WO2017175256A1 - Method for manufacturing bleed type sliding contact ring, and gasket and syringe using sliding contact ring - Google Patents

Method for manufacturing bleed type sliding contact ring, and gasket and syringe using sliding contact ring Download PDF

Info

Publication number
WO2017175256A1
WO2017175256A1 PCT/JP2016/001934 JP2016001934W WO2017175256A1 WO 2017175256 A1 WO2017175256 A1 WO 2017175256A1 JP 2016001934 W JP2016001934 W JP 2016001934W WO 2017175256 A1 WO2017175256 A1 WO 2017175256A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding contact
gasket
contact ring
silicone rubber
ring
Prior art date
Application number
PCT/JP2016/001934
Other languages
French (fr)
Japanese (ja)
Inventor
四ツ辻 晃
Original Assignee
有限会社コーキ・エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社コーキ・エンジニアリング filed Critical 有限会社コーキ・エンジニアリング
Priority to JP2017513014A priority Critical patent/JPWO2017175256A1/en
Priority to PCT/JP2016/001934 priority patent/WO2017175256A1/en
Publication of WO2017175256A1 publication Critical patent/WO2017175256A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod
    • A61M5/31513Piston constructions to improve sealing or sliding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0238General characteristics of the apparatus characterised by a particular materials the material being a coating or protective layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • A61M2207/10Device therefor

