WO2017175602A1 - 需要家エネルギー管理装置、無停電電源管理装置及び需要家エネルギー管理システム - Google Patents

需要家エネルギー管理装置、無停電電源管理装置及び需要家エネルギー管理システム Download PDF

Info

Publication number
WO2017175602A1
WO2017175602A1 PCT/JP2017/011957 JP2017011957W WO2017175602A1 WO 2017175602 A1 WO2017175602 A1 WO 2017175602A1 JP 2017011957 W JP2017011957 W JP 2017011957W WO 2017175602 A1 WO2017175602 A1 WO 2017175602A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
uninterruptible power
unit
input
switch
Prior art date
Application number
PCT/JP2017/011957
Other languages
English (en)
French (fr)
Inventor
賢治 武田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017175602A1 publication Critical patent/WO2017175602A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Definitions

  • the present invention relates to a consumer energy management device, an uninterruptible power supply management device, and a consumer energy management system.
  • Patent Document 1 discloses a technique for connecting a storage battery to a power system via a power conditioner and charging / discharging it.
  • An object of the present invention is to provide a consumer energy management device, an uninterruptible power supply management device, and a consumer that can quickly supply power when demand-side management is performed and at the same time reduce the influence on the consumer's power load as much as possible. To provide an energy management system.
  • the present application includes a plurality of means for solving the above-mentioned problems.
  • An example of the consumer energy management apparatus is a switch connected to an AC input of an uninterruptible power supply, and demand restriction information on power supplied from the outside.
  • the switch When the demand restriction information is received from the uninterruptible power supply management unit that controls the switch off and the return from the off state based on the power system management system connected to the AC input, the switch And an energy management unit that outputs a command to turn off the power to the uninterruptible power supply management unit.
  • the electric power response can be performed rapidly, and the influence which it has on the electric power load of a consumer can be reduced as much as possible.
  • FIG. 3A shows the example of the operation signal of a switch by the example of 1 embodiment of this invention
  • FIG. 3B shows the example of detected electric power.
  • FIG. 3B shows the example of the consumer energy management part by one embodiment of this invention, and an uninterruptible power supply management part.
  • FIG. 3B shows the example of the switch operation part by one embodiment of this invention.
  • FIG. 3B shows the example of the deterioration determination part by one embodiment of this invention.
  • FIG. 1 shows an example of the overall configuration of a customer energy management system 100 of this example.
  • Load devices 5a, 5b, 5c of each consumer are connected to the power system 1 operated by the power company or power transmission company.
  • uninterruptible power management units 3a, 3b, 3c and uninterruptible power supplies 4a, 4b, 4c are connected between the electric power system 1 and the load devices 5a, 5b, 5c.
  • the customer energy management system 100 is configured to include the three uninterruptible power supplies 4a, 4b, and 4c, and the number of uninterruptible power supplies 4a, 4b, and 4c varies depending on the system configuration.
  • Each uninterruptible power supply 4a, 4b, 4c is provided with a storage battery, and the storage battery is normally charged by an AC input supplied from the power system 1. Then, when the power system 1 fails and the AC input is interrupted, the storage batteries included in the uninterruptible power supplies 4a, 4b, 4c start discharging, and the load devices connected to the uninterruptible power supplies 4a, 4b, 4c. AC power is supplied to 5a, 5b and 5c.
  • the uninterruptible power supplies 4a, 4b, and 4c quickly start discharging from the storage battery in the event of a power failure when the AC input is interrupted. At the start of discharge from the storage battery, alternating current input to the load devices 5a, 5b, 5c is continued even during a power failure, and the operating state of the load devices 5a, 5b, 5c is continued. However, depending on the configuration of the uninterruptible power supplies 4a, 4b, and 4c, the AC input to the load devices 5a, 5b, and 5c is temporarily interrupted without affecting the continuous operation of the load devices 5a, 5b, and 5c. An instantaneous power failure may occur.
  • uninterruptible power supply management part 3a, 3b, 3c is connected to the alternating current input of each uninterruptible power supply 4a, 4b, 4c.
  • Each uninterruptible power supply management unit 3a, 3b, 3c includes a switch 34 (FIG. 2), and can interrupt AC input from the power system 1 to the uninterruptible power supplies 4a, 4b, 4c.
  • each uninterruptible power supply 4a, 4b, 4c outputs the apparatus information Sig1 which conveys the operating condition of uninterruptible power supply itself.
  • the device information Sig1 output by each uninterruptible power supply 4a, 4b, 4c is connected to the previous stage of each uninterruptible power supply 4a, 4b, 4c. And converted into device information Sig2 in the uninterruptible power supply management units 3a, 3b, 3c. The converted device information Sig2 is supplied to each load device 5a, 5b, 5c. Details of the conversion process from the device information Sig1 to the device information SIg2 will be described later.
  • each uninterruptible power supply management unit 3a, 3b, 3c is controlled by the energy management unit 8 that controls the entire consumer energy management system 100 of this example.
  • the energy management part 8 is installed by the provider who performs demand side management, for example. Or the electric power consumer may install the energy management part 8.
  • a terminal 9 is connected to the energy management unit 8, and an uninterruptible power supply 4 a, 4 b, 4 c for executing demand side management is selected according to an instruction from the terminal 9.
  • the terminal 9 is a terminal that is operated by an operator of the consumer energy management system 100, and includes, for example, a computer device or a tablet terminal.
  • the terminal 9 displays the operation status of the customer energy management system 100, and the uninterruptible power supplies 4a, 4b, 4c are selected by the operation of the administrator who sets the operation at the consumer.
  • the energy management unit 8 communicates with the system operation device 6 connected via the communication network 7.
  • a system state sensor 2 that detects a voltage VAC or the like is connected to the power supply system 1. Then, the system operation device 6 monitors the power supply state of the power supply system 1 from the voltage VAC detected by the system state sensor 2 and stabilizes the power supply. That is, the system operation device 6 manages the voltage, current, frequency, phase, etc. of the entire power system, and adjusts the output of the power generation device connected to the system, for example, when the balance of supply and demand is disturbed, Or limit consumption at home. In order to limit consumption at the consumer, a negative wattage command Nt is output to a specific consumer contracted by the grid operation device 6 in advance.
  • the grid operation device 6 sends the load management device 8 to the energy management unit 8 via the communication network 7.
  • a negative wattage command Nt for instructing reduction of power consumption is transmitted.
  • the energy management unit 8 that has received the negative wattage command Nt transmits a command to turn off the switch 34 (see FIG. 3) to any (or all) of the uninterruptible power supply management units 3a, 3b, and 3c. Run the operation.
  • FIG. 2 shows the configuration of one uninterruptible power supply management unit 3a and its surroundings.
  • the uninterruptible power supply management unit 3a includes an AC input measurement unit 31 and a switch 34, and is connected to the AC input of the uninterruptible power supply 4a.
  • the AC input measurement unit 31 is connected immediately before the power line switch 34 from which AC input is obtained, and includes a voltmeter 32, an ammeter 33, and a wattmeter 35, and includes an input voltage VT, an input current CT, and input power. PT is measured. These input voltage VT, input current CT, and input power PT are supplied to the individual controller 36. The individual controller 36 supplies the switch operation signal SW to the switch 34 to control the operation of the switch 34.
  • the individual controller 36 supplies the switch operating signal SW to the switch 34 to turn off the switch 34. Then, by turning off the switch 34, the uninterruptible power supply 4a detects a power failure in which the AC input is interrupted, starts discharging from the built-in battery, and supplies the AC power to the load device 5a. Continue. Even when the command for instructing the off state is supplied from the energy management unit 8, the individual controller 36 may not turn off the switch 34, but details of the operation will be described later. Further, the individual controller 36 supplies a switch operation signal SW for returning from the off state to the on state while the battery in the uninterruptible power supply 4a is remaining after the switch 34 is turned off. Then, the switch 34 is returned to the on state.
  • FIG. 3 shows the relationship between the switch operation signal SW (FIG. 3A) output from the individual controller 36 and the power PT (FIG. 3B) detected by the AC input measuring unit 31.
  • the switch operation signal SW is instructed to be turned on
  • the switch 34 is turned on, and the power PT becomes the power PL corresponding to the power consumption of the load device 5a.
  • the switch 34 will be in an OFF state and the electric power PT which the alternating current input measurement part 31 detects will be 0.
  • the switch 34 is in the OFF state, the battery in the uninterruptible power supply 4a is discharged, and the supply of AC power to the load device 5a is continued.
  • the switch 34 After the switch 34 is turned off, when the switch operation signal SW is turned on, the switch 34 returns to the on state.
  • the period which the switch 34 continued in the OFF state be (DELTA) t.
  • the switch 34 returns from the off state to the on state, the discharge from the uninterruptible power supply 4a stops and the battery in the uninterruptible power supply 4a is charged. Therefore, the power PT immediately after the switch 34 returns from the off state to the on state is higher than the power consumption PL of the load device 5a by a predetermined amount PRC.
  • the increased power PRC corresponds to the power charged in the battery in the uninterruptible power supply 4a. Then, as the charging of the battery in the uninterruptible power supply 4a is completed, the power PT gradually decreases, and after the charging is completed, the power PT becomes the power consumption PL of the load device 5a. As shown in FIG. 3B, when the switch 34 is turned on, the timing when the power PT rises from 0 is slightly delayed from the timing when the switch 34 is turned on.
  • FIG. 4 is a diagram showing a detailed relationship between the configuration of the energy management unit 8 and the configuration of the individual controller 36.
  • the energy management unit 8 includes an uninterruptible power supply selection unit 81, a unit price determination unit 82, and a storage unit 83.
  • the individual controller 36 includes a switch operating unit 37, a deterioration determining unit 38, and a signal converting unit 39.
  • the uninterruptible power supply selection unit 81 of the energy management unit 8 receives the negative wattage command Nt, the uninterruptible power supply management units 3a, 3b, and 3c that turn off the switch 34 are selected.
