its excellent stability, it is used in light covers for electric lamp covers, meters, signboards (particularly internally lit), resin window glass, image reading devices or image display devices (for example, backlight modules such as liquid crystal display devices). A wide range of light diffusing plates, light diffusing plates used for projection display screens such as projector televisions), light diffusing films (for example, high transmission light diffusing films used for improving the brightness of liquid crystal display devices, etc.) Used in the field. With the recent increase in size, thickness (weight reduction), shape complexity, and performance enhancement of image display devices, light diffusive molded products, especially light diffusion plates and light diffusion films used in image display devices are also used. There are increasing demands for larger size, thinner (lighter), more complicated shape, higher performance, and the like, and there is a demand for an aromatic polycarbonate resin composition having excellent fluidity during molding.
 特許文献2には、ペンタエリスリトール系エステル化合物を添加し、エステル交換により芳香族ポリカーボネート系樹脂を低分子量化することで流動性を向上させることが記載されている。 Patent Document 2 describes that fluidity is improved by adding a pentaerythritol ester compound and reducing the molecular weight of an aromatic polycarbonate resin by transesterification.
特開平2001-215336号公報Japanese Patent Laid-Open No. 2001-215336 特開2012-12461号公報JP 2012-12461 A
 しかしながら特許文献1では、流動性を向上させるためには、ポリカーボネート系樹脂とコポリエステルカーボネート樹脂とを組み合わせた樹脂組成物全体を100重量部に対して、コポリエステルカーボネート樹脂の配合量を75重量部以上用いる必要がある。 However, in Patent Document 1, in order to improve fluidity, the total amount of the resin composition obtained by combining the polycarbonate resin and the copolyestercarbonate resin is 100 parts by weight, and the blending amount of the copolyestercarbonate resin is 75 parts by weight. It is necessary to use more.
 本発明は、ポリカーボネート樹脂本来の特性(透明性、耐衝撃性、高剛性、機械強度、耐熱性等)を損なうことなく、成形加工時の流動性を向上させるための流動性向上剤を含有する高流動性のポリカーボネート樹脂組成物からなり、使用環境が制限されることなく幅広い用途に使用でき、かつ転写性に優れた導光板およびこれを備えた面光源体を提供することを目的とする。 The present invention contains a fluidity improver for improving fluidity during molding without impairing the original properties (transparency, impact resistance, high rigidity, mechanical strength, heat resistance, etc.) of the polycarbonate resin. An object of the present invention is to provide a light guide plate comprising a highly fluid polycarbonate resin composition, usable in a wide range of applications without being restricted in use environment, and having excellent transferability, and a surface light source body provided with the same.
 また、特許文献2の方法では諸特性を大きく損なうことなく、流動性を向上させることができるが、衝撃強度の維持が不十分であり、エステル交換による黄変も懸念される。さらに、可塑剤として他の樹脂に常用されるジオクチルフタレートやジブチルフタレート等のフタル酸の脂肪族エステル類、あるいはトリクレジルホスフェートやジフェニルクレジルホスフェート等のリン酸エステル類等に関しても、芳香族ポリカーボネート系樹脂との親和性に欠け、また機械的・熱的特性を著しく低下させるという課題があった。 In addition, the method of Patent Document 2 can improve the fluidity without greatly impairing various properties, but the impact strength is not sufficiently maintained, and there is a concern about yellowing due to transesterification. Furthermore, aromatic polycarbonate is also used for aliphatic esters of phthalic acid such as dioctyl phthalate and dibutyl phthalate, which are commonly used as plasticizers, and phosphate esters such as tricresyl phosphate and diphenyl cresyl phosphate. There is a problem of lack of affinity with the base resin and significantly lowering mechanical and thermal properties.
 本発明はまた、得られる成形品の透明性、光拡散性を損なうことなく、成形加工時の流動性が向上した芳香族ポリカーボネート系樹脂組成物および光拡散性成形品を提供することを目的とする。 Another object of the present invention is to provide an aromatic polycarbonate resin composition and a light diffusible molded article having improved fluidity during molding without impairing the transparency and light diffusibility of the resulting molded article. To do.
 本発明者らは、鋭意検討を重ねた結果、ポリカーボネート樹脂の流動性を向上させるために、ビスフェノール成分および脂肪族ジカルボン酸成分、並びに、任意でビフェノール成分を特定の比率で重縮合したポリエステルからなる流動性向上剤を用い、この流動性向上剤とポリカーボネート樹脂を溶融混練することにより、ポリカーボネート樹脂の有用な特性(特に透明性や衝撃強度)を損なうことなく、成形加工時の流動性を向上させ、転写性に優れた導光板を提供できることを見出し、本発明を完成させるに至った。即ち、本発明は、下記1)~6)で示される発明に関する。 As a result of intensive studies, the inventors of the present invention are made of a polyester obtained by polycondensing a bisphenol component and an aliphatic dicarboxylic acid component and optionally a biphenol component at a specific ratio in order to improve the fluidity of the polycarbonate resin. By using a fluidity improver and melt-kneading the fluidity improver and the polycarbonate resin, the fluidity during molding can be improved without impairing the useful properties (particularly transparency and impact strength) of the polycarbonate resin. The present inventors have found that a light guide plate excellent in transferability can be provided, and have completed the present invention. That is, the present invention relates to the inventions shown in the following 1) to 6).
 1)ポリカーボネート樹脂に流動性向上剤が配合された樹脂組成物からなり、
前記流動性向上剤が、
下記一般式(1)
1) A resin composition comprising a polycarbonate resin and a fluidity improver,
The fluidity improver is
The following general formula (1)
Figure JPOXMLDOC01-appb-C000005
 (式中、X1~X4は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。)
で表されるビフェノール成分(A)を0~55モル%、
 下記一般式(2)
Figure JPOXMLDOC01-appb-C000005
(In the formula, X 1 to X 4 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
0 to 55 mol% of a biphenol component (A) represented by
The following general formula (2)
Figure JPOXMLDOC01-appb-C000006
 (式中、X5~X8は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。Yはメチレン基、イソプロピリデン基、環状のアルキリデン基、アリール置換アルキリデン基、アリーレンジアルキリデン基、-S-、-O-、カルボニル基または-SO2-を示す。)
で表されるビスフェノール成分(B)を5~60モル%、
 下記一般式(3)
HOOC-R1-COOH ・・・(3)
 (式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)40~60モル%を含むモノマー混合物(ただし上記の(A)、(B)、(C)のモル%は、モノマー(A)、(B)、(C)の合計を100モル%とした場合の数値である)の重縮合物であることを特徴とする導光板。
Figure JPOXMLDOC01-appb-C000006
(Wherein X 5 to X 8 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Y represents a methylene group, an isopropylidene group, a cyclic group. An alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group, or —SO 2 —.
5 to 60 mol% of a bisphenol component (B) represented by
The following general formula (3)
HOOC-R 1 -COOH (3)
(In the formula, R 1 represents a divalent linear substituent which has 2 to 18 main chain atoms and may be branched.)
A monomer mixture containing 40 to 60 mol% of the dicarboxylic acid component (C) represented by the above formula (provided that the mol% of the above (A), (B), and (C) is the monomer (A), (B), (C The light guide plate is a polycondensation product of the following formula:
 2)上記流動性向上剤の数平均分子量が2000~30000である、1)に記載の導光板。 2) The light guide plate according to 1), wherein the fluidity improver has a number average molecular weight of 2000 to 30000.
 3)上記流動性向上剤中の(C)成分からなる部分のR1に相当する部分が、直鎖の飽和脂肪族炭化水素鎖である、1)または2)のいずれか1項に記載の導光板。 3) The part corresponding to R 1 of the part consisting of component (C) in the fluidity improver is a straight-chain saturated aliphatic hydrocarbon chain, 1) or 2) Light guide plate.
 4)上記流動性向上剤中の(C)成分からなる部分のR1に相当する部分は、(CH28、(CH210、(CH212のいずれかである、1)~3)のいずれか1項に記載の導光板。 4) The portion corresponding to R 1 of the portion (C) component in the fluidity improver is any one of (CH 2 ) 8 , (CH 2 ) 10 , and (CH 2 ) 12 1) 4. The light guide plate according to any one of items 3 to 3.
 5)上記流動性向上剤の末端が一官能性の低分子化合物で封止され、その封止率が60%以上である、1)~4)のいずれか1項に記載の導光板。 5) The light guide plate according to any one of 1) to 4), wherein the end of the fluidity improver is sealed with a monofunctional low-molecular compound and the sealing rate is 60% or more.
 6)1)~5)のいずれか1項に記載の導光板と、該導光板に向けて光を射出する光源とを備えることを特徴とする面光源体。 6) A surface light source body comprising: the light guide plate according to any one of 1) to 5); and a light source that emits light toward the light guide plate.
 本発明者らはまた、鋭意検討を重ねた結果、ポリカーボネート樹脂の流動性を向上させるために、ビスフェノール成分および脂肪族ジカルボン酸成分、並びに、任意でビフェノール成分を特定の比率で重縮合したポリエステルからなる流動性向上剤を用い、この流動性向上剤とポリカーボネート樹脂および光拡散剤を溶融混練することにより、得られる成形品の透明性、光拡散性を損なうことなく、成形加工時の流動性が向上した芳香族ポリカーボネート系樹脂組成物および光拡散性成形品を提供できることを見出し、本発明を完成させるに至った。即ち、本発明はまた、下記1)~7)で示される発明に関する。
1)芳香族ポリカーボネート系樹脂(I)と流動性向上剤(II)と光拡散剤(III)とを含有し、前記流動性向上剤(II)が
 下記一般式(1)
As a result of extensive studies, the present inventors have also studied from a polyester obtained by polycondensing a bisphenol component and an aliphatic dicarboxylic acid component, and optionally a biphenol component at a specific ratio, in order to improve the fluidity of the polycarbonate resin. This fluidity improver is melt-kneaded with this fluidity improver, polycarbonate resin, and light diffusing agent, so that the fluidity during molding can be reduced without impairing the transparency and light diffusibility of the resulting molded product. The present inventors have found that an improved aromatic polycarbonate resin composition and a light diffusible molded article can be provided, and have completed the present invention. That is, the present invention also relates to the inventions shown in the following 1) to 7).
1) An aromatic polycarbonate-based resin (I), a fluidity improver (II), and a light diffusing agent (III), wherein the fluidity improver (II) is represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000007
 (式中、X~Xは各々同一であっても異なっていてもよい、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。)
で表されるビフェノール成分(A)0~55モル%、
下記一般式(2)
Figure JPOXMLDOC01-appb-C000007
(Wherein X 1 to X 4 each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, which may be the same or different.)
A biphenol component (A) represented by 0 to 55 mol%,
The following general formula (2)
Figure JPOXMLDOC01-appb-C000008
 (式中、X~Xは各々同一であっても異なっていてもよい、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。Yはメチレン基、イソプロピリデン基、環状のアルキリデン基、アリール置換アルキリデン基、アリーレンジアルキリデン基、-S-、-O-、カルボニル基または-SO-を示す。)
で表されるビスフェノール成分(B)5~60モル%、
下記一般式(3)
HOOC-R-COOH ・・・(3)
 (式中、Rは主鎖原子数2~18の、分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)40~60モル%を含むモノマー混合物(ただし上記の(A)、(B)、(C)のモル%は、モノマー(A)、(B)、(C)の合計を100モル%とした場合の数値である)の重縮合物である、芳香族ポリカーボネート系樹脂組成物。
2)芳香族ポリカーボネート系樹脂(I)の粘度平均分子量が12000~40000である1)に記載の芳香族ポリカーボネート系樹脂組成物。
3)流動性向上剤(II)の数平均分子量が2000~30000である、1)または2)のいずれか1項に記載の芳香族ポリカーボネート系樹脂組成物。
4)前記流動性向上剤(II)中の(C)成分のRに相当する部分が、直鎖の飽和脂肪族炭化水素鎖である、1)~3)のいずれか1項に記載の芳香族ポリカーボネート系樹脂組成物。
5)前記流動性向上剤(II)の末端が一官能性の低分子化合物で封止され、その封止率が60%以上である、1)~4)のいずれか1項に記載の芳香族ポリカーボネート系樹脂組成物。
6)芳香族ポリカーボネート系樹脂(I)と流動性向上剤(II)の重量比が70:30~99.9:0.1である1)~5)のいずれか1項に記載の芳香族ポリカーボネート系樹脂組成物。
7)1)~6)のいずれかに記載の芳香族ポリカーボネート系樹脂組成物を成形してなる光拡散性成形品。
Figure JPOXMLDOC01-appb-C000008
(Wherein X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Y represents a methylene group, an isopropylidene group, a cyclic group. An alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group, or —SO 2 —.
5 to 60 mol% of a bisphenol component (B) represented by
The following general formula (3)
HOOC-R 1 -COOH (3)
(In the formula, R 1 represents a divalent linear substituent having 2 to 18 main chain atoms which may contain a branch.)
A monomer mixture containing 40 to 60 mol% of the dicarboxylic acid component (C) represented by the above formula (provided that the mol% of the above (A), (B), and (C) is the monomer (A), (B), (C The aromatic polycarbonate-based resin composition is a polycondensation product)).
2) The aromatic polycarbonate resin composition according to 1), wherein the aromatic polycarbonate resin (I) has a viscosity average molecular weight of 12,000 to 40,000.
3) The aromatic polycarbonate resin composition according to any one of 1) and 2), wherein the number average molecular weight of the fluidity improver (II) is 2000 to 30000.
4) The portion corresponding to R 1 of the component (C) in the fluidity improver (II) is a linear saturated aliphatic hydrocarbon chain, 1) to 3) Aromatic polycarbonate resin composition.
5) The fragrance according to any one of 1) to 4), wherein the end of the fluidity improver (II) is sealed with a monofunctional low-molecular compound and the sealing rate is 60% or more. Group polycarbonate-based resin composition.
6) The aromatic according to any one of 1) to 5), wherein the weight ratio of the aromatic polycarbonate resin (I) to the fluidity improver (II) is 70:30 to 99.9: 0.1. Polycarbonate resin composition.
7) A light diffusive molded article obtained by molding the aromatic polycarbonate resin composition according to any one of 1) to 6).
 本発明によれば、ポリカーボネート樹脂本来の特性(透明性、耐衝撃性、高剛性、機械強度、耐熱性等)を損なうことなく、樹脂の成形加工時の流動性を向上した樹脂組成物を用いることで、使用環境が制限されることなく幅広い用途に使用でき、かつ転写性に優れた導光板およびこれを備えた面光源体を提供できる。なお、ここでいう「損なう」とは、樹脂として要求される特性を満たさないほどに悪くなることをいう。すなわち、本発明における流動性向上剤を添加することによりポリカーボネート樹脂の一部の特性が低下した場合でも、当該樹脂が用いられている用途において要求される特性を満たす限り、ポリカーボネート樹脂本来の特性は損なわれたわけではない。従って、当該記載は、「ポリカーボネート樹脂本来の特性を実質的に損なうことなく」と言い換えることができる。 According to the present invention, a resin composition having improved fluidity during resin molding is used without impairing the original properties (transparency, impact resistance, high rigidity, mechanical strength, heat resistance, etc.) of the polycarbonate resin. Thus, it is possible to provide a light guide plate that can be used in a wide range of applications without being restricted in use environment and has excellent transferability, and a surface light source body including the same. In addition, the term “damage” here means that the resin is deteriorated so as not to satisfy the characteristics required for the resin. That is, even when some of the properties of the polycarbonate resin are reduced by adding the fluidity improver in the present invention, the original properties of the polycarbonate resin are as long as the properties required in the application in which the resin is used are satisfied. It was not damaged. Therefore, the description can be rephrased as “without substantially impairing the original properties of the polycarbonate resin”.
 また、本発明の芳香族ポリカーボネート系樹脂組成物は、得られる光拡散性成形品の優れた特性(透明性、光拡散性等)を損なうことなく、従来のものに比べ溶融流動性(成形性)に優れる。なお、ここでいう「損なう」とは、樹脂として要求される特性を満たさないほどに悪くなることをいう。すなわち、本発明における流動性向上剤を添加することにより芳香族ポリカーボネート系樹脂組成物の一部の特性が低下した場合でも、当該樹脂組成物が用いられている用途(光拡散性成形品など)において要求される特性を満たす限り、芳香族ポリカーボネート系樹脂組成物本来の特性は損なわれたわけではない。従って、当該記載は、「得られる光拡散性成形品などの優れた特性を実質的に損なうことなく」と言い換えることができる。 Moreover, the aromatic polycarbonate resin composition of the present invention has a melt fluidity (moldability) as compared with the conventional one without impairing the excellent properties (transparency, light diffusibility, etc.) of the obtained light diffusible molded product. ). In addition, the term “damage” here means that the resin is deteriorated so as not to satisfy the characteristics required for the resin. That is, even when some of the properties of the aromatic polycarbonate resin composition are reduced by adding the fluidity improver in the present invention, the application in which the resin composition is used (such as a light diffusing molded article). As long as the characteristics required in the above are satisfied, the original characteristics of the aromatic polycarbonate resin composition are not impaired. Therefore, the description can be rephrased as “without substantially impairing the excellent characteristics of the obtained light diffusible molded article”.
 また、本発明の光拡散性成形品は、透明性、光拡散性に優れ、かつ大型化、薄肉化(軽量化)、形状複雑化、高性能化が可能である Also, the light diffusive molded product of the present invention is excellent in transparency and light diffusibility, and can be increased in size, thinned (lightened), complicated in shape, and improved in performance.
 〔第1実施形態〕
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
[First Embodiment]
An embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, and various modifications can be made within the scope shown in the claims, and technical means disclosed in different embodiments and examples respectively. Embodiments and examples obtained by appropriately combining them are also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are used as references in this specification. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more and B or less”.
 本発明における流動性向上剤は、ビスフェノール成分および脂肪族ジカルボン酸成分、並びに、任意でビフェノール成分を、特定の比率で重縮合したポリエステルからなる。 The fluidity improver in the present invention comprises a polyester obtained by polycondensing a bisphenol component, an aliphatic dicarboxylic acid component, and optionally a biphenol component at a specific ratio.
 本発明の1形態である、流動性向上剤の主鎖の構造は、下記一般式(1) The structure of the main chain of the fluidity improver, which is one form of the present invention, is represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000009
 (式中、X1~X4は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。)
で表されるビフェノール成分(A)0~55モル%、
 下記一般式(2)
Figure JPOXMLDOC01-appb-C000009
(In the formula, X 1 to X 4 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
A biphenol component (A) represented by 0 to 55 mol%,
The following general formula (2)
Figure JPOXMLDOC01-appb-C000010
 (式中、X5~X8は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。Yはメチレン基、イソプロピリデン基、環状のアルキリデン基、アリール置換アルキリデン基、アリーレンジアルキリデン基、-S-、-O-、カルボニル基または-SO2-を示す。)
で表されるビスフェノール成分(B)5~60モル%、
 下記一般式(3)
HOOC-R1-COOH ・・・(3)
 (式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)40~60モル%を含むモノマー混合物(ただし上記の(A)、(B)、(C)のモル%は、モノマー(A)、(B)、(C)の合計を100モル%とした場合の数値である)の重縮合物であることを特徴とする。
Figure JPOXMLDOC01-appb-C000010
(Wherein X 5 to X 8 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Y represents a methylene group, an isopropylidene group, a cyclic group. An alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group, or —SO 2 —.
5 to 60 mol% of a bisphenol component (B) represented by
The following general formula (3)
HOOC-R 1 -COOH (3)
(In the formula, R 1 represents a divalent linear substituent which has 2 to 18 main chain atoms and may be branched.)
A monomer mixture containing 40 to 60 mol% of the dicarboxylic acid component (C) represented by the above formula (provided that the mol% of the above (A), (B), and (C) is the monomer (A), (B), (C )) Is a polycondensate).
 本発明における流動性向上剤は、ビスフェノール成分(B)および任意のビフェノール成分(A)からなるジオール成分と、(C)成分であるジカルボン酸成分とを重縮合することで製造されるポリエステルである。 The fluidity improver in the present invention is a polyester produced by polycondensation of a diol component consisting of a bisphenol component (B) and an optional biphenol component (A) and a dicarboxylic acid component which is a component (C). .
 上記流動性向上剤は低分子化合物ではないことから、流動性向上剤を添加したポリカーボネート樹脂組成物を成形するときに、ブリードアウトが発生することを抑制することができる。 Since the fluidity improver is not a low-molecular compound, it is possible to suppress the occurrence of bleed out when molding a polycarbonate resin composition to which the fluidity improver is added.
 また、上記分子構造を有する流動性向上剤は、ポリカーボネート樹脂との相溶性が高いために、ポリカーボネート樹脂に上記流動性向上剤を添加して得られる樹脂組成物の流動性を効率的に向上させることができ、かつ、ポリカーボネート樹脂が本来有している透明性や衝撃強度等の種々の特性を損なわない。 Moreover, since the fluidity improver having the molecular structure is highly compatible with the polycarbonate resin, the fluidity of the resin composition obtained by adding the fluidity improver to the polycarbonate resin is efficiently improved. In addition, various properties such as transparency and impact strength inherent to the polycarbonate resin are not impaired.
 上記流動性向上剤中に含まれるビフェノール成分(A)は0~55モル%が好ましく、より好ましくは10~40モル%、最も好ましくは20~30モル%である。ビスフェノール成分(B)は5~60モル%含まれていることが好ましく、より好ましくは10~50モル%、最も好ましくは20~30モル%である。ジカルボン酸成分(C)は40~60モル%含まれていることが好ましく、より好ましくは45~55モル%である。 The biphenol component (A) contained in the fluidity improver is preferably 0 to 55 mol%, more preferably 10 to 40 mol%, and most preferably 20 to 30 mol%. The bisphenol component (B) is preferably contained in an amount of 5 to 60 mol%, more preferably 10 to 50 mol%, and most preferably 20 to 30 mol%. The dicarboxylic acid component (C) is preferably contained in an amount of 40 to 60 mol%, more preferably 45 to 55 mol%.
 ジオール成分として(A)成分および(B)成分を用いる場合において、(A)成分と(B)成分とのモル比((A)/(B))は、好ましくは1/9~9/1であり、より好ましくは1/7~7/1であり、さらに好ましくは1/5~5/1であり、最も好ましくは1/3~3/1である。(A)/(B)が1/9よりもさらに(A)成分が少ない場合は、上記ポリエステル自体が完全に非晶性となり、ガラス転移温度が低くなることから、貯蔵時における流動性向上剤のペレット同士の融着を引き起こす場合がある。(A)/(B)が9/1よりもさらに(B)成分が少ない場合には、ポリカーボネート樹脂との相溶性が不十分となり、ポリカーボネート樹脂に流動性向上剤を添加して得られる樹脂組成物を4mm以上の厚肉の成形品に成形したときに、徐冷される途中に厚みの中心部分で相分離を起こす場合がある。 In the case of using the component (A) and the component (B) as the diol component, the molar ratio ((A) / (B)) of the component (A) to the component (B) is preferably 1/9 to 9/1. More preferably, it is 1/7 to 7/1, more preferably 1/5 to 5/1, and most preferably 1/3 to 3/1. When (A) / (B) is further less than 1/9 and the component (A) is less, the polyester itself becomes completely amorphous and has a low glass transition temperature. May cause fusion of pellets. When (A) / (B) is further less than 9/1, the component (B) is less compatible with the polycarbonate resin, and the resin composition obtained by adding a fluidity improver to the polycarbonate resin When a product is formed into a thick molded product having a thickness of 4 mm or more, phase separation may occur at the central portion of the thickness during the slow cooling.
 一般式(1)中のX1~X4は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。流動性向上剤自体の結晶性を高め、ペレット貯蔵時の融着を防ぐ等の取り扱い性を良くするために、X1~X4は全て水素原子であることがより好ましい。 X 1 to X 4 in the general formula (1) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. It is more preferable that all of X 1 to X 4 are hydrogen atoms in order to improve the handleability such as improving the crystallinity of the fluidity improver itself and preventing fusion during pellet storage.
 一般式(2)中のX5~X8は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。ポリカーボネート樹脂との相溶性を高めるために、X5~X8は全て水素原子であることがより好ましい。Yはメチレン基、イソプロピリデン基、環状のアルキリデン基、アリール置換アルキリデン基、アリーレンジアルキリデン基、-S-、-O-、カルボニル基または-SO2-を示す。 X 5 to X 8 in the general formula (2) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. In order to enhance the compatibility with the polycarbonate resin, it is more preferable that all of X 5 to X 8 are hydrogen atoms. Y represents a methylene group, an isopropylidene group, a cyclic alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group or —SO 2 —.
 一般式(2)で表されるビスフェノール成分としては、特に、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕がポリカーボネート樹脂との相溶性が高まる点で好適である。ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシ-1-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類;2,2-ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ナフチルメタン等のビス(ヒドロキシアリール)アリールアルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;4,4’-ジヒドロキシジフェニル等のジヒドロキシジフェニル類等が挙げられる。これらのビスフェノール成分は、それぞれ単独で用いてもよいし、本発明の効果を失わない範囲で二種以上を混合して用いてもよい。 As the bisphenol component represented by the general formula (2), 2,2-bis (4-hydroxyphenyl) propane (common name: bisphenol A) is particularly preferable in terms of increasing compatibility with the polycarbonate resin. Examples of dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-1-methylphenyl) propane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis ( 4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) propane, 2,2- Bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propa Bis (hydroxyaryl) alkanes such as 2,2-bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) naphthylmethane and the like; 1,1-bis ( Bis (hydroxyaryl) cycloalkanes such as 4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane Dihydroxy aryl ethers such as 4,4′-dihydroxyphenyl ether and 4,4′-dihydroxy-3,3′-dimethylphenyl ether; 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxy-3 , 3'-dimethyldiphenyl sulfide, etc. Dihydroxydiaryl sulfides; dihydroxydiaryl sulfoxides such as 4,4′-dihydroxydiphenyl sulfoxide and 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide; 4,4′-dihydroxydiphenyl sulfone, 4,4′- And dihydroxydiaryl sulfones such as dihydroxy-3,3′-dimethyldiphenyl sulfone; and dihydroxydiphenyls such as 4,4′-dihydroxydiphenyl. These bisphenol components may be used singly or as a mixture of two or more of them without losing the effect of the present invention.
 本発明における流動性向上剤の末端構造は特に限定されないが、特にポリカーボネート樹脂とのエステル交換を抑制し、ポリカーボネート樹脂に上記流動性向上剤を添加して得られる樹脂組成物の黄変を抑制するため、および加水分解を抑制し長期安定性を確保するために、一官能性の低分子化合物で封止されていることが好ましい。 The terminal structure of the fluidity improver in the present invention is not particularly limited, but particularly suppresses transesterification with a polycarbonate resin, and suppresses yellowing of the resin composition obtained by adding the fluidity improver to the polycarbonate resin. Therefore, in order to suppress hydrolysis and ensure long-term stability, it is preferably sealed with a monofunctional low molecular compound.
 また、分子鎖の全末端に対する封止率は、好ましくは50%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上であり、最も好ましくは90%以上である。 Further, the sealing rate with respect to all ends of the molecular chain is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, and most preferably 90% or more.
 流動性向上剤の末端封止率は、封止された末端官能基および封止されていない末端官能基の数をそれぞれ測定し、下記式(4)により求めることができる。上記末端封止率の具体的な算出方法としては、1H-NMRを用いて、各末端基に対応する特性シグナルの積分値から各末端基の数を求め、その結果に基づいて、下記式(4)を用いて上記末端封止
率を算出する方法が、精度、簡便さの点で好ましい。
The end-capping rate of the fluidity improver can be determined by the following formula (4) by measuring the number of sealed end functional groups and the number of end functional groups not sealed. As a specific method for calculating the terminal blocking rate, 1 H-NMR is used to determine the number of each terminal group from the integral value of the characteristic signal corresponding to each terminal group. The method of calculating the terminal blocking rate using (4) is preferable in terms of accuracy and simplicity.
 末端封止率(%)={[封止された末端官能基数]/([封止された末端官能基数]+[封止されていない末端官能基数])}×100 ・・・(4)
 封止に用いる一官能性の低分子化合物としては、一価のフェノール、炭素数1~20のモノアミン、脂肪族モノカルボン酸、カルボジイミド、エポキシまたはオキサゾリンなどが挙げられる。一価のフェノールの具体例としては、フェノール、p-クレゾール、p-t-ブチルフェノール、p-t-オクチルフェノール、p-クミルフェノール、p-ノニルフェノール、p-t-アミルフェノール、4-ヒドロキシビフェニル、およびこれらの任意の混合物等が挙げられる。これらのなかでも、高沸点で重合が容易である点からp-t-ブチルフェノール、p-クミルフェノールが好ましい。脂肪族モノカルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、およびこれらの任意の混合物等が挙げられる。これらのなかでも、高沸点で重合が容易である点から、ミリスチン酸、パルミチン酸、ステアリン酸が好ましい。モノアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、およびこれらの任意の混合物等が挙げられる。カルボジイミドの例としてはジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド、ビス-2,6-ジイソプロピルフェニルカルボジイミド、ポリ(2,4,6-トリイソプロピルフェニレン-1,3-ジイソシアネート)、1,5-(ジイソプロピルベンゼン)ポリカルボジイミド、2,6,2′,6′-テトライソプロピルジフェニルカルボジイミドおよびこれらの任意の混合物等が挙げられる。エポキシの例としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリエチロールプロパンポリグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ビスフェノールA-ジグリシジルエーテル、水添ビスフェノールA-グリシジルエーテル、4,4’-ジフェニルメタンジグリシジルエーテル、テレフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、メタクリル酸グルシジルエステル、メタクリル酸グルシジルエステルポリマー、メタクリル酸グルシジルエステルポリマー含有化合物およびこれらの任意の混合物等が挙げられる。オキサゾリンの例としては、スチレン・2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、1,3-フェニレンビス(2-オキサゾリン)およびこれらの混合物等が挙げられる。
Terminal sealing rate (%) = {[number of sealed terminal functional groups] / ([number of sealed terminal functional groups] + [number of unsealed terminal functional groups])} × 100 (4)
Examples of the monofunctional low molecular compound used for sealing include monohydric phenol, monoamine having 1 to 20 carbon atoms, aliphatic monocarboxylic acid, carbodiimide, epoxy or oxazoline. Specific examples of monohydric phenol include phenol, p-cresol, pt-butylphenol, pt-octylphenol, p-cumylphenol, p-nonylphenol, pt-amylphenol, 4-hydroxybiphenyl, And any mixture thereof. Of these, pt-butylphenol and p-cumylphenol are preferred because they have a high boiling point and are easy to polymerize. Specific examples of aliphatic monocarboxylic acids include fatty acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid. Group monocarboxylic acids, and arbitrary mixtures thereof. Among these, myristic acid, palmitic acid, and stearic acid are preferable from the viewpoint of high boiling point and easy polymerization. Specific examples of monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and any of these A mixture etc. are mentioned. Examples of carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di-β-naphthylcarbodiimide, bis-2,6-diisopropyl Phenylcarbodiimide, poly (2,4,6-triisopropylphenylene-1,3-diisocyanate), 1,5- (diisopropylbenzene) polycarbodiimide, 2,6,2 ', 6'-tetraisopropyldiphenylcarbodiimide and their Arbitrary mixtures etc. are mentioned. Examples of epoxies include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, triethylolpropane polyglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, sorbitol polyglycidyl ether, bisphenol A- Diglycidyl ether, hydrogenated bisphenol A-glycidyl ether, 4,4'-diphenylmethane diglycidyl ether, terephthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, methacrylic acid glycidyl ester, methacrylic acid glycidyl ester polymer, Examples thereof include a sidyl ester polymer-containing compound and an arbitrary mixture thereof. Examples of oxazolines include styrene-2-isopropenyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 1,3-phenylenebis (2-oxazoline), and mixtures thereof.
 成分(C)において、下記一般式(3)
HOOC-R1-COOH ・・・(3)
中のR1は、主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を表す。
In the component (C), the following general formula (3)
HOOC-R 1 -COOH (3)
R 1 therein represents a divalent linear substituent which may have 2 to 18 main chain atoms and may be branched.
   
