WO2017173701A1 - 一种超薄lcd模组及液晶显示器 - Google Patents

一种超薄lcd模组及液晶显示器 Download PDF

Info

Publication number
WO2017173701A1
WO2017173701A1 PCT/CN2016/082282 CN2016082282W WO2017173701A1 WO 2017173701 A1 WO2017173701 A1 WO 2017173701A1 CN 2016082282 W CN2016082282 W CN 2016082282W WO 2017173701 A1 WO2017173701 A1 WO 2017173701A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
circuit board
light emitting
lcd module
ultra
Prior art date
Application number
PCT/CN2016/082282
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/118,898 priority Critical patent/US10356963B2/en
Publication of WO2017173701A1 publication Critical patent/WO2017173701A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • G02F1/133385Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell with cooling means, e.g. fans
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the invention relates to the field of liquid crystal display technology, in particular to an ultra-thin LCD module and a liquid crystal display.
  • Liquid crystal display device (LCD, Liquid Crystal Display) has many advantages such as thin body, power saving, no radiation, etc., and has been widely used.
  • Most of the liquid crystal display devices on the market are backlight type liquid crystal display devices, which include a liquid crystal panel and a backlight module. (backlight Module).
  • the working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates. The liquid crystal molecules are redirected by energization or not, and the light of the backlight module is refracted. Come out to produce the picture. Since the liquid crystal panel itself does not emit light, the light source provided by the backlight module is required to display the image normally.
  • the backlight module becomes one of the key components of the liquid crystal display device.
  • the backlight module is divided into a side-in type backlight module and a direct-type backlight module according to different incident positions of the light source.
  • the direct type backlight module is a light source such as CCFL (Cold) Cathode Fluorescent Lamp, or LED (Light Emitting) Diode (light-emitting diode) is disposed behind the liquid crystal panel to directly form a surface light source for the liquid crystal panel.
  • the side-in backlight module is a backlight LED strip (Light Bar) is provided on the rear edge of the LCD panel, and the light from the LED strip is emitted from the light guide (LGP, Light Guide)
  • LGP Light Guide
  • the light-incident surface of one side of the plate enters the light guide plate, is reflected and diffused, and is emitted from the light-emitting surface of the light guide plate, and then is supplied to the liquid crystal panel through the optical film group to form a surface light source.
  • FIG. 1 is a schematic diagram of a prior art LCD module.
  • the LCD module includes a printed circuit board 102, a liquid crystal panel 101 connected to the printed circuit board 102 via two flexible circuit boards 103, and an LED array light source disposed on the printed circuit board 103 and the liquid crystal panel 101.
  • the light emitting diodes 104 are evenly distributed in an intermediate region between the liquid crystal panel 101 and the printed circuit board 103.
  • the projection of the flexible circuit board 103 on the substrate overlaps with the light emitting diode. Since the light emitting diode emits heat during operation, especially the light emitting diode 104 located in the overlapping area easily causes the flexible circuit board to be heated. , thereby affecting the performance of the liquid crystal display device.
  • the invention provides an ultra-thin LCD module, which can effectively solve the problem that the flexible circuit board is heated due to the uniform distribution of the light-emitting diodes in the prior art.
  • an ultra-thin LCD module including:
  • liquid crystal panel connected to the printed circuit board through at least one flexible circuit board;
  • An LED array light source disposed between the printed circuit board and the liquid crystal panel, comprising a plurality of light emitting diodes and a substrate carrying the light emitting diodes, wherein the bottom of the light emitting diodes is provided with a heat sink member;
  • the projection of the flexible circuit board on the substrate does not overlap with the light emitting diode.
  • the heat sink member is a metal base plate.
  • a frame is arranged around the liquid crystal panel, and the projection of the frame on the liquid crystal panel forms four projection areas of up, down, left and right, and the upper projection area is parallel to the printed circuit board and close to the printing a circuit board, the upper projection area being larger than the lower projection area.
  • the liquid crystal panel includes an upper glass substrate, a lower glass substrate, and a liquid crystal mixed with a dichroic dye between the upper glass substrate and the lower glass substrate.
  • a gate driver is integrated on the lower glass substrate.
  • the lower glass substrate has a light incident surface, a lower surface and a light exit surface; the light emitting diode has a light emitting surface, and the light emitting surface faces the light incident surface.
  • the lower surface is a dot structure.
  • a reflection sheet is provided below the lower surface.
  • the invention also provides an ultra-thin LCD module comprising:
  • liquid crystal panel connected to the printed circuit board through at least one flexible circuit board;
  • An LED array light source disposed between the printed circuit board and the liquid crystal panel, comprising a plurality of light emitting diodes and a substrate carrying the light emitting diodes;
  • the projection of the flexible circuit board on the substrate does not overlap with the light emitting diode.
  • the ultrathin LCD module provided by the invention further comprises a heat sink member located at the bottom of the light emitting diode.
  • the heat sink member is a metal base plate.
  • a frame is arranged around the liquid crystal panel, and the projection of the frame on the liquid crystal panel forms four projection areas of up, down, left and right, and the upper projection area is parallel to the printed circuit board and close to the printing a circuit board, the upper projection area being larger than the lower projection area.
  • the liquid crystal panel includes an upper glass substrate, a lower glass substrate, and a liquid crystal mixed with a dichroic dye between the upper glass substrate and the lower glass substrate.
  • a gate driver is integrated on the lower glass substrate.
  • the lower glass substrate has a light incident surface, a lower surface and a light exit surface; the light emitting diode has a light emitting surface, and the light emitting surface faces the light incident surface.
  • the lower surface is a dot structure.
  • a reflection sheet is provided below the lower surface.
  • a liquid crystal display comprising an ultra-thin LCD module includes:
  • liquid crystal panel connected to the printed circuit board through at least one flexible circuit board;
  • An LED array light source disposed between the printed circuit board and the liquid crystal panel, comprising a plurality of light emitting diodes and a substrate carrying the light emitting diodes;
  • the projection of the flexible circuit board on the substrate does not overlap with the light emitting diode. .
  • a frame is arranged around the liquid crystal panel, and the projection of the frame on the liquid crystal panel forms four projection areas of up, down, left and right, and the upper projection area is parallel to the printed circuit board and close to the printing a circuit board, the upper projection area being larger than the lower projection area.
  • the liquid crystal panel includes an upper glass substrate, a lower glass substrate, and a liquid crystal mixed with a dichroic dye between the upper glass substrate and the lower glass substrate.
  • the ultra-thin LCD module and the liquid crystal display provided by the present invention are no longer uniformly arranged with a plurality of the light-emitting diodes between the liquid crystal panel and the printed board as in the prior art, wherein the flexible circuit board is on the substrate
  • the projection on the upper surface overlaps with the light emitting diode, but a plurality of the light emitting diodes are evenly arranged between the liquid crystal panel and the printed board, wherein the projection of the flexible circuit board on the substrate and the light emitting The diodes do not overlap, so that the flexible circuit board is not easily interfered by the heat dissipation of the LED, and thus does not affect the performance of the liquid crystal display device.
  • FIG. 1 is a schematic view of a prior art LCD module
  • FIG. 2 is a schematic view showing a first embodiment of the ultrathin LCD module of the present invention
  • FIG. 3 is a schematic view showing the structure and light entrance of a liquid crystal panel according to a first embodiment of the ultrathin LCD module of the present invention
  • FIG. 4 is a schematic view showing a second embodiment of the ultrathin LCD module of the present invention.