  • the uninterruptible power supply management units 3a, 3b, and 3c are selected. Then, a negative wattage command Nt1 is transmitted to the selected uninterruptible power supply management units 3a, 3b, 3c.
  • the deterioration information Deg1 is information indicating the deterioration state of the battery built in each uninterruptible power supply 4a, 4b, 4c, and is supplied from the deterioration determination unit 38 of the individual controller 36. Details of the process in which the deterioration determination unit 38 generates the deterioration information Deg1 will be described later.
  • the system administrator selection information US supplied to the uninterruptible power supply selection unit 81 is information indicating the uninterruptible power supplies 4a, 4b, and 4c that are operated by the operation of the terminal 9 by the system administrator, and is supplied from the terminal 9.
  • the operation determination signal MP supplied from the unit price determination unit 82 to the uninterruptible power supply selection unit 81 is information indicating whether or not to operate according to the negative wattage command Nt based on the power unit price.
  • the operation determination signal MP is a signal for determining whether or not the current power unit price corresponds to the operation of the switch 34 using the information on the power unit price obtained through the communication network 7 or the like.
  • the storage unit 83 constitutes a characteristic database.
  • the characteristics data of the battery (storage device) built into the uninterruptible power supply such as the voltage, current, capacity, temperature, compliance standard, degradation coefficient, etc. published on the product data sheet, Stored by model.
  • the model of each uninterruptible power supply 4a, 4b, 4c is designated by the model information UI selected by the terminal 9.
  • Characteristic data (degradation determination parameter Pa1) of the specified type of uninterruptible power supply is read from the characteristic database of the storage unit 83 and supplied to the deterioration determination unit 38 of the individual controller 36.
  • the uninterruptible power supply communication information IF1 is read from the characteristic database of the storage unit 83 and supplied to the signal conversion unit 39 of the individual controller 36.
  • the signal converter 39 converts the device information Sig1 supplied from the uninterruptible power supplies 4a, 4b, 4c to the signal converter 39 based on the uninterruptible power supply communication information IF1. That is, each uninterruptible power supply 4a, 4b, 4c outputs device information Sig1 indicating the start of discharge when AC input is interrupted and discharge from the battery is started.
  • the device information Sig1 is information to be supplied to the load devices 5a, 5b, and 5c, and the load devices 5a, 5b, and 5c that have received the device information Sig1 perform processing in preparation for an emergency power failure. For example, when the load devices 5a, 5b, and 5c are computer devices, a process of storing them in a nonvolatile memory is performed based on the device information Sig1 so that data being processed is not lost.
  • the signal converter 39 converts the device information Sig1 to the device information Sig2 in which the uninterruptible power supply has not been operated. It converts and supplies to each load apparatus 5a, 5b, 5c.
  • FIG. 5 shows the configuration of the switch operating unit 37.
  • the switch operation unit 37 includes a system diagnosis unit 371 and a gate circuit 372.
  • the system diagnosis unit 371 is supplied with the input voltage VT measured by the AC input measurement unit 31.
  • an appropriate range In the system diagnosis unit 371, when the voltage value of the input voltage VT is between the lower limit threshold value VL and the upper limit threshold value VH, and the frequency of the input voltage VT is between the lower limit threshold value FL and the upper limit threshold value FH, an appropriate range (in the drawing) In the range of “TRUE”.
  • a signal is output to the gate circuit 372.
  • the command Nt1 of the switch 34 output from the uninterruptible power supply selection unit 81 is supplied to the gate circuit 372.
  • the gate circuit 372 When the gate circuit 372 is supplied with a signal indicating that the input voltage VT is appropriate from the system diagnosis unit 371 and is supplied with the off-state command Nt1, the gate circuit 372 operates the switch to instruct the off-state.
  • the signal SW is output to the switch 34.
  • the switch 34 that has received the switch operation signal SW instructing the off state turns off the AC power supply path.
  • the gate circuit 372 does not output the switch operation signal SW instructing the off state even when the off-state command Nt1 is supplied. Therefore, in this case, the switch 34 is kept on. Further, when the output of the off-state command Nt1 from the uninterruptible power supply selection unit 81 stops, the switch 34 returns to the on-state.
  • FIG. 6 shows an example of a detailed configuration of the deterioration determination unit 38.
  • the deterioration determination unit 38 is supplied with the power PT measured by the AC input measurement unit 31, the deterioration determination parameter Pa1 from the storage unit 83, and the switch operation signal SW from the switch operation unit 37.
  • the data of the power PT is supplied to the charging power calculation unit 381.
  • the charging power calculation unit 381 includes a load filter unit 381a, and extracts the power consumption PL of the load device 5a from the value of the input power PT.
  • FIG. 7 is a characteristic diagram for explaining the operation of the load filter unit 381a.
  • FIG. 7 shows the occurrence frequency N of the value detected as the measured power PT as a histogram.
  • the load filter unit 381a performs a process of obtaining the occurrence frequency N of the value of the measured power PT when the switch 34 is on based on the switch operation signal SW. Then, the load filter unit 381a sets the measured power PT having the highest occurrence frequency N as the power consumption PL of the load device 5a.
  • the data of the power consumption PL obtained by the load filter unit 381 a is supplied to the subtracter 381 b in the deterioration determination unit 38 and the multiplier 385 b in the load power calculation unit 385.
  • a differential power PRC between the measured power PT and the power consumption PL is obtained.
  • the differential power PRC is supplied to the integrator 381c and integrated.
  • the integrator 381c integrates the differential power PRC after the integration operation is reset based on the switch operation signal SW and the switch 34 changes from the off state to the on state (see FIG. 3).
  • the integral value ERC of the differential power PRC obtained in this way corresponds to the power charged in the battery in the uninterruptible power supply 4a.
  • the load power calculation unit 385 includes a counter 385a and a multiplier 385b.
  • the counter 385a calculates the OFF state duration ⁇ t during a period in which the OFF state is indicated by the switch operation signal SW.
  • the multiplier 385b calculates the product of the OFF state duration ⁇ t calculated by the counter 385a and the power consumption PL of the load device 5a as the discharge power amount EOFF.
  • the integrated value ERC obtained by the charging power calculation unit 381 and the discharge power amount EOFF obtained by the load power calculation unit 385 are supplied to the divider 383 via the load buffer 382.
  • Divider 383 divides integral value ERC and discharge power amount EOFF to obtain charge / discharge efficiency EF.
  • Data of the charge / discharge efficiency EF obtained by the divider 383 is supplied to the deterioration determination calculation unit 384.
  • the deterioration determination calculation unit 384 is supplied with the charge / discharge efficiency EF, the deterioration determination parameter Pa1, the cumulative off time Toff, and the cumulative operation time T.
  • the accumulated off time Toff is calculated by integrating the off state duration time ⁇ t by the accumulated off time calculator 386, and the accumulated operating time T is calculated by the accumulated operating time calculator 387.
  • the deterioration determination calculation unit 384 calculates the deterioration state of the battery in the uninterruptible power supply 4a based on data such as the charge / discharge efficiency EF, and generates deterioration information Deg1.
  • the degradation information Deg1 is supplied from the degradation determination unit 38 to the uninterruptible power supply selection unit 81 as shown in FIG.
  • the system of this example includes a plurality of uninterruptible power supply management units 3a, 3b, 3c as shown in FIG. For this reason, each information is individually exchanged between these energy management part 8 and each uninterruptible power supply management part 3a, 3b, 3c.
  • the energy management unit 8 acquires the deterioration information Deg1 of each uninterruptible power supply 4a, 4b, 4c, and performs a process of determining the deterioration state of each uninterruptible power supply 4a, 4b, 4c.
  • FIG. 8 shows an example of the display screen of the terminal 9.
  • the display screen of the terminal 9 includes a setting status display unit 91 and a trend display unit 92.
  • the detailed display unit 911 of the setting status display unit 91 is, for example, a list display, and details of the uninterruptible power supplies 4a, 4b, 4c in the customer energy management system 100 (uninterruptible power supply type, battery type, service availability) , Degradation rate, service status, cumulative uptime, etc.).
  • Service availability is a column indicating whether or not to perform negative wattage operation, and the administrator checks the check box in this column to enable negative wattage operation of the corresponding uninterruptible power supply.
  • the deterioration rate is a value based on the deterioration information Deg1 generated by the deterioration determination calculation unit 384.
  • the service status indicates whether or not the service of the negative power operation is being executed.
  • the setting status display unit 91 may display other information obtained by the energy management unit 8.
  • the registration / deletion button 912 is operated, the service availability in the state shown in the detail display portion 911 is registered or deleted. Based on the registration status at these terminals 9, system administrator selection information US is set.
  • the trend display unit 92 displays the operation history of each uninterruptible power supply 4a, 4b, 4c with respect to the operation time series. Specifically, a graph 921 indicating which uninterruptible power supply 4a, 4b, 4c is in a standby state and a graph 922 of the amount of electric power and revenue supplied by the operated uninterruptible power supply 4a, 4b, 4c are displayed. .
  • FIG. 9 is a flowchart showing a control example of the switch 34 by the energy management unit 8 and the uninterruptible power supply management unit 3a.
  • the energy management unit 8 determines whether or not the negative wattage command Nt is received from the system operation device 6 (step S11). If no negative wattage command Nt is received (NO in step S11), the process waits until a negative wattage command Nt is received.
  • the energy management unit 8 determines whether or not the unit price during the negative wattage operation determined by the unit price determination unit 82 is appropriate (step S12).
  • the power system is stable (step S13). The determination as to whether or not the power system is stable is executed by the switch operation unit 37 based on the measurement result of the AC input measurement unit 31.