 ここで主鎖原子数とは主鎖骨格の原子の数であり、例えば-R1-が-(CH28-である場合には、主鎖原子数は炭素原子の数であり「8」となる。流動性向上剤自体の溶融
粘度が低くなることから、R1は、分岐を含まない直鎖状置換基であることが好ましく、さらには分岐を含まない直鎖の脂肪族炭化水素鎖であることが好ましい。また、R1は飽和でも不飽和でもよいが、飽和脂肪族炭化水素鎖であることが好ましい。不飽和結合を含
む場合には、上記流動性向上剤が屈曲性を十分に得られないことがあり、流動性向上剤自体の溶融粘度の増加を招く場合がある。上記流動性向上剤の重合の容易さ、およびガラス転移点の向上を両立することができる点で、R1は炭素数2~18の直鎖の飽和脂肪族炭化水素鎖であることが好ましく、炭素数4~16の直鎖の飽和脂肪族炭化水素鎖であるこ
とがより好ましく、炭素数8~14の直鎖の飽和脂肪族炭化水素鎖であることがさらに好ましく、炭素数8の直鎖の飽和脂肪族炭化水素鎖であることが最も好ましい。上記流動性向上剤のガラス転移点の向上は、ポリカーボネート樹脂に上記流動性向上剤を添加して得られる樹脂組成物の耐熱性の向上につながる。流動性向上剤自体の溶融粘度が低下する点で、R1の主鎖原子数は偶数であることが好ましい。以上の点から、R1は特に-(CH28-、-(CH210-、-(CH212-から選ばれる1種であることが好ましい。ジカルボン酸成分は、単独で用いても良いし、本発明の効果を失わない範囲で2種類以上を
混合しても良い。

