WO2017171358A1 - 전자기파 신호 전송을 위한 도파관 - Google Patents

전자기파 신호 전송을 위한 도파관 Download PDF

Info

Publication number
WO2017171358A1
WO2017171358A1 PCT/KR2017/003336 KR2017003336W WO2017171358A1 WO 2017171358 A1 WO2017171358 A1 WO 2017171358A1 KR 2017003336 W KR2017003336 W KR 2017003336W WO 2017171358 A1 WO2017171358 A1 WO 2017171358A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
waveguide
present
signal
conductor portion
Prior art date
Application number
PCT/KR2017/003336
Other languages
English (en)
French (fr)
Inventor
배현민
송하일
이준영
윤태훈
원효섭
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160104466A external-priority patent/KR101874694B1/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to CN201780033146.8A priority Critical patent/CN109314297B/zh
Priority to JP2018551263A priority patent/JP6871944B2/ja
Priority to EP17775782.0A priority patent/EP3439101A4/en
Publication of WO2017171358A1 publication Critical patent/WO2017171358A1/ko
Priority to US16/145,530 priority patent/US10777868B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the present invention relates to waveguides for electromagnetic wave signal transmission.
  • optical-based interconnects with fast data transmission and reception are introduced and widely used.
  • optical-based interconnects are very expensive to install and maintain, thus perfecting conductor-based interconnects.
  • E-TUBE is an interconnect that combines the advantages of both metals and dielectrics, offering high cost and power efficiency and high speed data communication in a short range. It is gaining popularity as an interconnect that can be utilized for chip-to-chip communication.
  • the present inventors propose a technique for a dielectric waveguide having a new structure that can improve nonlinearity of phase response and mitigate signal loss in an actual communication environment.
  • the object of the present invention is to solve all the above-mentioned problems.
  • the present invention also provides a chip-to-chip by providing a waveguide comprising a dielectric portion comprising two or more dielectrics having different dielectric constants and a conductor portion surrounding at least a portion of the dielectric portion thereon. Another objective is to improve the nonlinearity of the phase response in communications and to mitigate signal loss in the actual communications environment.
  • a waveguide for transmitting a electromagnetic wave signal including a dielectric portion including two or more dielectrics having different dielectric constants, and a conductor portion surrounding at least a portion of the dielectric portion.
  • the effect of improving the nonlinearity of the phase response in the chip-to-chip communication using the waveguide can reduce the degree of change in the group delay that can occur in the time domain according to the frequency change.
  • the waveguide since the waveguide includes a dielectric portion composed of two or more dielectrics having different dielectric constants, the carrier frequency of the signal transmitted through the waveguide can be lowered, thereby effectively using the bandwidth of the signal transmission channel. The effect which becomes possible is achieved.
  • the effect of reducing the loss of the signal transmission channel in an actual communication environment in which the waveguide is lengthened or the waveguide is bent is achieved.
  • FIG. 1 is a diagram conceptually showing a configuration of a chip-to-chip interface device interconnected by a two-port network according to an embodiment of the present invention.
  • FIG. 2 is a view showing the configuration of a waveguide according to the prior art by way of example.
  • FIG. 3 is a diagram illustrating the configuration of a waveguide according to an embodiment of the present invention.
  • FIG. 5 is a diagram exemplarily illustrating a bandwidth that may be utilized when transmitting and receiving a signal using a waveguide according to an embodiment of the present invention.
  • FIG. 6 shows the results of experiments in which signal loss is measured for each of transmitting and receiving signals using a waveguide according to the related art and transmitting and receiving signals using a waveguide according to an embodiment of the present invention.
  • FIG. 7 and 8 are diagrams exemplarily illustrating a result of simulating interference between signal transmission channels according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of a waveguide according to another embodiment of the present invention.
  • 200a and 200b first microstrip circuit and second microstrip circuit
  • FIG. 1 is a diagram conceptually showing a configuration of a chip-to-chip interface device interconnected by a two-port network according to an embodiment of the present invention.
  • Waveguide 100 which is an interconnection (i.e. interconnect) means for transmitting electromagnetic signals (e.g., data communication, etc.) between two chips (not shown) and signals from the two chips above to waveguide 100
  • Microstrip circuits 200a and 200b may be included as a means of transmitting or transmitting signals from waveguide 100 to the two chips above.
  • a chip means not only an electronic circuit component having a conventional meaning, which is composed of a plurality of semiconductors such as transistors, but also any type of component or component capable of transmitting and receiving electromagnetic signals to each other. It should be understood as the broadest concept encompassing elements.
  • the signal generated from the first chip may be propagated along a feeding line and a probe of the first microstrip circuit 200a, and the first As a transition is made in the impedance discontinuity plane between the microstrip circuit 200a and the waveguide 100, it may be transmitted to the second chip through the waveguide 100.
  • the signal transmitted through the waveguide 100 is transitioned in the impedance discontinuity plane between the waveguide 100 and the second microstrip circuit 200b, so that the second microstrip circuit 200b. It may be transmitted to the second chip through.
  • FIG. 2 is a view showing the configuration of a waveguide according to the prior art by way of example.
  • the waveguide 10 may include a dielectric core 11 and a metal cladding 12 surrounding the dielectric core 11.
  • FIG. 3 is a diagram illustrating the configuration of a waveguide according to an embodiment of the present invention.
  • the waveguide 100 may include a dielectric part including two or more dielectrics having different dielectric constants and a conductor part 130 surrounding at least a portion of the dielectric part thereon. Can be.
  • two or more dielectrics included in the dielectric portion may include a first dielectric 110 and a second dielectric 120, and the second dielectric 120 may be formed of a second dielectric 120. 1 may have a shape surrounding at least a portion of the dielectric (110). For example, the second dielectric 120 may completely surround the first dielectric 110 or partially surround the first dielectric 110.
  • the first dielectric 110 is formed of a circular core ( core, and the second dielectric 120 and the conductor portion 130 may have an annular cladding shape.
  • the central axis of the dielectric part (more specifically, the central axis of the first dielectric material 110 and the central axis of the second dielectric material 120) and the central axis of the conductor part 130 are Can match each other.
  • the internal configuration or shape of the waveguide 100 according to the present invention is not necessarily limited to those listed above, it will be apparent that it can be changed as much as possible within the scope to achieve the object of the present invention.
  • the conductor portion 130 may be made of a material having electrical conductivity.
  • the conductor part 130 according to an embodiment of the present invention may be made of a metallic material, such as copper (Cu), or a non-metallic material, such as graphene, which is traditionally widely used.
  • FIG. 9 is a diagram illustrating a configuration of a waveguide according to another embodiment of the present invention.
  • the first dielectric 110 included in the waveguide 100 may be formed of two or more partial dielectrics 110a and 110b separated from each other.