  • FIG. 5 is a schematic view showing the structure and light entrance of a liquid crystal panel according to a second embodiment of the ultrathin LCD module of the present invention.
  • FIG. 6 is a schematic view showing a third embodiment of the ultrathin LCD module of the present invention.
  • FIG. 7 is a schematic view showing the structure and light entrance of a liquid crystal panel according to a third embodiment of the ultrathin LCD module of the present invention.
  • the present invention is directed to a conventional LCD module in which a plurality of the light emitting diodes are evenly arranged between the liquid crystal panel and the printed board, wherein a projection of the flexible circuit board on the substrate overlaps with the light emitting diode. Since the light emitting diode emits heat during operation, especially the light emitting diode located in the overlapping area is highly likely to cause the flexible circuit board to be heated, thereby affecting the performance of the liquid crystal display device, the present invention provides an ultra-thin LCD module that can be effective. Overcome this deficiency.
  • FIG. 2 is a schematic view of a first embodiment of an ultra-thin LCD module according to the present invention
  • FIG 3 is a schematic view showing the structure and light entrance of a liquid crystal panel according to a first embodiment of the ultrathin LCD module of the present invention.
  • the liquid crystal panel 201 is connected to the printed circuit board 202 through two flexible circuit boards 203; and an LED array light source is disposed between the printed circuit board 202 and the liquid crystal panel 201, and includes a plurality of light emitting diodes 204 and a carrier a substrate of the light emitting diode; wherein a projection of the two flexible circuit boards 203 on the substrate does not overlap with the light emitting diode 204.
  • the two flexible circuit boards 203 are designed at two ends of the liquid crystal panel 201 near the light source of the LED array.
  • the ultrathin LCD module provided by the present invention further includes a heat sink member 305 located at the bottom of the light emitting diode 204.
  • the heat sink member 305 is a metal bottom plate.
  • the substrate has a strip shape and a certain thickness, and the light emitting diodes 204 are arranged in a straight line on the surface of the substrate.
  • the substrate carrying the light emitting diode 204 may be a metal-based circuit board (MCPCB), which can serve not only as an electrical carrier of the light-emitting diode 204 but also as a heat conduction carrier of the light-emitting diode 204, through which the light-emitting diode can be illuminated.
  • MCPCB metal-based circuit board
  • the liquid crystal panel 201 includes an upper glass substrate 301, a lower glass substrate 303, and a liquid crystal 302 mixed with a dichroic dye between the upper glass substrate 301 and the lower glass substrate 303.
  • a dichroic dye having anisotropy of absorption of visible light in the long-axis direction and the short-axis direction of liquid crystal molecules is referred to as a "guest" body. It is dissolved in a liquid crystal 302 which is a "main” body in a specific arrangement.
  • a positive dichroic dye is mixed into a transparent liquid crystal, since the normal dichroic dye can selectively absorb light perpendicular to the long axis direction of the liquid crystal molecule, natural light incident into the dichroic dye can be converted into linearly polarized light.
  • a negative dichroic dye When a negative dichroic dye is mixed into a transparent liquid crystal, since the negative dichroic dye can selectively absorb light parallel to the long axis direction of the liquid crystal molecule, natural light incident into the negative dichroic dye can be converted. Linearly polarized light. Therefore, the natural light can be converted into linearly polarized light by using a liquid crystal mixed with a dichroic dye instead of the polarizing plate, and the thickness of the liquid crystal module can be effectively reduced.
  • the dichroic dye of the present embodiment may be 4-(p-benzoic acid phenyl ester)-1,8-naphthalimide (BENA), 4- ⁇ p-[2 -(1 H-benzimidazole)]-phenyl ⁇ -1,8-naphthalimide (BIMZ) and 4-(p-[2 -(5-phenyl-1,3,4) -oxadiazole)]-phenyl)-1,8-naphthalimide (BODZ).
  • BENA 4-(p-benzoic acid phenyl ester)-1,8-naphthalimide
  • BIMZ 4- ⁇ p-[2 -(1 H-benzimidazole)]-phenyl ⁇ -1,8-naphthalimide
  • BODZ 4-(p-[2 -(5-phenyl-1,3,4) -oxadiazole)]-phenyl)-1,8-naphthalimide
  • the invention adopts GOA (Gate driver on The Array technology integrates a gate driver on the lower glass substrate 303, so that the side of the ultra-thin LCD module can be tightened, reducing the width of the side frame.
  • GOA Gate driver on The Array technology integrates a gate driver on the lower glass substrate 303, so that the side of the ultra-thin LCD module can be tightened, reducing the width of the side frame.
  • the lower glass substrate 303 has a light incident surface, a lower surface and a light exit surface; the lower surface is a dot structure, and when the light hits the dot, the total reflection phenomenon is destroyed, and the light forms a diffuse reflection light.
  • the lower glass substrate 303 is emitted to produce a condition for forming a surface light source; a reflective sheet 304 is disposed under the lower surface, and the light exposed by the bottom surface of the lower glass substrate 303 is reflected back by the reflective sheet 304 to improve The rate of use of light.
  • the light emitting diode 204 has a light emitting surface that faces the light incident surface.
  • a frame 205 is disposed around the liquid crystal panel 201, and the projection of the frame 205 on the liquid crystal panel 201 forms four projection areas of up, down, left, and right, and the upper projection area is parallel to the printed circuit board. Near the printed circuit board, the upper projection area is larger than the lower projection area. Since the present invention bypasses the flexible wiring board 203 to arrange the light emitting diodes 204, which causes a problem of light mixing, the present invention preferably sets the upper projection area larger than the lower projection area, thereby solving the light mixing problem.
  • the ultra-thin LCD module of the embodiment wherein a plurality of the light-emitting diodes are uniformly arranged between the liquid crystal panel and the printed board, wherein a projection of the flexible circuit board on the substrate and the light-emitting diode Do not overlap, so that the flexible circuit board is not easily interfered by the heat dissipation of the LED, and thus does not affect the performance of the liquid crystal display device.
  • FIG. 4 is a schematic view of a second embodiment of an ultra-thin LCD module according to the present invention.
  • FIG. 5 is a schematic diagram of a structure and a light entrance of a liquid crystal panel according to a second embodiment of the ultrathin LCD module of the present invention.
  • the second embodiment of the ultrathin LCD module of the present invention is different from the first embodiment in that the liquid crystal panel 401 is connected to the printed circuit board 402 through a flexible circuit board 403, which increases the length of the light source on one side, so that the overall LCD The backlight of the module is better.
  • the liquid crystal panel 401 is connected to the printed circuit board 402 through two flexible circuit boards 403; and an LED array light source is disposed between the printed circuit board 402 and the liquid crystal panel 401, and includes a plurality of light emitting diodes 404 and a carrier a substrate of the light emitting diode; wherein a projection of the two flexible circuit boards 403 on the substrate does not overlap with the light emitting diode 404.
  • the flexible circuit board 403 is designed at an edge end of the liquid crystal panel 401 near the light source of the LED array.
  • the ultra-thin LCD module provided by the present invention further includes a heat sink member 505 located at the bottom of the light-emitting diode 404.
  • the heat sink member 505 is a metal bottom plate.
  • the substrate has a strip shape and has a certain thickness
  • the light emitting diodes 404 are arranged in a straight line on the surface of the substrate.
  • the substrate carrying the light-emitting diode 404 may be a metal-based circuit board (MCPCB), which can serve not only as an electrical carrier of the light-emitting diode 404, but also as a heat conduction carrier of the light-emitting diode 404, through which the light-emitting diode can be illuminated.
  • MCPCB metal-based circuit board
  • the liquid crystal panel 401 includes an upper glass substrate 501, a lower glass substrate 503, and a liquid crystal 502 mixed with a dichroic dye between the upper glass substrate 501 and the lower glass substrate 503.
  • a dichroic dye having anisotropy of absorption of visible light in the long-axis direction and the short-axis direction of liquid crystal molecules is referred to as a "guest" body. It is dissolved in a liquid crystal 502 which is a "main” body in a specific arrangement.
