WO2017170857A1 - Device for manufacturing spherical aluminum nitride particles - Google Patents

Device for manufacturing spherical aluminum nitride particles Download PDF

Info

Publication number
WO2017170857A1
WO2017170857A1 PCT/JP2017/013220 JP2017013220W WO2017170857A1 WO 2017170857 A1 WO2017170857 A1 WO 2017170857A1 JP 2017013220 W JP2017013220 W JP 2017013220W WO 2017170857 A1 WO2017170857 A1 WO 2017170857A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating case
aluminum nitride
spherical aluminum
applicator
Prior art date
Application number
PCT/JP2017/013220
Other languages
French (fr)
Japanese (ja)
Inventor
杉橋 敦史
佐藤 裕
宏治 景山
澤野 清志
Original Assignee
新日鉄住金マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金マテリアルズ株式会社 filed Critical 新日鉄住金マテリアルズ株式会社
Publication of WO2017170857A1 publication Critical patent/WO2017170857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates

Definitions

  • the present invention relates to an apparatus for producing spherical aluminum nitride particles.
  • Spherical alumina (Al 2 O 3 ) particles are widely used in electronic devices such as semiconductor substrates as fillers having excellent thermal conductivity and members for heat dissipation sheets.
  • spherical alumina particles with carbon attached are nitrided by heating to 1400-1700 ° C by microwave in a nitrogen atmosphere to produce alumina particles with an aluminum nitride modified layer A microwave heating apparatus for this purpose is known (Patent Document 1, FIG. 1).
  • the apparatus includes a heat insulating case formed of a ceramic fiber heat insulating board so as to surround the entire periphery of the alumina crucible holding the spherical alumina particles to which carbon is adhered, and the top plate portion of the heat insulating case includes: An alumina pipe for supplying nitrogen gas is inserted into the alumina crucible.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a spherical aluminum nitride particle production apparatus that can suppress melting damage of a heat insulating case and a decrease in nitriding efficiency.
  • the apparatus for producing spherical aluminum nitride particles according to the present invention irradiates a mixture containing spherical alumina particles and a carbon-based material powder with microwaves in a nitrogen atmosphere in an applicator equipped with a microwave oscillator.
  • the gas generated in the nitriding process is quickly discharged from the heat insulating case to the outside of the applicator, so that the impurity gas contained in the gas generated in the nitriding process It becomes difficult to solidify and adhere to the outer surface of the heat insulating case, and it is possible to prevent heating due to unintentional microwave absorption at the attached portion, and thus it is possible to suppress melting damage and reduction in nitriding efficiency of the heat insulating case.
  • the spherical aluminum nitride particles are mainly modified by nitriding the vicinity of the surface of the spherical alumina particles to ensure the performance as a filler, and the surface of the spherical alumina particles is changed to aluminum nitride.
  • the nitriding reaction proceeds, and the spherical alumina particles as a whole are converted into spherical aluminum nitride.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of the spherical aluminum nitride particle production apparatus of the present invention.
  • the spherical aluminum nitride particle manufacturing apparatus 1 includes an applicator (heating furnace) 2 and a microwave oscillator 3.
  • the applicator 2 is provided with a stirrer 5 for making the electromagnetic field distribution in the applicator 2 uniform and a mounting table 7 on which a heated object is placed, and a microwave from the microwave oscillator 3 is provided. Is provided at a predetermined position on the side wall.
  • the spherical aluminum nitride particle production apparatus 1 of the present invention accommodates a mixture 6 (hereinafter also referred to as “mixture 6”) containing spherical alumina particles and carbon-based material powder on a mounting table 7 in an applicator 2.
  • a non-sealing heat insulating case 8 is provided.
  • “non-hermetic” means that gas such as nitrogen gas can enter and exit in the heat insulating case 8.
  • the applicator 2 is provided with a nitrogen gas supply pipe 11 at a predetermined position on the side wall. However, the nitrogen gas supply pipe 11 does not need to be inserted into the heat insulating case 8, and a nitriding gas is used.
  • a supply port for discharging is provided at any location in the applicator 2.
  • the nitrogen gas supply pipe 11 is connected to a nitrogen gas storage unit such as a cylinder (not shown), and supplies the nitrogen gas in the nitrogen gas storage unit into the applicator 2.
  • the heat insulating case 8 is a multilayer structure made of a heat insulating board or heat insulating fiber having a predetermined thickness, and the nitrogen gas necessary for nitriding the raw material alumina is a hole in the heat insulating board itself, a gap between the heat insulating boards, or heat insulation. Through the fibers, it can enter and exit the insulating case 8.
  • the mixture 6 may be placed directly on the bottom plate of the heat insulating case 8, but preferably the mixture 6 is, for example, microwave permeable high purity alumina, high purity silica, high purity magnesia, tridymite, sialon, aluminum nitride.
  • the heat insulating case 8 can be formed from a heat insulating material containing at least one of microwave permeable fibrous alumina, silica, and mullite.
  • the applicator 2 is provided with an exhaust pipe 12.
  • the exhaust pipe 12 has an intake port disposed in a space between the mixture 6 and the top plate portion of the heat insulating case 8, and penetrates the side surface of the heat insulating case 8 from the space to the outside of the applicator 2. Extend.
  • the exhaust pipe 12 discharges pyrolysis gas (impurity gas) generated in the heat insulating case 8 due to impurities in the carbon-based material powder to the outside of the applicator 2 through the intake port.
  • the impurity gas contained in the gas generated in the nitriding process reaches the outer surface of the heat insulating case 8 from the heat insulating case 8 to remove the impurity gas from the applicator 2. Therefore, it is difficult for the impurity gas to solidify and adhere to the outer surface of the heat insulating case 8, and it is possible to prevent heating due to unintentional microwave absorption at the attachment location.
  • the impurity gas it is possible to suppress melting of the heat insulating case 8 and a decrease in nitriding efficiency. At this time, carbon monoxide gas generated by the nitriding reaction is also discharged out of the reaction system, so that the nitriding reaction is promoted.
  • an exhaust pump 13 is connected to the exhaust pipe 12 at the outlet.
  • the exhaust pump 13 can discharge the gas in the space in the heat insulating case 8 through the exhaust pipe 12, and can maintain the inside of the heat insulating case 8 at a negative pressure than the outside of the heat insulating case 8.
  • the exhaust pump 13 urges the gas generated in the nitriding process in the heat insulating case 8 to be discharged from the heat insulating case 8 and the inflow of nitrogen gas into the heat insulating case 8.
  • the nitrogen gas supply pipe 11 supplies nitrogen gas from the upper side of the mixture 6.
  • the position of the supply port of the nitrogen gas supply pipe 11 is not limited to this, and for example, nitrogen gas supply You may make it supply nitrogen gas from the lower side of the mixture 6 with a pipe
  • the nitrogen gas supply pipe 11 and the exhaust pipe 12 can be made of a microwave permeable material such as alumina.
  • the heat insulating case 8 and the mortar 14 have a temperature measurement opening 15 in the top plate portion in order to monitor the temperature of the internal mixture 6.
  • the top plate portion of the applicator 2 is provided with an infrared transparent window portion 9 made of quartz or the like at a predetermined position, and a surface thermometer 10 is provided outside the window portion 9.
  • the surface thermometer 10 detects the infrared light emitted from the mixture 6 through the opening 15 and the window portion 9 and converts it into the surface temperature of the mixture 6.
  • the surface temperature of the mixture 6 measured by the surface thermometer 10 can be an index of the degree of nitriding of the alumina particles.
  • FIG. 2 in which the same reference numerals are assigned to the parts corresponding to FIG. 1, is a schematic cross-sectional view of another embodiment of the spherical aluminum nitride particle production apparatus of the present invention.
  • the exhaust pipe 26 is composed of a first pipe 24 and a second pipe 22, and the first pipe 24 is used for the heat insulating case 8 filled with raw materials. It differs from the spherical aluminum nitride particle producing apparatus 1 in FIG. 1 described above in that it communicates from a predetermined position to a window portion 9 provided in the applicator 2 and also serves as a surface temperature measuring tube. .
  • the first pipe 24 constituting the exhaust pipe 26 is integrated with an opening 25 formed in the top plate portion of the mortar 14 and the heat insulating case 8, and from the opening 25 toward the top plate portion of the applicator 2.
  • the end portion is arranged at a predetermined position in the applicator 2.
  • a second tube 22 that communicates with the first tube 24 and extends to the outside of the applicator 2 in a direction different from the longitudinal direction of the first tube 24 is provided in the middle of the first tube 24. It has been.
  • the first tube 24 extends vertically from the opening 25 formed in the top plate portion of the heat insulating case 8 toward the top plate portion of the applicator 2, and the first A second tube 22 extends from the side wall of the tube 24 toward the side wall of the applicator 2, and the second tube 22 passes through the side wall of the applicator 2.
  • the exhaust pipe 13 is provided at the outlet of the second pipe 22, and the gas in the second pipe 22 can be discharged by the exhaust pump 13. Thereby, the gas in the space in the heat insulating case 8 can be discharged out of the applicator 2 from the first tube 24 via the second tube 22.
  • the end of the first tube 24 reaches the window installation part for setting the window part 9 on the top plate part of the applicator 2, and the upper part is integrally formed with the window installation part in the top plate part of the applicator 2.
  • the gas generated in the heat insulating case 8 during the nitriding process can be guided to the second pipe 22 without leaking from the first pipe 24.
  • the first pipe 24 is arranged so as to linearly connect the surface of the mixture 6 to the window portion 9 in the heat insulating case 8, the surface temperature provided outside the window portion 9. By the total 10, infrared rays emitted from the mixture 6 can be detected through the window portion 9 and the first tube 24.