Definitions

  • the present invention relates to a method of manufacturing a sliding contact ring used by being fitted into a gasket of a syringe, and more specifically, a sliding contact ring formed by addition reaction type silicone rubber and bleeding a suitable amount of silicone oil as a thin film on the surface during molding. Pertaining to the manufacturing method of The present invention further relates to a gasket using the sliding ring and a syringe using the gasket.
  • the syringe Before use, the syringe is made of a plastic or glass syringe barrel (cylindrical cylinder), a movable piston rod (pusher), a gasket attached to the tip of the piston rod and pressed into the syringe barrel, and
  • the prefilled syringe is made up of a top cap attached to the needle attachment portion, and the syringe barrel is prefilled with a drug solution in the prefilled syringe, and both are used for large consumption.
  • Each part of such a syringe is mass-produced in a sterile environment under strict standards and assembled into the syringe automatically and as quickly as possible in a short process to prevent contamination of impurities.
  • the syringe itself has a tight seal (water tightness) that the drug solution filled does not leak from the gasket side, and a contradictory requirement is that the piston rod fitted with the gasket at the time of injection has an initial movement of, for example, 8N (newton) or less It is also required to move smoothly with low sliding resistance, to inhibit the efficacy of the drug solution from the syringe, and to prevent elution of components that impair the health of the person who received the injection into the drug solution.
  • syringes and parts thereof are required to be industrial products having a structure suitable for automation while satisfying the above characteristics.
  • a working environment in which the health of workers is taken into consideration is required.
  • the gasket is the one which is structurally complex and which is most relevant to the performance of the syringe.
  • gaskets There are various conventional gaskets for syringes, and the most popular one is a gasket made of butyl rubber or a gasket made of butyl rubber laminated with a fluorine-based film having excellent slidability.
  • the butyl rubber gasket has a large sliding resistance against the syringe barrel, so silicone oil is applied to the surface of the butyl rubber gasket or the inner surface of the syringe barrel to ensure low sliding resistance and smooth movement of the piston rod. (Patent Document 1).
  • silicone oil applied conventionally is aspirated from the injection needle of the approved medical material, or, when it comes in contact with the drug solution already filled in the syringe barrel, the active ingredient in the drug solution
  • silicone oil silicone oil
  • silicone oil with low molecular weight (low viscosity) was sprayed and applied at high temperature for uniform application to the inner surface of the syringe barrel, and silicone oil did not adhere to the inner surface of the syringe barrel It has also been pointed out that the fog of the house is scattered around and contaminates the production site and harms the production environment.
  • the gasket used in this syringe is a gasket main body formed of a hard plastic resistant to chemical liquid, and a slide using high sliding rubber in the concave groove formed on the sliding surface of the gasket main body against the inner surface of the syringe barrel.
  • a gasket that has a structure in which the contact ring is fitted.
  • a peroxide-curable silicone rubber composition is used as a rubber material of a sliding contact ring, and heat compression molding is performed using a press mold (the silicone rubber composition is put in the press mold and compressed while heating from the top and bottom to cure) Method of manufacturing a sliding ring (see FIG. 6).
  • a sliding contact ring is formed by this method using a peroxide-curable silicone rubber composition, the following problems occur. Not only molding could not be carried out when the amount of silicone oil added was too large, but curing was slow, curing was apt to occur, and removal was not possible. In addition, the mold became dirty and continuous molding could not be performed, and the strength of the molded product was low.
  • the peroxide curable silicone rubber is considered to be due to curing failure in the presence of oxygen in the air. Furthermore, the article did not pass the pharmaceutical dissolution test. Therefore, it has been found that peroxide curable silicone rubber compositions can not be used for this application.
  • the silicone rubber G before curing is pressed by the mold K1, and sheet-like burrs 55 are generated around the cured contact ring semi-finished product 50, and the burrs 55 are cut at the time of cutting.
  • the side surface of the contact ring 19 ' may be damaged or the cut 53 may occur to damage the side surface shape.
  • the sliding contact ring 19' immediately after being formed has low slidability and the concave of the gasket main body 26 It is difficult to fit in the groove 18 and can not be used for gasket assembly immediately after molding.
  • burrs 55 requires a separate burr removal step, and the improvement of slidability requires a heat treatment to promote bleeding of silicone oil from the inner surface, and as described above, gasket assembly takes time and cost. Furthermore, there is also a manufacturing problem that when the assembly of the gasket takes a long time, bacteria enter the gasket 10 and the chances of impurities to adhere increase, so the supply to the assembly process immediately after forming the sliding ring is next. It was an issue of The present invention has been made in view of this problem, and an object of the present invention is to provide a manufacturing method for manufacturing a sliding contact ring that is optimal for the above-described gasket assembly.
  • the atomizing silicone oil application process can be eliminated from the manufacturing site by using the sliding ring and further by using a gasket using the sliding ring.
  • the first aspect relates to a method of manufacturing the bleed type sliding contact ring 19 using silicone rubber G, Kneading the addition reaction type polysiloxane, the curing catalyst, the silicone oil and the filler to form silicone rubber G before curing;
  • the silicone rubber G before curing is introduced into the storage space 41 of the mold K,
  • the silicone rubber G introduced into the storage space 41 is pressed by a plunger 42, and is pressed into the cavity 43 from the gate 44 connecting the storage space 41 and the ring-shaped cavity 43, and flows in the process of press-fitting
  • the surface of the silicone rubber G fluid is filled with the blended silicone oil while being bled,
  • the silicone rubber G press-fitted in the ring-shaped cavity 43 is cured to form a sliding contact ring 19 on which silicone oil is bled on the surface, After curing, the sliding ring 19 is taken out of the mold K.
  • a second aspect relates to the addition reaction type polysiloxane according to the first aspect
  • the addition reaction type polysiloxane according to claim 1 is a vinyl group-containing organopolysiloxane and a silicon atom-bonded hydrogen atom-containing organohydrogenpolysiloxane (an organohydro having two or more SiH groups in one molecule as a crosslinker). It is characterized in that it is composed of two agents of genpolysiloxane).
  • Claim 3 relates to the gate 44 of Claim 1;
  • the gate 44 is characterized in that it is provided from the storage space 41 side toward the cavity 43 so that the cross-sectional area thereof decreases rapidly or gradually.
  • Claim 4 relates to the gasket 10 using the sliding contact ring 19, A gasket main body 26 in which a concave groove 18 is formed on the entire circumference of a sliding contact surface 11 with the inner peripheral surface 2 by being press-fit and used slidably on the inner peripheral surface 2 of the syringe barrel 1; A sliding contact ring 19 formed by the method according to any one of claims 1 to 3 and fitted in the recessed groove 18 of the gasket main body 26.
  • Claim 5 is: The gasket is characterized in that it comprises: a syringe barrel 1; a gasket 10 according to claim 4 which is press-fit into the syringe barrel 1 and used in a sliding state; and a piston rod 5 on which the gasket 10 is mounted. It is a syringe A.
  • the curing is very fast, for example, because the curing delay due to oxygen in the cavity is hardly generated. Even if a large amount of silicone oil is added, the formability is not impaired.
  • the addition of a large amount of silicone oil and the early curing property of the addition reaction type polysiloxane make it possible to bleed a suitable amount of silicone oil on the surface of the ring-shaped silicone rubber G pressed in at the time of pressing into the cavity 43. .
  • the surface bleed of a suitable amount of silicone oil imparts high slidability to the sliding ring 19 immediately after molding. This enables provision of the sliding ring 19 to the gasket assembly process immediately after molding. This means shortening of the assembly time, and the possibility of contamination contamination and attachment of bacteria in the assembly process can be blocked, and the merit in manufacturing is great.
  • the gate 44 is provided so that the cross-sectional area of the storage space 41 side decreases or gradually decreases toward the cavity 43, the addition reaction type silicone rubber G extruded at high pressure and high speed at the gate outlet 44a is at atmospheric pressure.
  • the inner silicone oil is pushed out to the surface side of the silicone rubber G and forms a silicone oil thin film 19b on the surface of the sliding ring 19 when it is cured.
  • the sliding ring 19 exhibits the slidability required immediately after formation.
  • FIG. 2 is a partially enlarged front view shown by a broken line ellipse in FIG. 1;
  • A A schematic view of a longitudinal section of a mold used in the present invention, and
  • (b) is a schematic view of an essential part of a transverse section.
  • A The top view of the sliding contact ring of this invention, (b) It is the sectional drawing.
  • FIG. 1 is a cross-sectional view of a prefilled syringe A in which a sliding contact ring 19 manufactured by the method of the present invention is used.
  • the sliding ring 19 of the present invention is also applicable to a conventional disposable syringe.
  • the prefilled syringe A will be described as a representative example.
  • the prefilled syringe A is composed of a gasket 10, a syringe barrel 1 filled with a drug solution 30, a pilton rod 5 mounted on the gasket 10, and a top cap 8.
  • the syringe barrel 1 is a cylindrical container, and a mounting portion 1b to which an injection needle (not shown) is mounted is protruded from the tip of the barrel main body 1a, and a finger hooking portion 1c is formed at the rear end.
  • the material of the syringe barrel 1 is hard resin (for example, cycloolefin resin "hereinafter referred to as COP"), polypropylene (hereinafter referred to as PP), ethylene norbornene copolymer (hereinafter referred to as COC), etc. It will be.
  • COP cycloolefin resin
  • PP polypropylene
  • COC ethylene norbornene copolymer
  • the piston rod 5 is a rod-like member having a male screw 5a at its tip end and a finger rest 5b at its rear end. On the outer peripheral surface of the male screw portion 5a of the piston rod 5, a male screw to be screwed to the female screw hole 15 of the gasket main body 26 described above is engraved.
  • the material of the piston rod 5 is made of a resin such as cyclic polyolefin, polycarbonate or polypropylene.
  • the top cap 8 is attached to the needle attachment portion 1 b of the syringe barrel 1 to prevent the chemical solution 30 filled in the syringe barrel 1 from leaking and to prevent the chemical solution 30 from being contaminated by bacteria etc. floating in the air. It is a sealing member for
  • the top cap 8 includes a truncated cone-shaped cap body 8a, and a fitting projection 8c formed in the opening direction from the top surface of the cap body 8a and having a recess 8b into which the needle mounting portion 1b is fitted. ing.
  • the top cap 8 is formed of an elastomer in which a chemical resistant film (PTFE or ETFA) is laminated on the inner circumferential surface.
  • the elastomer includes any of "vulcanized rubber", “thermosetting elastomer” or “thermoplastic elastomer”.
  • the main body portion 26 of the gasket 10 shown in FIG. 1 is entirely made of fluororesin, for example, PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), FEP (ethylene tetrafluoride and hexafluoroethylene). Copolymer), PCTFE (polychlorotrifluoroethylene), PVDF (polyvinylidene fluoride), or PP (polypropylene), ultra-high molecular weight polyethylene, COP (cycloolefin polymer), COC (ethylene norbornene) It is formed of a hard material (chemical resistant plastic) which does not react with the chemical solution 30 such as copolymer.
  • the hard plastic used in the present invention is preferably 70 or more in Shore A hardness (or 40 to 100 in Shore D hardness and 40 to 70 in Rockwell M hardness).
  • PTFE used in the present invention may be pure PTFE, for example, polytetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (abbreviation PFA), which is a crystallization inhibitor of PTFE, tetrafluoroethylene-hexafluoropropylene copolymer It is more preferable to use the modified body in which 1 to 15% by mass of a fluorine resin such as a polymer is mixed to impart elasticity to the main body portion 26 of the gasket 10.
  • the PTFE used in the present invention may be a pure PTFE or a modified PTFE, or a closed-cell block (round bar) by a hot isostatic pressing method called a so-called HIP treatment.
  • the PTFE primary sintered block is obtained by compression-molding pure PTFE powder or a powder of a modified PTFE and sintering it. In this sintering, the contact portions of the powders are in close contact with each other, but as a whole, extremely fine gaps are formed in the non-contact portions, and these continuously pass the minute fluid.
  • the PTFE primary sintered block is subjected to hot isostatic pressing, the PTFE primary sintered block is compressed to reliably close the ultrafine gaps existing between the particles of the PTFE and to form a closed cell. Hot isostatic pressing under reduced pressure is more effective.
  • the main body portion 26 of the gasket 10 is cylindrical, and a female screw hole 15 for mounting the piston rod 5 is screwed on the rear end face.
  • the portion 17 from the sliding surface 11 to the piston rod mounting surface 17a, which is the rear end surface, is a sliding surface 11 in which the outer peripheral surface on the tip end side of the main body portion 26 slides on the inner peripheral surface 2 of the syringe barrel 1 It is formed in the taper shape which diameter reduces gradually. This portion is called a tapered portion 17.
  • the material of the main body portion 26 is as described above.
  • a shallow groove 18 is formed in the middle portion of the sliding contact surface 11 of the main body portion 26 over the entire circumference thereof.
  • narrow sliding contact surfaces 11a and 11b are present on both sides of the recessed groove 18, and it is preferable that both sliding contact surfaces 11a and 11b be liquid tight.
  • Liquid-tightness is imparted to the liquid-contacting side sliding contact surface 11 a adjacent to That is, a portion having the sliding contact surface 11 a (liquid-contacting side sliding portion 16) is press-fitted to the syringe barrel 1 with a press-fit allowance described later.
  • a sliding contact ring 19 slidably fitted on the inner peripheral surface 2 of the syringe barrel 1 is fitted in the recessed groove 18. The liquid contact side sliding contact surface 11a will be described later.
  • “Bleed type silicone rubber G” that makes up the sliding ring 19 uses addition reaction type polysiloxane as a base material, silicone oil and necessary fillings are added to this, and it is kneaded with a kneader, platinum type other It is obtained by adding a curing catalyst, and it is desirable to use for shaping within 5 hours after kneading.
  • the addition reaction type polysiloxane used in the present invention includes a vinyl group-containing organopolysiloxane and a silicon atom-bonded hydrogen atom-containing organohydrogenpolysiloxane (an organosilicon having two or more SiH groups in one molecule as a crosslinker). (Hydrogenpolysiloxane).
  • the compounding ratio is 1: 0.7 to 1.3 for the former and the latter, and in principle, they are mixed at 1: 1. Both are clay-like substances filled with a predetermined amount of silica powder.
  • organohydrogenpolysiloxane both terminal trimethylsiloxy group-capped methyl hydrogen polysiloxane, both terminal trimethylsiloxy group-capped dimethylsiloxane / methyl hydrogen siloxane copolymer, both terminal dimethylhydrogensiloxy group-capped Dimethyl siloxane, both terminal dimethylhydrogensiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, both terminal trimethylsiloxy group-capped methyl hydrogen siloxane / diphenylsiloxane copolymer, both terminal trimethylsiloxy group-capped methyl hydrogen siloxane, Diphenylsiloxane / dimethylsiloxane copolymer, copolymer comprising (CH 3
  • the curing catalyst (addition reaction catalyst) used in the present invention includes platinum black, platinum chloride, chloroplatinic acid, reaction product of chloroplatinic acid and monohydric alcohol, complex of chloroplatinic acid and olefins, platinum Platinum-based catalysts such as bisacetoacetate, palladium-based catalysts, rhodium-based catalysts, tin and the like can be mentioned.
  • Silicone oils are generally colorless and transparent liquids, and are excellent in heat resistance, cold resistance, water resistance, and have less viscosity change over a wide temperature range. In addition, it also has releasability, water repellency, antifoaming properties, lubricity and the like. For the application of the present invention, higher viscosity is preferable, and viscosity which is an index of molecular weight is in the range of 1,000 to 1,000,000 cP, more preferably, about 50,000 to 200,000 cP causes bleeding. Preferred above.
  • silicone rubber G which is based on addition reaction type polysiloxane and to which necessary filler is added, and silicone oil which has been kneaded, and if it is filled in a suitable amount, silicone oil is It disperses uniformly in silicone rubber G.
  • fine powder silica is used as a filler.
  • the finely powdered silica include fumed silica, sintered silica, precipitated silica and the like, and these may be used singly or in combination of two or more.
  • the blending amount of the components is preferably 10 to 100 parts by weight, and more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the organopolysiloxane. If the blending amount is too small or too large, the processability of the resulting silicone rubber composition is reduced, and sufficient mechanical strength of the resulting cured product can not be obtained.
  • Other fillers include ultra-high molecular weight polyethylene fine powder.
  • the average molecular weight is 1,000,000 to 3,000,000, and some reach 7,000,000.
  • the ultra-high-molecular-weight polyethylene fine powder has no water permeability and does not adhere to most particles, and because its molecular weight is too high, it does not melt even at high temperatures, and retains its spherical form even when molded at high pressure. Although the surface of the spherical ultra-high molecular weight polyethylene is relatively smooth, some irregularities are also observed.
  • the range of the particle size of the spherical ultrapolymer fine particles contained in the fine powder is 10 to 300 ⁇ m.
  • the bleed-type silicone rubber as a whole exhibits very low water permeability.
  • the ultrahigh molecular weight polyethylene fine powder is used to adjust the hardness of the molded article, and is added as necessary.
  • a mold K is a storage space 41, a ring-shaped cavity 43 (one is shown in the figure, but a plurality of molds can be provided around the storage space 41, and a large number of pieces can be taken), a storage space 41. And a ring-shaped cavity 43 and a plunger 44.
  • the gate 44 is provided from the side of the storage space 41 toward the cavity 43 so that the cross-sectional area thereof rapidly decreases or gradually decreases.
  • the cross-sectional area of the gate 44 sharply decreases is the case where the gate outlet 44a is narrowed stepwise.
  • the gradual decrease is the case where the inner surface of the gate 44 is smoothly tapered so as to gradually decrease toward the cavity 43.
  • the said raw material was mixed in the predetermined ratio, and it knead
  • the silicone rubber G before curing is put into the storage space 41 of the mold K and the silicone rubber G put into the storage space 41 is pressed by the plunger 42, the silicone rubber G is pushed out from the gate 44 under high pressure.
  • the gate 44 is provided toward the cavity 43 so as to sharply reduce or gradually reduce the cross sectional area as described above, the silicone rubber G is gradually pushed out at high pressure and high speed as it approaches the gate outlet 44 a of the gate 44.
  • the silicone rubber G compressed to a high pressure is pushed into the cavity 43 held at atmospheric pressure and is rapidly depressurized. Since a large amount of silicone oil is added to the silicone rubber G, part of the silicone rubber G is pushed out and bled onto the surface of the soft silicone rubber G before curing.
  • the uncured silicone rubber G extruded into the ring-shaped cavity 43 diverges from both sides of the gate outlet 44a, and collides at high speed on the opposite side of the gate outlet 44a of the cavity 43 without forming a weld surface. Construct an integral ring.
  • an appropriate amount of silicone oil thin film 19 b is formed on the surface of the sliding contact ring 19 formed in a ring shape before curing.
  • the sliding ring 19 is hardened by holding for a predetermined time. After curing, the mold K is opened and only the sliding ring 19 is taken out. At this point, the surface of the sliding ring 19 is taken out in the state of being covered by the silicone oil thin film 19b.
  • the sliding ring 19 formed in this manner is fitted into the recessed groove 18 of the gasket body 26. Since the silicone oil thin film 19b exists on the surface of the sliding contact ring 19, the mounting operation is completed smoothly.
  • the piston rod 5 is attached to the gasket 10 and the gasket 10 is pressed into the syringe barrel 1 to assemble the syringe A.
  • the liquid medicine 30 is filled into the syringe barrel 1 after or during the assembly.
  • Example 7 and 8 are tables showing the difference between the method of forming the sliding contact ring and the sliding resistance.
  • FIG. 7 shows that to which only silicone oil is added
  • FIG. 8 shows that to which silicone oil and ultra-high molecular weight polyethylene fine powder are added.
  • the sliding contact ring was fitted to the gasket and its slidability was evaluated.
  • the sliding performance of the syringe was evaluated by the following experiment.
  • the gasket body and the sliding ring used were of the same shape as that of FIG. 7.
  • Material of sliding contact ring A sliding contact ring was formed by using 25% by weight of silica powder, 20% by weight of silicone oil and 20% by weight of ultra-high molecular weight polyethylene fine powder added to polydimethylsiloxane.
  • the molding conditions are the same as in FIG. ⁇ Test results: In the slideability evaluation test immediately after setting the syringe, the gasket in which the sliding contact ring formed by differential pressure molding was fitted showed a slideability smaller than the other molding methods.
  • FIG. 9 and FIG. 10 are tables showing differences in additives of the sliding contact ring.
  • the molded articles were all formed by a differential pressure molding method.
  • FIG. 9 shows the case where only silicone oil is added
  • FIG. 10 shows the case where silicone oil and ultra-high molecular weight polyethylene fine powder are added.
  • the sliding contact ring was fitted to the gasket and its sliding property was evaluated.
  • the gasket body and the sliding ring used were of the same shape as that of FIG.
  • Material of sliding contact ring 25% by weight of silica powder added to polydimethylsiloxane and kneaded (without addition of silicone oil) is regarded as a substrate 1 (comparative example), with a viscosity of 1,000 cP and a viscosity of 100
  • Preparations Examples 1 to 3 were prepared by adding 5, 10 and 15% by weight of silicone oils having a viscosity of 1,000 cP and a viscosity of 1,000,000 cP, respectively, and changing the average sliding resistance value of the sliding contact ring immediately after molding Was measured.
  • silicone oils There is no addition of ultra-high molecular weight polyethylene powder in Comparative Example and Examples 1 to 3 here.
  • the content of the silicone oil is limited to a maximum of 15% by weight since no ultrahigh molecular weight polyethylene powder is added. Addition of silicone oil in excess of 15% by weight makes molding difficult. Below 5% by weight, the sliding resistance exceeds the target 7N.
  • the usable range of the syringe immediately after assembly is 5 to 15% by weight. Measurement results show that all syringes immediately after assembly using silicone oil with 5% by weight to 15% by weight of sliding contact ring use showed an average sliding resistance of 7 N (unit Newton) or less.
  • base material 2 in which 13.13 g of polydimethylsiloxane, 4.37 g of silica powder as filler, and 23.35 g of ultra-high molecular weight polyethylene powder (20 to 200 ⁇ m) are mixed.
  • silicone oils with a viscosity of 1,000 to 1,000,000 cP are added to polydimethylsiloxane oils of various degrees of polymerization (hereinafter referred to as silicone oils, the viscosity of which is represented by cP as an index of the degree of polymerization)
  • the relationship between the amount added and the sliding resistance was measured.
  • the ultrahigh molecular weight polyethylene powder has high affinity to silicone oil, and the addition amount of the silicone oil can be increased, and the hardness of the sliding ring can be increased by the addition of the ultrahigh molecular weight polyethylene powder. Silicone oil could be added up to 5 to 40% by weight.
  • the addition amount of silicone oil was 5 to 40% by weight, and the sliding resistance was below the target 7 N at all the viscosity. If it is less than 5% by weight, it exceeds the target 7N. In addition, molding was difficult in the addition amount exceeding 40% by weight. A silicone oil having a viscosity of 1,000 cP can not be molded if it exceeds 30% by weight. The optimum amount of silicone oil added in this case is around 20% by weight.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Sealing Devices (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a manufacturing method for manufacturing a sliding contact ring optimal for gasket assembly. Addition reaction type polysiloxane, a curing catalyst, silicone oil, and a filler are kneaded together to form a silicone rubber G before curing. The silicone rubber G before curing is put inside an accommodation space 41 of a mold K. The silicone rubber G is pressed by a plunger 42 into a cavity 43 from a gate 44. The cavity is filled while the blended silicone oil is caused to bleed onto the surface of the fluid comprising the silicone rubber G that enters the cavity in the process of being pressed. The silicone rubber G that has been pressed inside the cavity 43 is cured to form a sliding contact ring 19 with the silicone oil bled onto the surface thereof. After the curing, the sliding contact ring 19 is removed from the mold K.

