WO2017173612A1 - 数据传输方法、用户设备及接入网设备 - Google Patents

数据传输方法、用户设备及接入网设备 Download PDF

Info

Publication number
WO2017173612A1
WO2017173612A1 PCT/CN2016/078654 CN2016078654W WO2017173612A1 WO 2017173612 A1 WO2017173612 A1 WO 2017173612A1 CN 2016078654 W CN2016078654 W CN 2016078654W WO 2017173612 A1 WO2017173612 A1 WO 2017173612A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
serving cell
anchor
cell
access network
Prior art date
Application number
PCT/CN2016/078654
Other languages
English (en)
French (fr)
Inventor
张宏平
黄曲芳
严乐
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/078654 priority Critical patent/WO2017173612A1/zh
Priority to CN201680083677.3A priority patent/CN108781376B/zh
Priority to EP16897547.2A priority patent/EP3429271B1/en
Publication of WO2017173612A1 publication Critical patent/WO2017173612A1/zh
Priority to US16/151,109 priority patent/US10863569B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a data transmission method, a user equipment, and an access network device.
  • LTE-Advanced LTE-Advanced
  • CA Carrier Aggregation
  • UE User Equipment
  • PCell primary cell
  • SCell secondary cell
  • a CA can be classified into a cell aggregation in a base station, a cell aggregation in an inter-base station, and the like.
  • the cell aggregation in the base station means that the aggregated serving cell belongs to the same base station for one UE; the cell aggregation between the base stations means that the aggregated serving cell belongs to multiple different base stations for the same UE (the current standard protocol only supports two base stations)
  • the serving base station where the PCell is located is the primary base station (Master eNB, MeNB), the other serving base stations are secondary base stations (Secondary, SeNB), and one of the one or more SCells under the secondary base station is the primary secondary secondary cell (Primary Secondary) Cell, PSCell).
  • RLF radio link failure
  • RRC Radio Resource Control
  • the data transmission of each serving cell has a serious dependence.
  • the UE initiates an RRC connection re-establishment process, causing the data transmission of all services of the user to be interrupted.
  • Embodiments of the present invention provide a data transmission method, a user equipment, and an access network device, which reduce the dependency of data transmission between serving cells by using available serving cells as much as possible, and thereby greatly reducing the possibility of data transmission interruption. Improve the robustness of data transmission.
  • an embodiment of the present invention provides a data transmission method, including:
  • the UE transmits air interface data to the access network device by using a set of at least two serving cell groups of the core serving cell that can independently serve the UE to transmit data, and only accesses when the core serving cell in the serving cell set is unavailable.
  • the network device initiates an RRC connection re-establishment process.
  • the user equipment transmits air interface data through a set of serving cells, where the set of serving cells includes at least two core serving cells, and the core serving cell is a cell configured to independently serve the UE to transmit air interface data.
  • the RRC connection re-establishment process is initiated to the access network device, by using the available serving cell as much as possible for data transmission, that is, as long as the core service exists.
  • the available core serving cells are used for data transmission, thereby reducing the dependence of data transmission between the serving cells, minimizing the possibility of data transmission interruption, thereby improving the robustness of data transmission.
  • the set of serving cells is provided by at least one access network device.
  • the method further includes: receiving, by the UE, a first message sent by the access network device to increase the first cell as a core serving cell;
  • the UE adds the first cell to the set of serving cells.
  • the first message carries the first indication information, where the first indication information is used to indicate that the first cell is a core serving cell, and in this case, an indication that the access network device displays The UE adds the first cell as a core serving cell;
  • the first message carries the core serving cell parameter.
  • the indication that the access network device displays, the UE is added to the first cell as the core serving cell.
  • the core serving cell parameters include physical uplink control channel PUCCH configuration information.
  • the core serving cell can be flexibly added to the set of serving cells.
  • the method further includes: when the first core serving cell in the set of serving cells is unavailable, the UE sends a core serving cell unavailable message to the access network device, where the core serving cell An unavailable message is used to indicate that the first core serving cell is unavailable;
  • the first core serving cell is unavailable, including:
  • the first core serving cell generates a radio link failure RLF
  • the radio link control RLC of the first core serving cell reaches a maximum number of retransmissions.
  • the core serving cell unavailable message carries: a cell identifier of the first core serving cell; and/or a cause value that the first core serving cell is unavailable.
  • the core serving cell of the serving cell set can be flexibly deleted.
  • the above method further includes:
  • the UE receives a second message that is sent by the access network device and adds the second cell to the non-core serving cell, where the second message carries the cell identifier of the second core serving cell in the set of serving cells, and is used to indicate the location
  • the second cell is associated with the second core serving cell;
  • the UE adds the second cell as a non-core serving cell and associates the second cell to the second core serving cell.
  • the non-core serving cell can be flexibly added.
  • an embodiment of the present invention provides a data transmission method, including:
  • the access network device receives the data bearer data packet through any one of the serving cell sets, and after determining the data anchor point of the data bearer, decrypts the data packet and sends the decrypted data packet to the service gateway; The network access device determines that it is not the data anchor associated with the data bearer, determines the data anchor associated with the data bearer, and sends the data packet to the data anchor.
  • the access network device receives the data packet carried by the data through any one of the serving cell sets, and after determining the data anchor point of the data bearer, decrypts the data packet and sends and decrypts the data packet. After the data packet is sent to the service gateway; if the access network device determines that it is not the data anchor associated with the data bearer, it determines the data anchor associated with the data bearer, and sends the data packet to the data anchor point, by utilizing the available
  • the serving cell performs data transmission, that is, as long as the core serving cell is available, the available core serving cells are used for data transmission, thereby reducing the dependence of data transmission between the serving cells, and minimizing the possibility of data transmission interruption. , thereby improving the robustness of data transmission.
  • the method before the access network device determines whether it is the data anchor associated with the data bearer, the method further includes:
  • the fifth message further carries quality of service QoS information of the data bearer.
  • the fifth message is specifically sent by the signaling anchor, and the information of the data anchor indicates that the access network device is the data anchor, the first The five messages also carry the security key of the data anchor, and the method further includes:
  • the access network device processes the data packet of the data bearer by using a security key of the data anchor.
  • the security key of the data anchor is derived by the signaling anchor according to the security key of the signaling anchor.
  • the access network device receives a data packet of a data bearer sent by the user equipment UE by using any one of the serving cell sets, including:
  • the access network device When the security key of the signaling anchor changes, the access network device continues to use the security key information of the data anchor to perform data transmission with the UE.
  • the above method further includes:
  • the access network device determines whether it is a signaling anchor point
  • the access network device determines that it is the signaling anchor, decrypts the data packet and processes a radio resource control RRC message in the data packet; if the access network device determines that it is not the letter The anchor is sent, and the data packet is sent to the signaling anchor.
  • an embodiment of the present invention provides a user equipment, including:
  • a transceiver module configured to transmit air interface data through a set of serving cells, where the set of serving cells includes at least two core serving cells, where the core serving cell is a cell configured to independently serve the UE to transmit the air interface data ;
  • the transceiver module is further configured to initiate a radio resource control RRC connection re-establishment process when all core serving cells in the set of serving cells are unavailable.
  • the set of serving cells is provided by at least one access network device.
  • the above device further includes: a processing module
  • the transceiver module is configured to receive an increase in the first cell as a core service sent by the access network device.
  • the processing module is configured to add the first cell to the set of serving cells.
  • the first message carries the first indication information, where the first indication information is used to indicate that the first cell is a core serving cell;
  • the first message carries a core serving cell parameter.
  • the core serving cell parameters include physical uplink control channel PUCCH configuration information.
  • the transceiver module is further configured to: when a first core serving cell in the set of serving cells is unavailable, send a core serving cell unavailable message to the access network device, where the core serving cell An unavailable message is used to indicate that the first core serving cell is unavailable;
  • the first core serving cell is unavailable, including:
  • the first core serving cell generates a radio link failure RLF
  • the radio link control RLC of the first core serving cell reaches a maximum number of retransmissions.
  • the core serving cell unavailable message carries: a cell identifier of the first core serving cell; and/or a cause value that the first core serving cell is unavailable.
  • the above device further includes: a processing module
  • the transceiver module is further configured to receive, by the access network device, a second message that adds the second cell to the non-core serving cell, where the second message carries the cell identifier of the second core serving cell in the set of serving cells Used to indicate that the second cell is associated with the second core serving cell;
  • the processing module is configured to add the second cell to a non-core serving cell, and associate the second cell to the second core serving cell.
  • an access network device including:
  • the transceiver module is configured to receive a data packet that is sent by the user equipment UE by using any one of the serving cell groups;
  • a processing module configured to determine whether it is a data anchor associated with the data bearer; if it is determined that it is a data anchor associated with the data bearer, decrypt the data packet and send the decrypted data packet to a service And determining, by the gateway, the data anchor associated with the data bearer, and determining the data anchor associated with the data bearer, and sending the data packet to the data anchor.
  • the transceiver module is further configured to receive a signaling anchor or a data anchor associated with the data bearer before the processing module determines whether it is a data anchor associated with the data bearer. And sending, by the point, a fifth message that is sent by the data bearer, where the fifth message carries information about a data anchor associated with the data bearer.
  • the fifth message further carries quality of service QoS information of the data bearer.
  • the fifth message is specifically sent by the signaling anchor, and the information of the data anchor indicates that the access network device is the data anchor, the first The fifth message also carries a security key of the data anchor;
  • the processing module is further configured to process the data packet of the data bearer by using a security key of the data anchor.
  • the security key of the data anchor is derived by the signaling anchor according to the security key of the signaling anchor.
  • the transceiver module is configured to continue to use the security key information of the data anchor to perform data transmission with the UE when a security key of the signaling anchor changes.
  • the transceiver module is further configured to receive a data packet of a signaling bearer sent by any one of the serving cell groups of the UE;
  • the processing module is further configured to determine whether it is a signaling anchor point, and if it is determined to be the signaling anchor point, decrypt the data packet and process a radio resource control RRC message in the data packet; if If it is not the signaling anchor itself, the data packet is sent to the signaling anchor.
  • an embodiment of the present invention provides a user equipment, including:
  • a transceiver configured to transmit air interface data through a set of serving cells, where the set of serving cells includes at least two core serving cells, where the core serving cell is a cell configured to independently serve the UE to transmit the air interface data ;
  • the transceiver is further configured to initiate a radio resource control RRC connection re-establishment process when all core serving cells in the set of serving cells are unavailable.
  • the set of serving cells is provided by at least one access network device.
  • the above device further includes: a processor;
  • the transceiver is configured to receive, by the access network device, the added first cell as a core serving cell First news;
  • the processor is configured to add the first cell to the set of serving cells.
  • the first message carries the first indication information, where the first indication information is used to indicate that the first cell is a core serving cell;
  • the first message carries a core serving cell parameter.
  • the core serving cell parameters include physical uplink control channel PUCCH configuration information.
  • the transceiver is further configured to send, when the first core serving cell in the set of serving cells is unavailable, a core serving cell unavailable message to the access network device, where the core serving cell An unavailable message is used to indicate that the first core serving cell is unavailable;
  • the first core serving cell is unavailable, including:
  • the first core serving cell generates a radio link failure RLF
  • the radio link control RLC of the first core serving cell reaches a maximum number of retransmissions.
  • the core serving cell unavailable message carries: a cell identifier of the first core serving cell; and/or a cause value that the first core serving cell is unavailable.
  • the above device further includes: a processor;
  • the transceiver is further configured to receive, by the access network device, a second message that adds the second cell to the non-core serving cell, where the second message carries the cell identifier of the second core serving cell in the set of serving cells Used to indicate that the second cell is associated with the second core serving cell;
  • the processor is configured to add the second cell to a non-core serving cell, and associate the second cell to the second core serving cell.
  • an access network device including:
  • a transceiver configured to receive a data packet that is sent by the user equipment UE by using any one of the serving cell sets
  • a processor configured to determine whether it is a data anchor associated with the data bearer; if it is determined that it is a data anchor associated with the data bearer, decrypt the data packet and send the decrypted data packet to a service And determining, by the gateway, the data anchor associated with the data bearer, and determining the data anchor associated with the data bearer, and sending the data packet to the data anchor.
  • the transceiver is further configured to receive a signaling anchor or a data anchor associated with the data bearer before the processor determines whether it is a data anchor associated with the data bearer. And sending, by the point, a fifth message that is sent by the data bearer, where the fifth message carries information about a data anchor associated with the data bearer.
  • the fifth message further carries quality of service QoS information of the data bearer.
  • the fifth message is specifically sent by the signaling anchor, and the information of the data anchor indicates that the access network device is the data anchor, the first The fifth message also carries a security key of the data anchor;
  • the processor is further configured to process the data packet of the data bearer by using a security key of the data anchor.
  • the security key of the data anchor is derived by the signaling anchor according to the security key of the signaling anchor.
  • the transceiver is specifically configured to continue to use the security key information of the data anchor to perform data transmission with the UE when a security key of the signaling anchor changes.
  • the transceiver is further configured to receive a data packet of a signaling bearer sent by any one of the serving cell groups of the UE;
  • the processor is further configured to determine whether it is a signaling anchor point, if it is determined to be the signaling anchor point, decrypt the data packet and process a radio resource control RRC message in the data packet; if If it is not the signaling anchor itself, the data packet is sent to the signaling anchor.
  • an embodiment of the present invention provides a data transmission method, including:
  • the access network device receives the air interface data transmitted by the user equipment UE through the serving cell set, where the serving cell set includes at least two core serving cells, where the core serving cell is configured to independently serve the UE to transmit air interface data.
  • the access network device receives the RRC connection re-establishment process initiated by the UE when all the core serving cells in the set of serving cells are unavailable.
  • the set of serving cells is provided by at least one access network device.
  • the above method further includes:
  • the first message carries the first indication information, where the first indication information is used to indicate that the first cell is a core serving cell;
  • the first message carries a core serving cell parameter.
  • the core serving cell parameters include physical uplink control channel PUCCH configuration information.
  • the foregoing method further includes: receiving, by the access network device, a core serving cell unavailable message sent by the UE when the first core serving cell in the serving cell set is unavailable, The core serving cell unavailable message is used to indicate that the first core serving cell is unavailable;
  • the first core serving cell is unavailable, including the radio link failure RLF of the first core serving cell;
  • the radio link control RLC of the first core serving cell reaches a maximum number of retransmissions.
  • the core serving cell unavailable message carries a cell identifier of the first core serving cell
  • the cause value of the first core serving cell being unavailable.
  • the above method further includes:
  • the access network device sends, to the UE, a second message that adds a second cell to the non-core serving cell, where the second message carries a cell identifier of the second core serving cell in the set of serving cells, for indicating The second cell is associated with the second core serving cell, such that the UE adds the second cell to a non-core serving cell and associates the second cell to the second core serving cell.
  • an embodiment of the present invention provides a user equipment, where the user equipment has a function of implementing behavior of a first user equipment in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the user equipment includes a processor and a transmitter, where
  • the processor is configured to support the first user device to perform the corresponding function in the above method.
  • the transmitter is configured to support communication between the user equipment and the access network device, and send information or instructions involved in the foregoing method to the access network device.
  • the user equipment may also include a memory for coupling with the processor that holds program instructions and data necessary for the user equipment.
  • an embodiment of the present invention provides an access network device, where the access network device has a function of implementing behavior of an access network device in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the module can be software and/or hardware
  • the structure of the access network device includes a receiver and a processor configured to support the access network device to perform corresponding functions in the above methods.
  • the transmitter is configured to support communication between the access network device and the user equipment, and receive information or instructions involved in the foregoing method sent by the user equipment.
  • the access network device can also include a memory for coupling with a processor that retains program instructions and data necessary for the user device.
  • an embodiment of the present invention provides a communication system, where the system includes the user equipment and the access network device in the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the user equipment, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the access network device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a chip system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor acquires an instruction in the memory through the bus to use The design function of the user equipment involved in implementing the above method is implemented.
  • an embodiment of the present invention provides a chip system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor acquires an instruction in the memory through the bus to use The design function of the access network device involved in implementing the above method.
  • the UE transmits the air interface data to the access network device by using at least two service cell sets of the core serving cell that can independently serve the UE to transmit data, Only when it is detected that the core serving cell in the set of serving cells is unavailable, the RRC connection re-establishment process is initiated to the access network device, by using the available serving cell as much as possible for data transmission, that is, as long as there is a core serving cell Available, then make Data transmission is performed by using these available core serving cells, thereby reducing the dependence of data transmission between serving cells, minimizing the possibility of data transmission interruption, thereby improving the robustness of data transmission.
  • FIG. 1 is a schematic diagram of a current system for cell aggregation between base stations
  • FIG. 2 is a schematic structural diagram of a wireless communication system to which the data transmission method of the present invention is applied;