  • the energy management unit 8 determines whether or not the battery of the uninterruptible power supply to be controlled (here, the uninterruptible power supply 4a) has deteriorated (Ste S14).
  • the switch operating unit 37 of the uninterruptible power supply management unit 3a outputs the switch operating signal SW instructing the off state.
  • the switch 34 is turned off (step S15). In the OFF state of the switch 34, the discharge from the connected uninterruptible power supply 4a is started.
  • the energy management part 8 estimates the charge remaining amount of the uninterruptible power supply 4a, and judges whether it became below a threshold value (step S16).
  • the switch operation part 37 outputs the switch operation signal SW instruct
  • the switch operation part 37 outputs the switch operation signal SW which instruct
  • the switch 34 is returned to the on state.
  • the energy management unit 8 and the uninterruptible power supply management unit 3a return to the determination in step S11.
  • step S12 when it is not appropriate to respond to the negative wattage command Nt from the unit price (NO in step S12), the power system is not stable (NO in step S13), or the battery of the uninterruptible power supply to be controlled is deteriorated (YES in step S14), no negative wattage operation is performed. That is, the energy management unit 8 and the uninterruptible power supply management unit 3a ignore the negative wattage command Nt and do not perform the negative wattage operation for operating the uninterruptible power supply (step S18). Returns to the determination in step S11. When ignoring the negative wattage command Nt, the energy management unit 8 notifies the system operation device 6 that the negative wattage command Nt is rejected if necessary.
  • the energy management unit 8 can prioritize the uninterruptible power supply with less deterioration among a plurality of uninterruptible power supplies, and can adopt the negative wattage operation, and can level the use state of the uninterruptible power supply. It is possible to ensure reliable negative wattage operation.
  • each uninterruptible power supply management unit 3a, 3b, 3c can estimate battery deterioration using only the measured power PT of the AC input measurement unit 31, it directly measures the uninterruptible power supply 4a, 4b, 4c itself. Without being brought about, there is an effect that the deterioration can be estimated accurately without contact.
  • the device information Sig1 output from each uninterruptible power supply 4a, 4b, 4c is converted by the uninterruptible power supply management units 3a, 3b, 3c, so that any modification to the uninterruptible power supply management units 3a, 3b, 3c is made. It will be possible to operate properly with no negative power. That is, in this example, the uninterruptible power supplies 4a, 4b, and 4c may operate even in a situation where there is no power failure, and the load devices 5a, 5b, and 5c stand by in preparation for a power failure by the device information Sig1 that indicates the occurrence of a power failure. There is a possibility to do.
  • the uninterruptible power management units 3a, 3b, 3c convert the device information Sig1 indicating the occurrence of a power failure into the device information Sig2 indicating that there is no power failure. , 5c does not perform useless standby operation, and appropriate operation continues.
  • the uninterruptible power management units 3a, 3b, 3c preferably supply the device information Sig1 as it is to the load devices 5a, 5b, 5c without conversion.
  • the uninterruptible power management units 3a, 3b, and 3c may directly supply the device information Sig1 ′ indicating the occurrence of the power failure to the load device 5a without converting the device information.
  • FIG. 10 shows a deterioration determination unit 38 ′ having a configuration different from that of the deterioration determination unit 38 (FIG. 6) described above. 10 obtains the input power PT, the switch operation signal SW, and the degradation determination parameter Pa1 from the AC input measurement unit 31.
  • the input power PT is supplied to the power change detection unit 388.
  • the power change detection unit 388 detects the power after the switch operation signal SW changes from the off state to the on state, and the uninterruptible power supply 4a switches the charging mode of the internal battery from the constant current mode to the constant voltage mode. Until then, the detection signal PX is output.
  • the constant current mode may be a method in which the charging power of the uninterruptible power supply 4a is considered to be in a substantially constant state, and the detection signal PX is output during a period until the charging power starts to change.
  • the structure of the charging power calculation part 381 already shown in FIG. 6 is applicable to the structure which detects only the electric power supplied from the input power PT to the uninterruptible power supply 4a.
  • a detection signal PX indicating that the charging power of the uninterruptible power supply 4a is in a constant state is supplied to the duration determination unit 389, and a time ⁇ TC in which the constant power state continues is detected.
  • a time ⁇ TC in which the constant power state continues is a period in which the battery charging mode is the constant current mode, and periods ⁇ Tc1 and ⁇ Tc2 shown in FIG. 11 described later correspond to the period of the constant current mode.
  • the duration determination unit 389 supplies data of the time ⁇ TC in which the constant power state continues to the deterioration determination calculation unit 384 ′.
  • the load power calculation unit 385 includes a counter 385a, and calculates a duration ⁇ t of a period in which an OFF state is indicated by the switch operation signal SW.
  • the counter 385a calculates the OFF state duration ⁇ t during a period in which the OFF state is indicated by the switch operation signal SW.
  • the accumulated off time calculator 386 calculates the accumulated off time TOFF by integrating the duration time ⁇ t in the off state, and supplies the accumulated off time TOFF to the deterioration determination calculation unit 384 ′.
  • the accumulated operation time calculator 387 calculates the accumulated operation time T and supplies the accumulated operation time T to the deterioration determination calculation unit 384 ′.
  • the battery in the uninterruptible power supply 4a is deteriorated based on the time ⁇ TC in which the charging power of the uninterruptible power supply 4a becomes constant after the switch operation signal SW changes from the off state to the on state.
  • the state is calculated, and deterioration information Deg1 is generated.
  • the deterioration information Deg1 is supplied to the uninterruptible power supply selection unit 81 as shown in FIG.
  • FIG. 11 is a characteristic diagram showing the relationship between the state of the battery included in the uninterruptible power supply and the power supplied to the uninterruptible power supply.
  • the voltage characteristic shown in FIG. 11 shows an example of voltage change of a battery provided in the uninterruptible power supply.
  • the vertical axis represents battery voltage and the horizontal axis represents time. As shown in FIG. 11A, when the switch 34 is in the off state, the battery voltage gradually decreases.
  • the switch 34 returns to the on state, the battery is gradually charged, and the battery voltage returns to a predetermined voltage.
  • a characteristic V1 shown by a solid line in FIG. 11 it changes as shown by a characteristic V1 shown by a solid line in FIG. 11, and returns to the vicinity of the upper limit voltage relatively quickly.
  • the characteristic V2 indicated by the broken line in FIG. 11 it takes a long time to recover to the vicinity of the upper limit voltage.
  • the power change in conjunction with this voltage change is as shown in FIG. 11B.
  • the vertical axis represents power and the horizontal axis represents time. That is, during the period ( ⁇ Tc1) in which the battery voltage is changing with the characteristic V1, the input power PT is constant, and when the voltage value of the characteristic V1 rises to a constant value, the power P decreases from the constant value to the characteristic P1 thereafter. Become.
  • the input power PT is constant, and when the voltage value of the characteristic V2 rises to a constant value, the power is constant thereafter.
  • the characteristic P2 is lowered from the value. Therefore, the deterioration determination calculation unit 384 ′ can determine the deterioration state of the battery from the periods ⁇ Tc1 and ⁇ Tc2 in which the input power PT is constant.
  • the deterioration determination calculation unit 384 ′ When the switch 34 is turned off, the deterioration determination calculation unit 384 ′ has an ideal characteristic ⁇ 1 as the relationship between the discharge amount (PL ⁇ ⁇ t) at that time and the period Tc during which the battery voltage is changing. The actually measured characteristic ⁇ 2 and the ideal characteristic ⁇ 1 are compared to determine the deterioration state.
  • FIG. 13 shows an example in which the battery performance is estimated from the charge / discharge efficiency indicated from the deteriorated state.
  • an average value ⁇ 1 of the distribution of the characteristic ⁇ 2 is obtained.
  • degradation determination calculating part 384 has battery performance curve BT1, BT2, ... for every kind of battery with which an uninterruptible power supply is built, for example, when average value (beta) 1 respond
  • This estimated battery performance value is output as deterioration information Deg1 from the deterioration determination calculation unit 384 ′.
  • the deterioration determination unit 38 ′ shown in FIG. 10 may determine the deterioration state of the battery included in the uninterruptible power supply.
  • the system includes three sets of uninterruptible power supplies 4a, 4b, and 4c.
  • the number of uninterruptible power supplies 4a, 4b, and 4c is not limited to three sets, and the present invention You may apply to the system provided with any number of uninterruptible power supplies.
  • one energy management unit 8 is configured to manage a plurality of uninterruptible power management units 3a, 3b, and 3c.
  • the energy management unit 8 is configured to manage the uninterruptible power management units 3a and 3b. , 3c may be arranged so that each energy management unit 8 individually controls.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • SYMBOLS 1 Electric power system, 2 ... System state sensor, 3a, 3b, 3c ... Uninterruptible power supply management part, 4a, 4b, 4c ... Uninterruptible power supply, 5a, 5b, 5c ... Load apparatus, 6 ... Electric power system operation apparatus, 7 DESCRIPTION OF SYMBOLS ... Network, 8 ... Energy management part, 9 ... Terminal, 31 ... AC input measurement part, 32 ... Voltmeter, 33 ... Ammeter, 34 ... Switch, 35 ... Power meter, 36 ... Individual controller, 37 ... Switch Operation unit 38, 38 '... Degradation judgment unit 39 ... Signal conversion unit 81 ... UPS selection unit 82 ...
  • Unit price judgment unit 83 ... Storage unit 100 ... Consumer energy management system 371 ... System diagnosis unit 372 DESCRIPTION OF SYMBOLS ... Gate circuit, 381 ... Charging electric power calculation part, 381a ... Load filter part, 381b ... Subtractor, 381c ... Integrator, 382 ... Load buffer, 383 ... Divider, 384, 384 '... Degradation judgment calculating part, 385 ... Load Electric Calculator, 385a ... counter, 385b ... multiplier, 386 ... accumulated off time calculator 387 ... cumulative operation time calculator, 388 ... voltage change detecting unit, 389 ... duration determination unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

