WO2017170783A1 - Switching method for power supply device, control method for power supply device, and power supply system - Google Patents

Switching method for power supply device, control method for power supply device, and power supply system Download PDF

Info

Publication number
WO2017170783A1
WO2017170783A1 PCT/JP2017/013088 JP2017013088W WO2017170783A1 WO 2017170783 A1 WO2017170783 A1 WO 2017170783A1 JP 2017013088 W JP2017013088 W JP 2017013088W WO 2017170783 A1 WO2017170783 A1 WO 2017170783A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
line
storage battery
load
Prior art date
Application number
PCT/JP2017/013088
Other languages
French (fr)
Japanese (ja)
Inventor
新太郎 蒲
眞己 樋口
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to AU2017244882A priority Critical patent/AU2017244882A1/en
Publication of WO2017170783A1 publication Critical patent/WO2017170783A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to a switching method of a power supply device, a control method of the power supply device, and a power supply system.
  • a power supply system including a lead storage battery is known (see, for example, Patent Document 1).
  • a lead storage battery is charged by a commercial power supply, and when the commercial power supply fails, the lead storage battery discharges the load equipment.
  • the problem of the present invention is to improve the stability and durability of the power supply system.
  • the switching method of the power supply device is attached to an existing device that supplies power from a power source to a load, and the power from the power source is different from the first line or the first line.
  • a method of switching a power supply apparatus that can supply a load via a line, and when the first line or another line is receiving power from a power source, at least one of the first line and the other line is A first step of supplying power to the load via a second step of supplying power to the load from the first storage battery connected to the first line without interrupting the supply of power to the load when the power supply stops. including.
  • the stability and durability of the power supply system can be improved.
  • FIG. 1 is a perspective view showing a schematic configuration of a second power supply apparatus as an existing apparatus.
  • FIG. 2 is a perspective view showing a schematic configuration of the first power supply apparatus according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an outline of a control configuration of the second power supply apparatus according to the first embodiment.
  • FIG. 4 is a block diagram illustrating an outline of a control configuration of the second power supply apparatus to which the first power supply apparatus according to the first embodiment is attached.
  • FIG. 5 is a circuit diagram illustrating an example of a circuit configuration of the second power supply device according to the first embodiment and the first power supply device.
  • FIG. 6 is a flowchart showing a flow of a control method of the power supply apparatus according to the first embodiment.
  • FIG. 7 is a timing chart showing the voltage change with respect to the load and the ON / OFF switching timing of each part when the control method of FIG. 6 is executed.
  • FIG. 8 is a block diagram illustrating an outline of a control configuration of the second power supply device to which the first power supply device according to the first modification is attached.
  • FIG. 9 is a perspective view illustrating a schematic configuration of the first power supply apparatus according to the second modification.
  • FIG. 10 is a block diagram illustrating an outline of a control configuration of the second power supply apparatus to which the first power supply apparatus according to Modification 3 is attached.
  • FIG. 11 is a block diagram illustrating an outline of a control configuration of the switching unit according to the second embodiment.
  • FIG. 12 is a flowchart showing a flow of a control method of the first power supply apparatus according to the second embodiment.
  • FIG. 13 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 12 is executed.
  • FIG. 14 is a block diagram showing an outline of a control configuration of the switching unit according to the third embodiment.
  • FIG. 15 is a flowchart showing a flow of a control method of the first power supply apparatus according to the third embodiment.
  • FIG. 16 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 15 is executed.
  • the switching method of the power supply device is attached to an existing device that supplies power from a power source to a load, and the power from the power source is different from the first line or the first line.
  • a method of switching a power supply apparatus that can supply a load via a line, and when the first line or another line is receiving power from a power source, at least one of the first line and the other line is And a second step of supplying power to the load from the first storage battery connected to the first line when the power supply is stopped.
  • the power supply device to which the first storage battery is connected when the power supply device to which the first storage battery is connected is added to the existing device, even if the power supply is stopped, the power supply by the first storage battery is performed, so the first storage battery is reliably used. can do. That is, since it is possible to stably supply power to the load from the added power supply device, the first storage battery can be used without replacing the entire facility.
  • power may be supplied from the first storage battery to the load after the power supply is stopped and a predetermined time has elapsed.
  • a second storage battery that supplies power from another line is connected to the load, and when the voltage supplied to the load is equal to or lower than the first voltage value, the power supply from the second storage battery may be started.
  • the power supply from the generator may be started via another line.
  • the power supply from the generator is started via another line.
  • the power supply to the load can be continued stably.
  • the control method of the power supply device is capable of supplying power from the first power source to the load via the first line and loading power from the second power source via the second line.
  • the first line includes a first storage battery, and the first line receives power from the first power source, and the load is passed through the first line.
  • the power supply device including the first storage battery when the power supply device including the first storage battery is added to the existing device including the lead storage battery, even if the first power supply is stopped, the power supply by the first storage battery is performed first. After that, since the power supply by the second line is started, the first storage battery can be used reliably. That is, since it is possible to supply power stably to the load from the added power supply device, the stability and durability of the power supply system can be improved. Furthermore, the first storage battery different from the lead storage battery can be stably utilized without replacing the entire facility.
  • the first power supply and the second power supply are a common power supply. After the third step, when the power supply is restored, the power supply of the power supply to the first line is stopped and the power supply from the power supply through the second line A fourth step of supplying power to the load may be included.
  • a fifth step of starting power supply of the power source to the first line when the voltage of the second line is equal to or higher than the second predetermined value or when the first predetermined time elapses may be included.
  • the power supply of the power source to the first line is started.
  • the first storage battery can be charged.
  • a sixth step of supplying power from the first line to the load and stopping power supply from the second line when the voltage of the first storage battery becomes equal to or higher than the third predetermined value may be included.
  • a single storage battery can secure a stable amount of electricity.
  • the first power source and the second power source are a common power source, and after the third step, when the power source is restored, when the voltage of the second line reaches the second predetermined value or the first predetermined time elapses, A seventh step of supplying power from the first line to the load and stopping the power supply from the second line may be included.
  • the first storage battery can be stored immediately after the power recovery, and the first storage battery can be effectively used for a short-time power failure.
  • the first power supply and the second power supply are a common power supply. After the third step, when the power supply recovers, the power is supplied from the first line to the load and the power supply from the second line is stopped. An eighth step may be included.
  • a power supply system includes an existing device that supplies power from a power supply to a load, and a first line that is attached to the existing device and that is different from the first line.
  • a second storage battery that supplies power to the load via another line, the first storage battery is connected to the first line, and the existing apparatus is connected to the first storage battery.
  • the power supply device supplies power to the load via at least one of the first line and another line when the first line or another line is receiving power from the power source. When the power supply is stopped, power is supplied to the load from the first storage battery connected to the first line.
  • the power supply device to which the first storage battery is connected when the power supply device to which the first storage battery is connected is added to the existing device, even if the power supply is stopped, the power supply by the first storage battery is performed, so the first storage battery is reliably used. can do. That is, since it is possible to stably supply power to the load from the added power supply device, the first storage battery can be used without replacing the entire facility.
  • FIG. 1 is a perspective view showing a schematic configuration of a second power supply apparatus 200 as an existing apparatus.
  • the second power supply apparatus 200 includes a rack 210 such as a 19-inch rack, for example, and a main component 205 is mounted in the rack 210.
  • the door 211 is attached to the front surface of the rack 210.
  • the door 211 is closed during normal operation, and the door 211 is opened during maintenance.
  • the door 211 may not be provided on the rack 210.
  • a first storage unit 201 that stores the main component 205 of the second power supply device 200 and a second storage unit 202 that stores the first power supply device 100 are provided in the rack 210.
  • the second storage unit 202 is disposed above the first storage unit 201, but the positional relationship between the first storage unit 201 and the second storage unit 202 may be upside down.
  • the second storage unit 202 may be provided in the rack 210 in advance as a storage unit dedicated to the first power supply apparatus 100, or a space in the rack 210 may be used as the second storage unit 202 as necessary. A space may be opened by organizing the inside of the rack 210, and the space may be used as the second storage unit 202.
  • the second storage unit 202 may be stored in a rack different from the rack 210.
  • FIG. 2 is a perspective view showing a schematic configuration of the first power supply apparatus 100.
  • the first power supply apparatus 100 includes a substantially rectangular parallelepiped exterior body 101, and is unitized by housing main components in the exterior body 101. That is, the first power supply device 100 is a power supply unit.
  • the term “unitization” as used herein can be said to be integration, and means that components are connected to form an assembly.
  • the first power supply device 100 is used to increase the electric capacity of the second power supply device 200 as a whole, for example, by being added to the existing second power supply device 200.
  • the exterior body 101 is slidably stored in the second storage portion 202 of the rack 210.
  • the exterior body 101 has a plurality of outer surfaces, and a pair of handles 102 for attaching / detaching the exterior body 101 to / from the rack 210 is provided on one outer surface (front surface) of the plurality of outer surfaces. It has been.
  • terminals for electrically connecting the main components of the first power supply device 100 and the main components 205 of the second power supply device 200 is provided between the pair of handles 102 on the front surface of the exterior body 101.
  • a group 110 is provided.
  • the terminal group 110 includes a DC input terminal 111, an AC input terminal 112, and an output terminal 113 which will be described later.
  • the DC input terminal 111, the AC input terminal 112, and the output terminal 113 are provided on one outer surface of the exterior body 101, when the first power supply device 100 is retrofitted to the second power supply device 200. In addition, wiring work for the DC input terminal 111, the AC input terminal 112, and the output terminal 113 can be easily performed.
  • FIG. 3 is a block diagram showing an outline of the control configuration of the second power supply apparatus 200.
  • FIG. 3 shows a state before the first power supply device 100 is attached.
  • the second power supply apparatus 200 includes a second AC / DC converter 230, a second storage battery 240, and terminals 250 and 251.
  • the second AC / DC converter 230 is electrically connected to a switching unit 220 outside the second power supply apparatus 200 via a terminal 251.
  • the switching unit 220 is a circuit that switches AC power supplied from each of the commercial power supply 300 and the generator 400 and outputs it downstream.
  • the second AC / DC converter 230 is a conversion device that converts alternating current into direct current, and converts alternating current power supplied via the switching unit 220 into second direct current power.
  • the second AC / DC converter 230 supplies the converted second DC power to the second storage battery 240 and the load 500.
  • the second storage battery 240 is a storage battery such as a lead storage battery, for example.
  • the second storage battery 240 stores power using the supplied second DC power, and supplies DC power to the load 500 via the terminal 250 by discharging.
  • FIG. 4 is a block diagram showing an outline of a control configuration of the second power supply apparatus 200 to which the first power supply apparatus 100 is attached.
  • FIG. 5 is a circuit diagram illustrating an example of a circuit configuration of the first power supply device 100 and the second power supply device 200.
  • the commercial power supply 300 and the generator 400 are stopped. Also, the load 500 is turned off.
  • the worker removes the wiring member 603 that electrically connects the terminal 250 and the load 500 from the terminal 250. Then, the worker connects the removed wiring member 603 to the output terminal 113 of the first power supply apparatus 100. Next, the worker connects the DC input terminal 111 of the first power supply device 100 and the terminal 250 of the second power supply device 200 with the wiring member 601. The worker connects the AC input terminal 112 of the first power supply device 100 and the terminal 251 of the second power supply device 200 with the wiring member 602. Thus, the first power supply device 100 is attached to the second power supply device 200, and the DC power from the second power supply device 200 is supplied to the first power supply device 100 via the DC input terminal 111. Is done.
  • the first power supply apparatus 100 includes a DC input terminal 111, an AC input terminal 112, an output terminal 113, a first line 130, a second line 120, and a switching control unit 140.
  • the DC input terminal 111 is a terminal that is electrically connected to the terminal 250 via the wiring member 601. Thereby, the second DC power output from the terminal 250 is supplied to the second line 120 via the DC input terminal 111.
  • the AC input terminal 112 is a terminal that is electrically connected to the terminal 251 through the wiring member 602. Thereby, AC power is branched from the terminal 251 of the second power supply apparatus 200 and supplied to the first line 130 via the AC input terminal 112.
  • the AC input terminal 112 is one that can be electrically connected to the second power supply device 200 that is an existing device, but can be electrically connected to the commercial power supply 300 or the generator 400. Some are included.
  • a second line 120 and a first line 130 are connected in parallel to the output terminal 113, and DC power supplied from each of the second line 120 and the first line 130 is supplied to the load 500.
  • DC input terminal 111, AC input terminal 112, and output terminal 113 are included in terminal group 110 (see FIG. 2).
  • the second line 120 is a power system for supplying the second DC power input from the DC input terminal 111 to the output terminal 113.
  • a third voltage sensor 121, a second switch 141, and a second diode 122 are provided in the second line 120.
  • the second switch 141 and the second diode 122 are connected in series to the DC input terminal 111 and the output terminal 113, and the third voltage sensor 121 is a DC input in the second line 120. It is connected directly downstream of the terminal 111.
  • the third voltage sensor 121 is a voltage sensor that detects the voltage of the second line 120.
  • the second switch 141 is a switch for switching on / off the power of the second line 120.
  • the second switch 141 is a switch that blocks the second line 120.
  • the second diode 122 is an element arranged on the negative side of the second line 120 and arranged in a direction in which a current flows toward the DC input terminal 111 (minus terminal). The second diode 122 prevents the current flowing through the first line 130 from flowing back into the second line 120.
  • the first line 130 is a power system for converting AC power input from the AC input terminal 112 into first DC power and supplying it to the output terminal 113.
  • the first line 130 includes a first voltage sensor 132, a second voltage sensor 131, a first AC / DC converter 133, a first switch 142 and a third switch 143, a first diode 134, and a first storage battery. 150 and a switching control unit 140 are provided.
  • the first AC / DC converter 133 is a conversion device that converts alternating current into direct current, and a first storage battery 150 is connected downstream of the first AC / DC converter 133. Between the connection position of the 1st storage battery 150 and the 1st diode 134, the 1st switch 142 which interrupts
  • the first line 130 and the second line 120 become a power supply line parallel to the load 500.
  • the first line 130 includes a first voltage sensor 132 and a second voltage sensor 131.
  • the second voltage sensor 131 is connected between the AC input terminal 112 in the first line 130 and the third switch 143, and the first voltage sensor 132 is connected between the first AC / DC converter 133 and the second switch 141. Connected between.
  • the second voltage sensor 131 is a voltage sensor that detects the voltage of the AC power input from the AC input terminal 112.
  • the first voltage sensor 132 is a voltage sensor that detects the voltage on the direct current side of the first line 130 (downstream side of the first AC / DC converter 133). The voltage detected by the first voltage sensor 132 is also the voltage of the first storage battery 150.