  • Embodiment 3 is a signaling diagram of Embodiment 1 of a data transmission method according to the present invention.
  • FIG. 4 is a schematic diagram of a bearer RLC entity in a data transmission method according to the present invention.
  • FIG. 5 is a schematic diagram of a first processing procedure when a serving cell is unavailable in the data transmission method of the present invention
  • FIG. 6 is a schematic diagram of a second processing procedure when a serving cell is unavailable in the data transmission method of the present invention.
  • FIG. 7 is a schematic diagram of signaling bearers and data bearers in a data transmission method according to the present invention.
  • FIG. 8 is a signaling diagram of data bearer increase and data packet transmission in a data transmission method according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of an access network device according to the present invention.
  • Embodiment 11 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of an access network device according to the present invention.
  • FIG. 1 is a schematic diagram of a current system for cell aggregation between base stations.
  • the UE simultaneously uses the cell under the primary base station and the cell under the secondary base station to perform uplink and downlink communication.
  • the serving base station where the PCell is located is the primary base station, and one of the one or more SCells under the secondary base station is the PSCell.
  • the primary base station and the Mobility Management Entity (MME) communicate based on the S1-MME interface protocol, and the primary base station and the secondary base station communicate according to the X2 interface protocol, and the primary base station and the secondary base station communicate with the UE based on the Uu interface.
  • MME Mobility Management Entity
  • the following four scenarios are involved in the RLF: 1.
  • the physical layer of the UE detects the RLF of the PCell; 2.
  • the RLC of the primary base station corresponding to the UE reaches the maximum number of retransmissions;
  • the physical layer of the UE detects that the RSC occurs in the PSCell.
  • the RLC of the secondary base station corresponding to the UE reaches the maximum number of retransmissions.
  • when RLF occurs it mainly refers to scenario 1 and scenario 2.
  • the UE considers that the primary base station has occurred.
  • the UE considers that the secondary base station has RLF, and the UE stops the bearer data on all the serving cells under the secondary base station. The transmission and reporting of the secondary base station failure information to the network.
  • the data transmission of the UE is heavily dependent on the PCell and the PSCell, especially the PCell.
  • the RLF of the PCell occurs or the RLC layer of the primary base station reaches the maximum number of retransmissions, even if the serving cell UE with good signal quality on the primary base station or the secondary base station initiates an RRC re-establishment process, all service data transmission of the UE is caused.
  • the PSCell of the secondary base station sends the RLF or the RLC layer of the secondary base station reaches the maximum number of retransmissions, even if there is a good serving cell on the secondary base station, all the serving cells under the secondary base station cannot transmit data, resulting in association.
  • the data transmission to the bearer of the secondary base station is interrupted.
  • the PCell when the PCell is changed, for example, when the PCell signal strength deteriorates, it needs to be changed to a cell with a higher signal strength. In this case, a handover procedure needs to be performed, in which all serving cells stop data transmission, resulting in all service data of the UE. The transmission was interrupted.
  • the present invention provides a data transmission method, a user equipment, and an access network device, which reduces the dependence of data transmission between serving cells by utilizing available serving cells as much as possible, and minimizes the possibility of reducing data transmission interruption. , thereby improving the robustness of data transmission.
  • GSM Global System for Mobile communications
  • Code Division Multiple Access Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • FDMA Frequency Division Multiple Addressing
  • OFDMA orthogonal frequency Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • E-UTRA 5G mobile communication systems, and other such communication systems.
  • the terminal involved in the present application may be a wired terminal or a wireless terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connection function, or is connected to the wireless modem. Other processing equipment.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device that is wireless with The access network exchanges languages and/or data.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal. Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the access network device involved in the present application may be a base station, an access point (AP), or the like.
  • the base station may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), or a 5G base station, the application is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station in LTE
  • eNB or e-NodeB evolutional Node B
  • 5G base station 5G base station
  • the data transmission method provided by the embodiment of the present invention is applicable to cell aggregation in a base station, cell aggregation between base stations, and aggregation between cells in different radio access systems.
  • the technical solution of the present invention is described in detail by taking the system architecture as the LTE system and the base station as the eNB as an example. Specifically, please refer to Figure 2.
  • FIG. 2 is a schematic structural diagram of a wireless communication system to which the data transmission method of the present invention is applied.
  • the base station and the MME communicate according to the S1-MME interface protocol
  • the base station and the service gateway (S-GW) communicate based on the S1-U interface protocol
  • the base station and the base station are based on the X2.
  • the interface protocol communicates, and the UE transmits the air interface data to the access network device, that is, the eNB, through the set of serving cells.
  • the serving cell set includes at least two core serving cells (CCells) that are configured to independently serve the UE to transmit data.
  • the core serving cells may belong to the same eNB or belong to different eNBs.
  • the set of serving cells may also include some A non-core serving cell (Non-CCell), that is, a cell that cannot serve the UE independently and must be served by the CCell to serve the UE to transmit data, such as Non-CCell4 and Non-CCell5 as shown in the figure.
  • Non-CCell A non-core serving cell
  • FIG. 3 is a signaling diagram of Embodiment 1 of a data transmission method according to the present invention.
  • the access network device interacts with the terminal and is applicable to the CA scenario. Specifically, the embodiment includes the following steps:
  • the user equipment UE transmits air interface data by using a set of serving cells.
  • the serving cell set includes at least two core serving cells, where the core serving cell is a cell configured to independently serve the UE to transmit the air interface data.
  • the concept of CCell is introduced.
  • the CCell is characterized in that it does not depend on the help of other serving cells to independently serve the UE to perform uplink and downlink data transmission.
  • the features of the CCell include: configuring a PUCCH resource, and at least scheduling resources of the own cell, and each CCell does not affect each other and does not depend on each other.
  • the access network device that provides the serving cell in the set of serving cells may be one or multiple.
  • the UE when the UE transmits the air interface data through the serving cell set, the UE may provide any one of the serving cell set.
  • the network access device transmits air interface data.
  • the UE may transmit air interface data to the eNB1 through the serving cell set, or may transmit the air interface data to the eNB2 through the serving cell set.
  • the UE may transmit air interface data to the eNB1 through the serving cell set, or may transmit the air interface data to the eNB2 through the serving cell set.
  • An access network device may have one or more CCells, and the UE must transmit the air interface data normally when at least one core serving cell in the set of serving cells is available.
  • the UE initiates a radio resource control RRC connection reestablishment process.
  • whether the core serving cell is available may be determined by determining whether the core serving cell has RLF, whether the RLC of the core serving cell reaches the maximum number of retransmissions, and the like. Generally, if the core serving cell has an RLF, or the RLC of the core serving cell reaches the maximum number of retransmissions, the core serving cell is unavailable.
  • the RRC connection re-establishment is initiated to the access network device.
  • the UE initiates an RRC connection re-establishment procedure to eNB1 or eNB2 when neither CCell1, CCell2, and CCell3 are available.
  • the UE sets the access network through other CCells, such as CCell1 and CCell3.
  • the transmission air interface data is not limited to CCells.
  • the UE transmits the air interface data to the access network device by using at least two service cell sets of the core serving cell that can independently serve the UE to transmit data, and only in the service cell set is detected.
  • the core serving cells are unavailable, the RRC connection re-establishment process is initiated to the access network device, and the data transmission is performed by using the available serving cells as much as possible, that is, as long as the core serving cell is available, the available cores are used.
  • the serving cell performs data transmission, thereby reducing the dependence of data transmission between serving cells, minimizing the possibility of data transmission interruption, thereby improving the robustness of data transmission.
  • the first aspect the terminal side. Specifically, it is explained in detail from the increase of CCell, the CCell unavailability processing mechanism, and the mobility mechanism.
  • the cell that the UE initially accesses when entering the connected state is fixed to CCell.
  • the access network device sends a first message to the UE that the first cell is the core serving cell.
  • the UE receives the message and adds the first cell to the serving cell set.
  • the access network device explicitly indicates that the UE adds the first cell to the CCell.
  • the first indication information is used to indicate that the first cell is a CCell; in another possible manner, The network device implicitly indicates that the UE adds the first cell to the CCell.
  • the first indication information is a core serving cell parameter unique to the CCell. If the first message received by the UE carries the core serving cell parameter, the A cell is a CCell; otherwise, the first cell is a non-CCell.
  • the core serving cell parameters are, for example, physical uplink control channel (PUCCH) configuration information.
  • PUCCH physical uplink control channel
  • non-CCell can be added.
  • the access network device sends a second message that adds the first cell to the non-core serving cell, and the second message carries the cell identifier of the second core serving cell in the set of serving cells, and is used to indicate the second The cell is associated with the second core serving cell; correspondingly, the UE receives the second message, adds the second cell to the serving cell set, and associates the second cell to the second core serving cell.
  • association here means that non-CCell performs data transmission with the assistance of a CCell, and we call this non-CCell associated with this CCell.
  • the access network device adds a non-CCell to the UE, indicating a CCell associated with the non-CCel, when the CCell is unavailable
  • the non-CCell may also be associated with two or more CCells, and the non-CCell is unavailable only when the two or more CCells are unavailable.
  • a non-CCell can also be associated with any CCell, or always associated with all CCells, and any CCell can help the non-CCell for data transmission.
  • a non-CCell and its associated CCell belong to the same access network device to reduce the complexity of implementation.
  • the bearer including the data bearer and the signaling bearer, is no longer associated with the access network device (such as the base station), but is decoupled from the access network device, that is, the primary cell group is no longer distinguished.
  • MCG mobility-to-live
  • SCG secondary cell group
  • split bearer Any one of the bearer data can be transmitted on any available serving cell or serving base station.
  • the bearer is associated with one or more CCells, and when all the CCells associated with the bearer are unavailable, the bearer has a data transmission interruption.
  • a Signal Radio Bear may be transmitted on any one of the serving cells, but only one entity that processes the RRC message (ie, signaling anchor point); although the data A Data Radio Bear (DRB) can be transmitted on any serving cell, but there is only one corresponding data anchor.
  • SRB Signal Radio Bear
  • CCell does not have a processing mechanism.
  • the CCell is unavailable, including the RLF of the CCell, and the maximum number of retransmissions of the RLC corresponding to the CCell.
  • the number of RLC retransmissions is for CCell, that is, data transmitted by CCell (and its associated non-CCell).
  • CCell data transmitted by CCell (and its associated non-CCell).
  • RLC retransmission is required, only the CCell (and its associated non-CCell) can be used.
  • Retransmit That is, when RLC retransmission is required, one serving cell is selected for retransmission in CCell and its associated non-CCell.
  • the CCell (and its associated non-CCell) is considered not available. use. That is, for each data bearer, one CCell (and its associated non-CCell) corresponds to one RLC entity, and how many CCells have how many RLC entities, each RLC entity passes a CCell and its associated non- CCell transmits.
  • FIG. 4 is a schematic diagram of a bearer RLC entity in the data transmission method of the present invention. As shown in FIG.
  • the bearer has three RLC entities, and the RLC entity 1 transmits through Cell1 and Cell2.
  • Cell1 is a CCell
  • Cell2 is a non-CCell associated with Cell1
  • RLC entity 2 is transmitted through Cell3, Cell3.
  • CCell no non-CCell is associated with Cell3
  • RLC entity 3 is transmitted through Cell4 and Cell5, for example, Cell4 is CCell, and Cell5 is non-CCell associated with Cell4.
  • a retransmission threshold may be set, which is smaller than the maximum number of retransmissions of the RLC, and is used when the CCell and its associated non-CCell are responsible for transmission.
  • the retransmission threshold When the number of retransmissions of a packet exceeds the retransmission threshold, the CCell and its associated non-CCell channel conditions are poor.
  • the UE forwards the data packet that the CCell is responsible for, and even the data packet that has not been sent out in the cache to another one or more CCells for concurrent transmission, so as to minimize the delay of data transmission.
  • the retransmission threshold is configured to be 0, it indicates that the data packet transmitted to the CCell is always handed over to other CCells for transmission.
  • FIG. 5 is a schematic diagram of a first processing procedure when a serving cell is unavailable in the data transmission method of the present invention, and includes the following steps:
  • the UE detects that one of the serving cell sets is unavailable, and determines whether all the CCells are unavailable. If there are available CCells, the process proceeds to 202 to 204. If none of the cells are available, step 205 is performed.
  • the UE determines whether all CCells in the serving cell set are unavailable.
  • the UE sends a core serving cell unavailable message to the access network device.
  • the core serving cell unavailable message is used to indicate that the first core serving cell is not used.
  • the core serving cell unavailable message carries: a cell identifier or an index of the first core serving cell, used to indicate that a failed CCell occurs; and/or a reason value that the first core serving cell is unavailable. Used to indicate the cause of the failure, such as the occurrence of RLF, the maximum retransmission times of the RLC layer, and so on.
  • the access network device sends a serving cell deletion message to the UE.
  • the access network device sends a serving cell deletion message carrying the cell identifier to the UE, so that the UE deletes the serving cell corresponding to the cell identifier.
  • the UE deletes the serving cell.
  • This step may occur after the step 202. After the UE sends the serving cell unavailable message to the access network device, the UE deletes the unavailable serving cell autonomously. Alternatively, the step may occur after the step 203, that is, the UE receives the UE. The unavailable serving cell is deleted only after the indication to the access network device.
  • the UE initiates a radio resource control RRC connection reestablishment process.
  • FIG. 6 is a schematic diagram of a second processing procedure when a serving cell is unavailable in the data transmission method of the present invention, and includes the following steps:
  • the access network device detects that one core serving cell in the set of serving cells is unavailable;
  • the access network device sends a serving cell deletion message to the “virtual” primary base station.
  • the “virtual” primary base station is also referred to as a RRC anchor point, an S1 anchor point, a signaling anchor point, an RAN control plane anchor point, etc., which are used to process the RRC message and the S1 message of the UE, that is, the processing signal. Order the data carried.
  • the “virtual” primary base station determines whether all CCells are unavailable. If there are available CCells, execute 304 to 305. If none of them are available, go to step 306.
  • the “virtual” primary base station sends a serving cell deletion message to the UE.
  • the UE deletes the serving cell.
  • the “virtual” primary base station sends an RRC connection release message to the UE.
  • the mobility of the UE is no longer used in the handover process, and the CCell is added and deleted instead.
  • the addition or deletion of a CCell does not affect the normal data transmission of other CCells, thereby avoiding the movement of the UE.
  • the data transmission caused by sex is interrupted.
  • the first aspect is related to the transmission mechanism of the air interface data.
  • the reliance on the PCell, the PSCell, the primary base station, and the like is removed, the robustness of the data transmission is enhanced, and the possibility of data transmission interruption is reduced.
  • the second aspect is the network side.
  • the first aspect above relates to the data transmission mechanism of the air interface
  • the second aspect relates to the data transmission and processing mechanism of the network side.
  • the second aspect of the present invention will be described in detail from three aspects of control plane, user plane and mobility.
  • the "virtual" primary base station may be a RRC anchor point, an S1 anchor point, a signaling anchor point, an RAN control plane anchor point, etc., in the following Unifiedly referred to as a signaling anchor, which is used to process the RRC message of the UE and the S1 message, that is, process the data carried by the signaling. Therefore, it can be said that the "virtual" primary base station is the anchor of all signaling bearers. point.
  • the signaling anchor point may be the access network device itself.
  • the signaling anchor point is one of the serving base stations serving the UE, and at this time, the serving base station has The UE provides a serving cell, for example, the serving base station may be configured to be a "virtual" primary base station when the UE initially accesses the base station, and if not, a "virtual" primary base station, ie, the UE All subsequent RRC messages and S1 messages are processed by the "virtual" primary base station; or the signaling anchor point is other access network devices, for example, the signaling anchor point is a base station that does not provide services to the UE. There is no cell serving the UE under the base station; in addition, the signaling anchor point may even be a non-base station network element to facilitate signaling anchor setting.
  • FIG. 7 is a schematic diagram of signaling bearers and data bearers in a data transmission method according to the present invention.
  • eNB1 is a data anchor corresponding to DRB1
  • eNB2 is a data anchor corresponding to DRB2
  • eNB3 is a signaling anchor corresponding to all SRBs, that is, SRB1 and SRB2.
  • a concept of a bearer anchor is introduced for each DRB, which is also referred to as a data anchor point.
  • the security function of a DRB and the in-order delivery function of the PDCP layer are processed in the data anchor corresponding to the DRB.
  • the PDCP layer of the DRB is located at its corresponding data anchor point.
  • the data anchor of a DRB is the only uplink egress of the DRB, that is, all data of the DRB is sent to the upper layer node (ie, the serving gateway S-GW) through the data anchor; and the only downlink entry of the DRB. All downlink data of the DRB is received from the S-GW. That is to say, all data of the DRB needs to be aggregated at its corresponding data anchor for encryption and in-order delivery.
  • control plane and the user plane may be unified.
  • Each bearer including the data bearer and the signaling bearer, corresponds to one anchor point, and all the SRBs correspond to the same signaling anchor point, that is, the “virtual” primary base station.
  • the data anchors corresponding to each DRB may be the same or different.
  • FIG. 8 is a signaling diagram of data bearer increase and data packet transmission in the data transmission method of the present invention, including:
  • the signaling anchor determines a data anchor corresponding to the data bearer.
  • the signaling anchor receives the bearer increase request sent by the core network, and determines that the data anchor of the newly added DRB is the access network device 1.
  • the signaling anchor determines the data anchor corresponding to each DRB, and different DRBs may correspond to the same or different data anchors. Certainly, when the signaling anchor is also an access network device, the signaling anchor may also determine that the data anchor corresponding to one DRB is itself.
  • the security key of the same data anchor is the same, that is, the security keys used by multiple DRBs corresponding to the same data anchor are the same.
  • the data anchor point is increased, for example, an access network device is added; for example, when the first serving cell under the access network device is added, the security key of the data anchor is derived and sent by the signaling anchor point.
  • the security key of the data anchor may be derived from the security key of the signaling anchor.
  • the signaling anchor sends a bearer increase request to the access network device 1.
  • the bearer increase request indicates the ID of the newly added DRB, and the data anchor of the DRB is the access network device 1.
  • the bearer addition request may also carry other configuration parameters, such as a quality of service (QoS) parameter of the DRB.
  • QoS quality of service
  • the access network device 1 sends a bearer increase response to the signaling anchor.
  • the access network device 1 sends a bearer increase request to the access network device 2.
  • the signaling anchor sends a bearer increase request to the access network device 2.