Here, the number of main chain atoms is the number of atoms in the main chain skeleton. For example, when —R 1 — is — (CH 2 ) 8 —, the number of main chain atoms is the number of carbon atoms, and “8 " Since the melt viscosity of the fluidity improver itself is low, R 1 is preferably a straight-chain substituent that does not contain a branch, and further, a straight-chain aliphatic hydrocarbon chain that does not contain a branch. Is preferred. R 1 may be saturated or unsaturated, but is preferably a saturated aliphatic hydrocarbon chain. When the unsaturated bond is included, the fluidity improver may not be sufficiently flexible, and may increase the melt viscosity of the fluidity improver itself. R 1 is preferably a straight-chain saturated aliphatic hydrocarbon chain having 2 to 18 carbon atoms from the viewpoint that both the ease of polymerization of the fluidity improver and the improvement of the glass transition point can be achieved. More preferably, it is a straight chain saturated aliphatic hydrocarbon chain having 4 to 16 carbon atoms, more preferably a straight chain saturated aliphatic hydrocarbon chain having 8 to 14 carbon atoms, and a straight chain having 8 carbon atoms. Most preferred is a saturated aliphatic hydrocarbon chain. The improvement of the glass transition point of the fluidity improver leads to the improvement of the heat resistance of the resin composition obtained by adding the fluidity improver to the polycarbonate resin. The number of main chain atoms of R 1 is preferably an even number in that the melt viscosity of the fluidity improver itself decreases. In view of the above, R 1 is particularly preferably one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 —. A dicarboxylic acid component may be used independently and may mix 2 or more types in the range which does not lose the effect of this invention.
 本発明における流動性向上剤は、その効果を失わない程度に他のモノマーを共重合しても構わない。他のモノマーとしては、例えば、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン、芳香族ジアミン、芳香族アミノカルボン酸またはカプロラクタム類、カプロラクトン類、脂肪族ジカルボン酸、脂肪族ジオール、脂肪族ジアミン、脂環族ジカルボン酸、および脂環族ジオール、芳香族メルカプトカルボン酸、芳香族ジチオールおよび芳香族メルカプトフェノールが挙げられる。 The fluidity improver in the present invention may be copolymerized with other monomers to such an extent that the effect is not lost. Other monomers include, for example, aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines, aromatic diamines, aromatic aminocarboxylic acids or caprolactams, caprolactones, aliphatic dicarboxylic acids, fatty acids Aromatic diols, aliphatic diamines, alicyclic dicarboxylic acids, and alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, and aromatic mercaptophenols.
 ただし、上記流動性向上剤を構成する上記他のモノマーの含有率は、流動性向上剤全体のモル数に対して、50モル%未満であり、好ましくは、30モル%未満、より好ましくは、10モル%未満、最も好ましくは、5モル%未満である。上記他のモノマーの含有率が、上記流動性向上剤全体のモル数に対して、50モル%以上である場合には、上記流動性向上剤のポリカーボネート樹脂に対する相溶性が低下し、上記流動性向上剤がポリカーボネート樹脂と相溶することが困難になる。 However, the content of the other monomer constituting the fluidity improver is less than 50 mol%, preferably less than 30 mol%, more preferably, relative to the total number of moles of the fluidity improver. Less than 10 mol%, most preferably less than 5 mol%. When the content of the other monomer is 50 mol% or more based on the total number of moles of the fluidity improver, the compatibility of the fluidity improver with the polycarbonate resin is reduced, and the fluidity is reduced. It becomes difficult for the improver to be compatible with the polycarbonate resin.
 芳香族ヒドロキシカルボン酸の具体例としては、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、2-ヒドロキシ-5-ナフトエ酸、2-ヒドロキシ-7-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸、4’-ヒドロキシフェニル-4-安息香酸、3’-ヒドロキシフェニル-4-安息香酸、4’-ヒドロキシフェニル-3-安息香酸、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-5-naphthoic acid, 2-hydroxy -7-naphthoic acid, 2-hydroxy-3-naphthoic acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid, and their And alkyl, alkoxy or halogen-substituted products.
 芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ジカルボキシビフェニル、3,4’-ジカルボキシビフェニル、4,4”-ジカルボキシターフェニル、ビス(4-カルボキシフェニル)エーテル、ビス(4-カルボキシフェノキシ)ブタン、ビス(4-カルボキシフェニル)エタン、ビス(3-カルボキシフェニル)エーテル、ビス(3-カルボキシフェニル)エタン、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 3 , 4′-dicarboxybiphenyl, 4,4 ″ -dicarboxyterphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenoxy) butane, bis (4-carboxyphenyl) ethane, bis (3-carboxy Phenyl) ether, bis (3-carboxyphenyl) ethane, and alkyl, alkoxy or halogen substituents thereof.
 芳香族ジオールの具体例としては、ピロカテコール、ハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェノールエーテル、ビス(4-ヒドロキシフェニル)エタン、2,2’-ジヒドロキシビナフチル、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic diol include pyrocatechol, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 3,3′-dihydroxybiphenyl, 3,4′- Examples include dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxybiphenol ether, bis (4-hydroxyphenyl) ethane, 2,2′-dihydroxybinaphthyl, and alkyl, alkoxy or halogen substituents thereof. It is done.
 芳香族ヒドロキシアミンの具体例としては、4-アミノフェノール、N-メチル-4-アミノフェノール、3-アミノフェノール、3-メチル-4-アミノフェノール、4-アミノ-1-ナフトール、4-アミノ-4’-ヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルエーテル、4-アミノ-4’-ヒドロキシビフェニルメタン、4-アミノ-4’-ヒドロキシビフェニルスルフィド、2,2’-ジアミノビナフチル、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic hydroxyamine include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4-amino- 4′-hydroxybiphenyl, 4-amino-4′-hydroxybiphenyl ether, 4-amino-4′-hydroxybiphenylmethane, 4-amino-4′-hydroxybiphenyl sulfide, 2,2′-diaminobinaphthyl, and their Examples thereof include alkyl, alkoxy, and halogen-substituted products.
 芳香族ジアミンおよび芳香族アミノカルボン酸の具体例としては、1,4-フェニレンジアミン、1,3-フェニレンジアミン、N-メチル-1,4-フェニレンジアミン、N,N’-ジメチル-1,4-フェニレンジアミン、4,4’-ジアミノフェニルスルフィド(チオジアニリン)、4,4’-ジアミノビフェニルスルホン、2,5-ジアミノトルエン、4,4’-エチレンジアニリン、4,4’-ジアミノビフェノキシエタン、4,4’-ジアミノビフェニルメタン(メチレンジアニリン)、4,4’-ジアミノビフェニルエーテル(オキシジアニリン)、4-アミノ安息香酸、3-アミノ安息香酸、6-アミノ-2-ナフトエ酸、7-アミノ-2-ナフトエ酸、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic diamine and aromatic aminocarboxylic acid include 1,4-phenylenediamine, 1,3-phenylenediamine, N-methyl-1,4-phenylenediamine, N, N′-dimethyl-1,4. -Phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminobiphenylsulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminobiphenoxyethane 4,4′-diaminobiphenylmethane (methylenedianiline), 4,4′-diaminobiphenyl ether (oxydianiline), 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino-2-naphthoic acid, 7-amino-2-naphthoic acid and their alkyl, alkoxy or halogen substituted products. It is.
 脂肪族ジカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、フマル酸、マレイン酸等が挙げられる。 Specific examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, fumaric acid, maleic acid Etc.
 脂肪族ジアミンの具体例としては、1,2-エチレンジアミン、1,3-トリメチレンジアミン、1,4-テトラメチレンジアミン、1,6-ヘキサメチレンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、および1,12-ドデカンジアミン等が挙げられる。 Specific examples of the aliphatic diamine include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, 1,8-octanediamine, 1,9- Nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine and the like can be mentioned.
 脂環族ジカルボン酸、脂肪族ジオールおよび脂環族ジオールの具体例としては、ヘキサヒドロテレフタル酸、トランス-1,4-シクロヘキサンジオール、シス-1,4-シクロヘキサンジオール、トランス-1,4-シクロヘキサンジメタノール、シス-1,4-シクロヘキサンジメタノール、トランス-1,3-シクロヘキサンジオール、シス-1,2-シクロヘキサンジオール、トランス-1,3-シクロヘキサンジメタノール、エチレングリコール、プロピレングリコール、ブチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ネオペンチルグリコール等の直鎖状または分鎖状脂肪族ジオール、およびそれらの反応性誘導体等が挙げられる。 Specific examples of the alicyclic dicarboxylic acid, the aliphatic diol and the alicyclic diol include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, cis-1,4-cyclohexanediol, and trans-1,4-cyclohexane. Dimethanol, cis-1,4-cyclohexanedimethanol, trans-1,3-cyclohexanediol, cis-1,2-cyclohexanediol, trans-1,3-cyclohexanedimethanol, ethylene glycol, propylene glycol, butylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, neo Pentyl glycol etc. Jo or branched chain aliphatic diols, and the like their reactive derivatives.
 芳香族メルカプトカルボン酸、芳香族ジチオールおよび芳香族メルカプトフェノールの具体例としては、4-メルカプト安息香酸、2-メルカプト-6-ナフトエ酸、2-メルカプト-7-ナフトエ酸、ベンゼン-1,4-ジチオール、ベンゼン-1,3-ジチオール、2,6-ナフタレン-ジチオール、2,7-ナフタレン-ジチオール、4-メルカプトフェノール、3-メルカプトフェノール、6-メルカプト-2-ヒドロキシナフタレン、7-メルカプト-2-ヒドロキシナフタレン、およびそれらの反応性誘導体等が挙げられる。 Specific examples of aromatic mercaptocarboxylic acid, aromatic dithiol and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene-1,4- Dithiol, benzene-1,3-dithiol, 2,6-naphthalene-dithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercapto-2-hydroxynaphthalene, 7-mercapto-2 -Hydroxynaphthalene, and reactive derivatives thereof.
 本発明における流動性向上剤は、良好な色調の樹脂組成物が得られる点で、ホスファイト系酸化防止剤を予め含有していてもよい。〔ここで、ホスファイト系酸化防止剤を予め含有する流動性向上剤とは、ホスファイト系酸化防止剤と流動性向上剤の混合物を意味している。このホスファイト系酸化防止剤は、樹脂組成物中でも酸化防止剤として機能する。すなわち本発明の樹脂組成物の最も単純な製造法は、ポリカーボネート樹脂、流動性向上剤およびホスファイト系酸化防止剤の3成分を一度に混合することであるが、「ポリカーボネート樹脂」と「ホスファイト系酸化防止剤と流動性向上剤の混合物」を混合することも、本発明の実施形態に含まれる。〕
 その理由は、流動性向上剤自体の変色を防止するため、および、流動性向上剤の重合に使用される重合触媒を失活させ、流動性向上剤とポリカーボネート樹脂とを混合するときに発生するおそれのある、流動性向上剤に含まれる上記ポリエステルとポリカーボネート樹脂とのエステル交換や加水分解反応による変色を防止することができるためであると考えられる。これによりポリカーボネート樹脂の分子量の減少をより効果的に抑制することができるため、流動性向上剤を含有する樹脂組成物は、ポリカーボネート樹脂本来の特性を損なうことなく、流動性のみを向上させることができる。流動性向上剤中のホスファイト系酸化防止剤の含有量は、流動性向上剤の重量に対して0.005~5質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましく、0.02~0.05質量%であることが最も好ましい。ホスファイト系酸化防止剤の含有量が0.005質量%未満の場合には、ホスファイト系酸化防止剤の含有量が少なく、ポリカーボネート樹脂に上記流動性向上剤を配合したときに着色が生じる場合がある。また、ホスファイト系酸化防止剤の含有量が5質量%よりも多い場合には、ポリカーボネート樹脂に上記流動性向上剤を添加して得られる樹脂組成物の衝撃強度を低下させる場合がある。
The fluidity improver in the present invention may contain a phosphite antioxidant in advance in that a resin composition having a good color tone can be obtained. [Here, the fluidity improver containing a phosphite antioxidant in advance means a mixture of a phosphite antioxidant and a fluidity improver. This phosphite-based antioxidant functions as an antioxidant even in the resin composition. That is, the simplest production method of the resin composition of the present invention is to mix three components of polycarbonate resin, fluidity improver and phosphite antioxidant at one time, but “polycarbonate resin” and “phosphite”. Mixing the “mixture of the system antioxidant and the fluidity improver” is also included in the embodiment of the present invention. ]
The reason for this is to prevent discoloration of the fluidity improver itself, and when the polymerization catalyst used for the polymerization of the fluidity improver is deactivated and the fluidity improver and the polycarbonate resin are mixed. This is considered to be because it is possible to prevent discoloration due to transesterification or hydrolysis reaction between the polyester and the polycarbonate resin contained in the fluidity improver. As a result, a decrease in the molecular weight of the polycarbonate resin can be more effectively suppressed, so that the resin composition containing the fluidity improver can improve only the fluidity without impairing the original properties of the polycarbonate resin. it can. The content of the phosphite antioxidant in the fluidity improver is preferably 0.005 to 5% by mass and preferably 0.01 to 2% by mass with respect to the weight of the fluidity improver. More preferably, the content is 0.01 to 1% by mass, and most preferably 0.02 to 0.05% by mass. When the content of the phosphite antioxidant is less than 0.005% by mass, the content of the phosphite antioxidant is small, and coloring occurs when the fluidity improver is added to the polycarbonate resin. There is. Moreover, when there is more content of a phosphite type antioxidant than 5 mass%, the impact strength of the resin composition obtained by adding the said fluid improvement agent to polycarbonate resin may be reduced.
 ホスファイト系酸化防止剤は各種の化合物が知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー出版発行の「高分子材料の劣化と安定化」(235~242頁)等に記載された種々の化合物が挙げられるが、これらに限定されるわけではない。ホスファイト系酸化防止剤として、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジフォスファイト、ビス(2,4―ジクミルフェニル)ペンタエリスリトールジフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト等が挙げられる。商品名では、アデカスタブPEP-36、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-8F、アデカスタブPEP-8W、アデカスタブPEP-11C、アデカスタブPEP-24G、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブP、アデカスタブQL、アデカスタブ522A、アデカスタブ329K、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPP(以上、いずれも株式会社アデカ製)、Irgafos38、Irgafos126、Irgafos168、IrgafosP-EPQ(以上、いずれもBASF JAPAN Ltd.製)等を例示することができる。これらのなかでも、特にエステル交換反応や加水分解反応を抑制する効果を顕著に示し得ること、酸化防止剤自体の融点が高く樹脂から揮発し難いこと等から、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブPEP-24G、Irgafos126等がより好ましい。 Various compounds are known as phosphite antioxidants, such as “Antioxidant Handbook” published by Taiseisha, “Degradation and Stabilization of Polymer Materials” (pages 235 to 242) published by CMC Publishing, etc. Although not limited to various compounds described in (1). Examples of phosphite antioxidants include tris (2,4-di-t-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester Phosphoric acid, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-) 4-methylphenyl) pentaerythritol di-phosphite and the like. The product names include ADK STAB PEP-36, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-8F, ADK STAB PEP-8W, ADK STAB PEP-11C, ADK STAB PEP-24G, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB P, ADK STAB QL, ADK STAB 522A, ADK STAB 329K, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 13510, ADK STAB 3010 (all of which are manufactured by ADEKA CORPORATION), Irgafos 38, Irgafos 126, Irgafos 126 As mentioned above, BASFBAJAPAN LTD.) And the like can be exemplified. Among these, Adeka Stub PEP-36, Adeka Stub HP-10 are particularly effective in suppressing the transesterification reaction and hydrolysis reaction, and the antioxidant itself has a high melting point and hardly volatilizes from the resin. More preferable are ADK STAB 2112, ADK STAB PEP-24G, Irgafos 126 and the like.
 本発明における流動性向上剤は、良好な色調のポリカーボネート樹脂組成物が得られる点で、ヒンダードフェノール系酸化防止剤を予め含有していてもよい。流動性向上剤中のヒンダードフェノール系酸化防止剤の含有量は、流動性向上剤の重量に対して0.005~5質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましく、0.02~0.5質量%であることが最も好ましい。ヒンダードフェノール系酸化防止剤の含有量が0.005質量%未満の場合には、ヒンダードフェノール系酸化防止剤の含有量が少なく、ポリカーボネート樹脂に上記流動性向上剤を配合したときに着色が生じる場合がある。ヒンダードフェノール系酸化防止剤の含有量が5質量%よりも多い場合には、ポリカーボネート樹脂に上記流動性向上剤を添加して得られる樹脂組成物の衝撃強度を低下させる場合がある。 The fluidity improver in the present invention may contain a hindered phenol antioxidant in advance in that a polycarbonate resin composition having a good color tone can be obtained. The content of the hindered phenolic antioxidant in the fluidity improver is preferably 0.005 to 5% by mass, and 0.01 to 2% by mass with respect to the weight of the fluidity improver. Is more preferably 0.01 to 1% by mass, and most preferably 0.02 to 0.5% by mass. When the content of the hindered phenolic antioxidant is less than 0.005% by mass, the content of the hindered phenolic antioxidant is small, and coloring occurs when the fluidity improver is added to the polycarbonate resin. May occur. When the content of the hindered phenol antioxidant is more than 5% by mass, the impact strength of the resin composition obtained by adding the above fluidity improver to the polycarbonate resin may be lowered.
 ヒンダードフェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、モノ(またはジ、またはトリ)(α-メチルベンジル)フェノール、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-t-アミルハイドロキノン、トリエチレングリコール-
ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリトール-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N'-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒド
ロキシ-ベンジルホスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2,4-ビス[(オクチルチオ)メチル]o-クレゾール、N,N'-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、トリス(2,4-ジ-
t-ブチルフェニル)ホスファイト、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-5'-t-オクチルフェニル)-ベンゾトリアゾール、メチル-3-[3-t-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネートとポリエチレングリコール(分子量約300)との縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。
Examples of the hindered phenol antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di, or tri) (Α-methylbenzyl) phenol, 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amyl Hydroquinone, triethylene glycol
Bis- [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythritol-tetrakis [3- ( 3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy Dolosine namamide), 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl) -4-hydroxybenzyl) benzene, bis (3,5-di-tert-butyl-4-hydroxybenzylphosphonate ethyl) calcium, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate 2,4-bis [(octylthio) methyl] o-cresol, N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, tris (2,4 -Gee-
t-butylphenyl) phosphite, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole 2- (3,5-di-tert-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- ( 3,5-di-t-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2′-hydroxy -5'-t-octylphenyl) -benzotriazole, methyl-3- [3-t-butyl-5- (2H-benzotriazol-2-yl) -4 Hydroxyphenyl] propionate and polyethylene glycol (molecular weight about 300), hydroxyphenylbenzotriazole derivative, 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
 商品名では、ノクラック200、ノクラックM-17、ノクラックSP、ノクラックSP-N、ノクラックNS-5、ノクラックNS-6、ノクラックNS-30、ノクラック300、ノクラックNS-7、ノクラックDAH(以上、いずれも大内新興化学工業株式会社製)、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-616、アデカスタブAO-635、アデカスタブAO-658、アデカスタブAO-80、アデカスタブAO-15、アデカスタブAO-18、アデカスタブ328、アデカスタブAO-330、アデカスタブAO-37(以上、いずれも株式会社アデカ製)、IRGANOX-245、IRGANOX-259、IRGANOX-565、IRGANOX-1010、IRGANOX-1024、IRGANOX-1035、IRGANOX-1076、IRGANOX-1081、IRGANOX-1098、IRGANOX-1222、IRGANOX-1330、IRGANOX-1425WL(以上、いずれもBASF JAPAN Ltd.製)、SumilizerGA-80(以上、住友化学株式会社製)等が挙げられる。これらのなかでも、酸化防止剤自体が特に変色し難い点、およびホスファイト系酸化防止剤との併用によって樹脂の着色を効率よく抑制することができる点から、アデカスタブAO-60、アデカスタブAO-330、IRGANOX-1010等がより好ましい。 The trade names are Nocrack 200, Nocrack M-17, Nocrack SP, Nocrack SP-N, Nocrack NS-5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7, Nocrack DAH (all above) Ouchi Shinsei Chemical Co., Ltd.), ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-616, ADK STAB AO-635, ADK STAB AO-658, ADK STAB AO-80, ADK STAB AO-15, ADK STAB AO-18, ADK STAB 328, ADK STAB AO-330, ADK STAB AO-37 (all of which are manufactured by ADK), IRGANOX-245, IRGANOX-259, IRGANOX-5 5, IRGANOX-1010, IRGANOX-1024, IRGANOX-1035, IRGANOX-1076, IRGANOX-1081, IRGANOX-1098, IRGANOX-1222, IRGANOX-1330, IRGANOX-1425WL (all of these are BASF JAPAN Ltd.er), GA -80 (above, manufactured by Sumitomo Chemical Co., Ltd.). Among these, Adeka Stub AO-60 and Adeka Stub AO-330 are particularly difficult to discolor, and the coloration of the resin can be efficiently suppressed by the combined use with a phosphite antioxidant. IRGANOX-1010 is more preferable.
 さらにフェノール系酸化防止剤として、アクリレート基とフェノール基とを併せもつモノアクリレートフェノール系安定剤を用いることもできる。モノアクリレートフェノール系安定剤としては、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(商品名:スミライザーGM)、2,4-ジ-t-アミル-6-[1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル]フェニルアクリレート(商品名:スミライザーGS)等が挙げられる。 Furthermore, a monoacrylate phenol-based stabilizer having both an acrylate group and a phenol group can also be used as a phenol-based antioxidant. Examples of monoacrylate phenol-based stabilizers include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate (trade name: Sumilizer GM), 2 , 4-di-t-amyl-6- [1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate (trade name: Sumilizer GS).
 ホスファイト系酸化防止剤とヒンダードフェノール系酸化防止剤の組み合わせとしては、アデカスタブPEP-36、アデカスタブ2112やIrgafos126と、アデカスタブAO-60、アデカスタブAO-330やIRGANOX-1010との組み合わせが、樹脂の着色を特に抑制することができる点で好ましい。 As a combination of a phosphite antioxidant and a hindered phenol antioxidant, a combination of ADK STAB PEP-36, ADK STAB 2112 and Irgafos 126, ADK STAB AO-60, ADK STAB AO-330 and IRGANOX-1010 is used. It is preferable at the point which can suppress especially coloring.
 本発明における流動性向上剤の数平均分子量とは、ポリスチレンを標準物質とし、p-クロロフェノールとトルエンとの体積比が3:8の混合溶媒に、本発明における樹脂を濃度が0.25質量%となるように溶解して調製した溶液を用いて、GPCにて80℃で測定した値である。本発明における上記ポリエステルの数平均分子量は、好ましくは2000~30000であり、より好ましくは3000~20000であり、さらに好ましくは4000~15000である。上記ポリエステルの数平均分子量が2000未満の場合には、ポリカーボネート樹脂に流動性向上剤を添加して得られる樹脂組成物を成形するとき等に、流動性向上剤がブリードアウトする場合がある。また、上記流動性向上剤の数平均分子量が30000を超える場合には、流動性向上剤自体の溶融粘度が高くなり、ポリカーボネート樹脂に流動性向上剤を添加して得られる樹脂組成物の成形加工時の流動性を効果的に向上させることができない場合がある。 The number average molecular weight of the fluidity improver in the present invention refers to a mixed solvent having a volume ratio of p-chlorophenol and toluene of 3: 8 using polystyrene as a standard substance, and the resin in the present invention having a concentration of 0.25 mass. It is a value measured at 80 ° C. by GPC using a solution prepared by dissolving to be%. The number average molecular weight of the polyester in the present invention is preferably 2000 to 30000, more preferably 3000 to 20000, and still more preferably 4000 to 15000. When the number average molecular weight of the polyester is less than 2000, the fluidity improver may bleed out when a resin composition obtained by adding the fluidity improver to the polycarbonate resin is molded. In addition, when the number average molecular weight of the fluidity improver exceeds 30000, the melt viscosity of the fluidity improver itself increases, and the resin composition obtained by adding the fluidity improver to the polycarbonate resin is processed. Sometimes the fluidity of the time cannot be improved effectively.
 本発明における流動性向上剤は、公知のいかなる方法で製造されていても構わない。製造方法の一例としては、モノマーの水酸基を無水酢酸等の低級脂肪酸を用いてそれぞれ個別に、または一括して低級脂肪酸エステルとした後、別の反応槽または同一の反応槽で、カルボン酸と脱低級脂肪酸重縮合反応させる方法が挙げられる。重縮合反応は、実質的に溶媒の存在しない状態で、通常、220~330℃、好ましくは240~310℃の温度で、窒素ガス等の不活性ガスの存在下、常圧または減圧下に、0.5~5時間行われる。反応温度が220℃よりも低い場合は反応の進行が遅く、330℃よりも高い場合は分解等の副反応が起こり易い。減圧下で反応させる場合は、段階的に減圧度を高くすることが好ましい。急激に高真空度まで減圧した場合には、ジカルボン酸モノマーや末端封止に用いる低分子化合物が揮発し、望む組成、または分子量の樹脂が得られない場合がある。到達真空度は、40Torr以下が好ましく、30Torr以下がより好ましく、20Torr以下がさらに好ましく、10Torr以下が特に好ましい。到達真空度が40Torrよりも高い場合には、脱酸が十分に進まず、重合時間が長くなり、樹脂が着色することがある。重縮合反応は、多段階の反応温度を採用しても構わないし、場合により昇温中あるいは最高温度に達したら直ちに反応生成物を溶融状態で抜き出し、回収することもできる。得られたポリエステル樹脂はそのままで使用してもよいし、未反応原料を除去する、または、物性を向上させる意図でさらに固相重合を行なうこともできる。固相重合を行なう場合には、得られたポリエステル樹脂を粒径3mm以下、好ましくは1mm以下の粒子に機械的に粉砕し、固相状態のまま100~350℃で窒素ガス等の不活性ガス雰囲気下、または減圧下に1~30時間処理することが好ましい。ポリエステル樹脂の粒子の粒径が3mmより大きくなると、処理が十分でなく、物性上の問題を生じるため好ましくない。固相重合時の処理温度や昇温速度は、ポリエステル樹脂粒子同士が融着を起こさないように選ぶことが好ましい。 The fluidity improver in the present invention may be produced by any known method. As an example of the production method, the hydroxyl group of the monomer is individually or collectively made into a lower fatty acid ester using a lower fatty acid such as acetic anhydride, and then removed from the carboxylic acid in another reaction vessel or the same reaction vessel. The method of making a lower fatty acid polycondensation reaction is mentioned. The polycondensation reaction is carried out in the presence of an inert gas such as nitrogen gas in the presence of an inert gas, usually at a temperature of 220 to 330 ° C., preferably 240 to 310 ° C. in the substantial absence of a solvent. It is performed for 0.5 to 5 hours. When the reaction temperature is lower than 220 ° C., the reaction proceeds slowly, and when it is higher than 330 ° C., side reactions such as decomposition tend to occur. When making it react under reduced pressure, it is preferable to raise a pressure reduction degree in steps. When the pressure is rapidly reduced to a high degree of vacuum, the dicarboxylic acid monomer and the low molecular weight compound used for end-capping may volatilize, and a resin having a desired composition or molecular weight may not be obtained. The ultimate vacuum is preferably 40 Torr or less, more preferably 30 Torr or less, further preferably 20 Torr or less, and particularly preferably 10 Torr or less. When the ultimate vacuum is higher than 40 Torr, deoxidation does not proceed sufficiently, the polymerization time becomes long, and the resin may be colored. The polycondensation reaction may employ a multi-stage reaction temperature. If necessary, the reaction product may be withdrawn in a molten state and recovered as soon as the temperature rises or when the maximum temperature is reached. The obtained polyester resin may be used as it is, or solid phase polymerization may be further performed for the purpose of removing unreacted raw materials or improving physical properties. In the case of performing solid phase polymerization, the obtained polyester resin is mechanically pulverized into particles having a particle size of 3 mm or less, preferably 1 mm or less, and an inert gas such as nitrogen gas at 100 to 350 ° C. in a solid state. The treatment is preferably performed in an atmosphere or under reduced pressure for 1 to 30 hours. When the particle diameter of the polyester resin particles is larger than 3 mm, the treatment is not sufficient, and problems with physical properties are caused, which is not preferable. It is preferable to select the treatment temperature and the rate of temperature increase during solid-phase polymerization so that the polyester resin particles do not cause fusion.
 本発明における流動性向上剤の製造に用いられる低級脂肪酸の酸無水物としては、炭素数2~5の低級脂肪酸の酸無水物、例えば無水酢酸、無水プロピオン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロム酢酸、無水ジブロム酢酸、無水トリブロム酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸等が挙げられる。このうち、無水酢酸、無水プロピオン酸、無水トリクロル酢酸が特に好適に用いられる。低級脂肪酸の酸無水物の使用量は、用いるモノマーおよび末端封止剤が有する水酸基等の官能基の合計に対し1.01~1.5倍当量、好ましくは1.02~1.2倍当量である。低級脂肪酸の酸無水物の使用量が1.01倍当量未満である場合には、低級脂肪酸の酸無水物が揮発することによって、水酸基等の官能基が低級脂肪酸の無水物と反応しきらないことがあり、低分子量の樹脂が得られることがある。 Examples of the lower fatty acid anhydride used in the production of the fluidity improver in the present invention include lower fatty acid anhydrides having 2 to 5 carbon atoms such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, Examples include trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, and pivalic anhydride. Of these, acetic anhydride, propionic anhydride, and trichloroacetic anhydride are particularly preferably used. The amount of the lower fatty acid anhydride used is 1.01 to 1.5 times equivalent, preferably 1.02 to 1.2 times equivalent to the total of the monomers used and the functional groups such as hydroxyl groups of the terminal blocking agent. It is. When the amount of the lower fatty acid anhydride used is less than 1.01 equivalents, the lower fatty acid anhydride is volatilized, so that the functional group such as a hydroxyl group does not completely react with the lower fatty acid anhydride. In some cases, a low molecular weight resin may be obtained.
 本発明における流動性向上剤の製造には重合触媒を使用してもよい。重合触媒としては、従来からポリエステルの重合触媒として公知の触媒を使用することができ、例えば、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属塩触媒、N,N-ジメチルアミノピリジン、N-メチルイミダゾール等の有機化合物触媒が挙げられる。なかでも、流動性向上剤自体の変色を防止することができること、ポリカーボネート樹脂組成物の変色を防止することができることから、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウムがより好ましい。 A polymerization catalyst may be used for the production of the fluidity improver in the present invention. As the polymerization catalyst, conventionally known catalysts can be used as polyester polymerization catalysts, such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide. Examples thereof include metal salt catalysts, organic compound catalysts such as N, N-dimethylaminopyridine and N-methylimidazole. Among these, sodium acetate, potassium acetate, and magnesium acetate are more preferable because discoloration of the fluidity improver itself can be prevented and discoloration of the polycarbonate resin composition can be prevented.
 上記重合触媒の添加量は、少ないほど、ポリカーボネート樹脂の分子量低下や黄変を抑制することができる。従って、上記重合触媒の添加量は、ポリエステル樹脂の総重量に対し、通常、0~100×10-2質量%、好ましくは0.5×10-3~50×10-2質量%が好適である。 The smaller the amount of the polymerization catalyst added, the more the molecular weight reduction and yellowing of the polycarbonate resin can be suppressed. Therefore, the addition amount of the polymerization catalyst is usually 0 to 100 × 10 −2 mass%, preferably 0.5 × 10 −3 to 50 × 10 −2 mass%, based on the total weight of the polyester resin. is there.
 本発明における流動性向上剤の形状に関しては特に制限はなく、例えば、ペレット状、フレーク状、パウダー状等が挙げられる。その粒子径は、ポリカーボネート樹脂と溶融混練する押出機に投入することができる程度に小さければよく、6mm以下であることが好ましい。 The shape of the fluidity improver in the present invention is not particularly limited, and examples thereof include pellets, flakes, and powders. The particle diameter should just be as small as it can be thrown into the extruder melt-kneaded with polycarbonate resin, and it is preferable that it is 6 mm or less.
 本発明における流動性向上剤をポリカーボネート樹脂に添加して得られる樹脂組成物は、ポリカーボネート樹脂70~99.9質量%と、本発明における流動性向上剤0.1~30質量%とを含有する。樹脂組成物(100質量%)中の流動性向上剤の含有率は、0.5質量%以上がより好ましく、1質量%以上がさらに好ましく、3質量%以上が特に好ましい。樹脂組成物(100質量%)中の流動性向上剤の含有率は、30質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。樹脂組成物(100質量%)中の流動性向上剤の含有率が0.1質量%以上であれば、成形加工時の流動性が向上する。樹脂組成物(100質量%)中の流動性向上剤の含有率が30質量%以下であれば、ポリカーボネート樹脂の耐熱性や機械物性が大きく損なわれない。本発明における流動性向上剤は、ガラス転移温度がポリカーボネート樹脂よりも低いために、ポリカーボネート樹脂に相溶させて得られる樹脂組成物のガラス転移点を低下させる。従って、30質量%よりも過剰に本発明における流動性向上剤を含有させると、得られる樹脂組成物の耐熱性が低下する場合がある。 The resin composition obtained by adding the fluidity improver in the present invention to the polycarbonate resin contains 70 to 99.9% by mass of the polycarbonate resin and 0.1 to 30% by mass of the fluidity improver in the present invention. . The content of the fluidity improver in the resin composition (100% by mass) is more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 3% by mass or more. The content of the fluidity improver in the resin composition (100% by mass) is more preferably 30% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less. If the content rate of the fluidity improver in a resin composition (100 mass%) is 0.1 mass% or more, the fluidity | liquidity at the time of a shaping | molding process will improve. When the content of the fluidity improver in the resin composition (100% by mass) is 30% by mass or less, the heat resistance and mechanical properties of the polycarbonate resin are not significantly impaired. Since the flowability improver in the present invention has a glass transition temperature lower than that of the polycarbonate resin, it lowers the glass transition point of the resin composition obtained by being dissolved in the polycarbonate resin. Therefore, if the fluidity improver in the present invention is contained in excess of 30% by mass, the heat resistance of the resulting resin composition may be lowered.
 本発明における流動性向上剤をポリカーボネート樹脂に添加して得られる樹脂組成物は、上記流動性向上剤にホスファイト系酸化防止剤が予め含まれているかどうかにかかわらず、さらにホスファイト系酸化防止剤を別途含んでいてもよい。上記流動性向上剤にホスファイト系酸化防止剤が予め含まれていない場合には、上記ホスファイト系酸化防止剤の含有量は、ポリカーボネート樹脂と流動性向上剤との合計質量に対して、0.005~5質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましく、0.02~0.5質量%であることが最も好ましい。 The resin composition obtained by adding the fluidity improver in the present invention to the polycarbonate resin is further protected regardless of whether the fluidity improver contains a phosphite antioxidant in advance. An agent may be included separately. When the fluidity improver does not contain a phosphite antioxidant in advance, the content of the phosphite antioxidant is 0 with respect to the total mass of the polycarbonate resin and the fluidity improver. 0.005 to 5% by mass, preferably 0.01 to 2% by mass, more preferably 0.01 to 1% by mass, and 0.02 to 0.5% by mass. Most preferably it is.
 上記流動性向上剤にヒンダードフェノール系酸化防止剤が予め含まれているかどうかにかかわらず、さらにヒンダードフェノール系酸化防止剤を別途含んでいてもよい。上記流動性向上剤にヒンダードフェノール系酸化防止剤が予め含まれていない場合には、上記ヒンダードフェノール系酸化防止剤の含有量は、ポリカーボネート樹脂と流動性向上剤との合計質量に対して、0.005~5質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましく、0.02~0.5質量%であることが最も好ましい。 Regardless of whether or not the hindered phenolic antioxidant is previously contained in the fluidity improver, a hindered phenolic antioxidant may be additionally contained. When the hindered phenol antioxidant is not included in the fluidity improver in advance, the content of the hindered phenol antioxidant is based on the total mass of the polycarbonate resin and the fluidity improver. 0.005 to 5% by mass, preferably 0.01 to 2% by mass, more preferably 0.01 to 1% by mass, and 0.02 to 0.5% by mass. % Is most preferred.
 上記ポリカーボネート樹脂としては、特に制限はなく、種々の構造単位を有するポリカーボネート樹脂を用いることができる。例えば、2価のフェノールとハロゲン化カルボニルとを界面重縮合させる方法や、2価のフェノールと炭酸ジエステルとを溶融重合(エステル交換)させる方法等によって製造したポリカーボネート樹脂を用いることができる。 The polycarbonate resin is not particularly limited, and polycarbonate resins having various structural units can be used. For example, a polycarbonate resin produced by a method of interfacial polycondensation of divalent phenol and carbonyl halide, a method of melt polymerization (transesterification) of divalent phenol and carbonic acid diester, or the like can be used.
 上記ポリカーボネート樹脂の原料である2価のフェノールとしては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン、ハイドロキノン、レゾルシン、カテコール等が挙げられる。これら2価のフェノールのなかでも、ビス(ヒドロキシフェニル)アルカン類が好ましく、さらに、2,2-ビス(4-ヒドロキシフェニル)プロパンを主原料とした2価のフェノールが特に好ましい。また、カーボネート前駆体としては、カルボニルハライド、カルボニルエステル、ハロホルメート等が挙げられる。具体的には、ホスゲン;2価のフェノールのジハロホルメート、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート等のジアリールカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジアミルカーボネート、ジオクチルカーボネート等の脂肪族カーボネート化合物等が挙げられる。 Examples of the divalent phenol that is a raw material for the polycarbonate resin include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ) Ketone, hydroquinone, resorcin, catechol, etc. It is. Among these divalent phenols, bis (hydroxyphenyl) alkanes are preferred, and divalent phenols mainly composed of 2,2-bis (4-hydroxyphenyl) propane are particularly preferred. Examples of the carbonate precursor include carbonyl halide, carbonyl ester, haloformate and the like. Specifically, phosgene; diaryl carbonates such as dihaloformates of divalent phenols, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate; dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dibutyl carbonate, dia Examples thereof include aliphatic carbonate compounds such as mil carbonate and dioctyl carbonate.
 また、上記ポリカーボネート樹脂は、そのポリマー鎖の分子構造が直鎖構造である樹脂の他、これに分岐構造を有している樹脂でもよい。このような分岐構造を導入するための分岐剤としては、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、フロログルシン、トリメリット酸、イサチンビス(o-クレゾール)等が挙げられる。また、分子量調節剤として、フェノール、p-t-ブチルフェノール、p-t-オクチルフェノール、p-クミルフェノール等を用いることができる。 The polycarbonate resin may be a resin having a branched structure in addition to a resin in which the molecular structure of the polymer chain is a linear structure. As a branching agent for introducing such a branched structure, 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3, And 5-triisopropylbenzene, phloroglucin, trimellitic acid, isatin bis (o-cresol), etc. Further, as molecular weight regulators, phenol, pt-butylphenol, pt-octylphenol, p-cumylphenol, etc. Can be used.
 さらに、本発明に用いる上記ポリカーボネート樹脂は、上記2価のフェノールのみを用いて製造された単独重合体の他、ポリカーボネート構造単位とポリオルガノシロキサン構造単位とを有する共重合体、またはこれら単独重合体と共重合体とからなる樹脂組成物であってもよい。また、テレフタル酸等の二官能性カルボン酸やそのエステル形成誘導体等のエステル前駆体の存在下で2価のフェノール等の重合反応を行うことによって得られるポリエステル-ポリカーボネート樹脂であってもよい。さらに、種々の構造単位を有するポリカーボネート樹脂を溶融混練して得られる樹脂組成物を用いることもできる。 Furthermore, the polycarbonate resin used in the present invention is a copolymer having a polycarbonate structural unit and a polyorganosiloxane structural unit in addition to a homopolymer produced using only the above divalent phenol, or a homopolymer thereof. And a resin composition comprising a copolymer. Further, it may be a polyester-polycarbonate resin obtained by conducting a polymerization reaction of a divalent phenol or the like in the presence of an ester precursor such as a bifunctional carboxylic acid such as terephthalic acid or an ester-forming derivative thereof. Furthermore, a resin composition obtained by melt-kneading a polycarbonate resin having various structural units can also be used.
 本発明の樹脂組成物には、ポリカーボネート樹脂、流動性向上剤、および酸化防止剤(ホスファイト系酸化防止剤、ヒンダードフェノール系酸化防止剤)以外の成分として、さらに目的に応じて他のいかなる成分、例えば、補強剤、増粘剤、離型剤、カップリング剤、難燃剤、耐炎剤、顔料、着色剤、光拡散剤その他の助剤等の添加剤、あるいは充填剤を、本発明の効果を失わない範囲で、添加することができる。これらの添加剤の使用量は、ポリカーボネート樹脂に流動性向上剤を添加して得られる樹脂組成物100重量部に対し、合計で0~100重量部の範囲であることが好ましい。 In the resin composition of the present invention, as a component other than the polycarbonate resin, the fluidity improver, and the antioxidant (phosphite antioxidant, hindered phenol antioxidant), any other depending on the purpose Ingredients such as reinforcing agents, thickeners, mold release agents, coupling agents, flame retardants, flame retardants, pigments, colorants, light diffusing agents and other auxiliary agents, or fillers of the present invention. It can be added as long as the effect is not lost. The amount of these additives used is preferably in the range of 0 to 100 parts by weight in total with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the polycarbonate resin.
 難燃剤の使用量は、ポリカーボネート樹脂に流動性向上剤を添加して得られる樹脂組成物100重量部に対して、7~80重量部であることがより好ましく、10~60重量部であることがさらに好ましく、12~40重量部であることが特に好ましい。難燃剤は各種の化合物が知られており、例えばシーエムシー出版発行の「高分子難燃化の技術と応用」(149~221頁)等に記載された種々の化合物が挙げられるが、これらに限定されるわけではない。これら難燃剤のなかでも、リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤を好ましく用いることができる。 The amount of the flame retardant used is preferably 7 to 80 parts by weight, more preferably 10 to 60 parts by weight with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the polycarbonate resin. Is more preferably 12 to 40 parts by weight. Various compounds are known as flame retardants, for example, various compounds described in “Technology and Application of Polymer Flame Retardation” (pages 149 to 221) published by CMC Publishing Co., Ltd. It is not limited. Among these flame retardants, phosphorus flame retardants, halogen flame retardants, and inorganic flame retardants can be preferably used.
 リン系難燃剤としては、具体的には、リン酸エステル、含ハロゲンリン酸エステル、縮合リン酸エステル、ポリリン酸塩、赤リン等が挙げられる。これらのリン系難燃剤は、単独で使用してもよく、2種類以上を混合して使用してもよい。 Specific examples of phosphorus-based flame retardants include phosphate esters, halogen-containing phosphate esters, condensed phosphate esters, polyphosphates, and red phosphorus. These phosphorus flame retardants may be used alone or in combination of two or more.