  • a positive dichroic dye is mixed into a transparent liquid crystal, since the normal dichroic dye can selectively absorb light perpendicular to the long axis direction of the liquid crystal molecule, natural light incident into the dichroic dye can be converted into linearly polarized light.
  • a negative dichroic dye When a negative dichroic dye is mixed into a transparent liquid crystal, since the negative dichroic dye can selectively absorb light parallel to the long axis direction of the liquid crystal molecule, natural light incident into the negative dichroic dye can be converted. Linearly polarized light. Therefore, the natural light can be converted into linearly polarized light by using a liquid crystal mixed with a dichroic dye instead of the polarizing plate, and the thickness of the liquid crystal module can be effectively reduced.
  • the dichroic dye of the present embodiment may be 4-(p-benzoic acid phenyl ester)-1,8-naphthalimide (BENA), 4- ⁇ p-[2 -(1 H-benzimidazole)]-phenyl ⁇ -1,8-naphthalimide (BIMZ) and 4-(p-[2 -(5-phenyl-1,3,4) -oxadiazole)]-phenyl)-1,8-naphthalimide (BODZ).
  • BENA 4-(p-benzoic acid phenyl ester)-1,8-naphthalimide
  • BIMZ 4- ⁇ p-[2 -(1 H-benzimidazole)]-phenyl ⁇ -1,8-naphthalimide
  • BODZ 4-(p-[2 -(5-phenyl-1,3,4) -oxadiazole)]-phenyl)-1,8-naphthalimide
  • the invention adopts GOA (Gate driver on The Array technology integrates a gate driver on the lower glass substrate 503, so that the side of the ultra-thin LCD module can be tightened, reducing the width of the side frame.
  • GOA Gate driver on The Array technology integrates a gate driver on the lower glass substrate 503, so that the side of the ultra-thin LCD module can be tightened, reducing the width of the side frame.
  • the lower glass substrate 503 has a light incident surface, a lower surface and a light exit surface; the lower surface is a dot structure. When the light hits the dot, the total reflection phenomenon is destroyed, and the light forms a diffuse reflection light.
  • the lower glass substrate 503 is emitted to produce a condition for forming a surface light source; a reflection sheet 504 is disposed under the lower surface, and the light exposed by the bottom surface of the lower glass substrate 503 is reflected back by the reflection sheet 504 to improve The rate of use of light.
  • the light emitting diode 504 has a light emitting surface that faces the light incident surface.
  • a frame 405 is disposed around the liquid crystal panel 401.
  • the projection of the frame 405 on the liquid crystal panel 401 forms four projection areas of up, down, left, and right.
  • the upper projection area is parallel to the printed circuit board 402.
  • the upper projection area is larger than the lower projection area. Since the present invention bypasses the flexible circuit board 403 to arrange the light emitting diodes 404, which causes a problem of light mixing, the present invention preferably sets the upper projection area larger than the lower projection area, thereby solving the light mixing problem.
  • the liquid crystal panel 401 is connected to the printed circuit board 402 through a flexible circuit board 403.
  • the preferred embodiment also makes the flexible circuit board less susceptible to interference from the heat dissipation of the LED, thereby not affecting the liquid crystal. Display device performance.
  • FIG. 6 is a schematic view of a third embodiment of an ultra-thin LCD module according to the present invention.
  • FIG. 7 is a schematic view showing the structure and light entrance of a liquid crystal panel according to a third embodiment of the ultrathin LCD module of the present invention.
  • the third embodiment of the ultra-thin LCD module of the present invention is different from the second embodiment in that the flexible circuit board 603 is designed in the middle of the side of the liquid crystal panel 601 close to the light source of the LED array, so that the overall LCD module The backlight is better.
  • the liquid crystal panel 601 is connected to the printed circuit board 602 through two flexible circuit boards 603; and an LED array light source is disposed between the printed circuit board 602 and the liquid crystal panel 601, and includes a plurality of light emitting diodes 604 and a carrier a substrate of the light emitting diode; wherein a projection of the two flexible circuit boards 603 on the substrate does not overlap with the light emitting diode 604.
  • the flexible circuit board 603 is designed in the middle of the side of the liquid crystal panel 601 close to the light source of the LED array.
  • the ultra-thin LCD module provided by the present invention further includes a heat sink member 705 located at the bottom of the light-emitting diode 604.
  • the heat sink member 705 is a metal base plate.
  • the substrate has a strip shape and a certain thickness, and the light emitting diodes 604 are arranged in a straight line on the surface of the substrate.
  • the substrate carrying the light-emitting diode 604 may be a metal-based circuit board (MCPCB), which can serve not only as an electrical carrier of the light-emitting diode 604, but also as a heat conduction carrier of the light-emitting diode 604, through which the light-emitting diode can be illuminated.
  • MCPCB metal-based circuit board
  • the liquid crystal panel 601 includes an upper glass substrate 701, a lower glass substrate 703, and a liquid crystal 702 mixed with a dichroic dye between the upper glass substrate 701 and the lower glass substrate 703.
  • a dichroic dye having anisotropy of absorption of visible light in the long-axis direction and the short-axis direction of liquid crystal molecules is referred to as a "guest" body. It is dissolved in a liquid crystal 702 which is a "main” body in a specific arrangement.
  • a positive dichroic dye is mixed into a transparent liquid crystal, since the normal dichroic dye can selectively absorb light perpendicular to the long axis direction of the liquid crystal molecule, natural light incident into the dichroic dye can be converted into linearly polarized light.
  • a negative dichroic dye When a negative dichroic dye is mixed into a transparent liquid crystal, since the negative dichroic dye can selectively absorb light parallel to the long axis direction of the liquid crystal molecule, natural light incident into the negative dichroic dye can be converted. Linearly polarized light. Therefore, the natural light can be converted into linearly polarized light by using a liquid crystal mixed with a dichroic dye instead of the polarizing plate, and the thickness of the liquid crystal module can be effectively reduced.
  • the dichroic dye of the present embodiment may be 4-(p-benzoic acid phenyl ester)-1,8-naphthalimide (BENA), 4- ⁇ p-[2 -(1 H-benzimidazole)]-phenyl ⁇ -1,8-naphthalimide (BIMZ) and 4-(p-[2 -(5-phenyl-1,3,4) -oxadiazole)]-phenyl)-1,8-naphthalimide (BODZ).
  • BENA 4-(p-benzoic acid phenyl ester)-1,8-naphthalimide
  • BIMZ 4- ⁇ p-[2 -(1 H-benzimidazole)]-phenyl ⁇ -1,8-naphthalimide
  • BODZ 4-(p-[2 -(5-phenyl-1,3,4) -oxadiazole)]-phenyl)-1,8-naphthalimide
  • the invention adopts GOA (Gate driver on The Array technology integrates a gate driver on the lower glass substrate 703, so that the side of the ultra-thin LCD module can be tightened, reducing the width of the side frame.
  • GOA Gate driver on The Array technology integrates a gate driver on the lower glass substrate 703, so that the side of the ultra-thin LCD module can be tightened, reducing the width of the side frame.
  • the lower glass substrate 703 has a light incident surface, a lower surface and a light exit surface; the lower surface is a dot structure, and when the light hits the dot, the total reflection phenomenon is destroyed, and the light forms a diffuse reflection light.
  • the lower glass substrate 703 is emitted to produce a condition for forming a surface light source; a reflection sheet 704 is disposed under the lower surface, and the light exposed by the bottom surface of the lower glass substrate 703 is reflected back by the reflection sheet 704 to improve The rate of use of light.
  • the light emitting diode 704 has a light emitting surface, and the light emitting surface faces the light incident surface.
  • a frame 605 is disposed around the liquid crystal panel 601.
  • the projection of the frame 605 on the liquid crystal panel 601 forms four projection areas of up, down, left, and right.
  • the upper projection area is parallel to the printed circuit board 602.
  • the upper projection area is larger than the lower projection area. Since the present invention bypasses the flexible circuit board 603 to arrange the light emitting diodes 604, which causes a problem of light mixing, the present invention preferably sets the upper projection area larger than the lower projection area, thereby solving the light mixing problem.
  • the flexible circuit board 603 is designed in the middle of the side of the liquid crystal panel 601 close to the light source of the LED array.
  • the preferred embodiment also makes the flexible circuit board less susceptible to heat dissipation by the LED. Interference, and thus does not affect the performance of the liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种超薄LCD模组及液晶显示器,包括印刷电路板(202);液晶板(201),其通过至少一个柔性线路板(203)与印刷电路板(202)连接;以及,发光二极管阵列光源,设置在印刷电路板(202)和液晶板(201)之间,其包括多个发光二极管(204)以及承载发光二极管(204)的基板;柔性线路板(203)在基板上的投影与发光二极管(204)不重叠。