  • the first AC / DC converter 133 is a conversion device that converts AC power flowing through the first line 130 into first DC power.
  • the first storage battery 150 is a storage battery for the first line such as a lithium ion battery, and is stored with the supplied first DC power, and supplies DC power to the load 500 by discharging. As shown in FIG. 5, the first storage battery 150 has terminals 150a and 150b, and is detachably connected to the first line 130 via the terminals 150a and 150b. Thereby, the 1st storage battery 150 is exchangeable. In addition, the location where the terminals 150a and 150b in the first line 130 are connected is a connecting portion 180 to which the first storage battery 150 is connected.
  • the second storage battery 240 of the second power supply apparatus 200 which is an existing apparatus, is a battery having a relatively large capacity so that it can cope with a backup during a long-time power outage.
  • the battery capacity of the first storage battery 150 is set for backup when the commercial power supply 300 is in a short power failure. For this reason, the capacity of the first storage battery 150 is smaller than the capacity of the second storage battery 240.
  • the lithium ion battery is smaller and lighter. Also, the smaller the battery capacity, the smaller and lighter.
  • the volume which the 1st storage battery 150 occupies can be made small compared with the 2nd storage battery 240. If the capacity
  • the first switch 142 is a switch that is connected downstream of the connection position of the first storage battery 150 and switches the power of the first line 130 ON / OFF.
  • the third switch 143 is a switch that is connected immediately upstream of the second AC / DC converter 133 and switches the power of the first line 130 ON / OFF.
  • the first switch 142 and the third switch 143 are switches that block the first line 130.
  • the first diode 134 is an element arranged on the negative side of the first line 130 and arranged in a direction in which current flows toward the DC input terminal 111 (minus terminal). The first diode 134 prevents the current flowing through the second line 120 from flowing back into the first line 130.
  • the switching control unit 140 Based on the detection results of the first voltage sensor 132, the second voltage sensor 131, and the third voltage sensor 121, the switching control unit 140 converts the supply power to the load 500 among the second DC power and the first DC power. Perform switching control. Specifically, the switching control unit 140 is based on the detection results of the first voltage sensor 132, the second voltage sensor 131, and the third voltage sensor 121, and the first switch 142, the second switch 141, and the third switch. 143 and ON / OFF are switched. Thereby, the switching control unit 140 switches the power supplied to the load 500 between the first DC power and the second DC power.
  • FIG. 6 is a flowchart showing the flow of the control method of the first power supply apparatus 100.
  • FIG. 7 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 6 is executed.
  • FIG. 6 there is a step of switching ON / OFF of the first switch 142, the second switch 141, and the third switch 143, but this step includes the case where ON / OFF in the previous step is continued. .
  • the switching control unit 140 When the first power supply device 100 is receiving power from the commercial power supply 300 and the first storage battery 150 is fully charged and the second storage battery 240 is fully charged, the switching control unit 140 The first switch 142 is turned on, the second switch 141 is turned off, and the third switch 143 is turned on (step S101). This is the “power supply by commercial power supply” period shown in FIG.
  • the second AC / DC converter 230 converts the AC power supplied from the commercial power source 300 into second DC power by the second AC / DC converter 230, and the second line 120 is connected via the terminal 250 and the DC input terminal 111. To be supplied. Further, since the second DC power is supplied to the second storage battery 240, the second storage battery 240 is charged. During the period when the second switch 141 is OFF, the second DC power is not supplied to the load 500.
  • this step S101 is a first step of supplying power to the load 500 via the first line 130 when the first line 130 is receiving AC power from the commercial power supply 300.
  • the switching control unit 140 determines whether or not the commercial power supply 300 is out of power based on the detection result of the second voltage sensor 131 (step S102). If it is not a power failure (NO), the state is continued. On the other hand, if it is a power failure (YES), the first storage battery 150 discharges DC power (step S103). Thereby, DC power flows from the first storage battery 150 to the first line 130, and DC power is supplied to the load 500. This is the “power supply by the first storage battery (first state)” period shown in FIG. 7.
  • the first state is a state in which DC power from the first storage battery 150 is supplied to the load 500.
  • steps S102 and S103 are the second steps for supplying power from the first storage battery 150 to the load 500 when the commercial power supply 300 stops.
  • the switching control unit 140 determines whether or not the first storage battery 150 is equal to or lower than the first predetermined value based on the detection result of the first voltage sensor 132 (step S104).
  • the first predetermined value of the first storage battery 150 is, for example, 42.0V.
  • This first predetermined value is for a 13-cell lithium ion battery.
  • the first predetermined value is a value that varies depending on the type of first storage battery 150, the number of cells, and the like.
  • the switching control unit 140 turns on the first switch 142 and turns on the second switch 141 (step S105). .
  • DC power is supplied from the second storage battery 240 of the second line 120 to the load 500.
  • the second state is a state in which DC power from the second line 120 is supplied to the load 500.
  • step S106 when a predetermined time has elapsed (step S106), the switching control unit 140 turns off the first switch 142 and turns on the second switch 141 (step S107). Thereby, since the 1st line 130 is interrupted
  • steps S104 to S108 are the third steps for starting the power supply from the second line 120 and stopping the power supply from the first storage battery 150 when the voltage of the first storage battery 150 becomes equal to or lower than the first predetermined value. It is.
  • the DC power is supplied from the second storage battery 240 to the load 500 and the DC power is supplied from the first storage battery 150 to the load 500.
  • supply of the direct-current power with respect to the load 500 from the 1st storage battery 150 will be stopped. That is, within this predetermined time, the power supply from the first line 130 and the power supply from the second line 120 to the load 500 are switched without interruption.
  • the DC power output from the existing second power supply device 200 is supplied to the load 500 via the DC input terminal 111, the second line 120, and the output terminal 113. Is output.
  • the second power supply device 200 supplies DC power by discharging the second storage battery 240.
  • the discharge end voltage of the second storage battery 240 is, for example, 40.8V.
  • This end-of-discharge voltage is for a 24 cell lead acid battery.
  • the end-of-discharge voltage is a value that varies depending on the type of second storage battery 240, the number of cells, and the like.
  • the generator 400 When the second storage battery 240 reaches the final discharge voltage, the generator 400 is activated. At this time, the switching unit 220 switches the AC power supply source from the commercial power supply 300 to the generator 400. As a result, the AC power generated by the generator 400 is supplied to the second power supply device 200. The AC power generated by the generator 400 is also input to the AC input terminal 112 of the first power supply device 100 via the wiring member 602.
  • the second power supply device 200 AC power supplied from the generator 400 is converted into second DC power by the second AC / DC converter 230 and supplied to the second line 120 via the DC input terminal 111. As a result, the second DC power is supplied to the load 500. Further, since the second DC power is supplied to the second storage battery 240, the second storage battery 240 is charged. This is the “power supply by generator” period shown in FIG.
  • the switching control unit 140 determines whether the AC input terminal 112 has received AC power based on the detection result of the second voltage sensor 131. If AC power is not received (step S109; NO), that state is continued. On the other hand, when the AC power is restored from the first state to the second state, the second voltage sensor 131 detects the restored AC voltage (step S109; YES). Turns off the first switch 142, turns on the second switch 141, and turns off the third switch 143 (step S110). In this case, since the third switch 143 is OFF, AC power is not supplied to the first line 130, and DC power is not output from the first AC / DC converter 133. Is not done. That is, immediately after the AC power is restored, the second storage battery 240 and the first storage battery 150 are not charged at the same time.
  • the timing at which the third switch is turned OFF may be when the voltage of the second line 120 reaches the end-of-discharge voltage when a power failure of the commercial power supply 300 is detected.
  • step S110 when the power source (commercial power source 300 or generator 400) recovers, the power supply of the power source to the first line 130 is stopped and the power is supplied from the power source to the load 500 via the second line 120. Is a fourth step.
  • the second storage battery 240 having a large capacity is charged before the first storage battery 150. That is, the second storage battery 240 for a long-time power failure is charged first. Thereby, even if a power failure occurs for a long time before the predetermined time has elapsed after power is restored, power can be supplied from the second storage battery 240 to the load 500.
  • the switching control unit 140 determines whether the first condition is satisfied (step S111).
  • the first condition refers to the first predetermined value after the voltage of the second line 120 (detection result of the third voltage sensor 121) becomes equal to or higher than the second predetermined value, or when the storage of the second storage battery 240 is started. This is at least one of conditions that have passed the time. This is the “power storage of the second storage battery” period shown in FIG.
  • the 2nd predetermined value should just be a voltage which shows that the 2nd storage battery 240 ensured the stable amount of electrical storage. If the second storage battery 240 is the above lead storage battery, the second predetermined value is, for example, 48.0V.
  • the first predetermined time is a power storage time during which the second storage battery 240 can secure a stable power storage amount.
  • the switching control unit 140 turns off the first switch 142, turns on the second switch 141, and turns on the third switch 143 (step S112).
  • the switching control unit 140 turns off the first switch 142, turns on the second switch 141, and turns on the third switch 143 (step S112).
  • steps S111 and S112 are a fifth step of starting the power supply of the power source to the first line 130 when the voltage of the second line 120 is equal to or higher than the second predetermined value or when the first predetermined time has elapsed.
  • the switching control unit 140 determines whether the second condition is satisfied (step S113).
  • the second condition is that the voltage of the first storage battery 150 (detection result of the first voltage sensor 132) becomes equal to or higher than the third predetermined value, or the first storage battery 150 starts to be charged for the second predetermined time. This is at least one of conditions that have passed the time.
  • the third predetermined value may be a voltage indicating that the first storage battery 150 has secured a stable amount of power storage.
  • the third predetermined value is, for example, 48.0V.
  • the second predetermined time is a power storage time during which the first storage battery 150 can secure a stable power storage amount.
  • the switching unit 220 switches the power supply source for the first power supply apparatus 100 from the generator 400 to the commercial power supply 300. This is the “power recovery” timing shown in FIG.
  • the switching control unit 140 turns on the first switch 142, turns on the second switch 141, and turns on the third switch 143 (step S114). At this time, the second line 120 and the first line 130 can supply power to the load 500 simultaneously.
  • step S115 the switching control unit 140 turns on the first switch 142, turns off the second switch 141, and turns on the third switch 143 (step S101). Thereby, the power supply from the second line 120 is cut off, and the power from the first line 130 is supplied. That is, even after power recovery, switching between the second line 120 and the first line 130 is performed without interruption.
  • steps S113 to S101 when the voltage of the first storage battery 150 becomes equal to or higher than the third predetermined value, the sixth line that supplies power from the first line 130 to the load 500 and stops supplying power from the second line 120 is used. It is a step.
  • the commercial power supply 300 is stopped.
  • the 1st storage battery 150 can be utilized reliably. That is, since it is possible to stably supply power to the load 500 from the added first power supply device 100, the first storage battery 150 different from the lead storage battery can be stably utilized without replacing the entire facility. be able to.
  • the first state and the second state are switched without interruption, even if the first power supply device 100 is added to the second power supply device 200, the existing second storage battery 240 and the other first The power supply timing with the storage battery 150 can be appropriately switched. Therefore, power supply to the load 500 can be performed stably.
  • the backup at the time of a power failure for a longer time can be supported as compared with the case of the second storage battery 240 alone.
  • the first state in which power is supplied by the first storage battery 150 is always executed before the second state in which power is supplied by the second storage battery 240, short-time power outages can be generally handled by the first storage battery 150.
  • the first storage battery 150 is a lithium ion battery and the second storage battery 240 is a lead storage battery, it is a lithium ion battery that has a relatively long cycle life and can be rapidly charged, and can handle a short power outage for a long time.
  • a power failure can be handled by both a lithium ion battery and a lead storage battery.
  • the power supply of the power source to the first line 130 is started.
  • 150 power storages can be performed.
  • the existing second power supply The first power supply device 100 can be easily attached to the device 200 by retrofitting. Thereby, it is possible to easily add the first power supply device 100 including the first storage battery 150 to the existing second power supply device 200 having the second storage battery 240, while using the existing device. The stability and durability of the entire supply system can be improved.
  • the first voltage sensor 132, the second voltage sensor 131, the third voltage sensor 121, and the switching control unit 140 are unitized so as to be retrofitted to the second power supply apparatus 200.
  • the two power supply devices 200 can be retrofitted at once.
  • the switching control unit 140 switches the power supplied to the load 500 between the first DC power and the second DC power based on the detection results of the first voltage sensor 132, the second voltage sensor 131, and the third voltage sensor 121. Even if the first power supply device 100 is retrofitted to the second power supply device 200, the existing power supply (commercial power supply 300 and generator 400), the second storage battery 240, and the retrofit first storage battery 150 can be smoothly connected. You can switch to
  • the first storage battery 150 is detachable, the first storage battery 150 can be replaced even if the first power supply apparatus 100 is unitized.
  • the 1st storage battery 150 is a lithium ion battery
  • the 1st power supply apparatus 100 provided with a lithium ion battery is easily attached with respect to the existing 2nd power supply apparatus 200 which charges / discharges electric power with a lead storage battery. Can do. This is due to the fact that lithium-ion batteries are smaller and lighter than lead-acid batteries, and have a smaller capacity than lead-acid batteries for short-time power outages.
  • the first power supply device 100 is unitized by the exterior body 101 and the exterior body 101 is slidably accommodated with respect to the rack 210, the first power supply device 100 can be retrofitted or removed. It can be done easily.
  • the second storage battery 240 is disposed above the first storage battery 150.
  • the lead storage battery is heavier than the lithium ion battery. Maintenance work can be performed efficiently.
  • the 1st switch 142, the 2nd switch 141, and the 3rd switch 143 are accommodated in the exterior body 101, when the 1st power supply apparatus 100 is installed in inferior environments, such as a desert and a forest Even so, each switch can be protected from dust and rainwater.
  • FIG. 8 is a block diagram illustrating a main control configuration of the second power supply device 200 to which the first power supply device 100A according to the first modification is attached. Specifically, FIG. 8 corresponds to FIG.
  • the first power supply device 100 ⁇ / b> A is not provided with the third switch 143.
  • the switching control unit 140 temporarily turns on the second switch 141 and the first switch 142 when the first condition is satisfied. After the second switch 141 is turned on and the first switch 142 is turned on, the second switch 141 is turned off and the first switch 142 is turned on.
  • this step supplies power from the first line 130 to the load when the voltage of the second line 120 reaches the second predetermined value or the first predetermined time elapses when the power is restored.
  • the first storage battery 150 can be stored immediately after power recovery, and the number of parts can be reduced to simplify the control. This is suitable when the capacity of the commercial power supply 300 is large and the generator 400 is not provided.