Description

ブリード型摺接リングの製造方法と該摺接リングを用いたガスケット及びシリンジMethod of manufacturing bleed-type sliding ring and gasket and syringe using the sliding ring
 本発明は、シリンジのガスケットに嵌め込まれて用いられる摺接リングの製造方法に関し、さらに詳しくは、付加反応型シリコーンゴムで成形され、成形時に表面に適量のシリコーンオイルが薄膜としてブリードした摺接リングの製造方法に係る。付加的には該摺接リングを用いたガスケット及び該ガスケットを用いたシリンジに係る。 The present invention relates to a method of manufacturing a sliding contact ring used by being fitted into a gasket of a syringe, and more specifically, a sliding contact ring formed by addition reaction type silicone rubber and bleeding a suitable amount of silicone oil as a thin film on the surface during molding. Pertaining to the manufacturing method of The present invention further relates to a gasket using the sliding ring and a syringe using the gasket.
 使用前の注射器は、プラスチック又はガラス製のシリンジバレル(円筒形の筒)、可動式のピストンロッド(押子)、ピストンロッドの先端部分に取り付けられ、シリンジバレルに圧入されたガスケット及びシリンジバレルの針装着部に取り付けられているトップキャップとで構成され、プレフィルドシリンジではシリンジバレル内に薬液が予め充填されており、いずれも大量消費に供されている。
 このような注射器の各部品は厳格な規格の下に無菌環境内で大量生産され、不純物の混入を防ぐために自動的に且つ出来る限り短い工程で迅速に注射器に組み立てられる。
Before use, the syringe is made of a plastic or glass syringe barrel (cylindrical cylinder), a movable piston rod (pusher), a gasket attached to the tip of the piston rod and pressed into the syringe barrel, and The prefilled syringe is made up of a top cap attached to the needle attachment portion, and the syringe barrel is prefilled with a drug solution in the prefilled syringe, and both are used for large consumption.
Each part of such a syringe is mass-produced in a sterile environment under strict standards and assembled into the syringe automatically and as quickly as possible in a short process to prevent contamination of impurities.
 注射器自体には、充填された薬液がガスケット側から漏れ出さないという密閉性(水密性)と、これに相反する要求として、注射時にガスケットが装着されたピストンロッドが初動から例えば8N(ニュートン)以下という低い摺動抵抗で滑らかに動くこと、更には、注射器から薬液の薬効を阻害したり、注射を受けた人の健康を害するような成分が薬液に溶出しないこと、などが求められている。
 同時に、注射器及びその部品は工業製品として、上記特性を満足しつつ自動化に適した構造が要求されている。また、製造現場に於いては、従事者の健康を配慮した職場環境が求められている。
The syringe itself has a tight seal (water tightness) that the drug solution filled does not leak from the gasket side, and a contradictory requirement is that the piston rod fitted with the gasket at the time of injection has an initial movement of, for example, 8N (newton) or less It is also required to move smoothly with low sliding resistance, to inhibit the efficacy of the drug solution from the syringe, and to prevent elution of components that impair the health of the person who received the injection into the drug solution.
At the same time, syringes and parts thereof are required to be industrial products having a structure suitable for automation while satisfying the above characteristics. In addition, at the manufacturing site, a working environment in which the health of workers is taken into consideration is required.
 上記注射器の部品の内、構造的にも複雑で、且つ、注射器の性能に最も関係する部品はガスケットである。従来の注射器のガスケットは様々なものがあり、最もポピュラーなものには、ブチルゴム製のガスケット或いはブチルゴム製のガスケットの表面に摺動性に優れたフッ素系フィルムをラミネートしたものがある。
 ブチルゴム製のガスケットはシリンジバレルに対して大きな摺動抵抗を有するため、ブチルゴム製のガスケットの表面又はシリンジバレルの内面にシリコーンオイルを塗着してピストンロッドの低い摺動抵抗と滑らかな動きを担保している(特許文献1)。なお、従来汎用されているブチルゴム自体、様々な添加物が混入しており、薬液と接するとこれら添加物が溶出するという点も指摘されている。
 これに対してガスケットの表面にフッ素系フィルムをラミネートしたガスケット(特許文献2)は、フッ素系フィルムにより摺動性の改善はある程度なされるものの、薬液がガスケットとシリンジバレル内面との間からガスケットの背面側に漏れるという、水密性の問題点があった。なお、このフッ素系フィルムラミネートは、ブチルゴムから添加物が薬液内に溶出するのを防止するのがもう一つの目的である。
Among the parts of the syringe, the one which is structurally complex and which is most relevant to the performance of the syringe is the gasket. There are various conventional gaskets for syringes, and the most popular one is a gasket made of butyl rubber or a gasket made of butyl rubber laminated with a fluorine-based film having excellent slidability.
The butyl rubber gasket has a large sliding resistance against the syringe barrel, so silicone oil is applied to the surface of the butyl rubber gasket or the inner surface of the syringe barrel to ensure low sliding resistance and smooth movement of the piston rod. (Patent Document 1). In addition, it is also pointed out that various additives are mixed in the butyl rubber itself which has been widely used in the past, and these additives are eluted when in contact with the chemical solution.
On the other hand, a gasket in which a fluorine-based film is laminated on the surface of the gasket (Patent Document 2) improves the slidability to some extent by the fluorine-based film, but the chemical solution is a gasket from the gasket and the inner surface of the syringe barrel. There was a problem of water tightness that it leaked to the back side. In addition, this fluorine-based film laminate has another purpose to prevent the additive from eluting out of butyl rubber into a chemical solution.
 これらに加えて、従来から塗布されてきた上記シリコーンオイルは医療用素材として認可されているものの注射針から吸引された、或いは、シリンジバレルに既に充填された薬液に触れると、薬液内の有効成分を凝集させる場合があることが指摘されており、最近ではシリコーンオイル(シリコーングリス)を使用しない注射器が求められるようになっている。
 また、シリコーンオイルの塗布現場では、シリンジバレル内面への均一塗布のため、分子量の小さい(粘性の低い)シリコーンオイルを高温で噴霧して塗布しており、シリンジバレル内面に付着しなかったシリコーンオイルの霧が周囲に飛散して生産現場を汚染して生産環境を害していることも指摘されている。
In addition to these, the above-mentioned silicone oil applied conventionally is aspirated from the injection needle of the approved medical material, or, when it comes in contact with the drug solution already filled in the syringe barrel, the active ingredient in the drug solution It has been pointed out that in some cases, it is pointed out that a syringe may be required which does not use silicone oil (silicone grease).
In addition, at the application site of silicone oil, silicone oil with low molecular weight (low viscosity) was sprayed and applied at high temperature for uniform application to the inner surface of the syringe barrel, and silicone oil did not adhere to the inner surface of the syringe barrel It has also been pointed out that the fog of the house is scattered around and contaminates the production site and harms the production environment.
特開2014-87678号公報JP, 2014-87678, A 特開2006-181027号公報JP, 2006-181027, A
 上記のようにシリコーンオイルによるガスケットの摺動性改善効果は著しいものがあるため、その使用は完全に排除できないとしても、以上のような事情から注射器の使用時にはシリコーンオイルの薬液への接触を完全に排除し、且つ、生産現場では塗布作業を排除して作業環境の改善を図ることが出来、並びに、大量生産のための自動化に適したガスケット或いはシリンジが求められている。そこで、発明者らは上記問題点を解決するために、図1に示すようなシリンジを開発した。即ち、このシリンジに用いられるガスケットを、耐薬液性の硬質プラスチックで形成したガスケット本体と、ガスケット本体の、シリンジバレル内面に対する摺接面に形成された凹溝に高摺動性ゴムを利用した摺接リングを嵌め込む構造のガスケットを開発した。 As mentioned above, since the sliding property improvement effect of the silicone oil by the silicone oil is remarkable, even if its use can not be completely eliminated, the contact of the silicone oil with the drug solution is completely done when using the syringe from the above circumstances. There is also a need for a gasket or syringe that can eliminate the application work and improve the working environment at the production site, and that is suitable for automation for mass production. Therefore, the inventors developed a syringe as shown in FIG. 1 in order to solve the above problems. That is, the gasket used in this syringe is a gasket main body formed of a hard plastic resistant to chemical liquid, and a slide using high sliding rubber in the concave groove formed on the sliding surface of the gasket main body against the inner surface of the syringe barrel. We have developed a gasket that has a structure in which the contact ring is fitted.
 当初、摺接リングのゴム素材としてパーオキサイド硬化型シリコーンゴム組成体を用い、成形をプレス型による熱圧成形(プレス型にシリコーンゴム組成体を入れ、上下から圧縮しつつ加熱して硬化させ、摺接リングを製造する方法 図6参照)で行った。パーオキサイド硬化型シリコーンゴム組成体を用いて摺接リングをこの方法で成形すると次のような問題が発生した。
 シリコーンオイルの添加量が多いと成形できないだけでなく、硬化が遅くて硬化不良を起こしやすく、脱型できなかった。また、金型が汚れて連続成形が出来ず、成形品の強度も低かった。パーオキサイド硬化型シリコーンゴムは、空気中の酸素の存在下では硬化不良を起こしたためであると考えられる。更に、その成形品は薬事法による溶出試験も合格しなかった。それ故、パーオキサイド硬化型シリコーンゴム組成体はこの用途には使用できないという事が分かった。
Initially, a peroxide-curable silicone rubber composition is used as a rubber material of a sliding contact ring, and heat compression molding is performed using a press mold (the silicone rubber composition is put in the press mold and compressed while heating from the top and bottom to cure) Method of manufacturing a sliding ring (see FIG. 6). When a sliding contact ring is formed by this method using a peroxide-curable silicone rubber composition, the following problems occur.
Not only molding could not be carried out when the amount of silicone oil added was too large, but curing was slow, curing was apt to occur, and removal was not possible. In addition, the mold became dirty and continuous molding could not be performed, and the strength of the molded product was low. The peroxide curable silicone rubber is considered to be due to curing failure in the presence of oxygen in the air. Furthermore, the article did not pass the pharmaceutical dissolution test. Therefore, it has been found that peroxide curable silicone rubber compositions can not be used for this application.
 また、熱圧成形品は、硬化前のシリコーンゴムGが金型K1によりプレスされ、硬化した摺接リングの半製品50の周囲にシート状のバリ55が発生すること、バリ55の切断時に摺接リング19’の側面に傷54が発生したり切り残し53が発生して側面形状を損なうこと、更には成形された直後の摺接リング19’は摺動性が低くてガスケット本体26の凹溝18に嵌め込み難く、成形直後ではガスケット組み立てに供し得ない。バリ55の発生は、バリ除去工程が別途必要となるし、摺動性改善には内面からのシリコーンオイルのブリードを促す熱処理が必要であり、上記のようにガスケット組み立てに時間とコストがかかること、更には、ガスケット組み立てに時間がかかるとガスケット10に雑菌が混入したり、不純物が付着する機会が増加するという製造上の問題もあり、摺接リング成形直後からの組み立て工程への供給が次の課題となっていた。
 本発明はこの課題に鑑みてなされたもので、本発明の課題は上記のようなガスケット組み立てに対して最適の摺接リングを製造するための製造方法を提供するにある。
 なお、該摺接リングを使用すること、更には該摺接リング利用のガスケットを用いることで霧化シリコーンオイル塗布工程を製造現場から排除することも出来る。
In the hot-pressed molded product, the silicone rubber G before curing is pressed by the mold K1, and sheet-like burrs 55 are generated around the cured contact ring semi-finished product 50, and the burrs 55 are cut at the time of cutting. The side surface of the contact ring 19 'may be damaged or the cut 53 may occur to damage the side surface shape. Furthermore, the sliding contact ring 19' immediately after being formed has low slidability and the concave of the gasket main body 26 It is difficult to fit in the groove 18 and can not be used for gasket assembly immediately after molding. The generation of burrs 55 requires a separate burr removal step, and the improvement of slidability requires a heat treatment to promote bleeding of silicone oil from the inner surface, and as described above, gasket assembly takes time and cost. Furthermore, there is also a manufacturing problem that when the assembly of the gasket takes a long time, bacteria enter the gasket 10 and the chances of impurities to adhere increase, so the supply to the assembly process immediately after forming the sliding ring is next. It was an issue of
The present invention has been made in view of this problem, and an object of the present invention is to provide a manufacturing method for manufacturing a sliding contact ring that is optimal for the above-described gasket assembly.
The atomizing silicone oil application process can be eliminated from the manufacturing site by using the sliding ring and further by using a gasket using the sliding ring.
 請求項1は、シリコーンゴムGを使用したブリード型摺接リング19の製造方法に関し、
 付加反応型ポリシロキサンと、硬化触媒と、シリコーンオイルと、充填材とを混練して硬化前のシリコーンゴムGを形成し、
 前記硬化前のシリコーンゴムGを金型Kの収納空間41内に投入し、
 前記収納空間41内に投入された前記シリコーンゴムGをプランジャ42で押圧して前記収納空間41とリング状のキャビティ43とを繋ぐゲート44から前記キャビティ43に圧入し、圧入される過程で流入するシリコーンゴムGの流動体の表面に、配合されたシリコーンオイルをブリードさせつつ充満させ、
 前記リング状のキャビティ43内で圧入された前記シリコーンゴムGを硬化させて表面にシリコーンオイルがブリードした摺接リング19を形成し、
 硬化後、金型Kから摺接リング19を取り出すことを特徴とする。
The first aspect relates to a method of manufacturing the bleed type sliding contact ring 19 using silicone rubber G,
Kneading the addition reaction type polysiloxane, the curing catalyst, the silicone oil and the filler to form silicone rubber G before curing;
The silicone rubber G before curing is introduced into the storage space 41 of the mold K,
The silicone rubber G introduced into the storage space 41 is pressed by a plunger 42, and is pressed into the cavity 43 from the gate 44 connecting the storage space 41 and the ring-shaped cavity 43, and flows in the process of press-fitting The surface of the silicone rubber G fluid is filled with the blended silicone oil while being bled,