Description

一种超薄LCD模组及液晶显示器 技术领域
本发明涉及一种液晶显示技术领域,尤其涉及一种超薄LCD模组及液晶显示器。
背景技术
液晶显示装置(LCD,Liquid Crystal Display)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有市场上的液晶显示装置大部分为背光型液晶显示装置,其包括液晶面板及背光模组 (backlight module)。液晶面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。由于液晶面板本身不发光,需要借由背光模组提供的光源来正常显示影像,因此,背光模组成为液晶显示装置的关键组件之一。背光模组依照光源入射位置的不同分成侧入式背光模组与直下式背光模组两种。直下式背光模组是将发光光源例如CCFL(Cold Cathode Fluorescent Lamp,阴极萤光灯管)或LED(Light Emitting Diode,发光二极管)设置在液晶面板后方,直接形成面光源提供给液晶面板。而侧入式背光模组是将背光源LED灯条(Light bar)设于液晶面板侧后方边缘,LED 灯条发出的光线从导光板 (LGP,Light Guide Plate)一侧的入光面进入导光板,经反射和扩散后从导光板出光面射出,再经由光学膜片组以形成面光源提供给液晶面板。
图1为现有技术LCD模组示意图。
参阅图1,LCD模组包括印刷电路板102;液晶板101,通过两个柔性线路板103与印刷电路板102连接;发光二极管阵列光源,设置在所述印刷电路板103和所述液晶板101之间,其包括多个发光二极管104以及承载所述发光二极管104的基板;所述发光二极管104均匀分布在所述液晶板101与所述印刷电路板103中间区域。所述柔性线路板103在所述基板上的投影与所述发光二极管重叠,由于所述发光二极管工作时会散发热量,尤其位于所述重叠区域的发光二极管104极易导致所述柔性线路板受热,从而影响液晶显示器装置的性能。
技术问题
本发明提供一种超薄LCD模组,可以有效解决现有技术中因发光二极管均匀分布,从而导致的柔性线路板受热的问题。
技术解决方案
为了解决上述技术问题,本发明提供一种超薄LCD模组,包括:
印刷电路板;
液晶板,通过至少一个柔性线路板与印刷电路板连接;以及,
发光二极管阵列光源,设置在所述印刷电路板和所述液晶板之间,其包括多个发光二极管以及承载所述发光二极管的基板,所述发光二极管底部设有散热器件;
所述柔性线路板在所述基板上的投影与所述发光二极管不重叠。
所述散热器件为金属底板。
所述液晶板四周设有边框,所述边框在所述液晶板上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板平行且靠近所述印刷电路板,所述上投影区域大于所述下投影区域。
所述液晶板包括:上玻璃基板、下玻璃基板以及位于所述上玻璃基板和所述下玻璃基板之间的混入二向性染料的液晶。
栅极驱动器集成在所述下玻璃基板上。
所述下玻璃基板具有一光入射面、一下表面和一光出射面;所述发光二极管具有一发光面,所述发光面朝向所述光入射面。
所述下表面为网点结构。
所述下表面的下方设有反射片。
本发明还提供一种超薄LCD模组,包括:
印刷电路板;
液晶板,通过至少一个柔性线路板与印刷电路板连接;以及,
发光二极管阵列光源,设置在所述印刷电路板和所述液晶板之间,其包括多个发光二极管以及承载所述发光二极管的基板;
其中所述柔性线路板在所述基板上的投影与所述发光二极管不重叠。
本发明提供的超薄LCD模组,还包括位于所述发光二极管底部的散热器件。
所述散热器件为金属底板。
所述液晶板四周设有边框,所述边框在所述液晶板上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板平行且靠近所述印刷电路板,所述上投影区域大于所述下投影区域。
所述液晶板包括:上玻璃基板、下玻璃基板以及位于所述上玻璃基板和所述下玻璃基板之间的混入二向性染料的液晶。
栅极驱动器集成在所述下玻璃基板上。
所述下玻璃基板具有一光入射面、一下表面和一光出射面;所述发光二极管具有一发光面,所述发光面朝向所述光入射面。
所述下表面为网点结构。
所述下表面的下方设有反射片。
依据本发明的上述目的,提出一种液晶显示器,其包括超薄LCD模组,包括:
印刷电路板;
液晶板,通过至少一个柔性线路板与印刷电路板连接;以及,
发光二极管阵列光源,设置在所述印刷电路板和所述液晶板之间,其包括多个发光二极管以及承载所述发光二极管的基板;
其中所述柔性线路板在所述基板上的投影与所述发光二极管不重叠。。
所述液晶板四周设有边框,所述边框在所述液晶板上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板平行且靠近所述印刷电路板,所述上投影区域大于所述下投影区域。
所述液晶板包括:上玻璃基板、下玻璃基板以及位于所述上玻璃基板和所述下玻璃基板之间的混入二向性染料的液晶。
有益效果
本发明所提供的超薄LCD模组及液晶显示器不再像现有技术在所述液晶板与所述印刷板之间均匀布置多个所述发光二极管,其中所述柔性线路板在所述基板上的投影与所述发光二极管重叠,而是在所述液晶板与所述印刷板之间均匀布置多个所述发光二极管,其中所述柔性线路板在所述基板上的投影与所述发光二极管不重叠,从而使得柔性线路板不易受到发光二极管散热的干扰,进而不会影响液晶显示装置的性能。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术LCD模组示意图;
图2是本发明超薄LCD模组第一实施例示意图;
图3是本发明超薄LCD模组第一实施例液晶板结构及入光示意图;
图4是本发明超薄LCD模组第二实施例示意图;
图5是本发明超薄LCD模组第二实施例液晶板结构及入光示意图;
图6是本发明超薄LCD模组第三实施例示意图;