  • steps 404 and 405 are optional steps, and one of the options may be performed; the ID of the newly added DRB in the bearer increase request message, and the data anchor information associated with the DRB, so that the access network device 2 can be established.
  • the access network device 1 or the signaling anchor sends a bearer increase request to all serving base stations of the UE, so that all serving base stations of the UE can establish a correspondence between the DRB and the data anchor, so that the After the data of the DRB, the data is sent to the data anchor corresponding to the DRB;
  • the signaling anchor sends a bearer increase request to the UE.
  • the access network device sends a third message of increasing the DRB to the UE, where the third message carries the information of the data anchor associated with the DRB.
  • the information of the data anchor may be the ID or index of the access network device 1.
  • the third message may also carry a security parameter of the data anchor.
  • the third message may further carry information about each serving cell belonging to the data anchor.
  • the UE adds a DRB, and associates the DRB to the access network device 1.
  • the UE sends a bearer increase response message to the signaling anchor.
  • the signaling anchor sends the address of the data anchor associated with the new DRB to the core network or the S-GW, so that the S-GW sends the downlink data of the DRB to the data anchor.
  • the UE transmits a data packet of the DRB by using any one of the serving cell sets.
  • the serving cell may be a CCell in the set of serving cells, or a non-CCell in the set of serving cells.
  • the non-CCell needs the assistance of its associated CCell.
  • the UE may further derive a security key of the data anchor according to the security parameter, and adopt the security.
  • the key securely processes the data packets of the DRB.
  • the third message further carries information about each serving cell subordinate to the data anchor, so that the UE can preferentially select the serving cells to send uplink data, so as to reduce data transmission overhead on the network side.
  • the access network device 2 determines whether it is a data anchor corresponding to the DRB.
  • step 410 the UE sends the uplink data to the access network device 2, and the access network device 2 determines whether it is the data anchor of the DRB. If yes, steps 412 and 413 are performed; otherwise, 414 is performed.
  • the access network device 2 decrypts the data packet of the DRB.
  • the access network device 2 sends the decrypted DRB data packet to the S-GW.
  • the access network device 2 does not send the data packet to the S-GW immediately after decrypting the data packet, but needs to perform the function of in-sequence delivery, and transmits the data packet after the principle of sequential delivery is satisfied.
  • the access network device 2 determines a data anchor of the DRB.
  • the access network device 2 finds the data anchor point corresponding to the DRB according to the correspondence between the DRB and the data anchor point. For example, it is determined that the data anchor of the DRB is the access network device 1.
  • the access network device 2 sends a data packet of the DRB to the access network device 1.
  • the access network device 1 decrypts the data packet of the DRB.
  • the access network device 1 sends the decrypted DRB data packet to the S-GW.
  • the access network device 1 is not sent immediately after decrypting the data packet.
  • the S-GW but a function that needs to perform in-order delivery, is sent after the principle of in-order delivery is satisfied.
  • the access network device 1 receives downlink data sent by the S-GW.
  • the access network device 1 encrypts the downlink data.
  • the access network device 1 determines the access network device that sends the downlink data. If it is determined that the device is sent by the access network device 1, step 421 is performed; otherwise, step 422 is performed.
  • the access network device 1 sends downlink data to the UE.
  • the access network device 1 sends the downlink data to the access network device 2.
  • the access network device 2 sends downlink data to the UE.
  • the air interface only focuses on providing available data transmission channels, thereby reducing the impact of mobility on the data transmission of the UE.
  • the keys of each data anchor point may remain unchanged, that is, the keys of each node are independent of each other, and one change may be unchanged.
  • the signaling anchor point can change the data anchor point corresponding to the data bearer, and send the information of the new data anchor point corresponding to the data bearer to other nodes, so that other nodes update the correspondence between the data bearer and the data anchor point. relationship.
  • the above-mentioned change signaling anchor or the data anchor corresponding to the change data bearer generally occurs when the data transmission path cost between the current access network device and the signaling anchor or the access network device is large. However, in theory, the timing of the replacement can happen at any time.
  • the foregoing embodiment shown in FIG. 8 mainly describes the increase of the DRB bearer and the transmission of the data packet of the DRB.
  • the transmission of the data packet of the SRB is similar to the transmission of the data packet of the DRB, except that all the signaling bearers correspond to one signaling anchor point.
  • the UE before receiving the air interface data, the UE receives the fourth message sent by the access network device, where the fourth message carries the information of the signaling anchor; the UE sends all the signaling of the UE.
  • the bearer is associated to the signaling anchor.
  • the fourth message carries the security parameter of the signaling anchor, where the UE derives the security key of the signaling anchor according to the security parameter of the signaling anchor;
  • the security key of the signaling anchor processes all data packets carried by the signaling of the UE.
  • the access network device receives a data packet carried by the user equipment UE through any one of the serving cell sets, and the access network device determines whether it is the data.
  • Carrying an associated data anchor if the access network device determines that it is a data anchor associated with the data bearer, decrypting the data packet and transmitting the decrypted data packet to a serving gateway; The network access device determines that it is not the data anchor associated with the data bearer, determines the data anchor associated with the data bearer, and sends the data packet to the data anchor; the data anchor receives the data After the packet, the data packet is decrypted and the decrypted data packet is sent to the serving gateway.
  • the access network device receives the data packet carried by the data through any one of the serving cell sets, and after determining the data anchor point of the data bearer, decrypts the data packet and sends and decrypts the data packet. After the data packet is sent to the service gateway; if the access network device determines that it is not the data anchor associated with the data bearer, it determines the data anchor associated with the data bearer, and sends the data packet to the data anchor point, by utilizing the available
  • the serving cell performs data transmission, that is, as long as the core serving cell is available, the available core serving cells are used for data transmission, thereby reducing the dependence of data transmission between the serving cells, and minimizing the possibility of data transmission interruption. , thereby improving the robustness of data transmission.
  • the method further includes: the access network device receiving a signaling anchor or a data anchor associated with the data bearer Sending a fifth message that is added to the data bearer, where the fifth message carries information about a data anchor associated with the data bearer;
  • the fifth message further carries the quality of service QoS information of the data bearer.
  • the fifth message is specifically sent by the signaling anchor, and the information of the data anchor indicates that the access network device is the data anchor, the fifth message is further carried.
  • the security key of the data anchor the method further includes: the access network device processing the data packet of the data bearer by using a security key of the data anchor.
  • the security key of the data anchor is derived by the signaling anchor according to a security key of the signaling anchor.
  • the access network device receives a data packet that is sent by the user equipment UE by using any one of the serving cell sets, and includes:
  • the access network device determines that a security key of the signaling anchor changes
  • the access network device continues to use the security key of the data anchor to receive a data packet carried by the user equipment UE by using any one of the serving cell sets.
  • the access network device since the access network device must not know that the key of the signaling anchor changes, the original security key information is also used to transmit data with the UE. That is to say, the signaling anchor derives the security key of the data anchor based on the current own security key and sends it to the data anchor. When the signaling anchor's own case key changes, the data anchor is secure. The key may not be updated.
  • the access network device receives a data packet of a signaling bearer sent by any one of the serving cell groups of the UE;
  • the access network device determines whether it is a signaling anchor point
  • the access network device determines that it is the signaling anchor, decrypts the data packet and processes a radio resource control RRC message in the data packet; if the access network device determines that it is not the letter The anchor is sent, and the data packet is sent to the signaling anchor.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the user equipment provided in this embodiment can implement various steps of the method applied to the user equipment provided by any embodiment of the present invention.
  • the user equipment provided in this embodiment includes:
  • the transceiver module 11 is configured to transmit air interface data by using a set of serving cells, where the set of serving cells includes at least two core serving cells, where the core serving cell is configured to independently serve the UE to transmit the air interface data.
  • the transceiver module 11 is further configured to initiate a radio resource control RRC connection re-establishment process when all core serving cells in the set of serving cells are unavailable.
  • the user equipment provided by the embodiment of the present invention transmits air interface data to the access network device by using at least two service cell sets of the core serving cell that can independently serve the UE to transmit data, and only detects the core in the serving cell set.
  • the serving cell is unavailable, the RRC connection re-establishment process is initiated to the access network device, and the data transmission is performed by using the available serving cell as much as possible, that is, as long as the core serving cell is available, the available core serving cell is used.
  • Data transmission thereby reducing the dependence of data transmission between serving cells, minimizing the possibility of data transmission interruption, thereby improving the robustness of data transmission.
  • the set of serving cells is provided by at least one access network device.
  • the user equipment provided by the embodiment of the present invention further includes: a processing module 12;
  • the transceiver module 11 is configured to receive the first cell as a core service sent by the access network device.
  • the processing module 12 is configured to add the first cell to the set of serving cells.
  • the first message carries the first indication information, where the first indication information is used to indicate that the first cell is a core serving cell;
  • the first message carries a core serving cell parameter.
  • the core serving cell parameter includes physical uplink control channel PUCCH configuration information.
  • the transceiver module 11 is further configured to: when the first core serving cell in the set of serving cells is unavailable, send a core serving cell unavailable message to the access network device, where the core serving cell is unavailable. Used to indicate that the first core serving cell is unavailable;
  • the first core serving cell is unavailable, including:
  • the first core serving cell generates a radio link failure RLF
  • the radio link control RLC of the first core serving cell reaches a maximum number of retransmissions.
  • the core serving cell unavailable message carries: a cell identifier of the first core serving cell; and/or a cause value that the first core serving cell is unavailable.
  • the transceiver module 11 is further configured to receive, by the access network device, a second message that adds the second cell to the non-core serving cell, where the second message carries the second core in the set of serving cells.
  • a cell identifier of the serving cell configured to indicate that the second cell is associated with the second core serving cell;
  • the processing module 12 is configured to add the second cell to a non-core serving cell, and associate the second cell to the second core serving cell.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of an access network device according to the present invention.
  • the access network device provided in this embodiment may implement various steps of the method applied to the access network device according to any embodiment of the present invention.
  • the access network device provided in this embodiment includes:
  • the transceiver module 21 is configured to receive a data packet that is sent by the user equipment UE by using any one of the serving cell groups;
  • the processing module 22 is configured to determine whether it is a data anchor associated with the data bearer; if it is determined that it is a data anchor associated with the data bearer, decrypt the data packet and send the decryption The data packet is sent to the serving gateway; if it is determined that it is not the data anchor associated with the data bearer, the data anchor associated with the data bearer is determined, and the data packet is sent to the data anchor.
  • the access network device receives a data packet carried by the data through any one of the serving cell sets, and after determining the data anchor point of the data bearer, decrypts the data packet and sends the decrypted data.
  • the packet is sent to the serving gateway; if the access network device determines that it is not the data anchor associated with the data bearer, the data anchor associated with the data bearer is determined, and the data packet is sent to the data anchor point, by using the available serving cell as much as possible Data transmission, that is to say, as long as there is a core serving cell available, the available core serving cells are used for data transmission, thereby reducing the dependence of data transmission between serving cells, minimizing the possibility of data transmission interruption, thereby improving The robustness of data transmission.
  • the transceiver module 21 is further configured to: before the processing module 22 determines whether the data anchor is associated with the data bearer, receive a signaling anchor or a data anchor associated with the data bearer. Adding a fifth message of the data bearer, where the fifth message carries information about a data anchor associated with the data bearer.
  • the fifth message further carries quality of service QoS information of the data bearer.
  • the fifth message is specifically sent by the signaling anchor, and the information of the data anchor indicates that the access network device is the data anchor, the fifth message is further carried. a security key of the data anchor;
  • the processing module 22 is further configured to process the data packet of the data bearer by using a security key of the data anchor.
  • the security key of the data anchor is derived by the signaling anchor according to a security key of the signaling anchor.
  • the transceiver module 21 is configured to continue to use the security key information of the data anchor to perform data transmission with the UE when the security key of the signaling anchor changes.
  • the transceiver module 21 is further configured to receive a data packet of a signaling bearer sent by any one of the serving cell groups of the UE;
  • the processing module 22 is further configured to determine whether it is a signaling anchor point, and if it is determined to be the signaling anchor point, decrypt the data packet and process a radio resource control RRC message in the data packet; Determining that it is not the signaling anchor, the data packet is sent to the signaling anchor.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • the user equipment provided in this embodiment can implement various steps of the method applied to the user equipment provided by any embodiment of the present invention.
  • the user equipment provided in this embodiment includes:
  • the transceiver 31 is configured to transmit air interface data by using a set of serving cells, where the set of serving cells includes at least two core serving cells, where the core serving cell is configured to independently serve the UE to transmit the air interface data.
  • the transceiver 31 is further configured to initiate a radio resource control RRC connection re-establishment process when all core serving cells in the set of serving cells are unavailable.
  • the user equipment provided by the embodiment of the present invention transmits air interface data to the access network device by using at least two service cell sets of the core serving cell that can independently serve the UE to transmit data, and only detects the core in the serving cell set.
  • the serving cell is unavailable, the RRC connection re-establishment process is initiated to the access network device, and the data transmission is performed by using the available serving cell as much as possible, that is, as long as the core serving cell is available, the available core serving cell is used.
  • Data transmission thereby reducing the dependence of data transmission between serving cells, minimizing the possibility of data transmission interruption, thereby improving the robustness of data transmission.
  • the set of serving cells is provided by at least one access network device.
  • the user equipment provided by the embodiment of the present invention further includes: a processor 32;
  • the transceiver 31 is configured to receive, by the access network device, a first message that adds the first cell to the core serving cell;
  • the processor 32 is configured to add the first cell to the set of serving cells.
  • the first message carries the first indication information, where the first indication information is used to indicate that the first cell is a core serving cell;
  • the first message carries a core serving cell parameter.
  • the core serving cell parameter includes physical uplink control channel PUCCH configuration information.
  • the transceiver 31 is further configured to: when the first core serving cell in the set of serving cells is unavailable, send a core serving cell unavailable message to the access network device, where the core serving cell is unavailable. Used to indicate that the first core serving cell is unavailable;
  • the first core serving cell is unavailable, including:
  • the first core serving cell generates a radio link failure RLF
  • the radio link control RLC of the first core serving cell reaches a maximum number of retransmissions.
  • the core serving cell unavailable message carries: a cell identifier of the first core serving cell; and/or a cause value that the first core serving cell is unavailable.
  • the transceiver 31 is further configured to receive, by the access network device, a second message that adds the second cell to the non-core serving cell, where the second message carries the second core in the set of serving cells.
  • a cell identifier of the serving cell configured to indicate that the second cell is associated with the second core serving cell;
  • the processor 32 is configured to add the second cell to a non-core serving cell, and associate the second cell to the second core serving cell.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of an access network device according to the present invention.
  • the access network device provided in this embodiment may implement various steps of the method applied to the access network device according to any embodiment of the present invention.
  • the access network device provided in this embodiment includes:
  • the transceiver 41 is configured to receive a data packet of a data bearer sent by the user equipment UE by using any one of the serving cell sets;
  • the processor 42 is configured to determine whether it is a data anchor associated with the data bearer; if it is determined that it is a data anchor associated with the data bearer, decrypt the data packet and send the decrypted data packet to a service gateway; if it is determined that it is not a data anchor associated with the data bearer, determining a data anchor associated with the data bearer and transmitting the data packet to the data anchor.
  • the access network device receives a data packet carried by the data through any one of the serving cell sets, and after determining the data anchor point of the data bearer, decrypts the data packet and sends the decrypted data.
  • the packet is sent to the serving gateway; if the access network device determines that it is not the data anchor associated with the data bearer, the data anchor associated with the data bearer is determined, and the data packet is sent to the data anchor point, by using the available serving cell as much as possible Data transmission, that is to say, as long as there is a core serving cell available, the available core serving cells are used for data transmission, thereby reducing the dependence of data transmission between serving cells, minimizing the possibility of data transmission interruption, thereby improving The robustness of data transmission.
  • the transceiver 41 is further configured to: before the processor 42 determines whether the data anchor is associated with the data bearer, receive a signaling anchor or data associated with the data bearer.
  • the fifth message sent by the anchor is added, and the fifth message carries information about the data anchor associated with the data bearer.
  • the fifth message further carries quality of service QoS information of the data bearer.
  • the fifth message is specifically sent by the signaling anchor, and the information of the data anchor indicates that the access network device is the data anchor, the fifth message is further carried. a security key of the data anchor;
  • the processor 42 is further configured to process the data packet of the data bearer by using a security key of the data anchor.
  • the security key of the data anchor is derived by the signaling anchor according to a security key of the signaling anchor.
  • the transceiver 41 is configured to continue to use the security key information of the data anchor to perform data transmission with the UE when the security key of the signaling anchor changes.
  • the transceiver 41 is further configured to receive a data packet of a signaling bearer sent by any one of the serving cell groups of the UE;
  • the processor 42 is further configured to determine whether it is a signaling anchor point, and if it is determined to be the signaling anchor point, decrypt the data packet and process a radio resource control RRC message in the data packet; Determining that it is not the signaling anchor, the data packet is sent to the signaling anchor.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据传输方法、用户设备及接入网设备,UE通过包含至少两个、能独立服务UE以传输数据的核心服务小区的服务小区集合,向接入网设备传输空口数据,只有在检测出服务小区集合中的核心服务小区均不可用时,才向接入网设备发起RRC连接重建立过程,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。