  • the second dielectric 120 may have a shape surrounding at least a portion of the two or more partial dielectrics.
  • the first dielectric 110 may be made of air.
  • the waveguide 100 is disposed between the first dielectric member 110 and the conductor portion 130, and the first dielectric member 110 and the conductor portion.
  • the supporter 140 may further include a function of maintaining the space in which the second dielectric 120 exists between the 130.
  • the second dielectric 120 may be made of air.
  • the permittivity of the first dielectric 110 may be larger or smaller than that of the second dielectric 120. More specifically, according to an embodiment of the present invention, by using the first dielectric material 110 and the second dielectric material 120 having different dielectric constants, they appear as a change in frequency in the signal transmission channel through the waveguide 100. The amount of change in group delay can be greatly reduced. In particular, in the embodiment of FIG. 3, as the permittivity of the first dielectric 110 is greater than that of the second dielectric 120, the degree of change in the group delay may be reduced. A detailed description of the group delay will be given later.
  • the first dielectric 110 may be made of teflon having a dielectric constant of about 2.0
  • the second dielectric 120 may be made of polyethylene having a dielectric constant of about 1.2. have.
  • the first dielectric 110 may be made of air having a dielectric constant of about 1.0
  • the second dielectric 120 may be made of Teflon having a dielectric constant of about 2.0
  • the first dielectric 110 may be made of Teflon
  • the second dielectric 120 may be made of air.
  • the signal transmitted through the waveguide 100 is a boundary between the first dielectric material 110 and the second dielectric material 120 having different dielectric constants. Or guided along a boundary between the first dielectric 110 or the second dielectric 120 and the conductor portion 130.
  • At least two waveguides 100 may be combined in a predetermined arrangement to form a bundle, and each of the two or more waveguides 100 included in the bundle may be signaled through different signal transmission channels. It can perform the function of transmitting.
  • a non-linear phase response (non-linear)
  • the phase response may be severe, which may cause a large change in the group delay due to the frequency change in the signal transmission channel through the waveguide.
  • the group delay at the frequency of 50 GHz is close to infinity while the group delay at the frequency of 73 GHz is 20 ns. It can be seen that the deviation (or change) of the group delay in the domain is very large.
  • a waveguide that is, a waveguide composed of a first dielectric 110, a second dielectric 120, and a conductor portion 130
  • the nonlinear phase response can be reduced, thereby significantly reducing the degree of change in group delay due to the frequency change that can occur in the signal transmission channel through the waveguide.
  • the graph of FIG. 4B referring to the graph of FIG.
  • FIG. 5 is a diagram exemplarily illustrating a bandwidth that may be utilized when transmitting and receiving a signal using a waveguide according to an embodiment of the present invention.
  • the waveguide 100 includes a first dielectric 110 and a second dielectric 120 having different dielectric constants in a signal transmission channel through the waveguide 100.
  • the group delay change which may be caused by the change in frequency, may be significantly lowered, thereby allowing the user (or designer) to change the carrier frequency of the signal transmitted through the waveguide 100 to the upper corner frequency ( It is possible to lower the upper corner frequency (f c1 of FIG. 5A) to the lower corner frequency (f c2 of FIG. 5A).
  • the waveguide 100 since single side band transmission is possible, the bandwidth of the signal transmission channel can be effectively used, and the carrier frequency can be lowered.
  • the effect of enabling chip-to-chip interfaces (or signal transceivers), including 100, to operate reliably and for low power design of the chip-to-chip interface is achieved.
  • FIG. 6 is a diagram illustrating the results of experiments in which signal loss is measured for each of a signal transmission and reception using a waveguide according to the prior art and a signal transmission and reception using a waveguide according to an embodiment of the present invention.
  • the waveguide according to an embodiment of the present invention and the waveguide according to the prior art are both 15cm in length, and the two waveguides above the signal transmitted in the same degree bent.
  • the signal transmission channel characteristics and the prior art of the waveguide including all of the first dielectric, the second dielectric, and the conductor portion according to the exemplary embodiment of the present invention are described. Accordingly, the signal transmission channel characteristics of the waveguide (see (b) of FIG. 6) including only the first dielectric material and the second dielectric material (ie, not including the conductor part) can be confirmed.
  • the waveguide according to the embodiment of the present invention has a higher frequency of confining a signal in the waveguide than the waveguide according to the prior art, and thus has a high frequency band. (For example, 70 GHz to 100 GHz), it can be seen that the signal loss is less than that of the waveguide according to the prior art (that is, the signal intensity is large).
  • the signal in a waveguide including only the first dielectric and the second dielectric without including the conductor portion, the signal may be guided by total reflection at the boundary between the first dielectric and the second dielectric. If the waveguide is severely bent to the extent that total reflection does not occur as described above, the signal may not be properly guided in the waveguide and may exit the waveguide, resulting in signal loss.
  • the lower the frequency of the signal the longer the wavelength of the signal, so the difference between the performance of the waveguide according to the prior art and the waveguide according to the present invention (that is, the prevention of signal loss due to the bending of the waveguide) is the frequency of the transmitted signal
  • the lower is, the clearer it can be.
  • the waveguide according to an embodiment of the present invention, an effect of reducing the loss of the signal transmission channel in an actual communication environment in which the waveguide is lengthened or the waveguide is bent is achieved.
  • FIG. 7 and 8 are diagrams exemplarily illustrating a result of simulating interference between signal transmission channels according to an embodiment of the present invention.
  • a transition 714 between the 1-1 microstrip circuit 712 and the first waveguide 711 and the 2-1 microstrip circuit 722 and the second waveguide 721 Since the signal transfer coefficients between the transitions 724 (i.e., S31 and 810 of FIG. 8) appear very small at less than -30 dB, the interference between the two transitions 714, 715 above (i.e. It can be confirmed that 731) is small enough to be ignored.
  • the conductor portion included in two adjacent waveguides (711, 721) signal between two adjacent waveguides (711, 721) It can be said that a remarkable effect of preventing interference is achieved.
  • the dielectric part included in the waveguide according to the present invention is mainly composed of two dielectrics having different dielectric constants (that is, the first dielectric 110 and the second dielectric), but the dielectric of the waveguide according to the present invention.
  • the configuration of the parts is not necessarily limited to the above description, and may be changed as much as possible within the range capable of achieving the object or effect of the present invention.
  • the dielectric portion of the waveguide according to another embodiment of the present invention may include three or more dielectrics having different dielectric constants.
  • the configuration of the microstrip circuit according to the present invention is not necessarily limited to those enumerated above. Or it can be changed as long as the effect can be achieved.