交流入力により充電され停電時に電力を負荷に供給する無停電電源と、開閉器による無停電電源への交流入力の遮断及び遮断からの復帰を制御する無停電電源管理部とを備える。また、電力系統の管理システムより需要制限情報を受信した場合に、開閉器をオフ状態とする指令を無停電電源管理部に出力するエネルギー管理部を備える。これらの構成により、デマンドサイドマネジメントを実行する場合に、迅速に負荷に電力供給ができると同時に、需要家の電力負荷に与える影響が軽減できるようになる。

Description

需要家エネルギー管理装置、無停電電源管理装置及び需要家エネルギー管理システム
 本発明は、需要家エネルギー管理装置、無停電電源管理装置及び需要家エネルギー管理システムに関する。
 近年、再生可能エネルギーの導入拡大を契機に、電力系統の電圧変動や周波数変動に対する安定化が課題となっている。この対策として、需要家における電力消費を調整することによる系統の安定化、いわゆるデマンドサイドマネジメントが注目されている。
 需要家における電力消費量の調整方法としては、予めデマンドサイドマネジメントを行うように契約した需要家の負荷を強制遮断する方法の他、電力系統に接続された蓄電池システムを充放電させることによる調整方法が知られている。特許文献1には、パワーコンディショナーを介して蓄電池を電力系統に接続し充放電させる技術が開示されている。
特開2014-124067公報
 電力系統の状況に応じて、需要家が備える負荷を制御するデマンドサイドマネジメントを進める際には、電力消費の調整ニーズに対し迅速かつ正確に応答することが望ましい。しかしながら、従来から知られたパワーコンディショナーを用いた電力調整では、各部の電力を計測しつつ、パワーコンディショナーの指令値を修正して行く制御となるため、応答に制御遅れが発生するという問題がある。
 具体的には、何らかの要因で特定の電力系統に接続された負荷での消費電力が増大して、その電力系統の電圧や周波数を維持するのが困難な状況になったとき、迅速にデマンドサイドマネジメントが実行できれば、電圧や周波数の変動を抑えることができる。ところが、電力系統の管理システム側で電力供給量の不足を検出してから、管理システムからの指示をパワーコンディショナーに送って、必要な電力が蓄電池から電力系統に放電されるまでには、ある程度の時間(例えば数十秒程度)が必要である。パワーコンディショナーの起動が遅れると、一時的な電圧の低下や、周波数の変動などの問題が発生する。
 本発明の目的は、デマンドサイドマネジメントを実行する場合に、迅速に電力供給ができると同時に、需要家の電力負荷に与える影響をできるだけ軽減できる需要家エネルギー管理装置、無停電電源管理装置及び需要家エネルギー管理システムを提供することにある。
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。
 本願は上記課題を解決する手段を複数含んでいるが、その一例である需要家エネルギー管理装置は、無停電電源の交流入力に接続された開閉器と、外部から供給される電力の需要制限情報に基づいて、開閉器をオフ状態、及びそのオフ状態からの復帰を制御する無停電電源管理部と、交流入力に接続された電力系統の管理システムより需要制限情報を受信した場合に、開閉器をオフ状態とする指令を無停電電源管理部に出力するエネルギー管理部と、を備える。
 本発明によれば、迅速に電力応答すると同時に、需要家の電力負荷に与える影響をできるだけ軽減することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施の形態例による需要家エネルギー管理システムの全体例を示す図である。 本発明の一実施の形態例による需要家エネルギー管理システムの個々の無停電電源管理部の例を示す図である。 本発明の一実施の形態例による開閉器の操作信号の例(図3A)及び検出電力の例(図3B)を示す特性図である。 本発明の一実施の形態例による需要家エネルギー管理部及び無停電電源管理部の例を示す図である。 本発明の一実施の形態例による開閉器操作部の例を示す図である。 本発明の一実施の形態例による劣化判定部の例を示す図である。 本発明の一実施の形態例による負荷フィルタ部の動作例を示す特性図である。 本発明の一実施の形態例による端末の操作画面の例を示す図である。 本発明の一実施の形態例による無停電電源の制御例を示すフローチャートである。 本発明の一実施の形態の変形例による劣化判定部の例を示す図である。 図10の例による劣化検出原理を示す特性図であり、電池電圧から見た特性(図11A)と、電力から見た特性(図11B)を示す。 放電量とオフ時間との関係の例を示す特性図である。 図10の例により電池性能を推定する例を示す特性図である。
 以下、本発明の一実施の形態の例(以下、「本例」と称する。)を、添付図面を参照して説明する。
[1.需要家エネルギー管理システム全体の構成]
 図1は、本例の需要家エネルギー管理システム100の全体の構成例を示す。
 電力会社又は送電会社が運営する電力系統1には、各需要家の負荷装置5a,5b,5cが接続される。ここで、電力系統1と各負荷装置5a,5b,5cとの間には、無停電電源管理部3a,3b,3c及び無停電電源4a,4b,4cが接続される。
 なお、需要家エネルギー管理システム100が、3台の無停電電源4a,4b,4cの備える構成としたのは一例であり、無停電電源4a,4b,4cの台数はシステム構成によって変化する。
 それぞれの無停電電源4a,4b,4cは、蓄電池を備え、通常時は電力系統1から供給される交流入力で蓄電池が充電される。そして、電力系統1が停電し、交流入力が途絶えたとき、各無停電電源4a,4b,4cが備える蓄電池が放電を開始し、それぞれの無停電電源4a,4b,4cに接続された負荷装置5a,5b,5cに交流電源を供給する。
 なお、無停電電源4a,4b,4cは、交流入力が途絶えた停電時に、迅速に蓄電池からの放電を開始する。この蓄電池からの放電の開始で、停電時であっても負荷装置5a,5b,5cへの交流入力が継続し、負荷装置5a,5b,5cの稼働状態が継続する。但し、無停電電源4a,4b,4cの構成によっては、負荷装置5a,5b,5cの連続的な稼働に影響がない範囲で、負荷装置5a,5b,5cへの交流入力が一時的に途切れて、瞬間的な停電が発生することもある。
 そして、本例においては、それぞれの無停電電源4a,4b,4cの交流入力に、無停電電源管理部3a,3b,3cが接続される。それぞれの無停電電源管理部3a,3b,3cは開閉器34(図2)を備え、電力系統1から無停電電源4a,4b,4cへの交流入力を遮断することができる。なお、図2に示すように、各無停電電源4a,4b,4cは、無停電電源自身の作動状況を伝える装置情報Sig1を出力する。
 本例の場合には、各無停電電源4a,4b,4cが出力する装置情報Sig1が、それぞれの無停電電源4a,4b,4cの前段に接続された無停電電源管理部3a,3b,3cに供給され、無停電電源管理部3a,3b,3c内で装置情報Sig2に変換される。この変換された装置情報Sig2が、各負荷装置5a,5b,5cに供給される。この装置情報Sig1から装置情報SIg2への変換処理の詳細については後述する。
 各無停電電源管理部3a,3b,3cの動作は、本例の需要家エネルギー管理システム100全体を統括するエネルギー管理部8により制御される。
 エネルギー管理部8は、例えばデマンドサイドマネジメントを実行する事業者により設置されるものである。あるいは、電力の需要家がエネルギー管理部8を設置してもよい。
 エネルギー管理部8には、端末9が接続され、端末9からの指示で、デマンドサイドマネジメントを実行する無停電電源4a,4b,4cの選択などが行われる。端末9は、需要家エネルギー管理システム100の運用者が操作を行う端末であり、例えばコンピューター装置やタブレット端末で構成される。端末9には、需要家エネルギー管理システム100の運用状況などが表示され、需要家での運用を設定する管理者の操作で、無停電電源4a,4b,4cの選択などが行われる。
 エネルギー管理部8は、通信ネットワーク7を介して接続された系統運用装置6と通信を行う。
 電源系統1には、電圧VACなどを検出する系統状態センサー2が接続される。そして、系統運用装置6は、系統状態センサー2が検出する電圧VACなどから、電源系統1の電力供給状態を監視して、電力供給の安定化を図る。すなわち、系統運用装置6は、電力系統全域の電圧、電流、周波数、位相などを管理しながら、例えば需給のバランスが乱れた場合には系統に接続された発電装置の出力を調整したり、需要家における消費を制限したりする。