Description

数据传输方法、用户设备及接入网设备 技术领域
本发明实施例涉及通信技术,尤其涉及一种数据传输方法、用户设备及接入网设备。
背景技术
为保持第三代合作伙伴计划(the 3rd Generation Partner Project,3GPP)的长期竞争优势,进一步提高系统的频谱效率和用户吞吐量,演进的LTE(LTE-Advanced,LTE-A)引入了载波聚合(Carrier Aggregation,CA)技术。该技术中,用户设备(User Equipment,UE)同时使用多个小区进行上下行通信,提高了数据传输速度。多个小区中,其中一个是主小区(Primary Cell,PCell),其他是辅小区(Secondary Cell,SCell)。
一般来说,CA可分为基站内小区聚合、基站间小区聚合等。基站内小区聚合是指对于一个UE,聚合的服务小区属于同一个基站;基站间小区聚合是指对于同一个UE,聚合的服务小区属于多个不同的基站(当前标准协议只支持两个基站),其中,PCell所在的服务基站是主基站(Master eNB,MeNB),其他服务基站是辅基站(Secondary,SeNB),辅基站下的一个或多个SCell中有一个小区是主辅小区(Primary Secondary Cell,PSCell)。CA场景下,当发生无线链路失败(Radio Link Failure,RLF),例如,主小区发生RLF时,UE发起无线资源控制(Radio Resource Control,RRC)连接重建立过程。
上述过程中,各个服务小区的数据传输具有严重的依赖性。当主小区发生RLF时,即使主基站或辅基站上存在信号质量很好的服务小区,UE也要发起RRC连接重建立过程,导致用户的所有业务的数据传输中断。
发明内容
本发明实施例提供一种数据传输方法、用户设备及接入网设备,通过尽可能利用可用的服务小区,降低服务小区之间数据传输的依赖性,最大限制减少数据传输中断的可能性,从而提高数据传输的健壮性。
一方面,本发明实施例提供一种数据传输方法,包括:
UE通过包含至少两个、能独立服务UE以传输数据的核心服务小区的服务小区集合,向接入网设备传输空口数据,只有在服务小区集合中的核心服务小区均不可用时,才向接入网设备发起RRC连接重建立过程。
本发明实施例提供的数据传输方法,用户设备通过服务小区集合传输空口数据,该服务小区集合中包含至少两个核心服务小区,核心服务小区为被配置成能独立服务UE以传输空口数据的小区;只有在检测出服务小区集合中的核心服务小区均不可用时,才向接入网设备发起RRC连接重建立过程,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
在一种可能的设计中,所述服务小区集合由至少一个接入网设备提供。
在一种可能的设计中,该方法还包括:所述UE接收接入网设备发送的增加第一小区为核心服务小区的第一消息;
所述UE将所述第一小区增加至所述服务小区集合。
在一种可能的设计中,所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区,此时,可实现接入网设备显示的指示UE增加第一小区为核心服务小区;
或者,
所述第一消息携带核心服务小区参数,此时,可实现接入网设备显示的指示UE增加第一小区为核心服务小区。
在一种可能的设计中,所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
通过上述可能的设计,可以灵活的对服务小区集合中增加核心服务小区。
在一种可能的设计中,上述方法还包括:当所述服务小区集合中的第一核心服务小区不可用时,所述UE向接入网设备发送核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
其中,所述第一核心服务小区不可用,包括:
所述第一核心服务小区发生无线链路失败RLF;
或者,
所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
在一种可能的设计中,所述核心服务小区不可用消息携带:所述第一核心服务小区的小区标识;和/或,所述第一核心服务小区不可用的原因值。
通过上述可能的设计,可以灵活的对服务小区集合的核心服务小区进行删除。
在一种可能的设计中,上述方法还包括:
所述UE接收接入网设备发送的增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区;
所述UE将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
通过上述方法,可灵活的增加非核心服务小区。
另一方面,本发明实施例提供一种数据传输方法,包括:
接入网设备通过服务小区集合中的任意一个服务小区接收数据承载的数据包,在确定出自身为数据承载的数据锚点后,解密数据包并发送解密后的数据包给服务网关;若接入网设备确定自身并非数据承载关联的数据锚点,则确定数据承载关联的数据锚点,并将数据包发送至数据锚点。
本发明实施例提供的数据传输方法,接入网设备通过服务小区集合中的任意一个服务小区接收数据承载的数据包,在确定出自身为数据承载的数据锚点后,解密数据包并发送解密后的数据包给服务网关;若接入网设备确定自身并非数据承载关联的数据锚点,则确定数据承载关联的数据锚点,并将数据包发送至数据锚点,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
在一种可能的设计中,在所述接入网设备确定自身是否为所述数据承载关联的数据锚点之前,还包括:
所述接入网设备接收信令锚点或所述数据承载关联的数据锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据 锚点的信息。
在一种可能的设计中,所述第五消息还携带所述数据承载的服务质量QoS信息。
在一种可能的设计中,若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥,所述方法还包括:
所述接入网设备采用所述数据锚点的安全密钥处理所述数据承载的数据包。
在一种可能的设计中,所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥衍生的。
在一种可能的设计中,所述接入网设备接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包,包括:
当所述信令锚点的安全密钥发生变化时,所述接入网设备继续使用所述数据锚点的安全密钥信息与所述UE进行数据传输。
在一种可能的设计中,上述方法还包括:
所述接入网设备接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
所述接入网设备确定自身是否为信令锚点;
若所述接入网设备确定自身为所述信令锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若所述接入网设备确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
再一方面,本发明实施例提供一种用户设备,包括:
收发模块,用于通过服务小区集合传输空口数据,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输所述空口数据的小区;
所述收发模块,还用于当所述服务小区集合中的所有的核心服务小区不可用时,发起无线资源控制RRC连接重建立过程。
在一种可能的设计中,所述服务小区集合由至少一个接入网设备提供。
在一种可能的设计中,上述的设备还包括;处理模块;
所述收发模块,用于接收接入网设备发送的增加第一小区为核心服务小 区的第一消息;
所述处理模块,用于将所述第一小区增加至所述服务小区集合。
在一种可能的设计中,所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区;
或者,
所述第一消息携带核心服务小区参数。
在一种可能的设计中,所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
在一种可能的设计中,所述收发模块,还用于当所述服务小区集合中的第一核心服务小区不可用时,向接入网设备发送核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
其中,所述第一核心服务小区不可用,包括:
所述第一核心服务小区发生无线链路失败RLF;
或者,
所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
在一种可能的设计中,所述核心服务小区不可用消息携带:所述第一核心服务小区的小区标识;和/或,所述第一核心服务小区不可用的原因值。
在一种可能的设计中,上述的设备还包括:处理模块;
所述收发模块,还用于接收接入网设备发送的增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区;
所述处理模块,用于将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
再一方面,本发明实施例提供一种接入网设备,包括:
收发模块,用于接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包;
处理模块,用于确定自身是否为所述数据承载关联的数据锚点;若确定自身为所述数据承载关联的数据锚点,则解密所述数据包并发送所述解密后的数据包给服务网关;若确定自身并非所述数据承载关联的数据锚点,则确定所述数据承载关联的数据锚点,并将所述数据包发送至所述数据锚点。
在一种可能的设计中,所述收发模块,还用于在所述处理模块确定自身是否为所述数据承载关联的数据锚点之前,接收信令锚点或所述数据承载关联的数据锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据锚点的信息。
在一种可能的设计中,所述第五消息还携带所述数据承载的服务质量QoS信息。
在一种可能的设计中,若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥;
所述处理模块,还用于采用所述数据锚点的安全密钥处理所述数据承载的数据包。
在一种可能的设计中,所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥衍生的。
在一种可能的设计中,所述收发模块,具体用于当所述信令锚点的安全密钥发生变化时,继续使用所述数据锚点的安全密钥信息与所述UE进行数据传输。
在一种可能的设计中,所述收发模块,还用于接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
所述处理模块,还用于确定自身是否为信令锚点,若确定自身为所述信令锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
再一方面,本发明实施例提供一种用户设备,包括:
收发器,用于通过服务小区集合传输空口数据,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输所述空口数据的小区;
所述收发器,还用于当所述服务小区集合中的所有的核心服务小区不可用时,发起无线资源控制RRC连接重建立过程。
在一种可能的设计中,所述服务小区集合由至少一个接入网设备提供。
在一种可能的设计中,上述的设备还包括;处理器;
所述收发器,用于接收接入网设备发送的增加第一小区为核心服务小区 的第一消息;
所述处理器,用于将所述第一小区增加至所述服务小区集合。
在一种可能的设计中,所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区;
或者,
所述第一消息携带核心服务小区参数。
在一种可能的设计中,所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
在一种可能的设计中,所述收发器,还用于当所述服务小区集合中的第一核心服务小区不可用时,向接入网设备发送核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
其中,所述第一核心服务小区不可用,包括:
所述第一核心服务小区发生无线链路失败RLF;
或者,
所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
在一种可能的设计中,所述核心服务小区不可用消息携带:所述第一核心服务小区的小区标识;和/或,所述第一核心服务小区不可用的原因值。
在一种可能的设计中,上述的设备还包括:处理器;
所述收发器,还用于接收接入网设备发送的增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区;
所述处理器,用于将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
再一方面,本发明实施例提供一种接入网设备,包括:
收发器,用于接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包;
处理器,用于确定自身是否为所述数据承载关联的数据锚点;若确定自身为所述数据承载关联的数据锚点,则解密所述数据包并发送所述解密后的数据包给服务网关;若确定自身并非所述数据承载关联的数据锚点,则确定所述数据承载关联的数据锚点,并将所述数据包发送至所述数据锚点。
在一种可能的设计中,所述收发器,还用于在所述处理器确定自身是否为所述数据承载关联的数据锚点之前,接收信令锚点或所述数据承载关联的数据锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据锚点的信息。
在一种可能的设计中,所述第五消息还携带所述数据承载的服务质量QoS信息。
在一种可能的设计中,若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥;
所述处理器,还用于采用所述数据锚点的安全密钥处理所述数据承载的数据包。
在一种可能的设计中,所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥衍生的。
在一种可能的设计中,所述收发器,具体用于当所述信令锚点的安全密钥发生变化时,继续使用所述数据锚点的安全密钥信息与所述UE进行数据传输。
在一种可能的设计中,所述收发器,还用于接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
所述处理器,还用于确定自身是否为信令锚点,若确定自身为所述信令锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
再一方面,本发明实施例提供一种数据传输方法,包括:
接入网设备接收用户设备UE通过服务小区集合传输的空口数据,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输空口数据的小区;
所述接入网设备接收所述UE在所述服务小区集合中的所有核心服务小区均不可用时,发起的无线资源控制RRC连接重建立过程。
在一种可能的设计中,所述服务小区集合由至少一个接入网设备提供。
在一种可能的设计中,上述的方法还包括:
所述接入网设备向所述UE发送增加第一小区为核心服务小区的第一 消息,以使所述UE将所述第一小区增加至所述服务小区集合。
在一种可能的设计中,所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区;
或者,
所述第一消息携带核心服务小区参数。
在一种可能的设计中,所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
在一种可能的设计中,上述的方法还包括:所述接入网设备接收所述UE在所述服务小区集合中的第一核心服务小区不可用时,发送的核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
其中,所述第一核心服务小区不可用,包括所述第一核心服务小区发生无线链路失败RLF;
或者,
所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
在一种可能的设计中,所述核心服务小区不可用消息携带所述第一核心服务小区的小区标识;
和/或,
所述第一核心服务小区不可用的原因值。
在一种可能的设计中,上述的方法还包括:
所述接入网设备向所述UE发送增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区,以使得所述UE将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
再一方面,本发明实施例提供了一种用户设备,该用户设备具有实现上述方法设计中第一用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,用户设备的结构中包括处理器和发射器,所述处 理器被配置为支持第一用户设备执行上述方法中相应的功能。所述发射器用于支持用户设备与接入网设备之间的通信,向接入网设备发送上述方法中所涉及的信息或者指令。所述用户设备还可以包括存储器,所述存储器用于与处理器耦合,其保存用户设备必要的程序指令和数据。
再一方面,本发明实施例提供了一种接入网设备,该接入网设备具有实现上述方法设计中接入网设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。所述模块可以是软件和/或硬件
在一种可能的设计中,接入网设备的结构中包括接收器和处理器,所述处理器被配置为支持接入网设备执行上述方法中相应的功能。所述发射器用于支持接入网设备与用户设备之间的通信,接收用户设备发送的上述方法中所涉及的信息或者指令。所述接入网设备还可以包括存储器,所述存储器用于与处理器耦合,其保存用户设备必要的程序指令和数据。
再一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的用户设备和接入网设备。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述接入网设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种芯片系统,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于实现上述方法涉及中用户设备的设计功能。