图7是本发明超薄LCD模组第三实施例液晶板结构及入光示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的LCD模组在所述液晶板与所述印刷板之间均匀布置多个所述发光二极管,其中所述柔性线路板在所述基板上的投影与所述发光二极管重叠,由于发光二极管工作时会散发热量,尤其位于重叠区域的所述发光二极管极易导致所述柔性线路板受热,从而影响液晶显示器装置的性能,本发明提供一种超薄LCD模组,可以有效的克服该缺陷。
下面结合附图详细本发明实施例的实现过程。
参见图2,为本发明超薄LCD模组第一实施例示意图;
参见图3,为本发明超薄LCD模组第一实施例液晶板结构及入光示意图。
本实施例中的超薄LCD模组,包括:
印刷电路板202;
液晶板201,通过两个柔性线路板203与印刷电路板202连接;以及发光二极管阵列光源,设置在所述印刷电路板202和所述液晶板201之间,其包括多个发光二极管204以及承载所述发光二极管的基板;其中所述两个柔性线路板203在所述基板上的投影与所述发光二极管204不重叠。
本实施例中,所述两个柔性线路板203设计在所述液晶板201靠近所述发光二极管阵列光源一侧的两端。
本发明提供的超薄LCD模组,还包括位于所述发光二极管204底部的散热器件305。所述散热器件305为金属底板。
本实施例中,基板呈条状,具有一定厚度,所述发光二极管204呈直线排布在基板表面。
承载所述发光二极管204的基板可以为金属基电路板(MCPCB),其不但可以作为所述发光二极管204的电气载体,还可以作为所述发光二极管204的热传导载体,通过所述基板可以将发光二极管204产生的热量传导至金属底板。
所述液晶板201包括:上玻璃基板301、下玻璃基板303以及位于所述上玻璃基板301和所述下玻璃基板303之间的混入二向性染料的液晶302。
在液晶材料中,存在一种称为“宾-主效应”的现象,把在液晶分子的长轴方向和短轴方向对可见光的吸收具有各向异性的二向性染料作为“宾”体,溶解于特定排列的作为“主”体的液晶302中。当向透明液晶中混入正二向性染料时,由于正二向性染料可以选择性地吸收垂直于液晶分子长轴方向上的光,从而可以将射入混入正二向性染料的自然光转化成线偏振光;当向透明液晶中混入负二向性染料时,由于负二向性染料可以选择性地吸收平行于液晶分子长轴方向上的光,从而可以将射入混入负二向性染料的自然光转化成线偏振光。因此,可以通过使用混入二向性染料的液晶代替偏振片将自然光转化为线偏振光,可以有效减少液晶模组的厚度。优选地,本实施例的二向性染料可以为4-(p-苯甲酸苯酯)-1,8-萘酰亚胺(BENA),4-{p-[2 -(1 H-苯并咪唑)]-苯基}-1,8-萘酰亚胺(BIMZ)和4-(p-[2 -(5 -苯基-1 ,3,4 -恶二唑)]-苯基)-1,8-萘酰亚胺(BODZ)。
本发明采用GOA(Gate driver on Array)技术将栅极驱动器集成在所述下玻璃基板303上,从而可以使得超薄LCD模组侧面可以紧缩,减少侧面边框的宽度。
所述下玻璃基板303具有一光入射面、一下表面和一光出射面;所述下表面为网点结构,当光线射到网点上后,全反射现象被破坏,光线形成一束漫反射光线而射出所述下玻璃基板303,制造出形成面光源的条件;所述下表面的下方设有反射片304,通过所述反射片304将所述下玻璃基板303底面露出的光反射回去,以提高光的使用率。所述发光二极管204具有一发光面,所述发光面朝向所述光入射面。
所述液晶板201四周设有边框205,所述边框205在所述液晶板201上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板平行且靠近所述印刷电路板,所述上投影区域大于所述下投影区域。由于本发明绕过柔性线路板203排布发光二极管204,易致使混光问题,本发明优选地,将所述上投影区域设置的比所述下投影区域大,从而可以解决该混光问题。
本实施例的超薄LCD模组,通过在所述液晶板与所述印刷板之间均匀布置多个所述发光二极管,其中所述柔性线路板在所述基板上的投影与所述发光二极管不重叠,从而使得柔性线路板不易受到发光二极管散热的干扰,进而不会影响液晶显示装置的性能。
参见图4,为本发明超薄LCD模组第二实施例示意图;
参见图5,为本发明超薄LCD模组第二实施例液晶板结构及入光示意图 ;
本发明超薄LCD模组第二实施例与第一实施例的区别在于,所述液晶板401通过一个柔性线路板403与印刷电路板402连接,增加了光源在一侧的长度,使得整体LCD模组的背光效果更佳。
本实施例中的超薄LCD模组,包括:
印刷电路板402;
液晶板401,通过两个柔性线路板403与印刷电路板402连接;以及发光二极管阵列光源,设置在所述印刷电路板402和所述液晶板401之间,其包括多个发光二极管404以及承载所述发光二极管的基板;其中所述两个柔性线路板403在所述基板上的投影与所述发光二极管404不重叠。
本实施例中,所述柔性线路板403设计在所述液晶板401靠近所述发光二极管阵列光源一侧的边缘端。
本发明提供的超薄LCD模组,还包括位于所述发光二极管404底部的散热器件505。所述散热器件505为金属底板。
本实施例中,基板呈条状,具有一定厚度,所述发光二极管404呈直线排布在基板表面。
承载所述发光二极管404的基板可以为金属基电路板(MCPCB),其不但可以作为所述发光二极管404的电气载体,还可以作为所述发光二极管404的热传导载体,通过所述基板可以将发光二极管404产生的热量传导至金属底板。
所述液晶板401包括:上玻璃基板501、下玻璃基板503以及位于所述上玻璃基板501和所述下玻璃基板503之间的混入二向性染料的液晶502。