  • An eighth step of supplying power from the first line 130 to the load 500 and stopping power supply from the second line 120 when the power source is restored may be included. According to this, when the power is restored, the first storage battery 150 is immediately stored, and the power is supplied from the first line 130 to the load 500 and the power supply from the second line 120 is stopped. Control can be further simplified by reducing the number of parts. This case is also suitable when the capacity of the commercial power supply 300 is large and the generator 400 is not provided.
  • 1st embodiment illustrated the case where the 1st storage battery 150 was mounted in the exterior body 101 of the 1st electric power supply apparatus 100.
  • the exterior body and the first storage battery may be separate bodies.
  • FIG. 9 is a perspective view showing a schematic configuration of the first power supply apparatus 100B according to the second modification.
  • a storage battery terminal 119 that conducts to the first line 130 is provided in the vicinity of the terminal group 110 on the front surface of the exterior body 101 ⁇ / b> B of the first power supply apparatus 100 ⁇ / b> B.
  • the terminals 150a and 150b of the first storage battery 150B separate from the exterior body 101B are electrically connected to the storage battery terminal 119 via the wiring member 604. That is, the storage battery terminal 119 is a connection portion.
  • the first power supply device 100B is provided with a plurality of pairs of storage battery terminals 119. Since there are a plurality of pairs of storage battery terminals 119, the first power supply apparatus 100B can have versatility. Thereby, the number of the 1st storage batteries 150B can be adjusted at the time of installation of the 1st electric power supply apparatus 100B. Alternatively, even when the first storage battery 150B needs to be added after the installation of the first power supply apparatus 100B, it can be easily handled.
  • the second storage battery 240 is a lead storage battery
  • the first storage battery 150 is a lithium ion battery.
  • the type of storage battery is not limited to this. Examples of other storage batteries include alkaline batteries.
  • the case where the main component 205 of the second power supply device 200 and the first power supply device 100 are mounted in the rack 210 is exemplified.
  • the main component 205 of the second power supply device 200 and the first power supply device 100 may be housed in fixtures and fittings other than the rack 210, and are directly installed in a building as a power supply facility. May be.
  • the case where the power source that supplies power to the first line 130 and the power source that supplies power to the second line 120 are shared by the commercial power source 300 and the generator 400 is illustrated.
  • a first power source that supplies power to the first line 130 and a second power source that supplies power to the second line 120 may be provided separately.
  • the third switch 143 may be provided on a route branched from the first line 130.
  • FIG. 10 is a block diagram showing an outline of a control configuration of the second power supply apparatus to which the first power supply apparatus according to the modification 3 is attached.
  • FIG. 10 corresponds to FIG.
  • the switching unit 220 is connected to the AC input terminal 112 of the first power supply apparatus 100.
  • the first line 130 is branched between the AC input terminal 112 and the first AC / DC converter 133, and an AC output terminal 270 is provided downstream of the branch point via a third switch 143. ing.
  • the AC output terminal 270 and the terminal 251 of the second power supply device 200 are electrically connected via the wiring member 605.
  • the AC power output from the commercial power supply 300 or the generator 400 is input to the first power supply device 100 from the AC input terminal 112 and then a part thereof is input to the first AC / DC converter 133.
  • the other part is input to the second power supply apparatus 200 via the third switch 143, the AC output terminal 270, and the wiring member 605.
  • the first storage battery 150 can be charged first while preventing input capacity from being exceeded. That is, it is suitable when there are many short-time power outages and long-time power outages.
  • the power to the first line 130 may be DC power. Specifically, it may be DC power supplied from another DC system, or DC power from solar power generation or the like. In the case of DC power, the first AC / DC converter 133 is not necessary. A DC / DC converter and a power conditioner may be used as necessary.
  • the case where the exterior body 101B of the first power supply device 100B and the first storage battery 150 are separated is illustrated.
  • attached to the said exterior body 101B can also be used as the switching unit 700 (refer FIG. 11).
  • the switching unit 700 is a device that switches the power supplied to the load 500.
  • the switching unit 700 is disposed above the first storage battery 150.
  • the first storage battery 150 is disposed above the second storage battery 240.
  • the 2nd storage battery 240 is arrange
  • the switching unit 700 is arrange
  • the storage battery 240 and the switching unit 700 can be spaced apart in the vertical direction. Therefore, the heat radiation efficiency can be increased without increasing the size in the width direction.
  • FIG. 11 is a block diagram showing an outline of the control configuration of the switching unit 700. As shown in FIG. FIG. 11 is a diagram corresponding to FIG. In the following description, parts different from the first embodiment will be mainly described. As shown in FIG. 11, the switching unit 700 includes a DC input terminal 111, an AC input terminal 112, an output terminal 113, a first line 130, and a second line 120.
  • the second line 120 is a power system for supplying the second DC power input from the DC input terminal 111 to the output terminal 113.
  • a second diode 122 is provided in the second line 120.
  • the second line 120 is not provided with the third voltage sensor 121 and the second switch 141.
  • the second line 120 is preferably disposed in the exterior body of the switching unit 700.
  • the first line 130 is a power system for converting AC power input from the AC input terminal 112 into first DC power and supplying it to the output terminal 113.
  • the connection point between the first line 130 and the second line 120 is preferably disposed in the exterior body of the switching unit 700.
  • the first line 130 is provided with a power failure detection unit 160, a delay unit 170, a first AC / DC converter 133, a switch 145, a first diode 134, and a first storage battery 150.
  • the switch 145 corresponds to the first switch 142, but the first line 130 is not provided with the third switch 143 and the switching control unit 140.
  • the case where the power failure detection unit 160 and the delay unit 170 are provided in the first line 130 is illustrated, but the power failure detection unit 160 and the delay unit 170 are provided in a separate system from the first line 130. It may be done.
  • the first AC / DC converter 133 may be disposed outside the exterior body of the switching unit 700. That is, the first AC / DC converter 133 may be provided separately from the switching unit 700, and may be provided between the terminal 251 and the AC input terminal 112, for example.
  • the power failure detection unit 160 is connected between the AC input terminal 112 in the first line 130 and the switch 145.
  • the power failure detection unit 160 is a power failure detector that does not output a signal when there is a power failure and continues to output a signal when there is no power failure. Specifically, the power failure detection unit 160 continues to output a signal to the delay unit 170 when there is a voltage between the AC input terminal 112 and the first AC / DC converter 133, and when the voltage disappears (power failure) At this time, no signal is output to the delay unit 170.
  • the power failure detection unit 160 may be connected between the terminal 251 and the switch 145. In this case, the power failure detection unit 160 outputs a signal to the delay unit 170 when there is a voltage at the terminal 251.
  • the delay unit 170 is a delay circuit that switches conduction or interruption by the switch 145 with a delay from the timing at which a power failure is detected. That is, the delay unit 170 switches ON / OFF of the switch 145 with a delay from the signal switching timing in the power failure detection unit 160. Specifically, the delay unit 170 outputs the signal to the switch 145 when the signal is input from the power failure detection unit 160, and outputs the signal to the switch 145 when the signal is not input. Do not output. The switch 145 is turned on / off depending on the presence or absence of this signal.
  • the timing for switching the presence / absence of a signal is delayed by a predetermined time from the timing at which the presence / absence of the signal is actually switched in the power failure detection unit 160. That is, in the state where the presence or absence of the signal from the power failure detection unit 160 is stable, the presence or absence of the signal for the switch 145 is switched in the delay unit 170.
  • the switch 145 is a switch for switching ON / OFF the power of the first line 130 based on the presence / absence of a signal from the delay unit 170. Specifically, the switch 145 is provided between the connection part 180 in the first line 130 and the first diode 134. The switch 145 is turned off when a signal is input from the delay unit 170 and turns off the power of the first line 130. On the other hand, the switch 145 is turned on when the signal from the delay unit 170 is not input (power failure), and the power of the first line 130 is turned on.
  • the switch 145 electrically connects the connection unit 180 to the output terminal 113 when the power failure detection unit 160 detects a power failure, and when the power failure detection unit 160 does not detect the power failure, The electrical conduction from the connection unit 180 to the output terminal 113 is interrupted.
  • the switch 145 electrically connects the connection unit 180 to the output terminal 113 when a power failure of the commercial power supply 300 is detected, and when the power failure of the commercial power supply 300 is not detected, The electrical conduction from the connection unit 180 to the output terminal 113 is interrupted.
  • DC power from the first storage battery 150 is supplied to the load 500 during a power failure.
  • the charging voltage of the first storage battery 150 is set higher than the charging voltage of the second storage battery 240.
  • the discharge end voltage of the first storage battery 150 is set higher than the discharge end voltage of the second storage battery 240.
  • the charge voltage of the first storage battery 150 is 56.7 V
  • the discharge end voltage is 46.2 V
  • the charge voltage of the second storage battery 240 is 54.0
  • the discharge end voltage is 43.2 V.
  • the first storage battery 150 may be disposed outside the exterior body of the switching unit 700. That is, the first storage battery 133 may be provided separately from the switching unit 700 (see FIG. 9).
  • FIG. 12 is a flowchart showing the flow of the control method of the first power supply apparatus 100B.
  • FIG. 13 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 12 is executed.
  • step S201 This is the “power supply by commercial power supply” period shown in FIG.
  • a part of the AC power supplied from the commercial power source 300 is converted into second DC power by the second AC / DC converter 230, and the second line 120 is connected via the terminal 250 and the DC input terminal 111. To be supplied. Thereby, a part of the AC power is supplied to the load 500. At this time, since the second DC power is also supplied to the second storage battery 240, the second storage battery 240 is charged.
  • this step S201 supplies power to the load 500 via the second line 120 when the second line 120, which is a line different from the first line 130, receives AC power from the commercial power supply 300.
  • the second line 120 is not provided with a switch (second switch).
  • the second line 120 electrically connects the second AC / DC converter 230 and the second storage battery 240 and the load 500 without going through a switch. Therefore, there is no fear that the power supply from the second AC / DC converter 230 or the second storage battery 240 to the load 500 is stopped due to a switch failure.
  • step S202 when the signal output from the power failure detection unit 160 is continued (step S202; NO), the state is maintained.
  • the switch 145 is switched from OFF to ON (step S203).
  • step S203 the delay unit 170 delays the signal switching timing in the power failure detection unit 160 and switches the switch 145 from OFF to ON (see FIG. 13).
  • step S204 power is supplied from the second storage battery 240 to the load 500.
  • the first state is a state in which DC power from the first storage battery 150 is supplied to the load 500.
  • the steps S203 and S204 are the second for supplying power to the load 500 from the first storage battery 150 connected to the first line 130 without interrupting the power supply to the load 500. It is a step.
  • step S205 when the first storage battery 150 has a voltage different from that of the second storage battery 240 (step S205; NO), the first state is continued.
  • step S205; YES both the first storage battery 150 and the second storage battery 240 are discharged (step S206). That is, when the voltage supplied to the load 500 becomes equal to or lower than the first voltage value, power supply from the second storage battery 240 is started. Thereby, DC power flows from the first storage battery 150 to the first line 130, DC power flows from the second storage battery 240 to the second line 120, and DC power is supplied to the load 500.
  • This is the “power supply by the first storage battery and the second storage battery” period shown in FIG. 13. During this period, the first storage battery 150 and the second storage battery 240 simultaneously supply power to the load 500.
  • step S207 when the first storage battery 150 is not equal to or lower than the discharge end voltage (predetermined value) (step S207; NO), the simultaneous power feeding state is continued.
  • step S207; YES When the first storage battery 150 becomes equal to or lower than the discharge end voltage (step S207; YES), the discharge of the first storage battery 150 is stopped, and DC power is supplied to the load 500 only from the second storage battery 240 (step S207). S208).
  • these steps S207 and S208 are performed without switching between the first line 130 and the second line 120 when the voltage of the first storage battery 150 becomes equal to or lower than the second voltage value smaller than the first voltage value. Only the power supply of the storage battery 240 is used.
  • the power failure detection unit 160 outputs a signal to the delay unit 170 (step S209).
  • a signal is also output to the switch 145 via the delay unit 170, so that the switch 145 is turned off (step S210), and the process proceeds to step S202.
  • This is the “power recovery” period shown in FIG. Note that the power recovery period here includes power recovery of the commercial power supply 300.
  • the first storage battery 150 may be charged before the switch 145 is turned off in step S210. Further, after the switch 145 is turned off in step S210, the switch 145 may be temporarily turned on to charge the first storage battery 150, and then the switch 145 may be turned off again.
  • each part which comprises the switching unit 700 is the DC input terminal 111, the AC input terminal 112, the output terminal 113, the 1st line 130, the 2nd line 120, etc., for example.
  • the switch 145 is also accommodated in the exterior body 101B. For example, even when the switching unit 700 is installed in a poor environment such as a desert or a forest, the switch 145 can be protected from dust and rainwater.
  • the worker connects the DC input terminal 111 and the terminal 250 of the second power supply apparatus 200 with the wiring member 601.
  • the worker connects the output terminal 113 and the load 500 with the wiring member 603.
  • the worker connects the AC input terminal 112 and the terminal 251 with the wiring member 602.
  • the switching unit 700 is attached to the second power supply apparatus 200.
  • the operator connects the first storage battery 150 to the connection portion 180 of the first line 130. Thereby, the first power supply apparatus 100B is completed.
  • the switching unit 700 can be easily retrofitted to the second power supply apparatus 200. Can be attached. Therefore, another power system can be easily added to the second power supply apparatus 200.
  • the first power supply device 100 including the first storage battery 150 is simply added to the existing second power supply device 200, so that the stability of the entire power supply system can be achieved while using the existing device. And durability can be improved.
  • connection part 180 to which the 1st storage battery 150 is connected is provided in the 1st line 130 of the switching unit 700, if the 1st storage battery 150 is connected with this connection part 180, it will be 2nd electric power. It is also possible to add the first storage battery 150 to the supply device 200.
  • the delay unit 170 delays the timing of detecting a power failure of the commercial power supply 300 and switches between conduction and interruption by the switch 145, even if a voltage drop (instant interruption) frequently occurs, the switch 145 may be disabled. That is, chattering of the switch 145 can be prevented.
  • the first power supply device 100B to which the first storage battery 150 is connected is added to the second power supply device 200, even if the commercial power supply 300 is stopped, the power supply by the first storage battery 150 is performed.
  • the storage battery 150 can be used reliably. That is, since it is possible to stably supply power to the load 500 from the added first power supply apparatus 100B, the first storage battery 150 can be stably utilized without replacing the entire facility.
  • the second storage battery 240 such as a lead storage battery is connected to the load 500 from the second line 120 different from the first line 130
  • the voltage supplied to the load 500 is equal to or lower than the first voltage value. Then, since the electric power supply from the 2nd storage battery 240 is started, the 1st storage battery 150 and the 2nd storage battery 240 can be switched efficiently.