再一方面,本发明实施例提供了一种芯片系统,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于实现上述方法涉及中接入网设备的设计功能。
本发明实施例提供的数据传输方法、用户设备及接入网设备,UE通过包含至少两个、能独立服务UE以传输数据的核心服务小区的服务小区集合,向接入网设备传输空口数据,只有在检测出服务小区集合中的核心服务小区均不可用时,才向接入网设备发起RRC连接重建立过程,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使 用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
附图说明
图1为目前基站间小区聚合的系统示意;
图2为本发明数据传输方法所适用的无线通信系统的架构示意图;
图3为本发明数据传输方法实施例一的信令图;
图4为本发明数据传输方法中一个承载的RLC实体的示意图;
图5为本发明数据传输方法中服务小区不可用时第一处理过程示意图;
图6为本发明数据传输方法中服务小区不可用时第二处理过程示意图;
图7为本发明数据传输方法中信令承载和数据承载的示意图;
图8为本发明数据传输方法中数据承载增加和数据包传输的信令图;
图9为本发明用户设备实施例一的结构示意图;
图10为本发明接入网设备实施例一的结构示意图;
图11为本发明用户设备实施例二的结构示意图;
图12为本发明接入网设备实施例二的结构示意图。
具体实施方式
图1为目前基站间小区聚合的系统示意。如图1所示,UE同时使用主基站下的小区和辅基站下的小区进行上下行通信。其中,PCell所在的服务基站是主基站,辅基站下的一个或多个SCell中有一个小区是PSCell。主基站与移动管理实体(Mobility Management Entity,MME)基于S1-MME接口协议进行通信,主基站与辅基站基于X2接口协议进行通信,主基站、辅基站与UE基于Uu接口通信。
一般来说,基站间小区聚合场景下,发生RLF时主要包括如下四种场景:1、UE的物理层检测到PCell发生RLF;2、UE对应的主基站的RLC达到最大重传次数;3、UE的物理层检测到PSCell发生了RLF;4、UE对应的辅基站的RLC成达到最大重传次数。而基站内小区聚合场景下,发生RLF时主要指场景1和场景2。现有技术中,对于场景1和2,UE认为主基站发生了 RLF,并发起RRC连接重建立过程,导致UE的数据所有业务数据传输发生中断;对于场景3和4,UE认为辅基站发生了RLF,则UE停止在辅基站下的所有服务小区上的承载数据的传输,并上报辅基站失败信息给网络。
根据上述可知:CA场景下,UE的数据传输严重依赖于PCell和PSCell,尤其是PCell。具体的,当PCell发生RLF或者主基站的RLC层达到最大重传次数时,即使主基站或辅基站上存在信号质量很好的服务小区UE也发起RRC重建立过程,导致UE的所有业务数据传输中断;而当辅基站的PSCell发送RLF或辅基站的RLC层达到最大重传次数时,即使辅基站上存在信号质量很好服务小区,辅基站下的所有服务小区也不能进行数据传输,导致关联到该辅基站的承载的数据传输发生中断。另外,当PCell变更时,例如,当PCell信号强度变差需要变更到信号强度较高的小区,此时需要执行切换过程,在切换过程中所有的服务小区停止数据发送,导致UE的所有业务数据传输发生中断。
有鉴于此,本发明提供一种数据传输方法、用户设备及接入网设备,通过尽可能利用可用的服务小区,降低服务小区之间数据传输的依赖性,最大限制减少数据传输中断的可能性,从而提高数据传输的健壮性。
本文中描述的技术可用于各种通信系统,例如当前2G,3G通信系统和下一代通信系统,例如全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,E-UTRA系统、5G移动通信系统,以及其他此类通信系统。
本申请中涉及的终端,可以是有线终端,也可以是无线终端,该无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信, 无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本申请中涉及的接入网设备可以为基站、接入点(Access Point,AP)等。其中,基站可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者是5G基站,本申请并不限定。
本发明实施例提供的数据传输方法,适用于基站内小区聚合、基站间小区聚合,以及不同无线接入系统间的小区之间的聚合等。下面,为描述方便、清楚起见,以系统架构具体为LTE系统、基站具体为eNB为例对本发明技术方案进行详细描述。具体的,请参见图2。
图2为本发明数据传输方法所适用的无线通信系统的架构示意图。如图2所示,本发明实施例中,基站与MME基于S1-MME接口协议进行通信,基站与服务网关(Service Gateway,S-GW)基于S1-U接口协议进行通信,基站与基站基于X2接口协议进行通信,UE通过服务小区集合向接入网设备,即eNB传输空口数据。其中,服务小区集合包含至少两个、被配置为能独立服务UE以传输数据的核心服务小区(Core serving cell,CCell),该些核心服务小区可属于同一个eNB,也可以属于不同的eNB。例如,CCell1与CCell2同属于eNB1,而CCell3属于eNB2。可选的,服务小区集合还可以包括一些 非核心服务小区(Non-CCell),即不能独立服务UE、必须在CCell的协助下才能服务UE以传输数据的小区,如图中所示的Non-CCell4、Non-CCell5。下面,在图2的基础上对本发明数据传输方法进行详细说明。具体的,可参见图3。
图3为本发明数据传输方法实施例一的信令图。本实施例中,接入网设备与终端交互,适用于CA场景。具体的,本实施例包括如下步骤:
101、用户设备UE通过服务小区集合传输空口数据;
其中,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输所述空口数据的小区。
本发明实施例中,引入CCell的概念,CCell的特征是不依赖与其他服务小区的帮助能独立服务UE以进行上下行数据传输的服务小区。CCell的特征包括:配置有PUCCH资源、至少能调度自身本小区的资源等,各CCell之间互不影响、互不依赖。
本步骤中,提供服务小区集合中的服务小区的接入网设备可以为一个,也可以为多个,相应的,UE通过服务小区集合传输空口数据时,可以向提供服务小区集合的任意一个接入网设备传输空口数据。例如,请参照图2,UE可通过服务小区集合向eNB1传输空口数据,也可以通过服务小区集合向eNB2传输空口数据。当然,也可以同时向eNB1与eNB2传输空口数据。一个接入网设备下可以有一个或多个CCell,UE必须在服务小区集合中的至少一个核心服务小区可用时,才能正常的传输空口数据。
102、当所述服务小区集合中的所有的核心服务小区不可用时,UE发起无线资源控制RRC连接重建过程。
本发明实施例中,核心服务小区是否可用,可通过判断该核心服务小区是否发生了RLF、该核心服务小区的RLC是否达到最大重传次数等确定出。一般来说,若核心服务小区发生了RLF,或者核心服务小区的RLC达到最大重传次数,则说明该核心服务小区不可用。
本步骤中,若服务小区集合中所有的核心服务小区不可用,则向接入网设备发起RRC连接重建立。例如,请参照图2,UE在CCell1、CCell2和CCell3均不可用时,向eNB1或eNB2发起RRC连接重建立过程。例如,CCell2不可用(图中所示×)时,UE通过其他CCell,如CCell1、CCell3向接入网设 备传输空口数据。
本发明实施例提供的数据传输方法,UE通过包含至少两个、能独立服务UE以传输数据的核心服务小区的服务小区集合,向接入网设备传输空口数据,只有在检测出服务小区集合中的核心服务小区均不可用时,才向接入网设备发起RRC连接重建立过程,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
下面,从终端侧以及网络侧两方面对本发明进行详细描述。
第一个方面、终端侧。具体的,从CCell的增加、CCell不可用处理机制、移动性机制等进行详细讲解。
首先,CCell的增加和删除。
一般来说,UE在进入连接态时初始接入的小区固定是CCell。增加CCell时,接入网设备向UE发送增加第一小区为核心服务小区的第一消息;相应的,UE接收该消息,并将第一小区增加至服务小区集合。在一种可能的方式中,接入网设备显式的指示UE增加第一小区为CCell,此时,第一指示信息用于指示第一小区为CCell;在另一种可能的方式中,接入网设备隐性的指示UE增加第一小区为CCell,此时,第一指示信息为CCell独有的核心服务小区参数,若UE接收到的第一消息携带该核心服务小区参数,则说明第一小区为CCell;否则,说明第一小区为non-CCell。其中,核心服务小区参数例如为物理上行控制信道(Physical uplink control channel,PUCCH)配置信息等。
另外,除了增加CCell外,还可以增加non-CCell。增加non-CCell时,接入网设备向UE发送增加第一小区为非核心服务小区的第二消息,该第二消息携带服务小区集合中第二核心服务小区的小区标识,用于指示第二小区与第二核心服务小区关联;相应的,UE接收该第二消息,将该第二小区增加至服务小区集合,并将第二小区关联到第二核心服务小区。需要指出的是,这里的“关联”的意思是:non-CCell在某个CCell的辅助下进行数据传输,则我们称之为这个non-CCell关联到这个CCell。具体的,当接入网设备给UE增加non-CCell时,指示该non-CCel关联的一个CCell,当该CCell不可 用时,与该CCell关联的所有non-CCell不可用。另外,可选的,non-CCell也可以关联2个或2个以上的CCell,只有在该2个或2个以上的所有CCell均不可用时,non-CCell才不可用。当然,一个non-CCell还可以不关联任何CCell,或者说总是关联到所有的CCell,任一CCell均可以帮助该non-CCell进行数据传输。作为优选,一个non-CCell和与其关联的CCell属于同一个接入网设备,以降低实现的复杂度。
本发明实施例中,承载,包括数据承载和信令承载不再与接入网设备(如基站)关联,而是与接入网设备进行解耦,即不再区分主小区组(Master Cell Group,MCG)承载、辅小区组(Secondary Cell Group,SCG)承载、Split承载,任何一个承载的数据可以在任何一个可用的服务小区或服务基站上进行传输。作为一种可选方案,承载关联到一个或多个CCell,当承载关联的所有CCell均不可用时,该承载才发生了数据传输中断。需要说明的是,虽然本发明实施例中,信令承载(Signal Radio Bear,SRB)可以在任何一个服务小区上进行传输,但是只有一个处理RRC消息的实体(即信令锚点);虽然数据承载(Data Radio Bear,DRB)可以在任何一个服务小区上进行传输,但是只有一个对应的数据锚点。
其次,CCell不可用处理机制。
一般来说,CCell的不可用,包括CCell发生了RLF、该CCell对应的RLC达到最大重传次数等。其中,RLC重传次数是针对CCell的,即交由CCell(及其关联的non-CCell)进行传输的数据,当需要RLC重传时,只能在该CCell(及其关联的non-CCell)进行重传。也就是说,当需要RLC重传时,在CCell及其关联的non-CCell中选择一个服务小区进行重传。若该CCel,或者其关联的non-CCell发生一次RLC重传,则RLC重传次数加1;当RLC重传达到最大重传次数时,该CCell(及其关联的non-CCell)被认为不可用。也就是说,对于每个数据承载,一个CCell(及其关联的non-CCell)对应一个RLC实体,有多少个CCell就有多少个RLC实体,每个RLC实体通过一个CCell及其关联的non-CCell进行传输。具体的,可参见图4,图4为本发明数据传输方法中一个承载的RLC实体的示意图。如图4所示,该承载有3个RLC实体,RLC实体1通过Cell1和Cell2进行传输,比如,Cell1是CCell,Cell2是关联到Cell1的non-CCell;RLC实体2通过Cell3进行传输,Cell3 是CCell,没有non-CCell关联到Cell3;RLC实体3通过Cell4和Cell5进行传输,比如,Cell4是CCell,Cell5是关联到Cell4的non-CCell。
作为一种可选的实施例,除了RLC最大重传次数外,还可以设置一个重传次数门限,该门限小于RLC最大重传次数,用于当该CCell及其关联的non-CCell负责传输的一个数据包重传次数超过该重传门限时,则说明该CCell及其关联的non-CCell信道条件较差。此时,UE将该CCell负责传输的数据包,甚至缓存中还未发送出去的数据包也交给其他一个或多个CCell进行并发传输,以尽量减少数据传输的时延。该过程中,当重传门限被配置为0时,说明交给该CCell传输的数据包也总是被交给其他CCell来传输。
图5为本发明数据传输方法中服务小区不可用时第一处理过程示意图,其包括如下步骤:
201、UE检测出服务小区集合中有一个核心服务小区不可用,判断是否所有的CCell均不可用,若存在可用的CCell,则执行202~204;若均不可用,则执行步骤205。
具体的,当UE检测出服务小区集合中的一个核心服务小区不可用时,UE判断是否服务小区集合中所有的CCell均不可用。
202、UE向接入网设备发送核心服务小区不可用消息。
核心服务小区不可用消息用于指示第一核心服务小区不用。可选的,该核心服务小区不可用消息携带:所述第一核心服务小区的小区标识或索引,用于指示发生失败的CCell;和/或,所述第一核心服务小区不可用的原因值,用于指示失败的原因,比如发生了RLF、RLC层达到最大重传次数等。
203、接入网设备向UE发送服务小区删除消息。
本步骤中,接入网设备向UE发送携带小区标识的服务小区删除消息,使得UE删除小区标识对应的服务小区。
204、UE删除服务小区。
本步骤可以发生在步骤202之后,此时,UE在向接入网设备发送服务小区不可用消息后,自主删除不可用的服务小区;或者,本步骤可以发生在步骤203之后,即UE在接收到接入网设备的指示后才对不可用的服务小区进行删除。
205、UE发起无线资源控制RRC连接重建过程。
另外,除了UE能检测服务小区集合中的核心服务小区是否均不可用外,接入网设备也可以对服务小区集合中各核心服务小区是否可用进行检测。具体的,可参见图6,图6为本发明数据传输方法中服务小区不可用时第二处理过程示意图,其包括如下步骤:
301、接入网设备检测出服务小区集合中有一个核心服务小区不可用;
302、接入网设备向“虚拟”主基站发送服务小区删除消息。
本发明实施例中,“虚拟”主基站也称之为RRC锚点、S1锚点、信令锚点、RAN控制面锚点等,其用于处理UE的RRC消息以及S1消息,即处理信令承载的数据。
303、“虚拟”主基站判断是否所有的CCell均不可用,若存在可用的CCell,则执行304~305;若均不可用,则执行步骤306。
304、“虚拟”主基站向UE发送服务小区删除消息。
305、UE删除服务小区。
306、“虚拟”主基站向UE发送RRC连接释放消息。
最后,移动性机制。
本发明实施例中,UE的移动性不再使用切换过程,取而代之的是CCell的增加和删除,某个CCell的增加或删除不影响其他CCell的正常的数据传输,这就避免了由于UE的移动性造成的数据传输中断。
上述第一个方面是关于空口数据的传输机制,UE传输空口数据时,移除了对PCell、PSCell、主基站等的依赖,增强了数据传输的健壮性,降低了数据传输中断的可能性。
第二个方面,网络侧。
上述第一个方面是关于空口的数据传输机制,而第二个方面是关于网络侧的数据传输及处理机制。下面,从控制面、用户面和移动性三个方面对本发明第二方面进行详细描述。
首先、控制面。
对于接入网的控制面,引入“虚拟”主基站(Virtual MeNB)的概念,“虚拟”主基站可以是RRC锚点、S1锚点、信令锚点、RAN控制面锚点等,下文中统一称之为信令锚点,其用于处理UE的RRC消息以及S1消息,即处理信令承载的数据。因此,可以说,“虚拟”主基站是所有信令承载的锚 点。对于接入网设备来说,信令锚点可以为该接入网设备自身,例如,信令锚点为向UE提供服务的服务基站中的一个服务基站,此时,该服务基站下有为UE提供服务的小区,比如,该服务基站可以被配置当UE初始接入到该基站时,该基站是否作为“虚拟”主基站,若否,则被配置为“虚拟”主基站,即该UE后续的所有RRC消息、S1消息均在该“虚拟”主基站进行处理;或者,信令锚点为其他接入网设备,例如,信令锚点为未向UE提供服务的一个基站,此时,该基站下没有为UE提供服务的小区;另外,信令锚点甚至还可以是一个非基站的网元,以方便信令锚点设置。
对于一个连接态的UE,只有一个信令锚点,即该UE的所有的RRC消息、S1消息均在该信令锚点进行处理。而且,无论哪个接入网设备接收到UE发送的RRC信令,均会发送到该信令锚点进行处理,MME总会将S1信令发送到该信令锚点。具体的,可参见图7,图7为本发明数据传输方法中信令承载和数据承载的示意图。
请参照图7,eNB1为DRB1对应的数据锚点,eNB2为DRB2对应的数据锚点,eNB3为所有SRB,即SRB1、SRB2对应的信令锚点。
其次、用户面。
本发明实施例中,为每个DRB引入承载锚点(bearer anchor)的概念,也称之为数据锚点。一个DRB的安全功能以及PDCP层的按序递送功能在DRB对应的数据锚点进行处理,可以理解为该DRB的PDCP层位于其对应的数据锚点。一个DRB的数据锚点是该DRB的唯一的上行出口,即该DRB的所有数据通过该数据锚点发送给上一层节点(即服务网关S-GW);以及该DRB的唯一的下行入口,从S-GW接收该DRB的所有下行数据。也就是说,该DRB的所有数据需要在其对应的数据锚点汇聚进行加密以及按序递送等。
作为一个可选实现方式,也可以将控制面和用户面统一,每个承载,包括数据承载和信令承载对应一个锚点,所有的SRB对应同一个信令锚点,即“虚拟”主基站,每个DRB对应的数据锚点可以相同或不同。
下面,从数据承载的增加和数据包的传输两个方面对控制面和数据面进行详细说明。具体的,可参见图8,图8为本发明数据传输方法中数据承载增加和数据包传输的信令图,包括:
401、信令锚点确定数据承载对应的数据锚点。
本步骤中,信令锚点接收到核心网发送的承载增加请求,确定出新增的DRB的数据锚点为接入网设备1。