The silicone rubber G press-fitted in the ring-shaped cavity 43 is cured to form a sliding contact ring 19 on which silicone oil is bled on the surface,
After curing, the sliding ring 19 is taken out of the mold K.
 請求項2は、請求項1に記載の付加反応型ポリシロキサンに関し、
 請求項1に記載の付加反応型ポリシロキサンは、ビニル基含有オルガノポリシロキサンと、珪素原子結合水素原子含有オルガノハイドロジェンポリシロキサン(架橋手として、1分子中にSiH基を2個以上有するオルガノハイドロジェンポリシロキサン)の二剤で構成されることを特徴とする。
A second aspect relates to the addition reaction type polysiloxane according to the first aspect,
The addition reaction type polysiloxane according to claim 1 is a vinyl group-containing organopolysiloxane and a silicon atom-bonded hydrogen atom-containing organohydrogenpolysiloxane (an organohydro having two or more SiH groups in one molecule as a crosslinker). It is characterized in that it is composed of two agents of genpolysiloxane).
 請求項3は、請求項1のゲート44に関し、
 ゲート44は収納空間41側からキャビティ43に向けてその断面積が急減又は漸減するように設けられていることを特徴とする。
Claim 3 relates to the gate 44 of Claim 1;
The gate 44 is characterized in that it is provided from the storage space 41 side toward the cavity 43 so that the cross-sectional area thereof decreases rapidly or gradually.
 請求項4は、前記摺接リング19を用いたガスケット10に関し、
 シリンジバレル1の内周面2に摺動可能に圧入されて使用され、前記内周面2との摺接面11の全周に凹溝18が形成されたガスケット本体26と、
 請求項1~3のいずれかに記載の方法にて形成され、ガスケット本体26の凹溝18に嵌め込まれた摺接リング19とで構成されたことを特徴とする。
Claim 4 relates to the gasket 10 using the sliding contact ring 19,
A gasket main body 26 in which a concave groove 18 is formed on the entire circumference of a sliding contact surface 11 with the inner peripheral surface 2 by being press-fit and used slidably on the inner peripheral surface 2 of the syringe barrel 1;
A sliding contact ring 19 formed by the method according to any one of claims 1 to 3 and fitted in the recessed groove 18 of the gasket main body 26.
 請求項5は、
 シリンジバレル1と、前記シリンジバレル1に圧入され、摺動状態で使用される請求項4に記載のガスケット10と、前記ガスケット10が装着されたピストンロッド5とで構成されたことを特徴とするシリンジAである。
Claim 5 is:
The gasket is characterized in that it comprises: a syringe barrel 1; a gasket 10 according to claim 4 which is press-fit into the syringe barrel 1 and used in a sliding state; and a piston rod 5 on which the gasket 10 is mounted. It is a syringe A.
 本発明方法では、シリコーンゴム原材料として付加反応型ポリシロキサンを用いると、キャビティ内の酸素による硬化遅延が発生し難い等の理由によって硬化が非常に速く、それ故、例えば、5~20重量%という大量のシリコーンオイルを添加しても成形性を損なうことがない。そして、大量のシリコーンオイルの添加と、付加反応型ポリシロキサンの早期硬化性により、キャビティ43への圧入時に圧入されたリング状の前記シリコーンゴムGの表面に適量のシリコーンオイルをブリードさせることができる。換言すれば、適量のシリコーンオイルの表面ブリードは、摺接リング19に成形直後から高い摺動性を付与する。これにより成形直後から摺接リング19のガスケット組み立て工程への提供を可能とする。
 この事は、組み立て時間の短縮を意味し、組み立て工程でのコンタミネーションの混入や雑菌の付着機会を遮断することが出来、製造上のメリットが大きい。
In the method of the present invention, when an addition reaction type polysiloxane is used as the silicone rubber raw material, the curing is very fast, for example, because the curing delay due to oxygen in the cavity is hardly generated. Even if a large amount of silicone oil is added, the formability is not impaired. The addition of a large amount of silicone oil and the early curing property of the addition reaction type polysiloxane make it possible to bleed a suitable amount of silicone oil on the surface of the ring-shaped silicone rubber G pressed in at the time of pressing into the cavity 43. . In other words, the surface bleed of a suitable amount of silicone oil imparts high slidability to the sliding ring 19 immediately after molding. This enables provision of the sliding ring 19 to the gasket assembly process immediately after molding.
This means shortening of the assembly time, and the possibility of contamination contamination and attachment of bacteria in the assembly process can be blocked, and the merit in manufacturing is great.
 また、収納空間41側からキャビティ43に向けてその断面積が急減又は漸減するようにゲート44を設ければ、ゲート出口44aで高圧・高速で押し出された付加反応型シリコーンゴムGは、大気圧のキャビティ43内で急膨張し、内部のシリコーンオイルがシリコーンゴムGの表面側に押し出され、硬化した時に摺接リング19の表面にシリコーンオイル薄膜19bを形成する。これにより、摺接リング19は形成直後から要求される摺動性を示す。 In addition, if the gate 44 is provided so that the cross-sectional area of the storage space 41 side decreases or gradually decreases toward the cavity 43, the addition reaction type silicone rubber G extruded at high pressure and high speed at the gate outlet 44a is at atmospheric pressure. The inner silicone oil is pushed out to the surface side of the silicone rubber G and forms a silicone oil thin film 19b on the surface of the sliding ring 19 when it is cured. Thus, the sliding ring 19 exhibits the slidability required immediately after formation.
 そして、この摺接リング19を用いてガスケット本体26の凹溝18に嵌め込んでいけば、従来行われていたシリンジ組み立て工程中での作業環境を著しく損なっていた霧化シリコーンオイルによる塗布工程を排除することができる。 Then, if this sliding contact ring 19 is used to fit in the recessed groove 18 of the gasket main body 26, the application process using the atomized silicone oil which has significantly damaged the working environment in the syringe assembly process conventionally performed It can be eliminated.
本発明のプレフィルドシリンジの断面図である。It is sectional drawing of the prefilled syringe of this invention. シリンジにガスケットを圧入する前の部分拡大断面図である。It is a partial expanded sectional view before pressing in a gasket in a syringe. 図1の破線楕円で示す部分拡大正面図である。FIG. 2 is a partially enlarged front view shown by a broken line ellipse in FIG. 1; (a)本発明に使用する金型の縦断面の模式図、(b)は横断面の要部の模式図である。(A) A schematic view of a longitudinal section of a mold used in the present invention, and (b) is a schematic view of an essential part of a transverse section. (a)本発明の摺接リングの平面図、(b)その断面図である。(A) The top view of the sliding contact ring of this invention, (b) It is the sectional drawing. (a)~(c)従来の熱圧成形の手順を示す断面の模式図、(d)その成形品の断面図、(e)成形品のバリ取り品である。(A) to (c) a schematic view of a cross section showing a conventional procedure of hot-press forming, (d) a cross section of the molded product, and (e) a deburred product of the molded product. 摺接リング(シリコーンオイルのみ添加)の形成方法と摺動抵抗の相違を示す表である。It is a table | surface which shows the difference in the formation method of sliding contact ring (silicone oil only addition), and sliding resistance. 摺接リング(シリコーンオイルと超高分子ポリエチレン微粉末を添加)の形成方法と摺動抵抗の相違を示す表である。It is a table | surface which shows the difference in the formation method of sliding contact ring (silicone oil and ultra-high molecular weight polyethylene fine powder are added), and sliding resistance. 本発明の摺接リング(シリコーンオイルのみ添加)の摺動抵抗測定結果表である。It is a sliding resistance measurement result table of the sliding contact ring (silicone oil only addition) of this invention. 本発明の摺接リング(シリコーンオイルと超高分子ポリエチレン微粉末添加)の摺動抵抗測定結果表である。It is a sliding resistance measurement result table of the sliding contact ring (silicone oil and ultra-high molecular weight polyethylene fine powder addition) of this invention.
 以下、本発明を図示実施例に従って説明する。図1は、本発明方法によって製造された摺接リング19が用いられたプレフィルドシリンジAの断面図である。図示していないが、本発明の摺接リング19は通常のディスポーザブルシリンジにも適用可能である。
 以下、プレフィルドシリンジAを代表例として説明する。
 図1に示すように、プレフィルドシリンジAは、ガスケット10と、薬液30が充填されたシリンジバレル1と、ガスケット10に装着されたピルトンロッド5と、トップキャップ8とで構成されている。
Hereinafter, the present invention will be described according to the illustrated embodiments. FIG. 1 is a cross-sectional view of a prefilled syringe A in which a sliding contact ring 19 manufactured by the method of the present invention is used. Although not shown, the sliding ring 19 of the present invention is also applicable to a conventional disposable syringe.
Hereinafter, the prefilled syringe A will be described as a representative example.
As shown in FIG. 1, the prefilled syringe A is composed of a gasket 10, a syringe barrel 1 filled with a drug solution 30, a pilton rod 5 mounted on the gasket 10, and a top cap 8.
 シリンジバレル1は円筒状の容器で、バレル本体1aの先端に図示しない注射針が装着される装着部1bが突設され、後端に指掛け用の鍔部1cが形成されている。シリンジバレル1の材質は、硬質樹脂(例えば、シクロオレフィン樹脂「以下、COPと言う。」)、ポリプロピレン(以下、PPと言う。)、エチレンノルボルネン共重合体(以下、COCという。)などが使われる。ガスケット本体26のシール幅T(図3参照)が0.1~0.6mm(好ましくは、0.1~0.3mm)の場合は、シリンジバレル内周面2によく添うので、ガラスシリンジバレル1の使用も可能である。 The syringe barrel 1 is a cylindrical container, and a mounting portion 1b to which an injection needle (not shown) is mounted is protruded from the tip of the barrel main body 1a, and a finger hooking portion 1c is formed at the rear end. The material of the syringe barrel 1 is hard resin (for example, cycloolefin resin "hereinafter referred to as COP"), polypropylene (hereinafter referred to as PP), ethylene norbornene copolymer (hereinafter referred to as COC), etc. It will be. When the seal width T (see FIG. 3) of the gasket body 26 is 0.1 to 0.6 mm (preferably 0.1 to 0.3 mm), the glass syringe barrel is well adhered to the inner peripheral surface 2 of the syringe barrel. The use of 1 is also possible.
 ピストンロッド5は、先端部に雄ネジ部5a、後端に指当て部5bが設けられたロッド状の部材である。このピストンロッド5の雄ネジ部5aの外周面には上述したガスケット本体26の雌螺子穴15に螺着する雄ネジが刻設されている。ピストンロッド5の材質は環状ポリオレフィン、ポリカーボネート又はポリプロピレン等の樹脂等で構成されている。 The piston rod 5 is a rod-like member having a male screw 5a at its tip end and a finger rest 5b at its rear end. On the outer peripheral surface of the male screw portion 5a of the piston rod 5, a male screw to be screwed to the female screw hole 15 of the gasket main body 26 described above is engraved. The material of the piston rod 5 is made of a resin such as cyclic polyolefin, polycarbonate or polypropylene.
 トップキャップ8は、シリンジバレル1の針装着部1bに取り付けられ、シリンジバレル1内部に充填した薬液30が漏れないようにすると共に、当該薬液30が空気中を浮遊する雑菌などで汚染されないようにするための封止部材である。このトップキャップ8は、円錐台状のキャップ本体8aと、このキャップ本体8aの天面から開口方向に伸び、針装着部1bが嵌め込まれる凹部8bが形成された嵌合突部8cとで構成されている。トップキャップ8は耐薬液性フィルム(PTFEやETFA)を内周面に積層したエラストマで形成されている。エラストマには、「加硫ゴム」や「熱硬化性エラストマ」、又は、「熱可塑性エラストマ」のいずれをも含む。 The top cap 8 is attached to the needle attachment portion 1 b of the syringe barrel 1 to prevent the chemical solution 30 filled in the syringe barrel 1 from leaking and to prevent the chemical solution 30 from being contaminated by bacteria etc. floating in the air. It is a sealing member for The top cap 8 includes a truncated cone-shaped cap body 8a, and a fitting projection 8c formed in the opening direction from the top surface of the cap body 8a and having a recess 8b into which the needle mounting portion 1b is fitted. ing. The top cap 8 is formed of an elastomer in which a chemical resistant film (PTFE or ETFA) is laminated on the inner circumferential surface. The elastomer includes any of "vulcanized rubber", "thermosetting elastomer" or "thermoplastic elastomer".
 図1に示すガスケット10の本体部分26は全体がフッ素樹脂、例えば、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)、FEP(四ふっ化エチレンと六ふっ化プロピレンの共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、PVDF(ポリビリニデンフルオライド)、或いは、PP(ポリプロピレン)、超高分子ポリエチレン、COP(シクロオレフィンポリマ)、COC(エチレンノルボルネン共重合体)など、薬液30に反応しない硬質の材料(耐薬液性の硬質プラスチック)で形成されている。
 本発明で使用される硬質プラスチックはショアA硬さで70以上(或いは、ショアD硬さで40~100、ロックウェルM硬さで40~70)のものが好適である。
The main body portion 26 of the gasket 10 shown in FIG. 1 is entirely made of fluororesin, for example, PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), FEP (ethylene tetrafluoride and hexafluoroethylene). Copolymer), PCTFE (polychlorotrifluoroethylene), PVDF (polyvinylidene fluoride), or PP (polypropylene), ultra-high molecular weight polyethylene, COP (cycloolefin polymer), COC (ethylene norbornene) It is formed of a hard material (chemical resistant plastic) which does not react with the chemical solution 30 such as copolymer.
The hard plastic used in the present invention is preferably 70 or more in Shore A hardness (or 40 to 100 in Shore D hardness and 40 to 70 in Rockwell M hardness).
 本発明において使用されるPTFEは、純PTFEでもよいが、例えば、PTFEの結晶化阻害剤であるポリテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(略称PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などのフッ素樹脂を1~15質量%混入した変性体を使用することがガスケット10の本体部分26に弾力性を付与することになってより好ましい。
 本発明に使用されるPTFEは、上記純PTFE又はPTFEの変性体更には所謂HIP処理と言われる熱間等方圧加圧法による独立気泡化したブロック(丸棒材)も使用される。
 PTFE1次焼結ブロックは、純PTFE粉又はPTFEの変性体の粉を圧縮成形し、これを焼結したものである。この焼結では、粉同士の接触部分は密着しているが、全体として非接触部分には極く微細な隙間が形成されており、これらが連続して微小な流体を通過させる。
 このPTFE1次焼結ブロックを熱間等方圧加圧すれば、PTFE1次焼結ブロックは圧縮されてPTFEの粒間に存在する超微細間隙が確実に閉塞され、独立気泡化する。減圧下で熱間等方圧加圧を行えばより効果的である。