 ハロゲン系難燃剤としては、具体的には、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ系重合体、臭素化スチレン無水マレイン酸重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン、臭素化架橋芳香族重合体等が挙げられる。なかでも、臭素化ポリスチレン、臭素化ポリフェニレンエーテルが特に好ましい。これらのハロゲン系難燃剤は、単独で使用してもよく、2種類以上を混合して使用してもよい。また、これらのハロゲン系難燃剤のハロゲン元素含量は、15~87%であることが好ましい。 Specific examples of the halogen flame retardant include brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride polymer, brominated epoxy resin, brominated phenoxy resin, deca Examples thereof include bromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, and brominated crosslinked aromatic polymers. Of these, brominated polystyrene and brominated polyphenylene ether are particularly preferred. These halogen flame retardants may be used alone or in combination of two or more. The halogen element content of these halogen flame retardants is preferably 15 to 87%.
 本発明における樹脂組成物に対して、機械的強度、寸法安定性等を向上させるために、あるいは、増量を目的として、無機充填剤をさらに添加してもよい。 In the resin composition of the present invention, an inorganic filler may be further added in order to improve mechanical strength, dimensional stability, etc., or for the purpose of increasing the amount.
 上記無機充填剤としては、例えば、硫酸亜鉛、硫酸水素カリウム、硫酸アルミニウム、硫酸アンチモン、硫酸エステル、硫酸カリウム、硫酸コバルト、硫酸水素ナトリウム、硫酸鉄、硫酸銅、硫酸ナトリウム、硫酸ニッケル、硫酸バリウム、硫酸マグネシウム、硫酸アンモニウム等の硫酸金属化合物;酸化チタン等のチタン化合物;炭酸カリウム等の炭酸塩化合物;水酸化アルミニウム、水酸化マグネシウム等の水酸化金属化合物;合成シリカ、天然シリカ等のシリカ系化合物;アルミン酸カルシウム、2水和石膏、ホウ酸亜鉛、メタホウ酸バリウム、ホウ砂;硝酸ナトリウム等の硝酸化合物、モリブデン化合物、ジルコニウム化合物、アンチモン化合物およびその変性物;二酸化珪素および酸化アルミニウムニウムの複合体微粒子等が挙げられる。 Examples of the inorganic filler include zinc sulfate, potassium hydrogen sulfate, aluminum sulfate, antimony sulfate, sulfate ester, potassium sulfate, cobalt sulfate, sodium hydrogen sulfate, iron sulfate, copper sulfate, sodium sulfate, nickel sulfate, barium sulfate, Metal sulfate compounds such as magnesium sulfate and ammonium sulfate; Titanium compounds such as titanium oxide; Carbonate compounds such as potassium carbonate; Metal hydroxide compounds such as aluminum hydroxide and magnesium hydroxide; Silica compounds such as synthetic silica and natural silica; Calcium aluminate, dihydrate gypsum, zinc borate, barium metaborate, borax; nitrate compounds such as sodium nitrate, molybdenum compounds, zirconium compounds, antimony compounds and their modified products; composite fine particles of silicon dioxide and aluminum oxide Etc. It is.
 また、上記以外の無機充填剤として、例えば、チタン酸カリウムウイスカー、鉱物繊維(ロックウール等)、ガラス繊維、炭素繊維、金属繊維(ステンレス繊維等)、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、ボロン繊維、テトラポット状酸化亜鉛ウイスカー、タルク、クレー、カオリンクレー、天然マイカ、合成マイカ、パールマイカ、アルミニウム箔、アルミナ、ガラスフレーク、ガラスビーズ、ガラスバルーン、カーボンブラック、黒鉛、炭酸カルシウム、硫酸カルシウム、ケイ酸カルシウム、酸化チタン、酸化亜鉛、シリカ、アスベスト、石英粉等も挙げられる。 Other inorganic fillers include, for example, potassium titanate whiskers, mineral fibers (rock wool, etc.), glass fibers, carbon fibers, metal fibers (stainless fibers, etc.), aluminum borate whiskers, silicon nitride whiskers, boron fibers. , Tetrapotted zinc oxide whisker, talc, clay, kaolin clay, natural mica, synthetic mica, pearl mica, aluminum foil, alumina, glass flakes, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, silica Examples include calcium acid, titanium oxide, zinc oxide, silica, asbestos, and quartz powder.
 これらの無機充填剤は、無処理であってもよく、化学的または物理的な表面処理を予め施しておいてもよい。その表面処理に用いる表面処理剤としては、例えば、シランカップリング剤系、高級脂肪酸系、脂肪酸金属塩系、不飽和有機酸系、有機チタネート系、樹脂酸系、ポリエチレングリコール系等の化合物が挙げられる。 These inorganic fillers may be untreated, or may be subjected to chemical or physical surface treatment in advance. Examples of the surface treatment agent used for the surface treatment include compounds such as silane coupling agent, higher fatty acid, fatty acid metal salt, unsaturated organic acid, organic titanate, resin acid, and polyethylene glycol. It is done.
 本発明における樹脂組成物の製造方法は、特に限定されない。樹脂組成物は、例えば、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、2本ロール、ニーダー、ブラベンダー等の装置を用いて、流動性向上剤、ポリカーボネート樹脂、および必要に応じて光拡散剤等の添加剤を配合し、溶融混練する公知の方法によって製造される。流動性向上剤に含まれるポリエステルとポリカーボネート樹脂とのエステル交換反応、およびポリカーボネート樹脂の熱劣化等による樹脂組成物の黄変を抑制する目的で、溶融混練の温度はできるだけ低温であることが好ましい。 The method for producing the resin composition in the present invention is not particularly limited. The resin composition is, for example, a flow improver, a polycarbonate resin, and a necessary resin using a device such as a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a two-roll, a kneader, or a Brabender. According to the method, it is produced by a known method in which an additive such as a light diffusing agent is blended and melt kneaded. The melt kneading temperature is preferably as low as possible for the purpose of suppressing the transesterification reaction between the polyester and the polycarbonate resin contained in the fluidity improver and the yellowing of the resin composition due to thermal degradation of the polycarbonate resin.
 本発明における樹脂組成物を各種押出成形することにより、本発明の成形品として、例えば、各種異形押出成形品、押出成形によるシート、フィルム等の形状に成形することができる。上記各種押出成形としては、コールドランナー方式、ホットランナー方式の成形法はもとより、さらには射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入による場合を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形等の射出成形法が挙げられる。また、シート、フィルムの成形には、インフレーション法や、カレンダー法、キャスティング法等も用いることができる。さらに、特定の延伸操作をかけることにより、熱収縮チューブとして成形することも可能である。また、本発明の樹脂組成物を回転成形やブロー成形等で成形することにより、中空成形品とすることも可能である。 By various extrusion moldings of the resin composition in the present invention, the molded product of the present invention can be molded into shapes such as various irregular extrusion molded products, sheets and films by extrusion molding, for example. The various extrusion molding methods include cold runner and hot runner molding methods, as well as injection compression molding, injection press molding, gas assist injection molding, foam molding (including the case of supercritical fluid injection), inserts. Examples thereof include injection molding methods such as molding, in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding. In addition, an inflation method, a calendar method, a casting method, or the like can be used for forming a sheet or a film. Furthermore, it can be formed as a heat-shrinkable tube by applying a specific stretching operation. Moreover, it is also possible to make a hollow molded product by molding the resin composition of the present invention by rotational molding, blow molding or the like.
 本発明の導光板は、上述した樹脂組成物から、公知の射出成形法により製造される。導光板の具体的な形状には特に制限はないが、上述の樹脂組成物は流動性に優れるため加工性が向上し、射出成形用金型のキャビティに形成された細かい凹凸を良好に転写することができる。例えば、一面が一様な傾斜の傾斜面とされ、この傾斜面に連続したプリズム形状の凹凸パターンが施され乱反射部とされた楔形断面形状の導光板を成形することができる。このような導光板は、キャビティに凹凸部が形成された射出成形用金型を用い、凹凸部を転写しつつ射出成形することで製造できる。なお、射出成形用金型のキャビティに凹凸部を設ける方法としては、入れ子に凹凸部を形成する方法が簡便で好ましい。 The light guide plate of the present invention is manufactured from the above-described resin composition by a known injection molding method. Although there is no restriction | limiting in particular in the specific shape of a light-guide plate, Since the above-mentioned resin composition is excellent in fluidity | liquidity, workability improves and the fine unevenness | corrugation formed in the cavity of the injection mold is transferred well. be able to. For example, a light guide plate having a wedge-shaped cross section in which one surface is an inclined surface having a uniform inclination, and a prism-shaped uneven pattern is applied to the inclined surface to form a diffusely reflecting portion can be formed. Such a light guide plate can be manufactured by using an injection mold having a concavo-convex portion formed in a cavity and performing injection molding while transferring the concavo-convex portion. In addition, as a method of providing the uneven portion in the cavity of the injection mold, a method of forming the uneven portion in the nest is simple and preferable.
 このような導光板とこの導光板に向けて光を射出する光源とを少なくとも備えることにより、携帯電話、携帯端末、カメラ、時計、ノートパソコン、ディスプレイ、照明、信号、自動車のテールランプ、ヘッドランプ、電磁気調理器の火力表示などに使用されるエッジ式の面光源体を構成できる。光源としては、蛍光ランプ、冷陰極管、LED、有機ELなどの自己発光体を使用できる。 By providing at least such a light guide plate and a light source that emits light toward the light guide plate, a mobile phone, a mobile terminal, a camera, a watch, a laptop computer, a display, illumination, a signal, a car tail lamp, a head lamp, An edge-type surface light source body used for displaying a thermal power of an electromagnetic cooker can be configured. As the light source, a self-luminous material such as a fluorescent lamp, a cold cathode tube, an LED, or an organic EL can be used.
 本発明の導光板は、透明性や機械強度を損なうことなく流動性が高い樹脂組成物からなるため、使用環境が制限されることなく、幅広い用途に使用できるうえ、射出成形用金型の細かい凹凸などが十分に転写され、良好に成形される。したがってこのような導光板を用いることで、工業的に利用価値の高い面光源体を提供できる。 Since the light guide plate of the present invention is made of a resin composition having high fluidity without impairing transparency and mechanical strength, it can be used in a wide range of applications without being restricted in use environment, and has a fine injection mold. Unevenness and the like are sufficiently transferred and molded well. Therefore, by using such a light guide plate, an industrially useful surface light source body can be provided.
 〔第2実施形態〕
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
本発明における芳香族ポリカーボネート系樹脂(I)としては、特に制限はなく、種々の構造単位を有するポリカーボネート系樹脂を用いることができる。例えば、2価のフェノールとハロゲン化カルボニルとを界面重縮合させる方法や、2価のフェノールと炭酸ジエステルとを溶融重合(エステル交換)させる方法等によって製造したポリカーボネート系樹脂を用いることができる。
[Second Embodiment]
An embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, and various modifications can be made within the scope shown in the claims, and technical means disclosed in different embodiments and examples respectively. Embodiments and examples obtained by appropriately combining them are also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are used as references in this specification. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more and B or less”.
The aromatic polycarbonate resin (I) in the present invention is not particularly limited, and polycarbonate resins having various structural units can be used. For example, a polycarbonate resin produced by a method of interfacial polycondensation of divalent phenol and carbonyl halide, a method of melt polymerization (transesterification) of divalent phenol and carbonic acid diester, or the like can be used.
 上記芳香族ポリカーボネート系樹脂(I)の原料である2価のフェノールとしては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン、ハイドロキノン、レゾルシン、カテコール等が挙げられる。これら2価のフェノールのなかでも、ビス(ヒドロキシフェニル)アルカン類が好ましく、さらに、2,2-ビス(4-ヒドロキシフェニル)プロパンを主原料とした2価のフェノールが特に好ましい。また、カーボネート前駆体としては、カルボニルハライド、カルボニルエステル、ハロホルメート等が挙げられる。具体的には、ホスゲン;2価のフェノールのジハロホルメート、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート等のジアリールカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジアミルカーボネート、ジオクチルカーボネート等の脂肪族カーボネート化合物等が挙げられる。 Examples of the divalent phenol that is a raw material of the aromatic polycarbonate resin (I) include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl). Ethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, Bis (4-hydroxyphenyl) ketone, hydroquinone, resorcin, potassium Call, and the like. Among these divalent phenols, bis (hydroxyphenyl) alkanes are preferred, and divalent phenols mainly composed of 2,2-bis (4-hydroxyphenyl) propane are particularly preferred. Examples of the carbonate precursor include carbonyl halide, carbonyl ester, haloformate and the like. Specifically, phosgene; diaryl carbonates such as dihaloformates of divalent phenols, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate; dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dibutyl carbonate, dia Examples thereof include aliphatic carbonate compounds such as mil carbonate and dioctyl carbonate.
 また、上記芳香族ポリカーボネート系樹脂(I)は、そのポリマー鎖の分子構造が直鎖構造である樹脂の他、これに分岐構造を有している樹脂でもよい。このような分岐構造を導入するための分岐剤としては、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、フロログルシン、トリメリット酸、イサチンビス(o-クレゾール)等が挙げられる。また、分子量調節剤として、フェノール、p-t-ブチルフェノール、p-t-オクチルフェノール、p-クミルフェノール等を用いることができる。 The aromatic polycarbonate resin (I) may be a resin having a branched structure in addition to a resin having a linear molecular chain structure. As a branching agent for introducing such a branched structure, 1,1,1-tris (4-hydroxyphenyl) ethane, α, α ′, α ″ -tris (4-hydroxyphenyl) -1,3, And 5-triisopropylbenzene, phloroglucin, trimellitic acid, isatin bis (o-cresol), etc. Further, as molecular weight regulators, phenol, pt-butylphenol, pt-octylphenol, p-cumylphenol, etc. Can be used.
 さらに、本発明に用いる芳香族ポリカーボネート系樹脂(I)は、上記2価のフェノールのみを用いて製造された単独重合体の他、ポリカーボネート構造単位とポリオルガノシロキサン構造単位とを有する共重合体、またはこれら単独重合体と共重合体とからなる樹脂組成物であってもよい。また、テレフタル酸等の二官能性カルボン酸やそのエステル形成誘導体等のエステル前駆体の存在下で2価のフェノール等の重合反応を行うことによって得られるポリエステル-ポリカーボネート樹脂であってもよい。
芳香族ポリカーボネート系樹脂(I)の分子量は、高い流動性を有する樹脂組成物を得る観点から、溶媒として塩化メチレンを用い、温度25℃で測定された溶液粘度より換算した粘度平均分子量で、12000~40000のものを使用することが好ましく、12000~25000がより好ましく、12000~18000が特に好ましい。
Furthermore, the aromatic polycarbonate resin (I) used in the present invention is a copolymer having a polycarbonate structural unit and a polyorganosiloxane structural unit, in addition to a homopolymer produced using only the above divalent phenol. Or the resin composition which consists of these homopolymers and a copolymer may be sufficient. Further, it may be a polyester-polycarbonate resin obtained by conducting a polymerization reaction of a divalent phenol or the like in the presence of an ester precursor such as a bifunctional carboxylic acid such as terephthalic acid or an ester-forming derivative thereof.
The molecular weight of the aromatic polycarbonate-based resin (I) is a viscosity average molecular weight calculated from a solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent from the viewpoint of obtaining a resin composition having high fluidity, and is 12000. It is preferable to use those having a molecular weight of ˜40000, more preferably 12,000 to 25000, and particularly preferably 12,000 to 18000.
 さらに、種々の構造単位を有するポリカーボネート樹脂を溶融混練して得られる樹脂組成物を用いることもできる。芳香族ポリカーボネート系樹脂(A)を含む樹脂材料として、芳香族ポリカーボネート系樹脂(A)と後述の他の樹脂またはエラストマーとを組み合わせた芳香族ポリカーボネート系ポリマーアロイを用いてもよい。 Furthermore, a resin composition obtained by melt-kneading a polycarbonate resin having various structural units can also be used. As the resin material containing the aromatic polycarbonate resin (A), an aromatic polycarbonate polymer alloy in which the aromatic polycarbonate resin (A) and another resin or elastomer described later are combined may be used.
 芳香族ポリカーボネート系樹脂組成物には、芳香族ポリカーボネート系樹脂(A)が本来有する優れた透明性、耐衝撃性、耐熱性、寸法安定性、自己消火性(難燃性)等を損なわない範囲、具体的には芳香族ポリカーボネート系樹脂(A)100質量部に対して50質量部以下の範囲で、他の樹脂またはエラストマーを配合してもよい。 The aromatic polycarbonate resin composition does not impair the excellent transparency, impact resistance, heat resistance, dimensional stability, self-extinguishing properties (flame retardant), etc. inherent in the aromatic polycarbonate resin (A). Specifically, other resins or elastomers may be blended in the range of 50 parts by mass or less with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
 他の樹脂としては、ポリスチレン(PSt)、スチレン系ランダム共重合体(アクリロニトリル-スチレン樹脂(AS樹脂)等)、スチレンと無水マレイン酸との交互共重合体、グラフト共重合体(アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、アクリロニトリル-エチレンプロピレンゴム-スチレン樹脂(AES樹脂)、アクリロニトリル-アクリレート-スチレン樹脂(AAS樹脂)、ハイインパクトポリスチレン(HIPS)等)等のスチレン系樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、これらの共重合体等のポリエステル;ポリメタクリル酸メチル(PMMA)、メタクリル酸メチル単位を有する共重合体等のアクリル系樹脂;ポリプロピレン(PP)、ポリエチレン(PE)、エチレン-(メタ)アクリル酸共重合体等のオレフィン系樹脂;ポリウレタン;シリコーン樹脂;シンジオタクチックPS;6-ナイロン、6,6-ナイロン等のポリアミド;ポリアリレート;ポリフェニレンスルフィド;ポリエーテルケトン;ポリスルホン;ポリエーテルスルホンポリアミドイミド;ポリアセタール等、各種汎用樹脂またはエンジニアリングプラスチックが挙げられる。 Other resins include polystyrene (PSt), styrene random copolymers (acrylonitrile-styrene resin (AS resin), etc.), alternating copolymers of styrene and maleic anhydride, and graft copolymers (acrylonitrile-butadiene-). Styrene resins such as styrene resin (ABS resin), acrylonitrile-ethylene propylene rubber-styrene resin (AES resin), acrylonitrile-acrylate-styrene resin (AAS resin), high impact polystyrene (HIPS), etc .; polyethylene terephthalate (PET) , Polyesters such as polybutylene terephthalate (PBT) and copolymers thereof; acrylic resins such as polymethyl methacrylate (PMMA) and copolymers having methyl methacrylate units; polypropylene (PP) and polyethylene Olefin resins such as ethylene (PE) and ethylene- (meth) acrylic acid copolymers; polyurethanes; silicone resins; syndiotactic PS; polyamides such as 6-nylon and 6,6-nylon; polyarylate; polyphenylene sulfide; Various general-purpose resins or engineering plastics such as polyether ketone; polysulfone; polyethersulfone polyamideimide;
 エラストマーとしては、イソブチレン-イソプレンゴム;ポリエステル系エラストマー;スチレン-ブタジエンゴム、ポリスチレン-ポリブタジエン-ポリスチレン(SBS)、ポリスチレン-ポリ(エチレン-ブチレン)-ポリスチレン(SEBS)、ポリスチレン-ポリイソプレン-ポリスチレン(SIS)、ポリスチレン-ポリ(エチレン-プロピレン)-ポリスチレン(SEPS)等のスチレン系エラストマー;エチレン-プロピレンゴム等のポリオレフィン系エラストマー;ポリアミド系エラストマー;アクリル系エラストマー;ジエン系ゴム、アクリル系ゴム、シリコーン系ゴム等を含有する、メタクリル酸メチル-ブタジエン-スチレン樹脂(MBS樹脂)、メタクリル酸メチル-アクリロニトリル-スチレン樹脂(MAS樹脂)に代表されるコアシェル型の耐衝撃性改良剤等が挙げられる。
本発明における流動性向上剤(II)は、ビスフェノール成分および脂肪族ジカルボン酸成分、並びに、任意でビフェノール成分を、特定の比率で重縮合したポリエステルからなる。
Elastomers include isobutylene-isoprene rubber; polyester elastomer; styrene-butadiene rubber, polystyrene-polybutadiene-polystyrene (SBS), polystyrene-poly (ethylene-butylene) -polystyrene (SEBS), polystyrene-polyisoprene-polystyrene (SIS). Styrene elastomer such as polystyrene-poly (ethylene-propylene) -polystyrene (SEPS); polyolefin elastomer such as ethylene-propylene rubber; polyamide elastomer; acrylic elastomer; diene rubber, acrylic rubber, silicone rubber, etc. Containing methyl methacrylate-butadiene-styrene resin (MBS resin), methyl methacrylate-acrylonitrile-styrene resin (MAS tree) ) Impact modifiers such as core-shell type represented by like.
The fluidity improver (II) in the present invention comprises a polyester obtained by polycondensing a bisphenol component, an aliphatic dicarboxylic acid component, and optionally a biphenol component at a specific ratio.
 本発明の1形態である、流動性向上剤の主鎖の構造には、下記一般式(1) The structure of the main chain of the fluidity improver, which is one form of the present invention, includes the following general formula (1)
Figure JPOXMLDOC01-appb-C000011
 (式中、X~Xは各々同一であっても異なっていてもよい、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。)
で表されるビフェノール成分(A)を0~55モル%、
 下記一般式(2)
Figure JPOXMLDOC01-appb-C000011
(Wherein X 1 to X 4 each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, which may be the same or different.)
0 to 55 mol% of a biphenol component (A) represented by
The following general formula (2)
Figure JPOXMLDOC01-appb-C000012
 (式中、X~Xは各々同一であっても異なっていてもよい、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。Yはメチレン基、イソプロピリデン基、環状のアルキリデン基、アリール置換アルキリデン基、アリーレンジアルキリデン基、-S-、-O-、カルボニル基または-SO-を示す。)
で表されるビスフェノール成分(B)を5~60モル%、
 下記一般式(3)
HOOC-R-COOH ・・・(3)
 (式中、Rは主鎖原子数2~18の、分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)40~60モル%を含むモノマー混合物(ただし上記の(A)、(B)、(C)のモル%は、モノマー(A)、(B)、(C)の合計を100モル%とした場合の数値である)の重縮合物であることを特徴とする。
Figure JPOXMLDOC01-appb-C000012
(Wherein X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Y represents a methylene group, an isopropylidene group, a cyclic group. An alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group, or —SO 2 —.
5 to 60 mol% of a bisphenol component (B) represented by
The following general formula (3)
HOOC-R 1 -COOH (3)
(In the formula, R 1 represents a divalent linear substituent having 2 to 18 main chain atoms which may contain a branch.)
A monomer mixture containing 40 to 60 mol% of the dicarboxylic acid component (C) represented by the above formula (provided that the mol% of the above (A), (B), and (C) is the monomer (A), (B), (C )) Is a polycondensate).
 本発明における流動性向上剤(II)は、ビスフェノール成分(B)および任意のビフェノール成分(A)からなるジオール成分と、(C)成分であるジカルボン酸成分とを重縮合することで製造されるポリエステルである。 The fluidity improver (II) in the present invention is produced by polycondensing a diol component consisting of a bisphenol component (B) and an optional biphenol component (A) and a dicarboxylic acid component which is a component (C). Polyester.
 上記流動性向上剤は低分子化合物ではないことから、流動性向上剤を添加したポリカーボネート樹脂組成物を成形するときに、ブリードアウトが発生することを抑制することができる。 Since the fluidity improver is not a low-molecular compound, it is possible to suppress the occurrence of bleed out when molding a polycarbonate resin composition to which the fluidity improver is added.
 また、上記分子構造を有する流動性向上剤は、ポリカーボネート樹脂との相溶性が高いために、ポリカーボネート樹脂に上記流動性向上剤を添加して得られる樹脂組成物の流動性を効率的に向上させることができ、かつ、ポリカーボネート樹脂が本来有している透明性や衝撃強度等の種々の特性を損なわない。 Moreover, since the fluidity improver having the molecular structure is highly compatible with the polycarbonate resin, the fluidity of the resin composition obtained by adding the fluidity improver to the polycarbonate resin is efficiently improved. In addition, various properties such as transparency and impact strength inherent to the polycarbonate resin are not impaired.
 上記流動性向上剤中に含まれるビフェノール成分(A)は0~55モル%が好ましく、より好ましくは10~40モル%、最も好ましくは20~30モル%である。ビスフェノール成分(B)は5~60モル%含まれていることが好ましく、より好ましくは10~50モル%、最も好ましくは20~30モル%である。ジカルボン酸成分(C)は40~60モル%含まれていることが好ましく、より好ましくは45~55モル%である。 The biphenol component (A) contained in the fluidity improver is preferably 0 to 55 mol%, more preferably 10 to 40 mol%, and most preferably 20 to 30 mol%. The bisphenol component (B) is preferably contained in an amount of 5 to 60 mol%, more preferably 10 to 50 mol%, and most preferably 20 to 30 mol%. The dicarboxylic acid component (C) is preferably contained in an amount of 40 to 60 mol%, more preferably 45 to 55 mol%.
 ジオール成分として(A)成分および(B)成分を用いる場合において、(A)成分と(B)成分とのモル比((A)/(B))は、好ましくは1/9~9/1であり、より好ましくは1/7~7/1であり、さらに好ましくは1/5~5/1であり、最も好ましくは1/3~3/1である。(A)/(B)が1/9よりもさらに(A)成分が少ない場合は、上記ポリエステル自体が完全に非晶性となり、ガラス転移温度が低くなることから、貯蔵時における流動性向上剤のペレット同士の融着を引き起こす場合がある。(A)/(B)が9/1よりもさらに(B)成分が少ない場合には、芳香族ポリカーボネート系樹脂との相溶性が不十分となり、芳香族ポリカーボネート系樹脂に流動性向上剤を添加して得られる樹脂組成物を4mm以上の厚肉の成形品に成形したときに、徐冷される途中に厚みの中心部分で相分離を起こす場合がある。 In the case of using the component (A) and the component (B) as the diol component, the molar ratio ((A) / (B)) of the component (A) to the component (B) is preferably 1/9 to 9/1. More preferably, it is 1/7 to 7/1, more preferably 1/5 to 5/1, and most preferably 1/3 to 3/1. When (A) / (B) is further less than 1/9 and the component (A) is less, the polyester itself becomes completely amorphous and has a low glass transition temperature. May cause fusion of pellets. When (A) / (B) is further less than 9/1, the component (B) is less compatible with the aromatic polycarbonate resin, and a fluidity improver is added to the aromatic polycarbonate resin. When the resin composition obtained in this way is molded into a thick molded product having a thickness of 4 mm or more, phase separation may occur at the central portion of the thickness while being gradually cooled.
 一般式(1)中のX1~X4は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。流動性向上剤自体の結晶性を高め、ペレット貯蔵時の融着を防ぐ等の取り扱い性を良くするために、X1~X4は全て水素原子であることがより好ましい。 X 1 to X 4 in the general formula (1) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. It is more preferable that all of X 1 to X 4 are hydrogen atoms in order to improve the handleability such as improving the crystallinity of the fluidity improver itself and preventing fusion during pellet storage.
 一般式(2)中のX5~X8は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。芳香族ポリカーボネート系樹脂との相溶性を高めるために、X5~X8は全て水素原子であることがより好ましい。Yはメチレン基、イソプロピリデン基、環状のアルキリデン基、アリール置換アルキリデン基、アリーレンジアルキリデン基、-S-、-O-、カルボニル基または-SO2-を示す。 X 5 to X 8 in the general formula (2) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. In order to enhance the compatibility with the aromatic polycarbonate resin, it is more preferable that all of X 5 to X 8 are hydrogen atoms. Y represents a methylene group, an isopropylidene group, a cyclic alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group or —SO 2 —.
 一般式(2)で表されるビスフェノール成分としては、特に、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が芳香族ポリカーボネート系樹脂との相溶性が高まる点で好適である。ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシ-1-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類;2,2-ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ナフチルメタン等のビス(ヒドロキシアリール)アリールアルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;4,4’-ジヒドロキシジフェニル等のジヒドロキシジフェニル類等が挙げられる。これらのビスフェノール成分は、それぞれ単独で用いてもよいし、本発明の効果を失わない範囲で二種以上を混合して用いてもよい。 As the bisphenol component represented by the general formula (2), in particular, 2,2-bis (4-hydroxyphenyl) propane (common name: bisphenol A) is preferable in terms of increasing compatibility with the aromatic polycarbonate resin. is there. Examples of dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-1-methylphenyl) propane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis ( 4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) propane, 2,2- Bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propa Bis (hydroxyaryl) alkanes such as 2,2-bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) naphthylmethane and the like; 1,1-bis ( Bis (hydroxyaryl) cycloalkanes such as 4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5,5-trimethylcyclohexane Dihydroxy aryl ethers such as 4,4′-dihydroxyphenyl ether and 4,4′-dihydroxy-3,3′-dimethylphenyl ether; 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxy-3 , 3'-dimethyldiphenyl sulfide, etc. Dihydroxydiaryl sulfides; dihydroxydiaryl sulfoxides such as 4,4′-dihydroxydiphenyl sulfoxide and 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide; 4,4′-dihydroxydiphenyl sulfone, 4,4′- And dihydroxydiaryl sulfones such as dihydroxy-3,3′-dimethyldiphenyl sulfone; and dihydroxydiphenyls such as 4,4′-dihydroxydiphenyl. These bisphenol components may be used singly or as a mixture of two or more of them without losing the effect of the present invention.
 本発明における流動性向上剤(II)の末端構造は特に限定されないが、特に芳香族ポリカーボネート系樹脂とのエステル交換を抑制し、芳香族ポリカーボネート系樹脂に上記流動性向上剤を添加して得られる樹脂組成物の黄変を抑制するため、および加水分解を抑制し長期安定性を確保するために、一官能性の低分子化合物で封止されていることが好ましい。 The terminal structure of the fluidity improver (II) in the present invention is not particularly limited, and is particularly obtained by suppressing transesterification with an aromatic polycarbonate resin and adding the fluidity improver to the aromatic polycarbonate resin. In order to suppress yellowing of the resin composition and to suppress hydrolysis and ensure long-term stability, it is preferably sealed with a monofunctional low molecular compound.
 また、分子鎖の全末端に対する封止率は、好ましくは50%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上であり、最も好ましくは90%以上である。 Further, the sealing rate with respect to all ends of the molecular chain is preferably 50% or more, more preferably 70% or more, still more preferably 80% or more, and most preferably 90% or more.
 流動性向上剤の末端封止率は、封止された末端官能基および封止されていない末端官能基の数をそれぞれ測定し、下記式(4)により求めることができる。上記末端封止率の具体的な算出方法としては、1H-NMRを用いて、各末端基に対応する特性シグナルの積分値から各末端基の数を求め、その結果に基づいて、下記式(4)を用いて上記末端封止
率を算出する方法が、精度、簡便さの点で好ましい。
The end-capping rate of the fluidity improver can be determined by the following formula (4) by measuring the number of sealed end functional groups and the number of end functional groups not sealed. As a specific method for calculating the terminal blocking rate, 1 H-NMR is used to determine the number of each terminal group from the integral value of the characteristic signal corresponding to each terminal group. The method of calculating the terminal blocking rate using (4) is preferable in terms of accuracy and simplicity.
 末端封止率(%)={[封止された末端官能基数]/([封止された末端官能基数]+[封止されていない末端官能基数])}×100 ・・・(4)
封止に用いる一官能性の低分子化合物としては、一価のフェノール、炭素数1~20のモノアミン、脂肪族モノカルボン酸、カルボジイミド、エポキシまたはオキサゾリンなどが挙げられる。一価のフェノールの具体例としては、フェノール、p-クレゾール、p-t-ブチルフェノール、p-t-オクチルフェノール、p-クミルフェノール、p-ノニルフェノール、p-t-アミルフェノール、4-ヒドロキシビフェニル、およびこれらの任意の混合物等が挙げられる。脂肪族モノカルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、およびこれらの任意の混合物等が挙げられる。これらのなかでも、高沸点で重合が容易である点から、ミリスチン酸、パルミチン酸、ステアリン酸が好ましい。モノアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、およびこれらの任意の混合物等が挙げられる。カルボジイミドの例としてはジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド、ビス-2,6-ジイソプロピルフェニルカルボジイミド、ポリ(2,4,6-トリイソプロピルフェニレン-1,3-ジイソシアネート)、1,5-(ジイソプロピルベンゼン)ポリカルボジイミド、2,6,2′,6′-テトライソプロピルジフェニルカルボジイミドおよびこれらの任意の混合物等が挙げられる。エポキシの例としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリエチロールプロパンポリグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ビスフェノールA-ジグリシジルエーテル、水添ビスフェノールA-グリシジルエーテル、4,4’-ジフェニルメタンジグリシジルエーテル、テレフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、メタクリル酸グルシジルエステル、メタクリル酸グルシジルエステルポリマー、メタクリル酸グルシジルエステルポリマー含有化合物およびこれらの任意の混合物等が挙げられる。オキサゾリンの例としては、スチレン・2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、1,3-フェニレンビス(2-オキサゾリン)およびこれらの混合物等が挙げられる。
Terminal sealing rate (%) = {[number of sealed terminal functional groups] / ([number of sealed terminal functional groups] + [number of unsealed terminal functional groups])} × 100 (4)
Examples of the monofunctional low molecular compound used for sealing include monohydric phenol, monoamine having 1 to 20 carbon atoms, aliphatic monocarboxylic acid, carbodiimide, epoxy or oxazoline. Specific examples of monohydric phenol include phenol, p-cresol, pt-butylphenol, pt-octylphenol, p-cumylphenol, p-nonylphenol, pt-amylphenol, 4-hydroxybiphenyl, And any mixture thereof. Specific examples of aliphatic monocarboxylic acids include fatty acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid. Group monocarboxylic acids, and arbitrary mixtures thereof. Among these, myristic acid, palmitic acid, and stearic acid are preferable from the viewpoint of high boiling point and easy polymerization. Specific examples of monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and any of these A mixture etc. are mentioned. Examples of carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di-β-naphthylcarbodiimide, bis-2,6-diisopropyl Phenylcarbodiimide, poly (2,4,6-triisopropylphenylene-1,3-diisocyanate), 1,5- (diisopropylbenzene) polycarbodiimide, 2,6,2 ', 6'-tetraisopropyldiphenylcarbodiimide and their Arbitrary mixtures etc. are mentioned. Examples of epoxies include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, triethylolpropane polyglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, sorbitol polyglycidyl ether, bisphenol A- Diglycidyl ether, hydrogenated bisphenol A-glycidyl ether, 4,4'-diphenylmethane diglycidyl ether, terephthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, methacrylic acid glycidyl ester, methacrylic acid glycidyl ester polymer, Examples thereof include a sidyl ester polymer-containing compound and an arbitrary mixture thereof. Examples of oxazolines include styrene-2-isopropenyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 1,3-phenylenebis (2-oxazoline), and mixtures thereof.
 成分(C)において、下記一般式(3)
HOOC-R1-COOH ・・・(3)
中のR1は、主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を表す。ここで主鎖原子数とは主鎖骨格の原子の数であり、例えば-R1-が-(CH28-である場合には、主鎖原子数は炭素原子の数であり「8」となる。流動性向上剤自体の溶融粘
度が低くなることから、R1は、分岐を含まない直鎖状置換基であることが好ましく、さらには分岐を含まない直鎖の脂肪族炭化水素鎖であることが好ましい。また、R1は飽和でも不飽和でもよいが、飽和脂肪族炭化水素鎖であることが好ましい。不飽和結合を含む
場合には、上記流動性向上剤が屈曲性を十分に得られないことがあり、流動性向上剤自体の溶融粘度の増加を招く場合がある。上記流動性向上剤の重合の容易さ、およびガラス転移点の向上を両立することができる点で、R1は炭素数2~18の直鎖の飽和脂肪族炭化水素鎖であることが好ましく、炭素数4~16の直鎖の飽和脂肪族炭化水素鎖であること
がより好ましく、炭素数8~14の直鎖の飽和脂肪族炭化水素鎖であることがさらに好ましく、炭素数8の直鎖の飽和脂肪族炭化水素鎖であることが最も好ましい。上記流動性向上剤のガラス転移点の向上は、芳香族ポリカーボネート系樹脂に上記流動性向上剤を添加して得られる樹脂組成物の耐熱性の向上につながる。流動性向上剤自体の溶融粘度が低下する点で、R1の主鎖原子数は偶数であることが好ましい。以上の点から、R1は特に-(CH28-、-(CH210-、-(CH212-から選ばれる1種であることが好ましい。ジカルボン酸成分は、単独で用いても良いし、本発明の効果を失わない範囲で2種類以上を混合しても良い。
In the component (C), the following general formula (3)
HOOC-R 1 -COOH (3)
R 1 therein represents a divalent linear substituent which may have 2 to 18 main chain atoms and may be branched. Here, the number of main chain atoms is the number of atoms in the main chain skeleton. For example, when —R 1 — is — (CH 2 ) 8 —, the number of main chain atoms is the number of carbon atoms, and “8 " Since the melt viscosity of the fluidity improver itself is low, R 1 is preferably a straight-chain substituent that does not contain a branch, and further, a straight-chain aliphatic hydrocarbon chain that does not contain a branch. Is preferred. R 1 may be saturated or unsaturated, but is preferably a saturated aliphatic hydrocarbon chain. When the unsaturated bond is included, the fluidity improver may not be sufficiently flexible, and may increase the melt viscosity of the fluidity improver itself. R 1 is preferably a straight-chain saturated aliphatic hydrocarbon chain having 2 to 18 carbon atoms from the viewpoint that both the ease of polymerization of the fluidity improver and the improvement of the glass transition point can be achieved. More preferably, it is a straight chain saturated aliphatic hydrocarbon chain having 4 to 16 carbon atoms, more preferably a straight chain saturated aliphatic hydrocarbon chain having 8 to 14 carbon atoms, and a straight chain having 8 carbon atoms. Most preferred is a saturated aliphatic hydrocarbon chain. Improvement of the glass transition point of the fluidity improver leads to improvement of heat resistance of a resin composition obtained by adding the fluidity improver to an aromatic polycarbonate resin. The number of main chain atoms of R 1 is preferably an even number in that the melt viscosity of the fluidity improver itself decreases. In view of the above, R 1 is particularly preferably one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 —. A dicarboxylic acid component may be used independently and may mix 2 or more types in the range which does not lose the effect of this invention.
 本発明における流動性向上剤(II)は、その効果を失わない程度に他のモノマーを共重合しても構わない。他のモノマーとしては、例えば、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン、芳香族ジアミン、芳香族アミノカルボン酸またはカプロラクタム類、カプロラクトン類、脂肪族ジカルボン酸、脂肪族ジオール、脂肪族ジアミン、脂環族ジカルボン酸、および脂環族ジオール、芳香族メルカプトカルボン酸、芳香族ジチオールおよび芳香族メルカプトフェノールが挙げられる。 The fluidity improver (II) in the present invention may be copolymerized with other monomers to such an extent that the effect is not lost. Other monomers include, for example, aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines, aromatic diamines, aromatic aminocarboxylic acids or caprolactams, caprolactones, aliphatic dicarboxylic acids, fatty acids Aromatic diols, aliphatic diamines, alicyclic dicarboxylic acids, and alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, and aromatic mercaptophenols.
 ただし、上記流動性向上剤を構成する上記他のモノマーの含有率は、流動性向上剤全体のモル数に対して、50モル%未満であり、好ましくは、30モル%未満、より好ましくは、10モル%未満、最も好ましくは、5モル%未満である。上記他のモノマーの含有率が、上記流動性向上剤全体のモル数に対して、50モル%以上である場合には、上記流動性向上剤の芳香族ポリカーボネート系樹脂に対する相溶性が低下し、上記流動性向上剤が芳香族ポリカーボネート系樹脂と相溶することが困難になる。 However, the content of the other monomer constituting the fluidity improver is less than 50 mol%, preferably less than 30 mol%, more preferably, relative to the total number of moles of the fluidity improver. Less than 10 mol%, most preferably less than 5 mol%. When the content of the other monomer is 50 mol% or more based on the total number of moles of the fluidity improver, the compatibility of the fluidity improver with the aromatic polycarbonate resin decreases. It becomes difficult for the fluidity improver to be compatible with the aromatic polycarbonate resin.
 芳香族ヒドロキシカルボン酸の具体例としては、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、2-ヒドロキシ-5-ナフトエ酸、2-ヒドロキシ-7-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸、4’-ヒドロキシフェニル-4-安息香酸、3’-ヒドロキシフェニル-4-安息香酸、4’-ヒドロキシフェニル-3-安息香酸、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-5-naphthoic acid, 2-hydroxy -7-naphthoic acid, 2-hydroxy-3-naphthoic acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid, and their And alkyl, alkoxy or halogen-substituted products.
 芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ジカルボキシビフェニル、3,4’-ジカルボキシビフェニル、4,4”-ジカルボキシターフェニル、ビス(4-カルボキシフェニル)エーテル、ビス(4-カルボキシフェノキシ)ブタン、ビス(4-カルボキシフェニル)エタン、ビス(3-カルボキシフェニル)エーテル、ビス(3-カルボキシフェニル)エタン、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 3 , 4′-dicarboxybiphenyl, 4,4 ″ -dicarboxyterphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenoxy) butane, bis (4-carboxyphenyl) ethane, bis (3-carboxy Phenyl) ether, bis (3-carboxyphenyl) ethane, and alkyl, alkoxy or halogen substituents thereof.
 芳香族ジオールの具体例としては、ピロカテコール、ハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェノールエーテル、ビス(4-ヒドロキシフェニル)エタン、2,2’-ジヒドロキシビナフチル、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic diol include pyrocatechol, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 3,3′-dihydroxybiphenyl, 3,4′- Examples include dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxybiphenol ether, bis (4-hydroxyphenyl) ethane, 2,2′-dihydroxybinaphthyl, and alkyl, alkoxy or halogen substituents thereof. It is done.
 芳香族ヒドロキシアミンの具体例としては、4-アミノフェノール、N-メチル-4-アミノフェノール、3-アミノフェノール、3-メチル-4-アミノフェノール、4-アミノ-1-ナフトール、4-アミノ-4’-ヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルエーテル、4-アミノ-4’-ヒドロキシビフェニルメタン、4-アミノ-4’-ヒドロキシビフェニルスルフィド、2,2’-ジアミノビナフチル、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic hydroxyamine include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4-amino- 4′-hydroxybiphenyl, 4-amino-4′-hydroxybiphenyl ether, 4-amino-4′-hydroxybiphenylmethane, 4-amino-4′-hydroxybiphenyl sulfide, 2,2′-diaminobinaphthyl, and their Examples thereof include alkyl, alkoxy, and halogen-substituted products.
 芳香族ジアミンおよび芳香族アミノカルボン酸の具体例としては、1,4-フェニレンジアミン、1,3-フェニレンジアミン、N-メチル-1,4-フェニレンジアミン、N,N’-ジメチル-1,4-フェニレンジアミン、4,4’-ジアミノフェニルスルフィド(チオジアニリン)、4,4’-ジアミノビフェニルスルホン、2,5-ジアミノトルエン、4,4’-エチレンジアニリン、4,4’-ジアミノビフェノキシエタン、4,4’-ジアミノビフェニルメタン(メチレンジアニリン)、4,4’-ジアミノビフェニルエーテル(オキシジアニリン)、4-アミノ安息香酸、3-アミノ安息香酸、6-アミノ-2-ナフトエ酸、7-アミノ-2-ナフトエ酸、およびそれらのアルキル、アルコキシまたはハロゲン置換体等が挙げられる。 Specific examples of the aromatic diamine and aromatic aminocarboxylic acid include 1,4-phenylenediamine, 1,3-phenylenediamine, N-methyl-1,4-phenylenediamine, N, N′-dimethyl-1,4. -Phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminobiphenylsulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminobiphenoxyethane 4,4′-diaminobiphenylmethane (methylenedianiline), 4,4′-diaminobiphenyl ether (oxydianiline), 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino-2-naphthoic acid, 7-amino-2-naphthoic acid and their alkyl, alkoxy or halogen substituted products. It is.
 脂肪族ジカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、フマル酸、マレイン酸等が挙げられる。 Specific examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, fumaric acid, maleic acid Etc.