  • power supply from the generator 400 may be started via the second line 120.
  • the switching unit 700 includes the second line 120 .
  • the second line 120 may not be provided in the switching unit 700.
  • the second storage battery 240 may be directly connected to the load 500. Even in this case, when the first storage battery 150 reaches the end-of-discharge voltage, the power supply from the second storage battery 240 can be switched.
  • the first power supply device 100B including the switching unit 700 and the first storage battery 150 can be applied to a communication base station backup system.
  • a communication base station backup system For example, when a power outage occurs at a communication base station, not only data communication cannot be performed at the time of a power outage, but also after power recovery, data communication before the power outage must be performed again, which is inefficient. This is a serious problem in developing countries where power supply conditions are poor.
  • the first power supply apparatus 100B is installed in a communication base station as a communication base station backup system, power supply to the communication base station can be stabilized, and communication can be stabilized. is there.
  • the communication base station backup system may include the second power supply device 200 that is an existing device.
  • the power supply system provided with respect to not only a communication base station but other facilities may be provided with the 1st power supply apparatus 100B and the 2nd power supply apparatus 200 which is an existing apparatus.
  • the second power supply device 200 may be installed together with the first power supply device 100 instead of the existing device.
  • the switch 145 is provided in the first line 130 in the second embodiment.
  • the switch 145c is attached between the first storage battery 150 and the first line 130. An example is given.
  • FIG. 14 is a block diagram showing an outline of the control configuration of the switching unit 700C.
  • FIG. 14 is a diagram corresponding to FIG. In the following description, parts different from the second embodiment will be mainly described.
  • the first line 130 of the switching unit 700 ⁇ / b> C is a power system for converting AC power input from the AC input terminal 112 into first DC power and supplying the first DC power to the output terminal 113.
  • the first line 130 is provided with a first AC / DC converter 133, a low voltage detection circuit 146, a switch 145c, a first diode 134, and a first storage battery 150.
  • the low voltage detection circuit 146 is connected between the first AC / DC converter 133 in the first line 130 and the first storage battery 150.
  • the low voltage detection circuit 146 continues to output a signal to the switch 145c when the voltage at the first line 130 is higher than a predetermined value (for example, the discharge end voltage of the first storage battery 150), and when the voltage is lower than the predetermined value. Does not output a signal to the switch 145c.
  • a predetermined value for example, the discharge end voltage of the first storage battery 150
  • the switch 145c is a switch that switches ON / OFF of the power path to the first storage battery 150 based on the presence / absence of a signal from the low voltage detection circuit 146. Specifically, the switch 145 c is provided on the way to the first storage battery 150 in the first line 130. The switch 145c is turned on when a signal is input from the low voltage detection circuit 146, and the power path of the first storage battery 150 is turned on. On the other hand, the switch 145c is turned off when the signal from the low voltage detection circuit 146 is not inputted, and the power path of the first storage battery 150 is turned off.
  • the charging voltage of the first storage battery 150 is set higher than the charging voltage of the second storage battery 240.
  • the discharge end voltage of the first storage battery 150 is set higher than the discharge end voltage of the second storage battery 240.
  • the charge voltage of the first storage battery 150 is 56.7 V
  • the discharge end voltage is 46.2 V
  • the charge voltage of the second storage battery 240 is 54.0
  • the discharge end voltage is 43.2 V.
  • FIG. 15 is a flowchart showing the flow of the control method of the first power supply apparatus 100B.
  • FIG. 16 is a timing chart showing load voltage change and ON / OFF switching timing of each part when the control method of FIG. 15 is executed.
  • the switching unit 700C of the first power supply apparatus 100B is receiving power from the commercial power supply 300, the voltage on the first line 130 is larger than a predetermined value, so the low voltage detection circuit 146 outputs a signal. Subsequently, the switch 145c is turned on (step S301). This is the “power supply by commercial power supply” period shown in FIG.
  • a part of the AC power supplied from the commercial power supply 300 is converted into the second DC power by the second AC / DC converter 230 and supplied to the second storage battery 240 to store the second storage battery. .
  • step S302 when the supply of AC power from the commercial power supply 300 is continued (step S302; NO), the state is maintained.
  • step S302; YES when the commercial power supply 300 has a power failure (step S302; YES), the supply voltage to the first storage battery 150 is also reduced, so that DC power is supplied from the first storage battery 150 to the load 500 (step S303). ).
  • This is the “power supply by the first storage battery (first state)” period shown in FIG. 16.
  • the first state is a state in which DC power from the first storage battery 150 is supplied to the load 500.
  • step S304 when the first storage battery 150 has a voltage different from that of the second storage battery 240 (step S304; NO), the first state is continued.
  • step S304; YES both the first storage battery 150 and the second storage battery 240 are discharged (step S305).
  • DC power flows from the first storage battery 150 to the first line 130
  • DC power flows from the second storage battery 240 to the second line 120
  • DC power is supplied to the load 500.
  • This is the “power supply by the first storage battery and the second storage battery” period shown in FIG. 16. During this period, the first storage battery 150 and the second storage battery 240 simultaneously supply power to the load 500.
  • step S306 when the voltage of the first line 130 is not equal to or lower than the discharge end voltage of the first storage battery 150 (step S306; NO), the simultaneous power feeding state is continued. On the other hand, when the voltage of the first line 130 becomes equal to or lower than the discharge end voltage of the first storage battery 150 (step S306; YES), the low voltage detection circuit 146 turns off the switch 145c (step S307).
  • step S309 NO
  • step S309 NO
  • step S309 NO
  • step S309 YES
  • step S310 Power supply to the single storage battery 150 is also resumed, and the first storage battery 150 is charged.
  • step S310 the power supply to the second storage battery 240 is also restarted, and the second storage battery 240 is charged. Then, the process proceeds to step S302.
  • the switch 145 may be turned off once, triggered by the first storage battery 150 being charged a predetermined amount or more.
  • the low voltage may be detected by the low voltage detection circuit, and the switch 145 may be turned on when the low voltage continues for a predetermined time or more by the delay circuit.
  • the switch 145c and the low voltage detection circuit 146 are attached between the first storage battery 150 and the first line 130.
  • the low voltage detection circuit 146 detects whether or not the voltage of the first line 130 is equal to or lower than the discharge end voltage of the first storage battery 150, and the switch 145c is turned on based on the detection result.
  • the case where / OFF is controlled has been described.
  • the low voltage detection circuit 146 functions to turn on the switch 145c when the first storage battery 150 is charged, or turns off the switch 145c when the first storage battery 150 reaches a predetermined voltage (for example, charging voltage 56.7V). It may have a function. These functions may be realized by another dedicated circuit.
  • the low voltage detection circuit 146 may turn off the switch 145c to cut off the electrical continuity from the first storage battery 150 to the output terminal 113 when no power failure is detected.
  • the power supply device switching method is attached to an existing device that supplies power from the power source to the load, and the power from the power source is loaded via the first line or another line different from the first line.
  • the power is supplied to the load via at least one of the first line and the other line.
  • the control method can supply power from the first power source to the load via the first line and can supply power from the second power source to the load via the second line.
  • a control method for a certain power supply device wherein the first line includes a first storage battery and supplies power to the load via the first line when the first line is receiving power from the first power source.
  • a third step of starting and stopping power supply from the first storage battery may be included.
  • the power supply device including the first storage battery when the power supply device including the first storage battery is added to the existing device including the lead storage battery, even if the first power supply is stopped, the power supply by the first storage battery is performed first. After that, since the power supply by the second line is started, the first storage battery can be used reliably. That is, since it is possible to supply power stably to the load from the added power supply device, the stability and durability of the power supply system can be improved. Furthermore, the first storage battery different from the lead storage battery can be stably utilized without replacing the entire facility.
  • the first power supply and the second power supply are a common power supply. After the third step, when the power supply is restored, the power supply of the power supply to the first line is stopped and the power supply from the power supply through the second line A fourth step of supplying power to the load may be included.
  • a fifth step of starting power supply of the power source to the first line when the voltage of the second line is equal to or higher than the second predetermined value or when the first predetermined time elapses may be included.
  • the power supply of the power source to the first line is started.
  • the first storage battery can be charged.
  • a sixth step of supplying power from the first line to the load and stopping power supply from the second line when the voltage of the first storage battery becomes equal to or higher than the third predetermined value may be included.
  • a single storage battery can secure a stable amount of electricity.
  • the first power source and the second power source are a common power source, and after the third step, when the power source is restored, when the voltage of the second line reaches the second predetermined value or the first predetermined time elapses, A seventh step of supplying power from the first line to the load and stopping the power supply from the second line may be included.
  • the first storage battery can be stored immediately after the power recovery, and the first storage battery can be effectively used for a short-time power failure.
  • the first power supply and the second power supply are a common power supply. After the third step, when the power supply recovers, the power is supplied from the first line to the load and the power supply from the second line is stopped. An eighth step may be included.
  • a switching method for a power supply apparatus is a switching method for a power supply apparatus that can supply power from a power source to a load via a line different from the first line, and the line is a separate line.
  • the first step is to supply power to the load via another line, and when the power supply is stopped, the power supply to the load is not interrupted and connected to the first line.
  • a second step of supplying electric power from the first storage battery to the load is supplying electric power from the first storage battery to the load.
  • the power supply device to which the first storage battery is connected when the power supply device to which the first storage battery is connected is added to the existing device, even if the power supply is stopped, the power supply by the first storage battery is performed, so the first storage battery is reliably used. can do. That is, since it is possible to stably supply power to the load from the added power supply device, the first storage battery can be used without replacing the entire facility.
  • a second storage battery that supplies power from another line is connected to the load, and when the voltage supplied to the load is equal to or lower than the first voltage value, the power supply from the second storage battery may be started.
  • the power supply from the generator may be started via another line.
  • the power supply from the generator is started via another line.
  • the power supply to the load can be continued stably.
  • the present invention can be applied to a power supply device (power supply unit) attached to an existing device.
  • Second power supply device (existing device) 201 first storage unit 202 second storage unit 205 main component 210 rack 211 door 220 switching unit 230 second AC / DC converter 240 second storage battery 270 AC output terminal 300 commercial power source 400 generator 500 loads 601, 602, 603, 604, 605 Wiring member 700, 700C Switching unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A switching method for a power supply device (100) that: is attached to an existing device (200) that supplies power from a power supply (300) to a load (500); and is capable of supplying power from the power supply to the load (500) via a first line (130) or a separate line (120) that is different from the first line (130). The switching method includes: a first step in which power is supplied to the load (500) via at least either the first line (130) or the separate line (120), in a state in which the first line (130) or the separate line (120) are receiving power from the power supply; and a second step in which, when the power supply stops, power is supplied to the load (500) from a first storage battery (150) connected to the first line (130), without interrupting power supply to the load (500).

Description

電力供給装置の切替方法、電力供給装置の制御方法及び電源システムPower supply apparatus switching method, power supply apparatus control method, and power supply system
 本発明は、電力供給装置の切替方法、電力供給装置の制御方法及び電源システムに関する。 The present invention relates to a switching method of a power supply device, a control method of the power supply device, and a power supply system.
 従来、鉛蓄電池を備えた電力供給システムが知られている(例えば特許文献1参照)。この電力供給システムでは、商用電源によって鉛蓄電池を充電しており、商用電源が停電すると、鉛蓄電池から負荷設備に対して放電を行うようになっている。 Conventionally, a power supply system including a lead storage battery is known (see, for example, Patent Document 1). In this power supply system, a lead storage battery is charged by a commercial power supply, and when the commercial power supply fails, the lead storage battery discharges the load equipment.
特開2011-083053号公報JP 2011-083053 A
 発展途上国などの、商用電源の安定供給が困難な地域では、停電が頻発するために、鉛蓄電池の充放電のサイクル数が多くなり、鉛蓄電池が早く劣化してしまう。また、当該停電の発生状況としては、短時間停電が頻発し、まれに長時間停電が発生するという状況が多い。そこで、鉛蓄電池よりもサイクル寿命が長くて急速充電可能な他の蓄電池(例えばリチウムイオン電池)を安定して活用することが望まれている。 In areas such as developing countries where stable supply of commercial power is difficult, power outages occur frequently, leading to an increase in the number of charge / discharge cycles of the lead storage battery, leading to rapid deterioration of the lead storage battery. In addition, as for the occurrence of the power outage, there are many situations in which short-time power outages frequently occur and in rare cases long-time power outages occur. Therefore, it is desired to stably utilize other storage batteries (for example, lithium ion batteries) that have a longer cycle life than lead storage batteries and can be rapidly charged.
 本発明の課題は、電力供給システムの安定性と耐久性を向上することである。 The problem of the present invention is to improve the stability and durability of the power supply system.
 本発明の一態様に係る電力供給装置の切替方法は、電源からの電力を負荷に供給する既設装置に対して取り付けられ、電源からの電力を第一ラインまたは当該第一ラインとは異なる別のラインを介して負荷に供給可能な電力供給装置の切替方法であって、第一ラインまたは別のラインが電源から電力を受電している状態では、第一ラインおよび別のラインの少なくともいずれかを介して負荷に電力を供給する第一ステップと、電源が停止すると、負荷への電力供給を途絶えさせることなく、第一ラインに接続された第一蓄電池から負荷に電力を供給する第二ステップとを含む。 The switching method of the power supply device according to one aspect of the present invention is attached to an existing device that supplies power from a power source to a load, and the power from the power source is different from the first line or the first line. A method of switching a power supply apparatus that can supply a load via a line, and when the first line or another line is receiving power from a power source, at least one of the first line and the other line is A first step of supplying power to the load via a second step of supplying power to the load from the first storage battery connected to the first line without interrupting the supply of power to the load when the power supply stops. including.
 本発明によれば、電力供給システムの安定性と耐久性を向上することができる。 According to the present invention, the stability and durability of the power supply system can be improved.