Landscapes

  • Waveguides (AREA)

Abstract

본 발명은 전자기파 신호 전송을 위한 도파관에 관한 것이다. 본 발명의 일 태양에 따르면, 전자기파 신호 전송을 위한 도파관(waveguide)으로서, 유전율이 서로 다른 둘 이상의 유전체를 포함하는 유전체부, 및 상기 유전체부의 적어도 일부를 둘러싸는 전도체부를 포함하는 도파관이 제공된다.

Description

전자기파 신호 전송을 위한 도파관
본 발명은 전자기파 신호 전송을 위한 도파관에 관한 것이다.
데이터 트래픽이 급격하게 증가함에 따라, 집적 회로(IC)를 연결하는 입력/출력 버스(I/O bus)의 데이터 송수신 속도도 빠르게 증가하고 있다. 지난 수십 년 동안, 비용 효율성 및 전력 효율성이 우수한 전도체 기반의 인터커넥트(interconnect)(예를 들면, 구리선 등)가 유선 통신 시스템에서 널리 적용되어 왔다. 하지만, 전도체 기반의 인터커넥트는, 전자기 유도에 기한 표피 효과(skin effect)로 인하여, 채널 대역폭(channel bandwidth)에 근본적인 한계를 가지고 있다.
한편, 전도체 기반의 인터커넥트에 대한 대안으로서, 데이터 송수신 속도가 빠른 광(optical) 기반의 인터커넥트가 소개되어 널리 사용되고 있지만, 광 기반의 인터커넥트는 설치 및 유지보수 비용이 매우 크기 때문에 전도체 기반의 인터커넥트를 완벽하게 대체하기 어렵다는 한계가 존재한다.
최근에는, 유전체로 이루어진 도파관으로 구성되는 새로운 인터커넥트가 소개된 바 있다. 이러한 새로운 인터커넥트(일명, 이-튜브(E-TUBE))는 금속과 유전체의 장점을 모두 가지고 있는 인터커넥트로서, 비용 및 전력 측면에서의 효율성이 높고 짧은 범위에서 빠른 속도의 데이터 통신을 가능하게 하는 장점을 가지고 있어서, 칩-대-칩(chip-to-chip) 통신에 활용될 수 있는 인터커넥트로서 각광을 받고 있다.
하지만, 종래에 소개된 유전체 도파관을 사용하는 경우에도, 비선형적인 위상 응답(non-linear phase response)으로 인하여 시간 도메인에서 발생하는 그룹 딜레이(group delay)의 변화 또는 편차(variation)가 크게 나타나는 문제점이나 실제 통신 환경에서 도파관의 길이(length)나 구부러짐(bending)으로 인하여 신호 손실(loss)이 크게 발생하는 문제점이 존재한다.
이에, 본 발명자는, 위상 응답의 비선형성을 개선하고 실제 통신 환경에서의 신호 손실을 완화시킬 수 있는 새로운 구조의 유전체 도파관에 관한 기술을 제안하는 바이다.
본 발명은 상술한 문제점을 모두 해결하는 것을 그 목적으로 한다.
또한, 본 발명은, 유전율이 서로 다른 둘 이상의 유전체를 포함하는 유전체부와 위의 유전체부의 적어도 일부를 둘러싸는 전도체부를 포함하는 도파관(waveguide)을 제공함으로써, 칩-대-칩(chip-to-chip) 통신에서 위상 응답의 비선형성을 개선하고 실제 통신 환경에서의 신호 손실을 완화시킬 수 있도록 하는 것을 다른 목적으로 한다.
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.
본 발명의 일 태양에 따르면, 전자기파 신호 전송을 위한 도파관(waveguide)으로서, 유전율이 서로 다른 둘 이상의 유전체를 포함하는 유전체부, 및 상기 유전체부의 적어도 일부를 둘러싸는 전도체부를 포함하는 도파관이 제공된다.
이 외에도, 본 발명을 구현하기 위한 다른 도파관이 더 제공된다.
본 발명에 의하면, 도파관을 이용한 칩-대-칩 통신에서 위상 응답의 비선형성을 개선하여 주파수의 변화에 따라 시간 도메인에서 발생할 수 있는 그룹 딜레이의 변화 정도를 줄일 수 있게 되는 효과가 달성된다.
또한, 본 발명에 의하면, 도파관이 유전율이 서로 다른 둘 이상의 유전체로 구성되는 유전체부를 포함하도록 함으로써 도파관을 통해 전송되는 신호의 반송 주파수(carrier frequency)를 낮출 수 있으므로, 신호 전송 채널의 대역폭을 효과적으로 사용할 수 있게 되는 효과가 달성된다.
본 발명에 의하면, 도파관의 길이가 길어지거나 도파관이 휘어지는 실제 통신 환경에서 신호 전송 채널의 손실을 줄일 수 있게 되는 효과가 달성된다.
도 1은 본 발명의 일 실시예에 따라 2-포트(port) 네트워크로 상호 연결된 칩-대-칩 인터페이스(chip-to-chip interface) 장치의 구성을 개념적으로 나타내는 도면이다.
도 2는 종래 기술에 따른 도파관의 구성을 예시적으로 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 도파관의 구성을 예시적으로 나타내는 도면이다.
도 4는 종래 기술에 따른 도파관을 이용하여 신호를 송수신하는 경우와 본 발명의 일 실시예에 따른 도파관을 이용하여 신호를 송수신하는 경우 각각에 대하여 시간 도메인에서의 그룹 딜레이(group delay)를 측정한 실험의 결과를 나타내는 도면이다.
도 5는 본 발명의 일 실시예에 따른 도파관을 이용하여 신호를 송수신하는 경우에 활용될 수 있는 대역폭을 예시적으로 나타내는 도면이다.
도 6은 종래 기술에 따른 도파관을 이용하여 신호를 송수신하는 경우와 본 발명의 일 실시예에 따른 도파관을 이용하여 신호를 송수신하는 경우 각각에 대하여 신호 손실(loss)을 측정한 실험의 결과를 나타내는 도면이다.
도 7 및 도 8은 본 발명의 일 실시예에 따라 신호 전송 채널의 사이의 간섭을 시뮬레이션한 결과를 예시적으로 나타내는 도면이다.
도 9는 본 발명의 다른 실시예에 따른 도파관의 구성을 예시적으로 나타내는 도면이다.
<부호의 설명>
10, 20: 종래 기술에 따른 도파관
11: 종래 기술에 따른 도파관의 코어
12: 종래 기술에 따른 도파관의 클래딩
100: 도파관
110: 제1 유전체
120: 제2 유전체