在液晶材料中,存在一种称为“宾-主效应”的现象,把在液晶分子的长轴方向和短轴方向对可见光的吸收具有各向异性的二向性染料作为“宾”体,溶解于特定排列的作为“主”体的液晶502中。当向透明液晶中混入正二向性染料时,由于正二向性染料可以选择性地吸收垂直于液晶分子长轴方向上的光,从而可以将射入混入正二向性染料的自然光转化成线偏振光;当向透明液晶中混入负二向性染料时,由于负二向性染料可以选择性地吸收平行于液晶分子长轴方向上的光,从而可以将射入混入负二向性染料的自然光转化成线偏振光。因此,可以通过使用混入二向性染料的液晶代替偏振片将自然光转化为线偏振光,可以有效减少液晶模组的厚度。优选地,本实施例的二向性染料可以为4-(p-苯甲酸苯酯)-1,8-萘酰亚胺(BENA),4-{p-[2 -(1 H-苯并咪唑)]-苯基}-1,8-萘酰亚胺(BIMZ)和4-(p-[2 -(5 -苯基-1 ,3,4 -恶二唑)]-苯基)-1,8-萘酰亚胺(BODZ)。
本发明采用GOA(Gate driver on Array)技术将栅极驱动器集成在所述下玻璃基板503上,从而可以使得超薄LCD模组侧面可以紧缩,减少侧面边框的宽度。
所述下玻璃基板503具有一光入射面、一下表面和一光出射面;所述下表面为网点结构,当光线射到网点上后,全反射现象被破坏,光线形成一束漫反射光线而射出所述下玻璃基板503,制造出形成面光源的条件;所述下表面的下方设有反射片504,通过所述反射片504将所述下玻璃基板503底面露出的光反射回去,以提高光的使用率。所述发光二极管504具有一发光面,所述发光面朝向所述光入射面。
所述液晶板401四周设有边框405,所述边框405在所述液晶板401上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板402平行且靠近所述印刷电路板402,所述上投影区域大于所述下投影区域。由于本发明绕过柔性线路板403排布发光二极管404,易致使混光问题,本发明优选地,将所述上投影区域设置的比所述下投影区域大,从而可以解决该混光问题。
在第一优选实施例的基础上,所述液晶板401通过一个柔性线路板403与印刷电路板402连接,本优选实施例同样使得柔性线路板不易受到发光二极管散热的干扰,进而不会影响液晶显示装置的性能。
参见图6,为本发明超薄LCD模组第三实施例示意图;
参见图7,为本发明超薄LCD模组第三实施例液晶板结构及入光示意图 ;
本发明超薄LCD模组第三实施例与第二实施例的区别在于,所述柔性线路板603设计在所述液晶板601靠近所述发光二极管阵列光源一侧的中间,使得整体LCD模组的背光效果更佳。
本实施例中的超薄LCD模组,包括:
印刷电路板602;
液晶板601,通过两个柔性线路板603与印刷电路板602连接;以及发光二极管阵列光源,设置在所述印刷电路板602和所述液晶板601之间,其包括多个发光二极管604以及承载所述发光二极管的基板;其中所述两个柔性线路板603在所述基板上的投影与所述发光二极管604不重叠。
本实施例中,所述柔性线路板603设计在所述液晶板601靠近所述发光二极管阵列光源一侧的中间。
本发明提供的超薄LCD模组,还包括位于所述发光二极管604底部的散热器件705。所述散热器件705为金属底板。
本实施例中,基板呈条状,具有一定厚度,所述发光二极管604呈直线排布在基板表面。
承载所述发光二极管604的基板可以为金属基电路板(MCPCB),其不但可以作为所述发光二极管604的电气载体,还可以作为所述发光二极管604的热传导载体,通过所述基板可以将发光二极管604产生的热量传导至金属底板。
所述液晶板601包括:上玻璃基板701、下玻璃基板703以及位于所述上玻璃基板701和所述下玻璃基板703之间的混入二向性染料的液晶702。
在液晶材料中,存在一种称为“宾-主效应”的现象,把在液晶分子的长轴方向和短轴方向对可见光的吸收具有各向异性的二向性染料作为“宾”体,溶解于特定排列的作为“主”体的液晶702中。当向透明液晶中混入正二向性染料时,由于正二向性染料可以选择性地吸收垂直于液晶分子长轴方向上的光,从而可以将射入混入正二向性染料的自然光转化成线偏振光;当向透明液晶中混入负二向性染料时,由于负二向性染料可以选择性地吸收平行于液晶分子长轴方向上的光,从而可以将射入混入负二向性染料的自然光转化成线偏振光。因此,可以通过使用混入二向性染料的液晶代替偏振片将自然光转化为线偏振光,可以有效减少液晶模组的厚度。优选地,本实施例的二向性染料可以为4-(p-苯甲酸苯酯)-1,8-萘酰亚胺(BENA),4-{p-[2 -(1 H-苯并咪唑)]-苯基}-1,8-萘酰亚胺(BIMZ)和4-(p-[2 -(5 -苯基-1 ,3,4 -恶二唑)]-苯基)-1,8-萘酰亚胺(BODZ)。
本发明采用GOA(Gate driver on Array)技术将栅极驱动器集成在所述下玻璃基板703上,从而可以使得超薄LCD模组侧面可以紧缩,减少侧面边框的宽度。
所述下玻璃基板703具有一光入射面、一下表面和一光出射面;所述下表面为网点结构,当光线射到网点上后,全反射现象被破坏,光线形成一束漫反射光线而射出所述下玻璃基板703,制造出形成面光源的条件;所述下表面的下方设有反射片704,通过所述反射片704将所述下玻璃基板703底面露出的光反射回去,以提高光的使用率。所述发光二极管704具有一发光面,所述发光面朝向所述光入射面。
所述液晶板601四周设有边框605,所述边框605在所述液晶板601上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板602平行且靠近所述印刷电路板602,所述上投影区域大于所述下投影区域。由于本发明绕过柔性线路板603排布发光二极管604,易致使混光问题,本发明优选地,将所述上投影区域设置的比所述下投影区域大,从而可以解决该混光问题。
在第二优选实施例的基础上,所述柔性线路板603设计在所述液晶板601靠近所述发光二极管阵列光源一侧的中间,本优选实施例同样使得柔性线路板不易受到发光二极管散热的干扰,进而不会影响液晶显示装置的性能。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (20)