図1は、既設装置としての第二電力供給装置の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a second power supply apparatus as an existing apparatus. 図2は、第一実施形態に係る第一電力供給装置の概略構成を示す斜視図である。FIG. 2 is a perspective view showing a schematic configuration of the first power supply apparatus according to the first embodiment. 図3は、第一実施形態に係る第二電力供給装置の制御構成の概略を示すブロック図である。FIG. 3 is a block diagram illustrating an outline of a control configuration of the second power supply apparatus according to the first embodiment. 図4は、第一実施形態に係る第一電力供給装置が取り付けられた第二電力供給装置の制御構成の概略を示すブロック図である。FIG. 4 is a block diagram illustrating an outline of a control configuration of the second power supply apparatus to which the first power supply apparatus according to the first embodiment is attached. 図5は、第一実施形態に係る第二電力供給装置と、第一電力供給装置との回路構成の一例を示す回路図である。FIG. 5 is a circuit diagram illustrating an example of a circuit configuration of the second power supply device according to the first embodiment and the first power supply device. 図6は、第一実施形態に係る電力供給装置の制御方法の流れを示すフローチャートである。FIG. 6 is a flowchart showing a flow of a control method of the power supply apparatus according to the first embodiment. 図7は、図6の制御方法実行時における負荷に対する電圧変化及び各部のON/OFF切替タイミングを示すタイミングチャートである。FIG. 7 is a timing chart showing the voltage change with respect to the load and the ON / OFF switching timing of each part when the control method of FIG. 6 is executed. 図8は、変形例1に係る第一電力供給装置が取り付けられた第二電力供給装置の制御構成の概略を示すブロック図である。FIG. 8 is a block diagram illustrating an outline of a control configuration of the second power supply device to which the first power supply device according to the first modification is attached. 図9は、変形例2に係る第一電力供給装置の概略構成を示す斜視図である。FIG. 9 is a perspective view illustrating a schematic configuration of the first power supply apparatus according to the second modification. 図10は、変形例3に係る第一電力供給装置が取り付けられた第二電力供給装置の制御構成の概略を示すブロック図である。FIG. 10 is a block diagram illustrating an outline of a control configuration of the second power supply apparatus to which the first power supply apparatus according to Modification 3 is attached. 図11は、第二実施形態に係るスイッチングユニットの制御構成の概略を示すブロック図である。FIG. 11 is a block diagram illustrating an outline of a control configuration of the switching unit according to the second embodiment. 図12は、第二実施形態に係る第一電力供給装置の制御方法の流れを示すフローチャートである。FIG. 12 is a flowchart showing a flow of a control method of the first power supply apparatus according to the second embodiment. 図13は、図12の制御方法実行時における負荷電圧変化及び各部のON/OFF切替タイミングを示すタイミングチャートである。FIG. 13 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 12 is executed. 図14は、第三実施形態に係るスイッチングユニットの制御構成の概略を示すブロック図である。FIG. 14 is a block diagram showing an outline of a control configuration of the switching unit according to the third embodiment. 図15は、第三実施形態に係る第一電力供給装置の制御方法の流れを示すフローチャートである。FIG. 15 is a flowchart showing a flow of a control method of the first power supply apparatus according to the third embodiment. 図16は、図15の制御方法実行時における負荷電圧変化及び各部のON/OFF切替タイミングを示すタイミングチャートである。FIG. 16 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 15 is executed.
 本発明の一態様に係る電力供給装置の切替方法は、電源からの電力を負荷に供給する既設装置に対して取り付けられ、電源からの電力を第一ラインまたは当該第一ラインとは異なる別のラインを介して負荷に供給可能な電力供給装置の切替方法であって、第一ラインまたは別のラインが電源から電力を受電している状態では、第一ラインおよび別のラインの少なくともいずれかを介して負荷に電力を供給する第一ステップと、電源が停止すると、第一ラインに接続された第一蓄電池から負荷に電力を供給する第二ステップとを含む。 The switching method of the power supply device according to one aspect of the present invention is attached to an existing device that supplies power from a power source to a load, and the power from the power source is different from the first line or the first line. A method of switching a power supply apparatus that can supply a load via a line, and when the first line or another line is receiving power from a power source, at least one of the first line and the other line is And a second step of supplying power to the load from the first storage battery connected to the first line when the power supply is stopped.
 この構成によれば、第一蓄電池が接続された電力供給装置を既設装置に増設した場合に、電源が停止したとしても、第一蓄電池による電力供給が行われるので、第一蓄電池を確実に活用することができる。つまり、増設された電力供給装置から負荷に対して安定した電力供給が可能となるため、設備全体を置き換えなくても、第一蓄電池を活用することができる。 According to this configuration, when the power supply device to which the first storage battery is connected is added to the existing device, even if the power supply is stopped, the power supply by the first storage battery is performed, so the first storage battery is reliably used. can do. That is, since it is possible to stably supply power to the load from the added power supply device, the first storage battery can be used without replacing the entire facility.
 また、電源が停止して所定時間経過した後に、第一蓄電池から負荷に電力を供給してもよい。 Alternatively, power may be supplied from the first storage battery to the load after the power supply is stopped and a predetermined time has elapsed.
 負荷には、別のラインから電力を供給する第二蓄電池が接続されており、負荷に供給される電圧が第一電圧値以下となると、第二蓄電池からの電力供給を開始してもよい。 A second storage battery that supplies power from another line is connected to the load, and when the voltage supplied to the load is equal to or lower than the first voltage value, the power supply from the second storage battery may be started.
 この構成によれば、第二蓄電池が、第一ラインとは別のラインから負荷に電力可能に接続されていた場合、負荷に供給される電圧が第一電圧値以下となると第二蓄電池からの電力供給が開始されるので、第一蓄電池と第二蓄電池とを効率的に切り替えることができる。 According to this configuration, when the second storage battery is connected to the load from a line different from the first line so that power can be supplied, when the voltage supplied to the load becomes equal to or lower than the first voltage value, Since power supply is started, a 1st storage battery and a 2nd storage battery can be switched efficiently.
 負荷に供給される電圧が、第一電圧値よりも小さい第二電圧値以下となると、第二蓄電池からの電力供給のみとしてもよい。 When the voltage supplied to the load is equal to or lower than the second voltage value smaller than the first voltage value, only the power supply from the second storage battery may be used.
 この構成によれば、負荷に供給される電圧が、第一電圧値よりも小さい第二電圧値以下となると、第二蓄電池からの電力供給のみとなるので、第一蓄電池と第二蓄電池とをスムーズに切り替えることができる。 According to this configuration, when the voltage supplied to the load is equal to or lower than the second voltage value smaller than the first voltage value, only the power supply from the second storage battery is performed. You can switch smoothly.
 負荷に供給される電圧が、第二電圧値よりも小さい第三電圧値以下となると、別のラインを介して発電機からの電力供給を開始してもよい。 When the voltage supplied to the load falls below the third voltage value smaller than the second voltage value, the power supply from the generator may be started via another line.
 この構成によれば、負荷に供給される電圧が、第二電圧値よりも小さい第三電圧値以下となると、別のラインを介して発電機からの電力供給を開始されるので、停電時における負荷への電力供給を安定して継続することができる。 According to this configuration, when the voltage supplied to the load is equal to or lower than the third voltage value smaller than the second voltage value, the power supply from the generator is started via another line. The power supply to the load can be continued stably.
 本発明の一態様に係る電力供給装置の制御方法は、第一電源からの電力を第一ラインを介して負荷に供給可能であるとともに、第二電源からの電力を第二ラインを介して負荷に供給可能である電力供給装置の制御方法であって、第一ラインは、第一蓄電池を備え、第一ラインが第一電源から電力を受電している状態では、第一ラインを介して負荷に電力を供給する第一ステップと、第一電源が停止すると、第一蓄電池から負荷に電力を供給する第二ステップと、第一蓄電池の電圧が第一所定値以下となると、第二ラインからの電力供給を開始するとともに、第一蓄電池からの電力供給を停止する第三ステップとを含む。 The control method of the power supply device according to one aspect of the present invention is capable of supplying power from the first power source to the load via the first line and loading power from the second power source via the second line. The first line includes a first storage battery, and the first line receives power from the first power source, and the load is passed through the first line. When the first power supply stops, the second step of supplying power from the first storage battery to the load, and when the voltage of the first storage battery is equal to or lower than the first predetermined value, And a third step of stopping the power supply from the first storage battery.
 この構成によれば、鉛蓄電池を備えた既設装置に、第一蓄電池を備えた電力供給装置を増設した場合に、第一電源が停止したとしても、先に第一蓄電池による電力供給が行われた後に第二ラインによる電力供給が開始されるので、第一蓄電池を確実に活用することができる。つまり、増設された電力供給装置から負荷に対して安定した電力供給が可能となるため、電力供給システムの安定性と耐久性を向上させることができる。さらに、設備全体を置き換えなくても、鉛蓄電池とは異なる第一蓄電池を安定して活用することができる。 According to this configuration, when the power supply device including the first storage battery is added to the existing device including the lead storage battery, even if the first power supply is stopped, the power supply by the first storage battery is performed first. After that, since the power supply by the second line is started, the first storage battery can be used reliably. That is, since it is possible to supply power stably to the load from the added power supply device, the stability and durability of the power supply system can be improved. Furthermore, the first storage battery different from the lead storage battery can be stably utilized without replacing the entire facility.
 第一電源と第二電源とは共通の電源であり、第三ステップの後、電源が復電した際に、第一ラインに対する電源の電力供給を停止するとともに、電源から第二ラインを介して負荷に電力を供給する第四ステップを含んでもよい。 The first power supply and the second power supply are a common power supply. After the third step, when the power supply is restored, the power supply of the power supply to the first line is stopped and the power supply from the power supply through the second line A fourth step of supplying power to the load may be included.
 この構成によれば、電源が復電した際に、第一ラインに対する電源の電力供給を停止するとともに、電源から第二ラインを介して負荷に電力を供給するので、復電直後においては第一蓄電池の蓄電は行われない。これにより、復電直後には、電源による第一蓄電池の蓄電と、負荷に対する電力供給とが同時に行われないことになり、入力容量オーバーを抑制することができる。 According to this configuration, when the power source is restored, the power supply of the power source to the first line is stopped and the power is supplied from the power source to the load via the second line. The storage battery is not charged. Thereby, immediately after power recovery, the storage of the first storage battery by the power source and the power supply to the load are not performed at the same time, and it is possible to suppress the input capacity over.
 第二ラインの電圧が第二所定値以上であるか、または第一所定時間経過すると、第一ラインに対する電源の電力供給を開始する第五ステップを含んでもよい。 A fifth step of starting power supply of the power source to the first line when the voltage of the second line is equal to or higher than the second predetermined value or when the first predetermined time elapses may be included.
 この構成によれば、第二ラインの電圧が第二所定値以上であるか、または第一所定時間経過すると、第一ラインに対する電源の電力供給を開始するので、第二ラインが安定した後に、第一蓄電池の蓄電を行うことができる。 According to this configuration, when the voltage of the second line is equal to or higher than the second predetermined value, or when the first predetermined time elapses, the power supply of the power source to the first line is started. The first storage battery can be charged.
 第一蓄電池の電圧が第三所定値以上になると、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止する第六ステップを含んでもよい。 A sixth step of supplying power from the first line to the load and stopping power supply from the second line when the voltage of the first storage battery becomes equal to or higher than the third predetermined value may be included.
 この構成によれば、第一蓄電池の電圧が第三所定値以上になると、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止するので、復電後においても第一蓄電池が安定した蓄電量を確保することができる。 According to this configuration, when the voltage of the first storage battery becomes equal to or higher than the third predetermined value, the power is supplied from the first line to the load and the power supply from the second line is stopped. A single storage battery can secure a stable amount of electricity.
 第一電源と第二電源とは共通の電源であり、第三ステップの後、電源が復電した際に、第二ラインの電圧が第二所定値に達するか、第一所定時間経過すると、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止する第七ステップを含んでもよい。 The first power source and the second power source are a common power source, and after the third step, when the power source is restored, when the voltage of the second line reaches the second predetermined value or the first predetermined time elapses, A seventh step of supplying power from the first line to the load and stopping the power supply from the second line may be included.
 この構成によれば、電源が復電した際に、第二ラインの電圧が第二所定値に達するか、第一所定時間経過すると、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止するので、復電後、すぐに第一蓄電池に蓄電させるとともに、第一蓄電池を短時間停電対応で効果的に使用することができる。 According to this configuration, when the power supply recovers, when the voltage of the second line reaches the second predetermined value or when the first predetermined time elapses, power is supplied from the first line to the load, and the second line Since the power supply from is stopped, the first storage battery can be stored immediately after the power recovery, and the first storage battery can be effectively used for a short-time power failure.
 第一電源と第二電源とは共通の電源であり、第三ステップの後、電源が復電した際に、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止する第八ステップを含んでもよい。 The first power supply and the second power supply are a common power supply. After the third step, when the power supply recovers, the power is supplied from the first line to the load and the power supply from the second line is stopped. An eighth step may be included.
 この構成によれば、電源が復電した際に、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止するので、制御内容を簡素化することができる。 According to this configuration, when power is restored, power is supplied from the first line to the load and power supply from the second line is stopped, so that the control content can be simplified.
 本発明の一態様に係る電源システムは、電源からの電力を負荷に供給する既設装置と、既設装置に取り付けられて、電源からの電力を第一ラインまたは当該第一ラインとは異なる別のラインを介して前記負荷に供給可能な電力供給装置とを備え、第一ラインには第一蓄電池が接続されていて、既設装置には、別のラインを介して負荷に電力を供給する第二蓄電池が設けられていて、電力供給装置は、第一ラインまたは別のラインが電源から電力を受電している状態では、第一ラインおよび別のラインの少なくともいずれかを介して負荷に電力を供給し、電源が停止すると、第一ラインに接続された第一蓄電池から負荷に電力を供給する。 A power supply system according to an aspect of the present invention includes an existing device that supplies power from a power supply to a load, and a first line that is attached to the existing device and that is different from the first line. A second storage battery that supplies power to the load via another line, the first storage battery is connected to the first line, and the existing apparatus is connected to the first storage battery. And the power supply device supplies power to the load via at least one of the first line and another line when the first line or another line is receiving power from the power source. When the power supply is stopped, power is supplied to the load from the first storage battery connected to the first line.
 この構成によれば、第一蓄電池が接続された電力供給装置を既設装置に増設した場合に、電源が停止したとしても、第一蓄電池による電力供給が行われるので、第一蓄電池を確実に活用することができる。つまり、増設された電力供給装置から負荷に対して安定した電力供給が可能となるため、設備全体を置き換えなくても、第一蓄電池を活用することができる。 According to this configuration, when the power supply device to which the first storage battery is connected is added to the existing device, even if the power supply is stopped, the power supply by the first storage battery is performed, so the first storage battery is reliably used. can do. That is, since it is possible to stably supply power to the load from the added power supply device, the first storage battery can be used without replacing the entire facility.
 以下、図面を参照しながら、本発明の実施の形態における電力供給装置について説明する。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。 Hereinafter, a power supply apparatus according to an embodiment of the present invention will be described with reference to the drawings. Each figure is a schematic diagram and is not necessarily illustrated exactly.
 また、以下で説明する実施の形態は、本発明の一具体例を示すものである。以下の実施の形態で示される形状、材料、構成要素、構成要素の配置位置、接続形態、ステップ及びステップの順序などは一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 The embodiment described below shows a specific example of the present invention. The shapes, materials, constituent elements, arrangement positions of the constituent elements, connection forms, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 まず、第一実施形態に係る第一電力供給装置100が取り付けられる第二電力供給装置200について説明する。 First, the second power supply apparatus 200 to which the first power supply apparatus 100 according to the first embodiment is attached will be described.
 図1は、既設装置としての第二電力供給装置200の概略構成を示す斜視図である。 FIG. 1 is a perspective view showing a schematic configuration of a second power supply apparatus 200 as an existing apparatus.
 図1に示すように、第二電力供給装置200は、例えば19インチラックなどのラック210を備え、当該ラック210内に主要構成部205が搭載されている。 As shown in FIG. 1, the second power supply apparatus 200 includes a rack 210 such as a 19-inch rack, for example, and a main component 205 is mounted in the rack 210.
 ラック210の前面には、扉211が取り付けられており、通常時に扉211が閉ざされ、メンテナンス時などには扉211が開かれる。なお、この扉211はラック210に設けられていなくてもよい。 The door 211 is attached to the front surface of the rack 210. The door 211 is closed during normal operation, and the door 211 is opened during maintenance. The door 211 may not be provided on the rack 210.
 ラック210内には、第二電力供給装置200の主要構成部205が収納される第一収納部201と、第一電力供給装置100が収納される第二収納部202とが設けられている。なお、図1においては、第一収納部201と第二収納部202との内部構造の図示は省略している。また、第二収納部202は、第一収納部201の上方に配置されているが、第一収納部201と第二収納部202との位置関係は、上下が逆であってもよい。第二収納部202は、第一電力供給装置100専用の収納部としてラック210に予め設けられていてもよいし、ラック210内にある空間を必要に応じて第二収納部202としてもよい。ラック210内を整理することで空間をあけ、その空間を第二収納部202として使用してもよい。第二収納部202は、ラック210とは別のラックに収納されていてもよい。 In the rack 210, a first storage unit 201 that stores the main component 205 of the second power supply device 200 and a second storage unit 202 that stores the first power supply device 100 are provided. In FIG. 1, the internal structures of the first storage unit 201 and the second storage unit 202 are not shown. The second storage unit 202 is disposed above the first storage unit 201, but the positional relationship between the first storage unit 201 and the second storage unit 202 may be upside down. The second storage unit 202 may be provided in the rack 210 in advance as a storage unit dedicated to the first power supply apparatus 100, or a space in the rack 210 may be used as the second storage unit 202 as necessary. A space may be opened by organizing the inside of the rack 210, and the space may be used as the second storage unit 202. The second storage unit 202 may be stored in a rack different from the rack 210.
 図2は、第一電力供給装置100の概略構成を示す斜視図である。 FIG. 2 is a perspective view showing a schematic configuration of the first power supply apparatus 100.
 図2に示すように、第一電力供給装置100は、略直方体状の外装体101を備えており、この外装体101内に主要構成部が収納されることでユニット化されている。つまり、第一電力供給装置100は、電力供給ユニットである。ここでいう「ユニット化」とは、一体化とも言え、構成部品(コンポーネント)を接続してアッセンブリーを形成することを意味する。第一電力供給装置100は、例えば既設の第二電力供給装置200に対して増設されることで、第二電力供給装置200全体の電気容量を高めることに用いられる。 As shown in FIG. 2, the first power supply apparatus 100 includes a substantially rectangular parallelepiped exterior body 101, and is unitized by housing main components in the exterior body 101. That is, the first power supply device 100 is a power supply unit. The term “unitization” as used herein can be said to be integration, and means that components are connected to form an assembly. The first power supply device 100 is used to increase the electric capacity of the second power supply device 200 as a whole, for example, by being added to the existing second power supply device 200.
 外装体101は、ラック210の第二収納部202に対してスライド可能に収納される。外装体101は、複数の外面を有しており、その複数の外面のうち、一つの外面(前面)には、当該外装体101をラック210に対して着脱するための一対の取っ手102が設けられている。また、外装体101の前面における一対の取っ手102の間には、第一電力供給装置100の主要構成部と、第二電力供給装置200の主要構成部205とを電気的に接続するための端子群110が設けられている。端子群110には、後述する直流入力端子111、交流入力端子112及び出力端子113が含まれている。このように、外装体101の一つの外面に直流入力端子111、交流入力端子112及び出力端子113が設けられているので、第一電力供給装置100を第二電力供給装置200に後付けする際に、直流入力端子111、交流入力端子112及び出力端子113に対する配線作業を容易に行うことが可能となる。 The exterior body 101 is slidably stored in the second storage portion 202 of the rack 210. The exterior body 101 has a plurality of outer surfaces, and a pair of handles 102 for attaching / detaching the exterior body 101 to / from the rack 210 is provided on one outer surface (front surface) of the plurality of outer surfaces. It has been. In addition, between the pair of handles 102 on the front surface of the exterior body 101, terminals for electrically connecting the main components of the first power supply device 100 and the main components 205 of the second power supply device 200. A group 110 is provided. The terminal group 110 includes a DC input terminal 111, an AC input terminal 112, and an output terminal 113 which will be described later. As described above, since the DC input terminal 111, the AC input terminal 112, and the output terminal 113 are provided on one outer surface of the exterior body 101, when the first power supply device 100 is retrofitted to the second power supply device 200. In addition, wiring work for the DC input terminal 111, the AC input terminal 112, and the output terminal 113 can be easily performed.
 次に、第二電力供給装置200及び第一電力供給装置100のそれぞれの制御構成の概略について説明する。 Next, the outline of each control configuration of the second power supply apparatus 200 and the first power supply apparatus 100 will be described.
 まず、第二電力供給装置200の制御構成の概略について説明する。 First, the outline of the control configuration of the second power supply apparatus 200 will be described.
 図3は、第二電力供給装置200の制御構成の概略を示すブロック図である。図3は、第一電力供給装置100が取り付けられる前の状態を示している。 FIG. 3 is a block diagram showing an outline of the control configuration of the second power supply apparatus 200. FIG. 3 shows a state before the first power supply device 100 is attached.
 図3に示すように、第二電力供給装置200は、第二AC/DCコンバータ230と、第二蓄電池240と、端子250、251とを備える。 As shown in FIG. 3, the second power supply apparatus 200 includes a second AC / DC converter 230, a second storage battery 240, and terminals 250 and 251.
 第二AC/DCコンバータ230には、端子251を介して、第二電力供給装置200の外部にある切替部220が電気的に接続されている。切替部220は、商用電源300と発電機400とのそれぞれから供給された交流電力を切り替えて下流に出力する回路である。 The second AC / DC converter 230 is electrically connected to a switching unit 220 outside the second power supply apparatus 200 via a terminal 251. The switching unit 220 is a circuit that switches AC power supplied from each of the commercial power supply 300 and the generator 400 and outputs it downstream.
 第二AC/DCコンバータ230は、交流を直流に変換する変換装置であり、切替部220を介して供給された交流電力を第二直流電力に変換する。第二AC/DCコンバータ230は、変換した第二直流電力を第二蓄電池240及び負荷500に供給する。 The second AC / DC converter 230 is a conversion device that converts alternating current into direct current, and converts alternating current power supplied via the switching unit 220 into second direct current power. The second AC / DC converter 230 supplies the converted second DC power to the second storage battery 240 and the load 500.
 第二蓄電池240は、例えば鉛蓄電池などの蓄電池であり、供給された第二直流電力により蓄電するとともに、放電することにより端子250を介して負荷500に直流電力を供給する。 The second storage battery 240 is a storage battery such as a lead storage battery, for example. The second storage battery 240 stores power using the supplied second DC power, and supplies DC power to the load 500 via the terminal 250 by discharging.
 図4は、第一電力供給装置100が取り付けられた第二電力供給装置200の制御構成の概略を示すブロック図である。図5は、第一電力供給装置100と、第二電力供給装置200との回路構成の一例を示す回路図である。 FIG. 4 is a block diagram showing an outline of a control configuration of the second power supply apparatus 200 to which the first power supply apparatus 100 is attached. FIG. 5 is a circuit diagram illustrating an example of a circuit configuration of the first power supply device 100 and the second power supply device 200.
 ここで、既設の第二電力供給装置200に対して、第一電力供給装置100を取り付ける作業について説明する。 Here, the operation of attaching the first power supply device 100 to the existing second power supply device 200 will be described.
 取付作業時においては、商用電源300及び発電機400を停止させている。また、負荷500の電源も切っている。 During commercial installation, the commercial power supply 300 and the generator 400 are stopped. Also, the load 500 is turned off.
 まず、作業者は、端子250と負荷500とを電気的に接続する配線部材603を、端子250から取り外す。そして、作業者は、取り外した配線部材603を第一電力供給装置100の出力端子113に接続する。次いで、作業者は、第一電力供給装置100の直流入力端子111と、第二電力供給装置200の端子250とを配線部材601で接続する。作業者は、第一電力供給装置100の交流入力端子112と、第二電力供給装置200の端子251とを配線部材602で接続する。これにより、第二電力供給装置200に対して、第一電力供給装置100が取り付けられ、第二電力供給装置200からの直流電力が、直流入力端子111を介して第一電力供給装置100に供給される。 First, the worker removes the wiring member 603 that electrically connects the terminal 250 and the load 500 from the terminal 250. Then, the worker connects the removed wiring member 603 to the output terminal 113 of the first power supply apparatus 100. Next, the worker connects the DC input terminal 111 of the first power supply device 100 and the terminal 250 of the second power supply device 200 with the wiring member 601. The worker connects the AC input terminal 112 of the first power supply device 100 and the terminal 251 of the second power supply device 200 with the wiring member 602. Thus, the first power supply device 100 is attached to the second power supply device 200, and the DC power from the second power supply device 200 is supplied to the first power supply device 100 via the DC input terminal 111. Is done.
 次に、第一電力供給装置100の制御構成の概略について説明する。 Next, an outline of the control configuration of the first power supply apparatus 100 will be described.
 第一電力供給装置100は、直流入力端子111と、交流入力端子112と、出力端子113と、第一ライン130と、第二ライン120と、切替制御部140とを備える。 The first power supply apparatus 100 includes a DC input terminal 111, an AC input terminal 112, an output terminal 113, a first line 130, a second line 120, and a switching control unit 140.
 直流入力端子111は、配線部材601を介して端子250に電気的に接続される端子である。これにより、端子250から出力された第二直流電力は、直流入力端子111を介して第二ライン120に供給される。 The DC input terminal 111 is a terminal that is electrically connected to the terminal 250 via the wiring member 601. Thereby, the second DC power output from the terminal 250 is supplied to the second line 120 via the DC input terminal 111.
 交流入力端子112は、配線部材602を介して端子251に電気的に接続される端子である。これにより、第二電力供給装置200の端子251から交流電力が分岐され、交流入力端子112を介して第一ライン130に供給される。なお、交流入力端子112としては、既設装置である第二電力供給装置200に対して電気的に接続可能であるものを指すが、商用電源300或いは発電機400に対して電気的に接続可能であるものも含む。 The AC input terminal 112 is a terminal that is electrically connected to the terminal 251 through the wiring member 602. Thereby, AC power is branched from the terminal 251 of the second power supply apparatus 200 and supplied to the first line 130 via the AC input terminal 112. The AC input terminal 112 is one that can be electrically connected to the second power supply device 200 that is an existing device, but can be electrically connected to the commercial power supply 300 or the generator 400. Some are included.
 出力端子113には、第二ライン120と第一ライン130とが並列に接続されており、第二ライン120と第一ライン130とのそれぞれから供給された直流電力が負荷500に対して供給される。 A second line 120 and a first line 130 are connected in parallel to the output terminal 113, and DC power supplied from each of the second line 120 and the first line 130 is supplied to the load 500. The
 直流入力端子111、交流入力端子112及び出力端子113は端子群110に含まれる(図2参照)。 DC input terminal 111, AC input terminal 112, and output terminal 113 are included in terminal group 110 (see FIG. 2).
 第二ライン120は、直流入力端子111から入力された第二直流電力を出力端子113まで供給するための電力系統である。第二ライン120には、第三電圧センサ121と、第二スイッチ141と、第二ダイオード122とが設けられている。具体的には、第二スイッチ141と、第二ダイオード122とは、直流入力端子111及び出力端子113に対して直列で接続されており、第三電圧センサ121は、第二ライン120における直流入力端子111の直下流に接続されている。 The second line 120 is a power system for supplying the second DC power input from the DC input terminal 111 to the output terminal 113. In the second line 120, a third voltage sensor 121, a second switch 141, and a second diode 122 are provided. Specifically, the second switch 141 and the second diode 122 are connected in series to the DC input terminal 111 and the output terminal 113, and the third voltage sensor 121 is a DC input in the second line 120. It is connected directly downstream of the terminal 111.
 第三電圧センサ121は、第二ライン120の電圧を検出する電圧センサである。 The third voltage sensor 121 is a voltage sensor that detects the voltage of the second line 120.
 第二スイッチ141は、第二ライン120の電力のON/OFFを切り替えるスイッチである。言い換えると、第二スイッチ141は、第二ライン120を遮断するスイッチである。 The second switch 141 is a switch for switching on / off the power of the second line 120. In other words, the second switch 141 is a switch that blocks the second line 120.
 第二ダイオード122は、第二ライン120のマイナス側に配置され、直流入力端子111(マイナス端子)に向かって電流が流れる向きに配置される素子である。第二ダイオード122により、第一ライン130を流れる電流が第二ライン120に逆流することが防止される。 The second diode 122 is an element arranged on the negative side of the second line 120 and arranged in a direction in which a current flows toward the DC input terminal 111 (minus terminal). The second diode 122 prevents the current flowing through the first line 130 from flowing back into the second line 120.
 第一ライン130は、交流入力端子112から入力された交流電力を第一直流電力に変換して出力端子113まで供給するための電力系統である。 The first line 130 is a power system for converting AC power input from the AC input terminal 112 into first DC power and supplying it to the output terminal 113.
 第一ライン130には、第一電圧センサ132と、第二電圧センサ131と、第一AC/DCコンバータ133と、第一スイッチ142及び第三スイッチ143と、第一ダイオード134と、第一蓄電池150と、切替制御部140とが設けられている。 The first line 130 includes a first voltage sensor 132, a second voltage sensor 131, a first AC / DC converter 133, a first switch 142 and a third switch 143, a first diode 134, and a first storage battery. 150 and a switching control unit 140 are provided.