信令锚点决定每个DRB对应的数据锚点,不同的DRB可以对应相同或不同的数据锚点。当然,当信令锚点也同时为接入网设备时,该信令锚点还可以确定一个DRB对应的数据锚点为自身。
对于一个UE,同一个数据锚点的安全密钥相同,即对应同一个数据锚点的多个DRB使用的安全密钥相同。当数据锚点增加时,例如,增加一个接入网设备;再如,增加一个接入网设备下的第一个服务小区时,该数据锚点的安全密钥由信令锚点衍生并发送给该数据锚点。作为优选实施例,该数据锚点的安全密钥可根据信令锚点的安全密钥衍生出。
402、信令锚点向接入网设备1发送承载增加请求。
该承载增加请求指示新增的DRB的ID、该DRB的数据锚点为接入网设备1。
另外,该承载增加请求还可以携带其他配置参数,如该DRB的服务质量(quality of Service,QoS)参数等。
403、接入网设备1向信令锚点发送承载增加响应。
404、接入网设备1向接入网设备2发送承载增加请求。
405、信令锚点向接入网设备2发送承载增加请求。
上述的步骤404、405为可选步骤,可选择其中之一执行;承载增加请求消息中指示新增的DRB的ID、以及该DRB关联的数据锚点信息,以使得接入网设备2能建立DRB和数据锚点的对应关系。优选地,接入网设备1或信令锚点向该UE的所有的服务基站发送承载增加请求,以使得UE的所有的服务基站能建立DRB和数据锚点的对应关系,从而能在接收到DRB的数据后,将该数据发送到该DRB对应的数据锚点;
406、信令锚点向UE发送承载增加请求。
当信令锚点也为接入网设备时,接入网设备向UE发送增加DRB的第三消息,该第三消息携带DRB关联的数据锚点的信息。当DRB关联的数据锚点为接入网设备1时,该数据锚点的信息可以为接入网设备1的ID或索引等。
可选的,该第三消息还可以携带数据锚点的安全参数。
可选的,该第三消息还可以携带属于该数据锚点的各个服务小区的信息。
407、UE增加DRB,并将该DRB关联到接入网设备1。
408、UE向信令锚点发送承载增加响应消息。
409、信令锚点向核心网或S-GW发送新增DRB关联的数据锚点的地址,以使得S-GW将该DRB的下行数据发送到该数据锚点。
410、UE通过服务小区集合中的任意一个服务小区传输DRB的数据包。
其中,服务小区可以是服务小区集合中的CCell,也可以是服务小区集合中的non-CCell,当然,non-CCell需要其关联的CCell的辅助。
可选的,若步骤406中,第三消息还携带数据锚点,即接入网设备1的安全参数,则UE还可以根据该安全参数衍生出数据锚点的安全密钥,并采用该安全密钥对DRB的数据包进行安全处理。
可选的,当步骤406中,第三消息还携带数据锚点下属的各个服务小区的信息,以使得UE可以优先选择该些服务小区发送上行数据,以减少网络侧的数据传输开销。
411、接入网设备2确定自身是否为DRB对应的数据锚点。
假设步骤410中,UE将上行数据发送给接入网设备2,则接入网设备2判断自身是否为DRB的数据锚点,若是,则执行步骤412、413;否则,执行414。
412、接入网设备2解密DRB的数据包。
413、接入网设备2将解密后的DRB数据包发送给S-GW。
这里需要提及的是,接入网设备2并不是解密数据包后立即发送给S-GW,而是需要执行按序递送的功能,在满足按序递送的原则后发送该数据包。
414、接入网设备2确定DRB的数据锚点。
本步骤中,接入网设备2根据DRB和数据锚点的对应关系找到该DRB对应的数据锚点。例如,确定出DRB的数据锚点为接入网设备1。
415、接入网设备2向接入网设备1发送DRB的数据包。
416、接入网设备1解密DRB的数据包。
417、接入网设备1将解密后的DRB数据包发送给S-GW.
这里需要提及的是,接入网设备1并不是解密数据包后立即发送给 S-GW,而是需要执行按序递送的功能,在满足按序递送的原则后发送该数据包。
418、接入网设备1接收S-GW发送的下行数据。
419、接入网设备1对该下行数据进行加密。
420、接入网设备1确定发送下行数据的接入网设备,若确定由接入网设备1发送,则执行步骤421;否则,执行步骤422。
421、接入网设备1向UE发送下行数据。
422、接入网设备1将下行数据发送给接入网设备2。
423、接入网设备2向UE发送下行数据。
最后,移动性机制。
由于UE的移动性,可能执行:空口增加和/或删除服务小区、网络侧更换信令锚点、网络侧增加或更新数据承载的数据锚点。然而,上述各种情况可以完全独立,做到解耦。因此,空口只关注提供可用的数据传输通道,从而降低移动性对UE的数据传输的影响。当当前的信令锚点决定是否变更到一个新的信令锚点时,各个数据锚点的密钥可以保持不变,即各个节点的密钥相互独立,一个发生变化其他的可以不变,互不影响;信令锚点可以更改数据承载对应的数据锚点,并将该数据承载对应的新的数据锚点的信息发送给其他节点,以使得其他节点更新数据承载与数据锚点的对应关系。上述的更改信令锚点或更改数据承载对应的数据锚点,一般发生在当前的接入网设备与信令锚点或接入网设备之间的数据传输路径开销较大时。然而,从理论上来说,更换的时机可以发生在任何时候。
上述图8所示实施例主要描述了DRB承载的增加和DRB的数据包的传输,SRB的数据包的传输与DRB的数据包的传输类似,只是所有的信令承载对应一个信令锚点。具体的,UE通过服务小区集合传输空口数据之前,接收所述接入网设备发送的第四消息,所述第四消息携带信令锚点的信息;所述UE将所述UE的所有信令承载关联到所述信令锚点。
可选的,第四消息携带所述信令锚点的安全参数,此时,所述UE根据所述信令锚点的安全参数衍生所述信令锚点的安全密钥;所述UE采用所述信令锚点的安全密钥处理所述UE的所有信令承载的数据包。
以上主要从UE的角度对本发明数据传输方法进行了详细说明,对于接 入网设备来说,该数据传输方法中,接入网设备接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包;所述接入网设备确定自身是否为所述数据承载关联的数据锚点;若所述接入网设备确定自身为所述数据承载关联的数据锚点,则解密所述数据包并发送所述解密后的数据包给服务网关;若所述接入网设备确定自身并非所述数据承载关联的数据锚点,则确定所述数据承载关联的数据锚点,并将所述数据包发送至所述数据锚点;数据锚点接收到所述数据包后,解密所述数据包并发送所述解密后的数据包给服务网关。
本发明实施例提供的数据传输方法,接入网设备通过服务小区集合中的任意一个服务小区接收数据承载的数据包,在确定出自身为数据承载的数据锚点后,解密数据包并发送解密后的数据包给服务网关;若接入网设备确定自身并非数据承载关联的数据锚点,则确定数据承载关联的数据锚点,并将数据包发送至数据锚点,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
可选的,在所述接入网设备确定自身是否为所述数据承载关联的数据锚点之前,还包括:所述接入网设备接收信令锚点或所述数据承载关联的数据锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据锚点的信息;
可选的,第五消息还携带所述数据承载的服务质量QoS信息。
可选的,若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥,所述方法还包括:所述接入网设备采用所述数据锚点的安全密钥处理所述数据承载的数据包。
进一步的,可选的,所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥衍生的。
可选的,所述接入网设备接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包,包括:
所述接入网设备确定所述信令锚点的安全密钥发生变化;
所述接入网设备继续使用所述数据锚点的安全密钥,接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包。
该实施例中,由于接入网设备必过不知道信令锚点的密钥发生变化,因此还使用原有的安全密钥信息与UE传输数据。也就是说,信令锚点基于当前自己的安全密钥衍生出数据锚点的安全密钥并发送给数据锚点,当信令锚点自己的案密钥发生变化后,数据锚点的安全密钥可以不更新。
可选的,所述接入网设备接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
所述接入网设备确定自身是否为信令锚点;
若所述接入网设备确定自身为所述信令锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若所述接入网设备确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
图9为本发明用户设备实施例一的结构示意图。本实施例提供的用户设备,其可实现本发明任意实施例提供的应用于用户设备的方法的各个步骤。具体的,本实施例提供的用户设备包括:
收发模块11,用于通过服务小区集合传输空口数据,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输所述空口数据的小区;
所述收发模块11,还用于当所述服务小区集合中的所有的核心服务小区不可用时,发起无线资源控制RRC连接重建立过程。
本发明实施例提供的用户设备,通过包含至少两个、能独立服务UE以传输数据的核心服务小区的服务小区集合,向接入网设备传输空口数据,只有在检测出服务小区集合中的核心服务小区均不可用时,才向接入网设备发起RRC连接重建立过程,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
可选的,所述服务小区集合由至少一个接入网设备提供。
再请参照图9,本发明实施例提供的用户设备,还包括:处理模块12;
所述收发模块11,用于接收接入网设备发送的增加第一小区为核心服务 小区的第一消息;
所述处理模块12,用于将所述第一小区增加至所述服务小区集合。
可选的,所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区;
或者,
所述第一消息携带核心服务小区参数。
可选的,所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
可选的,所述收发模块11,还用于当所述服务小区集合中的第一核心服务小区不可用时,向接入网设备发送核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
其中,所述第一核心服务小区不可用,包括:
所述第一核心服务小区发生无线链路失败RLF;
或者,
所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
可选的,所述核心服务小区不可用消息携带:所述第一核心服务小区的小区标识;和/或,所述第一核心服务小区不可用的原因值。
可选的,所述收发模块11,还用于接收接入网设备发送的增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区;
所述处理模块12,用于将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
图10为本发明接入网设备实施例一的结构示意图。本实施例提供的接入网设备,其可实现本发明任意实施例提供的应用于接入网设备的方法的各个步骤。具体的,本实施例提供的接入网设备包括:
收发模块21,用于接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包;
处理模块22,用于确定自身是否为所述数据承载关联的数据锚点;若确定自身为所述数据承载关联的数据锚点,则解密所述数据包并发送所述解密 后的数据包给服务网关;若确定自身并非所述数据承载关联的数据锚点,则确定所述数据承载关联的数据锚点,并将所述数据包发送至所述数据锚点。
本发明实施例提供的接入网设备,通过服务小区集合中的任意一个服务小区接收数据承载的数据包,在确定出自身为数据承载的数据锚点后,解密数据包并发送解密后的数据包给服务网关;若接入网设备确定自身并非数据承载关联的数据锚点,则确定数据承载关联的数据锚点,并将数据包发送至数据锚点,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
可选的,所述收发模块21,还用于在所述处理模块22确定自身是否为所述数据承载关联的数据锚点之前,接收信令锚点或所述数据承载关联的数据锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据锚点的信息。
可选的,所述第五消息还携带所述数据承载的服务质量QoS信息。
可选的,若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥;
所述处理模块22,还用于采用所述数据锚点的安全密钥处理所述数据承载的数据包。
可选的,所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥衍生的。
可选的,所述收发模块21,具体用于当所述信令锚点的安全密钥发生变化时,继续使用所述数据锚点的安全密钥信息与所述UE进行数据传输。
可选的,所述收发模块21,还用于接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
所述处理模块22,还用于确定自身是否为信令锚点,若确定自身为所述信令锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
图11为本发明用户设备实施例二的结构示意图。本实施例提供的用户设备,其可实现本发明任意实施例提供的应用于用户设备的方法的各个步骤。具体的,本实施例提供的用户设备包括:
收发器31,用于通过服务小区集合传输空口数据,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输所述空口数据的小区;
所述收发器31,还用于当所述服务小区集合中的所有的核心服务小区不可用时,发起无线资源控制RRC连接重建立过程。
本发明实施例提供的用户设备,通过包含至少两个、能独立服务UE以传输数据的核心服务小区的服务小区集合,向接入网设备传输空口数据,只有在检测出服务小区集合中的核心服务小区均不可用时,才向接入网设备发起RRC连接重建立过程,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
可选的,所述服务小区集合由至少一个接入网设备提供。
再请参照图11,本发明实施例提供的用户设备,还包括;处理器32;
所述收发器31,用于接收接入网设备发送的增加第一小区为核心服务小区的第一消息;
所述处理器32,用于将所述第一小区增加至所述服务小区集合。
可选的,所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区;
或者,
所述第一消息携带核心服务小区参数。
可选的,所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
可选的,所述收发器31,还用于当所述服务小区集合中的第一核心服务小区不可用时,向接入网设备发送核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
其中,所述第一核心服务小区不可用,包括:
所述第一核心服务小区发生无线链路失败RLF;
或者,
所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
可选的,所述核心服务小区不可用消息携带:所述第一核心服务小区的小区标识;和/或,所述第一核心服务小区不可用的原因值。
可选的,所述收发器31,还用于接收接入网设备发送的增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区;
所述处理器32,用于将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
图12为本发明接入网设备实施例二的结构示意图。本实施例提供的接入网设备,其可实现本发明任意实施例提供的应用于接入网设备的方法的各个步骤。具体的,本实施例提供的接入网设备包括:
收发器41,用于接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包;
处理器42,用于确定自身是否为所述数据承载关联的数据锚点;若确定自身为所述数据承载关联的数据锚点,则解密所述数据包并发送所述解密后的数据包给服务网关;若确定自身并非所述数据承载关联的数据锚点,则确定所述数据承载关联的数据锚点,并将所述数据包发送至所述数据锚点。
本发明实施例提供的接入网设备,通过服务小区集合中的任意一个服务小区接收数据承载的数据包,在确定出自身为数据承载的数据锚点后,解密数据包并发送解密后的数据包给服务网关;若接入网设备确定自身并非数据承载关联的数据锚点,则确定数据承载关联的数据锚点,并将数据包发送至数据锚点,通过尽可能利用可用的服务小区进行数据传输,也就是说,只要存在核心服务小区可用,则使用这些可用的核心服务小区进行数据传输,从而降低服务小区之间数据传输的依赖性,最大限度减少数据传输中断的可能性,从而提高数据传输的健壮性。
可选的,所述收发器41,还用于在所述处理器42确定自身是否为所述数据承载关联的数据锚点之前,接收信令锚点或所述数据承载关联的数据 锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据锚点的信息。
可选的,所述第五消息还携带所述数据承载的服务质量QoS信息。
可选的,若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥;
所述处理器42,还用于采用所述数据锚点的安全密钥处理所述数据承载的数据包。
可选的,所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥衍生的。
可选的,所述收发器41,具体用于当所述信令锚点的安全密钥发生变化时,继续使用所述数据锚点的安全密钥信息与所述UE进行数据传输。
可选的,所述收发器41,还用于接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
所述处理器42,还用于确定自身是否为信令锚点,若确定自身为所述信令锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (45)