 この需要家における消費の制限のために、系統運用装置6が予め契約した特定の需要家に対して、ネガワット指令Ntを出力する。すなわち、電源系統1の監視状態から、負荷装置5a,5b,5cが消費する電力を削減する必要が生じたとき、系統運用装置6は、通信ネットワーク7を介してエネルギー管理部8に負荷装置の消費電力の削減を指示するネガワット指令Ntを送信する。ネガワット指令Ntを受信したエネルギー管理部8は、無停電電源管理部3a,3b,3cのいずれか(又は全て)に、開閉器34(図3参照)をオフ状態とする指令を送信し、ネガワット運転を実行する。
 なお、デマンドサイドマネジメントを実行する従来のシステムでは、消費電力の削減を指示するネガワット指令Ntを受信した場合、負荷装置の消費電力を削減する処理が行われる。例えば、ネガワット指令Ntを受信した需要家では、空調の温度設定を緩和する、照明の照度を落とす、あるいは優先度の低い電力機器を止める、などの処理が実行される。これに対して本例のシステムでは、エネルギー管理部8がネガワット指令Ntを受信した場合でも、基本的に負荷装置5a,5b,5cの稼働状態は変化させず、後述するように無停電電源4a,4b,4cの作動によりネガワット運転を行う。但し、本例の場合でも、従来から行われている負荷装置の消費電力を削減する処理を組み合わせるようにしてもよい。
[2.無停電電源管理部の構成]
 図2は、1台の無停電電源管理部3aとその周辺の構成を示す。なお、以下の説明では1台の無停電電源管理部3aの構成を説明するが、図1に示す他の無停電電源管理部3b,3cについても、無停電電源管理部3aと同様に説明することができる。
 無停電電源管理部3aは、交流入力計測部31と開閉器34とを備え、無停電電源4aの交流入力に接続される。交流入力計測部31は、交流入力が得られる送電線の開閉器34の直前に接続され、電圧計32、電流計33、及び電力計35を備え、入力電圧VT、入力電流CT、及び入力電力PTを計測する。これらの入力電圧VT、入力電流CT、及び入力電力PTは、個別制御器36に供給される。
 個別制御器36は、開閉器操作信号SWを開閉器34に供給して、開閉器34の動作を制御する。
 個別制御器36は、エネルギー管理部8からの指令である情報DAが供給されると、開閉器操作信号SWを開閉器34に供給して、開閉器34をオフ状態にする。そして、開閉器34をオフ状態とすることで、無停電電源4aは、交流入力が途切れた停電を検出し、内蔵された電池からの放電を開始して、負荷装置5aへの交流電源の供給を継続する。
 なお、エネルギー管理部8からオフ状態を指示する指令が供給された場合でも、個別制御器36は、開閉器34をオフ状態にしない場合もあるが、その動作の詳細については後述する。
 また、個別制御器36は、開閉器34をオフ状態にしてから無停電電源4a内の電池の残量がある間に、オフ状態からオン状態に復帰させる開閉器操作信号SWを開閉器34に供給して、開閉器34をオン状態に復帰する。
 図3は、個別制御器36が出力する開閉器操作信号SW(図3A)と、交流入力計測部31が検出する電力PT(図3B)との関係を示す。
 開閉器操作信号SWでオンが指示されている期間は、開閉器34がオン状態になり、電力PTは、負荷装置5aの消費電力に対応した電力PLになる。
 そして、開閉器操作信号SWでオフ状態が指示されると、開閉器34がオフ状態になり、交流入力計測部31が検出する電力PTが0になる。この開閉器34がオフ状態の間には、無停電電源4a内の電池からの放電が行われ、負荷装置5aへの交流電源の供給が継続して行われる。
 開閉器34がオフ状態になった後、開閉器操作信号SWでオンが指示されると、開閉器34がオン状態に復帰する。ここでは、図3Aに示すように、開閉器34がオフ状態で継続した期間をΔtとする。
 開閉器34がオフ状態からオン状態に復帰したときには、無停電電源4aからの放電が停止すると共に、無停電電源4a内の電池への充電が行われる。したがって、開閉器34がオフ状態からオン状態に復帰した直後の電力PTについては、負荷装置5aの消費電力PLよりも所定量PRCだけ高い電力になる。
 この増加した電力PRCは、無停電電源4a内の電池に充電される電力に相当する。そして、無停電電源4a内の電池の充電の完了に伴って、電力PTが徐々に低下して、充電完了後は電力PTが負荷装置5aの消費電力PLになる。なお、図3Bに示すように、開閉器34がオン状態になった際に、電力PTが0から立ち上がるタイミングは、開閉器34がオン状態になったタイミングから若干遅れる。
[3.エネルギー管理部と個別制御器の構成]
 図4は、エネルギー管理部8の構成と個別制御器36の構成の詳細な関係を示した図である。
 エネルギー管理部8は、無停電電源選択部81、単価判定部82、及び記憶部83を備える。また、個別制御器36は、開閉器操作部37、劣化判定部38及び信号変換部39を備える。
 エネルギー管理部8の無停電電源選択部81は、ネガワット指令Ntを受信すると、開閉器34をオフ状態とする無停電電源管理部3a,3b,3cを選択する。このとき、各無停電電源管理部3a,3b,3cに接続された無停電電源4a,4b,4cのそれぞれの劣化情報Deg1、システム管理者選択情報US、及び稼働判定信号MPに基づいて、適切な無停電電源管理部3a,3b,3cを選択する。そして、選択した無停電電源管理部3a,3b,3cに対して、ネガワット指令Nt1を送信する。
 劣化情報Deg1は、各無停電電源4a,4b,4cが内蔵する電池の劣化状況を示す情報であり、個別制御器36の劣化判定部38から供給される。劣化判定部38が劣化情報Deg1を生成する処理の詳細は後述する。無停電電源選択部81に供給されるシステム管理者選択情報USは、システム管理者が端末9の操作により稼働させる無停電電源4a,4b,4cを示す情報であり、端末9から供給される。単価判定部82から無停電電源選択部81に供給される稼働判定信号MPは、電力単価に基づいてネガワット指令Ntに応じて稼働を行うか否かを示す情報である。この稼働判定信号MPは、通信ネットワーク7などを介して入手した電力単価の情報を用いて、現在の電力単価が開閉器34の操作に相応しいか否かを判定するための信号である。
 記憶部83は、特性データーベースを構成する。この特性データーベースには、無停電電源が内蔵する電池(蓄電デバイス)の特性データー、例えば製品データーシートで公開された電圧、電流、容量、温度、準拠規格、劣化の係数などが、各機器の型式別に保存される。そして、端末9で選定された型式情報UIにより、各無停電電源4a,4b,4cの型式が指定される。指定された型式の無停電電源の特性データー(劣化判定パラメーターPa1)は、記憶部83の特性データーベースから読み出されて、個別制御器36の劣化判定部38に供給される。また、無停電電源通信情報IF1が、記憶部83の特性データーベースから読み出されて、個別制御器36の信号変換部39に供給される。
 信号変換部39は、無停電電源通信情報IF1に基づいて、無停電電源4a,4b,4cから信号変換部39に供給される装置情報Sig1を変換する。すなわち、各無停電電源4a,4b,4cは、交流入力が途絶えて電池からの放電を開始したとき、その放電開始を示す装置情報Sig1を出力する。この装置情報Sig1は、負荷装置5a,5b,5cに供給する情報であり、装置情報Sig1を受信した負荷装置5a,5b,5cは、万一の停電に備える処理を行う。例えば、負荷装置5a,5b,5cがコンピューター装置である場合、装置情報Sig1に基づいて処理中のデーターが消失しないように、不揮発性メモリに記憶させる処理が行われる。
 ここで、本例においては、信号変換部39は、無停電電源が作動したことを示す装置情報Sig1が供給されるとき、その装置情報Sig1を、無停電電源が作動していない装置情報Sig2に変換して、各負荷装置5a,5b,5cに供給する。
 図5は、開閉器操作部37の構成を示す。
 開閉器操作部37は、系統診断部371とゲート回路372とを備える。系統診断部371には、交流入力計測部31で計測した入力電圧VTが供給される。系統診断部371では、入力電圧VTの電圧値が下限閾値VLと上限閾値VHの間であり、かつ入力電圧VTの周波数が下限閾値FLと上限閾値FHの間であるとき、適正範囲(図中の「TRUE」の範囲)であると判断する。入力電圧VTの電圧及び周波数が適正であるとき、ゲート回路372に信号を出力する。
 また、無停電電源選択部81が出力する開閉器34の指令Nt1が、ゲート回路372に供給される。ゲート回路372は、系統診断部371からの入力電圧VTが適正である信号が供給された状態で、オフ状態の指令Nt1が供給されたとき、ゲート回路372は、オフ状態を指示する開閉器操作信号SWを、開閉器34に出力する。このオフ状態を指示する開閉器操作信号SWを受信した開閉器34は、交流電源経路をオフ状態にする。入力電圧VTが適正範囲でない状態のときには、ゲート回路372は、オフ状態の指令Nt1が供給された場合でも、オフ状態を指示する開閉器操作信号SWを出力しない。したがって、この場合には開閉器34はオン状態を維持する。