 脂肪族ジアミンの具体例としては、1,2-エチレンジアミン、1,3-トリメチレンジアミン、1,4-テトラメチレンジアミン、1,6-ヘキサメチレンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、および1,12-ドデカンジアミン等が挙げられる。 Specific examples of the aliphatic diamine include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, 1,8-octanediamine, 1,9- Nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine and the like can be mentioned.
 脂環族ジカルボン酸、脂肪族ジオールおよび脂環族ジオールの具体例としては、ヘキサヒドロテレフタル酸、トランス-1,4-シクロヘキサンジオール、シス-1,4-シクロヘキサンジオール、トランス-1,4-シクロヘキサンジメタノール、シス-1,4-シクロヘキサンジメタノール、トランス-1,3-シクロヘキサンジオール、シス-1,2-シクロヘキサンジオール、トランス-1,3-シクロヘキサンジメタノール、エチレングリコール、プロピレングリコール、ブチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ネオペンチルグリコール等の直鎖状または分鎖状脂肪族ジオール、およびそれらの反応性誘導体等が挙げられる。 Specific examples of the alicyclic dicarboxylic acid, the aliphatic diol and the alicyclic diol include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, cis-1,4-cyclohexanediol, and trans-1,4-cyclohexane. Dimethanol, cis-1,4-cyclohexanedimethanol, trans-1,3-cyclohexanediol, cis-1,2-cyclohexanediol, trans-1,3-cyclohexanedimethanol, ethylene glycol, propylene glycol, butylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, neo Pentyl glycol etc. Jo or branched chain aliphatic diols, and the like their reactive derivatives.
 芳香族メルカプトカルボン酸、芳香族ジチオールおよび芳香族メルカプトフェノールの具体例としては、4-メルカプト安息香酸、2-メルカプト-6-ナフトエ酸、2-メルカプト-7-ナフトエ酸、ベンゼン-1,4-ジチオール、ベンゼン-1,3-ジチオール、2,6-ナフタレン-ジチオール、2,7-ナフタレン-ジチオール、4-メルカプトフェノール、3-メルカプトフェノール、6-メルカプト-2-ヒドロキシナフタレン、7-メルカプト-2-ヒドロキシナフタレン、およびそれらの反応性誘導体等が挙げられる。 Specific examples of aromatic mercaptocarboxylic acid, aromatic dithiol and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene-1,4- Dithiol, benzene-1,3-dithiol, 2,6-naphthalene-dithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercapto-2-hydroxynaphthalene, 7-mercapto-2 -Hydroxynaphthalene, and reactive derivatives thereof.
 本発明における流動性向上剤は、良好な色調の樹脂組成物が得られる点で、ホスファイト系酸化防止剤を予め含有していてもよい。〔ここで、ホスファイト系酸化防止剤を予め含有する流動性向上剤とは、ホスファイト系酸化防止剤と流動性向上剤の混合物を意味している。このホスファイト系酸化防止剤は、樹脂組成物中でも酸化防止剤として機能する。すなわち本発明の樹脂組成物の最も単純な製造法は、ポリカーボネート樹脂、流動性向上剤およびホスファイト系酸化防止剤の3成分を一度に混合することであるが、「ポリカーボネート樹脂」と「ホスファイト系酸化防止剤と流動性向上剤の混合物」を混合することも、本発明の実施形態に含まれる。〕
その理由は、流動性向上剤自体の変色を防止するため、および、流動性向上剤の重合に使用される重合触媒を失活させ、流動性向上剤と芳香族ポリカーボネート系樹脂とを混合するときに発生するおそれのある、流動性向上剤に含まれる上記ポリエステルと芳香族ポリカーボネート系樹脂とのエステル交換や加水分解反応による変色を防止することができるためであると考えられる。これにより芳香族ポリカーボネート系樹脂の分子量の減少をより効果的に抑制することができるため、流動性向上剤を含有する樹脂組成物は、芳香族ポリカーボネート系樹脂本来の特性を損なうことなく、流動性のみを向上させることができる。流動性向上剤中のホスファイト系酸化防止剤の含有量は、流動性向上剤の重量に対して0.005~5質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましく、0.02~0.05質量%であることが最も好ましい。ホスファイト系酸化防止剤の含有量が0.005質量%未満の場合には、ホスファイト系酸化防止剤の含有量が少なく、芳香族ポリカーボネート系樹脂に上記流動性向上剤を配合したときに着色が生じる場合がある。また、ホスファイト系酸化防止剤の含有量が5質量%よりも多い場合には、芳香族ポリカーボネート系樹脂に上記流動性向上剤を添加して得られる樹脂組成物の衝撃強度を低下させる場合がある。
The fluidity improver in the present invention may contain a phosphite antioxidant in advance in that a resin composition having a good color tone can be obtained. [Here, the fluidity improver containing a phosphite antioxidant in advance means a mixture of a phosphite antioxidant and a fluidity improver. This phosphite-based antioxidant functions as an antioxidant even in the resin composition. That is, the simplest production method of the resin composition of the present invention is to mix three components of polycarbonate resin, fluidity improver and phosphite antioxidant at one time, but “polycarbonate resin” and “phosphite”. Mixing the “mixture of the system antioxidant and the fluidity improver” is also included in the embodiment of the present invention. ]
The reason for this is to prevent discoloration of the fluidity improver itself and to deactivate the polymerization catalyst used for the polymerization of the fluidity improver and mix the fluidity improver and the aromatic polycarbonate resin. This is considered to be because discoloration due to transesterification or hydrolysis reaction between the polyester contained in the fluidity improver and the aromatic polycarbonate resin, which may occur in the fluidity improver, can be prevented. As a result, a decrease in the molecular weight of the aromatic polycarbonate resin can be more effectively suppressed, so that the resin composition containing the fluidity improver is fluid without impairing the original properties of the aromatic polycarbonate resin. Can only improve. The content of the phosphite antioxidant in the fluidity improver is preferably 0.005 to 5% by mass and preferably 0.01 to 2% by mass with respect to the weight of the fluidity improver. More preferably, the content is 0.01 to 1% by mass, and most preferably 0.02 to 0.05% by mass. When the content of the phosphite-based antioxidant is less than 0.005% by mass, the content of the phosphite-based antioxidant is small, and coloring occurs when the fluidity improver is blended with the aromatic polycarbonate-based resin. May occur. Further, when the content of the phosphite antioxidant is more than 5% by mass, the impact strength of the resin composition obtained by adding the fluidity improver to the aromatic polycarbonate resin may be reduced. is there.
 ホスファイト系酸化防止剤は各種の化合物が知られており、例えば大成社発行の「酸化防止剤ハンドブック」、シーエムシー出版発行の「高分子材料の劣化と安定化」(235~242頁)等に記載された種々の化合物が挙げられるが、これらに限定されるわけではない。ホスファイト系酸化防止剤として、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジフォスファイト、ビス(2,4―ジクミルフェニル)ペンタエリスリトールジフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト等が挙げられる。商品名では、アデカスタブPEP-36、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-8F、アデカスタブPEP-8W、アデカスタブPEP-11C、アデカスタブPEP-24G、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブP、アデカスタブQL、アデカスタブ522A、アデカスタブ329K、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPP(以上、いずれも株式会社アデカ製)、Irgafos38、Irgafos126、Irgafos168、IrgafosP-EPQ(以上、いずれもBASF JAPAN Ltd.製)等を例示することができる。これらのなかでも、特にエステル交換反応や加水分解反応を抑制する効果を顕著に示し得ること、酸化防止剤自体の融点が高く樹脂から揮発し難いこと等から、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブPEP-24G、Irgafos126等がより好ましい。 Various compounds are known as phosphite antioxidants, such as “Antioxidant Handbook” published by Taiseisha, “Degradation and Stabilization of Polymer Materials” (pages 235 to 242) published by CMC Publishing, etc. Although not limited to various compounds described in (1). Examples of phosphite antioxidants include tris (2,4-di-t-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester Phosphoric acid, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-) 4-methylphenyl) pentaerythritol di-phosphite and the like. The product names include ADK STAB PEP-36, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-8F, ADK STAB PEP-8W, ADK STAB PEP-11C, ADK STAB PEP-24G, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB P, ADK STAB QL, ADK STAB 522A, ADK STAB 329K, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 13510, ADK STAB 3010 (all of which are manufactured by ADEKA CORPORATION), Irgafos 38, Irgafos 126, Irgafos 126 As mentioned above, BASFBAJAPAN LTD.) And the like can be exemplified. Among these, Adeka Stub PEP-36, Adeka Stub HP-10 are particularly effective in suppressing the transesterification reaction and hydrolysis reaction, and the antioxidant itself has a high melting point and hardly volatilizes from the resin. More preferable are ADK STAB 2112, ADK STAB PEP-24G, Irgafos 126 and the like.
 本発明における流動性向上剤は、良好な色調のポリカーボネート樹脂組成物が得られる点で、ヒンダードフェノール系酸化防止剤を予め含有していてもよい。流動性向上剤中のヒンダードフェノール系酸化防止剤の含有量は、流動性向上剤の重量に対して0.005~5質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましく、0.02~0.05質量%であることが最も好ましい。ヒンダードフェノール系酸化防止剤の含有量が0.005質量%未満の場合には、ヒンダードフェノール系酸化防止剤の含有量が少なく、芳香族ポリカーボネート系樹脂に上記流動性向上剤を配合したときに着色が生じる場合がある。ヒンダードフェノール系酸化防止剤の含有量が5質量%よりも多い場合には、芳香族ポリカーボネート系樹脂に上記流動性向上剤を添加して得られる樹脂組成物の衝撃強度を低下させる場合がある。 The fluidity improver in the present invention may contain a hindered phenol antioxidant in advance in that a polycarbonate resin composition having a good color tone can be obtained. The content of the hindered phenolic antioxidant in the fluidity improver is preferably 0.005 to 5% by mass, and 0.01 to 2% by mass with respect to the weight of the fluidity improver. Is more preferably 0.01 to 1% by mass, and most preferably 0.02 to 0.05% by mass. When the content of the hindered phenolic antioxidant is less than 0.005% by mass, the content of the hindered phenolic antioxidant is small, and the fluidity improver is blended with the aromatic polycarbonate resin. May be colored. When the content of the hindered phenol antioxidant is more than 5% by mass, the impact strength of the resin composition obtained by adding the fluidity improver to the aromatic polycarbonate resin may be lowered. .
 ヒンダードフェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、モノ(またはジ、またはトリ)(α-メチルベンジル)フェノール、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-t-アミルハイドロキノン、トリエチレングリコール-
ビス-[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリトール-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N'-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒド
ロキシ-ベンジルホスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2,4-ビス[(オクチルチオ)メチル]o-クレゾール、N,N'-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、トリス(2,4-ジ-
t-ブチルフェニル)ホスファイト、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-5'-t-オクチルフェニル)-ベンゾトリアゾール、メチル-3-[3-t-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネートとポリエチレングリコール(分子量約300)との縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。
Examples of the hindered phenol antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di, or tri) (Α-methylbenzyl) phenol, 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amyl Hydroquinone, triethylene glycol
Bis- [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythritol-tetrakis [3- ( 3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl- 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N′-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy Dolosine namamide), 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl) -4-hydroxybenzyl) benzene, bis (3,5-di-tert-butyl-4-hydroxybenzylphosphonate ethyl) calcium, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate 2,4-bis [(octylthio) methyl] o-cresol, N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, tris (2,4 -Gee-
t-butylphenyl) phosphite, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole 2- (3,5-di-tert-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- ( 3,5-di-t-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2′-hydroxy -5'-t-octylphenyl) -benzotriazole, methyl-3- [3-t-butyl-5- (2H-benzotriazol-2-yl) -4 Hydroxyphenyl] propionate and polyethylene glycol (molecular weight about 300), hydroxyphenylbenzotriazole derivative, 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
 商品名では、ノクラック200、ノクラックM-17、ノクラックSP、ノクラックSP-N、ノクラックNS-5、ノクラックNS-6、ノクラックNS-30、ノクラック300、ノクラックNS-7、ノクラックDAH(以上、いずれも大内新興化学工業株式会社製)、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-616、アデカスタブAO-635、アデカスタブAO-658、アデカスタブAO-80、アデカスタブAO-15、アデカスタブAO-18、アデカスタブ328、アデカスタブAO330、アデカスタブAO-37(以上、いずれも株式会社アデカ製)、IRGANOX-245、IRGANOX-259、IRGANOX-565、IRGANOX-1010、IRGANOX-1024、IRGANOX-1035、IRGANOX-1076、IRGANOX-1081、IRGANOX-1098、IRGANOX-1222、IRGANOX-1330、IRGANOX-1425WL(以上、いずれもBASF JAPAN Ltd.製)、SumilizerGA-80(以上、住友化学株式会社製)等が挙げられる。これらのなかでも、酸化防止剤自体が特に変色し難い点、およびホスファイト系酸化防止剤との併用によって樹脂の着色を効率よく抑制することができる点から、アデカスタブAO-60、IRGANOX-1010等がより好ましい。 The trade names are Nocrack 200, Nocrack M-17, Nocrack SP, Nocrack SP-N, Nocrack NS-5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7, Nocrack DAH (all above) Ouchi Shinsei Chemical Co., Ltd.), ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-616, ADK STAB AO-635, ADK STAB AO-658, ADK STAB AO-80, ADK STAB AO-15, ADK STAB AO-18, ADK STAB 328, ADK STAB AO330, ADK STAB AO-37 (all of which are manufactured by ADK), IRGANOX-245, IRGANOX-259, IRGANOX-56 , IRGANOX-1010, IRGANOX-1024, IRGANOX-1035, IRGANOX-1076, IRGANOX-1081, IRGANOX-1098, IRGANOX-1222, IRGANOX-1330, IRGANOX-1425WL (all of which are manufactured by BASF JAPAN Ltd.), GA 80 (above, manufactured by Sumitomo Chemical Co., Ltd.). Of these, ADK STAB AO-60, IRGANOX-1010, and the like, since the antioxidant itself is particularly difficult to discolor, and the coloration of the resin can be efficiently suppressed by the combined use with a phosphite antioxidant. Is more preferable.
 さらにフェノール系酸化防止剤として、アクリレート基とフェノール基とを併せもつモノアクリレートフェノール系安定剤を用いることもできる。モノアクリレートフェノール系安定剤としては、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート(商品名:スミライザーGM)、2,4-ジ-t-アミル-6-[1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル]フェニルアクリレート(商品名:スミライザーGS)等が挙げられる。 Furthermore, a monoacrylate phenol-based stabilizer having both an acrylate group and a phenol group can also be used as a phenol-based antioxidant. Examples of monoacrylate phenol-based stabilizers include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate (trade name: Sumilizer GM), 2 , 4-di-t-amyl-6- [1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate (trade name: Sumilizer GS).
 ホスファイト系酸化防止剤とヒンダードフェノール系酸化防止剤の組み合わせとしては、アデカスタブPEP-36、アデカスタブ2112やIrgafos126と、アデカスタブAO-60やIRGANOX-1010との組み合わせが、樹脂の着色を特に抑制することができる点で好ましい。 As a combination of a phosphite antioxidant and a hindered phenol antioxidant, a combination of ADK STAB PEP-36, ADK STAB 2112 and IrgaFOS 126, and ADK STAB AO-60 and IRGANOX-1010 particularly suppresses coloring of the resin. It is preferable in that it can be performed.
 本発明における流動性向上剤の数平均分子量とは、ポリスチレンを標準物質とし、p-クロロフェノールとトルエンとの体積比が3:8の混合溶媒に、本発明における樹脂を濃度が0.25質量%となるように溶解して調製した溶液を用いて、GPCにて80℃で測定した値である。本発明における上記ポリエステルの数平均分子量は、好ましくは2000~30000であり、より好ましくは3000~25000であり、さらに好ましくは4000~20000である。上記ポリエステルの数平均分子量が2000未満の場合には、芳香族ポリカーボネート系樹脂に流動性向上剤を添加して得られる樹脂組成物を成形するとき等に、流動性向上剤がブリードアウトする場合がある。また、上記流動性向上剤の数平均分子量が30000を超える場合には、流動性向上剤自体の溶融粘度が高くなり、芳香族ポリカーボネート系樹脂に流動性向上剤を添加して得られる樹脂組成物の成形加工時の流動性を効果的に向上させることができない場合がある。 The number average molecular weight of the fluidity improver in the present invention refers to a mixed solvent having a volume ratio of p-chlorophenol and toluene of 3: 8 using polystyrene as a standard substance, and the resin in the present invention having a concentration of 0.25 mass. It is a value measured at 80 ° C. by GPC using a solution prepared by dissolving to be%. The number average molecular weight of the polyester in the present invention is preferably 2000 to 30000, more preferably 3000 to 25000, and further preferably 4000 to 20000. When the number average molecular weight of the polyester is less than 2000, the fluidity improver may bleed out when a resin composition obtained by adding the fluidity improver to the aromatic polycarbonate resin is molded. is there. Further, when the number average molecular weight of the fluidity improver exceeds 30000, the melt viscosity of the fluidity improver itself is increased, and the resin composition obtained by adding the fluidity improver to the aromatic polycarbonate resin. In some cases, the fluidity during the molding process cannot be improved effectively.
 本発明における流動性向上剤(II)は、公知のいかなる方法で製造されていても構わない。製造方法の一例としては、モノマーの水酸基を無水酢酸等の低級脂肪酸を用いてそれぞれ個別に、または一括して低級脂肪酸エステルとした後、別の反応槽または同一の反応槽で、カルボン酸と脱低級脂肪酸重縮合反応させる方法が挙げられる。重縮合反応は、実質的に溶媒の存在しない状態で、通常、220~330℃、好ましくは240~310℃の温度で、窒素ガス等の不活性ガスの存在下、常圧または減圧下に、0.5~5時間行われる。反応温度が220℃よりも低い場合は反応の進行が遅く、330℃よりも高い場合は分解等の副反応が起こり易い。減圧下で反応させる場合は、段階的に減圧度を高くすることが好ましい。急激に高真空度まで減圧した場合には、ジカルボン酸モノマーや末端封止に用いる低分子化合物が揮発し、望む組成、または分子量の樹脂が得られない場合がある。到達真空度は、40Torr以下が好ましく、30Torr以下がより好ましく、20Torr以下がさらに好ましく、10Torr以下が特に好ましい。到達真空度が40Torrよりも高い場合には、脱酸が十分に進まず、重合時間が長くなり、樹脂が着色することがある。重縮合反応は、多段階の反応温度を採用しても構わないし、場合により昇温中あるいは最高温度に達したら直ちに反応生成物を溶融状態で抜き出し、回収することもできる。得られたポリエステル樹脂はそのままで使用してもよいし、未反応原料を除去する、または、物性を向上させる意図でさらに固相重合を行なうこともできる。固相重合を行なう場合には、得られたポリエステル樹脂を粒径3mm以下、好ましくは1mm以下の粒子に機械的に粉砕し、固相状態のまま100~350℃で窒素ガス等の不活性ガス雰囲気下、または減圧下に1~30時間処理することが好ましい。ポリエステル樹脂の粒子の粒径が3mmより大きくなると、処理が十分でなく、物性上の問題を生じるため好ましくない。固相重合時の処理温度や昇温速度は、ポリエステル樹脂粒子同士が融着を起こさないように選ぶことが好ましい。 The fluidity improver (II) in the present invention may be produced by any known method. As an example of the production method, the hydroxyl group of the monomer is individually or collectively made into a lower fatty acid ester using a lower fatty acid such as acetic anhydride, and then removed from the carboxylic acid in another reaction vessel or the same reaction vessel. The method of making a lower fatty acid polycondensation reaction is mentioned. The polycondensation reaction is carried out in the presence of an inert gas such as nitrogen gas in the presence of an inert gas, usually at a temperature of 220 to 330 ° C., preferably 240 to 310 ° C. in the substantial absence of a solvent. It is performed for 0.5 to 5 hours. When the reaction temperature is lower than 220 ° C., the reaction proceeds slowly, and when it is higher than 330 ° C., side reactions such as decomposition tend to occur. When making it react under reduced pressure, it is preferable to raise a pressure reduction degree in steps. When the pressure is rapidly reduced to a high degree of vacuum, the dicarboxylic acid monomer and the low molecular weight compound used for end-capping may volatilize, and a resin having a desired composition or molecular weight may not be obtained. The ultimate vacuum is preferably 40 Torr or less, more preferably 30 Torr or less, further preferably 20 Torr or less, and particularly preferably 10 Torr or less. When the ultimate vacuum is higher than 40 Torr, deoxidation does not proceed sufficiently, the polymerization time becomes long, and the resin may be colored. The polycondensation reaction may employ a multi-stage reaction temperature. If necessary, the reaction product may be withdrawn in a molten state and recovered as soon as the temperature rises or when the maximum temperature is reached. The obtained polyester resin may be used as it is, or solid phase polymerization may be further performed for the purpose of removing unreacted raw materials or improving physical properties. In the case of performing solid phase polymerization, the obtained polyester resin is mechanically pulverized into particles having a particle size of 3 mm or less, preferably 1 mm or less, and an inert gas such as nitrogen gas at 100 to 350 ° C. in a solid state. The treatment is preferably performed in an atmosphere or under reduced pressure for 1 to 30 hours. When the particle diameter of the polyester resin particles is larger than 3 mm, the treatment is not sufficient, and problems with physical properties are caused, which is not preferable. It is preferable to select the treatment temperature and the rate of temperature increase during solid-phase polymerization so that the polyester resin particles do not cause fusion.
 本発明における流動性向上剤の製造に用いられる低級脂肪酸の酸無水物としては、炭素数2~5の低級脂肪酸の酸無水物、例えば無水酢酸、無水プロピオン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロム酢酸、無水ジブロム酢酸、無水トリブロム酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸等が挙げられる。このうち、無水酢酸、無水プロピオン酸、無水トリクロル酢酸が特に好適に用いられる。低級脂肪酸の酸無水物の使用量は、用いるモノマーおよび末端封止剤が有する水酸基等の官能基の合計に対し1.01~1.5倍当量、好ましくは1.02~1.2倍当量である。低級脂肪酸の酸無水物の使用量が1.01倍当量未満である場合には、低級脂肪酸の酸無水物が揮発することによって、水酸基等の官能基が低級脂肪酸の無水物と反応しきらないことがあり、低分子量の樹脂が得られることがある。 Examples of the lower fatty acid anhydride used in the production of the fluidity improver in the present invention include lower fatty acid anhydrides having 2 to 5 carbon atoms such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, Examples include trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, and pivalic anhydride. Of these, acetic anhydride, propionic anhydride, and trichloroacetic anhydride are particularly preferably used. The amount of the lower fatty acid anhydride used is 1.01 to 1.5 times equivalent, preferably 1.02 to 1.2 times equivalent to the total of the monomers used and the functional groups such as hydroxyl groups of the terminal blocking agent. It is. When the amount of the lower fatty acid anhydride used is less than 1.01 equivalents, the lower fatty acid anhydride is volatilized, so that the functional group such as a hydroxyl group does not completely react with the lower fatty acid anhydride. In some cases, a low molecular weight resin may be obtained.
 本発明における流動性向上剤の製造には重合触媒を使用してもよい。重合触媒としては、従来からポリエステルの重合触媒として公知の触媒を使用することができ、例えば、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属塩触媒、N,N-ジメチルアミノピリジン、N-メチルイミダゾール等の有機化合物触媒が挙げられる。なかでも、流動性向上剤自体の変色を防止することができること、ポリカーボネート樹脂組成物の変色を防止することができることから、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウムがより好ましい。 A polymerization catalyst may be used for the production of the fluidity improver in the present invention. As the polymerization catalyst, conventionally known catalysts can be used as polyester polymerization catalysts, such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide. Examples thereof include metal salt catalysts, organic compound catalysts such as N, N-dimethylaminopyridine and N-methylimidazole. Among these, sodium acetate, potassium acetate, and magnesium acetate are more preferable because discoloration of the fluidity improver itself can be prevented and discoloration of the polycarbonate resin composition can be prevented.
 上記重合触媒の添加量は、少ないほど、芳香族ポリカーボネート系樹脂の分子量低下や黄変を抑制することができる。従って、上記重合触媒の添加量は、ポリエステル樹脂の総重量に対し、通常、0~100×10-2質量%、好ましくは0.5×10-3~50×10-2質量%が好適である。 The smaller the amount of the polymerization catalyst added, the more the molecular weight reduction and yellowing of the aromatic polycarbonate resin can be suppressed. Therefore, the addition amount of the polymerization catalyst is usually 0 to 100 × 10 −2 mass%, preferably 0.5 × 10 −3 to 50 × 10 −2 mass%, based on the total weight of the polyester resin. is there.
 本発明における流動性向上剤の形状に関しては特に制限はなく、例えば、ペレット状、フレーク状、パウダー状等が挙げられる。その粒子径は、芳香族ポリカーボネート系樹脂と溶融混練する押出機に投入することができる程度に小さければよく、6mm以下であることが好ましい。
光拡散剤(III)は、光拡散能を有する微粒子である。このような微粒子としては、無機微粒子および高分子微粒子が挙げられる。
There is no restriction | limiting in particular regarding the shape of the fluid improvement agent in this invention, For example, a pellet form, flake form, powder form etc. are mentioned. The particle diameter should just be as small as it can be thrown into the extruder melt-kneaded with aromatic polycarbonate resin, and it is preferable that it is 6 mm or less.
The light diffusing agent (III) is a fine particle having a light diffusing ability. Examples of such fine particles include inorganic fine particles and polymer fine particles.
 無機微粒子としては、ガラス充填材、炭酸カルシウム、硫酸バリウム、シリカ、タルク、マイカ、ワラストナイト、酸化チタン等が挙げられる。これらのうち、炭酸カルシウムが好ましい。 Examples of the inorganic fine particles include glass filler, calcium carbonate, barium sulfate, silica, talc, mica, wollastonite, titanium oxide and the like. Of these, calcium carbonate is preferred.
 無機微粒子の形状は、繊維状よりは粒状(不定形を含む)または板状が好ましい。例えば、ガラス充填材の場合、ガラスビーズ、ガラスバルーン、ガラスミルドファイバー、ガラスフレーク、極薄ガラスフレーク(ゾル-ゲル法により製造される)、不定形ガラス等が挙げられる。他の無機微粒子においても同様に、様々な形状のものを採用できる。 The shape of the inorganic fine particles is preferably granular (including indeterminate) or plate-like rather than fibrous. For example, in the case of a glass filler, glass beads, glass balloons, glass milled fibers, glass flakes, ultrathin glass flakes (manufactured by a sol-gel method), amorphous glass and the like can be mentioned. Similarly, other inorganic fine particles having various shapes can be employed.
 無機微粒子は、シランカップリング剤、ポリオルガノ水素シロキサン化合物等の各種シリコーン化合物、脂肪酸エステル化合物、オレフィン化合物等で表面処理されていてもよい。表面処理された無機微粒子は熱安定性および耐加水分解性の向上において効果的である。 The inorganic fine particles may be surface-treated with various silicone compounds such as silane coupling agents and polyorganohydrogensiloxane compounds, fatty acid ester compounds, olefin compounds and the like. The surface-treated inorganic fine particles are effective in improving thermal stability and hydrolysis resistance.
 無機微粒子の屈折率は、1.4~1.8が好ましい。無機微粒子の屈折率がこの範囲にあれば、光拡散性および全光線透過率の両方が良好となる。無機微粒子の屈折率は、各種の文献によって公知であり、液浸法等により簡便に測定できる。 The refractive index of the inorganic fine particles is preferably 1.4 to 1.8. When the refractive index of the inorganic fine particles is within this range, both light diffusibility and total light transmittance are good. The refractive index of inorganic fine particles is known from various documents, and can be easily measured by a liquid immersion method or the like.
 高分子微粒子は、光拡散性の観点から球状であるものが好ましく、真球状に近い形態であるほどより好ましい。 The polymer fine particles are preferably spherical from the viewpoint of light diffusibility, and the closer to a true spherical shape, the more preferable.
 高分子微粒子としては、非架橋性モノマーと架橋性モノマーとを重合して得られる有機架橋粒子;シリコーン系架橋粒子;ポリエーテルサルホン粒子等の非晶性耐熱ポリマー粒子;エポキシ樹脂粒子、ウレタン樹脂粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子、フェノール樹脂粒子等が挙げられる。非晶性耐熱ポリマー粒子の場合、芳香族ポリカーボネート系樹脂(I)と加熱しながら混練した際に粒子の形態が損なわれることがないため、必ずしも架橋性モノマーを必要としない。これら高分子微粒子のうち、有機架橋粒子が特に好ましい。 As polymer fine particles, organic crosslinked particles obtained by polymerizing a non-crosslinkable monomer and a crosslinkable monomer; silicone-based crosslinked particles; amorphous heat-resistant polymer particles such as polyethersulfone particles; epoxy resin particles, urethane resin Examples thereof include particles, melamine resin particles, benzoguanamine resin particles, and phenol resin particles. In the case of amorphous heat-resistant polymer particles, the shape of the particles is not impaired when kneading with the aromatic polycarbonate resin (I) while heating, and thus a crosslinkable monomer is not necessarily required. Of these polymer fine particles, organic crosslinked particles are particularly preferred.
 有機架橋粒子に用いられる非架橋性モノマーとしては、アクリル系モノマー、スチレン系モノマー、アクリロニトリル系モノマー等の非架橋性ビニル系モノマー;オレフィン系モノマー等が挙げられる。 Examples of non-crosslinkable monomers used for organic crosslinked particles include non-crosslinkable vinyl monomers such as acrylic monomers, styrene monomers, and acrylonitrile monomers; olefin monomers.
 アクリル系モノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸フェニル等が挙げられる。これらのうち、メタクリル酸メチルが特に好ましい。 Examples of acrylic monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, Examples include phenyl methacrylate. Of these, methyl methacrylate is particularly preferred.
 スチレン系モノマーとしては、スチレン、α-メチルスチレン、メチルスチレン(ビニルトルエン)、エチルスチレン等のアルキルスチレン;ブロモ化スチレン等のハロゲン化スチレン等が挙げられる。これらのうち、スチレンが特に好ましい。 Examples of the styrene monomer include alkyl styrene such as styrene, α-methyl styrene, methyl styrene (vinyl toluene), ethyl styrene, and halogenated styrene such as brominated styrene. Of these, styrene is particularly preferred.
 アクリロニトリル系モノマーとしては、アクリロニトリル、メタクリロニトリルが挙げられる。 Examples of acrylonitrile monomers include acrylonitrile and methacrylonitrile.
 オレフィン系モノマーとしては、エチレン、各種ノルボルネン型化合物等が挙げられる。 Examples of the olefin monomer include ethylene and various norbornene type compounds.
 共重合可能な他のモノマーとしては、メタクリル酸グリシジル、N-メチルマレイミド、無水マレイン酸等が挙げられ、結果として、有機架橋粒子は、N-メチルグルタルイミド等の単位を有することもできる。 Examples of other copolymerizable monomers include glycidyl methacrylate, N-methylmaleimide, maleic anhydride, and the like, and as a result, the organic crosslinked particles may have units such as N-methylglutarimide.
 これらモノマーは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 These monomers may be used alone or in combination of two or more.
 有機架橋粒子に用いられる架橋性モノマーとしては、例えば、ジビニルベンゼン、メタクリル酸アリル、トリアリルシアヌレート、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、N-メチロール(メタ)アクリルアミド等が挙げられる。 Examples of the crosslinkable monomer used in the organic crosslinked particles include divinylbenzene, allyl methacrylate, triallyl cyanurate, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and propylene glycol (meth). Acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane (meth) acrylate, pentaerythritol tetra (meth) acrylate, bisphenol A di (meth) acrylate, dicyclopentanyl di (meth) acrylate, dicyclo Examples thereof include pentenyl di (meth) acrylate and N-methylol (meth) acrylamide.
 有機架橋粒子の製造方法としては、乳化重合法、懸濁重合法、過硫酸カリウム等の開始剤を用いるソープフリー重合法、シード重合法、二段階膨潤重合法等が挙げられる。また、懸濁重合法として、水相とモノマー相とを個別に保持して両者を正確に連続式の分散機に供給し、粒子径を分散機の回転数で制御する方法;同様に連続式の製造方法において分散能を有する水性液体中にモノマー相を数~数十μmの細径オリフィスまたは多孔質フィルターを通すことにより供給し粒径を制御する方法等も採用できる。 Examples of the method for producing organic crosslinked particles include an emulsion polymerization method, a suspension polymerization method, a soap-free polymerization method using an initiator such as potassium persulfate, a seed polymerization method, and a two-stage swelling polymerization method. In addition, as a suspension polymerization method, a water phase and a monomer phase are individually maintained and both are accurately supplied to a continuous disperser, and the particle diameter is controlled by the rotation speed of the disperser; In this production method, a method in which the monomer phase is supplied by passing it through a small diameter orifice of several to several tens of μm or a porous filter in an aqueous liquid having dispersibility to control the particle diameter can also be adopted.
 シリコーン系架橋粒子は、シロキサン結合を主骨格としてケイ素原子に有機置換基を有するものであり、ポリメチルシルセスキオキサンに代表される架橋度の高いものと、メチルシリコーンゴム粒子に代表される架橋度の低いものがある。本発明においては、ポリメチルシルセスキオキサンに代表される架橋度の高いものが好ましい。 Silicone-based crosslinked particles are those having a siloxane bond as the main skeleton and an organic substituent on the silicon atom, and those having a high degree of crosslinking represented by polymethylsilsesquioxane and those crosslinked by methylsilicone rubber particles. There is a low degree. In the present invention, those having a high degree of crosslinking represented by polymethylsilsesquioxane are preferred.
 シリコーン系架橋粒子のケイ素原子に結合する有機置換基としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基;フェニル基等のアリール基;ベンジル基等のアラルキル基;カルボキシル基、カルボニル基、エステル基、エーテル基等が挙げられる。 Examples of the organic substituent bonded to the silicon atom of the silicone-based crosslinked particles include alkyl groups such as methyl group, ethyl group, propyl group, and butyl group; aryl groups such as phenyl group; aralkyl groups such as benzyl group; carboxyl group, carbonyl Group, ester group, ether group and the like.
 シリコーン系架橋粒子の製造方法としては、水中における3官能性のアルコキシシラン等の加水分解および縮合反応によって、シロキサン結合を成長させながら3次元架橋した粒子を形成させる方法が挙げられる。シリコーン系架橋粒子の粒子径は、触媒であるアルカリの量、攪拌条件等により制御できる。 Examples of the method for producing the silicone-based crosslinked particles include a method of forming three-dimensionally crosslinked particles while growing siloxane bonds by hydrolysis and condensation reaction of trifunctional alkoxysilane or the like in water. The particle diameter of the silicone-based crosslinked particles can be controlled by the amount of alkali serving as a catalyst, stirring conditions, and the like.
 他の高分子微粒子の製造方法としては、スプレードライ法、液中硬化法(凝固法)、相分離法(コアセルベーション法)、溶媒蒸発法、再沈殿法が挙げられる。また、これら方法にノズル振動法等を組み合わせてもよい。 Other polymer fine particle production methods include spray drying, submerged curing (coagulation), phase separation (coacervation), solvent evaporation, and reprecipitation. Further, a nozzle vibration method or the like may be combined with these methods.
 高分子微粒子の構造としては、単相構造、コア-シェル構造、2種以上の成分が相互に絡み合ったIPN構造等が挙げられる。また、無機微粒子をコアとし、有機架橋粒子の成分をシェルとする複合型粒子、有機架橋粒子をコアとし、エポキシ樹脂、ウレタン樹脂等をシェルとする複合型粒子等であってもよい。 Examples of the structure of the polymer fine particles include a single-phase structure, a core-shell structure, and an IPN structure in which two or more components are entangled with each other. Alternatively, composite particles having inorganic fine particles as a core and organic crosslinked particles as a shell, and composite particles having organic crosslinked particles as a core and epoxy resin, urethane resin or the like as a shell may be used.
 高分子微粒子の屈折率は、通常、1.33~1.7程度である。高分子微粒子の屈折率がこの範囲であれば、樹脂組成物に配合した状態において充分な光拡散機能を発揮する。 The refractive index of the polymer fine particles is usually about 1.33 to 1.7. When the refractive index of the polymer fine particles is within this range, a sufficient light diffusing function is exhibited in a state of being blended in the resin composition.
 光拡散剤(III)としては、無機微粒子よりも高分子微粒子の方が好ましい。高分子微粒子を用いることにより、光拡散性と全光線透過率との両立がより高いレベルにおいて実現可能である。 As the light diffusing agent (III), polymer fine particles are preferable to inorganic fine particles. By using the polymer fine particles, it is possible to realize both the light diffusibility and the total light transmittance at a higher level.
 光拡散剤(III)の平均粒子径は、0.01~50μmが好ましく、0.1~10μmがより好ましく、0.1~8μmがさらに好ましい。平均粒子径は、レーザー光散乱法で求められる粒度の積算分布の50%(D50)で表される。 The average particle size of the light diffusing agent (III) is preferably 0.01 to 50 μm, more preferably 0.1 to 10 μm, and further preferably 0.1 to 8 μm. The average particle diameter is represented by 50% (D50) of the cumulative distribution of particle sizes obtained by the laser light scattering method.
 光拡散剤(III)は、粒径の分布が狭いものが好ましく、平均粒子径±2μmの範囲にあ
る微粒子が全体の70質量%以上となるような分布を有するものがより好ましい。
The light diffusing agent (III) preferably has a narrow particle size distribution, and more preferably has such a distribution that fine particles in the range of an average particle size of ± 2 μm are 70% by mass or more of the whole.
 光拡散剤(III)の屈折率と、芳香族ポリカーボネート系樹脂(I)の屈折率との差の絶対値は、0.02~0.2であることが好ましい。屈折率の差がこの範囲にあることにより、光拡散性と全光線透過率とを高いレベルで両立させることが可能となる。光拡散剤(III)の屈折率は、芳香族ポリカーボネート系樹脂(I)の屈折率よりも低いことがより好ましい。 The absolute value of the difference between the refractive index of the light diffusing agent (III) and the refractive index of the aromatic polycarbonate resin (I) is preferably 0.02 to 0.2. When the difference in refractive index is within this range, it is possible to achieve both light diffusibility and total light transmittance at a high level. The refractive index of the light diffusing agent (III) is more preferably lower than the refractive index of the aromatic polycarbonate resin (I).
 光拡散剤(III)の配合量は、芳香族ポリカーボネート系樹脂(I)と他の樹脂および/またはエラストマーと流動性向上剤(II)との合計100質量部に対して、0.1~30質量部が好ましく、0.3~20質量部がより好ましく、0.4~15質量部がさらに好ましく、0.5~10質量部が特に好ましい。光拡散剤(III)の配合量がこの範囲にあれば、高い光拡散機能を発揮する。
本発明の樹脂組成物は芳香族ポリカーボネート系樹脂(I)70~99.9質量%と、流動性向上剤(II)0.1~30質量%とを含有する。(ただし、(I)と(II)の合計を100質量%とする)流動性向上剤(II)の含有率は、0.5質量%以上がより好ましく、1質量%以上がさらに好ましく、3質量%以上が特に好ましい。流動性向上剤の含有率の上限は、20質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。流動性向上剤の含有率が0.1質量%以上であれば、成形加工時の流動性が向上する。樹脂組成物(100質量%)中の流動性向上剤の含有率が30質量%以下であれば、芳香族ポリカーボネート系樹脂の耐熱性が大きく損なわれない。本発明における流動性向上剤は、ガラス転移温度が芳香族ポリカーボネート系樹脂よりも低いために、ポリカーボネート樹脂に相溶させて得られる樹脂組成物のガラス転移点を低下させる。従って、30質量%よりも過剰に本発明における流動性向上剤を含有させると、得られる樹脂組成物の耐熱性が低下する場合がある。
The compounding amount of the light diffusing agent (III) is 0.1 to 30 with respect to 100 parts by mass in total of the aromatic polycarbonate resin (I), another resin and / or elastomer and the fluidity improver (II). Mass parts are preferred, 0.3 to 20 parts by mass are more preferred, 0.4 to 15 parts by mass are more preferred, and 0.5 to 10 parts by mass are particularly preferred. When the blending amount of the light diffusing agent (III) is within this range, a high light diffusing function is exhibited.
The resin composition of the present invention contains 70 to 99.9% by mass of the aromatic polycarbonate resin (I) and 0.1 to 30% by mass of the fluidity improver (II). (However, the total content of (I) and (II) is 100% by mass) The content of the fluidity improver (II) is preferably 0.5% by mass or more, more preferably 1% by mass or more. A mass% or more is particularly preferred. The upper limit of the content of the fluidity improver is more preferably 20% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less. If the content rate of a fluid improvement agent is 0.1 mass% or more, the fluidity | liquidity at the time of a shaping | molding process will improve. If the content rate of the fluidity improver in a resin composition (100 mass%) is 30 mass% or less, the heat resistance of an aromatic polycarbonate-type resin will not be impaired significantly. Since the glass transition temperature in the present invention is lower than that of the aromatic polycarbonate resin, the fluidity improver in the present invention lowers the glass transition point of the resin composition obtained by being dissolved in the polycarbonate resin. Therefore, if the fluidity improver in the present invention is contained in excess of 30% by mass, the heat resistance of the resulting resin composition may be lowered.
 本発明における流動性向上剤を芳香族ポリカーボネート系樹脂に添加して得られる樹脂組成物は、上記流動性向上剤にホスファイト系酸化防止剤が予め含まれているかどうかにかかわらず、さらにホスファイト系酸化防止剤を別途含んでいてもよい。上記流動性向上剤にホスファイト系酸化防止剤が予め含まれていない場合には、上記ホスファイト系酸化防止剤の含有量は、芳香族ポリカーボネート系樹脂と流動性向上剤との合計質量に対して、0.005~5質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましく、0.02~0.05質量%であることが最も好ましい。 The resin composition obtained by adding the fluidity improver in the present invention to the aromatic polycarbonate resin is further phosphite regardless of whether the fluidity improver contains a phosphite antioxidant in advance. A system antioxidant may be included separately. When the fluidity improver does not contain a phosphite antioxidant in advance, the content of the phosphite antioxidant is based on the total mass of the aromatic polycarbonate resin and the fluidity improver. It is preferably 0.005 to 5% by mass, more preferably 0.01 to 2% by mass, still more preferably 0.01 to 1% by mass, and 0.02 to 0.05% by mass. Most preferably, it is mass%.
 上記流動性向上剤にヒンダードフェノール系酸化防止剤が予め含まれているかどうかにかかわらず、さらにヒンダードフェノール系酸化防止剤を別途含んでいてもよい。上記流動性向上剤にヒンダードフェノール系酸化防止剤が予め含まれていない場合には、上記ヒンダードフェノール系酸化防止剤の含有量は、芳香族ポリカーボネート系樹脂と流動性向上剤との合計質量に対して、0.005~5質量%であることが好ましく、0.01~2質量%であることがより好ましく、0.01~1質量%であることがさらに好ましく、0.02~0.05質量%であることが最も好ましい。
本発明の樹脂組成物には、芳香族ポリカーボネート系樹脂、流動性向上剤、光拡散剤および酸化防止剤(ホスファイト系酸化防止剤、ヒンダードフェノール系酸化防止剤)以外の成分として、さらに目的に応じて他のいかなる成分、例えば、補強剤、増粘剤、離型剤、カップリング剤、難燃剤、耐炎剤、顔料、着色剤、その他の助剤等の添加剤、あるいは充填剤を、本発明の効果を失わない範囲で、添加することができる。これらの添加剤の使用量は、ポリカーボネート樹脂に流動性向上剤を添加して得られる樹脂組成物100重量部に対し、合計で0~100重量部の範囲であることが好ましい。
Regardless of whether or not the hindered phenolic antioxidant is previously contained in the fluidity improver, a hindered phenolic antioxidant may be additionally contained. When the hindered phenol antioxidant is not included in the fluidity improver in advance, the content of the hindered phenol antioxidant is the total mass of the aromatic polycarbonate resin and the fluidity improver. Is preferably 0.005 to 5% by mass, more preferably 0.01 to 2% by mass, still more preferably 0.01 to 1% by mass, and 0.02 to 0%. Most preferably, it is 0.05 mass%.