  1. 一种超薄LCD模组,其包括:
    印刷电路板;
    液晶板,通过至少一个柔性线路板与印刷电路板连接;以及,
    发光二极管阵列光源,设置在所述印刷电路板和所述液晶板之间,其包括多个发光二极管以及承载所述发光二极管的基板,所述发光二极管底部设有散热器件;
    其中所述柔性线路板在所述基板上的投影与所述发光二极管不重叠。
  2. 根据权利要求1所述的超薄LCD模组,其中所述散热器件为金属底板。
  3. 根据权利要求1所述的超薄LCD模组,其中所述液晶板四周设有边框,所述边框在所述液晶板上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板平行且靠近所述印刷电路板,所述上投影区域大于所述下投影区域。
  4. 根据权利要求1所述的超薄LCD模组,其中所述液晶板包括:上玻璃基板、下玻璃基板以及位于所述上玻璃基板和所述下玻璃基板之间的混入二向性染料的液晶。
  5. 根据权利要求4所述的超薄LCD模组,其中栅极驱动器集成在所述下玻璃基板上。
  6. 根据权利要求4所述的超薄LCD模组,其中所述下玻璃基板具有一光入射面、一下表面和一光出射面;所述发光二极管具有一发光面,所述发光面朝向所述光入射面。
  7. 根据权利要求6所述的超薄LCD模组,其中所述下表面为网点结构。
  8. 根据权利要求6所述的超薄LCD模组,其中所述下表面的下方设有反射片。
  9. 一种超薄LCD模组,其包括:
    印刷电路板;
    液晶板,通过至少一个柔性线路板与印刷电路板连接;以及,
    发光二极管阵列光源,设置在所述印刷电路板和所述液晶板之间,其包括多个发光二极管以及承载所述发光二极管的基板;
    其中所述柔性线路板在所述基板上的投影与所述发光二极管不重叠。
  10. 根据权利要求9所述的超薄LCD模组,其中还包括位于所述发光二极管底部的散热器件。
  11. 根据权利要求10所述的超薄LCD模组,其中所述散热器件为金属底板。
  12. 根据权利要求9所述的超薄LCD模组,其中所述液晶板四周设有边框,所述边框在所述液晶板上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板平行且靠近所述印刷电路板,所述上投影区域大于所述下投影区域。
  13. 根据权利要求9所述的超薄LCD模组,其中所述液晶板包括:上玻璃基板、下玻璃基板以及位于所述上玻璃基板和所述下玻璃基板之间的混入二向性染料的液晶。
  14. 根据权利要求13所述的超薄LCD模组,其中栅极驱动器集成在所述下玻璃基板上。
  15. 根据权利要求13所述的超薄LCD模组,其中所述下玻璃基板具有一光入射面、一下表面和一光出射面;所述发光二极管具有一发光面,所述发光面朝向所述光入射面。
  16. 根据权利要求15所述的超薄LCD模组,其中所述下表面为网点结构。
  17. 根据权利要求15所述的超薄LCD模组,其中所述下表面的下方设有反射片。
  18. 一种液晶显示器,其包括超薄LCD模组,包括:
    印刷电路板;
    液晶板,通过至少一个柔性线路板与印刷电路板连接;以及,
    发光二极管阵列光源,设置在所述印刷电路板和所述液晶板之间,其包括多个发光二极管以及承载所述发光二极管的基板;
    其中所述柔性线路板在所述基板上的投影与所述发光二极管不重叠。。
  19. 根据权利要求18所述的液晶显示器,其中所述液晶板四周设有边框,所述边框在所述液晶板上的投影形成上、下、左、右四个投影区域,所述上投影区域与所述印刷电路板平行且靠近所述印刷电路板,所述上投影区域大于所述下投影区域。
  20. 根据权利要求18所述的液晶显示器,其中所述液晶板包括:上玻璃基板、下玻璃基板以及位于所述上玻璃基板和所述下玻璃基板之间的混入二向性染料的液晶。
PCT/CN2016/082282 2016-04-08 2016-05-17 一种超薄lcd模组及液晶显示器 WO2017173701A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/118,898 US10356963B2 (en) 2016-04-08 2016-05-17 Ultrathin LCD module and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610216511.6 2016-04-08
CN201610216511.6A CN105652520B (zh) 2016-04-08 2016-04-08 一种超薄lcd模组及液晶显示器