  • the spherical aluminum nitride particle production apparatus 21 also uses the exhaust pipe 26 to remove the impurity gas before the impurity gas contained in the gas generated in the nitriding process reaches the outer surface of the heat insulating case 8. Since it can be discharged from the inside of the heat insulating case 8 to the outside of the applicator 2, it is difficult for the impurity gas to solidify and adhere to the outer surface of the heat insulating case 8 and to prevent heating due to unintentional microwave absorption at the attachment point. it can. Thus, the spherical aluminum nitride particle production apparatus 21 can also suppress melting damage of the heat insulating case 8 and a decrease in nitriding efficiency.
  • the first tube 24 is provided in the opening 25 of the heat insulating case 8, and the first heat generating tube 8 is generated in the heat insulating case 8 through the second tube 22.
  • the heat insulating case is formed by exhausting the gas, as compared with the case where the opening of the heat insulating case 8 communicates with the inside of the applicator 2 without providing the first pipe 24.
  • the gas generated in the gas 8 can be reliably exhausted by the exhaust pipe 26.
  • the spherical aluminum nitride particle production apparatus 21 also exhausts the gas in the first pipe 24 via the second pipe 22, the gas from the window portion 9 disposed at the end of the first pipe 24 is exhausted. Leakage can also be prevented.
  • the position where the second tube 22 branches from the first tube 24 may be various positions as long as it is between the top plate portion of the heat insulating case 8 and the top plate portion of the applicator 2.
  • tube 22 can be comprised with microwave permeable materials, such as an alumina. The reflectance of infrared rays may be increased by evaporating aluminum inside the first tube 24.
  • tube 22 is arrange
  • FIG. 3 is a schematic cross-sectional view of a heat insulating case having a mode different from that of the heat insulating case 8 shown in FIGS. 1 and 2.
  • the heat insulating case 38 includes a holding plate 39 for holding the mixture 6 at a predetermined height from the bottom plate of the heat insulating case 38.
  • the holding plate 39 has a structure that allows permeation (passage) of nitrogen gas such as porous material, is difficult to absorb microwaves, and is formed from a heat-resistant ceramic material such as alumina, silica, sialon, tridymite, magnesia, aluminum nitride, etc. Has been.
  • the heat insulating case 38 is configured such that an internal holding plate 39 can be exposed to the outside by a lid (not shown), and the mixture 6 can be held on the holding plate 39.
  • the heat insulating case 38 is provided with one nitrogen gas supply pipe 11a on the side wall between the holding plate 39 and the bottom plate, and supplies one nitrogen gas to the lower space ER1 between the holding plate 39 and the bottom plate. Nitriding gas can be supplied by the tube 11a. Further, the heat insulating case 38 is provided with another nitrogen gas supply pipe 11 b and an exhaust pipe 12 on the side wall between the top plate portion and the mixture 6. Thereby, the other nitrogen gas supply pipe 11b supplies the nitriding gas to the upper space ER2 between the top plate portion and the mixture 6, and the exhaust pipe 12 is the upper space ER2 between the top plate portion and the mixture 6. The gas inside can be exhausted.
  • the present invention is not limited to this, and one nitrogen gas supply pipe 11b is provided. Only one of the gas supply pipe 11a and the other nitrogen gas supply pipe 11b may be provided.
  • the nitrogen gas supply pipe 11a is provided in the lower space ER1
  • the exhaust pipe 12 is provided in the upper space ER2 (that is, when no other nitrogen gas supply pipe 11b is provided)
  • the lower space ER1 Since the airflow flowing toward the holding plate 39, the mixture 6, the upper space ER2, and the exhaust pipe 12 can be formed, the nitriding reaction can be promoted in the mixture 6, and the mixture 6 is made to the side where the supply pipe is provided. It is possible to solve the problem that the nitrogen gas hardly reaches the opposite side of the glass, and to suppress firing unevenness in a process of firing a certain amount of aluminum nitride industrially.
  • the heat insulating case 38 is provided with a nitrogen gas supply pipe 11a on one side wall in the lower space ER1, and the exhaust pipe 12 on the other side wall facing the one side wall in the upper space ER2.
  • the nitrogen gas supply pipe 11a and the exhaust pipe 12 are arranged so as to face each other, so that the nitriding gas can flow from one side wall side to the other side wall side, and the nitriding reaction of the entire mixture 6 can be performed. It can be promoted.
  • the position including the holding plate 39 may be an arbitrary position as long as it is between the bottom plate and the top plate portion of the heat insulating case 38 according to the amount of the mixture 6.
  • the holding plate 39 does not need to be fixed to the side surface of the heat insulating case 38 and may be movable according to the amount of the mixture 6.
  • a plurality of legs may be attached to the holding plate 39 to constitute a self-supporting base.
  • the heat insulating case 38 can be made of, for example, a heat resistant ceramic material such as alumina that is difficult to absorb the microwave.
  • the impurity gas can be discharged from the heat insulating case 38 to the outside of the applicator 2 by the exhaust pipe 12 as in the above-described embodiment, the impurity gas is solidified on the outer surface of the heat insulating case 38. Accordingly, it is possible to suppress the melting loss of the heat insulating case 38 and the decrease in the nitriding efficiency.
  • FIG. 4 is a schematic cross-sectional view of another embodiment of the heat insulating case, and shows an example of the heat insulating case 48 including a plurality of openings 48d through which a gas such as nitrogen gas can enter and exit.
  • the heat insulating case 48 includes a lid portion 48a and a main body portion 48b, and an opening 48d is formed along the boundary between the lid portion 48a and the main body portion 48b.
  • the lid portion 48a has a configuration in which a recess is formed in the edge portion 48c that contacts the edge portion of the main body portion 48b, and the edge portion of the main body portion 48b contacts the recess portion.
  • an opening 48d can be formed at the boundary with the main body 48b.
  • the exhaust pipe 12 is provided on the upper side of the mixture 6 (not shown) in the heat insulating case 48 as in the embodiment of FIG.
  • the recessed part which forms the opening 48d in the edge part 48c of the cover part 48a was described, this invention is not limited to this, The recessed part which forms the opening 48d in the edge part of the main-body part 48b is formed. May be.
  • the shape for forming the opening 48d does not need to be regularly arranged with the concave portions and the convex portions, and may have a configuration in which the concave portions and the convex portions are irregularly arranged.
  • the opening 48d may not be a quadrilateral shape, and may be various other shapes such as a circle.
  • a through hole may be provided in the side wall of the lid portion 48a and / or the main body portion 48b. Good.
  • the opening 48d may be provided on the side surface in contact with the upper space ER2 in FIG. 3, or may be provided on the side surface in contact with the lower space ER1 in FIG.
  • the heat insulating case 48 can be made of a refractory ceramic material such as alumina that is difficult to absorb the microwaves, for example.
  • the impurity gas can be discharged from the inside of the heat insulating case 48 to the outside of the applicator 2 by the exhaust pipe 12 as in the above-described embodiment, so that the impurity gas is solidified on the outer surface of the heat insulating case 48. Accordingly, it is possible to suppress the melting loss of the heat insulating case 48 and the decrease in the nitriding efficiency.
  • the heat insulation cases 38 and 48 can also be formed from the heat insulating material containing at least 1 type of an alumina, a silica, and a mullite.
  • the nitrogen gas intake efficiency is further improved by forming the heat insulating case 48 of a porous body.
  • an opening 48d as shown in FIG. 4 may be provided in the heat insulating case 38 shown in FIG. 3, and the configurations of FIGS. It is good also as a structure. 3 and 4 is also provided with an exhaust pump 13.
  • the spherical alumina particles used for obtaining the spherical aluminum nitride particles may be spherical or substantially spherical.
  • the spherical alumina particles are preferably 5 to 150 ⁇ m in terms of 50 mass% average particle diameter (D50) determined on a mass basis using, for example, a laser particle size distribution analyzer (CILAS-920 manufactured by CILAS). This is because the produced spherical aluminum nitride particles are mixed with a resin to obtain a heat conduction characteristic required when the filler is used as a filler.
  • the spherical alumina particles those obtained by granulating alumina powder into a spherical shape can be used.
  • the spherical alumina powder can be obtained, for example, by an alkoxide method, a Bayer method, an ammonium alum pyrolysis method, or an ammonium dosonite pyrolysis method.
  • the granulation method include a wet stirring granulation method and a spray drying method.
  • particles granulated by the spray drying method are used.
  • the spray drying method may be any method such as a nozzle method or a disk method.
  • the carbon-based material powder examples include graphite, carbon black, acetylene black, amorphous carbon and the like, which may be naturally derived or industrially produced.
  • the metal content is 1% by mass or less, and preferably the metal content is 0.1% by mass or less so as not to affect the insulation performance of the aluminum nitride after production.
  • the carbon-based powder is desirably present so as to cover the spherical alumina particles that are the mixed raw material, and more preferably has an average particle diameter equal to or smaller than the average diameter of the spherical alumina particles.
  • the mixture containing the spherical alumina particles and the carbon-based material powder can be prepared by mixing the spherical alumina particles and the carbon-based material powder in a dry manner with a ball mill or the like.
  • a liquid dispersion medium such as water or alcohol may be added.
  • the mixing ratio is desirably about 0.5 times or less of the Al 2 O 3 / 3C stoichiometric ratio based on the following reaction formula.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Furnace Details (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Ceramic Products (AREA)