 第一AC/DCコンバータ133は、交流を直流に変換する変換装置であり、第一AC/DCコンバータ133の下流には、第一蓄電池150が接続されている。第一蓄電池150の接続位置と、第一ダイオード134との間には、第一ライン130から負荷500への第二直流電力を遮断する第一スイッチ142が設けられている。第一AC/DCコンバータ133の上流には、第一ライン130への交流電力供給を遮断する第三スイッチ143が設けられている。 The first AC / DC converter 133 is a conversion device that converts alternating current into direct current, and a first storage battery 150 is connected downstream of the first AC / DC converter 133. Between the connection position of the 1st storage battery 150 and the 1st diode 134, the 1st switch 142 which interrupts | blocks the 2nd DC power from the 1st line 130 to the load 500 is provided. A third switch 143 that cuts off the AC power supply to the first line 130 is provided upstream of the first AC / DC converter 133.
 以上により、第一ライン130と第二ライン120とが負荷500に対して並列な電力供給ラインとなる。 As described above, the first line 130 and the second line 120 become a power supply line parallel to the load 500.
 第一ライン130は、第一電圧センサ132と、第二電圧センサ131とを有している。第二電圧センサ131は、第一ライン130における交流入力端子112と、第三スイッチ143との間に接続され、第一電圧センサ132は、第一AC/DCコンバータ133と第二スイッチ141との間に接続されている。 The first line 130 includes a first voltage sensor 132 and a second voltage sensor 131. The second voltage sensor 131 is connected between the AC input terminal 112 in the first line 130 and the third switch 143, and the first voltage sensor 132 is connected between the first AC / DC converter 133 and the second switch 141. Connected between.
 第二電圧センサ131は、交流入力端子112から入力された交流電力の電圧を検出する電圧センサである。 The second voltage sensor 131 is a voltage sensor that detects the voltage of the AC power input from the AC input terminal 112.
 第一電圧センサ132は、第一ライン130の直流側(第一AC/DCコンバータ133の下流側)の電圧を検出する電圧センサである。第一電圧センサ132が検出する電圧は、第一蓄電池150の電圧でもある。 The first voltage sensor 132 is a voltage sensor that detects the voltage on the direct current side of the first line 130 (downstream side of the first AC / DC converter 133). The voltage detected by the first voltage sensor 132 is also the voltage of the first storage battery 150.
 第一AC/DCコンバータ133は、第一ライン130を流れる交流電力を第一直流電力に変換する変換装置である。 The first AC / DC converter 133 is a conversion device that converts AC power flowing through the first line 130 into first DC power.
 第一蓄電池150は、リチウムイオン電池などの第一ライン用蓄電池であり、供給された第一直流電力により蓄電されるとともに、放電することで直流電力を負荷500に供給する。第一蓄電池150は、図5に示すように、端子150a、150bを有しており、この端子150a、150bを介して第一ライン130に着脱自在に接続されている。これにより、第一蓄電池150を交換することができる。なお、第一ライン130における端子150a、150bが接続される箇所は、第一蓄電池150が接続される接続部180である。 The first storage battery 150 is a storage battery for the first line such as a lithium ion battery, and is stored with the supplied first DC power, and supplies DC power to the load 500 by discharging. As shown in FIG. 5, the first storage battery 150 has terminals 150a and 150b, and is detachably connected to the first line 130 via the terminals 150a and 150b. Thereby, the 1st storage battery 150 is exchangeable. In addition, the location where the terminals 150a and 150b in the first line 130 are connected is a connecting portion 180 to which the first storage battery 150 is connected.
 ここで、既設装置である第二電力供給装置200の第二蓄電池240は、想定される長時間停電時のバックアップに対応できるように比較的、容量の大きな電池となっている。第一蓄電池150は、商用電源300の短時間停電時のバックアップ用に電池容量が設定されている。このため、第一蓄電池150の容量は第二蓄電池240の容量よりも小さい。リチウムイオン電池と鉛蓄電池とでは、同容量の場合、リチウムイオン電池の方が小型で軽量である。また、電池容量が小さいほど小型で軽量となる。したがって、第一蓄電池150がリチウムイオン電池で、第二蓄電池240が鉛蓄電池の場合、第一蓄電池150が占める体積は第二蓄電池240に比較して小さくすることができる。第一蓄電池150の容量を小さくできると、第一蓄電池150の充電電流も小さく設定できる。これにより、第一AC/DCコンバータ133の容量も小さくできる。以上のことにより、第一電力供給装置100のコストを抑えつつ、第一電力供給装置100及び第二電力供給装置200を長期間安定して稼働させることできるようになる。 Here, the second storage battery 240 of the second power supply apparatus 200, which is an existing apparatus, is a battery having a relatively large capacity so that it can cope with a backup during a long-time power outage. The battery capacity of the first storage battery 150 is set for backup when the commercial power supply 300 is in a short power failure. For this reason, the capacity of the first storage battery 150 is smaller than the capacity of the second storage battery 240. In the case of the same capacity between the lithium ion battery and the lead storage battery, the lithium ion battery is smaller and lighter. Also, the smaller the battery capacity, the smaller and lighter. Therefore, when the 1st storage battery 150 is a lithium ion battery and the 2nd storage battery 240 is a lead storage battery, the volume which the 1st storage battery 150 occupies can be made small compared with the 2nd storage battery 240. If the capacity | capacitance of the 1st storage battery 150 can be made small, the charging current of the 1st storage battery 150 can also be set small. Thereby, the capacity | capacitance of the 1st AC / DC converter 133 can also be made small. As described above, the first power supply device 100 and the second power supply device 200 can be stably operated for a long time while suppressing the cost of the first power supply device 100.
 図4及び図5に示すように、第一スイッチ142は、第一蓄電池150の接続位置よりも下流に接続されて、第一ライン130の電力のON/OFFを切り替えるスイッチである。 As shown in FIGS. 4 and 5, the first switch 142 is a switch that is connected downstream of the connection position of the first storage battery 150 and switches the power of the first line 130 ON / OFF.
 第三スイッチ143は、第二AC/DCコンバータ133の直上流に接続されて、第一ライン130の電力のON/OFFを切り替えるスイッチである。 The third switch 143 is a switch that is connected immediately upstream of the second AC / DC converter 133 and switches the power of the first line 130 ON / OFF.
 言い換えると、第一スイッチ142及び第三スイッチ143は、第一ライン130を遮断するスイッチである。 In other words, the first switch 142 and the third switch 143 are switches that block the first line 130.
 第一ダイオード134は、第一ライン130のマイナス側に配置され、直流入力端子111(マイナス端子)に向かって電流が流れる向きに配置される素子である。第一ダイオード134により、第二ライン120を流れる電流が第一ライン130に逆流することが防止される。 The first diode 134 is an element arranged on the negative side of the first line 130 and arranged in a direction in which current flows toward the DC input terminal 111 (minus terminal). The first diode 134 prevents the current flowing through the second line 120 from flowing back into the first line 130.
 切替制御部140は、第一電圧センサ132、第二電圧センサ131及び第三電圧センサ121の検出結果に基づいて、負荷500に対する供給電力を、第二直流電力、及び第一直流電力の中で切り替える制御を行う。具体的には、切替制御部140は、第一電圧センサ132、第二電圧センサ131及び第三電圧センサ121の検出結果に基づいて、第一スイッチ142と、第二スイッチ141と、第三スイッチ143とのそれぞれのON/OFFを切り替える。これにより、切替制御部140は、負荷500に対する供給電力を、第一直流電力及び第二直流電力の中で切り替える。 Based on the detection results of the first voltage sensor 132, the second voltage sensor 131, and the third voltage sensor 121, the switching control unit 140 converts the supply power to the load 500 among the second DC power and the first DC power. Perform switching control. Specifically, the switching control unit 140 is based on the detection results of the first voltage sensor 132, the second voltage sensor 131, and the third voltage sensor 121, and the first switch 142, the second switch 141, and the third switch. 143 and ON / OFF are switched. Thereby, the switching control unit 140 switches the power supplied to the load 500 between the first DC power and the second DC power.
 次に、第一電力供給装置100の制御方法について説明する。 Next, a method for controlling the first power supply apparatus 100 will be described.
 図6は、第一電力供給装置100の制御方法の流れを示すフローチャートである。図7は図6の制御方法実行時における負荷電圧変化及び各部のON/OFF切替タイミングを示すタイミングチャートである。 FIG. 6 is a flowchart showing the flow of the control method of the first power supply apparatus 100. FIG. 7 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 6 is executed.
 図6において、第一スイッチ142、第二スイッチ141及び第三スイッチ143のON/OFFを切り替えるステップがあるが、そのステップでは、それ以前のステップでのON/OFFが継続している場合も含む。 In FIG. 6, there is a step of switching ON / OFF of the first switch 142, the second switch 141, and the third switch 143, but this step includes the case where ON / OFF in the previous step is continued. .
 ここでは、商用電源300が停電になった場合に、既設の第二電力供給装置200の切替部220が第一電力供給装置100に対する電力供給元を商用電源300から発電機400に切り替える場合を例示する。 Here, a case where the switching unit 220 of the existing second power supply apparatus 200 switches the power supply source for the first power supply apparatus 100 from the commercial power supply 300 to the generator 400 when the commercial power supply 300 has a power failure is illustrated. To do.
 まず、第一電力供給装置100においては、商用電源300から受電中であって、第一蓄電池150が満充電、第二蓄電池240が満充電である場合に、稼働すると、切替制御部140は、第一スイッチ142をONとし、第二スイッチ141をOFFとし、第三スイッチ143をONとする(ステップS101)。これは図7に示す「商用電源による給電」期間である。 First, when the first power supply device 100 is receiving power from the commercial power supply 300 and the first storage battery 150 is fully charged and the second storage battery 240 is fully charged, the switching control unit 140 The first switch 142 is turned on, the second switch 141 is turned off, and the third switch 143 is turned on (step S101). This is the “power supply by commercial power supply” period shown in FIG.
 具体的には、商用電源300から供給された交流電力の一部は、第二AC/DCコンバータ230によって第二直流電力に変換されて、端子250及び直流入力端子111を介して第二ライン120に供給される。また、第二直流電力は第二蓄電池240に供給されるため、第二蓄電池240が蓄電されることになる。第二スイッチ141がOFFである期間は、第二直流電力は負荷500に供給されない。 Specifically, a part of the AC power supplied from the commercial power source 300 is converted into second DC power by the second AC / DC converter 230, and the second line 120 is connected via the terminal 250 and the DC input terminal 111. To be supplied. Further, since the second DC power is supplied to the second storage battery 240, the second storage battery 240 is charged. During the period when the second switch 141 is OFF, the second DC power is not supplied to the load 500.
 商用電源300から供給された交流電力のその他の一部は、第一スイッチ142及び第三スイッチ143がONであるために、交流入力端子112を介して第一ライン130に供給される。このとき、第一ライン130では、交流電力が第一AC/DCコンバータ133によって第一直流電力に変換されて、当該第一直流電力が第一スイッチ142及び第一ダイオード134及び出力端子113を介して負荷500に供給される。同時に第一直流電力は、第一蓄電池150に供給されるので、第一蓄電池150が蓄電されることになる。 Other part of the AC power supplied from the commercial power source 300 is supplied to the first line 130 via the AC input terminal 112 because the first switch 142 and the third switch 143 are ON. At this time, in the first line 130, AC power is converted into first DC power by the first AC / DC converter 133, and the first DC power passes through the first switch 142, the first diode 134, and the output terminal 113. To the load 500. At the same time, the first DC power is supplied to the first storage battery 150, so that the first storage battery 150 is charged.
 つまり、このステップS101は、第一ライン130が商用電源300から交流電力を受電している状態では、第一ライン130を介して負荷500に電力を供給する第一ステップである。 That is, this step S101 is a first step of supplying power to the load 500 via the first line 130 when the first line 130 is receiving AC power from the commercial power supply 300.
 次いで、切替制御部140は、第二電圧センサ131の検出結果を基に、商用電源300が停電か否かを判断する(ステップS102)。停電でない場合(NO)には、その状態が継続される。他方、停電である場合(YES)には、第一蓄電池150が直流電力を放電する(ステップS103)。これにより、第一ライン130には、第一蓄電池150から直流電力が流れ、負荷500に対して直流電力が供給される。これは図7に示す「第一蓄電池による給電(第一状態)」期間である。ここで第一状態とは、第一蓄電池150からの直流電力が負荷500に供給されている状態である。 Next, the switching control unit 140 determines whether or not the commercial power supply 300 is out of power based on the detection result of the second voltage sensor 131 (step S102). If it is not a power failure (NO), the state is continued. On the other hand, if it is a power failure (YES), the first storage battery 150 discharges DC power (step S103). Thereby, DC power flows from the first storage battery 150 to the first line 130, and DC power is supplied to the load 500. This is the “power supply by the first storage battery (first state)” period shown in FIG. 7. Here, the first state is a state in which DC power from the first storage battery 150 is supplied to the load 500.
 つまり、このステップS102、S103が、商用電源300が停止すると第一蓄電池150から負荷500に電力を供給する第二ステップである。 That is, these steps S102 and S103 are the second steps for supplying power from the first storage battery 150 to the load 500 when the commercial power supply 300 stops.
 次いで、切替制御部140は、第一電圧センサ132の検出結果を基に、第一蓄電池150が第一所定値以下であるか否かを判断する(ステップS104)。ここで第一蓄電池150がリチウムイオン電池の場合、第一蓄電池150の第一所定値は例えば42.0Vである。この第一所定値は、13セルのリチウムイオン電池の場合である。第一所定値は、第一蓄電池150の種類、セル数などによって異なる値である。 Next, the switching control unit 140 determines whether or not the first storage battery 150 is equal to or lower than the first predetermined value based on the detection result of the first voltage sensor 132 (step S104). Here, when the first storage battery 150 is a lithium ion battery, the first predetermined value of the first storage battery 150 is, for example, 42.0V. This first predetermined value is for a 13-cell lithium ion battery. The first predetermined value is a value that varies depending on the type of first storage battery 150, the number of cells, and the like.
 そして、第一蓄電池150が第一所定値よりも大きい電圧である場合(NO)には、その状態が継続される。他方、第一蓄電池150が第一所定値以下の電圧となった場合(YES)には、切替制御部140は、第一スイッチ142をONとし、第二スイッチ141をONとする(ステップS105)。これにより、第二ライン120の第二蓄電池240から負荷500に直流電力が供給される。これは図7に示す「第二蓄電池による給電(第二状態)」期間の始点に相当する。ここで、第二状態とは、第二ライン120からの直流電力が負荷500に供給されている状態である。 And when the 1st storage battery 150 is a voltage larger than a 1st predetermined value (NO), the state is continued. On the other hand, when the voltage of the first storage battery 150 becomes equal to or lower than the first predetermined value (YES), the switching control unit 140 turns on the first switch 142 and turns on the second switch 141 (step S105). . Thereby, DC power is supplied from the second storage battery 240 of the second line 120 to the load 500. This corresponds to the starting point of the “power supply by the second storage battery (second state)” period shown in FIG. Here, the second state is a state in which DC power from the second line 120 is supplied to the load 500.