The resin composition of the present invention further includes a component other than the aromatic polycarbonate resin, the fluidity improver, the light diffusing agent, and the antioxidant (phosphite antioxidant, hindered phenol antioxidant). Depending on the composition, any other components such as reinforcing agents, thickeners, mold release agents, coupling agents, flame retardants, flame retardants, pigments, colorants, other auxiliaries, or fillers, It can be added as long as the effects of the present invention are not lost. The amount of these additives used is preferably in the range of 0 to 100 parts by weight in total with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the polycarbonate resin.
 難燃剤の使用量は、芳香族ポリカーボネート系樹脂に流動性向上剤を添加して得られる樹脂組成物100重量部に対して、7~80重量部であることがより好ましく、10~60重量部であることがさらに好ましく、12~40重量部であることが特に好ましい。難燃剤は各種の化合物が知られており、例えばシーエムシー出版発行の「高分子難燃化の技術と応用」(149~221頁)等に記載された種々の化合物が挙げられるが、これらに限定されるわけではない。これら難燃剤のなかでも、リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤を好ましく用いることができる。 The amount of the flame retardant used is more preferably 7 to 80 parts by weight with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the aromatic polycarbonate resin. More preferred is 12 to 40 parts by weight. Various compounds are known as flame retardants, for example, various compounds described in “Technology and Application of Polymer Flame Retardation” (pages 149 to 221) published by CMC Publishing Co., Ltd. It is not limited. Among these flame retardants, phosphorus flame retardants, halogen flame retardants, and inorganic flame retardants can be preferably used.
 リン系難燃剤としては、具体的には、リン酸エステル、含ハロゲンリン酸エステル、縮合リン酸エステル、ポリリン酸塩、赤リン等が挙げられる。これらのリン系難燃剤は、単独で使用してもよく、2種類以上を混合して使用してもよい。 Specific examples of phosphorus-based flame retardants include phosphate esters, halogen-containing phosphate esters, condensed phosphate esters, polyphosphates, and red phosphorus. These phosphorus flame retardants may be used alone or in combination of two or more.
 ハロゲン系難燃剤としては、具体的には、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ系重合体、臭素化スチレン無水マレイン酸重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン、臭素化架橋芳香族重合体等が挙げられる。なかでも、臭素化ポリスチレン、臭素化ポリフェニレンエーテルが特に好ましい。これらのハロゲン系難燃剤は、単独で使用してもよく、2種類以上を混合して使用してもよい。また、これらのハロゲン系難燃剤のハロゲン元素含量は、15~87%であることが好ましい。 Specific examples of the halogen flame retardant include brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride polymer, brominated epoxy resin, brominated phenoxy resin, deca Examples thereof include bromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, and brominated crosslinked aromatic polymers. Of these, brominated polystyrene and brominated polyphenylene ether are particularly preferred. These halogen flame retardants may be used alone or in combination of two or more. The halogen element content of these halogen flame retardants is preferably 15 to 87%.
 本発明における樹脂組成物に対して、機械的強度、寸法安定性等を向上させるために、あるいは、増量を目的として、無機充填剤をさらに添加してもよい。 In the resin composition of the present invention, an inorganic filler may be further added in order to improve mechanical strength, dimensional stability, etc., or for the purpose of increasing the amount.
 上記無機充填剤としては、例えば、硫酸亜鉛、硫酸水素カリウム、硫酸アルミニウム、硫酸アンチモン、硫酸エステル、硫酸カリウム、硫酸コバルト、硫酸水素ナトリウム、硫酸鉄、硫酸銅、硫酸ナトリウム、硫酸ニッケル、硫酸バリウム、硫酸マグネシウム、硫酸アンモニウム等の硫酸金属化合物;酸化チタン等のチタン化合物;炭酸カリウム等の炭酸塩化合物;水酸化アルミニウム、水酸化マグネシウム等の水酸化金属化合物;合成シリカ、天然シリカ等のシリカ系化合物;アルミン酸カルシウム、2水和石膏、ホウ酸亜鉛、メタホウ酸バリウム、ホウ砂;硝酸ナトリウム等の硝酸化合物、モリブデン化合物、ジルコニウム化合物、アンチモン化合物およびその変性物;二酸化珪素および酸化アルミニウムニウムの複合体微粒子等が挙げられる。 Examples of the inorganic filler include zinc sulfate, potassium hydrogen sulfate, aluminum sulfate, antimony sulfate, sulfate ester, potassium sulfate, cobalt sulfate, sodium hydrogen sulfate, iron sulfate, copper sulfate, sodium sulfate, nickel sulfate, barium sulfate, Metal sulfate compounds such as magnesium sulfate and ammonium sulfate; Titanium compounds such as titanium oxide; Carbonate compounds such as potassium carbonate; Metal hydroxide compounds such as aluminum hydroxide and magnesium hydroxide; Silica compounds such as synthetic silica and natural silica; Calcium aluminate, dihydrate gypsum, zinc borate, barium metaborate, borax; nitrate compounds such as sodium nitrate, molybdenum compounds, zirconium compounds, antimony compounds and their modified products; composite fine particles of silicon dioxide and aluminum oxide Etc. It is.
 また、上記以外の無機充填剤として、例えば、チタン酸カリウムウイスカー、鉱物繊維(ロックウール等)、ガラス繊維、炭素繊維、金属繊維(ステンレス繊維等)、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、ボロン繊維、テトラポット状酸化亜鉛ウイスカー、タルク、クレー、カオリンクレー、天然マイカ、合成マイカ、パールマイカ、アルミニウム箔、アルミナ、ガラスフレーク、ガラスビーズ、ガラスバルーン、カーボンブラック、黒鉛、炭酸カルシウム、硫酸カルシウム、ケイ酸カルシウム、酸化チタン、酸化亜鉛、シリカ、アスベスト、石英粉等も挙げられる。 Other inorganic fillers include, for example, potassium titanate whiskers, mineral fibers (rock wool, etc.), glass fibers, carbon fibers, metal fibers (stainless fibers, etc.), aluminum borate whiskers, silicon nitride whiskers, boron fibers. , Tetrapotted zinc oxide whisker, talc, clay, kaolin clay, natural mica, synthetic mica, pearl mica, aluminum foil, alumina, glass flakes, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, silica Examples include calcium acid, titanium oxide, zinc oxide, silica, asbestos, and quartz powder.
 これらの無機充填剤は、無処理であってもよく、化学的または物理的な表面処理を予め施しておいてもよい。その表面処理に用いる表面処理剤としては、例えば、シランカップリング剤系、高級脂肪酸系、脂肪酸金属塩系、不飽和有機酸系、有機チタネート系、樹脂酸系、ポリエチレングリコール系等の化合物が挙げられる。 These inorganic fillers may be untreated, or may be subjected to chemical or physical surface treatment in advance. Examples of the surface treatment agent used for the surface treatment include compounds such as silane coupling agent, higher fatty acid, fatty acid metal salt, unsaturated organic acid, organic titanate, resin acid, and polyethylene glycol. It is done.
 本発明における樹脂組成物の製造方法は、特に限定されない。樹脂組成物は、例えば、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、2本ロール、ニーダー、ブラベンダー等の装置を用いて、芳香族ポリカーボネート系樹脂、流動性向上剤および光拡散剤等の添加剤を配合し、溶融混練する公知の方法によって製造される。流動性向上剤に含まれるポリエステルと芳香族ポリカーボネート系樹脂とのエステル交換反応、および芳香族ポリカーボネート系樹脂の熱劣化等による樹脂組成物の黄変を抑制する目的で、溶融混練の温度はできるだけ低温であることが好ましい。 The method for producing the resin composition in the present invention is not particularly limited. The resin composition is, for example, an aromatic polycarbonate-based resin, a fluidity improver using an apparatus such as a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a two roll, a kneader, or a Brabender. And an additive such as a light diffusing agent and the like, and a known method of melt kneading. The melt kneading temperature is as low as possible in order to suppress the transesterification reaction between the polyester contained in the fluidity improver and the aromatic polycarbonate resin, and the yellowing of the resin composition due to thermal degradation of the aromatic polycarbonate resin. It is preferable that
 本発明における樹脂組成物を各種押出成形することにより、本発明の成形品として、例えば、各種異形押出成形品、押出成形によるシート、フィルム等の形状に成形することができる。上記各種押出成形としては、コールドランナー方式、ホットランナー方式の成形法はもとより、さらには射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入による場合を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形等の射出成形法が挙げられる。また、シート、フィルムの成形には、インフレーション法や、カレンダー法、キャスティング法等も用いることができる。さらに、特定の延伸操作をかけることにより、熱収縮チューブとして成形することも可能である。また、本発明の樹脂組成物を回転成形やブロー成形等で成形することにより、中空成形品とすることも可能である。 By various extrusion moldings of the resin composition in the present invention, the molded product of the present invention can be molded into shapes such as various irregular extrusion molded products, sheets and films by extrusion molding, for example. The various extrusion molding methods include cold runner and hot runner molding methods, as well as injection compression molding, injection press molding, gas assist injection molding, foam molding (including the case of supercritical fluid injection), inserts. Examples thereof include injection molding methods such as molding, in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding. In addition, an inflation method, a calendar method, a casting method, or the like can be used for forming a sheet or a film. Furthermore, it can be formed as a heat-shrinkable tube by applying a specific stretching operation. Moreover, it is also possible to make a hollow molded product by molding the resin composition of the present invention by rotational molding, blow molding or the like.
 本発明の光拡散性成形品としては、光拡散板、光拡散フィルム、電子・電気機器、OA機器の部品、車両部品、機械部品、農業資材、漁業資材、搬送容器、包装容器、雑貨等が挙げられる。具体的には、画像表示装置用光拡散板(液晶表示装置等のバックライトモジュールに用いられる光拡散板、プロジェクターテレビ等の投影型表示装置のスクリーンに用いられる光拡散板等)、画像読取装置用光拡散板、電灯カバー、メーター、看板(特に内照式)、樹脂窓ガラス、車輌用屋根材、船舶用屋根材、住宅用屋根材、太陽電池カバー等が挙げられる。液晶表示装置等のバックライトモジュールとしては、各種の光源(冷陰極管、LED等)を用いることができる。 Examples of the light diffusing molded article of the present invention include light diffusing plates, light diffusing films, electronic / electric equipment, OA equipment parts, vehicle parts, machine parts, agricultural materials, fishery materials, transport containers, packaging containers, sundries, etc. Can be mentioned. Specifically, a light diffusing plate for an image display device (a light diffusing plate used for a backlight module such as a liquid crystal display device, a light diffusing plate used for a screen of a projection display device such as a projector television), an image reading device Light diffuser plates, electric light covers, meters, signboards (particularly internally lit), resin window glass, vehicle roofing materials, marine roofing materials, residential roofing materials, solar cell covers, and the like. As a backlight module such as a liquid crystal display device, various light sources (cold cathode tube, LED, etc.) can be used.
 本発明の芳香族ポリカーボネート系樹脂組成物は、とりわけ大型かつ薄肉の光拡散板(特に画像表示装置用光拡散板)の製造に適している。本発明の芳香族ポリカーボネート系樹脂組成物によれば、表面積が500~50000cmである光拡散板が得られる。光拡散板の表面積は1000~25000cmが好ましく、厚さは0.3~3mmが好ましい。このように、本発明の芳香族ポリカーボネート系樹脂組成物によれば、大型であり、寸法安定性が高く、かつ薄肉(軽量)である光拡散板を製造できる。 The aromatic polycarbonate resin composition of the present invention is particularly suitable for producing a large and thin light diffusion plate (particularly a light diffusion plate for an image display device). According to the aromatic polycarbonate resin composition of the present invention, a light diffusion plate having a surface area of 500 to 50000 cm 2 can be obtained. The surface area of the light diffusing plate is preferably 1000 to 25000 cm 2 , and the thickness is preferably 0.3 to 3 mm. Thus, according to the aromatic polycarbonate resin composition of the present invention, it is possible to produce a light diffusing plate that is large, has high dimensional stability, and is thin (light).
 光拡散板は、フレネルレンズ形状、シリンドリカルレンズ形状等の表面形状を有する単層板であってもよく、フレネルレンズ形状、シリンドリカルレンズ形状等の表面形状を有する他の材料を光拡散板に積層した積層板であってもよい。 The light diffusing plate may be a single-layer plate having a surface shape such as a Fresnel lens shape or a cylindrical lens shape, and another material having a surface shape such as a Fresnel lens shape or a cylindrical lens shape is laminated on the light diffusing plate. A laminated board may be sufficient.
 フレネルレンズ形状、シリンドリカルレンズ形状等の表面形状を有する単層板は、本発明の芳香族ポリカーボネート系樹脂組成物を、射出成形法、圧縮成形法、押出成形法等により所望の形状に成形することで製造できる。表面にフレネルレンズ形状(凹凸形状)を形成する方法としては、(i)金型キャビティ表面または転写ロール表面にフレネルレンズ形状に対応する凹凸を設け、凹凸を成形品表面に転写する方法;(ii)フレネルレンズ形状に対応する凹凸が設けられた別材料を、金型キャビティ内にインサートする、または押出成形時に積層することにより、該別材料と成形品とを一体化した後、別材料を除去して成形品表面に凹凸を転写する方法、等が挙げられる。 A single-layer plate having a surface shape such as a Fresnel lens shape or a cylindrical lens shape is formed by molding the aromatic polycarbonate resin composition of the present invention into a desired shape by an injection molding method, a compression molding method, an extrusion molding method, or the like. Can be manufactured. As a method of forming a Fresnel lens shape (uneven shape) on the surface, (i) a method of providing unevenness corresponding to the Fresnel lens shape on the mold cavity surface or the transfer roll surface, and transferring the unevenness to the surface of the molded product; ) Insert another material with irregularities corresponding to the shape of the Fresnel lens into the mold cavity, or laminate it at the time of extrusion to integrate the different material and the molded product, and then remove the other material. And a method of transferring irregularities on the surface of the molded product.
 また、光拡散板に光輝性顔料を含む層を積層することにより、フレネルレンズ形状等の凹凸形状を省略してもよい。さらに、画像表示装置用光拡散板は、その光源側の面(観察者とは反対側の面)に光源からの光の反射を防止するため各種の光反射防止膜を形成したものであってもよい。 In addition, a concavo-convex shape such as a Fresnel lens shape may be omitted by laminating a layer containing a bright pigment on the light diffusion plate. Further, the light diffusing plate for an image display device is formed by forming various light reflection preventing films on the light source side surface (surface opposite to the observer) to prevent reflection of light from the light source. Also good.
 本発明の光拡散性成形品は、表面改質を施すことができ、結果、他の機能を付与することができる。「表面改質」とは、蒸着(物理蒸着、化学蒸着等)、メッキ(電気メッキ、無電解メッキ、溶融メッキ等)、塗装、コーティング、印刷等によって光拡散性成形品の表面に新たな層を設けることをいう。 The light diffusive molded article of the present invention can be subjected to surface modification, and as a result, other functions can be imparted. “Surface modification” means a new layer on the surface of light diffusive moldings by vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. It means to provide.
 表面改質法としては、通常の樹脂成形品において採用されている公知の表面改質法が挙げられる。 As the surface modification method, a known surface modification method employed in ordinary resin molded products can be used.
 光拡散性成形品の表面に金属層または金属酸化物層を設ける表面改質法としては、例えば、蒸着法(物理蒸着法および化学蒸着法)、溶射法、メッキ法等が挙げられる。物理蒸着法としては、真空蒸着法、スパッタリング、イオンプレーティング等が挙げられる。化学蒸着(CVD)法としては、熱CVD法、プラズマCVD法、光CVD法等が挙げられる。溶射法としては、大気圧プラズマ溶射法、減圧プラズマ溶射法等が挙げられる。メッキ法としては、無電解メッキ(化学メッキ)法、溶融メッキ法、電気メッキ法等が挙げられる。電気メッキ法としては、レーザーメッキ法が挙げられる。 Examples of the surface modification method for providing a metal layer or metal oxide layer on the surface of the light diffusive molded article include vapor deposition methods (physical vapor deposition method and chemical vapor deposition method), thermal spraying method, plating method and the like. Examples of physical vapor deposition include vacuum vapor deposition, sputtering, ion plating, and the like. Examples of the chemical vapor deposition (CVD) method include a thermal CVD method, a plasma CVD method, and a photo CVD method. Examples of the thermal spraying method include an atmospheric pressure plasma spraying method and a low pressure plasma spraying method. Examples of the plating method include an electroless plating (chemical plating) method, a hot dipping method, and an electroplating method. Examples of the electroplating method include laser plating.
 これら表面改質法のうち、光拡散性成形品の表面に金属層を設ける場合は、蒸着法またはメッキ法が好ましく、光拡散性成形品の表面に金属酸化物層を設ける場合は、蒸着法が好ましい。蒸着法およびメッキ法は、これらを組み合わせて用いてもよい。例えば、蒸着法で形成された金属層を利用して電気メッキを行う方法等を採用することができる。 Among these surface modification methods, when a metal layer is provided on the surface of the light diffusive molded article, a vapor deposition method or a plating method is preferable. When a metal oxide layer is provided on the surface of the light diffusible molded article, a vapor deposition method is used. Is preferred. The vapor deposition method and the plating method may be used in combination. For example, a method of performing electroplating using a metal layer formed by vapor deposition can be employed.
 〔第1実施形態に係る実施例〕
 次に、本発明における流動性向上剤および樹脂組成物について、実施例および比較例を挙げてさらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。なお、以下に挙げる各試薬は、特記しない限り、和光純薬工業株式会社製の試薬を精製せずに用いた。
[Example according to the first embodiment]
Next, although the fluidity improver and the resin composition in the present invention will be described in more detail with reference to Examples and Comparative Examples, the present invention is not limited to such Examples. The reagents listed below were used without purification from Wako Pure Chemical Industries, Ltd. unless otherwise specified.
 <評価方法>
 [数平均分子量の測定方法]
 本発明の流動性向上剤に含まれるポリエステルを、p-クロロフェノール(東京化成工業株式会社製)とトルエンとの体積比が3:8の混合溶媒に、濃度が0.25質量%となるように溶解して試料溶液を調製した。標準物質はポリスチレンとし、同様の試料溶液を調製した。そして、高温GPC(Viscotek社製:350 HT-GPC System)を用いて、カラム温度80℃、流速1.00mL/分の条件で測定した。検出器は、示差屈折計(RI)を使用した。
<Evaluation method>
[Measurement method of number average molecular weight]
The polyester contained in the fluidity improver of the present invention is mixed in a mixed solvent having a volume ratio of p-chlorophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and toluene of 3: 8 so that the concentration becomes 0.25% by mass. To prepare a sample solution. The standard material was polystyrene, and a similar sample solution was prepared. Then, measurement was performed using a high temperature GPC (manufactured by Viscotek: 350 HT-GPC System) under conditions of a column temperature of 80 ° C. and a flow rate of 1.00 mL / min. A differential refractometer (RI) was used as a detector.
 [流動性の測定方法]
 樹脂組成物のスパイラルフロー(mm)を、射出成形機(IS-100、東芝機械株式会社製)を用いて評価した。ポリカーボネート樹脂組成物は成形温度280℃、金型温度100℃、射出圧力200MPaとした。そして、成形品の肉厚は1mm、幅は10mmとした。
[Measurement method of fluidity]
The spiral flow (mm) of the resin composition was evaluated using an injection molding machine (IS-100, manufactured by Toshiba Machine Co., Ltd.). The polycarbonate resin composition had a molding temperature of 280 ° C., a mold temperature of 100 ° C., and an injection pressure of 200 MPa. The thickness of the molded product was 1 mm and the width was 10 mm.
 [IZOD衝撃強度の測定方法]
 ASTM D256に従い、樹脂組成物のノッチ付きの試験片を作製し、この試験片のIZOD衝撃強度(J/m)を測定した。
[IZOD impact strength measurement method]
In accordance with ASTM D256, a notched test piece of the resin composition was prepared, and the IZOD impact strength (J / m) of this test piece was measured.
 [全光線透過率、ヘイズの測定方法]
 射出成形により縦4cm×横4cm×厚さ2mmの試験片を作製し、ヘイズメーターHZ-V3(スガ試験機株式会社製)を用いて、樹脂組成物の全光線透過率(%)およびヘイズ(%)を測定した。
[Measurement method of total light transmittance and haze]
A test piece having a length of 4 cm, a width of 4 cm, and a thickness of 2 mm was prepared by injection molding, and using a haze meter HZ-V3 (manufactured by Suga Test Instruments Co., Ltd.), the total light transmittance (%) and haze ( %).
 [初期黄変度(YI)の測定方法]
 射出成形により縦4cm×横4cm×厚さ2mmの試験片を作製し、分光式測色計SC-P(スガ試験機株式会社製)を用いて、樹脂組成物の初期黄変度(YI)を測定した。
[Measurement method of initial yellowing degree (YI)]
A test piece having a length of 4 cm, a width of 4 cm, and a thickness of 2 mm was prepared by injection molding, and the initial yellowing degree (YI) of the resin composition was measured using a spectrocolorimeter SC-P (manufactured by Suga Test Instruments Co., Ltd.). Was measured.
 [曲げ弾性率および曲げ強度の測定方法]
 機械的特性を評価するため、AUTOGRAPH AG-I(株式会社島津製作所製)を用いて、JIS K7171に準拠して(測定温度23℃、曲げ試験片の寸法:長さ80mm×幅10mm×厚さ4mm)、樹脂組成物の曲げ弾性率(MPa)および曲げ強度
 (MPa)を測定した。
[Measurement method of bending elastic modulus and bending strength]
In order to evaluate mechanical properties, AUTOGRAPH AG-I (manufactured by Shimadzu Corporation) was used in accordance with JIS K7171 (measurement temperature 23 ° C., dimensions of bending test piece: length 80 mm × width 10 mm × thickness). 4 mm), the flexural modulus (MPa) and the flexural strength (MPa) of the resin composition were measured.
 [荷重たわみ温度の測定方法]
 耐熱性を評価するため、HOT.TESTER S-3(株式会社東洋精機製作所製)を用いて、JIS K7191に準拠して(試験条件:荷重1.8MPa、昇温速度120℃/時間)、樹脂組成物の荷重たわみ温度(℃)を測定した。
[Measurement method of deflection temperature under load]
In order to evaluate heat resistance, HOT. Using a tester S-3 (manufactured by Toyo Seiki Seisakusyo Co., Ltd.) in accordance with JIS K 7191 (test conditions: load 1.8 MPa, heating rate 120 ° C./hour), deflection temperature under load of resin composition (° C.) Was measured.
 [転写性の測定方法]
 転写性を評価するため、射出成形により梨地面を有する導光板を作成し、多角度光沢計GS-4K(スガ試験機株式会社製)を用いて梨地転写面の光沢を測定した。
[Transferability measurement method]
In order to evaluate transferability, a light guide plate having a textured surface was prepared by injection molding, and the gloss of the textured surface was measured using a multi-angle gloss meter GS-4K (manufactured by Suga Test Instruments Co., Ltd.).
 <使用材料>
 [樹脂]
 (A-1)ポリカーボネート、パンライトL1225Y(帝人株式会社製)
 [酸化防止剤]
 (B-1)ホスファイト系酸化防止剤:PEP36(株式会社アデカ製)
 (B-2)ヒンダードフェノール系酸化防止剤:AO60(株式会社アデカ製)
 [流動性向上剤]
 〔実施例1〕
 還流冷却器、温度計、窒素ガス導入管および攪拌棒を備え付けた密閉型反応器に、4,4’-ジヒドロキシビフェニル、ビスフェノールA、セバシン酸を、モル比率にて20:30:50の割合で仕込み、モノマー中のフェノール性水酸基に対して1.05当量の無水酢酸を加えた。常圧、窒素ガス雰囲気下で145℃にてモノマーを反応させて均一な溶液を得た後、生じた酢酸を留去しながら2℃/分で240℃まで昇温し、240℃で2時間撹拌した。引き続きその温度を保ったまま、約60分間かけて5Torrまで減圧した後、その減圧状態を維持した。減圧開始から3時間後、密閉型反応器内を窒素ガスで常圧に戻し、生成したポリエステルの質量に対し、酸化防止剤(B-1)および(B-2)をそれぞれ0.2質量%ずつ添加し、5分間撹拌して流動性向上剤を得た。その後、反応器から流動性向上剤を取り出した。得られたポリエステルの数平均分子量は10,200であった。得られたポリエステルを(C-1)とする。
<Materials used>
[resin]
(A-1) Polycarbonate, Panlite L1225Y (manufactured by Teijin Limited)
[Antioxidant]
(B-1) Phosphite antioxidant: PEP36 (manufactured by Adeka Corporation)
(B-2) Hindered phenol antioxidant: AO60 (manufactured by Adeka Corporation)
[Flowability improver]
[Example 1]
In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen gas inlet tube, and a stirring rod, 4,4′-dihydroxybiphenyl, bisphenol A, and sebacic acid were mixed at a molar ratio of 20:30:50. First, 1.05 equivalent of acetic anhydride was added to the phenolic hydroxyl group in the monomer. The monomer was reacted at 145 ° C. under atmospheric pressure and nitrogen gas atmosphere to obtain a uniform solution, and then the temperature was raised to 240 ° C. at 2 ° C./min while distilling off the acetic acid produced, and the mixture was heated at 240 ° C. for 2 hours Stir. While maintaining the temperature, the pressure was reduced to 5 Torr over about 60 minutes, and then the reduced pressure state was maintained. Three hours after the start of pressure reduction, the inside of the closed reactor was returned to normal pressure with nitrogen gas, and 0.2% by mass of each of the antioxidants (B-1) and (B-2) was added to the mass of the produced polyester Each was added and stirred for 5 minutes to obtain a fluidity improver. Thereafter, the fluidity improver was taken out from the reactor. The number average molecular weight of the obtained polyester was 10,200. The obtained polyester is designated as (C-1).
 流動性向上剤の性能を評価すべく、樹脂、酸化防止剤、ポリエステル(C-1)を表1に示す割合(重量部)で配合して二軸押出機に供給し、260℃で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表2に示す。 In order to evaluate the performance of the fluidity improver, resin, antioxidant and polyester (C-1) were blended in the proportions (parts by weight) shown in Table 1 and supplied to the twin screw extruder, and melt kneaded at 260 ° C. Thus, a resin composition was obtained. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 2 shows various physical properties of the resin composition.
 〔実施例2〕
 モノマーとして、4,4’-ジヒドロキシビフェニル、ビスフェノールA、セバシン酸を、モル比率にて30:20:50の割合で仕込み、さらに末端封止剤としてp-クミルフェノールをセバシン酸に対して0.2当量加え、モノマーおよび末端封止剤中のフェノール性水酸基に対して1.05当量の無水酢酸を加え、減圧開始から流動性向上剤を取り出すまでの時間を1.5時間にした以外は実施例1と同様にしてポリエステルを得た。得られたポリエステルの数平均分子量は3,900であり、末端の封止率は90%であった。得られたポリエステルを(C-2)とする。また、実施例1と同様にして、表1に示す割合(重量部)で樹脂、酸化防止剤および得られたポリエステルを配合して二軸押出機に供給し、260℃で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表2に示す。
[Example 2]
As monomers, 4,4′-dihydroxybiphenyl, bisphenol A and sebacic acid are charged in a molar ratio of 30:20:50, and p-cumylphenol is used as an end-capping agent with respect to sebacic acid. .2 equivalents, 1.05 equivalents of acetic anhydride was added to the monomer and the phenolic hydroxyl group in the end-capping agent, and the time from the start of pressure reduction to the removal of the fluidity improver was 1.5 hours. A polyester was obtained in the same manner as in Example 1. The number average molecular weight of the obtained polyester was 3,900, and the terminal sealing rate was 90%. The obtained polyester is designated as (C-2). Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended in the proportions (parts by weight) shown in Table 1 and supplied to the twin-screw extruder, and the resin was melt-kneaded at 260 ° C. A composition was obtained. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 2 shows various physical properties of the resin composition.
 〔実施例3〕
 モノマーとしてビスフェノールA、セバシン酸を、モル比率にて50:50の割合で仕込み、減圧開始から流動性向上剤を取り出すまでの時間を1時間にした以外は、実施例1と同様にしてポリエステルを得た。得られたポリエステルの数平均分子量は11,000であった。得られたポリエステルを(C-3)とする。また、実施例1と同様にして、表1に示す割合(重量部)で樹脂、酸化防止剤および得られたポリエステルを配合して二軸押出機に供給し、260℃で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表2に示す。
Example 3
Polyester was prepared in the same manner as in Example 1 except that bisphenol A and sebacic acid were added as monomers in a molar ratio of 50:50, and the time from the start of decompression to the removal of the fluidity improver was 1 hour. Obtained. The number average molecular weight of the obtained polyester was 11,000. The obtained polyester is designated as (C-3). Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended in the proportions (parts by weight) shown in Table 1 and supplied to the twin-screw extruder, and the resin was melt-kneaded at 260 ° C. A composition was obtained. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 2 shows various physical properties of the resin composition.
 〔実施例4、比較例1〕
 樹脂、酸化防止剤およびポリエステルを表1に示す割合(重量部)で配合して二軸押出機に供給し、260℃で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表2に示す。
Figure JPOXMLDOC01-appb-T000013
[Example 4, Comparative Example 1]
Resin, antioxidant and polyester were blended in the proportions (parts by weight) shown in Table 1 and supplied to a twin screw extruder, and melt kneaded at 260 ° C. to obtain a resin composition. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 2 shows various physical properties of the resin composition.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 実施例1~4と比較例1を比較すると、本発明における流動性向上剤の添加により、曲げ強度、曲げ弾性率、衝撃強度、透明性を損なうことなく、樹脂の流動性(スパイラルフロー)を向上させることができ、転写性が向上していることが理解できる。すなわち実施例の組成物は、導光板の製造に必要な特性を備えていた。
Figure JPOXMLDOC01-appb-T000014
When Examples 1 to 4 and Comparative Example 1 are compared, the addition of the fluidity improver in the present invention improves the resin fluidity (spiral flow) without impairing the flexural strength, flexural modulus, impact strength, and transparency. It can be understood that the transferability is improved. That is, the compositions of the examples had characteristics necessary for the production of the light guide plate.
 〔第2実施形態に係る実施例〕
 次に、本発明における流動性向上剤および樹脂組成物について、実施例および比較例を挙げてさらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。なお、以下に挙げる各試薬は、特記しない限り、和光純薬工業株式会社製の試薬を精製せずに用いた。
[Example according to the second embodiment]
Next, although the fluidity improver and the resin composition in the present invention will be described in more detail with reference to Examples and Comparative Examples, the present invention is not limited to such Examples. The reagents listed below were used without purification from Wako Pure Chemical Industries, Ltd. unless otherwise specified.
 <評価方法>
 [数平均分子量の測定方法]
 本発明の流動性向上剤(ポリエステル)を、p-クロロフェノール(東京化成工業株式会社製)とトルエンとの体積比が3:8の混合溶媒に、濃度が0.25質量%となるように溶解して試料溶液を調製した。標準物質はポリスチレンとし、同様の試料溶液を調製した。そして、高温GPC(Viscotek社製:350 HT-GPC System)を用いて、カラム温度80℃、流速1.00mL/分の条件で測定した。検出器は、示差屈折計(RI)を使用した。
<Evaluation method>
[Measurement method of number average molecular weight]
The fluidity improver (polyester) of the present invention is mixed in a mixed solvent having a volume ratio of p-chlorophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and toluene of 3: 8 so that the concentration becomes 0.25% by mass. A sample solution was prepared by dissolution. The standard material was polystyrene, and a similar sample solution was prepared. Then, measurement was performed using a high temperature GPC (manufactured by Viscotek: 350 HT-GPC System) under conditions of a column temperature of 80 ° C. and a flow rate of 1.00 mL / min. A differential refractometer (RI) was used as a detector.
 [流動性の測定方法]
 樹脂組成物のスパイラルフロー(mm)を、射出成形機(IS-100、東芝機械株式会社製)を用いて評価した。ポリカーボネート樹脂組成物は成形温度280℃、金型温度100℃、射出圧力200MPaとした。そして、成形品の肉厚は1mm、幅は10mmとした。
[Measurement method of fluidity]
The spiral flow (mm) of the resin composition was evaluated using an injection molding machine (IS-100, manufactured by Toshiba Machine Co., Ltd.). The polycarbonate resin composition had a molding temperature of 280 ° C., a mold temperature of 100 ° C., and an injection pressure of 200 MPa. The thickness of the molded product was 1 mm and the width was 10 mm.
 [全光線透過率の測定方法]
 射出成形により縦4cm×横4cm×厚さ2mmの試験片を作製し、ヘイズメーターHZ-V3(スガ試験機株式会社製)を用いて、樹脂組成物の全光線透過率(%)を測定した。
[Measurement method of total light transmittance]
A test piece having a length of 4 cm, a width of 4 cm, and a thickness of 2 mm was prepared by injection molding, and the total light transmittance (%) of the resin composition was measured using a haze meter HZ-V3 (manufactured by Suga Test Instruments Co., Ltd.). .
 [荷重たわみ温度の測定方法]
 耐熱性を評価するため、HOT.TESTER S-3(株式会社東洋精機製作所製)を用いて、JIS K7191に準拠して(試験条件:荷重1.8MPa、昇温速度120℃/時間)、樹脂組成物の荷重たわみ温度(℃)を測定した。
[Measurement method of deflection temperature under load]
In order to evaluate heat resistance, HOT. Using a tester S-3 (manufactured by Toyo Seiki Seisakusyo Co., Ltd.) in accordance with JIS K 7191 (test conditions: load 1.8 MPa, heating rate 120 ° C./hour), deflection temperature under load of resin composition (° C.) Was measured.
 [光拡散性]
 射出成形により縦4cm×横4cm×厚さ2mmの試験片を作製し、下側に冷陰極管から構成されたバックライトユニットを置き、上側から光拡散性成形品を観察し、光の均一性について評価した。均一性が良好であるものを○、均一性が悪いものを×とした。
[Light diffusivity]
Test specimens 4 cm long x 4 cm wide x 2 mm thick by injection molding, a backlight unit composed of cold cathode tubes is placed on the lower side, light diffusible molded products are observed from the upper side, and light uniformity Was evaluated. A sample with good uniformity was marked with ◯, and a sample with poor uniformity was marked with ×.
 <使用材料>
 [芳香族ポリカーボネート系樹脂(I)]
 (I-1)ポリカーボネート、パンライトL1225Y(帝人株式会社製)
 [酸化防止剤]
ホスファイト系酸化防止剤:PEP36(株式会社アデカ製)
ヒンダードフェノール系酸化防止剤:AO60(株式会社アデカ製)
 [光拡散剤(III)]
 (III-1)ビーズ状架橋シリコーン粒子:「トスパール120」、平均粒子径:2μm(ジーイー東芝シリコーン(株)製)
 [流動性向上剤(II)]
  〔製造例1〕
 還流冷却器、温度計、窒素ガス導入管および攪拌棒を備え付けた密閉型反応器に、4,4’-ジヒドロキシビフェニル、ビスフェノールA、セバシン酸を、モル比率にて20:30:50の割合で仕込み、モノマー中のフェノール性水酸基に対して1.05当量の無水酢酸を加えた。常圧、窒素ガス雰囲気下で145℃にてモノマーを反応させて均一な溶液を得た後、生じた酢酸を留去しながら2℃/分で240℃まで昇温し、240℃で2時間撹拌した。引き続きその温度を保ったまま、約60分間かけて5Torrまで減圧した後、その減圧状態を維持した。減圧開始から3時間後、密閉型反応器内を窒素ガスで常圧に戻し、生成したポリエステルの質量に対し、PEP36およびAO60をそれぞれ0.2質量%ずつ添加し、5分間撹拌して流動性向上剤を得た。その後、反応器から流動性向上剤を取り出した。得られたポリエステルの数平均分子量は10,200であった。得られたポリエステルを流動性向上剤(II-1)とする。
<Materials used>
[Aromatic polycarbonate resin (I)]
(I-1) Polycarbonate, Panlite L1225Y (manufactured by Teijin Limited)
[Antioxidant]
Phosphite antioxidant: PEP36 (manufactured by Adeka Corporation)
Hindered phenolic antioxidant: AO60 (manufactured by Adeka Corporation)
[Light diffusing agent (III)]
(III-1) Bead-like crosslinked silicone particles: “Tospearl 120”, average particle size: 2 μm (manufactured by GE Toshiba Silicones Co., Ltd.)
[Flowability improver (II)]
[Production Example 1]
In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen gas inlet tube, and a stirring rod, 4,4′-dihydroxybiphenyl, bisphenol A, and sebacic acid were mixed at a molar ratio of 20:30:50. First, 1.05 equivalent of acetic anhydride was added to the phenolic hydroxyl group in the monomer. The monomer was reacted at 145 ° C. under atmospheric pressure and nitrogen gas atmosphere to obtain a uniform solution, and then the temperature was raised to 240 ° C. at 2 ° C./min while distilling off the acetic acid produced, and the mixture was heated at 240 ° C. for 2 hours Stir. While maintaining the temperature, the pressure was reduced to 5 Torr over about 60 minutes, and then the reduced pressure state was maintained. Three hours after the start of pressure reduction, the inside of the closed reactor was returned to normal pressure with nitrogen gas, 0.2 mass% of PEP36 and AO60 were added to the mass of the produced polyester, and the mixture was stirred for 5 minutes to flow. An improver was obtained. Thereafter, the fluidity improver was taken out from the reactor. The number average molecular weight of the obtained polyester was 10,200. The obtained polyester is used as a fluidity improver (II-1).
 〔製造例2〕
 モノマーとして、4,4’-ジヒドロキシビフェニル、ビスフェノールA、セバシン酸を、モル比率にて30:20:50の割合で仕込み、さらに末端封止剤としてp-クミルフェノールをセバシン酸に対して0.2当量加え、モノマーおよび末端封止剤中のフェノール性水酸基に対して1.05当量の無水酢酸を加え、減圧開始から流動性向上剤を取り出すまでの時間を1.5時間にした以外は製造例1と同様にしてポリエステルを得た。得られたポリエステルの数平均分子量は3,900であり、末端の封止率は90%であった。得られたポリエステルを(II-2)とする。
[Production Example 2]
As monomers, 4,4′-dihydroxybiphenyl, bisphenol A and sebacic acid are charged in a molar ratio of 30:20:50, and p-cumylphenol is used as an end-capping agent with respect to sebacic acid. .2 equivalents, 1.05 equivalents of acetic anhydride was added to the monomer and the phenolic hydroxyl group in the end-capping agent, and the time from the start of pressure reduction to the removal of the fluidity improver was 1.5 hours. A polyester was obtained in the same manner as in Production Example 1. The number average molecular weight of the obtained polyester was 3,900, and the terminal sealing rate was 90%. The obtained polyester is designated as (II-2).
 〔製造例3〕
 モノマーとしてビスフェノールA、セバシン酸を、モル比率にて50:50の割合で仕込み、減圧開始から流動性向上剤を取り出すまでの時間を1時間にした以外は、製造例1と同様にしてポリエステルを得た。得られたポリエステルの数平均分子量は11,000であった。得られたポリエステルを(II-3)とする。
[Production Example 3]
Polyester was prepared in the same manner as in Production Example 1 except that bisphenol A and sebacic acid were added as monomers in a molar ratio of 50:50, and the time from the start of decompression to the removal of the fluidity improver was 1 hour. Obtained. The number average molecular weight of the obtained polyester was 11,000. The obtained polyester is designated as (II-3).
 〔実施例5~7、比較例2〕
 芳香族ポリカーボネート系樹脂(I)、流動性向上剤(II)、光拡散剤(III)およびPEP36とAO60をそれぞれ0.2部ずつ、表3に示す割合(重量部)で配合して二軸押出機に供給し、260℃で溶融混練して樹脂組成物を得た。得られた樹脂組成物の各種物性を合わせて表3に示す。
[Examples 5 to 7, Comparative Example 2]
Biaxially blended aromatic polycarbonate resin (I), fluidity improver (II), light diffusing agent (III), and 0.2 parts of PEP36 and AO60 in proportions (parts by weight) shown in Table 3. It was supplied to an extruder and melt-kneaded at 260 ° C. to obtain a resin composition. Various physical properties of the obtained resin composition are shown together in Table 3.
Figure JPOXMLDOC01-appb-T000015
 評価結果から明らかなように、実施例5~7で得られた芳香族ポリカーボネート系樹脂組成物は、流動性が著しく向上し、その光拡散性成形品は、全光線透過率と拡散率のバランスに非常に優れていた。
Figure JPOXMLDOC01-appb-T000015
As is clear from the evaluation results, the aromatic polycarbonate resin compositions obtained in Examples 5 to 7 have significantly improved fluidity, and the light diffusive molded product has a balance between total light transmittance and diffusivity. It was very good.
 一方、比較例2で得られた光拡散性芳香族ポリカーボネート系樹脂組成物は、流動性向上剤を含んでおらず、充分な流動性が得られなかった。 On the other hand, the light diffusing aromatic polycarbonate resin composition obtained in Comparative Example 2 did not contain a fluidity improver, and sufficient fluidity could not be obtained.
 本発明によれば、ポリカーボネート樹脂本来の特性(透明性、耐衝撃性、高剛性、機械強度、耐表層剥離性、耐熱性、耐薬品性等)を損なうことなく、成形加工時の流動性を向上した樹脂組成物を用いることで、使用環境が制限されることなく幅広い用途に使用できかつ転写性に優れた導光板およびこれを備えた面光源体を提供できる。 According to the present invention, the fluidity at the time of molding can be improved without damaging the original properties (transparency, impact resistance, high rigidity, mechanical strength, surface peel resistance, heat resistance, chemical resistance, etc.) of the polycarbonate resin. By using the improved resin composition, it is possible to provide a light guide plate that can be used in a wide range of applications without being restricted in use environment and has excellent transferability, and a surface light source body including the same.
 また、本発明の芳香族ポリカーボネート系樹脂組成物は、得られる光拡散性成形品の優れた特性(透明性、光拡散性)を損なうことなく、溶融流動性(成形性)が向上している。よって、本発明の芳香族ポリカーボネート系樹脂組成物からなる光拡散性成形品は、透明性、光拡散性等に優れ、かつ大型化、薄肉化(軽量化)、形状複雑化、高性能化が可能であり、特に、大型でかつ薄肉であることが要求される画像表示装置用の光拡散板(例えば、液晶表示装置等のバックライトモジュールに使用される光拡散板、プロジェクションテレビ等の投影型表示装置のスクリーンに使用される光拡散板等)、印刷加工等により表面処理された高機能光拡散フィルム(例えば、液晶表示装置の輝度向上等に利用されている高透過光拡散フィルム等)として好適である。また、本発明の光拡散性成形品は、画像表示装置用の光拡散板、光拡散フィルム以外にも、例えば、電灯カバー、メーター、看板(特に内照式)、樹脂窓ガラス、画像読取装置用の光拡散板、車輌用屋根材、船舶用屋根材、住居用屋根材、太陽電池カバー、電気・電子機器部品、OA機器部品、車両部品、機械部品、農業資材、漁業資材、搬送容器、包装容器、雑貨等として有用であり、産業的価値は極めて高い。 Further, the aromatic polycarbonate resin composition of the present invention has improved melt fluidity (moldability) without impairing the excellent properties (transparency, light diffusibility) of the obtained light diffusible molded article. . Therefore, the light diffusive molded article comprising the aromatic polycarbonate resin composition of the present invention is excellent in transparency, light diffusibility, etc., and is large in size, thinned (light weight), complicated in shape, and high in performance. A light diffusing plate for an image display device that is particularly required to be large and thin (for example, a light diffusing plate used in a backlight module such as a liquid crystal display device, a projection type such as a projection television) As a light diffusing plate used for a screen of a display device), a high-functional light diffusing film surface-treated by printing or the like (for example, a high transmission light diffusing film used for improving the brightness of a liquid crystal display device, etc.) Is preferred. In addition to the light diffusion plate and light diffusion film for image display devices, the light diffusion molded product of the present invention includes, for example, an electric lamp cover, a meter, a signboard (particularly internally lit), a resin window glass, and an image reading device. Light diffusion plate, vehicle roofing material, ship roofing material, residential roofing material, solar cell cover, electrical / electronic equipment parts, OA equipment parts, vehicle parts, machine parts, agricultural materials, fishery materials, transport containers, It is useful as a packaging container and miscellaneous goods, and has an extremely high industrial value.

Claims (13)

  1. ポリカーボネート樹脂に流動性向上剤が配合された樹脂組成物からなり、
    前記流動性向上剤が、
    下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
      (式中、X1~X4は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。)
    で表されるビフェノール成分(A)0~55モル%、
     下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
     (式中、X5~X8は各々同一であっても異なっていてもよく、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を示す。Yはメチレン基、イソプロピリデン基、環状のアルキリデン基、アリール置換アルキリデン基、アリーレンジアルキリデン基、-S-、-O-、カルボニル基または-SO2-を示す。)
    で表されるビスフェノール成分(B)5~60モル%、
     下記一般式(3)
    HOOC-R1-COOH ・・・(3)
     (式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
    で表されるジカルボン酸成分(C)40~60モル%を含むモノマー混合物
     (ただし上記の(A)、(B)、(C)のモル%は、モノマー(A)、(B)、(C)の合計を100モル%とした場合の数値である)
    の重縮合物であることを特徴とする導光板。
    It consists of a resin composition in which a fluidity improver is blended with polycarbonate resin,
    The fluidity improver is
    The following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X 1 to X 4 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
    A biphenol component (A) represented by 0 to 55 mol%,
    The following general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein X 5 to X 8 may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Y represents a methylene group, an isopropylidene group, a cyclic group. An alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group, or —SO 2 —.
    5 to 60 mol% of a bisphenol component (B) represented by
    The following general formula (3)
    HOOC-R 1 -COOH (3)
    (In the formula, R 1 represents a divalent linear substituent which has 2 to 18 main chain atoms and may be branched.)
    A monomer mixture containing 40 to 60 mol% of the dicarboxylic acid component (C) represented by the formula (However, the mol% of the above (A), (B), (C) is the monomer (A), (B), (C ) Is the value when the total is 100 mol%)
    A light guide plate characterized by being a polycondensate of
  2.  上記流動性向上剤の数平均分子量が2000~30000である、請求項1に記載の導光板。 The light guide plate according to claim 1, wherein the fluidity improver has a number average molecular weight of 2,000 to 30,000.
  3.  上記流動性向上剤中の(C)成分からなる部分のR1に相当する部分が、直鎖の飽和脂肪族炭化水素鎖である、請求項1または2に記載の導光板。 3. The light guide plate according to claim 1, wherein a portion corresponding to R 1 of the portion consisting of the component (C) in the fluidity improver is a straight-chain saturated aliphatic hydrocarbon chain.
  4.  上記流動性向上剤中の(C)成分からなる部分のR1に相当する部分が-(CH28-、-(CH210-、-(CH212-のいずれかである、請求項1~3のいずれか1項に
    記載の導光板。
    The part corresponding to R 1 of the part (C) in the fluidity improver is any one of — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 —. The light guide plate according to any one of claims 1 to 3.
  5.  上記流動性向上剤の末端が一官能性の低分子化合物で封止され、その封止率が60%以上である、請求項1~4のいずれか1項に記載の導光板。 The light guide plate according to any one of claims 1 to 4, wherein the end of the fluidity improver is sealed with a monofunctional low-molecular compound, and the sealing rate is 60% or more.
  6.  請求項1~5のいずれか1項に記載の導光板と、該導光板に向けて光を射出する光源とを備えることを特徴とする面光源体。 A surface light source body comprising: the light guide plate according to any one of claims 1 to 5; and a light source that emits light toward the light guide plate.
  7.  芳香族ポリカーボネート系樹脂(I)と流動性向上剤(II)と光拡散剤(III)とを含有し、前記流動性向上剤(II)が
     下記一般式(1)
    Figure JPOXMLDOC01-appb-C000003
     (式中、X~Xは各々同一であっても異なっていてもよい、水素原子、ハロゲン原子、炭素数1~4のアルキル基を示す。)
    で表されるビフェノール成分(A)0~55モル%、
    下記一般式(2)
    Figure JPOXMLDOC01-appb-C000004
     (式中、X~Xは各々同一であっても異なっていてもよい、水素原子、ハロゲン原子、炭素数1~4のアルキル基を示す。Yはメチレン基、イソプロピリデン基、環状のアルキリデン基、アリール置換アルキリデン基、アリーレンジアルキリデン基、-S-、-O-、カルボニル基または-SO-を示す。)
    で表されるビスフェノール成分(B)5~60モル%、
    下記一般式(3)
    HOOC-R-COOH ・・・(3)
     (式中、Rは主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
    で表されるジカルボン酸成分(C)40~60モル%を含むモノマー混合物(ただし上記の(A)、(B)、(C)のモル%は、モノマー(A)、(B)、(C)の合計を100モル%とした場合の数値である)の重縮合物である、芳香族ポリカーボネート系樹脂組成物。
    It contains an aromatic polycarbonate resin (I), a fluidity improver (II), and a light diffusing agent (III), and the fluidity improver (II) is represented by the following general formula (1)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein X 1 to X 4 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
    A biphenol component (A) represented by 0 to 55 mol%,
    The following general formula (2)
    Figure JPOXMLDOC01-appb-C000004
    (Wherein X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Y represents a methylene group, an isopropylidene group, a cyclic group. An alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group, or —SO 2 —.
    5 to 60 mol% of a bisphenol component (B) represented by
    The following general formula (3)
    HOOC-R 1 -COOH (3)
    (In the formula, R 1 represents a divalent linear substituent having 2 to 18 main chain atoms and optionally branched.)
    A monomer mixture containing 40 to 60 mol% of the dicarboxylic acid component (C) represented by the above formula (provided that the mol% of the above (A), (B), and (C) is the monomer (A), (B), (C The aromatic polycarbonate-based resin composition is a polycondensation product)).
  8.  芳香族ポリカーボネート系樹脂(I)の粘度平均分子量が12000~40000である請求項7に記載の芳香族ポリカーボネート系樹脂組成物。 The aromatic polycarbonate resin composition according to claim 7, wherein the aromatic polycarbonate resin (I) has a viscosity average molecular weight of 12,000 to 40,000.
  9.  流動性向上剤(II)の数平均分子量が2000~30000である、請求項7または8のいずれか1項に記載の芳香族ポリカーボネート系樹脂組成物。 The aromatic polycarbonate resin composition according to any one of claims 7 and 8, wherein the fluidity improver (II) has a number average molecular weight of 2,000 to 30,000.
  10.  前記流動性向上剤(II)中の(C)成分のRに相当する部分が、直鎖の飽和脂肪族炭化水素鎖である、請求項7~9のいずれか1項に記載の芳香族ポリカーボネート系樹脂組成物。 The aromatic group according to any one of claims 7 to 9, wherein the portion corresponding to R 1 of the component (C) in the fluidity improver (II) is a linear saturated aliphatic hydrocarbon chain. Polycarbonate resin composition.
  11.  前記流動性向上剤(II)の末端が一官能性の低分子化合物で封止され、その封止率が60%以上である、請求項7~10のいずれか1項に記載の芳香族ポリカーボネート系樹脂組成物。 The aromatic polycarbonate according to any one of claims 7 to 10, wherein a terminal of the fluidity improver (II) is sealed with a monofunctional low molecular compound, and the sealing rate is 60% or more. -Based resin composition.
  12.  芳香族ポリカーボネート系樹脂(I)と流動性向上剤(II)の重量比が70:30~99.9:0.1である請求項7~11のいずれか1項に記載の芳香族ポリカーボネート系樹脂組成物。 The aromatic polycarbonate system according to any one of claims 7 to 11, wherein the weight ratio of the aromatic polycarbonate resin (I) to the fluidity improver (II) is 70:30 to 99.9: 0.1. Resin composition.
  13.  請求項7~12に記載の芳香族ポリカーボネート系樹脂組成物を成形してなる光拡散性成形品。 A light diffusive molded article obtained by molding the aromatic polycarbonate resin composition according to any one of claims 7 to 12.
PCT/JP2017/014198 2016-04-06 2017-04-05 Light guide plate, surface light source body provided with same, aromatic polycarbonate-based resin composition, and light diffusive moulded article WO2017175786A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-076235 2016-04-06
JP2016-076236 2016-04-06
JP2016076235A JP2017187616A (en) 2016-04-06 2016-04-06 Light guide plate and surface light source unit having the same
JP2016076236A JP2017186446A (en) 2016-04-06 2016-04-06 Aromatic polycarbonate-based resin composition and light diffusing molded article