Abstract

Provided is a device for manufacturing spherical aluminum nitride particles, whereby erosion of a heat insulating case or a reduction in nitridation efficiency can be suppressed. In a device (1) for manufacturing spherical aluminum nitride particles, impurity gas included in gas generated in the process of nitridation can be discharged to the outside of an applicator (2) from within a heat insulating case (8) before the impurity gas reaches an outside surface of the heat insulating case (8). The impurity gas is therefore not prone to solidify on the outside surface of the heat insulating case (8), and erosion of the heat insulating case (8) or reduction in nitridation efficiency can be correspondingly suppressed.

Description

球状窒化アルミニウム粒子製造装置Spherical aluminum nitride particle production equipment
 本発明は、球状窒化アルミニウム粒子製造装置に関する。 The present invention relates to an apparatus for producing spherical aluminum nitride particles.
 球状アルミナ(Al2O3)粒子は、熱伝導性に優れたフィラーや放熱用シートの部材として、半導体基板等の電子デバイスに広く使用されている。熱伝導性をさらに高めるために、カーボンを付着させた球状アルミナ粒子を窒素雰囲気中でマイクロ波により1400~1700℃に加熱して窒化することによって、窒化アルミニウム改質層を備えたアルミナ粒子を製造するためのマイクロ波加熱装置が知られている(特許文献1、図1)。該装置は、カーボンを付着させた球状アルミナ粒子を保持するアルミナ坩堝の全周囲を取り囲むように、セラミックファイバー製断熱ボードで形成された断熱性ケースを備え、該断熱性ケースの天板部に、アルミナ坩堝内に窒素ガスを供給するためのアルミナパイプが挿入された構造となっている。 Spherical alumina (Al 2 O 3 ) particles are widely used in electronic devices such as semiconductor substrates as fillers having excellent thermal conductivity and members for heat dissipation sheets. In order to further improve thermal conductivity, spherical alumina particles with carbon attached are nitrided by heating to 1400-1700 ° C by microwave in a nitrogen atmosphere to produce alumina particles with an aluminum nitride modified layer A microwave heating apparatus for this purpose is known (Patent Document 1, FIG. 1). The apparatus includes a heat insulating case formed of a ceramic fiber heat insulating board so as to surround the entire periphery of the alumina crucible holding the spherical alumina particles to which carbon is adhered, and the top plate portion of the heat insulating case includes: An alumina pipe for supplying nitrogen gas is inserted into the alumina crucible.
特開2011-219309号公報JP 2011-219309 JP
 しかし、上記装置を用いた場合、断熱性ケースの外側表面の一部が黒焦げになって溶損することが認められた。これは、マイクロ波による加熱により、カーボンとして使用される活性炭やカーボンブラック中の不純物から発生した熱分解ガス(不純物ガスとも呼ぶ)が、断熱性ケースの外側表面で固化し、断熱性ケースに付着した固化物がマイクロ波により再加熱され炭化したことによるものと考えられる。断熱ボードの外側でマイクロ波が吸収されてしまうと、アルミナ粒子に到達するマイクロ波のエネルギーが低下するので窒化の反応効率も低下する。 However, when the above apparatus was used, it was recognized that a part of the outer surface of the heat insulating case was charred and melted. This is because pyrolysis gas (also called impurity gas) generated from impurities in activated carbon or carbon black used as carbon solidifies on the outer surface of the heat insulating case and adheres to the heat insulating case. This is probably because the solidified product was reheated and carbonized by microwaves. If microwaves are absorbed outside the heat insulation board, the energy of the microwaves reaching the alumina particles is reduced, so that the nitriding reaction efficiency is also reduced.
 本発明は、上記のような問題に鑑みてなされたものであり、断熱性ケースの溶損や窒化効率の低下を抑制できる、球状窒化アルミニウム粒子製造装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a spherical aluminum nitride particle production apparatus that can suppress melting damage of a heat insulating case and a decrease in nitriding efficiency.
 本発明の球状窒化アルミニウム粒子製造装置は、マイクロ波発振器を備えるアプリケーター内で、球状アルミナ粒子と炭素系材料粉末とを含む混合物を、窒素雰囲気中でマイクロ波を照射して、該球状アルミナ粒子の少なくとも一部を窒化して球状窒化アルミニウム粒子を製造する、球状窒化アルミニウム粒子製造装置であって、前記アプリケーター内に設けられて前記球状アルミナ粒子と前記炭素系材料粉末とを含む混合物を収容する、非密閉性の断熱性ケースと、前記球状窒化アルミニウム粒子の製造時における窒化反応の過程で生じる気体を該断熱性ケースの内側から該アプリケーターの外側へと排出する排気管と、を備えることを特徴とする。 The apparatus for producing spherical aluminum nitride particles according to the present invention irradiates a mixture containing spherical alumina particles and a carbon-based material powder with microwaves in a nitrogen atmosphere in an applicator equipped with a microwave oscillator. A spherical aluminum nitride particle production apparatus for producing spherical aluminum nitride particles by nitriding at least a part, and containing a mixture including the spherical alumina particles and the carbonaceous material powder provided in the applicator. A non-sealing heat insulating case, and an exhaust pipe for discharging a gas generated in a nitriding process during the production of the spherical aluminum nitride particles from the inside of the heat insulating case to the outside of the applicator. And
 本発明の球状窒化アルミニウム粒子製造装置によれば、窒化の過程で発生するガスが断熱性ケースからアプリケーター外へと速やかに排出されるので、窒化の過程で発生するガスに含まれた不純物ガスが断熱性ケースの外側表面で固化・付着し難くなり、付着箇所での意図しないマイクロ波吸収による加熱が発生することを防止でき、かくして、断熱性ケースの溶損や窒化効率の低下を抑制できる。 According to the spherical aluminum nitride particle producing apparatus of the present invention, the gas generated in the nitriding process is quickly discharged from the heat insulating case to the outside of the applicator, so that the impurity gas contained in the gas generated in the nitriding process It becomes difficult to solidify and adhere to the outer surface of the heat insulating case, and it is possible to prevent heating due to unintentional microwave absorption at the attached portion, and thus it is possible to suppress melting damage and reduction in nitriding efficiency of the heat insulating case.
本発明の球状窒化アルミニウム粒子製造装置の一態様の断面模式図である。It is a cross-sectional schematic diagram of one aspect | mode of the spherical aluminum nitride particle manufacturing apparatus of this invention. 本発明の球状窒化アルミニウム粒子製造装置の他の態様の断面模式図である。It is a cross-sectional schematic diagram of the other aspect of the spherical aluminum nitride particle manufacturing apparatus of this invention. 本発明における断熱性ケースの他の態様の断面模式図である。It is a cross-sectional schematic diagram of the other aspect of the heat insulation case in this invention. 本発明における断熱性ケースのさらに他の態様の断面模式図である。It is a cross-sectional schematic diagram of the further another aspect of the heat insulation case in this invention.
 本発明において、球状窒化アルミニウム粒子とは、主に、フィラーとしての性能を確保するために球状アルミナ粒子の表面近傍を窒化することで改質し、球状アルミナ粒子の表面を窒化アルミニウムとなしたものをいうが、それ以外にも、窒化反応が進み、球状アルミナ粒子全体が、球状窒化アルミニウムと化したものも含んでいる。 In the present invention, the spherical aluminum nitride particles are mainly modified by nitriding the vicinity of the surface of the spherical alumina particles to ensure the performance as a filler, and the surface of the spherical alumina particles is changed to aluminum nitride. However, other than that, the nitriding reaction proceeds, and the spherical alumina particles as a whole are converted into spherical aluminum nitride.
 図1は、本発明の球状窒化アルミニウム粒子製造装置の一態様の断面模式図である。球状窒化アルミニウム粒子製造装置1は、アプリケーター(加熱炉)2と、マイクロ波発振器3とを備える。アプリケーター2には、アプリケーター2内の電磁界分布を均一化するためのスターラー5と、被加熱体が載置される載置台7とが内部に設けられており、マイクロ波発振器3からのマイクロ波を当該アプリケーター2内へと導く導波路4が側壁の所定位置に設けられている。 FIG. 1 is a schematic cross-sectional view of one embodiment of the spherical aluminum nitride particle production apparatus of the present invention. The spherical aluminum nitride particle manufacturing apparatus 1 includes an applicator (heating furnace) 2 and a microwave oscillator 3. The applicator 2 is provided with a stirrer 5 for making the electromagnetic field distribution in the applicator 2 uniform and a mounting table 7 on which a heated object is placed, and a microwave from the microwave oscillator 3 is provided. Is provided at a predetermined position on the side wall.
 本発明の球状窒化アルミニウム粒子製造装置1は、アプリケーター2内の載置台7上に、球状アルミナ粒子と炭素系材料粉体とを含む混合物6(以下「混合物6」という場合がある)を収容するための、非密閉性の断熱性ケース8を備える。ここで「非密閉性」とは、断熱性ケース8において窒素ガス等の気体の出入りが可能であることを意味する。ここで、アプリケーター2には、窒素ガス供給管11が側壁の所定位置に設けられているが、窒素ガス供給管11は断熱性ケース8の内側にまで挿入されている必要はなく、窒化ガスを吐出する供給口がアプリケーター2内の任意の箇所に備えられる。これによりアプリケーター2内全体を反応に必要な窒素ガスで満たすことができる。窒素ガス供給管11は、図示しないボンベ等の窒素ガス貯留部と接続されており、当該窒素ガス貯留部内の窒素ガスをアプリケーター2内に供給する。 The spherical aluminum nitride particle production apparatus 1 of the present invention accommodates a mixture 6 (hereinafter also referred to as “mixture 6”) containing spherical alumina particles and carbon-based material powder on a mounting table 7 in an applicator 2. For this purpose, a non-sealing heat insulating case 8 is provided. Here, “non-hermetic” means that gas such as nitrogen gas can enter and exit in the heat insulating case 8. Here, the applicator 2 is provided with a nitrogen gas supply pipe 11 at a predetermined position on the side wall. However, the nitrogen gas supply pipe 11 does not need to be inserted into the heat insulating case 8, and a nitriding gas is used. A supply port for discharging is provided at any location in the applicator 2. Thus, the entire applicator 2 can be filled with nitrogen gas necessary for the reaction. The nitrogen gas supply pipe 11 is connected to a nitrogen gas storage unit such as a cylinder (not shown), and supplies the nitrogen gas in the nitrogen gas storage unit into the applicator 2.
 本態様では、断熱性ケース8は所定の厚みの断熱ボード又は断熱ファイバーからなる多層構造体であり、原料アルミナの窒化に必要な窒素ガスは断熱ボード自体の孔や、断熱ボード間の隙間又は断熱ファイバーの間を通って、断熱性ケース8内へと入り、及び断熱性ケース8から出ることができる。混合物6は、断熱性ケース8の底板上に直接置いてもよいが、好ましくは、混合物6を、例えばマイクロ波透過性の高純度アルミナ、高純度シリカ、高純度マグネシア、トリジマイト、サイアロン、窒化アルミニウム等からなるこう鉢14、坩堝、又は皿等の容器に入れる。断熱性ケース8はマイクロ波透過性の繊維状のアルミナ、シリカ、及びムライトの少なくとも一種を含む断熱材から形成することができる。 In this embodiment, the heat insulating case 8 is a multilayer structure made of a heat insulating board or heat insulating fiber having a predetermined thickness, and the nitrogen gas necessary for nitriding the raw material alumina is a hole in the heat insulating board itself, a gap between the heat insulating boards, or heat insulation. Through the fibers, it can enter and exit the insulating case 8. The mixture 6 may be placed directly on the bottom plate of the heat insulating case 8, but preferably the mixture 6 is, for example, microwave permeable high purity alumina, high purity silica, high purity magnesia, tridymite, sialon, aluminum nitride. It puts in containers, such as a pot 14 which consists of etc., a crucible, or a plate. The heat insulating case 8 can be formed from a heat insulating material containing at least one of microwave permeable fibrous alumina, silica, and mullite.
 アプリケーター2には排気管12が設けられている。排気管12は、混合物6と断熱性ケース8の天板部との間の空間に、吸気口を配置しており、当該空間から断熱性ケース8の側面を貫通してアプリケーター2の外側へと延びる。排気管12は、断熱性ケース8内で発生される、炭素系材料粉体中の不純物による熱分解ガス(不純物ガス)を、吸気口を介してアプリケーター2の外側へと排出する。これにより球状窒化アルミニウム粒子製造装置1では、窒化の過程で発生するガスに含まれた不純物ガスが断熱性ケース8の外側表面まで到達する前に不純物ガスを当該断熱性ケース8内からアプリケーター2外へと排出できることから、不純物ガスが断熱性ケース8の外側表面で固化・付着し難くなり、付着箇所での意図しないマイクロ波吸収による加熱が発生することを防止できる。かくして、球状窒化アルミニウム粒子製造装置1では、断熱性ケース8の溶損や窒化効率の低下を抑制できる。この際、窒化反応により生成される一酸化炭素ガスも反応系外へと排出されるので、窒化反応が促進される。 The applicator 2 is provided with an exhaust pipe 12. The exhaust pipe 12 has an intake port disposed in a space between the mixture 6 and the top plate portion of the heat insulating case 8, and penetrates the side surface of the heat insulating case 8 from the space to the outside of the applicator 2. Extend. The exhaust pipe 12 discharges pyrolysis gas (impurity gas) generated in the heat insulating case 8 due to impurities in the carbon-based material powder to the outside of the applicator 2 through the intake port. Thereby, in the spherical aluminum nitride particle production apparatus 1, the impurity gas contained in the gas generated in the nitriding process reaches the outer surface of the heat insulating case 8 from the heat insulating case 8 to remove the impurity gas from the applicator 2. Therefore, it is difficult for the impurity gas to solidify and adhere to the outer surface of the heat insulating case 8, and it is possible to prevent heating due to unintentional microwave absorption at the attachment location. Thus, in the spherical aluminum nitride particle production apparatus 1, it is possible to suppress melting of the heat insulating case 8 and a decrease in nitriding efficiency. At this time, carbon monoxide gas generated by the nitriding reaction is also discharged out of the reaction system, so that the nitriding reaction is promoted.
 また、排気管12には、出口に排気ポンプ13が接続されている。排気ポンプ13は、断熱性ケース8内における空間内の気体を、排気管12を介して排出し、断熱性ケース8内を当該断熱性ケース8外よりも負圧に維持し得る。これにより、排気ポンプ13は、断熱性ケース8内において窒化の過程で発生するガスが、断熱性ケース8内から排出されることを促すと共に、窒素ガスの断熱性ケース8内への流入を促す。なお、図1では、窒素ガス供給管11により窒素ガスが混合物6の上側から供給される構成としたが、窒素ガス供給管11の供給口の位置についてはこれに限定されず、例えば窒素ガス供給管により混合物6の下側から窒素ガスを供給するようにしてもよい。なお、窒素ガス供給管11及び排気管12は、例えばアルミナ等のマイクロ波透過性の材料で構成することができる。 Further, an exhaust pump 13 is connected to the exhaust pipe 12 at the outlet. The exhaust pump 13 can discharge the gas in the space in the heat insulating case 8 through the exhaust pipe 12, and can maintain the inside of the heat insulating case 8 at a negative pressure than the outside of the heat insulating case 8. As a result, the exhaust pump 13 urges the gas generated in the nitriding process in the heat insulating case 8 to be discharged from the heat insulating case 8 and the inflow of nitrogen gas into the heat insulating case 8. . In FIG. 1, the nitrogen gas supply pipe 11 supplies nitrogen gas from the upper side of the mixture 6. However, the position of the supply port of the nitrogen gas supply pipe 11 is not limited to this, and for example, nitrogen gas supply You may make it supply nitrogen gas from the lower side of the mixture 6 with a pipe | tube. The nitrogen gas supply pipe 11 and the exhaust pipe 12 can be made of a microwave permeable material such as alumina.
 なお、この実施の形態の場合、断熱性ケース8及びこう鉢14は、内部の混合物6の温度を監視するために、天板部に測温用の開口15を有している。また、アプリケーター2の天板部には、所定位置に石英等でなる赤外線透過性の窓部9が設けられており、窓部9の外側に表面温度計10が設けられている。表面温度計10は、混合物6から射出される赤外線を、開口15及び窓部9を介して検出し、混合物6の表面温度へと換算する。表面温度計10にて測定した混合物6の表面温度は、アルミナ粒子の窒化の度合いの指標となり得る。 In the case of this embodiment, the heat insulating case 8 and the mortar 14 have a temperature measurement opening 15 in the top plate portion in order to monitor the temperature of the internal mixture 6. In addition, the top plate portion of the applicator 2 is provided with an infrared transparent window portion 9 made of quartz or the like at a predetermined position, and a surface thermometer 10 is provided outside the window portion 9. The surface thermometer 10 detects the infrared light emitted from the mixture 6 through the opening 15 and the window portion 9 and converts it into the surface temperature of the mixture 6. The surface temperature of the mixture 6 measured by the surface thermometer 10 can be an index of the degree of nitriding of the alumina particles.
 次に、他の実施の形態による球状窒化アルミニウム粒子製造装置について以下説明する。図1との対応部分に同一符号を付した図2は本発明の球状窒化アルミニウム粒子製造装置の他の態様の断面模式図である。この球状窒化アルミニウム粒子製造装置21は、排気管26が第一の管24及び第二の管22から構成されている点と、該第一の管24が、原料を充填する断熱性ケース8の所定位置からアプリケーター2に設けられた窓部9まで連通し、表面温度測定用の管を兼ねる構造となっている点とにおいて、上述した図1における球状窒化アルミニウム粒子製造装置1と相違している。 Next, a spherical aluminum nitride particle manufacturing apparatus according to another embodiment will be described below. FIG. 2, in which the same reference numerals are assigned to the parts corresponding to FIG. 1, is a schematic cross-sectional view of another embodiment of the spherical aluminum nitride particle production apparatus of the present invention. In this spherical aluminum nitride particle production apparatus 21, the exhaust pipe 26 is composed of a first pipe 24 and a second pipe 22, and the first pipe 24 is used for the heat insulating case 8 filled with raw materials. It differs from the spherical aluminum nitride particle producing apparatus 1 in FIG. 1 described above in that it communicates from a predetermined position to a window portion 9 provided in the applicator 2 and also serves as a surface temperature measuring tube. .
 排気管26を構成する第一の管24は、こう鉢14及び断熱性ケース8の天板部に形成された開口25と一体化しており、当該開口25から、アプリケーター2の天板部に向けて直線的に延び、端部がアプリケーター2内の所定位置に配置されている。第一の管24の途中には、第一の管24と連通し、かつ第一の管24の長手方向とは異なる方向に向けてアプリケーター2の外側へと延びた第二の管22が設けられている。なお、この実施の形態の場合では、断熱性ケース8の天板部に形成された開口25からアプリケーター2の天板部に向けて鉛直に第一の管24が延びており、当該第一の管24の側壁からアプリケーター2の側壁に向けて第二の管22が延び、アプリケーター2の側壁を第二の管22が貫通するように設けられている。 The first pipe 24 constituting the exhaust pipe 26 is integrated with an opening 25 formed in the top plate portion of the mortar 14 and the heat insulating case 8, and from the opening 25 toward the top plate portion of the applicator 2. The end portion is arranged at a predetermined position in the applicator 2. A second tube 22 that communicates with the first tube 24 and extends to the outside of the applicator 2 in a direction different from the longitudinal direction of the first tube 24 is provided in the middle of the first tube 24. It has been. In the case of this embodiment, the first tube 24 extends vertically from the opening 25 formed in the top plate portion of the heat insulating case 8 toward the top plate portion of the applicator 2, and the first A second tube 22 extends from the side wall of the tube 24 toward the side wall of the applicator 2, and the second tube 22 passes through the side wall of the applicator 2.
 第二の管22は、出口に排気ポンプ13が設けられており、当該排気ポンプ13によって第二の管22内の気体が排出され得る。これにより、断熱性ケース8内における空間内の気体は、第一の管24から第二の管22を経由してアプリケーター2外へと排出され得る。第一の管24は、アプリケーター2の天板部に窓部9を設定するための窓設置部まで端部が到達しており、上部がアプリケーター2の天板部における窓設置部と一体形成されており、窒化の過程で断熱性ケース8内において発生したガスが第一の管24から漏れ出ることなく、第二の管22へと誘導し得る。 The exhaust pipe 13 is provided at the outlet of the second pipe 22, and the gas in the second pipe 22 can be discharged by the exhaust pump 13. Thereby, the gas in the space in the heat insulating case 8 can be discharged out of the applicator 2 from the first tube 24 via the second tube 22. The end of the first tube 24 reaches the window installation part for setting the window part 9 on the top plate part of the applicator 2, and the upper part is integrally formed with the window installation part in the top plate part of the applicator 2. The gas generated in the heat insulating case 8 during the nitriding process can be guided to the second pipe 22 without leaking from the first pipe 24.
 ここで、第一の管24は、断熱性ケース8内における混合物6の表面から窓部9までを直線的に結ぶように配置されていることから、窓部9の外側に設けられた表面温度計10によって、混合物6から射出される赤外線を、窓部9、第一の管24を介して検出し得る。 Here, since the first pipe 24 is arranged so as to linearly connect the surface of the mixture 6 to the window portion 9 in the heat insulating case 8, the surface temperature provided outside the window portion 9. By the total 10, infrared rays emitted from the mixture 6 can be detected through the window portion 9 and the first tube 24.
 以上の構成において、この球状窒化アルミニウム粒子製造装置21でも、窒化の過程で発生するガスに含まれた不純物ガスが断熱性ケース8の外側表面まで到達する前に、排気管26により不純物ガスを当該断熱性ケース8内からアプリケーター2外へと排出できることから、不純物ガスが断熱性ケース8の外側表面で固化・付着し難くなり、付着箇所での意図しないマイクロ波吸収による加熱が発生することを防止できる。かくして、球状窒化アルミニウム粒子製造装置21でも、断熱性ケース8の溶損や窒化効率の低下を抑制できる。 In the above configuration, the spherical aluminum nitride particle production apparatus 21 also uses the exhaust pipe 26 to remove the impurity gas before the impurity gas contained in the gas generated in the nitriding process reaches the outer surface of the heat insulating case 8. Since it can be discharged from the inside of the heat insulating case 8 to the outside of the applicator 2, it is difficult for the impurity gas to solidify and adhere to the outer surface of the heat insulating case 8 and to prevent heating due to unintentional microwave absorption at the attachment point. it can. Thus, the spherical aluminum nitride particle production apparatus 21 can also suppress melting damage of the heat insulating case 8 and a decrease in nitriding efficiency.
 また、球状窒化アルミニウム粒子製造装置21では、断熱性ケース8の開口25に第一の管24を設け、当該第一の管24から第二の管22を介して、断熱性ケース8内で発生したガスを排気するようにしたことにより、図1に示すように、第一の管24を設けずに断熱性ケース8の開口がアプリケーター2内と連通している場合に比べて、断熱性ケース8内で発生したガスを排気管26によって確実に排気させることができる。 Further, in the spherical aluminum nitride particle production apparatus 21, the first tube 24 is provided in the opening 25 of the heat insulating case 8, and the first heat generating tube 8 is generated in the heat insulating case 8 through the second tube 22. As shown in FIG. 1, the heat insulating case is formed by exhausting the gas, as compared with the case where the opening of the heat insulating case 8 communicates with the inside of the applicator 2 without providing the first pipe 24. The gas generated in the gas 8 can be reliably exhausted by the exhaust pipe 26.
 さらに、球状窒化アルミニウム粒子製造装置21では、第二の管22を介して第一の管24内の気体も排気することから、第一の管24の末端に配置された窓部9からのガス漏れも防止できる。 Furthermore, since the spherical aluminum nitride particle production apparatus 21 also exhausts the gas in the first pipe 24 via the second pipe 22, the gas from the window portion 9 disposed at the end of the first pipe 24 is exhausted. Leakage can also be prevented.
 因みに、第二の管22が第一の管24から分岐する位置は、断熱性ケース8の天板部からアプリケーター2の天板部までの間であれば種々の位置としてよい。なお、第一の管24、第二の管22はアルミナ等のマイクロ波透過性の材料で構成することができる。第一の管24の内側にアルミニウムを蒸着する等して赤外線の反射率を高めてもよい。また、本態様では、第二の管22が第一の管24に対して垂直に配置されているが、これに限定されず所望の角度であってよい。 Incidentally, the position where the second tube 22 branches from the first tube 24 may be various positions as long as it is between the top plate portion of the heat insulating case 8 and the top plate portion of the applicator 2. In addition, the 1st pipe | tube 24 and the 2nd pipe | tube 22 can be comprised with microwave permeable materials, such as an alumina. The reflectance of infrared rays may be increased by evaporating aluminum inside the first tube 24. Moreover, in this aspect, although the 2nd pipe | tube 22 is arrange | positioned perpendicularly | vertically with respect to the 1st pipe | tube 24, it is not limited to this and may be a desired angle.
 次に、他の実施の形態による断熱性ケースについて以下説明する。図3は、図1及び図2に示す断熱性ケース8とは異なる態様の断熱性ケースの断面模式図である。断熱性ケース38は、混合物6を保持するための保持板39を、断熱性ケース38の底板から所定の高さの位置に備えている。保持板39は、多孔質等の窒素ガスを透過(通過)させる構造となっており、マイクロ波を吸収しづらい、アルミナ、シリカ、サイアロン、トリジマイト、マグネシア、窒化アルミニウム等の耐熱性セラミック素材から形成されている。なお、断熱性ケース38には、図示ない蓋部により内部の保持板39を外部に露出可能の構成されており、当該保持板39上に混合物6を保持し得る。 Next, a heat insulating case according to another embodiment will be described below. FIG. 3 is a schematic cross-sectional view of a heat insulating case having a mode different from that of the heat insulating case 8 shown in FIGS. 1 and 2. The heat insulating case 38 includes a holding plate 39 for holding the mixture 6 at a predetermined height from the bottom plate of the heat insulating case 38. The holding plate 39 has a structure that allows permeation (passage) of nitrogen gas such as porous material, is difficult to absorb microwaves, and is formed from a heat-resistant ceramic material such as alumina, silica, sialon, tridymite, magnesia, aluminum nitride, etc. Has been. The heat insulating case 38 is configured such that an internal holding plate 39 can be exposed to the outside by a lid (not shown), and the mixture 6 can be held on the holding plate 39.
 断熱性ケース38には、保持板39と底板との間の側壁に一の窒素ガス供給管11aが設けられており、保持板39と底板との間の下側空間ER1に一の窒素ガス供給管11aによって窒化ガスが供給され得る。また、断熱性ケース38には、天板部と混合物6との間の側壁に、他の窒素ガス供給管11bと排気管12とが設けられている。これにより、他の窒素ガス供給管11bは、天板部と混合物6との間の上側空間ER2に窒化ガスを供給し、排気管12は、天板部と混合物6との間の上側空間ER2内のガスを排気し得る。 The heat insulating case 38 is provided with one nitrogen gas supply pipe 11a on the side wall between the holding plate 39 and the bottom plate, and supplies one nitrogen gas to the lower space ER1 between the holding plate 39 and the bottom plate. Nitriding gas can be supplied by the tube 11a. Further, the heat insulating case 38 is provided with another nitrogen gas supply pipe 11 b and an exhaust pipe 12 on the side wall between the top plate portion and the mixture 6. Thereby, the other nitrogen gas supply pipe 11b supplies the nitriding gas to the upper space ER2 between the top plate portion and the mixture 6, and the exhaust pipe 12 is the upper space ER2 between the top plate portion and the mixture 6. The gas inside can be exhausted.
 なお、上述した実施の形態においては、一の窒素ガス供給管11a及び他の窒素ガス供給管11bの2つを設けるようにした場合について述べたが、本発明はこれに限らず、一の窒素ガス供給管11a及び他の窒素ガス供給管11bのいずれか一方のみを設けるようにしてもよい。ここで、下側空間ER1に窒素ガス供給管11aを設け、上側空間ER2に排気管12を設けた場合(即ち、他の窒素ガス供給管11bを設けない場合)には、下側空間ER1、保持板39、混合物6、上側空間ER2、及び排気管12に向けて流れる気流を形成できることから、混合物6において窒化反応を促進させることができるとともに、供給管が設けられた側に対し、混合物6の反対側に窒素ガスが到達しにくいという問題を解決し、工業的に一定以上の分量の窒化アルミニウムを焼成するプロセスにおける焼成ムラを抑制することが可能となる。特に、この実施の形態の場合、断熱性ケース38には、下側空間ER1における一の側壁に窒素ガス供給管11aを設け、上側空間ER2において当該一側壁と対向する他の側壁に排気管12を設け、窒素ガス供給管11aと排気管12とを対向するように配置したことにより、一の側壁側から他の側壁側に向けて窒化ガスを流すことができ、混合物6全体の窒化反応を促進させるこができる。 In the above-described embodiment, the case where two of the one nitrogen gas supply pipe 11a and the other nitrogen gas supply pipe 11b are provided has been described. However, the present invention is not limited to this, and one nitrogen gas supply pipe 11b is provided. Only one of the gas supply pipe 11a and the other nitrogen gas supply pipe 11b may be provided. Here, when the nitrogen gas supply pipe 11a is provided in the lower space ER1, and the exhaust pipe 12 is provided in the upper space ER2 (that is, when no other nitrogen gas supply pipe 11b is provided), the lower space ER1, Since the airflow flowing toward the holding plate 39, the mixture 6, the upper space ER2, and the exhaust pipe 12 can be formed, the nitriding reaction can be promoted in the mixture 6, and the mixture 6 is made to the side where the supply pipe is provided. It is possible to solve the problem that the nitrogen gas hardly reaches the opposite side of the glass, and to suppress firing unevenness in a process of firing a certain amount of aluminum nitride industrially. In particular, in the case of this embodiment, the heat insulating case 38 is provided with a nitrogen gas supply pipe 11a on one side wall in the lower space ER1, and the exhaust pipe 12 on the other side wall facing the one side wall in the upper space ER2. And the nitrogen gas supply pipe 11a and the exhaust pipe 12 are arranged so as to face each other, so that the nitriding gas can flow from one side wall side to the other side wall side, and the nitriding reaction of the entire mixture 6 can be performed. It can be promoted.
 保持板39を備える位置は、混合物6の量に応じて、断熱性ケース38の底板と天板部との間であれば任意の位置であってよい。また、保持板39は断熱性ケース38の側面に固定されている必要はなく、混合物6の量に応じて、可動式としてもよい。或いは、保持板39に複数の脚部を付して、自立性の台として構成してもよい。断熱性ケース38は、例えば前記のマイクロ波を吸収しづらいアルミナ等の耐熱性セラミック材料から構成することができる。 The position including the holding plate 39 may be an arbitrary position as long as it is between the bottom plate and the top plate portion of the heat insulating case 38 according to the amount of the mixture 6. The holding plate 39 does not need to be fixed to the side surface of the heat insulating case 38 and may be movable according to the amount of the mixture 6. Alternatively, a plurality of legs may be attached to the holding plate 39 to constitute a self-supporting base. The heat insulating case 38 can be made of, for example, a heat resistant ceramic material such as alumina that is difficult to absorb the microwave.
 以上の構成においても、上述した実施の形態と同様に、排気管12により不純物ガスを断熱性ケース38内からアプリケーター2外へと排出できることから、不純物ガスが断熱性ケース38の外側表面で固化し難くなり、その分、断熱性ケース38の溶損や窒化効率の低下を抑制できる。 Also in the above configuration, since the impurity gas can be discharged from the heat insulating case 38 to the outside of the applicator 2 by the exhaust pipe 12 as in the above-described embodiment, the impurity gas is solidified on the outer surface of the heat insulating case 38. Accordingly, it is possible to suppress the melting loss of the heat insulating case 38 and the decrease in the nitriding efficiency.
 次に、図3に示した断熱性ケース38とは構成が異なる他の実施の形態による断熱性ケースについて以下説明する。図4は、断熱性ケースの他の態様の断面模式図であり、窒素ガス等の気体の出入りが可能な複数の開口48dを備える断熱性ケース48の一例を示す。断熱性ケース48は、蓋部48aと本体部48bとを備え、蓋部48aと本体部48bとの境界に沿って開口48dが形成されている。 Next, a heat insulating case according to another embodiment having a configuration different from that of the heat insulating case 38 shown in FIG. 3 will be described below. FIG. 4 is a schematic cross-sectional view of another embodiment of the heat insulating case, and shows an example of the heat insulating case 48 including a plurality of openings 48d through which a gas such as nitrogen gas can enter and exit. The heat insulating case 48 includes a lid portion 48a and a main body portion 48b, and an opening 48d is formed along the boundary between the lid portion 48a and the main body portion 48b.
 この実施の形態の場合、蓋部48aは、本体部48bの縁部と接する縁部48cに凹部が形成された構成を有しており、当該凹部に対して、本体部48bの縁部が接することで本体部48bとの境界に開口48dを形成し得る。因みに、排気管12は、図3の態様と同様に、断熱性ケース48内における図示しない混合物6の上側に備えられる。図4では、蓋部48aの縁部48cに開口48dを形成する凹部を形成した場合について述べたが、本発明はこれに限らず、本体部48bの縁部に開口48dを形成する凹部を形成してもよい。また、開口48dを形成する形状としては、凹部と凸部が交互に規則的に配置されている必要はなく、凹部や凸部が不規則に配置された構成であってもよい。また、開口48dは四辺状でなくてもよく、円形等のその他種々の形状であってもよく、さらに、開口48dとして、蓋部48a及び/又は本体部48bの側壁に貫通孔を設けてもよい。更に、開口48dは図3の上側空間ER2に接する側面に設けてもよく、又は、図3の下側空間ER1に接する側面に設けても良い。 In the case of this embodiment, the lid portion 48a has a configuration in which a recess is formed in the edge portion 48c that contacts the edge portion of the main body portion 48b, and the edge portion of the main body portion 48b contacts the recess portion. Thus, an opening 48d can be formed at the boundary with the main body 48b. Incidentally, the exhaust pipe 12 is provided on the upper side of the mixture 6 (not shown) in the heat insulating case 48 as in the embodiment of FIG. In FIG. 4, although the case where the recessed part which forms the opening 48d in the edge part 48c of the cover part 48a was described was described, this invention is not limited to this, The recessed part which forms the opening 48d in the edge part of the main-body part 48b is formed. May be. Further, the shape for forming the opening 48d does not need to be regularly arranged with the concave portions and the convex portions, and may have a configuration in which the concave portions and the convex portions are irregularly arranged. Moreover, the opening 48d may not be a quadrilateral shape, and may be various other shapes such as a circle. Further, as the opening 48d, a through hole may be provided in the side wall of the lid portion 48a and / or the main body portion 48b. Good. Furthermore, the opening 48d may be provided on the side surface in contact with the upper space ER2 in FIG. 3, or may be provided on the side surface in contact with the lower space ER1 in FIG.
 本態様においても、断熱性ケース48は、例えば前記のマイクロ波を吸収しづらいアルミナ等の耐火性セラミック材料から構成することができる。 Also in this embodiment, the heat insulating case 48 can be made of a refractory ceramic material such as alumina that is difficult to absorb the microwaves, for example.
 以上の構成においても、上述した実施の形態と同様に、排気管12により不純物ガスを断熱性ケース48内からアプリケーター2外へと排出できることから、不純物ガスが断熱性ケース48の外側表面で固化し難くなり、その分、断熱性ケース48の溶損や窒化効率の低下を抑制できる。 Also in the above configuration, the impurity gas can be discharged from the inside of the heat insulating case 48 to the outside of the applicator 2 by the exhaust pipe 12 as in the above-described embodiment, so that the impurity gas is solidified on the outer surface of the heat insulating case 48. Accordingly, it is possible to suppress the melting loss of the heat insulating case 48 and the decrease in the nitriding efficiency.
 因みに、上述した各実施の形態においては、断熱性ケース38、48(蓋部48a及び本体部48b)も、アルミナ、シリカ、及びムライトの少なくも一種を含む断熱材から形成することができる。図4の態様においても、断熱性ケース48を多孔質体で構成することによって、窒素ガスの取り込み効率がさらに向上される。なお、他の実施の形態としては、例えば、図4に示すような開口48dを、図3に示した断熱性ケース38に設けてもよく、図1~図4の構成を適宜選択的に組み合わせた構成としてもよい。また、図3及び図4における排気管12にも排気ポンプ13が設けられている。 Incidentally, in each embodiment mentioned above, the heat insulation cases 38 and 48 (the cover part 48a and the main-body part 48b) can also be formed from the heat insulating material containing at least 1 type of an alumina, a silica, and a mullite. Also in the embodiment of FIG. 4, the nitrogen gas intake efficiency is further improved by forming the heat insulating case 48 of a porous body. As another embodiment, for example, an opening 48d as shown in FIG. 4 may be provided in the heat insulating case 38 shown in FIG. 3, and the configurations of FIGS. It is good also as a structure. 3 and 4 is also provided with an exhaust pump 13.
 本発明において、球状窒化アルミニウム粒子を得るために用いる球状アルミナ粒子は真球状又は略真球状であればよい。球状アルミナ粒子は、例えば、レーザ粒度分布測定機(CILAS製CILAS-920)を用いて質量基準で求めた50質量%平均粒子径(D50)で5~150μmであることが望ましい。これは、製造した球状窒化アルミニウム粒子を樹脂と混合し、フィラーとした場合に必要な熱伝導特性を得やすい粒子径であることによる。 In the present invention, the spherical alumina particles used for obtaining the spherical aluminum nitride particles may be spherical or substantially spherical. The spherical alumina particles are preferably 5 to 150 μm in terms of 50 mass% average particle diameter (D50) determined on a mass basis using, for example, a laser particle size distribution analyzer (CILAS-920 manufactured by CILAS). This is because the produced spherical aluminum nitride particles are mixed with a resin to obtain a heat conduction characteristic required when the filler is used as a filler.
 球状アルミナ粒子は、アルミナ粉末を球状に造粒することにより得られたものを使うことができる。球状アルミナ粉末は、例えばアルコキシド法、バイヤー法、アンモニウム明ばん熱分解法、又はアンモニウムドーソナイト熱分解法等によって得ることができる。造粒法としては、湿式撹拌造粒法、スプレードライ法等があるが、好ましくはスプレードライ法により造粒した粒子が使用される。スプレードライ法としては、ノズル法、ディスク法等の何れの方式であってもよい。 As the spherical alumina particles, those obtained by granulating alumina powder into a spherical shape can be used. The spherical alumina powder can be obtained, for example, by an alkoxide method, a Bayer method, an ammonium alum pyrolysis method, or an ammonium dosonite pyrolysis method. Examples of the granulation method include a wet stirring granulation method and a spray drying method. Preferably, particles granulated by the spray drying method are used. The spray drying method may be any method such as a nozzle method or a disk method.
 炭素系材料粉末としては、例えば黒鉛、カーボンブラック、アセチレンブラック、無定形炭素等の粉末が挙げられ、天然由来であっても工業的に製造されたものであってもよい。好ましくは製造後の窒化アルミニウムの絶縁性能に影響を与えないために、金属含有率が1質量%以下、好ましくは金属含有率が0.1質量%以下であるものが望ましい。炭素系粉末は混合原料である球状アルミナ粒子を被覆するように存在することが望ましく、球状アルミナ粒子の上記平均径以下の平均粒径を有することがより望ましい。 Examples of the carbon-based material powder include graphite, carbon black, acetylene black, amorphous carbon and the like, which may be naturally derived or industrially produced. Preferably, the metal content is 1% by mass or less, and preferably the metal content is 0.1% by mass or less so as not to affect the insulation performance of the aluminum nitride after production. The carbon-based powder is desirably present so as to cover the spherical alumina particles that are the mixed raw material, and more preferably has an average particle diameter equal to or smaller than the average diameter of the spherical alumina particles.
 球状アルミナ粒子と炭素系材料粉体とを含む混合物は、球状アルミナ粒子と炭素系材料粉体を乾式でボールミル等により混合することで調製することができる。混合の際に、例えば水、アルコール等の液状分散媒を加えてもよいが、乾燥する手間がかかるので、好ましくは乾式で混合する。混合比は、下記反応式に基づくAl/3C化学量論比の0.5倍以下程度であることが望ましい。
 Al + 3C +N → 2AlN +3CO
The mixture containing the spherical alumina particles and the carbon-based material powder can be prepared by mixing the spherical alumina particles and the carbon-based material powder in a dry manner with a ball mill or the like. In mixing, for example, a liquid dispersion medium such as water or alcohol may be added. However, since it takes time to dry, it is preferably mixed dry. The mixing ratio is desirably about 0.5 times or less of the Al 2 O 3 / 3C stoichiometric ratio based on the following reaction formula.
Al 2 O 3 + 3C + N 2 → 2AlN + 3CO
 1、21 球状窒化アルミニウム粒子製造装置
 2 アプリケーター(加熱炉)
 3 マイクロ波発振器
 4 導波路
 5 スターラー
 6 球状アルミナ粒子と炭素系材料粉体とを含む混合物
 7 載置台
 8、38、48 断熱性ケース
 9 窓部
 12、26 排気管
 13 排気ポンプ
 22 第二の管
 24 第一の管
 39 保持板
1,21 Spherical aluminum nitride particle production equipment 2 Applicator (heating furnace)
DESCRIPTION OF SYMBOLS 3 Microwave oscillator 4 Waveguide 5 Stirrer 6 Mixture containing spherical alumina particle and carbonaceous material powder 7 Mounting table 8, 38, 48 Thermal insulation case 9 Window part 12, 26 Exhaust pipe 13 Exhaust pump 22 Exhaust pump 22 Second pipe 24 First tube 39 Holding plate

Claims (8)

  1.  マイクロ波発振器を備えるアプリケーター内で、球状アルミナ粒子と炭素系材料粉末とを含む混合物を、窒素囲気でマイクロ波を照射して、該球状アルミナ粒子の少なくとも一部を窒化して球状窒化アルミニウム粒子を製造する、球状窒化アルミニウム粒子製造装置であって、
     前記アプリケーター内に設けられて前記球状アルミナ粒子と前記炭素系材料粉末とを含む混合物を収容する、非密閉性の断熱性ケースと、
     前記球状窒化アルミニウム粒子の製造時における窒化反応の過程で生じる気体を該断熱性ケースの内側から該アプリケーターの外側へと排出する排気管と、
    を備えることを特徴とする、球状窒化アルミニウム粒子製造装置。
    In an applicator equipped with a microwave oscillator, a mixture containing spherical alumina particles and carbon-based material powder is irradiated with microwaves in a nitrogen atmosphere, and at least a part of the spherical alumina particles is nitrided to form spherical aluminum nitride particles. An apparatus for producing spherical aluminum nitride particles,
    A non-hermetic heat insulating case provided in the applicator and containing a mixture containing the spherical alumina particles and the carbonaceous material powder;
    An exhaust pipe for discharging a gas generated in the process of nitriding during the production of the spherical aluminum nitride particles from the inside of the heat insulating case to the outside of the applicator;
    An apparatus for producing spherical aluminum nitride particles, comprising:
  2.  前記排気管の出口に接続された排気ポンプを備えることを特徴とする、請求項1記載の球状窒化アルミニウム粒子製造装置。 The apparatus for producing spherical aluminum nitride particles according to claim 1, further comprising an exhaust pump connected to an outlet of the exhaust pipe.
  3.  前記排気管は、前記断熱性ケースの天板部に形成された開口から前記アプリケーターの天板部に向けて延びる第一の管と、該第一の管と連通し、前記アプリケーターの外側へと延びる第二の管とを備え、
     前記第一の管は、前記アプリケーターの天板部に設けられた窓部と連通することを特徴とする、請求項1又は2記載の球状窒化アルミニウム粒子製造装置。
    The exhaust pipe communicates with the first pipe extending from the opening formed in the top plate portion of the heat insulating case toward the top plate portion of the applicator, to the outside of the applicator. A second tube extending,
    3. The spherical aluminum nitride particle producing apparatus according to claim 1, wherein the first tube communicates with a window portion provided in a top plate portion of the applicator.
  4.  窒素ガス供給管が、前記断熱性ケースの内側まで延びていることを特徴とする、請求項1~3のうちのいずれか1項記載の球状窒化アルミニウム粒子製造装置。 4. The spherical aluminum nitride particle production apparatus according to claim 1, wherein a nitrogen gas supply pipe extends to the inside of the heat insulating case.
  5.  前記断熱性ケースには、前記窒素ガス供給管の供給口が前記混合物の下側に配置されていることを特徴とする、請求項4記載の球状窒化アルミニウム粒子製造装置。 The spherical aluminum nitride particle producing apparatus according to claim 4, wherein a supply port of the nitrogen gas supply pipe is disposed below the mixture in the heat insulating case.
  6.  前記断熱性ケースが、前記混合物を保持するための保持板を備え、
     前記保持板が窒素ガスを透過させる構造からなり、
     前記窒素ガス供給管の供給口が該保持板の下側に配置されることを特徴とする、請求項5記載の球状窒化アルミニウム粒子製造装置。
    The heat insulating case includes a holding plate for holding the mixture;
    The holding plate has a structure that allows nitrogen gas to pass therethrough,
    6. The spherical aluminum nitride particle producing apparatus according to claim 5, wherein a supply port of the nitrogen gas supply pipe is disposed below the holding plate.
  7.  前記断熱性ケースには、該断熱性ケース内への気体の出入りが可能な複数の開口を備えることを特徴とする、請求項1~6のうちのいずれか1項記載の球状窒化アルミニウム粒子製造装置。 The spherical aluminum nitride particle production according to any one of claims 1 to 6, wherein the heat insulating case includes a plurality of openings through which gas can enter and exit the heat insulating case. apparatus.
  8.  前記断熱性ケースが、アルミナ、シリカ、及びムライトの少なくとも一種を含む断熱材からなることを特徴とする、請求項1~7のうちのいずれか1項記載の球状窒化アルミニウム粒子製造装置。 The spherical aluminum nitride particle producing apparatus according to any one of claims 1 to 7, wherein the heat insulating case is made of a heat insulating material containing at least one of alumina, silica, and mullite.
PCT/JP2017/013220 2016-03-30 2017-03-30 Device for manufacturing spherical aluminum nitride particles WO2017170857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-068074 2016-03-30
JP2016068074A JP6725107B2 (en) 2016-03-30 2016-03-30 Spherical aluminum nitride particle manufacturing equipment