  1. 一种数据传输方法,其特征在于,包括:
    用户设备UE通过服务小区集合传输空口数据,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输所述空口数据的小区;
    当所述服务小区集合中的所有的核心服务小区不可用时,所述UE发起无线资源控制RRC连接重建立过程。
  2. 根据权利要求1所述的方法,其特征在于,所述服务小区集合由至少一个接入网设备提供。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述UE接收接入网设备发送的增加第一小区为核心服务小区的第一消息;
    所述UE将所述第一小区增加至所述服务小区集合。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区;
    或者,
    所述第一消息携带核心服务小区参数。
  5. 根据权利要求4所述的方法,其特征在于,
    所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
  6. 根据权利要求1或2所述的方法,其特征在于,还包括:
    当所述服务小区集合中的第一核心服务小区不可用时,所述UE向接入网设备发送核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
    其中,所述第一核心服务小区不可用,包括:
    所述第一核心服务小区发生无线链路失败RLF;
    或者,
    所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
  7. 根据权利要求6所述的方法,其特征在于,
    所述核心服务小区不可用消息携带:所述第一核心服务小区的小区标识; 和/或,所述第一核心服务小区不可用的原因值。
  8. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述UE接收接入网设备发送的增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区;
    所述UE将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
  9. 一种数据传输方法,其特征在于,包括:
    接入网设备接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包;
    所述接入网设备确定自身是否为所述数据承载关联的数据锚点;
    若所述接入网设备确定自身为所述数据承载关联的数据锚点,则解密所述数据包并发送所述解密后的数据包给服务网关;若所述接入网设备确定自身并非所述数据承载关联的数据锚点,则确定所述数据承载关联的数据锚点,并将所述数据包发送至所述数据锚点。
  10. 根据权利要求9所述的方法,其特征在于,在所述接入网设备确定自身是否为所述数据承载关联的数据锚点之前,还包括:
    所述接入网设备接收信令锚点或所述数据承载关联的数据锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据锚点的信息。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第五消息还携带所述数据承载的服务质量QoS信息。
  12. 根据权利要求10或11所述的方法,其特征在于,
    若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥,所述方法还包括:
    所述接入网设备采用所述数据锚点的安全密钥处理所述数据承载的数据包。
  13. 根据权利要求12所述的方法,其特征在于,
    所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥 衍生的。
  14. 根据权利要求13所述的方法,其特征在于,
    所述接入网设备接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包,包括:
    当所述信令锚点的安全密钥发生变化时,所述接入网设备继续使用所述数据锚点的安全密钥信息与所述UE进行数据传输。
  15. 根据权利要求9所述的方法,其特征在于,还包括:
    所述接入网设备接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
    所述接入网设备确定自身是否为信令锚点;
    若所述接入网设备确定自身为所述信令锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若所述接入网设备确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
  16. 一种用户设备,其特征在于,包括:
    收发模块,用于通过服务小区集合传输空口数据,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输所述空口数据的小区;
    所述收发模块,还用于当所述服务小区集合中的所有的核心服务小区不可用时,发起无线资源控制RRC连接重建立过程。
  17. 根据权利要求16所述的设备,其特征在于,所述服务小区集合由至少一个接入网设备提供。
  18. 根据权利要求16或17所述的设备,其特征在于,还包括;处理模块;
    所述收发模块,用于接收接入网设备发送的增加第一小区为核心服务小区的第一消息;
    所述处理模块,用于将所述第一小区增加至所述服务小区集合。
  19. 根据权利要求18所述的设备,其特征在于,
    所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区;
    或者,
    所述第一消息携带核心服务小区参数。
  20. 根据权利要求19所述的设备,其特征在于,
    所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
  21. 根据权利要求16或17所述的设备,其特征在于,
    所述收发模块,还用于当所述服务小区集合中的第一核心服务小区不可用时,向接入网设备发送核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
    其中,所述第一核心服务小区不可用,包括:
    所述第一核心服务小区发生无线链路失败RLF;
    或者,
    所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
  22. 根据权利要求21所述的设备,其特征在于,
    所述核心服务小区不可用消息携带:所述第一核心服务小区的小区标识;和/或,所述第一核心服务小区不可用的原因值。
  23. 根据权利要求16或17所述的设备,其特征在于,还包括:处理模块;
    所述收发模块,还用于接收接入网设备发送的增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区;
    所述处理模块,用于将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
  24. 一种接入网设备,其特征在于,包括:
    收发模块,用于接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包;
    处理模块,用于确定自身是否为所述数据承载关联的数据锚点;若确定自身为所述数据承载关联的数据锚点,则解密所述数据包并发送所述解密后的数据包给服务网关;若确定自身并非所述数据承载关联的数据锚点,则确定所述数据承载关联的数据锚点,并将所述数据包发送至所述数据锚点。
  25. 根据权利要求24所述的设备,其特征在于,
    所述收发模块,还用于在所述处理模块确定自身是否为所述数据承载 关联的数据锚点之前,接收信令锚点或所述数据承载关联的数据锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据锚点的信息。
  26. 根据权利要求25所述的设备,其特征在于,
    所述第五消息还携带所述数据承载的服务质量QoS信息。
  27. 根据权利要求25或26所述的设备,其特征在于,
    若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥;
    所述处理模块,还用于采用所述数据锚点的安全密钥处理所述数据承载的数据包。
  28. 根据权利要求27所述的设备,其特征在于,
    所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥衍生的。
  29. 根据权利要求28所述的设备,其特征在于,
    所述收发模块,具体用于当所述信令锚点的安全密钥发生变化时,继续使用所述数据锚点的安全密钥信息与所述UE进行数据传输。
  30. 根据权利要求24所述的设备,其特征在于,
    所述收发模块,还用于接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
    所述处理模块,还用于确定自身是否为信令锚点,若确定自身为所述信令锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
  31. 一种用户设备,其特征在于,包括:
    收发器,用于通过服务小区集合传输空口数据,所述服务小区集合中包含至少两个核心服务小区,所述核心服务小区为被配置成能独立服务所述UE以传输所述空口数据的小区;
    所述收发器,还用于当所述服务小区集合中的所有的核心服务小区不可用时,发起无线资源控制RRC连接重建立过程。
  32. 根据权利要求31所述的设备,其特征在于,所述服务小区集合由至 少一个接入网设备提供。
  33. 根据权利要求31或32所述的设备,其特征在于,还包括;处理器;
    所述收发器,用于接收接入网设备发送的增加第一小区为核心服务小区的第一消息;
    所述处理器,用于将所述第一小区增加至所述服务小区集合。
  34. 根据权利要求33所述的设备,其特征在于,
    所述第一消息携带第一指示信息,所述第一指示信息用于指示所述第一小区为核心服务小区;
    或者,
    所述第一消息携带核心服务小区参数。
  35. 根据权利要求34所述的设备,其特征在于,
    所述核心服务小区参数包括物理上行控制信道PUCCH配置信息。
  36. 根据权利要求31或32所述的设备,其特征在于,
    所述收发器,还用于当所述服务小区集合中的第一核心服务小区不可用时,向接入网设备发送核心服务小区不可用消息,所述核心服务小区不可用消息用于指示所述第一核心服务小区不可用;
    其中,所述第一核心服务小区不可用,包括:
    所述第一核心服务小区发生无线链路失败RLF;
    或者,
    所述第一核心服务小区的无线链路控制RLC达到最大重传次数。
  37. 根据权利要求36所述的设备,其特征在于,
    所述核心服务小区不可用消息携带:所述第一核心服务小区的小区标识;和/或,所述第一核心服务小区不可用的原因值。
  38. 根据权利要求31或32所述的设备,其特征在于,还包括:处理器;
    所述收发器,还用于接收接入网设备发送的增加第二小区为非核心服务小区的第二消息,所述第二消息携带所述服务小区集合中的第二核心服务小区的小区标识,用于指示所述第二小区关联到所述第二核心服务小区;
    所述处理器,用于将所述第二小区增加为非核心服务小区,并将所述第二小区关联到所述第二核心服务小区。
  39. 一种接入网设备,其特征在于,包括:
    收发器,用于接收用户设备UE通过服务小区集合中的任意一个服务小区发送的数据承载的数据包;
    处理器,用于确定自身是否为所述数据承载关联的数据锚点;若确定自身为所述数据承载关联的数据锚点,则解密所述数据包并发送所述解密后的数据包给服务网关;若确定自身并非所述数据承载关联的数据锚点,则确定所述数据承载关联的数据锚点,并将所述数据包发送至所述数据锚点。
  40. 根据权利要求39所述的设备,其特征在于,
    所述收发器,还用于在所述处理器确定自身是否为所述数据承载关联的数据锚点之前,接收信令锚点或所述数据承载关联的数据锚点发送的增加所述数据承载的第五消息,所述第五消息中携带所述数据承载关联的数据锚点的信息。
  41. 根据权利要求40所述的设备,其特征在于,
    所述第五消息还携带所述数据承载的服务质量QoS信息。
  42. 根据权利要求40或41所述的设备,其特征在于,
    若所述第五消息具体由所述信令锚点发送、且所述数据锚点的信息指示所述接入网设备为所述数据锚点时,所述第五消息还携带所述数据锚点的安全密钥;
    所述处理器,还用于采用所述数据锚点的安全密钥处理所述数据承载的数据包。
  43. 根据权利要求42所述的设备,其特征在于,
    所述数据锚点的安全密钥为所述信令锚点根据所述信令锚点的安全密钥衍生的。
  44. 根据权利要求43所述的设备,其特征在于,
    所述收发器,具体用于当所述信令锚点的安全密钥发生变化时,继续使用所述数据锚点的安全密钥信息与所述UE进行数据传输。
  45. 根据权利要求39所述的设备,其特征在于,
    所述收发器,还用于接收所述UE过服务小区集合中的任意一个服务小区发送的信令承载的数据包;
    所述处理器,还用于确定自身是否为信令锚点,若确定自身为所述信令 锚点,则解密所述数据包并处理所述数据包里的无线资源控制RRC消息;若确定自身并非所述信令锚点,则将所述数据包发送至所述信令锚点。
PCT/CN2016/078654 2016-04-07 2016-04-07 数据传输方法、用户设备及接入网设备 WO2017173612A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/078654 WO2017173612A1 (zh) 2016-04-07 2016-04-07 数据传输方法、用户设备及接入网设备
CN201680083677.3A CN108781376B (zh) 2016-04-07 2016-04-07 数据传输方法、用户设备及接入网设备
EP16897547.2A EP3429271B1 (en) 2016-04-07 2016-04-07 Data transmission method and user equipment for rrc re-establishment based on a set of core serving cells
US16/151,109 US10863569B2 (en) 2016-04-07 2018-10-03 RRC connection re-establishment method for data transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078654 WO2017173612A1 (zh) 2016-04-07 2016-04-07 数据传输方法、用户设备及接入网设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/151,109 Continuation US10863569B2 (en) 2016-04-07 2018-10-03 RRC connection re-establishment method for data transmission