130: 전도체부
200a 및 200b: 제1 마이크로스트립 회로 및 제2 마이크로스트립 회로
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
칩-대-칩 인터페이스 장치의 구성
도 1은 본 발명의 일 실시예에 따라 2-포트(port) 네트워크로 상호 연결된 칩-대-칩 인터페이스(chip-to-chip interface) 장치의 구성을 개념적으로 나타내는 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 칩-대-칩 인터페이스 장치에는, 물리적으로 분리되어 있는 두 보드(미도시됨)에 각각 존재하거나 하나의 보드(미도시됨)에 존재하는 두 칩(미도시됨) 사이의 전자기파 신호 전송(예를 들면, 데이터 통신 등)을 위한 상호 연결(즉, 인터커넥트) 수단인 도파관(100) 및 위의 두 칩으로부터의 신호를 도파관(100)으로 전달하거나 도파관(100)으로부터의 신호를 위의 두 칩으로 전달하는 수단인 마이크로스트립 회로(200a, 200b)가 포함될 수 있다. 본 발명에서 말하는 칩(chip)은, 트랜지스터와 같은 반도체 등이 여러 개 모여 구성되는 전통적인 의미의 전자 회로 부품을 의미할 뿐만 아니라, 서로 간에 전자기파 신호를 주고 받을 수 있을 수 있는 모든 유형의 구성요소 또는 소자(素子, element)를 포괄하는 최광의의 개념으로서 이해되어야 한다.
본 발명의 일 실시예에 따르면, 제1 칩으로부터 발생되는 신호는, 제1 마이크로스트립 회로(200a)의 피딩 라인(feeding line) 및 프로브(probe)를 따라 전파(propagate)될 수 있고, 제1 마이크로스트립 회로(200a)와 도파관(100) 사이의 임피던스 불연속면에서 트랜지션(transition)됨에 따라 도파관(100)을 통하여 제2 칩에 대하여 전송될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 도파관(100)을 통하여 전송된 신호는 도파관(100)과 제2 마이크로스트립 회로(200b) 사이의 임피던스 불연속면에서 트랜지션됨에 따라 제2 마이크로스트립 회로(200b)를 통하여 제2 칩으로 전송될 수 있다.
도파관의 구성
이하에서는, 본 발명의 구현을 위하여 중요한 기능을 수행하는 도파관(100)의 내부 구성 및 각 구성요소의 기능에 대하여 살펴보기로 한다.
도 2는 종래 기술에 따른 도파관의 구성을 예시적으로 나타내는 도면이다.
도 2를 참조하면, 종래 기술에 따른 도파관(10)은 유전체 코어(dielectric core)(11) 및 유전체 코어(11)를 둘러싸는 금속 클래딩(metal cladding)(12)을 포함할 수 있다.
종래 기술에 따른 도파관을 이용하여 신호를 전송하는 경우에는, 비선형적인 위상 응답(non-linear phase response)으로 인하여 시간 도메인에서 발생하는 그룹 딜레이(group delay)의 변화 또는 편차(variation)가 크게 나타나는 문제점이 발생할 수 있고, 실제 통신 환경에서 도파관의 길이(length)나 구부러짐(bending)으로 인하여 신호 손실(loss)이 크게 발생하는 문제점도 발생할 수 있다.
도 3은 본 발명의 일 실시예에 따른 도파관의 구성을 예시적으로 나타내는 도면이다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 도파관(100)은, 유전율이 서로 다른 둘 이상의 유전체를 포함하는 유전체부와 위의 유전체부의 적어도 일부를 둘러싸는 전도체부(130)를 포함할 수 있다.
구체적으로, 본 발명의 일 실시예에 따르면, 유전체부에 포함되는 둘 이상의 유전체에는 제1 유전체(dielectric)(110) 및 제2 유전체(120)가 포함될 수 있고, 제2 유전체(120)는 제1 유전체(110)의 적어도 일부를 둘러싸는 형상을 가질 수 있다. 예를 들면, 제2 유전체(120)는 제1 유전체(110)를 전부 둘러싸거나 제1 유전체를 부분적으로 둘러쌀 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따르면, 도 3에 도시된 바와 같이, 도파관(100)을 그 길이에 수직한 방향으로 자른 단면에서 보았을 때, 제1 유전체(110)는 원형의 코어(core)의 형상을 가질 수 있고, 제2 유전체(120) 및 전도체부(130)는 환형의 클래딩(cladding)의 형상을 가질 수 있다. 또한, 본 발명의 일 실시예에 따르면, 유전체부의 중심축(보다 구체적으로는, 제1 유전체(110)의 중심축 및 제2 유전체(120)의 중심축)과 전도체부(130)의 중심축은 서로 일치할 수 있다.
다만, 본 발명에 따른 도파관(100)의 내부 구성 또는 형상이 반드시 상기 열거된 바에 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 범위 내에서 얼마든지 변경될 수 있음을 밝혀 둔다.
한편, 본 발명의 일 실시예에 따르면, 전도체부(130)는 전기 전도성을 가지는 물질로 이루어질 수 있다. 예를 들면, 본 발명의 일 실시예에 따른 전도체부(130)는, 전통적으로 널리 사용되는 구리(Cu)와 같은 금속성 물질로 이루어지거나 그래핀(graphene)과 같은 비금속성 물질로 이루어질 수 있다.
도 9는 본 발명의 다른 실시예에 따른 도파관의 구성을 예시적으로 나타내는 도면이다.
도 9의 (a)를 참조하면, 본 발명의 다른 실시예에 따른 도파관(100)에 포함되는 제1 유전체(110)는 서로 분리된 둘 이상의 부분 유전체(110a. 110b)로 이루어질 수 있고, 제2 유전체(120)는 위의 둘 이상의 부분 유전체의 적어도 일부를 둘러싸는 형상을 가질 수 있다. 도 9의 (a)의 실시예에서, 제1 유전체(110)는 공기로 이루어질 수 있다.
도 9의 (b)를 참조하면, 본 발명의 다른 실시예에 따른 도파관(100)에는, 제1 유전체(110) 및 전도체부(130) 사이에 배치되고, 제1 유전체(110) 및 전도체부(130) 사이에서 제2 유전체(120)가 존재하는 공간이 유지되도록 하는 기능을 수행하는 지지부(140)가 더 포함될 수 있다. 도 9의 (b)의 실시예에서, 제2 유전체(120)는 공기로 이루어질 수 있다.
한편, 본 발명의 일 실시예에 따르면, 제1 유전체(110)의 유전율(permittivity)은 제2 유전체(120)의 유전율보다 크거나 작을 수 있다. 보다 구체적으로, 본 발명의 일 실시예에 따르면, 유전율이 서로 다른 제1 유전체(110) 및 제2 유전체(120)를 사용함으로써, 도파관(100)을 통한 신호 전송 채널에서 주파수의 변화에 따라 나타나는 그룹 딜레이의 변화 정도를 획기적으로 줄일 수 있게 된다. 특히, 도 3의 실시예에서, 제1 유전체(110)의 유전율이 제2 유전체(120)의 유전율보다 클수록 위의 그룹 딜레이의 변화 정도가 줄어들 수 있다. 그룹 딜레이에 관한 자세한 설명은 후술하기로 한다.
예를 들면, 제1 유전체(110)는 유전 상수(dielectric constant)가 약 2.0인 테프론(teflon)으로 이루어질 수 있고, 제2 유전체(120)는 유전 상수가 약 1.2인 폴리에틸렌(polyethylene)으로 이루어질 수 있다. 또한, 다른 예를 들면, 제1 유전체(110)는 유전 상수가 약 1.0인 공기로 이루어질 수 있고, 제2 유전체(120)는 유전 상수가 약 2.0인 테프론으로 이루어질 수 있다. 반대로, 제1 유전체(110)는 테프론으로 이루어지고, 제2 유전체(120)는 공기로 이루어질 수도 있다.
따라서, 본 발명의 일 실시예에 따르면, 도파관(100)을 통하여 전송되는 신호(즉, 전자기파)는, 유전율이 서로 다른 제1 유전체(110)와 제2 유전체(120) 사이의 경계(boundary)를 따라 가이드되거나 제1 유전체(110) 또는 제2 유전체(120)와 전도체부(130) 사이의 경계를 따라 가이드될(guided) 수 있다.
한편, 도면에 의하여 도시되어 있지는 않지만, 본 발명의 일 실시예에 따르면, 둘 이상의 도파관(100)(즉, 둘 이상의 도파관(100) 각각이 제1 유전체(110), 제2 유전체(120) 및 전도체부(130)를 포함함)이 둘 이상이 소정의 배열을 이룬 상태로 결합되어 다발을 형성할 수 있으며, 이러한 다발에 포함되는 둘 이상의 도파관(100) 각각은 서로 다른 신호 전송 채널을 통하여 신호를 전송하는 기능을 수행할 수 있다.
도 4는 종래 기술에 따른 도파관을 이용하여 신호를 송수신하는 경우와 본 발명의 일 실시예에 따른 도파관을 이용하여 신호를 송수신하는 경우 각각에 대하여 시간 도메인에서의 그룹 딜레이를 측정한 실험의 결과를 나타내는 도면이다.
먼저, 도 4의 (a)를 참조하면, 종래 기술에 따른 도파관(즉, 유전체 코어(11) 및 금속 클래딩(12)으로 구성되는 도파관)을 사용하는 경우에, 비선형적인 위상 응답(non-linear phase response)이 심하게 나타날 수 있고, 이로 인해 도파관을 통한 신호 전송 채널에서 주파수의 변화에 따른 그룹 딜레이의 변화 정도가 크게 나타날 수 있다. 실제로, 도 4의 (a)의 그래프를 참조하면, 50GHz의 주파수에서의 그룹 딜레이가 무한대에 가까운 반면에 73GHz의 주파수에서의 그룹 딜레이는 20ns일 정도로, 주파수 대역이 달라짐에 따라 나타나는 전송 신호의 시간 도메인에서의 그룹 딜레이의 편차(또는 변화)가 매우 큰 것을 확인할 수 있다.
다음으로, 도 4의 (b)를 참조하면, 본 발명의 일 실시예에 따른 도파관(즉, 제1 유전체(110), 제2 유전체(120) 및 전도체부(130)로 구성되는 도파관)을 사용하는 경우에, 비선형적인 위상 응답을 줄이고 그로 인해 도파관을 통한 신호 전송 채널에서 나타날 수 있는 주파수의 변화에 따른 그룹 딜레이의 변화 정도도 획기적으로 줄일 수 있다. 실제로, 도 4의 (b)의 그래프를 참조하면, 50GHz에서 73GHz까지의 주파수 대역 전체에 걸쳐서 그룹 딜레이가 7ns 내지 8ns의 수준을 일정하게 유지하는 것으로 나타났으며, 이러한 실험 결과로부터, 본 발명의 일 실시예에 따른 도파관(100)을 사용하면, 주파수 대역이 달라짐에 따라 나타나는 전송 신호의 시간 도메인에서의 그룹 딜레이의 편차(또는 변화)가 획기적으로 낮아질 수 있음을 확인할 수 있다.
도 5는 본 발명의 일 실시예에 따른 도파관을 이용하여 신호를 송수신하는 경우에 활용될 수 있는 대역폭을 예시적으로 나타내는 도면이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 도파관(100)은, 유전율이 서로 다른 제1 유전체(110) 및 제2 유전체(120)를 포함함으로써 도파관(100)을 통한 신호 전송 채널에서 주파수의 변화에 따라 나타날 수 있는 그룹 딜레이 변화가 획기적으로 낮아지도록 할 수 있고, 이에 따라 사용자(또는 설계자)로 하여금 도파관(100)을 통해 전송되는 신호의 반송 주파수(carrier frequency)를 어퍼 코너 주파수(upper corner frequency)(도 5의 (a)의 fc1)에서 로우어 코너 주파수(lower corner frequency)(도 5의 (a)의 fc2)로 낮출 수 있도록 할 수 있게 된다.
따라서, 본 발명의 일 실시예에 따른 도파관(100)에 의하면, 단측 파대 전송(single side band transmission)이 가능하게 되므로 신호 전송 채널의 대역폭을 효과적으로 사용할 수 있게 되고, 반송 주파수를 낮출 수 있으므로 도파관(100)을 비롯한 칩-투-칩 인터페이스(더 나아가, 신호 송수신기)가 신뢰성 있게 동작할 수 있게 되고 칩-투-칩 인터페이스의 저전력 설계가 가능하게 하는 효과가 달성된다.
이에 반하여, 제2 유전체(120)를 포함하지 않는 종래 기술에 따른 도파관을 사용하는 경우에는(도 4의 (a) 참조), 로우어 코너 주파수 부근에서 이미 상당히 비선형적인 위상 응답이 발생하기 때문에, 만약 반송 주파수를 로우어 코너 주파수로 낮추게 되면 전송 신호가 심하게 왜곡(distortion)되는 것을 피할 수 없게 된다.
도 6은 종래 기술에 따른 도파관을 이용하여 신호를 송수신하는 경우와 본 발명의 일 실시예에 따른 도파관을 이용하여 신호를 송수신하는 경우 각각에 대하여 신호 손실을 측정한 실험의 결과를 나타내는 도면이다. 도 6의 실시예에서, 본 발명의 일 실시예에 따른 도파관과 종래 기술에 따른 도파관은 그 길이가 모두 15cm이고, 위의 두 도파관은 동일한 정도로 휘어진 상태에서 신호를 전송하였다.
도 6의 (c)를 참조하면, 본 발명의 일 실시예에 따라 제1 유전체, 제2 유전체 및 전도체부를 모두 포함하는 도파관(도 6의 (a) 참조)의 신호 전송 채널 특성과 종래 기술에 따라 제1 유전체 및 제2 유전체만을 포함하는(즉, 전도체부를 포함하지 않는) 도파관(도 6의 (b) 참조)의 신호 전송 채널 특성을 각각 확인할 수 있다. 구체적으로, 도 6의 (c)를 참조하면, 본 발명의 일 실시예에 따른 도파관은, 종래 기술에 따른 도파관에 비하여 도파관 내에 신호를 가둘 수 있는 성능이 높기 때문에(high confinement), 넓은 주파수 대역(예를 들면, 70GHz 내지 100GHz)에 걸쳐서 종래 기술에 따른 도파관보다 신호 손실이 적게 나타나는 것(즉, 신호의 세기가 크게 나타나는 것)을 확인할 수 있다.
보다 구체적으로, 종래 기술에 따라 전도체부를 포함하지 않은 채 제1 유전체 및 제2 유전체만을 포함하는 도파관에서는, 제1 유전체 및 제2 유전체 사이의 경계에서 이루어지는 전반사에 의하여 신호가 가이드될 수 있는데, 만약 위와 같은 전반사가 발생하지 못하게 되는 정도까지 도파관이 심하게 휘어지면 신호가 도파관 내에서 제대로 가이드되지 못하고 도파관 밖으로 빠져나가게 될 수 있으며, 이로 인해 신호 손실이 발생하게 된다. 이와는 달리, 본 발명에 따라 제1 유전체, 제2 유전체 및 전도체부를 모두 포함하는 도파관에서는, 제1 유전체 및 제2 유전체 사이의 경계에 전반사가 이루어지지 못하게 될 정도로 도파관이 심하게 휘어지더라도, 제1 유전체 및 제2 유전체 사이의 경계에서 전반사되지 못하고 밖으로 빠져나간 신호가 제2 유전체 및 전도체부 사이의 경계를 따라 가이드될 수 있으므로, 신호가 도파관 밖으로 새어나가는 것을 방지하여 신호 손실을 줄일 수 있게 됩니다. 또한, 신호의 주파수가 낮을수록 신호의 파장은 길어지게 되므로, 종래 기술에 따른 도파관과 본 발명에 따른 도파관 사이의 성능(즉, 도파관의 휨으로 인한 신호 손실 방지 성능) 차이는 전송되는 신호의 주파수가 낮을수록 더 극명해질 수 있다.
따라서, 본 발명의 일 실시예에 따른 도파관에 의하면, 도파관의 길이가 길어지거나 도파관이 휘어지는 실제 통신 환경에서 신호 전송 채널의 손실을 줄일 수 있게 되는 효과가 달성된다.
도 7 및 도 8은 본 발명의 일 실시예에 따라 신호 전송 채널의 사이의 간섭을 시뮬레이션한 결과를 예시적으로 나타내는 도면이다.
도 7의 실시예에서, 0.5mm의 간격을 두고 가깝게 배치된 두 도파관(711, 721) 각각을 통하여 전자기파 신호를 전송하는 경우를 가정할 수 있다.
이러한 경우에, 도 8을 참조하면, 제1-1 마이크로스트립 회로(712) 및 제1 도파관(711) 사이의 트랜지션(714)과 제2-1 마이크로스트립 회로(722) 및 제2 도파관(721) 사이의 트랜지션(724) 사이의 신호 전달 계수(즉, 도 8의 S31 및 810)가 -30dB 이하로 매우 작게 나타나므로, 위의 두 트랜지션(714, 715) 사이의 간섭(즉, 도 7의 731)이 무시할 수 있을 정도로 작다는 것을 확인할 수 있다.
계속하여, 도 8을 참조하면, 제1-1 마이크로스트립 회로(712) 및 제1 도파관(711) 사이의 트랜지션(714)과 제2-2 마이크로스트립 회로(723) 및 제2 도파관(721) 사이의 트랜지션(725) 사이의 신호 전달 계수(즉, 도 8의 S41 및 820) 역시 -30dB 이하로 매우 작게 나타나므로, 위의 두 도파관(711, 721) 사이의 간섭(즉, 도 7의 732)도 무시할 수 있을 정도로 작다는 것을 확인할 수 있다.
따라서, 본 발명의 일 실시예에 따르면, 도 7 및 도 8의 실시예에서 확인할 수 있는 바와 같이, 인접한 두 도파관(711, 721)에 포함되는 전도체부가 인접한 두 도파관(711, 721) 상호 간의 신호 간섭을 방지하게 되는 현저한 효과가 달성된다고 할 수 있다.
이상에서, 본 발명에 따른 도파관에 포함되는 유전체부가 유전율이 서로 다른 두 유전체(즉, 제1 유전체(110) 및 제2 유전체)로 구성되는 경우에 대하여 주로 설명되었지만, 본 발명에 따른 도파관의 유전체부의 구성이 반드시 위의 설명에 한정되는 것은 아니며, 본 발명의 목적 또는 효과를 달성할 수 있는 범위 내에서 얼마든지 변경될 수 있음을 밝혀 둔다. 예를 들면, 본 발명의 다른 실시예에 따른 도파관의 유전체부에는, 유전율이 서로 다른 셋 이상의 유전체가 포함될 수도 있다.
이상에서, 본 발명에 따른 도파관에 포함되는 구성요소에 관한 세부 사양 또는 파라미터에 대하여 구체적으로 설명되었지만, 본 발명에 따른 마이크로스트립 회로의 구성이 반드시 상기 열거된 바에 한정되는 것은 아니며, 본 발명의 목적 또는 효과를 달성할 수 있는 범위 내에서 얼마든지 변경될 수 있음을 밝혀 둔다.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (8)

  1. 전자기파 신호 전송을 위한 도파관(waveguide)으로서,
    유전율이 서로 다른 둘 이상의 유전체를 포함하는 유전체부, 및
    상기 유전체부의 적어도 일부를 둘러싸는 전도체부
    를 포함하는 도파관.
  2. 제1항에 있어서,
    상기 둘 이상의 유전체에는 제1 유전체 및 제2 유전체가 포함되고, 상기 제2 유전체는 상기 제1 유전체의 적어도 일부를 둘러싸는 도파관.
  3. 제2항에 있어서,
    상기 제1 유전체의 중심축, 상기 제2 유전체의 중심축 및 상기 전도체부의 중심축은 서로 일치하는 도파관.
  4. 제2항에 있어서,
    상기 제1 유전체 및 상기 전도체부 사이에 배치되고, 상기 제1 유전체 및 상기 전도체부 사이에서 상기 제2 유전체가 존재하는 공간이 유지되도록 하는 지지부
    를 더 포함하는 도파관.
  5. 제2항에 있어서,
    상기 제1 유전체는 서로 분리된 둘 이상의 부분 유전체로 이루어지고, 상기 제2 유전체는 상기 둘 이상의 부분 유전체의 적어도 일부를 둘러싸는 도파관
  6. 제1항에 있어서,
    상기 제1 유전체 및 상기 제2 유전체 중 어느 하나는 공기로 이루어지는 도파관.
  7. 제1항에 있어서,
    상기 도파관을 통하여 전송되는 신호는, 상기 제1 유전체와 상기 제2 유전체 사이의 경계(boundary)를 따라 가이드되거나 상기 제1 유전체 또는 상기 제2 유전체와 상기 전도체부 사이의 경계를 따라 가이드되는(guided) 도파관.
  8. 제1항에 있어서,
    상기 도파관을 통한 신호 전송 채널에서 주파수의 변화에 따라 나타나는 시간 도메인에서의 그룹 딜레이(group delay)의 변화 정도가 기설정된 수준 이하인 도파관.
PCT/KR2017/003336 2016-03-28 2017-03-28 전자기파 신호 전송을 위한 도파관 WO2017171358A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780033146.8A CN109314297B (zh) 2016-03-28 2017-03-28 用于传输电磁波信号的波导管
JP2018551263A JP6871944B2 (ja) 2016-03-28 2017-03-28 電磁波信号伝送のための導波管
EP17775782.0A EP3439101A4 (en) 2016-03-28 2017-03-28 WAVE GUIDE FOR THE TRANSMISSION OF ELECTROMAGNETIC SIGNALS
US16/145,530 US10777868B2 (en) 2016-03-28 2018-09-28 Waveguide comprising first and second dielectric parts, where the first dielectric part comprises two or more separate dielectric parts

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0037141 2016-03-28
KR10-2016-0037121 2016-03-28
KR20160037141 2016-03-28
KR20160037121 2016-03-28
KR10-2016-0104466 2016-08-17
KR1020160104466A KR101874694B1 (ko) 2016-03-28 2016-08-17 전자기파 신호 전송을 위한 도파관

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/145,530 Continuation US10777868B2 (en) 2016-03-28 2018-09-28 Waveguide comprising first and second dielectric parts, where the first dielectric part comprises two or more separate dielectric parts

Publications (1)

Publication Number Publication Date
WO2017171358A1 true WO2017171358A1 (ko) 2017-10-05

Family

ID=59964910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003336 WO2017171358A1 (ko) 2016-03-28 2017-03-28 전자기파 신호 전송을 위한 도파관

Country Status (1)

Country Link
WO (1) WO2017171358A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220352639A1 (en) * 2021-04-30 2022-11-03 The Board Of Trustees Of The University Of Alabama Miniaturized reflector antenna
EP4329087A1 (en) * 2022-08-26 2024-02-28 indie Semiconductor FFO GmbH Dielectric waveguide data interface and sensor system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417742B1 (en) * 1999-05-25 2002-07-09 Sharp Kabushiki Kaisha Circular polarizer having two waveguides formed with coaxial structure
JP2002543449A (ja) * 1999-04-23 2002-12-17 マサチューセッツ インスティテュート オブ テクノロジー 全誘電性同軸導波管
JP2008028523A (ja) * 2006-07-19 2008-02-07 Fukui Prefecture 誘電体ケーブルおよび導波管
US20140368301A1 (en) * 2013-06-12 2014-12-18 Texas Instruments Incorporated Dielectric Waveguide with Conductive Coating
US20150295299A1 (en) * 2014-04-09 2015-10-15 Texas Instruments Incorporated Frequency Selector for mm-wave Communication using a Dielectric Waveguide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543449A (ja) * 1999-04-23 2002-12-17 マサチューセッツ インスティテュート オブ テクノロジー 全誘電性同軸導波管
US6417742B1 (en) * 1999-05-25 2002-07-09 Sharp Kabushiki Kaisha Circular polarizer having two waveguides formed with coaxial structure
JP2008028523A (ja) * 2006-07-19 2008-02-07 Fukui Prefecture 誘電体ケーブルおよび導波管
US20140368301A1 (en) * 2013-06-12 2014-12-18 Texas Instruments Incorporated Dielectric Waveguide with Conductive Coating
US20150295299A1 (en) * 2014-04-09 2015-10-15 Texas Instruments Incorporated Frequency Selector for mm-wave Communication using a Dielectric Waveguide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439101A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220352639A1 (en) * 2021-04-30 2022-11-03 The Board Of Trustees Of The University Of Alabama Miniaturized reflector antenna
EP4329087A1 (en) * 2022-08-26 2024-02-28 indie Semiconductor FFO GmbH Dielectric waveguide data interface and sensor system

Similar Documents

Publication Publication Date Title
CN109314297B (zh) 用于传输电磁波信号的波导管
CN111557124B (zh) 具有耦合到电磁吸收材料的桩部的印刷电路板(pcb)
WO2016140401A1 (ko) 마이크로스트립 회로 및 유전체 웨이브가이드를 이용한 칩-대-칩 인터페이스
WO2017171358A1 (ko) 전자기파 신호 전송을 위한 도파관
WO2018139846A1 (ko) 전송선로-도파관 전이 장치
WO2019194668A1 (ko) 전자기파 신호 전송을 위한 도파관
WO2016072647A1 (ko) 듀플렉서
US10658739B2 (en) Wireless printed circuit board assembly with integral radio frequency waveguide
Aihara et al. Minimizing differential crosstalk of vias for high-speed data transmission
WO2019194657A1 (ko) 도파관 및 보드를 연결하는 커넥터
WO2020116715A1 (ko) 소형 저손실 밀리미터파 전력 분배 결합 장치
WO2017171359A1 (ko) 전자기파 신호를 전송하기 위한 도파관 및 이를 포함하는 칩-대-칩 인터페이스 장치
WO2016148429A1 (ko) 연성회로기판
KR100541246B1 (ko) 차동 쌍 접속 장치
WO2016072643A2 (ko) 필터
Chada et al. Crosstalk Impact of Periodic-Coupled Routing on Eye Opening of High-Speed Links in PCBs
WO2017171360A2 (ko) 전자기파 신호를 전송하기 위한 마이크로스트립-도파관 트랜지션
US20240276634A1 (en) Shielding structure and circuit board
WO2019164038A1 (ko) 저대역 통과 필터 특성이 포함된 전력 결합기
JPH03218507A (ja) 光パラレルデータ伝送方式

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018551263

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775782

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775782

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775782

Country of ref document: EP

Kind code of ref document: A1