Publications (1)

Publication Number Publication Date
WO2017175786A1 true WO2017175786A1 (en) 2017-10-12

Family

ID=60000370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014198 WO2017175786A1 (en) 2016-04-06 2017-04-05 Light guide plate, surface light source body provided with same, aromatic polycarbonate-based resin composition, and light diffusive moulded article

Country Status (1)

Country Link
WO (1) WO2017175786A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570674A (en) * 1991-09-17 1993-03-23 Nippon G Ii Plast Kk Polycarbonate-based resin composition
JPH08337645A (en) * 1995-06-12 1996-12-24 Mitsubishi Rayon Co Ltd Copolyester resin
JPH0959364A (en) * 1995-08-23 1997-03-04 Unitika Ltd Polyarylate and electron photographic photosensitive body using the same
JP2007106943A (en) * 2005-10-17 2007-04-26 Mitsubishi Chemicals Corp Light-diffusing resin composition and light-diffusing member using the same
JP2007211109A (en) * 2006-02-08 2007-08-23 Mitsubishi Chemicals Corp Thermoplastic resin composition and resin-molded article
JP2008214378A (en) * 2007-02-28 2008-09-18 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and molded product thereof
JP2009062500A (en) * 2007-09-10 2009-03-26 Sumitomo Dow Ltd Light-reflecting flame-retardant polycarbonate resin composition having improved fluidity
JP2012014195A (en) * 2011-10-03 2012-01-19 Mitsubishi Engineering Plastics Corp Light diffusing member using light diffusing resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570674A (en) * 1991-09-17 1993-03-23 Nippon G Ii Plast Kk Polycarbonate-based resin composition
JPH08337645A (en) * 1995-06-12 1996-12-24 Mitsubishi Rayon Co Ltd Copolyester resin
JPH0959364A (en) * 1995-08-23 1997-03-04 Unitika Ltd Polyarylate and electron photographic photosensitive body using the same
JP2007106943A (en) * 2005-10-17 2007-04-26 Mitsubishi Chemicals Corp Light-diffusing resin composition and light-diffusing member using the same
JP2007211109A (en) * 2006-02-08 2007-08-23 Mitsubishi Chemicals Corp Thermoplastic resin composition and resin-molded article
JP2008214378A (en) * 2007-02-28 2008-09-18 Idemitsu Kosan Co Ltd Aromatic polycarbonate resin composition and molded product thereof
JP2009062500A (en) * 2007-09-10 2009-03-26 Sumitomo Dow Ltd Light-reflecting flame-retardant polycarbonate resin composition having improved fluidity
JP2012014195A (en) * 2011-10-03 2012-01-19 Mitsubishi Engineering Plastics Corp Light diffusing member using light diffusing resin composition

Similar Documents

Publication Publication Date Title
JP5864021B1 (en) Polyester resin composition, injection molded article, light reflector substrate and light reflector
KR101944461B1 (en) Polymer blends comprising polycarbonate and polymethylmethacrylate
EP1300445A1 (en) Aromatic polycarbonate resin composition
KR20140100972A (en) Molded bodies having high surface quality
US10253178B2 (en) Flowability improver for polycarbonate and polyarylate, polycarbonate resin composition, polyarylate resin composition, and molded article thereof
JP2017186446A (en) Aromatic polycarbonate-based resin composition and light diffusing molded article
JP2004075770A (en) Thermoplastic resin composition
JP2002265769A (en) Aromatic polycarbonate resin composition
JP6462497B2 (en) Additive for polycarbonate and polyarylate, polycarbonate resin composition, polyarylate resin composition, and molded article thereof
US10619004B2 (en) Flowability enhancing agent for polycarbonate resin, method for producing said agent, polycarbonate resin composition and molded article thereof
WO2017175786A1 (en) Light guide plate, surface light source body provided with same, aromatic polycarbonate-based resin composition, and light diffusive moulded article
JPH1112454A (en) Flame-retardant thermoplastic resin composition
JP5200426B2 (en) Polyester resin composition for coating and vapor-deposited molded products
WO2017175789A1 (en) Resin composition, moulded article, and plated moulded article
JP6538285B2 (en) Polycarbonate resin composition
JP2021017545A (en) Fluidity improver, thermoplastic resin composition and molding thereof
JP2017187616A (en) Light guide plate and surface light source unit having the same
JP3400743B2 (en) Thermoplastic resin composition and method for producing the same
JP2006225440A (en) Polyester resin composition for light-reflecting molded article
JP2017186465A (en) Polycarbonate resin composition and molded article thereof
WO2017175790A1 (en) Resin composition, and automobile component
JP4056363B2 (en) Reinforced aromatic polycarbonate resin composition and molded article formed therefrom
JP2019142986A (en) Polyester resin composition for reflective material, and reflective material
WO2017175787A1 (en) Polycarbonate resin composition and molded article thereof
JPH07242781A (en) Resin composition

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779164

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779164

Country of ref document: EP

Kind code of ref document: A1