Although PTFE used in the present invention may be pure PTFE, for example, polytetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (abbreviation PFA), which is a crystallization inhibitor of PTFE, tetrafluoroethylene-hexafluoropropylene copolymer It is more preferable to use the modified body in which 1 to 15% by mass of a fluorine resin such as a polymer is mixed to impart elasticity to the main body portion 26 of the gasket 10.
The PTFE used in the present invention may be a pure PTFE or a modified PTFE, or a closed-cell block (round bar) by a hot isostatic pressing method called a so-called HIP treatment.
The PTFE primary sintered block is obtained by compression-molding pure PTFE powder or a powder of a modified PTFE and sintering it. In this sintering, the contact portions of the powders are in close contact with each other, but as a whole, extremely fine gaps are formed in the non-contact portions, and these continuously pass the minute fluid.
When the PTFE primary sintered block is subjected to hot isostatic pressing, the PTFE primary sintered block is compressed to reliably close the ultrafine gaps existing between the particles of the PTFE and to form a closed cell. Hot isostatic pressing under reduced pressure is more effective.
 次に、図1のガスケット10の形状について説明する。ガスケット10の本体部分26は円柱状で、後部端面にピストンロッド5を装着する雌螺子穴15が螺設されている。そして、本体部分26の先端側の外周面がシリンジバレル1の内周面2に摺接する摺接面11で、摺接面11から後部端面であるピストンロッド装着面17aにかけての部分17が、その直径が漸減するテーパー状に形成されている。この部分をテーパー部分17という。本体部分26の材質は前述のとおりである。 Next, the shape of the gasket 10 of FIG. 1 will be described. The main body portion 26 of the gasket 10 is cylindrical, and a female screw hole 15 for mounting the piston rod 5 is screwed on the rear end face. The portion 17 from the sliding surface 11 to the piston rod mounting surface 17a, which is the rear end surface, is a sliding surface 11 in which the outer peripheral surface on the tip end side of the main body portion 26 slides on the inner peripheral surface 2 of the syringe barrel 1 It is formed in the taper shape which diameter reduces gradually. This portion is called a tapered portion 17. The material of the main body portion 26 is as described above.
 本体部分26の前記摺接面11の中間部分にはその全周に亘って浅い凹溝18が形成されている。
 換言すれば、凹溝18の両側に狭い摺接面11a、11bが存在することになり、両摺接面11a、11bとも液密性であれば好ましいが、少なくとも薬液30との接液面14に隣接する接液側摺接面11aには液密性が付与される。
 即ち、シリンジバレル1にこの摺接面11aを有する部分(接液側摺動部16)が後述する圧入代をもって圧入される。
 前記凹溝18にはシリンジバレル1の内周面2に摺接する摺接リング19が嵌め込まれている。接液側摺接面11aに付いては後述する。
A shallow groove 18 is formed in the middle portion of the sliding contact surface 11 of the main body portion 26 over the entire circumference thereof.
In other words, narrow sliding contact surfaces 11a and 11b are present on both sides of the recessed groove 18, and it is preferable that both sliding contact surfaces 11a and 11b be liquid tight. Liquid-tightness is imparted to the liquid-contacting side sliding contact surface 11 a adjacent to
That is, a portion having the sliding contact surface 11 a (liquid-contacting side sliding portion 16) is press-fitted to the syringe barrel 1 with a press-fit allowance described later.
A sliding contact ring 19 slidably fitted on the inner peripheral surface 2 of the syringe barrel 1 is fitted in the recessed groove 18. The liquid contact side sliding contact surface 11a will be described later.
 摺接リング19を構成する「ブリード型シリコーンゴムG」は、付加反応型ポリシロキサンを基礎原料とし、これにシリコーンオイル、必要充填物を添加し、ニーダで混練し、使用直前に白金系その他の硬化触媒を添加することで得られるもので、混練後、5時間以内に成形に供することが望ましい。
 本発明に使用される付加反応型ポリシロキサンとしては、ビニル基含有オルガノポリシロキサンと、珪素原子結合水素原子含有オルガノハイドロジェンポリシロキサン(架橋手として、1分子中にSiH基を2個以上有するオルガノハイドロジェンポリシロキサン)の二剤で構成される。配合比は、前者対後者で、1:0.7~1.3であり、原則として1:1で混合される。いずれもシリカ粉末が所定量充填された粘土状の物質である。
 前記オルガノハイドロジェンポリシロキサンの具体的例としては、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C6H5)SiO3/2単位とからなる共重合体などが挙げられる。
“Bleed type silicone rubber G” that makes up the sliding ring 19 uses addition reaction type polysiloxane as a base material, silicone oil and necessary fillings are added to this, and it is kneaded with a kneader, platinum type other It is obtained by adding a curing catalyst, and it is desirable to use for shaping within 5 hours after kneading.
The addition reaction type polysiloxane used in the present invention includes a vinyl group-containing organopolysiloxane and a silicon atom-bonded hydrogen atom-containing organohydrogenpolysiloxane (an organosilicon having two or more SiH groups in one molecule as a crosslinker). (Hydrogenpolysiloxane). The compounding ratio is 1: 0.7 to 1.3 for the former and the latter, and in principle, they are mixed at 1: 1. Both are clay-like substances filled with a predetermined amount of silica powder.
As specific examples of the organohydrogenpolysiloxane, both terminal trimethylsiloxy group-capped methyl hydrogen polysiloxane, both terminal trimethylsiloxy group-capped dimethylsiloxane / methyl hydrogen siloxane copolymer, both terminal dimethylhydrogensiloxy group-capped Dimethyl siloxane, both terminal dimethylhydrogensiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, both terminal trimethylsiloxy group-capped methyl hydrogen siloxane / diphenylsiloxane copolymer, both terminal trimethylsiloxy group-capped methyl hydrogen siloxane, Diphenylsiloxane / dimethylsiloxane copolymer, copolymer comprising (CH 3 ) 2 HSiO 1/2 unit and SiO 4/2 unit, (CH 3 ) 2 HSiO 1 / 2 units and the SiO 4/2 units (C6 H5) such as copolymers comprising SiO 3/2 units and the like.
 本発明に使用される硬化触媒(付加反応触媒)は、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と1価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒、錫などが挙げられる。 The curing catalyst (addition reaction catalyst) used in the present invention includes platinum black, platinum chloride, chloroplatinic acid, reaction product of chloroplatinic acid and monohydric alcohol, complex of chloroplatinic acid and olefins, platinum Platinum-based catalysts such as bisacetoacetate, palladium-based catalysts, rhodium-based catalysts, tin and the like can be mentioned.
 シリコーンオイルは、一般に無色透明の液体で、耐熱性、耐寒性、耐水性に優れており、広い温度範囲にわたって粘度変化が少ない。そのほか、離型性、はっ水性、消泡性、潤滑性なども兼ね備えている。本発明の用途としては、粘性の高い方が好ましく、分子量の指数である粘度は1,000~1,000,000cPの範囲、より好ましくは50,000~200,000cP程度のものがブリードを生じる上で好ましい。
 前述のように付加反応型ポリシロキサンを基礎原料とし、これに必要充填物を添加したシリコーンゴムGと、練り込まれたシリコーンオイルとの間には相溶性があり、適量充填すればシリコーンオイルはシリコーンゴムGに均一に分散する。
Silicone oils are generally colorless and transparent liquids, and are excellent in heat resistance, cold resistance, water resistance, and have less viscosity change over a wide temperature range. In addition, it also has releasability, water repellency, antifoaming properties, lubricity and the like. For the application of the present invention, higher viscosity is preferable, and viscosity which is an index of molecular weight is in the range of 1,000 to 1,000,000 cP, more preferably, about 50,000 to 200,000 cP causes bleeding. Preferred above.
As mentioned above, there is compatibility between silicone rubber G, which is based on addition reaction type polysiloxane and to which necessary filler is added, and silicone oil which has been kneaded, and if it is filled in a suitable amount, silicone oil is It disperses uniformly in silicone rubber G.
 充填材は、微粉末シリカが使用される。微粉末シリカとしては、例えば、ヒュームドシリカ、焼結シリカ、沈降シリカ等が挙げられ、これらは1種単独でも2種以上を組み合わせて使用してもよい。成分の配合量は、オルガノポリシロキサン100重量部に対して10~100重量部の割合が好ましく、より好ましくは10~50重量部である。配合量が少な過ぎたり、多すぎると得られるシリコーンゴム組成物の加工性が低下し、得られた硬化物の十分な機械的強度が得られない。 As a filler, fine powder silica is used. Examples of the finely powdered silica include fumed silica, sintered silica, precipitated silica and the like, and these may be used singly or in combination of two or more. The blending amount of the components is preferably 10 to 100 parts by weight, and more preferably 10 to 50 parts by weight with respect to 100 parts by weight of the organopolysiloxane. If the blending amount is too small or too large, the processability of the resulting silicone rubber composition is reduced, and sufficient mechanical strength of the resulting cured product can not be obtained.
 その他の充填剤として、超高分子ポリエチレン微粉末が挙げられる。その平均分子量は100万~300万で、700万に達するものもある。超高分子ポリエチレン微粉末は透水性がなくしかも殆どのものと接着しないし、その分子量があまりにも高いために高温でも溶融せず、高圧で成形してもその球状形態を保持している。球状の超高分子ポリエチレンの表面は比較的滑らかであるが、若干の凹凸も認められる。微粉末に含まれる球状の超高分子微粒子の粒径の範囲は10~300μmである。粒度分布の幅が広い場合、粒径の大きいものの間に粒径の小さいものが入り込んで大きい粒径のものの間の隙間を埋め、細密充填を実現する。細密充填となると、ブリード型シリコーンゴム全体としては非常に低い透水性を示すことになる。超高分子ポリエチレン微粉末は成形品の硬度を調節するもので、必要に応じて添加される。 Other fillers include ultra-high molecular weight polyethylene fine powder. The average molecular weight is 1,000,000 to 3,000,000, and some reach 7,000,000. The ultra-high-molecular-weight polyethylene fine powder has no water permeability and does not adhere to most particles, and because its molecular weight is too high, it does not melt even at high temperatures, and retains its spherical form even when molded at high pressure. Although the surface of the spherical ultra-high molecular weight polyethylene is relatively smooth, some irregularities are also observed. The range of the particle size of the spherical ultrapolymer fine particles contained in the fine powder is 10 to 300 μm. When the width of the particle size distribution is wide, small particle diameter particles get in between the large particle diameter particles to fill gaps between the large particle diameter particles, thereby achieving fine packing. When finely packed, the bleed-type silicone rubber as a whole exhibits very low water permeability. The ultrahigh molecular weight polyethylene fine powder is used to adjust the hardness of the molded article, and is added as necessary.
 金型Kは、収納空間41、リング状のキャビティ43(図では1つであるが、収納空間41の周囲に複数個を設け、多数個取りとすることも可能である。)、収納空間41とリング状のキャビティ43とを繋ぐゲート44及びプランジャ42とで構成されている。ゲート44は収納空間41側からキャビティ43に向けてその断面積が急減又は漸減するように設けられている。
 ここで、ゲート44の断面積が急減するとは、ゲート出口44aが段状に絞られている場合である。又、漸減するとは、ゲート44の内面がキャビティ43に向けて次第に減少するように滑らかにテーパ状に形成されている場合である。
A mold K is a storage space 41, a ring-shaped cavity 43 (one is shown in the figure, but a plurality of molds can be provided around the storage space 41, and a large number of pieces can be taken), a storage space 41. And a ring-shaped cavity 43 and a plunger 44. The gate 44 is provided from the side of the storage space 41 toward the cavity 43 so that the cross-sectional area thereof rapidly decreases or gradually decreases.
Here, the fact that the cross-sectional area of the gate 44 sharply decreases is the case where the gate outlet 44a is narrowed stepwise. The gradual decrease is the case where the inner surface of the gate 44 is smoothly tapered so as to gradually decrease toward the cavity 43.
 そして、上記素材を所定の割合で混ぜ、ニーダで混練して硬化前のシリコーンゴムGを形成した。この硬化前のシリコーンゴムGを金型Kの収納空間41内に投入し、前記収納空間41内に投入された前記シリコーンゴムGをプランジャ42で押圧すると、ゲート44からシリコーンゴムGが高圧で押し出される。ゲート44は前述のようにキャビティ43に向けてその断面積が急減又は漸減するように設けられているので、シリコーンゴムGはゲート44のゲート出口44aに近づくに連れて次第に高圧高速で押し出される。ゲート出口44aを出ると、高圧に圧縮されたシリコーンゴムGは、大気圧に保持されているキャビティ43内に押し出されて急減圧される。
 シリコーンゴムGには、大量のシリコーンオイルが添加されているので、この急減圧によりその一部は柔らかい硬化前のシリコーンゴムGの表面に押し出されてブリードする。
 リング状のキャビティ43内に押し出された硬化前のシリコーンゴムGがゲート出口44aから両側に分岐して広がり、キャビティ43の、ゲート出口44aの反対側で高速で衝突し、ウェルド面を作ることなく一体のリングを構成する。この時点でリング状に形成された硬化前の摺接リング19の表面には適量のシリコーンオイル薄膜19bが形成されている。
 この状態で所定時間保持し、摺接リング19の硬化を図る。硬化後、金型Kを開き、摺接リング19だけを取り出す。そしてこの時点において摺接リング19の表面は、前記のシリコーンオイル薄膜19bに覆われた状態で取り出される。
And the said raw material was mixed in the predetermined ratio, and it knead | mixed with a kneader, and formed silicone rubber G before hardening. When the silicone rubber G before curing is put into the storage space 41 of the mold K and the silicone rubber G put into the storage space 41 is pressed by the plunger 42, the silicone rubber G is pushed out from the gate 44 under high pressure. Be Since the gate 44 is provided toward the cavity 43 so as to sharply reduce or gradually reduce the cross sectional area as described above, the silicone rubber G is gradually pushed out at high pressure and high speed as it approaches the gate outlet 44 a of the gate 44. Upon leaving the gate outlet 44a, the silicone rubber G compressed to a high pressure is pushed into the cavity 43 held at atmospheric pressure and is rapidly depressurized.