 また、無停電電源選択部81からのオフ状態の指令Nt1の出力が停止したとき、開閉器34はオン状態に復帰する。
[4.劣化判定部の構成]
 図6は、劣化判定部38の詳細な構成の一例を示す。
 劣化判定部38には、交流入力計測部31が測定した電力PTと、記憶部83から劣化判定パラメーターPa1と、開閉器操作部37から開閉器操作信号SWとが供給される。
 電力PTのデーターは、充電電力算出部381に供給される。充電電力算出部381は、負荷フィルタ部381aを備え、入力された電力PTの値から、負荷装置5aの消費電力PLを抽出する。
 図7は負荷フィルタ部381aの動作を説明するための特性図である。この図7は測定電力PTとして検出される値の発生頻度Nをヒストグラムとして示したものである。
 負荷フィルタ部381aは、開閉器操作信号SWに基づいて開閉器34がオン状態のときの測定電力PTの値の発生頻度Nを求める処理を行う。そして、負荷フィルタ部381aは、最も発生頻度Nの値が高い測定電力PTを、負荷装置5aの消費電力PLとする。
 図6の説明に戻ると、負荷フィルタ部381aで得た消費電力PLのデーターは、劣化判定部38内の減算器381b及び負荷電力算出部385内の乗算器385bに供給される。
 減算器381bでは、測定電力PTと消費電力PLとの差分電力PRCが得られる。差分電力PRCは、積分器381cに供給されて積分される。積分器381cは、開閉器操作信号SWに基づいて積分動作がリセットされ、開閉器34がオフ状態からオン状態に変化してからの差分電力PRCを積分する(図3参照)。
 このようにして得られる差分電力PRCの積分値ERCは、無停電電源4a内の電池に充電される電力に相当する。
 負荷電力算出部385は、カウンタ385aと乗算器385bとを備える。
 カウンタ385aは、開閉器操作信号SWでオフ状態が指示される期間に、オフ状態の継続時間Δtを算出する。乗算器385bは、カウンタ385aが算出したオフ状態の継続時間Δtと、負荷装置5aの消費電力PLとの積を、放電電力量EOFFとして算出する。
 そして、充電電力算出部381で得た積分値ERCと、負荷電力算出部385で得た放電電力量EOFFとを、負荷バッファ382を介して除算器383に供給する。除算器383では、積分値ERCと放電電力量EOFFとを除算して、充放電効率EFを得る。除算器383で得た充放電効率EFのデーターは、劣化判定演算部384に供給する。
 劣化判定演算部384には、充放電効率EFと、劣化判定パラメーターPa1と、累積オフ時間Toffと、累積稼働時間Tとが供給される。累積オフ時間Toffは、累積オフ時間計算器386でオフ状態の継続時間Δtの積算で算出され、累積稼働時間Tは累積稼働時間計算器387で算出される。
 劣化判定演算部384では、充放電効率EFなどのデーターに基づいて、無停電電源4a内の電池の劣化状態が算出され、劣化情報Deg1が生成される。劣化情報Deg1は、図4に示すように、劣化判定部38から無停電電源選択部81に供給される。
 なお、本例のシステムは、図1に示すように複数の無停電電源管理部3a,3b,3cを備える。このため、これらのエネルギー管理部8と各無停電電源管理部3a,3b,3cとの間では、個別に各情報がやり取りされる。例えば、エネルギー管理部8は、それぞれの無停電電源4a,4b,4cの劣化情報Deg1を取得して、それぞれの無停電電源4a,4b,4cの劣化状態を判断する処理を行う。
[5.端末での表示画面]
 図8は、端末9の表示画面の例を示す。
 ここでは、端末9の表示画面として、設定状況表示部91とトレンド表示部92とを有する。設定状況表示部91の詳細表示部911は、例えばリスト形式の表示であり、需要家エネルギー管理システム100内の各無停電電源4a,4b,4cの詳細(無停電電源型式、電池型式、サービス可否、劣化率、サービス状態、累積稼働時間など)を表示する。サービス可否は、ネガワット運転を行うか否かを示す欄であり、管理者がこの欄のチェックボックスにチェックを入れることで、該当する無停電電源のネガワット運転が可能になる。劣化率は、劣化判定演算部384で生成した劣化情報Deg1に基づいた値である。サービス状態は、ネガワット運転のサービスの実行中か否かを示す。また、設定状況表示部91は、エネルギー管理部8に得られるその他の情報を表示してもよい。
 そして、登録・削除ボタン912の操作があったとき、詳細表示部911に示す状態でのサービス可否などが登録又は削除される。
 これらの端末9での登録状況に基づいて、システム管理者選択情報USが設定される。
 トレンド表示部92は、稼働時系列に対する各無停電電源4a,4b,4cの動作の履歴を表示する。具体的には、どの無停電電源4a,4b,4cが待機状態にあるかを示すグラフ921と、作動した無停電電源4a,4b,4cにより供給した電力量及び収入のグラフ922とを表示する。
[6.エネルギー管理部及び無停電電源管理部による制御例]
 図9は、エネルギー管理部8及び無停電電源管理部3aによる開閉器34の制御例を示すフローチャートである。
 まず、エネルギー管理部8は、ネガワット指令Ntの系統運用装置6からの受信の有無を判断する(ステップS11)。ここで、ネガワット指令Ntを受信しない場合(ステップS11のNO)、ネガワット指令Ntを受信するまで待機する。
 そして、ネガワット指令Ntを受信した場合(ステップS11のYES)、エネルギー管理部8は、単価判定部82で判定したネガワット運転時の単価が適正か否かを判断する(ステップS12)。ここで、ネガワット指令Ntに応じることが適正であるとき(ステップS12のYES)、電力系統が安定か否かを判断する(ステップS13)。この電力系統が安定か否かの判断は、交流入力計測部31での計測結果に基づいて、開閉器操作部37で実行される。
 さらに、電力系統が安定している場合(ステップS13のYES)、エネルギー管理部8は、制御対象の無停電電源(ここでは無停電電源4a)の電池が劣化しているか否かを判断する(ステップS14)。
 ここで、制御対象の無停電電源の電池が劣化していない場合(ステップS14のNO)、無停電電源管理部3aの開閉器操作部37が、オフ状態を指示する開閉器操作信号SWを出力し、開閉器34をオフ状態とする(ステップS15)。この開閉器34のオフ状態で、接続された無停電電源4aからの放電が開始される。
 その後、エネルギー管理部8は、無停電電源4aの充電残量を推定し、閾値以下になったか否かを判断する(ステップS16)。ここで、閾値であるとき(ステップS16のYES)、開閉器操作部37は、オフ状態を指示する開閉器操作信号SWを出力して、開閉器34をオン状態に復帰させる(ステップS17)。また、無停電電源4aの充電残量が閾値以下になる前にネガワット運転を中止する指令を受信した場合にも、開閉器操作部37は、オフ状態を指示する開閉器操作信号SWを出力して、開閉器34をオン状態に復帰させる。
 その後、エネルギー管理部8及び無停電電源管理部3aは、ステップS11の判断に戻る。
 また、単価からネガワット指令Ntに応じることが適正でない場合(ステップS12のNO)、電力系統が安定していない場合(ステップS13のNO)、制御対象の無停電電源の電池が劣化している場合(ステップS14のYES)、ネガワット運転を行わない。すなわち、エネルギー管理部8及び無停電電源管理部3aは、ネガワット指令Ntを無視して、無停電電源を作動させるネガワット運転を行わず(ステップS18)、エネルギー管理部8及び無停電電源管理部3aは、ステップS11の判断に戻る。このネガワット指令Ntを無視する場合、必要によりエネルギー管理部8は、ネガワット指令Ntを拒否することを系統運用装置6に通知する。
 なお、図9に示す各ステップは、必ずしも図9のフローチャートに示す順序で行われるとは限らず、それぞれのステップでの判断が並列的に実行される場合や、異なる順序で実行される場合もある。
[7.一実施の形態例による効果]
 以上述べたようにシステムを組むことで、ネガワット指令Ntの発生に対し、無停電電源への電源入力を開閉器34で遮断することで迅速かつ正確なネガワット運転が可能となる。
 また、交流入力計測部31で検出した電圧VTに基づき、個別の開閉器34の操作を許可することで、配電電圧制御に対する影響を緩和することができる。また、交流入力計測部31で検出した電圧VTが安定しない場合、未来の停電可能性を検知してネガワット運転を中断する処理が行われ、停電時のエネルギー供給余力を十分に確保することができる。