Publications (1)

Publication Number Publication Date
WO2017170857A1 true WO2017170857A1 (en) 2017-10-05

Family

ID=59965960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013220 WO2017170857A1 (en) 2016-03-30 2017-03-30 Device for manufacturing spherical aluminum nitride particles

Country Status (3)

Country Link
JP (1) JP6725107B2 (en)
TW (1) TW201806851A (en)
WO (1) WO2017170857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387337A (en) * 2021-05-25 2021-09-14 宝鸡泉兴钛业股份有限公司 Equipment and process method for preparing high-titanium-nitride powder by titanium powder nitriding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584925B1 (en) * 2018-08-28 2023-10-04 주식회사 엘지화학 Manufacturing method of spherical aluminum nitride powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234711A (en) * 2001-02-02 2002-08-23 Ibaraki Kenkyusho:Kk Method for producing aluminum nitride and aluminum nitride
JP2010536711A (en) * 2007-08-31 2010-12-02 ジェイピーエス マイクロテック カンパニー リミテッド Method for producing flaky aluminum oxide using microwaves
JP2011219309A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Method for producing alumina particle with aln modified layer, and modified alumina powder
JP2012041254A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride wire, method for producing the same, and apparatus for producing aluminum nitride wire
JP2012041253A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride-based particle, method for producing the same, and apparatus for producing aluminum nitride-based particle
WO2014123247A1 (en) * 2013-02-08 2014-08-14 株式会社トクヤマ Aluminum nitride powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234711A (en) * 2001-02-02 2002-08-23 Ibaraki Kenkyusho:Kk Method for producing aluminum nitride and aluminum nitride
JP2010536711A (en) * 2007-08-31 2010-12-02 ジェイピーエス マイクロテック カンパニー リミテッド Method for producing flaky aluminum oxide using microwaves
JP2011219309A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Method for producing alumina particle with aln modified layer, and modified alumina powder
JP2012041254A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride wire, method for producing the same, and apparatus for producing aluminum nitride wire
JP2012041253A (en) * 2010-08-23 2012-03-01 Tohoku Univ Aluminum nitride-based particle, method for producing the same, and apparatus for producing aluminum nitride-based particle
WO2014123247A1 (en) * 2013-02-08 2014-08-14 株式会社トクヤマ Aluminum nitride powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387337A (en) * 2021-05-25 2021-09-14 宝鸡泉兴钛业股份有限公司 Equipment and process method for preparing high-titanium-nitride powder by titanium powder nitriding method

Also Published As

Publication number Publication date
TW201806851A (en) 2018-03-01
JP6725107B2 (en) 2020-07-15
JP2017178667A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2017170857A1 (en) Device for manufacturing spherical aluminum nitride particles
KR20120070948A (en) Manufacturing method of hydropobic silica aerogel powder with insulating performance
JP2010047457A (en) Production method of powdery alumina precursor
CN101817684B (en) Method for coating h-BN coating on surface of porous Si3N4 substrate
JP2000272973A (en) Microwave heating furnace and baking of refractory containing organic binder
CN107986805A (en) A kind of light thermal-shield refractory material based on titanium calcium aluminate and preparation method thereof
WO2017170856A1 (en) Method for manufacturing spherical aluminum nitride particles, and device for manufacturing spherical aluminum nitride particles
Duan et al. Oxidation and ablation behavior of a ceramizable resin matrix composite based on carbon fiber/phenolic resin
JP2004218144A (en) Insulating coated carbon fiber, method for producing the same and composite using the same
JP5677912B2 (en) Lining structure of molten metal container
CN103922814B (en) A kind of zirconia refractory product of composite structure
TWM454528U (en) Graphite manufacturing apparatus
CN106187203B (en) A kind of method and products thereof that aluminium nitride powder is prepared based on aluminium carbide
JP6476794B2 (en) Manufacturing method of heat insulating plate and manufacturing apparatus thereof, and vacuum heat insulating material and manufacturing method thereof
KR20120086986A (en) CVD equipments for the uniformity coating of spherical form
CN105801127A (en) Method for preparing high-thermal-conductivity aluminum nitride ceramic substrate for integrated circuit package
CN109400128A (en) A kind of aluminum-carbon refractory material of the powder containing pyrophillite and preparation method thereof
JP4463541B2 (en) SEALING AGENT, METHOD OF JOINING REACTION CONTAINER USING THE SEALING AGENT, REACTION CONTAINER
JPH03288639A (en) Heat insulating material
CN208012373U (en) A kind of crystalline ceramics microwave sintering machine
JPS61236671A (en) Manufacture of silicon nitride coating refractories
JP3146861B2 (en) Binder removal method and method for manufacturing ceramic sintered body
JPH05124884A (en) Carbon fiber/carbon composite material
JP7356298B2 (en) Nitriding reactor
JP3844422B2 (en) Precast block drying method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775391

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775391

Country of ref document: EP

Kind code of ref document: A1