Since a large amount of silicone oil is added to the silicone rubber G, part of the silicone rubber G is pushed out and bled onto the surface of the soft silicone rubber G before curing.
The uncured silicone rubber G extruded into the ring-shaped cavity 43 diverges from both sides of the gate outlet 44a, and collides at high speed on the opposite side of the gate outlet 44a of the cavity 43 without forming a weld surface. Construct an integral ring. At this time, an appropriate amount of silicone oil thin film 19 b is formed on the surface of the sliding contact ring 19 formed in a ring shape before curing.
In this state, the sliding ring 19 is hardened by holding for a predetermined time. After curing, the mold K is opened and only the sliding ring 19 is taken out. At this point, the surface of the sliding ring 19 is taken out in the state of being covered by the silicone oil thin film 19b.
 このようにして形成された摺接リング19は、ガスケット本体26の凹溝18に嵌め込まれる。摺接リング19の表面にはシリコーンオイル薄膜19bが存在するので、滑らかに装着作業が終了する。ガスケット10の組み立てが完了すると、ガスケット10にピストンロッド5を装着し、ガスケット10をシリンジバレル1に圧入することでシリンジAの組み立てが行われる。プレフィルドシリンジAの場合、組み立て後、或いは組み立ての途中で薬液30のシリンジバレル1内への充填が行われる。 The sliding ring 19 formed in this manner is fitted into the recessed groove 18 of the gasket body 26. Since the silicone oil thin film 19b exists on the surface of the sliding contact ring 19, the mounting operation is completed smoothly. When the assembly of the gasket 10 is completed, the piston rod 5 is attached to the gasket 10 and the gasket 10 is pressed into the syringe barrel 1 to assemble the syringe A. In the case of the prefilled syringe A, the liquid medicine 30 is filled into the syringe barrel 1 after or during the assembly.
 これにより、シリンジ組み立て工程の簡素化と時間短縮、及び、従来、不可欠とされていた霧化シリコーンオイル塗布工程をシリンジ組み立て工程から排除することができた。 As a result, simplification and time reduction of the syringe assembly process, and the atomization silicone oil application process which has been considered to be essential conventionally can be eliminated from the syringe assembly process.
(実施例)
 図7、図8は摺接リングの成形方法と摺動抵抗の相違を示す表である。図7は、シリコーンオイルのみを添加したもの、図8はシリコーンオイルと超高分子ポリエチレン微粉末を添加したもので、摺接リングをガスケットに嵌め合わせ、その摺動性評価を行った。
 シリンジの摺動性能は、以下の実験によって評価した。(単位はmm)
 シリンジ形状(1ミリリットル用)
 内径:6.35、ガスケットの移動長:35
 ガスケットの形状
 ガスケット本体 外径:6.47、凹溝の形状:溝幅1.6 直径5.15
 接液側摺動面のシール幅:0.3
 材質:ポリテトラフルオロエチレン
 摺接リングの形状 厚さ:1.55、外径:6.20、内径:4.5
 ガスケット摺動条件:82mm/分 摺動距離:35mm
 摺接リングの材質:ポリジメチルシロキサンにシリカ粉を25重量%、シリコーンオイルを10重量%添加したものを用いて摺接リングを形成した。
 圧縮成形試料(図6参照):摺接リングの形状が加工された金型を用い、成形材料を投入し、加熱加圧成形を行う。成形後、摺接リングの形状部分からはみ出した余剰分のバリを打ち抜いた。
 差圧成形試料(トランスファー成形品 図4参照):摺接リングの形状が加工されたキャビティと、そのキャビティへの投入部分(ゲート)の形状が直径0.3mmの円状に形成された金型を使用する。材料投入部(収納空間)の形状は直径12mm、押圧力は0.5MPaである。
●試験結果:シリンジセット直後の摺動性評価試験では、ガスケットに差圧成形した摺接リングを嵌め合わせたものが他の成形方法より小さい摺動性を示した。
(Example)
7 and 8 are tables showing the difference between the method of forming the sliding contact ring and the sliding resistance. FIG. 7 shows that to which only silicone oil is added, and FIG. 8 shows that to which silicone oil and ultra-high molecular weight polyethylene fine powder are added. The sliding contact ring was fitted to the gasket and its slidability was evaluated.
The sliding performance of the syringe was evaluated by the following experiment. (Unit is mm)
Syringe shape (for 1 ml)
Inner diameter: 6.35, moving length of gasket: 35
Gasket shape Gasket body Outer diameter: 6.47, shape of concave groove: groove width 1.6 diameter 5.15
Sealing width of contact side sliding surface: 0.3
Material: Polytetrafluoroethylene Slide ring shape Thickness: 1.55, outer diameter: 6.20, inner diameter: 4.5
Gasket sliding condition: 82 mm / min Sliding distance: 35 mm
Material of sliding contact ring: A sliding contact ring was formed using 25% by weight of silica powder and 10% by weight of silicone oil added to polydimethylsiloxane.
Compression molding sample (see FIG. 6): A molding material is introduced using a mold in which the shape of the sliding contact ring is processed, and heat and pressure molding is performed. After molding, the surplus burrs protruding from the shape portion of the sliding contact ring were punched out.
Differential pressure molded sample (transfer molded product shown in FIG. 4): A cavity in which the shape of the sliding contact ring is processed and a mold in which the shape of the input portion (gate) to the cavity is a circle with a diameter of 0.3 mm Use The shape of the material feeding portion (storage space) is 12 mm in diameter, and the pressing force is 0.5 MPa.
● Test results: In the slideability evaluation test immediately after setting the syringe, the gasket in which the sliding contact ring formed by differential pressure molding was fitted showed a slideability smaller than the other molding methods.
 図8の評価では、ガスケット本体、摺接リングは図7と同一形状のものを使用した。
 摺接リングの材質:ポリジメチルシロキサンにシリカ粉を25重量%、シリコーンオイルを20重量%、超高分子ポリエチレン微粉末20重量%添加したものを用いて摺接リングを形成した。
 成形条件は図7と同じである。
●試験結果:シリンジセット直後の摺動性評価試験では、ガスケットに差圧成形した摺接リングを嵌め合わせたものが他の成形方法より小さい摺動性を示した。
In the evaluation of FIG. 8, the gasket body and the sliding ring used were of the same shape as that of FIG. 7.
Material of sliding contact ring: A sliding contact ring was formed by using 25% by weight of silica powder, 20% by weight of silicone oil and 20% by weight of ultra-high molecular weight polyethylene fine powder added to polydimethylsiloxane.
The molding conditions are the same as in FIG.
● Test results: In the slideability evaluation test immediately after setting the syringe, the gasket in which the sliding contact ring formed by differential pressure molding was fitted showed a slideability smaller than the other molding methods.
 図9、図10は摺接リングの添加物の相違を示す表である。成形品はいずれも差圧成形方式によって形成した。
 図9は、シリコーンオイルのみを添加したもの、図10はシリコーンオイルと超高分子ポリエチレン微粉末を添加したもので、摺接リングをガスケットに嵌め合わせ、その摺動性評価を行った。
 図9の評価では、ガスケット本体、摺接リングは図7と同一形状のものを使用した。
 摺接リングの材質:ポリジメチルシロキサンにシリカ粉を25重量%を添加して混練したもの(シリコーンオイル添加なし)を基材1(比較例)とし、これに対して粘度1,000cP、粘度100,000cP及び粘度1,000,000cPのシリコーンオイルをそれぞれ5、10、15重量%を添加したもの(実施例1~3)を用意し、成形直後の摺接リングの平均摺動抵抗値の変化を測定した。(ここでは比較例及び実施例1~3には、超高分子ポリエチレン粉末の添加はない。)
 図9に於いて、超高分子ポリエチレン粉末を添加していないので、シリコーンオイルの含有量は最大15重量%に制限される。15重量%を越えてシリコーンオイルを添加すると成形が困難となる。5重量%を下回ると、摺動抵抗は目標の7Nを越えるようになる。組み立て直後のシリンジの使用可能範囲は5~15重量%である。
●測定結果はシリコーンオイル5重量%~15重量%の摺接リング使用のガスケットを用いた、組み立て直後のシリンジは、全て7N(単位ニュートン)以下の平均摺動抵抗を示した。
FIG. 9 and FIG. 10 are tables showing differences in additives of the sliding contact ring. The molded articles were all formed by a differential pressure molding method.
FIG. 9 shows the case where only silicone oil is added, and FIG. 10 shows the case where silicone oil and ultra-high molecular weight polyethylene fine powder are added. The sliding contact ring was fitted to the gasket and its sliding property was evaluated.
In the evaluation of FIG. 9, the gasket body and the sliding ring used were of the same shape as that of FIG.
Material of sliding contact ring: 25% by weight of silica powder added to polydimethylsiloxane and kneaded (without addition of silicone oil) is regarded as a substrate 1 (comparative example), with a viscosity of 1,000 cP and a viscosity of 100 Preparations (Examples 1 to 3) were prepared by adding 5, 10 and 15% by weight of silicone oils having a viscosity of 1,000 cP and a viscosity of 1,000,000 cP, respectively, and changing the average sliding resistance value of the sliding contact ring immediately after molding Was measured. (There is no addition of ultra-high molecular weight polyethylene powder in Comparative Example and Examples 1 to 3 here.)
In FIG. 9, the content of the silicone oil is limited to a maximum of 15% by weight since no ultrahigh molecular weight polyethylene powder is added. Addition of silicone oil in excess of 15% by weight makes molding difficult. Below 5% by weight, the sliding resistance exceeds the target 7N. The usable range of the syringe immediately after assembly is 5 to 15% by weight.
Measurement results show that all syringes immediately after assembly using silicone oil with 5% by weight to 15% by weight of sliding contact ring use showed an average sliding resistance of 7 N (unit Newton) or less.
 超高分子ポリエチレン微粉末添加による摺動性評価(図10)
 図10の評価では、ガスケット本体、摺接リングは図9と同一形状のものを使用した。この検討には、ポリジメチルシロキサン13.13g、充填材としてシリカ粉末4.37g、超高分子ポリエチレン粉末(20~200μm)23.35g、を混合した基材(以下、基材2という。)に対して各種重合度のポリジメチルシロキサンオイル(以下、シリコーンオイルという。重合度の指数としてcPでその粘度を表す。)の粘度1,000~1,000,000cPの各種シリコーンオイルを添加し、その添加量と摺動抵抗の関係を測定した。
 超高分子ポリエチレン粉末は、シリコーンオイルとの親和性が高く、シリコーンオイルの添加量を増やすことが出来ると共に超高分子ポリエチレン粉末の添加によって摺接リングの硬度を高くすることが出来た。シリコーンオイルは5~40重量%まで添加することが出来た。
 この場合、シリコーンオイルの添加量が5~40重量%で、全ての粘度で摺動抵抗は目標の7Nを下回った。5重量%未満では目標の7Nを越える。なお、40重量%を超える添加量では成形が困難であった。
 なお、粘度が1,000cPのシリコーンオイルでは、30重量%を超えると成形できない。この場合のシリコーンオイルの最適添加量は20重量%前後である。
Evaluation of slidability by addition of ultra-high molecular weight polyethylene powder (Fig. 10)
In the evaluation of FIG. 10, the gasket main body and the sliding ring used had the same shape as that of FIG. In this examination, a base material (hereinafter referred to as base material 2) in which 13.13 g of polydimethylsiloxane, 4.37 g of silica powder as filler, and 23.35 g of ultra-high molecular weight polyethylene powder (20 to 200 μm) are mixed. On the other hand, various silicone oils with a viscosity of 1,000 to 1,000,000 cP are added to polydimethylsiloxane oils of various degrees of polymerization (hereinafter referred to as silicone oils, the viscosity of which is represented by cP as an index of the degree of polymerization) The relationship between the amount added and the sliding resistance was measured.
The ultrahigh molecular weight polyethylene powder has high affinity to silicone oil, and the addition amount of the silicone oil can be increased, and the hardness of the sliding ring can be increased by the addition of the ultrahigh molecular weight polyethylene powder. Silicone oil could be added up to 5 to 40% by weight.
In this case, the addition amount of silicone oil was 5 to 40% by weight, and the sliding resistance was below the target 7 N at all the viscosity. If it is less than 5% by weight, it exceeds the target 7N. In addition, molding was difficult in the addition amount exceeding 40% by weight.
A silicone oil having a viscosity of 1,000 cP can not be molded if it exceeds 30% by weight. The optimum amount of silicone oil added in this case is around 20% by weight.
A:プレフィルドシリンジ、G:シリコーンゴム、K・K1:金型、T:シール幅、1:シリンジバレル、1a:バレル本体、1b:針装着部、1c:鍔部、2:内周面、5:ピストンロッド、5a:雄ネジ部、5b:指当て部、8:トップキャップ、8a:キャップ本体、8b:凹部、8c:嵌合突部、10:ガスケット、11:摺接面、11a:接液面側の摺接面(接液側摺接面)、11b:ピストンロッド側の摺動面(ロッド側摺接面)、14:接液面、15:雌螺子穴、16:接液側摺動部、17:テーパー部分、17a:ピストンロッドの装着面、18:凹溝、19・19’:摺接リング、19b:シリコーンオイル膜、26:本体部分(ガスケット本体)、30:薬液、31:薬剤、41:収納空間、42:プランジャ、43:キャビティ、44:ゲート、44a:ゲート出口、48:ランナー、50:半製品、53:切り残し、54:傷、55:バリ。 A: pre-filled syringe, G: silicone rubber, K · K1: mold, T: seal width, 1: syringe barrel, 1a: barrel body, 1b: needle mounting portion, 1c: collar portion, 2: inner circumferential surface, 5 : Piston rod, 5a: Male thread, 5b: Finger rest, 8: Top cap, 8a: Cap body, 8b: Recess, 8c: Fitting projection, 10: Gasket, 11: Sliding surface, 11a: Contact Liquid surface side sliding contact surface (liquid contact side sliding contact surface), 11b: Piston rod side sliding surface (rod side sliding contact surface), 14: Liquid contact surface, 15: Female screw hole, 16: Liquid contact side Sliding part, 17: Tapered part, 17a: Mounting surface of piston rod, 18: Concave groove, 19 · 19 ′: Sliding ring, 19b: Silicone oil film, 26: Body part (gasket body), 30: Chemical solution, 31: drug, 41: storage space, 42: plunger, 43: cavity Tee, 44: Gate, 44a: Gate exit, 48: Runner, 50: Semifinished product, 53: Leave uncut, 54: Scratch, 55: Burr.

Claims (5)

  1.  付加反応型ポリシロキサンと、硬化触媒と、シリコーンオイルと、充填材とを混練して硬化前のシリコーンゴムを形成し、
     前記硬化前のシリコーンゴムを金型の収納空間内に投入し、
     前記収納空間内に投入された前記シリコーンゴムをプランジャで押圧して前記収納空間とリング状のキャビティとを繋ぐゲートから前記キャビティに圧入し、圧入される過程で流入するシリコーンゴムの流動体の表面に、配合されたシリコーンオイルをブリードさせつつ充満させ、
     前記リング状のキャビティ内で圧入された前記シリコーンゴムを硬化させて表面にシリコーンオイルがブリードした摺接リングを形成し、
     硬化後、金型から摺接リングを取り出すことを特徴とするブリード型摺接リングの製造方法。
    Kneading the addition reaction type polysiloxane, the curing catalyst, the silicone oil, and the filler to form silicone rubber before curing;
    The silicone rubber before curing is introduced into the mold storage space,
    The silicone rubber introduced into the storage space is pressed by a plunger and pressed into the cavity from the gate connecting the storage space and the ring-shaped cavity, and the surface of the silicone rubber fluid flowing in the process of being pressed in To bleed while being blended with the formulated silicone oil,
    Curing the silicone rubber pressed in the ring-shaped cavity to form a sliding ring in which silicone oil is bled on the surface;
    A method of manufacturing a bleed type sliding contact ring characterized by removing the sliding contact ring from a mold after curing.
  2.  付加反応型ポリシロキサンは、ビニル基含有オルガノポリシロキサンと、珪素原子結合水素原子含有オルガノハイドロジェンポリシロキサンの二剤で構成されることを特徴とする請求項1に記載のブリード型摺接リングの製造方法。 2. The bleed-type contact ring according to claim 1, wherein the addition reaction type polysiloxane is composed of a vinyl group-containing organopolysiloxane and a silicon atom-bonded hydrogen atom-containing organohydrogenpolysiloxane. Production method.
  3.  ゲートは収納空間側からキャビティに向けてその断面積が急減又は漸減するように設けられていることを特徴とする請求項1に記載のブリード型摺接リングの製造方法。 The method for manufacturing a bleed type sliding contact ring according to claim 1, wherein the gate is provided from the side of the storage space toward the cavity so that the cross-sectional area thereof rapidly decreases or gradually decreases.
  4.  シリンジバレルの内周面に摺動可能に圧入されて使用され、前記内周面との摺接面の全周に凹溝が形成されたガスケット本体と、
     請求項1~3のいずれかに記載の方法にて形成され、ガスケット本体の凹溝に嵌め込まれた摺接リングとで構成されたことを特徴とするガスケット。
    A gasket body which is used by being press-fitted slidably on the inner peripheral surface of the syringe barrel and in which a recessed groove is formed on the entire circumference of the sliding contact surface with the inner peripheral surface;
    A gasket comprising: a sliding contact ring formed by the method according to any one of claims 1 to 3 and fitted in a recessed groove of a gasket body.
  5.  シリンジバレルと、前記シリンジバレルに圧入され、摺動状態で使用される請求項4に記載のガスケットと、前記ガスケットが装着されたピストンロッドとで構成されたことを特徴とするシリンジ。 A syringe comprising: a syringe barrel; a gasket according to claim 4, which is press-fitted into the syringe barrel and used in a sliding state; and a piston rod on which the gasket is mounted.
PCT/JP2016/001934 2016-04-06 2016-04-06 Method for manufacturing bleed type sliding contact ring, and gasket and syringe using sliding contact ring WO2017175256A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017513014A JPWO2017175256A1 (en) 2016-04-06 2016-04-06 Bleed-type sliding contact ring manufacturing method, gasket and syringe using the sliding contact ring
PCT/JP2016/001934 WO2017175256A1 (en) 2016-04-06 2016-04-06 Method for manufacturing bleed type sliding contact ring, and gasket and syringe using sliding contact ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001934 WO2017175256A1 (en) 2016-04-06 2016-04-06 Method for manufacturing bleed type sliding contact ring, and gasket and syringe using sliding contact ring