Publications (1)

Publication Number Publication Date
WO2017173701A1 true WO2017173701A1 (zh) 2017-10-12

Family

ID=56497058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082282 WO2017173701A1 (zh) 2016-04-08 2016-05-17 一种超薄lcd模组及液晶显示器

Country Status (2)

Country Link
CN (1) CN105652520B (zh)
WO (1) WO2017173701A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018584A (zh) * 2019-04-03 2019-07-16 华显光电技术(惠州)有限公司 液晶显示模组及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845462B (zh) * 2018-06-29 2022-05-24 南方科技大学 一种全固态反射/吸收膜及其制备方法和应用
CN110189626B (zh) * 2019-05-27 2021-11-02 Oppo广东移动通信有限公司 显示屏组件及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087867A1 (en) * 2004-10-25 2006-04-27 Jae-Kwang Kim Light guide plate, back light assembly having the same and display apparatus having the same
CN101865403A (zh) * 2009-04-14 2010-10-20 瀚宇彩晶股份有限公司 发光二极管光条及背光模块
CN103096620A (zh) * 2013-01-25 2013-05-08 京东方科技集团股份有限公司 一种印刷电路板、发光元件、背光模组及显示装置
CN103842898A (zh) * 2011-10-05 2014-06-04 苹果公司 用于具有最小化边框区域的显示器的互连方案
CN103925518A (zh) * 2013-12-16 2014-07-16 上海天马微电子有限公司 背光模组及液晶显示设备
US20160014880A1 (en) * 2014-07-08 2016-01-14 Samsung Display Co., Ltd. Display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044382A1 (en) * 1997-03-28 1998-10-08 Fergason James L Microencapsulated liquid crystal and a method and system for using same
US6011605A (en) * 1997-08-04 2000-01-04 Matsushita Electric Industrial Co., Ltd. Liquid crystal display with a metallic reflecting electrode having a two layer film of Ti and Al alloy
JPWO2005083474A1 (ja) * 2004-02-27 2007-11-22 株式会社きもと 光学部材およびそれを用いたバックライト
CN100397182C (zh) * 2004-12-18 2008-06-25 鸿富锦精密工业(深圳)有限公司 玻璃基板、液晶显示装置及玻璃基板制造方法
KR100751455B1 (ko) * 2005-09-16 2007-08-23 삼성전자주식회사 액정표시장치
CN1967320A (zh) * 2005-11-18 2007-05-23 群康科技(深圳)有限公司 基板和液晶显示装置
US7646450B2 (en) * 2005-12-29 2010-01-12 Lg Display Co., Ltd. Light emitting diode array, method of manufacturing the same, backlight assembly having the same, and LCD having the same
KR101289070B1 (ko) * 2007-11-28 2013-07-22 엘지디스플레이 주식회사 액정표시장치
WO2010016322A1 (ja) * 2008-08-04 2010-02-11 シャープ株式会社 照明装置およびそれを備えた液晶表示装置
KR20100087950A (ko) * 2009-01-29 2010-08-06 삼성전자주식회사 백라이트 어셈블리 및 이를 이용한 액정표시장치
JP2011095452A (ja) * 2009-10-29 2011-05-12 Sony Corp 液晶表示モジュール
CN202274376U (zh) * 2011-10-31 2012-06-13 深圳Tcl新技术有限公司 液晶显示背光模组及液晶显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087867A1 (en) * 2004-10-25 2006-04-27 Jae-Kwang Kim Light guide plate, back light assembly having the same and display apparatus having the same
CN101865403A (zh) * 2009-04-14 2010-10-20 瀚宇彩晶股份有限公司 发光二极管光条及背光模块
CN103842898A (zh) * 2011-10-05 2014-06-04 苹果公司 用于具有最小化边框区域的显示器的互连方案
CN103096620A (zh) * 2013-01-25 2013-05-08 京东方科技集团股份有限公司 一种印刷电路板、发光元件、背光模组及显示装置
CN103925518A (zh) * 2013-12-16 2014-07-16 上海天马微电子有限公司 背光模组及液晶显示设备
US20160014880A1 (en) * 2014-07-08 2016-01-14 Samsung Display Co., Ltd. Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018584A (zh) * 2019-04-03 2019-07-16 华显光电技术(惠州)有限公司 液晶显示模组及电子设备
CN110018584B (zh) * 2019-04-03 2023-07-11 华显光电技术(惠州)有限公司 液晶显示模组及电子设备

Also Published As

Publication number Publication date
CN105652520A (zh) 2016-06-08
CN105652520B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2013009016A2 (en) Optical member, display device having the same and method for fabricating the same
WO2013063818A1 (zh) 液晶显示器
WO2011059178A2 (en) Backlight unit and liquid crystal display including the same
WO2014015547A1 (zh) 背光模块及显示装置
WO2019083331A1 (en) DISPLAY DEVICE
WO2013170509A1 (zh) 散热铝挤结构及相应的背光模块
WO2014196704A1 (en) Illuminating apparatus and liquid crystal display having the same
WO2016117953A2 (ko) 커브드 디스플레이 장치 및 이의 하우징
WO2013032287A2 (en) Display apparatus
WO2014067196A1 (zh) 背光模块及显示装置
WO2017173701A1 (zh) 一种超薄lcd模组及液晶显示器
WO2020141919A1 (en) Display apparatus
WO2022045510A1 (en) Display device
WO2017156902A1 (zh) 量子点背光模组及液晶电视
WO2021182875A1 (en) Display apparatus
WO2014067193A1 (zh) 背光模块及显示装置
WO2017148017A1 (zh) 一种背光模组及液晶显示器
WO2011013885A1 (en) Backlight unit and display apparatus incliding the same
WO2013086712A1 (zh) 背光模组及液晶显示装置
WO2015056868A1 (en) Liquid crystal display apparatus
WO2020042393A1 (zh) 背光模组及显示装置
WO2014014186A1 (en) Display device and light emitting device
WO2019164063A1 (ko) 디스플레이 디바이스
WO2013152500A1 (zh) 背光模块及相应的液晶显示装置
WO2019062239A1 (zh) 背光模组及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15118898

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897635

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897635

Country of ref document: EP

Kind code of ref document: A1