 また、交流入力計測部31で計測した電力PTを用いて、無停電電源の電池の劣化情報Deg1を算出することで、適正なネガワット運転ができるようになる。すなわち、エネルギー管理部8は、複数ある無停電電源のうち劣化の少ない無停電電源を優先してネガワット運転に採用することができ、無停電電源の使用状態の平準化を図ることができるとともに、確実なネガワット運転を確保することが可能となる。
 さらに、電池の劣化を判定する際には、無停電電源の製品情報などに基づいて、消費電力PLの推定精度に影響を与える無停電電源の電力変換損失や、充放電効率EFに対する劣化パラメーターを予めマップとして参照でき、劣化の推定精度を向上することができる。
 さらにまた、各無停電電源管理部3a,3b,3cは、交流入力計測部31の計測電力PTのみを用いて電池の劣化を推定できるため、無停電電源4a,4b,4cそのものを直接計測することなく、非接触で精度よく劣化が推定できるという効果を奏する。
 また、各無停電電源4a,4b,4cから出力される装置情報Sig1が、無停電電源管理部3a,3b,3cで変換されることで、無停電電源管理部3a,3b,3cに何等改造を加えることなく、適正なネガワット運転ができるようになる。すなわち、本例では停電でない状況でも各無停電電源4a,4b,4cが作動することがあり、そのままでは停電発生を示す装置情報Sig1により、負荷装置5a,5b,5cが停電に備えた待機動作を行う可能性がある。ここで、本例の場合には、無停電電源管理部3a,3b,3cが、停電発生を示す装置情報Sig1を、停電でないことを示す装置情報Sig2に変換するため、各負荷装置5a,5b,5cが無駄な待機動作を行うことがなく、適切な運転が継続する。なお、実際に停電した際には、無停電電源管理部3a,3b,3cは、装置情報Sig1を変換せずにそのまま負荷装置5a,5b,5cに供給するのが好ましい。
 なお、図2に破線で示すように、無停電電源管理部3a,3b,3cでは装置情報を変換せず、停電発生を示す装置情報Sig1′を負荷装置5aに直接供給する構成としてもよい。
[8.劣化判定の別の例]
 図10は、先に説明した劣化判定部38(図6)とは別の構成の劣化判定部38′を示す。
 図10に示す劣化判定部38′は、交流入力計測部31から入力電力PTと、開閉器操作信号SWと、劣化判定パラメーターPa1を得る。入力電力PTは、電力変化検出部388に供給される。電力変化検出部388は、開閉器操作信号SWがオフ状態からオン状態に変化した後の電力を検出し、無停電電源4aが内部の電池の充電モードが定電流モードから定電圧モードへと切り替わるまでの間、検出信号PXを出力する。ここで定電流モードは無停電電源4aの充電電力が略一定の状態と考え、その充電電力が変化を始めるまでの区間に検出信号PXを出力する方式でも構わない。なお、入力電力PTから無停電電源4aに供給される電力のみを検出する構成は、既に図6に示した充電電力算出部381の構成が適用できる。
 無停電電源4aの充電電力が一定状態となることを示す検出信号PXは、継続時間判定部389に供給され、一定電力状態が続く時間ΔTCが検出される。この一定電力状態が続く時間ΔTCが、電池の充電モードが定電流モードの期間であり、後述する図11に示す期間ΔTc1及びΔTc2が、この定電流モードの期間に相当する。継続時間判定部389は、一定電力状態が続く時間ΔTCのデーターを劣化判定演算部384′に供給する。
 また、負荷電力算出部385が、カウンタ385aを備え、開閉器操作信号SWでオフ状態が指示される期間の継続時間Δtを算出する。
 カウンタ385aは、開閉器操作信号SWでオフ状態が指示される期間に、オフ状態の継続時間Δtを算出する。累積オフ時間計算器386は、オフ状態の継続時間Δtの積算で累積オフ時間TOFFを算出し、累積オフ時間TOFFを劣化判定演算部384′に供給する。また、累積稼働時間計算器387は、累積稼働時間Tを算出し、累積稼働時間Tを劣化判定演算部384′に供給する。
 劣化判定演算部384′では、開閉器操作信号SWがオフ状態からオン状態に変化した後に、無停電電源4aの充電電力が一定となる時間ΔTCに基づいて、無停電電源4a内の電池の劣化状態が算出され、劣化情報Deg1が生成される。劣化情報Deg1は、既に説明した図4に示すように、無停電電源選択部81に供給される。
 次に、図10に示す劣化判定演算部384′が無停電電源4aの電池の劣化を判断する原理を、図11~図13を参照して説明する。
 図11は、無停電電源が備える電池の状態と、その無停電電源に供給される電力との関係を示す特性図である。
 図11に示す電圧特性は、無停電電源が備える電池の電圧変化例を示す。図11Aは、縦軸が電池電圧、横軸が時間である。図11Aに示すように、開閉器34がオフ状態のときには、電池電圧が徐々に低下する。そして、開閉器34がオン状態に復帰することで、電池への充電が徐々に行われ、電池電圧が所定電圧に復帰する。ここで、電池の劣化がない状態では、図11に実線で示す特性V1のように変化し、比較的早く上限電圧の近傍に復活する。一方、電池が劣化した場合には、図11に破線で示す特性V2のように変化し、上限電圧の近傍に復活するまでの時間が長時間になる。
 この電圧変化に連動した電力変化が、図11Bに示すようになる。図11は、縦軸が電力、横軸が時間である。
 すなわち、特性V1で電池電圧が変化している期間(ΔTc1)は、入力電力PTが一定であり、特性V1の電圧値が一定値まで上昇すると、以後は電力が一定値から低下した特性P1になる。
 同様に、電池が劣化した場合の特性V2で電池電圧が変化している期間(ΔTc2)は、入力電力PTが一定であり、特性V2の電圧値が一定値まで上昇すると、以後は電力が一定値から低下した特性P2になる。
 したがって、劣化判定演算部384′では、入力電力PTが一定になる期間ΔTc1,ΔTc2から、電池の劣化状態が判断できるようになる。
 劣化判定演算部384′は、開閉器34がオフ状態になったとき、そのときの放電量(PL×Δt)と、電池電圧が変化している期間Tcとの関係として、理想的な特性α1を持ち、実際に計測した特性α2と理想特性α1とを比較して、劣化状態を判定する。
 図13は、劣化状態から示される充放電効率から電池性能を推定する例を示す。
 計測による充放電効率の特性α2を得た場合、その特性α2の分布の平均値β1を得る。
 そして、劣化判定演算部384′は、無停電電源が内蔵する電池の種類ごとの電池性能曲線BT1,BT2,・・・を持ち、例えば平均値β1が電池性能曲線BT1に対応したとき、平均値β1と電池性能曲線BT1との交点から、電池性能推定値を得る。
 この電池性能推定値が、劣化判定演算部384′から劣化情報Deg1として出力される。
 このように、図10に示す劣化判定部38′によって無停電電源が備える電池の劣化状態を判定するようにしてもよい。
[9.変形例]
 なお、本発明は上述した実施の形態例に限定されるものではなく、様々な変形例及び応用例が含まれる。例えば、上述した実施の形態例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも図1,図3などで説明した全ての構成を備えるものに限定されるものではない。
 また、図1に示す構成では、3組の無停電電源4a,4b,4cを備えたシステムとしたが、無停電電源4a,4b,4cの数は3組に限定されず、本発明は、いずれの数の無停電電源を備えたシステムに適用してもよい。また、図1に示す構成では、1個のエネルギー管理部8が複数の無停電電源管理部3a,3b,3cを管理する構成としたが、エネルギー管理部8を無停電電源管理部3a,3b,3cの数だけ配置して、各エネルギー管理部8が個別に制御する構成としてもよい。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1…電力系統、2…系統状態センサー、3a,3b,3c…無停電電源管理部、4a,4b,4c…無停電電源、5a,5b,5c…負荷装置、6…電力系統運用装置、7…ネットワーク、8…エネルギー管理部、9…端末、31…交流入力計測部、32…電圧計、33…電流計、34…開閉器、35…電力計、36…個別制御器、37…開閉器操作部、38,38′…劣化判定部、39…信号変換部、81…UPS選択部、82…単価判定部、83…記憶部、100…需要家エネルギー管理システム、371…系統診断部、372…ゲート回路、381…充電電力算出部、381a…負荷フィルタ部、381b…減算器、381c…積分器、382…負荷バッファ、383…除算器、384,384′…劣化判定演算部、385…負荷電力算出部、385a…カウンタ、385b…乗算器、386…累積オフ時間計算器、387…累積稼働時間計算器、388…電圧変化検出部、389…継続時間判定部