Publications (1)

Publication Number Publication Date
WO2017175256A1 true WO2017175256A1 (en) 2017-10-12

Family

ID=60000993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001934 WO2017175256A1 (en) 2016-04-06 2016-04-06 Method for manufacturing bleed type sliding contact ring, and gasket and syringe using sliding contact ring

Country Status (2)

Country Link
JP (1) JPWO2017175256A1 (en)
WO (1) WO2017175256A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502849A (en) * 2017-11-14 2021-02-04 サノフイSanofi Incorporation of ultrasonic sensor into the plunger stopper of the injection device
CN113041453A (en) * 2019-12-26 2021-06-29 住友橡胶工业株式会社 Medical syringe, gasket suitable for syringe, and method for manufacturing gasket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034411A (en) * 1998-07-15 2000-02-02 Shin Etsu Chem Co Ltd Oil-bleeding silicone rubber composition
JP2002338809A (en) * 2001-05-18 2002-11-27 Shin Etsu Chem Co Ltd Oil-bleeding silicone rubber composition
WO2009001600A1 (en) * 2007-06-26 2008-12-31 Terumo Kabushiki Kaisha Medical container
JP2015017198A (en) * 2013-07-12 2015-01-29 信越化学工業株式会社 Method for lowering modulus of silicone rubber cured product, silicone rubber composition, and cured product
WO2016056038A1 (en) * 2014-10-07 2016-04-14 有限会社コーキ・エンジニアリング Slidable medical silicone rubber, gasket using said rubber, and prefilled syringe using said gasket

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553089B2 (en) * 1991-05-30 2004-08-11 株式会社トップ Syringe
WO2009151129A1 (en) * 2008-06-10 2009-12-17 株式会社大協精工 Rubber molded article for container for extremely-low-temperature storage and pharmaceutical/medical container using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034411A (en) * 1998-07-15 2000-02-02 Shin Etsu Chem Co Ltd Oil-bleeding silicone rubber composition
JP2002338809A (en) * 2001-05-18 2002-11-27 Shin Etsu Chem Co Ltd Oil-bleeding silicone rubber composition
WO2009001600A1 (en) * 2007-06-26 2008-12-31 Terumo Kabushiki Kaisha Medical container
JP2015017198A (en) * 2013-07-12 2015-01-29 信越化学工業株式会社 Method for lowering modulus of silicone rubber cured product, silicone rubber composition, and cured product
WO2016056038A1 (en) * 2014-10-07 2016-04-14 有限会社コーキ・エンジニアリング Slidable medical silicone rubber, gasket using said rubber, and prefilled syringe using said gasket

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502849A (en) * 2017-11-14 2021-02-04 サノフイSanofi Incorporation of ultrasonic sensor into the plunger stopper of the injection device
JP7408545B2 (en) 2017-11-14 2024-01-05 サノフイ Incorporation of an ultrasonic sensor into the plunger stopper of an injection device
CN113041453A (en) * 2019-12-26 2021-06-29 住友橡胶工业株式会社 Medical syringe, gasket suitable for syringe, and method for manufacturing gasket
EP3842088A1 (en) * 2019-12-26 2021-06-30 Sumitomo Rubber Industries, Ltd. Medical syringe, gasket for use in the syringe, and production method for the gasket
US20210196897A1 (en) * 2019-12-26 2021-07-01 Sumitomo Rubber Industries, Ltd. Medical syringe, gasket for use in the syringe, and production method for the gasket
JP2021104152A (en) * 2019-12-26 2021-07-26 住友ゴム工業株式会社 Medical syringe, gasket applied to syringe and its manufacturing method
JP7445202B2 (en) 2019-12-26 2024-03-07 住友ゴム工業株式会社 Medical syringes, gaskets applied to syringes, and their manufacturing method

Also Published As

Publication number Publication date
JPWO2017175256A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6006905B1 (en) High sliding syringe
JP5977462B1 (en) Gasket using medical silicone rubber having slidability, syringe using the gasket, and method for producing the same
EP2910265B1 (en) Gasket for prefilled syringe and prefilled syringe
CN109224205B (en) Leak-free stopper for syringe assembly with low loosening and sustaining forces
EP2803377B1 (en) A combination of a medical gasket and a plunger for a prefilled syringe
KR102397677B1 (en) Gasket and syringe having same
JP6392699B2 (en) Gasket, gasket manufacturing method, and syringe
WO2017175256A1 (en) Method for manufacturing bleed type sliding contact ring, and gasket and syringe using sliding contact ring
GB2537756A (en) Improved metering valve for dispensing an aerosol comprising a valve stem
JP7508070B2 (en) Gasket, syringe including same, and method for manufacturing gasket
JP2016077355A (en) Prefilled syringe gasket and prefilled syringe
JP2015167677A (en) Glass syringe and prefilled syringe
CN113041453A (en) Medical syringe, gasket suitable for syringe, and method for manufacturing gasket

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017513014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897815

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897815

Country of ref document: EP

Kind code of ref document: A1