Publications (1)

Publication Number Publication Date
WO2017173612A1 true WO2017173612A1 (zh) 2017-10-12

Family

ID=60000220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078654 WO2017173612A1 (zh) 2016-04-07 2016-04-07 数据传输方法、用户设备及接入网设备

Country Status (4)

Country Link
US (1) US10863569B2 (zh)
EP (1) EP3429271B1 (zh)
CN (1) CN108781376B (zh)
WO (1) WO2017173612A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3790306A4 (en) * 2018-05-04 2021-06-23 Vivo Mobile Communication Co., Ltd. RADIO AND TERMINAL LINK RECOVERY PROCESS

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10966073B2 (en) 2017-11-22 2021-03-30 Charter Communications Operating, Llc Apparatus and methods for premises device existence and capability determination
US11716558B2 (en) 2018-04-16 2023-08-01 Charter Communications Operating, Llc Apparatus and methods for integrated high-capacity data and wireless network services
US11129213B2 (en) 2018-10-12 2021-09-21 Charter Communications Operating, Llc Apparatus and methods for cell identification in wireless networks
CN111526536B (zh) * 2019-02-01 2022-08-09 大唐移动通信设备有限公司 信息上报方法、装置、终端及网络侧设备
US11182222B2 (en) 2019-07-26 2021-11-23 Charter Communications Operating, Llc Methods and apparatus for multi-processor device software development and operation
US11843474B2 (en) 2020-02-11 2023-12-12 Charter Communications Operating, Llc Apparatus and methods for providing high-capacity data services over a content delivery network
US11570015B2 (en) 2020-04-22 2023-01-31 Charter Communications Operating, Llc Premises apparatus and methods for aggregated high-capacity data services
US11570833B2 (en) 2020-12-03 2023-01-31 Charter Communications Operating, Llc Methods and apparatus for utilizing dual radio access technologies in wireless systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120142361A1 (en) * 2009-09-18 2012-06-07 China Academy Of Telecommunications Technology Method, Device and System for Reconfiguring Aggregation Cell
CN102625417A (zh) * 2011-01-26 2012-08-01 中兴通讯股份有限公司 一种实现多制式无线终端绑定的系统和方法
US20120281548A1 (en) * 2011-05-03 2012-11-08 Mediatek, Inc. Scell radio link monitoring and radio link failure handling
CN103582163A (zh) * 2012-08-01 2014-02-12 中兴通讯股份有限公司 承载处理方法、承载释放方法、装置及系统
US20150124743A1 (en) * 2013-11-01 2015-05-07 Qualcomm Incorporated Techniques for using carrier aggregation in dual connectivity wireless communications
CN105122863A (zh) * 2013-01-18 2015-12-02 联发科技股份有限公司 小小区网络中rlm以及rlf机制的处理
US20160095004A1 (en) * 2014-09-26 2016-03-31 Mediatek Inc. Rrc re-establishment on secondary enodeb for dual connectivity

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI113611B (fi) * 1999-03-10 2004-05-14 Nokia Corp Solunvalintamenetelmä
WO2010062043A2 (en) * 2008-11-03 2010-06-03 Lg Electronics Inc. Method and apparatus for rrc connection reestablishment in wireless communication system
US8837426B2 (en) * 2008-12-19 2014-09-16 Htc Corporation Method of handling cell selection for in a wireless communication system and related mobile device
TWI502907B (zh) * 2009-03-12 2015-10-01 內數位專利控股公司 無線連結失效監視方法及裝置
KR101877756B1 (ko) * 2010-08-19 2018-08-09 삼성전자주식회사 캐리어 통합 환경에서 제2셀들을 활성화 및 비활성화시키는 방법들 및 장치
KR20120067937A (ko) * 2010-12-16 2012-06-26 주식회사 팬택 다중 요소 반송파 시스템에서 무선연결 재설정 수행장치 및 방법
US8837304B2 (en) * 2011-04-08 2014-09-16 Sharp Kabushiki Kaisha Devices for multi-group communications
KR102156886B1 (ko) * 2012-09-25 2020-09-17 삼성전자주식회사 통신 시스템에서 복수의 셀을 이용하는 방법 및 장치
WO2014110813A1 (en) * 2013-01-18 2014-07-24 Mediatek Inc. Mechanism of rlf handling in small cell networks
KR20140102112A (ko) * 2013-02-13 2014-08-21 주식회사 케이티 스몰셀 활성화 또는 비활성화 방법 및 장치
CN104396296B (zh) * 2013-06-04 2018-03-16 华为技术有限公司 数据传输方法、装置和用户设备
CN104349361B (zh) * 2013-08-06 2019-05-17 上海诺基亚贝尔股份有限公司 用于无线资源控制连接的方法及装置
WO2015046923A1 (en) * 2013-09-27 2015-04-02 Itl, Inc. Method and apparatus for performing activation/deactivation of serving cell in wireless communication system supporting dual connectivity
WO2015141682A1 (ja) * 2014-03-18 2015-09-24 シャープ株式会社 無線通信システム、端末装置、無線通信方法、集積回路および処理方法
CN105101459B (zh) * 2014-05-13 2020-09-29 中兴通讯股份有限公司 一种对无线链路失败的处理方法、终端及基站
RU2661538C1 (ru) * 2014-10-20 2018-07-17 Телефонактиеболагет Лм Эрикссон (Пабл) Запрещение указаний отказа для отказа вторичной группы сот
US10123240B2 (en) * 2014-10-30 2018-11-06 Nokia Solutions And Networks Oy Control of communication using dual-connectivity mode description
WO2016178440A1 (ko) * 2015-05-04 2016-11-10 엘지전자(주) 무선 통신 시스템에서 셀 재 선택 방법 및 장치
US10142253B2 (en) * 2015-11-06 2018-11-27 Hfi Innovation Inc. Method for efficient reliable transmission
CN109391959A (zh) * 2017-08-10 2019-02-26 夏普株式会社 用户设备、基站和相关方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120142361A1 (en) * 2009-09-18 2012-06-07 China Academy Of Telecommunications Technology Method, Device and System for Reconfiguring Aggregation Cell
CN102625417A (zh) * 2011-01-26 2012-08-01 中兴通讯股份有限公司 一种实现多制式无线终端绑定的系统和方法
US20120281548A1 (en) * 2011-05-03 2012-11-08 Mediatek, Inc. Scell radio link monitoring and radio link failure handling
CN103582163A (zh) * 2012-08-01 2014-02-12 中兴通讯股份有限公司 承载处理方法、承载释放方法、装置及系统
CN105122863A (zh) * 2013-01-18 2015-12-02 联发科技股份有限公司 小小区网络中rlm以及rlf机制的处理
US20150124743A1 (en) * 2013-11-01 2015-05-07 Qualcomm Incorporated Techniques for using carrier aggregation in dual connectivity wireless communications
US20160095004A1 (en) * 2014-09-26 2016-03-31 Mediatek Inc. Rrc re-establishment on secondary enodeb for dual connectivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 12", 3GPP TS 36. 300 V12.8.0, 31 December 2015 (2015-12-31), pages 67 - 72, XP055541390 *
See also references of EP3429271A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3790306A4 (en) * 2018-05-04 2021-06-23 Vivo Mobile Communication Co., Ltd. RADIO AND TERMINAL LINK RECOVERY PROCESS
US11770871B2 (en) 2018-05-04 2023-09-26 Vivo Mobile Communication Co., Ltd. Radio link recovery method and terminal

Also Published As

Publication number Publication date
US10863569B2 (en) 2020-12-08
EP3429271B1 (en) 2022-06-29
EP3429271A1 (en) 2019-01-16
CN108781376B (zh) 2021-02-23
US20190037630A1 (en) 2019-01-31
EP3429271A4 (en) 2019-04-17
CN108781376A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
US11178538B2 (en) Transmission method and network device
US11076334B2 (en) Data forwarding method, device, and communications system
EP3610673B1 (en) Access node and methods for handovers in a dual connectivity communications system
US10863569B2 (en) RRC connection re-establishment method for data transmission
JP6946321B2 (ja) シームレスのハンドオーバーをサポートする方法及びenb装置
EP3014944B1 (en) Master base station-controlled response to detected failure of radio link between secondary base station and mobile station in dual connectivity wireless networks
CN109088714B (zh) 用于传递安全密钥信息的系统和方法
US20190268818A1 (en) Method for performing handover in wireless communication system and device for same
US20230147304A1 (en) Communication Method and Communications Apparatus
WO2016119109A1 (zh) 一种切换装置及方法
JP2017514367A (ja) ベアラ管理装置、方法及び通信システム
WO2013075602A1 (zh) 实现载波聚合的方法、基站和用户设备
WO2022083484A1 (zh) 数据传输控制方法、装置及存储介质
WO2020088305A1 (zh) 一种通信方法、通信装置及系统
WO2015161575A1 (zh) 用户终端位置上报方法、基站、移动管理实体及系统
JP2021114800A (ja) 基地局、無線通信システムおよび通信方法
US20210385905A1 (en) Entity Establishment Processing Method and Apparatus
US20230354136A1 (en) Integrated access and backhaul communication method and apparatus
CN104429109B (zh) 一种通信方法及装置
JP2018174597A (ja) ベアラ管理装置、方法及び通信システム
EP4304247A1 (en) Communication method and communication apparatus
WO2018058439A1 (zh) 一种支撑数据传输的方法、装置及系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016897547

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016897547

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897547

Country of ref document: EP

Kind code of ref document: A1