Claims (14)

  1.  無停電電源の交流入力に接続された開閉器と、
     前記開閉器による交流入力の遮断及びその遮断からの復帰を制御する無停電電源管理部と、
     前記交流入力に接続された電力系統の管理システムより需要制限情報を受信した場合に、前記開閉器をオフ状態とする指令を前記無停電電源管理部に出力するエネルギー管理部とを備えた
     需要家エネルギー管理装置。
  2.  前記無停電電源管理部は、
     前記無停電電源の交流入力の電圧・電流又は電力を計測して計測情報を得る交流入力計測部と、
     前記計測情報に基づいて、前記電力系統の系統運用状況を判断する系統診断部と、
     前記系統診断部で前記電力系統が非安定状態であると診断した場合に、前記エネルギー管理部からの前記指令の供給時に、前記開閉器をオフ状態としない開閉器操作部とを備える
     請求項1に記載の需要家エネルギー管理装置。
  3.  前記無停電電源管理部は、
     前記無停電電源の交流入力の電圧・電流又は電力を計測して計測情報を得る交流入力計測部と、
     前記計測情報に基づいて前記無停電電源の劣化状態を判定する劣化判定部を備える
     請求項1に記載の需要家エネルギー管理装置。
  4.  前記エネルギー管理部は、前記無停電電源の製品情報又は電池特性情報を記憶する記憶部を備え、
     前記記憶部が記憶した製品情報又は電池特性情報と、前記交流入力計測部で得た前記計測情報とに基づいて、前記劣化判定部が前記無停電電源の劣化状態を判定する
     請求項3に記載の需要家エネルギー管理装置。
  5.  前記無停電電源管理部は、前記交流入力計測部で得た計測情報に基づいて、前記無停電電源に接続された負荷の消費電力を推定する
     請求項4に記載の需要家エネルギー管理装置。
  6.  前記無停電電源管理部は、前記交流入力計測部で計測した電力から、推定した前記負荷の消費電力を減算して、前記無停電電源の充電電力を算出する
     請求項5に記載の需要家エネルギー管理装置。
  7.  前記エネルギー管理部は、所定の端末からの指示で、前記需要制限情報による前記開閉器のオフ状態の実行の有無を選択する
     請求項1に記載の需要家エネルギー管理装置。
  8.  前記無停電電源管理部は、前記無停電電源が出力する無停電電源作動情報を書き換える信号変換部を備え、
     前記無停電電源管理部が前記開閉器をオフ状態とした場合に、前記信号変換部は、前記無停電電源が出力する無停電電源作動情報を、前記無停電電源が非作動の情報に変換する
     請求項1に記載の需要家エネルギー管理装置。
  9.  無停電電源の交流入力に接続された開閉器と、
     外部から供給される電力の需要制限情報に基づいて、前記開閉器による前記交流入力の遮断及びその遮断からの復帰を制御する無停電電源管理部とを備えた
     無停電電源管理装置。
  10.  前記無停電電源管理部は、
     前記無停電電源の交流入力の電圧・電流又は電力を計測して計測情報を得る交流入力計測部と、
     前記計測情報に基づいて、電力系統の系統運用状況を判断する系統診断部と、
     前記系統診断部で前記電力系統が非安定状態であると診断した場合に、前記需要制限情報の供給時に、前記開閉器をオフ状態としない開閉器操作部とを備える
     請求項9に記載の無停電電源管理装置。
  11.  前記無停電電源管理部は、
     前記無停電電源の交流入力の電圧・電流又は電力を計測して計測情報を得る交流入力計測部と、
     前記計測情報に基づいて前記無停電電源の劣化状態を判定する劣化判定部を備える
     請求項9に記載の無停電電源管理装置。
  12.  交流入力により充電され、停電時に充電された電力を負荷に供給する無停電電源と、
     前記無停電電源の交流入力をオフ状態とする開閉器と、
     前記開閉器によるオフ状態及びそのオフ状態からの復帰を制御する無停電電源管理部と、
     前記交流入力に接続された電力系統の管理システムより需要制限情報を受信した場合に、前記開閉器をオフ状態とする指令を前記無停電電源管理部に出力するエネルギー管理部とを備えた
     需要家エネルギー管理システム。
  13.  前記無停電電源管理部は、
     前記無停電電源の交流入力の電圧・電流又は電力を計測して計測情報を得る交流入力計測部と、
     前記計測情報に基づいて、前記電力系統の系統運用状況を判断する系統診断部と、
     前記系統診断部で前記電力系統が非安定状態であると診断した場合に、前記エネルギー管理部からの前記指令の供給時に、前記開閉器をオフ状態としない開閉器操作部とを備える
     請求項12に記載の需要家エネルギー管理システム。
  14.  前記無停電電源管理部は、
     前記無停電電源の交流入力の電圧・電流又は電力を計測して計測情報を得る交流入力計測部と、
     前記計測情報に基づいて前記無停電電源の劣化状態を判定する劣化判定部を備える
     請求項12に記載の需要家エネルギー管理システム。
PCT/JP2017/011957 2016-04-08 2017-03-24 需要家エネルギー管理装置、無停電電源管理装置及び需要家エネルギー管理システム WO2017175602A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-078198 2016-04-08
JP2016078198 2016-04-08

Publications (1)

Publication Number Publication Date
WO2017175602A1 true WO2017175602A1 (ja) 2017-10-12

Family

ID=60001283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011957 WO2017175602A1 (ja) 2016-04-08 2017-03-24 需要家エネルギー管理装置、無停電電源管理装置及び需要家エネルギー管理システム

Country Status (1)

Country Link
WO (1) WO2017175602A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585301A (zh) * 2019-02-19 2020-08-25 武汉市炫能清洁能源科技有限公司 一种针对不稳定输入电能的模块化调控平台

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289470A (ja) * 1995-04-18 1996-11-01 Meidensha Corp 蓄電池設備を利用したデマンド監視装置およびその方法
JP2001327081A (ja) * 2000-05-16 2001-11-22 Tokyo Gas Co Ltd 発電した電力と電力消費デマンドを一致させる給電システム
JP2008544735A (ja) * 2005-06-17 2008-12-04 オプティマル・ライセンシング・コーポレイション エネルギ貯留装置を使用する伝送及び配分システム負荷のための迅速作動分散電力システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289470A (ja) * 1995-04-18 1996-11-01 Meidensha Corp 蓄電池設備を利用したデマンド監視装置およびその方法
JP2001327081A (ja) * 2000-05-16 2001-11-22 Tokyo Gas Co Ltd 発電した電力と電力消費デマンドを一致させる給電システム
JP2008544735A (ja) * 2005-06-17 2008-12-04 オプティマル・ライセンシング・コーポレイション エネルギ貯留装置を使用する伝送及び配分システム負荷のための迅速作動分散電力システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585301A (zh) * 2019-02-19 2020-08-25 武汉市炫能清洁能源科技有限公司 一种针对不稳定输入电能的模块化调控平台

Similar Documents

Publication Publication Date Title
US9774205B2 (en) System and method for monitoring a battery in an uninterruptible power supply
US9077208B2 (en) Method of detecting instability in islanded electrical systems
US8129946B2 (en) Method and system for regulating current discharge during battery discharge conditioning cycle
JP5680769B2 (ja) 蓄電池システム及びその制御方法
JP5303577B2 (ja) バックアップ電源システム及び方法
EP2720052A2 (en) System and method for automated failure detection of hold-up power storage devices
US20130134926A1 (en) Battery management apparatus and battery management method
US20140232194A1 (en) Power supply system and method of controlling the same
US10725519B1 (en) Power control based on power controller configuration records
AU2010229741A1 (en) System and method for estimating an efficiency of a power device
JP6081978B2 (ja) 無停電電源装置(ups)を活用したエネルギー貯蔵システム
US20130085623A1 (en) Power supply device and control method therefor
US8429430B2 (en) Information processor, computer readable recording medium which records data evacuation program, and data evacuation method
WO2017175602A1 (ja) 需要家エネルギー管理装置、無停電電源管理装置及び需要家エネルギー管理システム
KR20130090715A (ko) 전자 장치 및 구동 제어 방법
EP2693617B1 (en) Power supply apparatus, processing apparatus, information processing system, and method for controlling power supply
WO2024087061A1 (zh) 电子设备控制方法、电子设备及存储介质
CN102789252A (zh) 电流供应方法以及电流供应系统
TWI540421B (zh) 不斷電電力供應系統及方法
JP2017127193A (ja) 無停電電源システムとそのコントローラおよび制御方法
JP6981015B2 (ja) 電力供給システム、制御装置、制御方法及びプログラム
JP2017169304A (ja) 直流電源システム
JPWO2020080006A1 (ja) エネルギーマネジメントシステム、独立システム、及び独立システムの運用方法
JP2021035286A (ja) 充電制御方法、充電制御装置、充電装置、および、充電システム
JP5862815B1 (ja) バッテリ寿命検出装置、蓄電装置、バッテリ寿命検出方法及びプログラム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778981

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP