WO2017171136A1 - Plasma torch and cutting device using same - Google Patents

Plasma torch and cutting device using same Download PDF

Info

Publication number
WO2017171136A1
WO2017171136A1 PCT/KR2016/006159 KR2016006159W WO2017171136A1 WO 2017171136 A1 WO2017171136 A1 WO 2017171136A1 KR 2016006159 W KR2016006159 W KR 2016006159W WO 2017171136 A1 WO2017171136 A1 WO 2017171136A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma torch
pipe
section
electrode
plasma
Prior art date
Application number
PCT/KR2016/006159
Other languages
French (fr)
Korean (ko)
Inventor
황원규
Original Assignee
황원규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황원규 filed Critical 황원규
Publication of WO2017171136A1 publication Critical patent/WO2017171136A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0282Carriages forming part of a welding unit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the present disclosure relates to a plasma torch for cutting and a cutting device using the same.
  • the plasma torch is a tool for generating high temperature plasma, and is mainly used for cutting a cutting material (base material).
  • the above-mentioned high temperature plasma has an arc in which working gas (argon, hydrogen, nitrogen, etc.) supplied from the body of the plasma torch is generated between the electrode [-] and the nozzle [+] or between the electrode [-] and the cutting material [+]. It is produced by reacting with (Arc).
  • working gas argon, hydrogen, nitrogen, etc.
  • the performance of the plasma torch greatly depends on the shape of the electrode and the nozzle, the flow rate and flow rate of the working gas, and the like.
  • FIG. 1 schematically shows the internal structure of the head 1 of a conventional plasma torch.
  • the head 1 of the conventional plasma torch includes an electrode 20 surrounding the cooling tube 10, a swirling 30 surrounding the electrode 20, and a nozzle disposed below the electrode 20. 40, etc. are comprised.
  • the working gas (WG) is supplied from the body (not shown)
  • the supplied working gas (WG) is obliquely around the swirling 30
  • the drilled inlet hole 32 Through the drilled inlet hole 32, it is introduced into the space between the inner circumferential surface of the swirl ring 30 and the outer circumferential surface of the electrode 20, thereby moving the electrode 20 at high speed and moving downward.
  • the front end of the electrode of the conventional plasma torch is tapered, and the conical space on the inner surface of the nozzle Is formed.
  • the conventional plasma torch is limited in the swirling of the working gas, thereby generating a rhombus-shaped plasma that cannot form the cut surface of the cutting material close to a straight line (vertical). There is a problem.
  • Patent Document 1 Korean Patent Application No. 10-2015-0084951 (2015.06.16.)
  • Patent Document 2 Korean Patent Application No. 10-2015-0046879 (2015.04.02.)
  • Patent Document 3 Korean Laid-Open Patent Publication No. 10-2015-0055066 (2013.12.25.)
  • Disclosed is a task to provide a plasma torch and a cutting device using the same, in which the working gas is naturally swirled and ejected.
  • a plasma torch is formed in which a working gas is naturally swirled and ejected by having an electrode whose end is processed into a teat shape and an inner side of which has a nozzle formed in a shape corresponding to the end of the electrode. Is presented.
  • the plasma torch supplies a gas and a current, and a body having a cooling tube in the center thereof;
  • An acceleration pipe surrounding an outer circumference of the cooling tube, one end of which is coupled to the body, and receiving and delivering current from the body;
  • a swirl pipe unit wrapped around an outer circumference of the acceleration pipe, such that a first section through which an operating gas moves is formed between an inner circumferential surface and an outer circumferential surface of the acceleration pipe, and a plurality of inflow holes in which the working gas flows around one side is obliquely drilled.
  • An electrode coupled to the other end of the acceleration pipe and having an end processed in a teat shape;
  • a nozzle covering an outer side of the electrode, the inner side of which has a shape corresponding to an end of the electrode, and a second section communicating with the first section between the inner side and the outer side of the electrode;
  • a nozzle fixing cap covering the nozzle.
  • a shield and a shield cap may be further provided at the front end of the nozzle cap.
  • the swirl pipe unit may include: a swirl pipe having the inlet hole formed around one side thereof; And an insulation pipe surrounding the outer circumference of the swirl pipe, wherein the current of the same pole as the acceleration pipe may flow in the swirl pipe.
  • a branch section is formed between the outer circumferential surface of the swirl pipe and the inner circumferential surface of the insulated pipe so that a working gas may branch and flow, and a plurality of communication communicating the first section and the branch section around the other side of the swirl pipe. Holes may be formed.
  • a table on which the cutting material is mounted A gantry installed on the table; A moving block installed in the gantry; An air tank provided on an upper portion of the moving block; The plasma torch installed under the moving block; And a field cap provided at the front end of the plasma torch, and having a plurality of air holes formed at the end thereof, to receive air from the air tank and spray the by-products from the cutting material during processing.
  • a cutting device is shown.
  • the cutting device may be further provided with a position sensor for detecting the position of the plasma torch.
  • the plasma torch presented in the previous section has the following effects.
  • the working gas is ejected smoothly between the electrode and the nozzle, thereby generating a cylindrical plasma that can vertically form the cut surface of the cutting material.
  • the cutting device presented in the previous section can minimize damage to the plasma torch due to by-products splashing from the cutting material during piercing processing.
  • FIG. 1 shows the internal structure of a head 1 of a conventional plasma torch.
  • FIG. 2 is an exploded perspective view of a plasma torch 100 in accordance with an embodiment of the disclosed subject matter.
  • FIG 3 is a cutaway view of a plasma torch 100 in accordance with an embodiment of the disclosed subject matter.
  • FIG. 4 is a cross-sectional view of a plasma torch 100 in accordance with an embodiment of the disclosed subject matter.
  • FIG. 5 is an enlarged view of portion 'A' of FIG. 4; FIG.
  • FIG. 6 is a perspective view of a cutting device 200 according to an embodiment of the disclosed subject matter.
  • FIG. 7 is a front view of a cutting device 200 according to an embodiment of the disclosed subject matter.
  • FIG 8 is a view showing a coupling relationship between the plasma torch 100 and the field cap 250.
  • Cooling tube 160 Nozzle Fixing Cap
  • FIG. 2 is an exploded perspective view of the plasma torch 100 according to the embodiment, and FIG. 3 is a cutaway view of the plasma torch 100.
  • the plasma torch 100 includes a body 110, an acceleration pipe 120, a swirl pipe unit 130, an electrode 140, a nozzle 150, and a nozzle. It comprises a fixing cap 160.
  • FIG 4 illustrates the internal structure of the plasma torch 100 in detail.
  • the body 110 supplies the gases WG and SG, the current, and the cooling fluid CF.
  • a cooling tube 112 In the center of the body 110 is provided a cooling tube 112 through which the cooling fluid CF flows.
  • the acceleration pipe 120 surrounds the outer circumference of the cooling tube 112, and one end is coupled to the body 110.
  • the cooling fluid CF is distributed in the internal space of the acceleration pipe 120.
  • the acceleration pipe 120 serves as a medium for receiving a current from the body 110 and delivering it to the electrode 140 to be described later.
  • the working gas WG moves to the first section A, which will be described later, and serves as a path having a predetermined length so as to secure sufficient rotational inertia.
  • the swirl pipe unit 130 surrounds the outer circumference of the acceleration pipe 120.
  • a first section A through which the working gas WG supplied from the body 110 moves is formed between the inner circumferential surface of the swirl pipe unit 130 and the outer circumferential surface of the acceleration pipe 120.
  • a plurality of inlet holes 132 may be constant to allow the working gas WG supplied from the body 110 to flow into the first section A.
  • FIG. Formed at intervals.
  • the inlet hole 132 is obliquely drilled in the swirl pipe unit 130 so that the working gas WG introduced into the first section A can be swirled.
  • the swirl pipe unit 130 may be composed of a swirl pipe 130a and an insulation pipe 130b.
  • the inlet hole 132 described above is formed around one side of the swirl pipe 130a, and the insulation pipe 130b surrounds the outer circumference of the swirl pipe 130a.
  • FIG. 5 a portion 'A' of FIG. 4 may be enlarged to understand the flow of working gas WG.
  • the acceleration pipe 120 and the swirl pipe 130a may be respectively provided.
  • a magnetic field is formed, the electromagnetic force (force) of each magnetic field acting toward the first section (A).
  • the conductive working gas WG that moves the first section A is pinched by two magnetic fields, moving away from the inner wall of the swirl pipe 130a and the outer wall of the acceleration pipe 120. As a result, the moving speed becomes even faster.
  • a branch section C is formed between the inner circumferential surface of the insulation pipe 130b and the outer circumferential surface of the swirl pipe 130a, and the first section (1) is formed around the other side of the swirl pipe 130a in which the inlet hole 132 is not formed.
  • a plurality of communication holes 134 communicating A and branch sections C are formed. At this time, the communication hole 134 is perforated obliquely to the swirl pipe 130a.
  • the working gas (WG) supplied from the body 110 is branched to the first section (A) and the branch section (C) to move, as described above, the first section In (A), the flow velocity of the working gas WG is accelerated by the magnetic field, so that the internal air pressure is lower than that of the branch section B. Therefore, the working gas WG moving the branch section C is sucked into the communication hole 134 by the pressure difference, and the flow rate of the working gas WG moving the first section A is the communication hole. (134) Amplified rapidly in the vicinity.
  • the gas storage groove 136 is preferably formed at a predetermined position on the inner circumferential surface of the insulating pipe 130b facing the communication hole 134.
  • the gas storage groove 136 forms a space in which a certain amount of the working gas WG can stay so that the working gas WG can be moved from the branch section C to the first center A without being accumulated. .
  • the electrode 140 is detachably coupled to the other end of the acceleration pipe 120.
  • the end of the electrode 140 is processed into a teat shape.
  • a teat shape means the shape which has a round head and a narrow waist.
  • the electrode 140 receives the current of the [-] pole from the acceleration pipe 120 and generates an arc by reacting the nozzle 150 or the cut material CM to which the [+] polar current is applied.
  • the tip end of the electrode 140 is provided with an electrode material such as hafnium or zirconium.
  • the nozzle 150 is disposed to cover the outer side of the electrode 140, and the inner side surface is formed in a shape corresponding to the end shape of the electrode 140.
  • a second section B is formed between the inner surface of the nozzle 150 and the outer surface of the electrode 140 to communicate with the first section A.
  • the working gas WG is discharged to the outside through the nozzle 150.
  • the working gas WG is formed at the end of the electrode 140. And the inner surface of the nozzle 150 is smoothly rotated and emitted to the outside, thereby generating a cylindrical plasma PZ.
  • the cut surface is formed vertically (straightly).
  • the cross-sectional area of the second section (B) is gradually narrower from the point (P 1) where the first, second sections (A, B) are connected, to the point (P 2) where the circumference of the electrode 140 is thickest It is preferably formed to This is to apply Bernoulli's theorem, where the speed increases and the pressure decreases when the fluid passes through a narrow area. In particular, when the pressure is reduced, a large amount of working gas (WG) is rapidly introduced through the communication hole 134 located adjacent to (P1).
  • WG working gas
  • the titrated electrode 140 and the nozzle 150 having an inner surface corresponding thereto may be easily applied to a conventional plasma torch.
  • the cylindrical plasma PZ may not be clearly formed when the flow rate and flow rate of the working gas WG are insufficient.
  • the nozzle fixing cap 160 covers the nozzle 150 and is coupled to the body 110.
  • the nozzle fixing cap 160 serves to fix the nozzle 150 and the swirl pipe unit 130, and a cooling chamber D circulates with the cooling fluid CF circulated therein.
  • the cooling fluid CF introduced through the cooling tube 112 circulates through the cooling chamber D connected to the cooling tube 112, and cools the heated electrode 140 and the nozzle 150.
  • the shield 170 and the shield cap 180 are sequentially coupled to the front end of the nozzle fixing cap 160.
  • a shield section E through which a shield gas SG such as gas, helium, hydrogen, and argon is moved is formed.
  • the shield gas SG introduced into the shield section E from the body 110 is discharged to the outside through the shield 170.
  • Shield gas SG protects the arc from the atmosphere.
  • the plasma torch 100 having the above-described configuration may generate a strong cutting plasma PZ by accelerating the flow rate of the working gas WG and amplifying the flow rate.
  • the working gas WG supplied from the body 110 moves the first section A of a predetermined length, and ensures sufficient speed, rotational inertia, and flow rate. Then, the second section (B) is smoothly rotated (Swirling) to be ejected to the outside, thereby generating a cutting plasma (PZ) close to the cylindrical shape, thereby processing the cutting material (CM) quickly and smoothly It can work.
  • FIG. 6 is a perspective view of the cutting device 200 using the plasma torch 100 according to the embodiment
  • FIG. 7 is a schematic front view of the cutting device 200.
  • the cutting device 200 using the plasma torch 100 described above includes a table 210, a gantry 220, a moving block 230, a plasma torch 100, and an air tank. And 240 and the field cap 250.
  • the table 210 mounts the cutting material CM horizontally.
  • the gantry 220 has both pillars installed on rails formed at both sides of the table 210 to move in the longitudinal axis direction of the table 210.
  • the moving block 230 is installed in the upper beam in the gantry 220 and moves in the horizontal axis direction of the table 210.
  • the plasma torch 100 is installed below the moving block 230 and may move in the height direction.
  • Air tank 240 is installed on the upper portion of the moving block 230, and serves to supply air (AR) to the field cap 250 to be described later.
  • the air AR supplied from the air tank 240 serves to scoop out by-products (water) that springs from the cutting material CM when processing (piercing) the cutting material CM.
  • the position of the air tank 240 may be changed according to the user's intention. However, if the air tank 240 is provided on the upper portion of the moving block 230, the length of the air (AR) supply line can be minimized.
  • FIG 8 illustrates a coupling relationship between the plasma torch 100 and the field cap 250.
  • the field cap 250 is provided at the tip of the plasma torch 100.
  • the field cap 250 is connected to the air tank 240 and the hose 244 and the like, and a plurality of air holes 252 through which the air AR is injected are formed at the end.
  • the field cap 250 sprays air AR to squeeze the by-products from the cutting material CM, thereby preventing the plasma torch 100 from being damaged by the by-products.
  • the air hole 252 of the field cap 250 is preferably drilled obliquely in one direction so that the air (AR) can be injected to be twisted (Twist).
  • AR air
  • Twist twisted
  • the by-products do not bounce back into the plasma torch 100 but are scattered around.
  • interference between the air AR and the plasma PZ is minimized.
  • the lower position of the moving block 230 is preferably provided with a position sensor 260 that can detect the position of the plasma torch 100.
  • the air tank 240 is provided with a solenoid valve 242
  • the moving block 230 is a control module (not shown) for controlling the solenoid valve 242 based on the position information of the position sensor 260. It is preferable that this is provided.
  • the cutting device 200 detects the position of the plasma torch 100 and controls the solenoid valve 242 when the plasma torch 100 descends to a predetermined position to cut the material to be cut, thereby controlling the plasma.
  • Air AR is set to be sprayed before PZ is sprayed. In particular, it is preferable that air AR is sprayed for 2-3 seconds at the time of a piercing process, and is not sprayed at the time of a cutting process.
  • Cutting device 200 according to the preferred embodiment made of the above configuration is provided with a field cap 250, the performance is improved to effectively protect the plasma torch 100 that can generate a lot of by-products during piercing processing Can be.
  • the cutting device 200 in the case of a general plasma cutting device, the torch due to the spring by-products are feared to start, mainly starting the cutting on the side (outside) of the cutting material (CM), the cutting device 200 according to a preferred embodiment
  • the cutting start point can be easily processed (pierced) inside the cutting material CM to start cutting of the cutting material CM.
  • It can be used for cutting a base metal such as an iron plate.

Abstract

The present specification discloses a plasma torch comprising: an electrode having an end portion processed in a shape of a teat; and a nozzle having an inner side surface formed in a shape corresponding to the end portion of the electrode, so that working gas naturally swirls and is ejected.

Description

플라즈마 토치 및 이를 이용한 절단 장치Plasma torch and cutting device using the same
개시된 내용은 절단용 플라즈마 토치 및 이를 이용한 절단 장치에 관한 것이다.The present disclosure relates to a plasma torch for cutting and a cutting device using the same.
본 명세서에서 명확하게 표시되지 않는 한, 이 절(Section)에 설명되는 내용은 청구항 발명의 종래 기술이 아니다.Unless expressly indicated herein, the contents described in this section are not prior art to the claims.
플라즈마 토치는 고온의 플라즈마를 발생시키는 공구(Tool)로, 주로 피절단재(모재 등)를 절단하는 용도로 사용된다.The plasma torch is a tool for generating high temperature plasma, and is mainly used for cutting a cutting material (base material).
전술한 고온의 플라즈마는 플라즈마 토치의 보디에서 공급되는 작동 가스(아르곤, 수소, 질소 등)가 전극[-]과 노즐[+] 또는 전극[-]과 피절단재[+] 사이에서 발생된 아크(Arc)와 반응함으로써 생성된다.The above-mentioned high temperature plasma has an arc in which working gas (argon, hydrogen, nitrogen, etc.) supplied from the body of the plasma torch is generated between the electrode [-] and the nozzle [+] or between the electrode [-] and the cutting material [+]. It is produced by reacting with (Arc).
상기와 같은 이유로, 플라즈마 토치의 성능은 전극 및 노즐의 형태, 작동 가스의 유속 및 유량 등에 의해 크게 좌우된다.For the same reason as above, the performance of the plasma torch greatly depends on the shape of the electrode and the nozzle, the flow rate and flow rate of the working gas, and the like.
도 1에는 종래의 플라즈마 토치의 헤드(1)의 내부 구조가 개략적으로 도시되어 있다.1 schematically shows the internal structure of the head 1 of a conventional plasma torch.
이를 참조하면, 종래의 플라즈마 토치의 헤드(1)는 냉각 튜브(10)를 감싸는 전극(20)과, 전극(20)을 감싸는 스월링(30)과, 전극(20)의 하부에 배치되는 노즐(40) 등을 포함하여 구성된다.Referring to this, the head 1 of the conventional plasma torch includes an electrode 20 surrounding the cooling tube 10, a swirling 30 surrounding the electrode 20, and a nozzle disposed below the electrode 20. 40, etc. are comprised.
플라즈마(PZ)가 생성되는 과정을 보다 상세하게 설명하면, 먼저, 보디(미도시)에서 작동 가스(WG)가 공급되면, 공급된 작동 가스(WG)는 스월링(30)의 둘레에 비스듬하게 뚫린 유입홀(32)을 통해, 스월링(30)의 내주면과 전극(20)의 외주면 사이의 공간으로 유입되어, 전극(20)을 고속으로 선회하며 하방으로 이동하게 된다.Referring to the process of generating the plasma PZ in more detail, first, when the working gas (WG) is supplied from the body (not shown), the supplied working gas (WG) is obliquely around the swirling 30 Through the drilled inlet hole 32, it is introduced into the space between the inner circumferential surface of the swirl ring 30 and the outer circumferential surface of the electrode 20, thereby moving the electrode 20 at high speed and moving downward.
계속해서, 전위차에 의해, 전극(20)과 노즐(40) 사이(Non-Transferred Type) 또는 전극(20)과 전류가 인가된 피절단재(CM) 사이(Transferred Type)에서 아크가 발생하게 된다.Subsequently, due to the potential difference, an arc is generated between the electrode 20 and the nozzle 40 (Non-Transferred Type) or between the electrode 20 and the cutting material CM to which a current is applied (Transferred Type). .
이어서, 작동 가스(WG)가 아크를 통과하게 되면, 전기적으로 가열되어 플라즈마(PZ) 상태로 변환된다.Subsequently, when the working gas WG passes through the arc, it is electrically heated and converted into the plasma PZ state.
한편, 종래의 플라즈마 토치의 경우, 유입홀과 노즐 사이의 간격이 좁아 작동 가스가 충분한 회전 관성을 확보하기 어렵고, 작동 가스의 유속과 유량에 변화(가속 또는 증폭)를 줄 수 있는 별도의 구성이 없기 때문에, 강한 절삭력을 갖춘 플라즈마를 생성하는데 일정 한계가 있는 실정이다.On the other hand, in the case of the conventional plasma torch, since the gap between the inlet hole and the nozzle is narrow, it is difficult to ensure sufficient rotational inertia of the working gas, and a separate configuration that can change (accelerate or amplify) the flow rate and the flow rate of the working gas is difficult. Since there is no, there is a limit to generate a plasma having a strong cutting force.
아울러, 피절단재를 용이하게 절단할 수 있는 샤프(Sharp)한 형태의 플라즈마를 생성하기 위해, 종래의 플라즈마 토치의 전극의 전단부는 테이퍼(Taper)지게 가공되고, 노즐의 내측면에는 원추형의 공간이 형성된다.In addition, in order to generate a sharp plasma that can easily cut the material to be cut, the front end of the electrode of the conventional plasma torch is tapered, and the conical space on the inner surface of the nozzle Is formed.
하지만, 상기한 전극과 노즐의 형태로 인해, 종래의 플라즈마 토치는 작동 가스의 회전(Swirling)이 제한되어, 피절단재의 절단면을 직선(수직)에 가깝게 형성시킬 수 없는 마름모 형태의 플라즈마를 발생시키는 문제점이 있다.However, due to the shape of the electrode and the nozzle, the conventional plasma torch is limited in the swirling of the working gas, thereby generating a rhombus-shaped plasma that cannot form the cut surface of the cutting material close to a straight line (vertical). There is a problem.
**선행기술문헌**Prior Art Literature
특허문헌 1 : 한국 특허출원 제10-2015-0084951호 (2015.06.16.)Patent Document 1: Korean Patent Application No. 10-2015-0084951 (2015.06.16.)
특허문헌 2 : 한국 특허출원 제10-2015-0046879호 (2015.04.02.)Patent Document 2: Korean Patent Application No. 10-2015-0046879 (2015.04.02.)
특허문헌 3 : 한국 공개특허공보 제10-2015-0055066호 (2013.12.25.)Patent Document 3: Korean Laid-Open Patent Publication No. 10-2015-0055066 (2013.12.25.)
개시된 내용은 작동 가스가 자연스럽게 회전(Swirling)하며, 분출될 수 있는 플라즈마 토치 및 이를 이용한 절단 장치를 제공하는 것을 과제로 한다.Disclosed is a task to provide a plasma torch and a cutting device using the same, in which the working gas is naturally swirled and ejected.
실시예에 의하면, 단부가 티트(Teat) 형상으로 가공된 전극과, 내측면이 상기 전극의 단부와 대응되는 형상으로 형성된 노즐을 구비함으로써, 작동 가스가 자연스럽게 회전(Swirling)하며, 분출되는 플라즈마 토치가 제시된다.According to an embodiment, a plasma torch is formed in which a working gas is naturally swirled and ejected by having an electrode whose end is processed into a teat shape and an inner side of which has a nozzle formed in a shape corresponding to the end of the electrode. Is presented.
상기 플라즈마 토치는 가스 및 전류를 공급하고, 중앙에 냉각 튜브가 구비된 보디; 상기 냉각 튜브의 외주를 감싸고, 상기 보디에 일단이 결합되며, 상기 보디로부터 전류를 공급받아 전달하는 가속 파이프; 상기 가속 파이프의 외주를 감싸되, 내주면과 상기 가속 파이프의 외주면 사이에 작동 가스가 이동하는 제1 섹션이 형성되게 하고, 일측 둘레에 작동 가스가 유입되는 다수 개의 유입홀이 비스듬하게 뚫린 스월 파이프 유닛; 상기 가속 파이프의 타단에 결합되고, 단부가 티트(Teat) 형상으로 가공된 전극; 상기 전극의 외측을 덮되, 내측면이 상기 전극의 단부에 대응되는 형상으로 형성되고, 내측면과 상기 전극의 외측면 사이에 상기 제1 셕션과 연통되는 제2 섹션이 형성되게 하는 노즐; 및, 상기 노즐을 덮는 노즐 고정캡;을 포함하여 이루어질 수 있다.The plasma torch supplies a gas and a current, and a body having a cooling tube in the center thereof; An acceleration pipe surrounding an outer circumference of the cooling tube, one end of which is coupled to the body, and receiving and delivering current from the body; A swirl pipe unit wrapped around an outer circumference of the acceleration pipe, such that a first section through which an operating gas moves is formed between an inner circumferential surface and an outer circumferential surface of the acceleration pipe, and a plurality of inflow holes in which the working gas flows around one side is obliquely drilled. ; An electrode coupled to the other end of the acceleration pipe and having an end processed in a teat shape; A nozzle covering an outer side of the electrode, the inner side of which has a shape corresponding to an end of the electrode, and a second section communicating with the first section between the inner side and the outer side of the electrode; And a nozzle fixing cap covering the nozzle.
또한, 상기 노즐캡의 선단부에는 실드와 실드캡이 더 구비될 수 있다.In addition, a shield and a shield cap may be further provided at the front end of the nozzle cap.
또한, 상기 스월 파이프 유닛은 일측 둘레에 상기 유입홀이 형성된 스월 파이프; 상기 스월 파이프의 외주를 감싸는 절연 파이프;로 구성되고, 상기 스월 파이프에는 상기 가속 파이프와 같은 극의 전류가 동일한 방향으로 흐를 수 있다.The swirl pipe unit may include: a swirl pipe having the inlet hole formed around one side thereof; And an insulation pipe surrounding the outer circumference of the swirl pipe, wherein the current of the same pole as the acceleration pipe may flow in the swirl pipe.
또한, 상기 스월 파이프의 외주면과 상기 절연 파이프의 내주면 사이에는 작동 가스가 분기되어 흐를 수 있는 브랜치 섹션이 형성되고, 상기 스월 파이프의 타측 둘레에는 상기 제1 섹션과 상기 브랜치 섹션을 연통시키는 다수 개의 연통홀이 형성될 수 있다.In addition, a branch section is formed between the outer circumferential surface of the swirl pipe and the inner circumferential surface of the insulated pipe so that a working gas may branch and flow, and a plurality of communication communicating the first section and the branch section around the other side of the swirl pipe. Holes may be formed.
더불어, 실시예에 의하면, 피절단재가 탑재되는 테이블; 상기 테이블에 설치된 갠트리; 상기 갠트리에 설치된 이동블럭; 상기 이동블럭의 상부에 구비된 에어탱크; 상기 이동블럭의 하부에 설치된 상기 플라즈마 토치; 및, 상기 플라즈마 토치의 선단부에 구비되고, 단부에는 다수 개의 에어홀이 형성되며, 가공시 피절단재에서 튀어오르는 부산물을 쳐내기 위해, 상기 에어탱크로부터 에어를 공급받아 분사하는 필드캡;을 포함하여 이루어지는 절단 장치가 제시된다.In addition, according to the embodiment, a table on which the cutting material is mounted; A gantry installed on the table; A moving block installed in the gantry; An air tank provided on an upper portion of the moving block; The plasma torch installed under the moving block; And a field cap provided at the front end of the plasma torch, and having a plurality of air holes formed at the end thereof, to receive air from the air tank and spray the by-products from the cutting material during processing. A cutting device is shown.
또한, 상기 절단 장치에는 상기 플라즈마 토치의 위치를 감지할 수 있는 위치센서가 더 구비될 수 있다.In addition, the cutting device may be further provided with a position sensor for detecting the position of the plasma torch.
앞 절에서 제시된 플라즈마 토치는 다음과 같은 효과가 있다.The plasma torch presented in the previous section has the following effects.
첫째, 작동 가스의 유속을 가속시키고, 작동 가스의 유량을 증폭시켜 강력한 절단 플라즈마를 생성할 수 있다.First, it is possible to accelerate the flow rate of the working gas and to amplify the flow rate of the working gas to generate a powerful cutting plasma.
둘째, 작동 가스가 전극과 노즐 사이를 매끄럽게 회전(Swirling)하며 분출됨으로, 피절단재의 절단면을 수직하게 형성할 수 있는 원기둥 형태의 플라즈마를 생성된다.Secondly, the working gas is ejected smoothly between the electrode and the nozzle, thereby generating a cylindrical plasma that can vertically form the cut surface of the cutting material.
또한, 앞 절에서 제시된 절단 장치는 피어싱 가공시, 피절단재에서 튀어오르는 부산물(쇳물)로 인한, 플라즈마 토치의 손상을 최소화할 수 있다.In addition, the cutting device presented in the previous section can minimize damage to the plasma torch due to by-products splashing from the cutting material during piercing processing.
도 1은 종래의 플라즈마 토치의 헤드(1)의 내부 구조를 나타낸 도면.1 shows the internal structure of a head 1 of a conventional plasma torch.
도 2는 개시된 내용의 실시예에 따른 플라즈마 토치(100)의 분해 사시도.2 is an exploded perspective view of a plasma torch 100 in accordance with an embodiment of the disclosed subject matter.
도 3은 개시된 내용의 실시예에 따른 플라즈마 토치(100)의 절개도.3 is a cutaway view of a plasma torch 100 in accordance with an embodiment of the disclosed subject matter.
도 4는 개시된 내용의 실시예에 따른 플라즈마 토치(100)의 단면도.4 is a cross-sectional view of a plasma torch 100 in accordance with an embodiment of the disclosed subject matter.
도 5는 도 4의 'A'를 부분 확대하여 나타낸 도면.FIG. 5 is an enlarged view of portion 'A' of FIG. 4; FIG.
도 6은 개시된 내용의 실시예에 따른 절단 장치(200)의 사시도.6 is a perspective view of a cutting device 200 according to an embodiment of the disclosed subject matter.
도 7은 개시된 내용의 실시예에 따른 절단 장치(200)의 정면도.7 is a front view of a cutting device 200 according to an embodiment of the disclosed subject matter.
도 8은 플라즈마 토치(100)와 필드캡(250)의 결합 관계를 나타낸 도면.8 is a view showing a coupling relationship between the plasma torch 100 and the field cap 250.
<도면의 주요 부분에 대한 참조 부호의 설명><Description of reference numerals for the main parts of the drawings>
1 ; 종래의 플라즈마 토치의 헤드One ; Head of conventional plasma torch
10 ; 냉각 튜브10; Cooling tube
20 ; 전극20; electrode
30 ; 스월링30; Swirling
32 ; 유입홀32; Inflow Hall
40 ; 노즐40; Nozzle
100 ; 플라즈마 토치100; Plasma torch
110 ; 보디 150 ; 노즐110; Body 150; Nozzle
112 ; 냉각 튜브 160 ; 노즐 고정캡112; Cooling tube 160; Nozzle Fixing Cap
120 ; 가속 파이프 170 ; 실드120; Acceleration pipe 170; shield
130 ; 스월 파이프 유닛 180 ; 실드캡130; Swirl pipe unit 180; Shield cap
130a ; 스월 파이프130a; Swirl pipe
130b ; 절연 파이프 A ; 제1 섹션130b; Insulated pipe A; First section
132 ; 유입홀 B ; 제2 섹션132; Inlet hole B; Section 2
134 ; 연통홀 C ; 브랜치 섹션134; Communication hole C; Branch section
136 ; 가스 저장홈 D ; 냉각 챔버136; Gas storage groove D; Cooling chamber
140 ; 전극 E ; 실드 섹션140; Electrode E; Shield section
200 ; 절단장치200; Cutting device
210 ; 테이블 250 ; 필드캡210; Table 250; Field cap
220 ; 갠트리 252 ; 에어홀220; Gantry 252; Air hole
230 ; 이동블럭 260 ; 위치센서230; Moving block 260; Position sensor
240 ; 에어탱크240; Air tank
242 ; 전자밸브242; Solenoid valve
244 ; 호스244; hose
WG ; 작동 가스 PZ ; 플라즈마WG; Working gas PZ; plasma
SG ; 실드 가스 AR ; 에어SG; Shield gas AR; air
CF ; 냉각 유체 CM ; 피절단재CF; Cooling fluid CM; Cutting material
이하, 첨부된 도면을 참조하여, 실시예에 의한 플라즈마 토치(100) 및 절단 장치(200)를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the plasma torch 100 and the cutting device 200 according to the embodiment will be described in detail.
도 2는 실시예에 따른 플라즈마 토치(100)의 분해 사시도이고, 도 3은 플라즈마 토치(100)의 절개도이다.2 is an exploded perspective view of the plasma torch 100 according to the embodiment, and FIG. 3 is a cutaway view of the plasma torch 100.
도 2, 도 3에 도시된 바와 같이, 실시예에 따른 플라즈마 토치(100)는 보디(110), 가속 파이프(120), 스월 파이프 유닛(130), 전극(140), 노즐(150) 및 노즐 고정캡(160)을 포함하여 이루어진다.2 and 3, the plasma torch 100 according to the embodiment includes a body 110, an acceleration pipe 120, a swirl pipe unit 130, an electrode 140, a nozzle 150, and a nozzle. It comprises a fixing cap 160.
도 4에는 플라즈마 토치(100)의 내부 구조가 구체적으로 도시되어 있다. 4 illustrates the internal structure of the plasma torch 100 in detail.
이를 참조하면, 보디(110)는 가스(WG, SG), 전류 및 냉각 유체(CF)를 공급한다. 보디(110)의 중앙에는 냉각 유체(CF)가 흐르는 냉각 튜브(112)가 돌출된 형태로 구비된다.Referring to this, the body 110 supplies the gases WG and SG, the current, and the cooling fluid CF. In the center of the body 110 is provided a cooling tube 112 through which the cooling fluid CF flows.
가속 파이프(120)는 냉각 튜브(112)의 외주를 감싸고, 보디(110)에 일단이 결합된다. 가속 파이프(120)의 내부 공간에는 냉각 유체(CF)가 유통된다. 가속 파이프(120)는 보디(110)로부터 전류를 공급받아 후술되는 전극(140)으로 전달하는 매개체 역할을 한다. 또한, 작동 가스(WG)가 후술되는 제1 섹션(A)으로 이동하며, 충분한 회전 관성을 확보할 수 있도록 일정 길이의 경로 역할을 한다.The acceleration pipe 120 surrounds the outer circumference of the cooling tube 112, and one end is coupled to the body 110. The cooling fluid CF is distributed in the internal space of the acceleration pipe 120. The acceleration pipe 120 serves as a medium for receiving a current from the body 110 and delivering it to the electrode 140 to be described later. In addition, the working gas WG moves to the first section A, which will be described later, and serves as a path having a predetermined length so as to secure sufficient rotational inertia.
스월 파이프 유닛(130)은 가속 파이프(120)의 외주를 감싼다. 스월 파이프 유닛(130)의 내주면과 가속 파이프(120)의 외주면 사이에는 보디(110)에서 공급된 작동 가스(WG)가 이동하는 제1 섹션(A)이 형성된다.The swirl pipe unit 130 surrounds the outer circumference of the acceleration pipe 120. A first section A through which the working gas WG supplied from the body 110 moves is formed between the inner circumferential surface of the swirl pipe unit 130 and the outer circumferential surface of the acceleration pipe 120.
보디(110)와 인접한 스월 파이프 유닛(130)의 일측 둘레에는 보디(110)에서 공급되는 작동 가스(WG)가 제1 섹션(A)으로 유입될 수 있도록, 다수 개의 유입홀(132)이 일정한 간격으로 형성된다. 특히, 유입홀(132)은 스월 파이프 유닛(130)에 비스듬하게 천공되어, 제1 섹션(A)으로 유입된 작동 가스(WG)가 스월(Swirl)될 수 있도록 한다.Around one side of the swirl pipe unit 130 adjacent to the body 110, a plurality of inlet holes 132 may be constant to allow the working gas WG supplied from the body 110 to flow into the first section A. FIG. Formed at intervals. In particular, the inlet hole 132 is obliquely drilled in the swirl pipe unit 130 so that the working gas WG introduced into the first section A can be swirled.
스월 파이프 유닛(130)은 스월 파이프(130a)와 절연 파이프(130b)로 구성될 수 있다. 스월 파이프(130a)의 일측 둘레에는 전술한 유입홀(132)이 형성되고, 절연 파이프(130b)는 스월 파이프(130a)의 외주를 감싼다.The swirl pipe unit 130 may be composed of a swirl pipe 130a and an insulation pipe 130b. The inlet hole 132 described above is formed around one side of the swirl pipe 130a, and the insulation pipe 130b surrounds the outer circumference of the swirl pipe 130a.
이때, 스월 파이프(130a)에는 가속 파이프(120)에 흐르는 전류와 같은 극성[-]의 전류가 인가되고, 절연 파이프(130b)는 스월 파이프(130a)에 흐르는 전류가 주위로 전달되지 않도록 차단한다.At this time, a current of the same polarity [−] as the current flowing through the acceleration pipe 120 is applied to the swirl pipe 130a, and the insulation pipe 130b blocks the current flowing through the swirl pipe 130a from being transferred to the surroundings. .
도 5에는 작동 가스(WG)의 흐름을 파악할 수 있는 도 4의 'A' 부분이 확대되어 있다. In FIG. 5, a portion 'A' of FIG. 4 may be enlarged to understand the flow of working gas WG.
이를 참조하면, 스월 파이프(130a)와 가속 파이프(120)에 같은 극성[-]의 전류가 같은 방향(전극 방향)으로 평행하게 흐를 경우, 가속 파이프(120)와 스월 파이프(130a)에는 각각의 자기장이 형성되며, 각각의 자기장의 전자기력(힘)은 제1 섹션(A)을 향해 작용한다. 이로 인해, 제1 섹션(A)을 이동하는 도전성을 지닌 작동 가스(WG)는 두 개의 자기장에 의해 핀치(Pinch)되어, 스월 파이프(130a)의 내벽과 가속 파이프(120)의 외벽에서 떨어져 이동하게 됨으로, 이동 속도가 한층 더 빨라진다.Referring to this, when the current of the same polarity [−] flows in parallel in the same direction (electrode direction) in the swirl pipe 130a and the acceleration pipe 120, the acceleration pipe 120 and the swirl pipe 130a may be respectively provided. A magnetic field is formed, the electromagnetic force (force) of each magnetic field acting toward the first section (A). As a result, the conductive working gas WG that moves the first section A is pinched by two magnetic fields, moving away from the inner wall of the swirl pipe 130a and the outer wall of the acceleration pipe 120. As a result, the moving speed becomes even faster.
추가적으로, 절연 파이프(130b)의 내주면과 스월 파이프(130a)의 외주면 사이에는 브랜치 섹션(C)이 형성되고, 유입홀(132)이 형성되지 않은 스월 파이프(130a)의 타측 둘레에는 제1 섹션(A)과 브랜치 섹션(C)을 연통시키는 다수 개의 연통홀(134)이 형성되는 것이 바람직하다. 이때, 연통홀(134)은 스월 파이프(130a)에 비스듬하게 천공된다.In addition, a branch section C is formed between the inner circumferential surface of the insulation pipe 130b and the outer circumferential surface of the swirl pipe 130a, and the first section (1) is formed around the other side of the swirl pipe 130a in which the inlet hole 132 is not formed. Preferably, a plurality of communication holes 134 communicating A and branch sections C are formed. At this time, the communication hole 134 is perforated obliquely to the swirl pipe 130a.
브랜치 섹션(C)이 형성될 경우, 보디(110)에서 공급된 작동 가스(WG)는 제1 섹션(A)과 브랜치 섹션(C)으로 분기되어 이동하게 되는데, 전술한 바와 같이, 제1 섹션(A)에서는 작동 가스(WG)의 유속이 자기장에 의해 빨라짐으로, 브랜치 섹션(B)에 비해 내부 기압이 낮게 형성된다. 따라서, 브랜치 섹션(C)을 이동하는 작동 가스(WG)는 기압차에 의해, 연통홀(134)로 빨려들어가게 되고, 제1 섹션(A)를 이동하는 작동 가스(WG)의 유량은 연통홀(134) 인근에서 급격히 증폭된다.When the branch section (C) is formed, the working gas (WG) supplied from the body 110 is branched to the first section (A) and the branch section (C) to move, as described above, the first section In (A), the flow velocity of the working gas WG is accelerated by the magnetic field, so that the internal air pressure is lower than that of the branch section B. Therefore, the working gas WG moving the branch section C is sucked into the communication hole 134 by the pressure difference, and the flow rate of the working gas WG moving the first section A is the communication hole. (134) Amplified rapidly in the vicinity.
이때, 연통홀(134)과 마주하는 절연 파이프(130b)의 내주면 소정 위치에는, 가스 저장홈(136)이 형성되는 것이 바람직하다. 가스 저장홈(136)은 일정량의 작동 가스(WG)가 머무를 수 있는 공간을 형성하여, 작동 가스(WG)가 적체되지 않고 브랜치 섹션(C)에서 제1 센셕(A)으로 이동될 수 있도록 한다.At this time, the gas storage groove 136 is preferably formed at a predetermined position on the inner circumferential surface of the insulating pipe 130b facing the communication hole 134. The gas storage groove 136 forms a space in which a certain amount of the working gas WG can stay so that the working gas WG can be moved from the branch section C to the first center A without being accumulated. .
도 4를 참조하면, 전극(140)은 가속 파이프(120)의 타단에 착탈 가능하게 결합된다. 전극(140)의 단부는 티트(Teat) 형상으로 가공된다. 여기서, 티트 형상이란, 둥근 머리와 잘록한 허리를 갖는 형상을 말한다. 전극(140)은 가속 파이프(120)로부터 [-]극의 전류를 공급받아, [+]극성의 전류가 인가된 노즐(150) 또는 피절단재(CM) 반응하여 아크를 생성한다. 전극(140)의 선단부에는 하프늄 또는 지르코늄 등의 전극재가 구비된다.Referring to FIG. 4, the electrode 140 is detachably coupled to the other end of the acceleration pipe 120. The end of the electrode 140 is processed into a teat shape. Here, a teat shape means the shape which has a round head and a narrow waist. The electrode 140 receives the current of the [-] pole from the acceleration pipe 120 and generates an arc by reacting the nozzle 150 or the cut material CM to which the [+] polar current is applied. The tip end of the electrode 140 is provided with an electrode material such as hafnium or zirconium.
노즐(150)은 전극(140)의 외측을 덮도록 배치되고, 내측면은 전극(140)의 단부 형상에 대응되는 형상으로 형성된다. 노즐(150)의 내측면과 전극(140)의 외측면 사이에는 제1 섹션(A)과 연통되는 제2 섹션(B)이 형성된다. 작동 가스(WG)는 노즐(150)을 통해 외부로 방출한다.The nozzle 150 is disposed to cover the outer side of the electrode 140, and the inner side surface is formed in a shape corresponding to the end shape of the electrode 140. A second section B is formed between the inner surface of the nozzle 150 and the outer surface of the electrode 140 to communicate with the first section A. The working gas WG is discharged to the outside through the nozzle 150.
전극(140)의 단부가 유선형의 티트(Teat) 형상으로 가공되고, 노즐(150)의 내측면이 티트(Teat) 형상에 대응되게 형성될 경우, 작동 가스(WG)가 전극(140)의 단부와 노즐(150)의 내측면을 매끄럽게 회전하며 외부로 방출되어, 원기둥 형태의 플라즈마(PZ)가 생성된다.When the end of the electrode 140 is processed into a streamlined teat shape and the inner surface of the nozzle 150 is formed to correspond to the teat shape, the working gas WG is formed at the end of the electrode 140. And the inner surface of the nozzle 150 is smoothly rotated and emitted to the outside, thereby generating a cylindrical plasma PZ.
원기둥 형태의 플라즈마(PZ)로 피절단재(CM)를 절단(또는 피어싱)할 경우, 절단면이 수직하게(반듯하게) 형성된다.When the cutting material CM is cut (or pierced) by the cylindrical plasma PZ, the cut surface is formed vertically (straightly).
한편, 제2 섹션(B)의 단면적은 상기 제1, 2 섹션(A, B)이 연결되는 지점(P₁)에서, 상기 전극(140)의 둘레가 가장 두꺼워지는 지점(P₂)으로 갈수록 서서히 좁아지도록 형성되는 것이 바람직하다. 이는 유체가 좁은 곳을 통과할 때에 속력이 빨라지고 압력이 감소하는 '베르누이의 정리'를 적용하기 위함이다. 특히, 압력이 감소하게 되면, (P₁)에서 인접하게 위치한 연통홀(134)을 통해 많은 양의 작동 가스(WG)가 급격히 유입되는 효과가 있다.On the other hand, the cross-sectional area of the second section (B) is gradually narrower from the point (P ₁) where the first, second sections (A, B) are connected, to the point (P ₂) where the circumference of the electrode 140 is thickest It is preferably formed to This is to apply Bernoulli's theorem, where the speed increases and the pressure decreases when the fluid passes through a narrow area. In particular, when the pressure is reduced, a large amount of working gas (WG) is rapidly introduced through the communication hole 134 located adjacent to (P₁).
티트 형상의 전극(140)과, 내측면이 이에 대응되는 형상으로 형성된 노즐(150)은 일반적인 종래의 플라즈마 토치에 용이하게 적용될 수 있다. 다만, 원기둥 형태의 플라즈마(PZ)는 작동 가스(WG)의 유속과 유량이 부족하면, 뚜렷하게 형성되지 않을 수 있다.The titrated electrode 140 and the nozzle 150 having an inner surface corresponding thereto may be easily applied to a conventional plasma torch. However, the cylindrical plasma PZ may not be clearly formed when the flow rate and flow rate of the working gas WG are insufficient.
노즐 고정캡(160)은 노즐(150)에 덮고, 보디(110)와 결합된다. 노즐 고정캡(160)은 노즐(150)과 스월 파이프 유닛(130)을 고정하는 역할을 하며, 내부에는 냉각 유체(CF)가 순환되어 흐르는 냉각 챔버(D)가 구비된다. 냉각 튜브(112)를 통해 유입된 냉각 유체(CF)는 냉각 튜브(112)와 연결된 냉각 챔버(D)를 순환하며, 가열된 전극(140)과 노즐(150)을 식힌다.The nozzle fixing cap 160 covers the nozzle 150 and is coupled to the body 110. The nozzle fixing cap 160 serves to fix the nozzle 150 and the swirl pipe unit 130, and a cooling chamber D circulates with the cooling fluid CF circulated therein. The cooling fluid CF introduced through the cooling tube 112 circulates through the cooling chamber D connected to the cooling tube 112, and cools the heated electrode 140 and the nozzle 150.
노즐 고정캡(160)의 선단부에는 실드(170)와 실드캡(180)이 순차적으로 결합되는 것이 바람직하다. 실드캡(180)의 내측면과 노즐 고정캡(160)의 외측면 사이에는 가스, 헬륨, 수소, 알곤 등의 실드 가스(SG)가 이동하는 실드 섹션(E)이 형성된다. 보디(110)에서 실드 섹션(E)으로 유입된 실드 가스(SG)는 실드(170)를 통해 외부로 방출된다. 실드 가스(SG)는 아크를 대기로부터 차단하여 보호한다.Preferably, the shield 170 and the shield cap 180 are sequentially coupled to the front end of the nozzle fixing cap 160. Between the inner surface of the shield cap 180 and the outer surface of the nozzle fixing cap 160, a shield section E through which a shield gas SG such as gas, helium, hydrogen, and argon is moved is formed. The shield gas SG introduced into the shield section E from the body 110 is discharged to the outside through the shield 170. Shield gas SG protects the arc from the atmosphere.
전술한 구성으로 이루어진 플라즈마 토치(100)는 작동 가스(WG)의 유속을 가속시키고, 유량을 증폭시켜 강력한 절단 플라즈마(PZ)를 생성할 수 있다.The plasma torch 100 having the above-described configuration may generate a strong cutting plasma PZ by accelerating the flow rate of the working gas WG and amplifying the flow rate.
구체적으로, 바람직한 실시예에 따른 플라자마 토치(100)는 보디(110)에서 공급된 작동 가스(WG)가 소정 길이의 제1 섹션(A)을 이동하며, 충분한 속도와 회전 관성 그리고 유량을 확보한 뒤, 제2 섹션(B)을 매끄럽게 회전(Swirling)하여 외부로 분출됨으로, 원기둥 형태에 가까운 절단 프라즈마(PZ)를 생성할 수 있으며, 이를 통해, 피절단재(CM)를 빠르고 반듯하게 가공할 수 있는 효과가 있다.Specifically, in the plasma torch 100 according to the preferred embodiment, the working gas WG supplied from the body 110 moves the first section A of a predetermined length, and ensures sufficient speed, rotational inertia, and flow rate. Then, the second section (B) is smoothly rotated (Swirling) to be ejected to the outside, thereby generating a cutting plasma (PZ) close to the cylindrical shape, thereby processing the cutting material (CM) quickly and smoothly It can work.
도 6은 실시예에 따른 플라즈마 토치(100)를 이용한 절단 장치(200)의 사시도이고, 도 7은 절단 장치(200)의 개략적인 정면도이다.6 is a perspective view of the cutting device 200 using the plasma torch 100 according to the embodiment, and FIG. 7 is a schematic front view of the cutting device 200.
도 6, 도 7에 도시된 바와 같이, 전술한 플라즈마 토치(100)를 이용한 절단 장치(200)는 테이블(210), 갠트리(220), 이동블럭(230), 플라즈마 토치(100), 에어탱크(240) 및 필드캡(250)을 포함하여 이루어진다.As illustrated in FIGS. 6 and 7, the cutting device 200 using the plasma torch 100 described above includes a table 210, a gantry 220, a moving block 230, a plasma torch 100, and an air tank. And 240 and the field cap 250.
테이블(210)은 피절단재(CM)를 수평으로 탑재한다.The table 210 mounts the cutting material CM horizontally.
갠트리(220)는 테이블(210)의 양 측면에 형성된 레일에 양 기둥이 각각 설치되어, 테이블(210)의 종축 방향으로 움직인다.The gantry 220 has both pillars installed on rails formed at both sides of the table 210 to move in the longitudinal axis direction of the table 210.
이동블럭(230)은 갠트리(220)에 상부 빔에 설치되고, 테이블(210)의 횡축 방향으로 움직인다.The moving block 230 is installed in the upper beam in the gantry 220 and moves in the horizontal axis direction of the table 210.
플라즈마 토치(100)는 이동블럭(230)의 하부에 설치되고, 높이 방향으로 움직일 수 있다.The plasma torch 100 is installed below the moving block 230 and may move in the height direction.
에어탱크(240)는 이동블럭(230)의 상부에 설치되고, 후술되는 필드캡(250)으로 에어(AR)를 공급하는 기능을 한다. 에어탱크(240)에서 공급된 에어(AR)는 피절단재(CM)를 가공(피어싱)할 때, 피절단재(CM)에서 튀어오르는 부산물(쇳물)을 쳐내는 역할을 한다. Air tank 240 is installed on the upper portion of the moving block 230, and serves to supply air (AR) to the field cap 250 to be described later. The air AR supplied from the air tank 240 serves to scoop out by-products (water) that springs from the cutting material CM when processing (piercing) the cutting material CM.
에어탱크(240)의 위치는 사용자의 의도에 따라 변경될 수 있다. 다만, 에어탱크(240)가 이동블럭(230)의 상부에 구비되면, 에어(AR) 공급라인의 길이를 최소화할 수 있다.The position of the air tank 240 may be changed according to the user's intention. However, if the air tank 240 is provided on the upper portion of the moving block 230, the length of the air (AR) supply line can be minimized.
도 8에는 플라즈마 토치(100)와 필드캡(250)의 결합 관계가 도시되어 있다.8 illustrates a coupling relationship between the plasma torch 100 and the field cap 250.
이를 참조하면, 필드캡(250)은 플라즈마 토치(100)의 선단부에 구비된다. 필드캡(250)은 에어탱크(240)와 호스(244) 등으로 연결되고, 단부에는 에어(AR)가 분사되는 다수 개의 에어홀(252)이 형성된다.Referring to this, the field cap 250 is provided at the tip of the plasma torch 100. The field cap 250 is connected to the air tank 240 and the hose 244 and the like, and a plurality of air holes 252 through which the air AR is injected are formed at the end.
필드캡(250)은 에어(AR)를 분사하여, 피절단재(CM)에서 튀어오르는 부산물(쇳물)을 쳐냄으로써, 부산물로 인해, 플라즈마 토치(100)가 손상되는 것을 방지한다.The field cap 250 sprays air AR to squeeze the by-products from the cutting material CM, thereby preventing the plasma torch 100 from being damaged by the by-products.
필드캡(250)의 에어홀(252)은 에어(AR)가 트위스트(Twist)되게 분사될 수 있도록, 일방향으로 비스듬하게 뚫리는 것이 바람직하다. 에어(AR)가 트위스트되게(사선으로) 분사될 경우, 부산물이 플라즈마 토치(100)로 다시 튀어오르지 않고, 주위로 비산된다. 또한, 에어(AR)와 플라즈마(PZ)의 간섭이 최소화된다.The air hole 252 of the field cap 250 is preferably drilled obliquely in one direction so that the air (AR) can be injected to be twisted (Twist). When air AR is injected twisted (by diagonal), the by-products do not bounce back into the plasma torch 100 but are scattered around. In addition, interference between the air AR and the plasma PZ is minimized.
추가적으로, 전술한 부산물로 인한 피해는 피절단재(CM) 내부에 절단 시작점을 피어싱 가공할 때, 주로 발생한다. 상기한 이유로, 이동블럭(230)의 하부에는 플라즈마 토치(100)의 위치를 감지할 수 있는 위치센서(260)가 구비되는 것이 바람직하다. 또한, 에어탱크(240)에는 전자밸브(242)가 구비되고, 이동블럭(230)에는 위치센서(260)의 위치 정보를 바탕으로 전자밸브(242)를 컨트롤할 수 있는 제어모듈(미도시)이 구비되는 것이 바람직하다.In addition, damage caused by the above-mentioned by-products mainly occurs when the cutting start point is pierced inside the cutting material CM. For the above reason, the lower position of the moving block 230 is preferably provided with a position sensor 260 that can detect the position of the plasma torch 100. In addition, the air tank 240 is provided with a solenoid valve 242, the moving block 230 is a control module (not shown) for controlling the solenoid valve 242 based on the position information of the position sensor 260. It is preferable that this is provided.
이를 통해, 절단 장치(200)는 플라즈마 토치(100)가 피절단재를 절단하기 위해 일정 위치로 하강할 경우, 플라즈마 토치(100)의 위치를 감지하여, 전자밸브(242)를 제어함으로써, 플라즈마(PZ)가 분사되기 전에 에어(AR)가 분사되도록 세팅된다. 특히, 에어(AR)는 피어싱 가공시, 2 ~ 3초 가량 분사되고, 절단 가공시에는 분사되지 않는 것이 바람직하다.Through this, the cutting device 200 detects the position of the plasma torch 100 and controls the solenoid valve 242 when the plasma torch 100 descends to a predetermined position to cut the material to be cut, thereby controlling the plasma. Air AR is set to be sprayed before PZ is sprayed. In particular, it is preferable that air AR is sprayed for 2-3 seconds at the time of a piercing process, and is not sprayed at the time of a cutting process.
전술한 구성으로 이루어진 바람직한 실시예에 따른 절단 장치(200)는 필드캡(250)이 구비됨으로 인해, 성능이 향상되어 피어싱 가공시, 많은 부산물을 발생시킬 수 있는 플라즈마 토치(100)를 효과적으로 보호할 수 있다.Cutting device 200 according to the preferred embodiment made of the above configuration is provided with a field cap 250, the performance is improved to effectively protect the plasma torch 100 that can generate a lot of by-products during piercing processing Can be.
아울러, 일반적인 플라즈마 절단 장치의 경우, 튀어오르는 부산물로 인한 토치의 손상을 우려하여, 주로 피절단재(CM)의 측면(외부)에서 절단을 시작하는데, 바람직한 실시예에 따른 절단 장치(200)는 피절단재(CM) 내부에 절단 시작점을 용이하게 가공(피어싱)하여, 피절단재(CM)의 절단을 시작할 수 있다.In addition, in the case of a general plasma cutting device, the torch due to the spring by-products are feared to start, mainly starting the cutting on the side (outside) of the cutting material (CM), the cutting device 200 according to a preferred embodiment The cutting start point can be easily processed (pierced) inside the cutting material CM to start cutting of the cutting material CM.
이상, 다양한 실시예를 첨부된 도면을 참조하여, 구체적으로 설명하였다. 하지만, 설명된 실시예는 예시에 불과하며, 이는 당해 기술분야에서 통상의 지식을 가진 자에 의하여 청구항 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양하게 변경될 수 있다.The various embodiments have been described above in detail with reference to the accompanying drawings. However, the described embodiments are merely examples, which may be variously changed by those skilled in the art without departing from the technical spirit of the claims.
그러므로 개시된 내용의 권리범위는 특정 실시예에 한정되는 것이 아니라, 개시된 내용에 내포된 기술적 사상을 바탕으로 폭넓게 고려되어야 함을 이해할 수 있을 것이다.Therefore, it is to be understood that the scope of the disclosed contents should not be limited to the specific embodiments, but should be considered broadly based on the technical spirit contained in the disclosed contents.
철판 등의 모재를 절단하는 용도로 이용 가능하다.It can be used for cutting a base metal such as an iron plate.

Claims (9)

  1. 가스 및 전류를 공급하고, 중앙에 냉각 튜브(112)가 구비된 보디(110);A body 110 for supplying gas and current, and having a cooling tube 112 at the center thereof;
    상기 냉각 튜브(112)의 외주를 감싸고, 상기 보디(110)에 일단이 결합되며, 상기 보디(110)로부터 전류를 공급받아 전달하는 가속 파이프(120);An acceleration pipe 120 surrounding an outer circumference of the cooling tube 112 and having one end coupled to the body 110 and receiving and transferring current from the body 110;
    상기 가속 파이프(120)의 외주를 감싸되, 내주면과 상기 가속 파이프(120)의 외주면 사이에 작동 가스가 이동하는 제1 섹션(A)이 형성되게 하고, 일측 둘레에 작동 가스가 유입되는 다수 개의 유입홀(132)이 비스듬하게 뚫린 스월 파이프 유닛(130);Wrap the outer circumference of the acceleration pipe 120, a first section (A) for moving the working gas is formed between the inner circumferential surface and the outer circumferential surface of the acceleration pipe 120, a plurality of working gas is introduced around A swirl pipe unit 130 in which the inlet hole 132 is obliquely drilled;
    상기 가속 파이프(120)의 타단에 결합되고, 단부가 티트(Teat) 형상으로 가공된 전극(140);An electrode 140 coupled to the other end of the acceleration pipe 120 and having an end processed in a teat shape;
    상기 전극(140)의 외측을 덮되, 내측면이 상기 전극의 단부에 대응되는 형상으로 형성되고, 내측면과 상기 전극(140)의 외측면 사이에 상기 제1 셕션(A)과 연통되는 제2 섹션(B)이 형성되게 하는 노즐(150); 및,A second covering the outer side of the electrode 140, the inner side is formed in a shape corresponding to the end of the electrode, and the second side is in communication with the first section (A) between the inner side and the outer side of the electrode 140 A nozzle 150 causing section B to be formed; And,
    상기 노즐(150)을 덮는 노즐 고정캡(160);을 포함하여 이루어지고,It comprises a; nozzle fixing cap 160 covering the nozzle 150,
    상기 전극(140)과 상기 노즐(150) 사이에 티트 형상으로 형성되는 제2 섹션(B)을 통해, 작동 가스가 매끄럽게 회전되어 방출되게 함으로써, 원기둥 형태의 플라즈마를 생성하는 것을 특징으로 하는 플라즈마 토치.Plasma torch, characterized in that to generate a cylindrical plasma by the operating gas is smoothly rotated through the second section (B) formed between the electrode 140 and the nozzle 150 to be discharged .
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제2 섹션(B)의 단면적은, 상기 제1, 2 섹션(A, B)이 연결되는 지점(P₁)에서, 상기 전극(140)의 둘레가 가장 두꺼워지는 지점(P₂)으로 갈수록 서서히 좁아지도록 형성되는 것을 특징으로 하는 플라즈마 토치.The cross-sectional area of the second section (B) is gradually narrower from the point (P ₁) where the first and second sections (A, B) are connected to the point (P ₂) where the circumference of the electrode (140) becomes thickest. And plasma plasma torch.
  3. 청구항 1에 있어서, 상기 스월 파이프 유닛(130)은,The method of claim 1, wherein the swirl pipe unit 130,
    일측 둘레에 상기 유입홀(132)이 형성된 스월 파이프(130a); 및, 상기 스월 파이프(130a)의 외주를 감싸는 절연 파이프(130b);로 구성되고,A swirl pipe 130a having the inlet hole 132 formed around one side thereof; And an insulation pipe 130b surrounding an outer circumference of the swirl pipe 130a.
    상기 스월 파이프(130a)에는 상기 가속 파이프(120)와 같은 극의 전류가 동일한 방향으로 흐르는 것을 특징으로 하는 플라즈미 토치.Plasmi torch, characterized in that the swirl pipe (130a) flows in the same direction as the current of the same pole as the acceleration pipe (120).
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 스월 파이프(130a)의 외주면과 상기 절연 파이프(130b)의 내주면 사이에는 작동 가스가 분기되어 흐를 수 있는 브랜치 섹션(C)이 형성되고,Between the outer circumferential surface of the swirl pipe (130a) and the inner circumferential surface of the insulating pipe (130b) is formed a branch section (C) through which the working gas can flow branched,
    상기 스월 파이프(130a)의 타측 둘레에는 상기 제1 섹션(A)과 상기 브랜치 섹션(C)을 연통시키는 다수 개의 연통홀(134)이 형성되는 것을 특징으로 하는 플라즈마 토치.Plasma torch, characterized in that a plurality of communication holes (134) for communicating the first section (A) and the branch section (C) is formed around the other side of the swirl pipe (130a).
  5. 청구항 4에 있어서, The method according to claim 4,
    상기 연통홀(134)과 마주하는 상기 절연 파이프(130b)의 내주면 소정 위치에는 가스 저장홈(136)이 형성되어, 작동 가스가 상기 브랜치 섹션(C)에서 상기 제1 섹션(A)으로 적체되지 않고 유입될 수 있도록 하는 것을 특징으로 하는 플라즈마 토치.A gas storage groove 136 is formed at a predetermined position on the inner circumferential surface of the insulating pipe 130b facing the communication hole 134, so that a working gas is not accumulated from the branch section C to the first section A. Plasma torch, characterized in that to be introduced without.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 노즐 고정캡(160)의 선단부에는 실드(160)와 실드캡(170)이 더 구비되는 것을 특징으로 하는 플라즈마 토치.Plasma torch, characterized in that the front end of the nozzle fixing cap 160, the shield 160 and the shield cap 170 is further provided.
  7. 피절단재가 탑재되는 테이블(210);A table 210 on which the cutting material is mounted;
    상기 테이블(210)에 설치되어, 상기 테이블(210)의 종축 방향으로 움직이는 갠트리(220);A gantry 220 installed on the table 210 and moving in the longitudinal axis direction of the table 210;
    상기 캔트리(220)에 설치되어, 상기 테이블(210)의 횡축 방향으로 움직이는 이동블럭(230);A moving block 230 installed in the can tree 220 and moving in a horizontal axis direction of the table 210;
    상기 이동블럭(230)의 상부에 구비된 에어탱크(240);An air tank 240 provided on an upper portion of the movable block 230;
    상기 이동불럭(230)의 하부에 높이 방향으로 움직일 수 있게 설치된 청구항 1 내지 청구항 6 중 어느 한 항의 플라즈마 토치(100); 및,Claims 1 to 6 any one of the plasma torch 100 is installed to be movable in the height direction in the lower portion of the moving block 230; And,
    상기 플라즈마 토치(100)의 선단부에 구비되고, 단부에는 다수 개의 에어홀(252)이 형성되며, 가공시 피절단재에서 튀어오르는 부산물을 쳐내기 위해, 상기 에어탱크(240)로부터 에어를 공급받아 분사하는 필드캡(250);을 포함하여 이루어지는 것을 특징으로 하는 절단 장치.Is provided at the front end of the plasma torch 100, a plurality of air holes 252 is formed at the end, in order to blow off the by-products springing from the cutting material during processing, by receiving air from the air tank 240 is injected Field cap 250; Cutting device comprising a.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 이동블럭(230)의 하부에는 상기 플라즈마 토치(100)의 위치를 감지할 수 있는 위치센서(260)가 구비되어,The lower portion of the moving block 230 is provided with a position sensor 260 that can detect the position of the plasma torch 100,
    상기 플라즈마 토치(100)가 피절단재를 절단하기 위해 일정 위치로 하강할 경우, 상기 플라즈마 토치(100)의 위치를 감지하여, 플라즈마가 분사되기 전에 상기 필드캡(250)에서 에어가 분사되도록 하는 것을 특징으로 하는 절단 장치.When the plasma torch 100 descends to a predetermined position to cut the cutting material, the plasma torch 100 senses the position of the plasma torch 100 so that air is injected from the field cap 250 before plasma is injected. Cutting device, characterized in that.
  9. 청구항 7에 있어서, The method according to claim 7,
    상기 필드캡(250)의 전단에는 에어가 트위스트(Twist)되게 분사될 수 있도록 상기 다수 개의 에어홀(252)이 비스듬하게 뚫린 것을 특징으로 하는 절단 장치.Cutting device, characterized in that the plurality of air holes 252 are obliquely drilled in front of the field cap 250 so that the air can be injected to be twisted (Twist).
PCT/KR2016/006159 2016-03-31 2016-06-10 Plasma torch and cutting device using same WO2017171136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160039359A KR101781104B1 (en) 2016-03-31 2016-03-31 Plasma Torch and Cutting Machine using the same
KR10-2016-0039359 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171136A1 true WO2017171136A1 (en) 2017-10-05

Family

ID=59965911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006159 WO2017171136A1 (en) 2016-03-31 2016-06-10 Plasma torch and cutting device using same

Country Status (2)

Country Link
KR (1) KR101781104B1 (en)
WO (1) WO2017171136A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011238A (en) * 1998-02-05 2000-01-04 La Soudure Autogene Francaise Electrode for a plasma torch
KR100870854B1 (en) * 2004-06-25 2008-11-27 고마쓰 산기 가부시끼가이샤 Multiple thermal cutting device, multiple thermal cutting method and computer-readable storage medium storing a processing program creation computer program to implement the same
JP2010005636A (en) * 2008-06-24 2010-01-14 Japan Ship Technology Research Association Plasma cutting torch
KR20110118314A (en) * 2010-04-23 2011-10-31 (주)엔플라 Plazma torch with efficient cooling mechanism
KR101270794B1 (en) * 2006-04-27 2013-06-05 현대중공업 주식회사 The line welding device of membrane lng carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011238A (en) * 1998-02-05 2000-01-04 La Soudure Autogene Francaise Electrode for a plasma torch
KR100870854B1 (en) * 2004-06-25 2008-11-27 고마쓰 산기 가부시끼가이샤 Multiple thermal cutting device, multiple thermal cutting method and computer-readable storage medium storing a processing program creation computer program to implement the same
KR101270794B1 (en) * 2006-04-27 2013-06-05 현대중공업 주식회사 The line welding device of membrane lng carrier
JP2010005636A (en) * 2008-06-24 2010-01-14 Japan Ship Technology Research Association Plasma cutting torch
KR20110118314A (en) * 2010-04-23 2011-10-31 (주)엔플라 Plazma torch with efficient cooling mechanism

Also Published As

Publication number Publication date
KR101781104B1 (en) 2017-09-22

Similar Documents

Publication Publication Date Title
KR100199782B1 (en) Plasma arc torch having injection nozzle assembly
MY132888A (en) Plasma arc torch
WO2016003040A1 (en) Magnetic substance holding device
WO2013162182A1 (en) Inline vacuum pump
CA2264382A1 (en) Miniature air gap inspection device
CZ296413B6 (en) Method for locally heating objects and apparatus for making the same
WO2017159986A1 (en) Vacuum gripper unit comprising vacuum pump
WO2017171136A1 (en) Plasma torch and cutting device using same
WO2022065611A1 (en) Charging apparatus for personal mobility means
WO2018225878A1 (en) Motor
WO2016204332A1 (en) Water-cooled plasma torch
WO2020116835A1 (en) Magnetic flux path control device
WO2022154206A1 (en) Robot-tooling vacuum gripper device
WO2019054562A1 (en) Plasma torch
WO2015064916A1 (en) Winding apparatus for rolled coil
WO2024075910A1 (en) Torch head for gas welding
WO2019054728A1 (en) Rotating device for supplying shielding gas and removing fumes
CN115945780B (en) Laser welding composite shielding gas device
US3068343A (en) Arc welding device for rod or tube material
WO2017003058A1 (en) Frictional resistance-reducing device and ship including same
WO2016159447A1 (en) Plasma torch
WO2019066271A1 (en) Welding torch diffuser
ATE186659T1 (en) POWDER SPRAY COATING APPARATUS
WO2019164080A1 (en) Spray apparatus for flower thinning of fruit trees and method for controlling same
WO2014163239A1 (en) Long-distance blow pipe

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897157

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07/12/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16897157

Country of ref document: EP

Kind code of ref document: A1