 第一状態では第一蓄電池150からの給電が行われており、第二状態では第二蓄電池240からの給電が行われるため、この期間の第三スイッチ143のON/OFFは運用上どちらでも問題ない。 Since power is supplied from the first storage battery 150 in the first state and power is supplied from the second storage battery 240 in the second state, ON / OFF of the third switch 143 during this period is a problem in either operation. Absent.
 次いで、切替制御部140は、所定時間経過(ステップS106)すると、第一スイッチ142をOFFとし、第二スイッチ141をONとする(ステップS107)。これにより、第一ライン130が遮断されるので、第一蓄電池150から負荷500への直流電力の供給が停止される(ステップS108)。 Next, when a predetermined time has elapsed (step S106), the switching control unit 140 turns off the first switch 142 and turns on the second switch 141 (step S107). Thereby, since the 1st line 130 is interrupted | blocked, supply of the direct-current power from the 1st storage battery 150 to the load 500 is stopped (step S108).
 つまり、ステップS104~S108は、第一蓄電池150の電圧が第一所定値以下となると、第二ライン120からの電力供給を開始するとともに、第一蓄電池150からの電力供給を停止する第三ステップである。 That is, steps S104 to S108 are the third steps for starting the power supply from the second line 120 and stopping the power supply from the first storage battery 150 when the voltage of the first storage battery 150 becomes equal to or lower than the first predetermined value. It is.
 このように、所定時間内においては、第二蓄電池240から直流電力が負荷500に供給されるとともに、第一蓄電池150から直流電力が負荷500に供給される時間帯である。そして、上述したように所定時間が経過すると、第一蓄電池150から負荷500に対する直流電力の供給が停止される。つまり、この所定時間内によって、負荷500に対する第一ライン130からの電力供給と、第二ライン120からの電力供給とが無瞬断で切り替えられる。 Thus, within a predetermined time, the DC power is supplied from the second storage battery 240 to the load 500 and the DC power is supplied from the first storage battery 150 to the load 500. And as above-mentioned, when predetermined time passes, supply of the direct-current power with respect to the load 500 from the 1st storage battery 150 will be stopped. That is, within this predetermined time, the power supply from the first line 130 and the power supply from the second line 120 to the load 500 are switched without interruption.
 ここで、第二ライン120からの電力供給では、既設の第二電力供給装置200から出力された直流電力が直流入力端子111、第二ライン120及び出力端子113を介して、負荷500に直流電力が出力される。なお、商用電源300の停電時には、第二電力供給装置200からは、第二蓄電池240が放電することにより直流電力が供給される。ここで第二蓄電池240が鉛蓄電池の場合、第二蓄電池240の放電終止電圧は例えば40.8Vである。この放電終止電圧は、24セルの鉛蓄電池の場合である。放電終止電圧は、第二蓄電池240の種類、セル数などによって異なる値である。 Here, in the power supply from the second line 120, the DC power output from the existing second power supply device 200 is supplied to the load 500 via the DC input terminal 111, the second line 120, and the output terminal 113. Is output. In addition, at the time of a power failure of the commercial power source 300, the second power supply device 200 supplies DC power by discharging the second storage battery 240. Here, when the second storage battery 240 is a lead storage battery, the discharge end voltage of the second storage battery 240 is, for example, 40.8V. This end-of-discharge voltage is for a 24 cell lead acid battery. The end-of-discharge voltage is a value that varies depending on the type of second storage battery 240, the number of cells, and the like.
 第二蓄電池240が放電終止電圧に達すると、発電機400が起動する。この際、切替部220が交流電力供給元を商用電源300から発電機400に切り替える。これにより、発電機400で発電された交流電力は第二電力供給装置200に供給される。発電機400で発電された交流電力は、配線部材602を介して、第一電力供給装置100の交流入力端子112にも入力される。 When the second storage battery 240 reaches the final discharge voltage, the generator 400 is activated. At this time, the switching unit 220 switches the AC power supply source from the commercial power supply 300 to the generator 400. As a result, the AC power generated by the generator 400 is supplied to the second power supply device 200. The AC power generated by the generator 400 is also input to the AC input terminal 112 of the first power supply device 100 via the wiring member 602.
 第二電力供給装置200においては、発電機400から供給された交流電力が、第二AC/DCコンバータ230によって第二直流電力に変換されて、直流入力端子111を介して第二ライン120に供給されることで、負荷500に第二直流電力が供給される。また、第二直流電力は第二蓄電池240に供給されるため、第二蓄電池240が蓄電されることになる。これは図7に示す「発電機による給電」期間である。 In the second power supply device 200, AC power supplied from the generator 400 is converted into second DC power by the second AC / DC converter 230 and supplied to the second line 120 via the DC input terminal 111. As a result, the second DC power is supplied to the load 500. Further, since the second DC power is supplied to the second storage battery 240, the second storage battery 240 is charged. This is the “power supply by generator” period shown in FIG.
 切替制御部140は、第二電圧センサ131の検出結果に基づいて、交流入力端子112が交流電力を受電したか否かを判断する。交流電力を受電していない場合(ステップS109;NO)にはその状態が継続される。他方、第一状態から第二状態に切り替わって交流電力が復電した際には、第二電圧センサ131が復電した交流電圧を検知しているので(ステップS109;YES)、切替制御部140は、第一スイッチ142をOFFとし、第二スイッチ141をONとし、第三スイッチ143をOFFとする(ステップS110)。この場合、第三スイッチ143がOFFとなっているので、第一ライン130には交流電力が供給されず、第一AC/DCコンバータ133から直流電力が出力されないために、第一蓄電池150の蓄電は行われない。つまり、交流電力復電直後に、第二蓄電池240と第一蓄電池150との蓄電が同時に行われないために、入力容量オーバーを抑制することができる。 The switching control unit 140 determines whether the AC input terminal 112 has received AC power based on the detection result of the second voltage sensor 131. If AC power is not received (step S109; NO), that state is continued. On the other hand, when the AC power is restored from the first state to the second state, the second voltage sensor 131 detects the restored AC voltage (step S109; YES). Turns off the first switch 142, turns on the second switch 141, and turns off the third switch 143 (step S110). In this case, since the third switch 143 is OFF, AC power is not supplied to the first line 130, and DC power is not output from the first AC / DC converter 133. Is not done. That is, immediately after the AC power is restored, the second storage battery 240 and the first storage battery 150 are not charged at the same time.
 第三スイッチをOFFとするタイミングは、商用電源300の停電検出時、第二ライン120の電圧が放電終止電圧に達した時でもよい。 The timing at which the third switch is turned OFF may be when the voltage of the second line 120 reaches the end-of-discharge voltage when a power failure of the commercial power supply 300 is detected.
 つまり、ステップS110は、電源(商用電源300または発電機400)が復電した際に、第一ライン130に対する電源の電力供給を停止するとともに、電源から第二ライン120を介して負荷500に電力を供給する第四ステップである。 That is, in step S110, when the power source (commercial power source 300 or generator 400) recovers, the power supply of the power source to the first line 130 is stopped and the power is supplied from the power source to the load 500 via the second line 120. Is a fourth step.
 以上により、復電時には、第二電力供給装置200に交流電力が供給されるため、まず容量が大きい第二蓄電池240が第一蓄電池150よりも先に充電される。即ち、長時間停電用の第二蓄電池240が先に充電される。これにより、復電した後、所定時間を経過しないうちに長時間停電が発生したとしても、第二蓄電池240から負荷500へ給電することができる。 As described above, since AC power is supplied to the second power supply device 200 at the time of power recovery, first, the second storage battery 240 having a large capacity is charged before the first storage battery 150. That is, the second storage battery 240 for a long-time power failure is charged first. Thereby, even if a power failure occurs for a long time before the predetermined time has elapsed after power is restored, power can be supplied from the second storage battery 240 to the load 500.
 次に、切替制御部140は、第一条件が満たされているかを判断する(ステップS111)。ここで第一条件とは、第二ライン120の電圧(第三電圧センサ121の検出結果)が第二所定値以上になったか、または、第二蓄電池240の蓄電が開始されてから第一所定時間を経過したかの少なくとも一方の条件である。これは図7に示す「第二蓄電池の蓄電」期間である。ここで、第二所定値とは、第二蓄電池240が安定した蓄電量を確保したことを示す電圧であればよい。第二蓄電池240が上記の鉛蓄電池の場合であると、第二所定値は例えば48.0Vである。また、第一所定時間とは、第二蓄電池240が安定した蓄電量を確保することのできる蓄電時間である。 Next, the switching control unit 140 determines whether the first condition is satisfied (step S111). Here, the first condition refers to the first predetermined value after the voltage of the second line 120 (detection result of the third voltage sensor 121) becomes equal to or higher than the second predetermined value, or when the storage of the second storage battery 240 is started. This is at least one of conditions that have passed the time. This is the “power storage of the second storage battery” period shown in FIG. Here, the 2nd predetermined value should just be a voltage which shows that the 2nd storage battery 240 ensured the stable amount of electrical storage. If the second storage battery 240 is the above lead storage battery, the second predetermined value is, for example, 48.0V. The first predetermined time is a power storage time during which the second storage battery 240 can secure a stable power storage amount.
 そして、第一条件が満たされていない場合(NO)にはその状態が継続される。第一条件が満たされた場合(YES)には、切替制御部140は、第一スイッチ142をOFFとし、第二スイッチ141をONとし、第三スイッチ143をONとする(ステップS112)。これにより、第一蓄電池150まで第一直流電力が供給されるので、第一蓄電池150が蓄電されることになる。このとき、第二蓄電池240と第一蓄電池150との蓄電が同時に行われている。これは図7に示す「第一及び第二蓄電池の蓄電」期間である。ここでは、第二蓄電池240が安定するだけの蓄電量を確保しているので、第二蓄電池240と第一蓄電池150との蓄電が同時に行われたとしても、入力容量オーバーとなることは防止されている。 And when the first condition is not satisfied (NO), the state is continued. When the first condition is satisfied (YES), the switching control unit 140 turns off the first switch 142, turns on the second switch 141, and turns on the third switch 143 (step S112). Thereby, since the first DC power is supplied to the first storage battery 150, the first storage battery 150 is charged. At this time, the second storage battery 240 and the first storage battery 150 are simultaneously charged. This is the “power storage of the first and second storage batteries” period shown in FIG. Here, since the second storage battery 240 secures a sufficient amount of power storage, even if the second storage battery 240 and the first storage battery 150 are stored simultaneously, it is prevented that the input capacity is exceeded. ing.
 つまり、ステップS111、S112は、第二ライン120の電圧が第二所定値以上であるか、または第一所定時間経過すると、第一ライン130に対する電源の電力供給を開始する第五ステップである。 That is, steps S111 and S112 are a fifth step of starting the power supply of the power source to the first line 130 when the voltage of the second line 120 is equal to or higher than the second predetermined value or when the first predetermined time has elapsed.
 次いで、切替制御部140は、第二条件が満たされているかを判断する(ステップS113)。ここで第二条件とは、第一蓄電池150の電圧(第一電圧センサ132の検出結果)が第三所定値以上になったか、または、第一蓄電池150の蓄電が開始されてから第二所定時間を経過したかの少なくとも一方の条件である。これは図7に示す「第一及び第二蓄電池の蓄電」期間である。ここで、第三所定値とは、第一蓄電池150が安定した蓄電量を確保したことを示す電圧であればよい。第一蓄電池150が上記のリチウムイオン電池の場合であると、第三所定値は例えば48.0Vである。第二所定時間とは、第一蓄電池150が安定した蓄電量を確保することのできる蓄電時間である。 Next, the switching control unit 140 determines whether the second condition is satisfied (step S113). Here, the second condition is that the voltage of the first storage battery 150 (detection result of the first voltage sensor 132) becomes equal to or higher than the third predetermined value, or the first storage battery 150 starts to be charged for the second predetermined time. This is at least one of conditions that have passed the time. This is the “power storage of the first and second storage batteries” period shown in FIG. Here, the third predetermined value may be a voltage indicating that the first storage battery 150 has secured a stable amount of power storage. When the first storage battery 150 is the above-described lithium ion battery, the third predetermined value is, for example, 48.0V. The second predetermined time is a power storage time during which the first storage battery 150 can secure a stable power storage amount.
 その間、商用電源300が復電すると、切替部220が第一電力供給装置100に対する電力供給元を発電機400から商用電源300に切り替える。これは図7に示す「復電」タイミングである。 In the meantime, when the commercial power supply 300 recovers, the switching unit 220 switches the power supply source for the first power supply apparatus 100 from the generator 400 to the commercial power supply 300. This is the “power recovery” timing shown in FIG.
 その後、第二条件が満たされていない場合(NO)にはその状態が継続される。第二条件が満たされた場合(YES)には、切替制御部140は、第一スイッチ142をONとし、第二スイッチ141をONとし、第三スイッチ143をONとする(ステップS114)。このとき、第二ライン120と第一ライン130とが同時に負荷500に対して電力供給可能となっている。 After that, if the second condition is not satisfied (NO), the state is continued. When the second condition is satisfied (YES), the switching control unit 140 turns on the first switch 142, turns on the second switch 141, and turns on the third switch 143 (step S114). At this time, the second line 120 and the first line 130 can supply power to the load 500 simultaneously.
 その後、切替制御部140は、所定時間経過(ステップS115)すると、第一スイッチ142をONとし、第二スイッチ141をOFFとし、第三スイッチ143をONとする(ステップS101)。これにより、第二ライン120からの電力供給が遮断されて、第一ライン130からの電力が供給される。つまり、復電後においても、第二ライン120と第一ライン130との切り替えが無瞬断で行われる。 Thereafter, when a predetermined time has elapsed (step S115), the switching control unit 140 turns on the first switch 142, turns off the second switch 141, and turns on the third switch 143 (step S101). Thereby, the power supply from the second line 120 is cut off, and the power from the first line 130 is supplied. That is, even after power recovery, switching between the second line 120 and the first line 130 is performed without interruption.
 そして、ステップS113~S101は、第一蓄電池150の電圧が第三所定値以上になると、第一ライン130から負荷500に電力を供給するとともに、第二ライン120からの電力供給を停止する第六ステップである。 In steps S113 to S101, when the voltage of the first storage battery 150 becomes equal to or higher than the third predetermined value, the sixth line that supplies power from the first line 130 to the load 500 and stops supplying power from the second line 120 is used. It is a step.
 本実施の形態によれば、鉛蓄電池を備えた既設装置である第二電力供給装置200に、第一蓄電池150を備えた第一電力供給装置100を増設した場合に、商用電源300が停止したとしても、先に第一蓄電池150による電力供給が行われた後に第二ラインによる電力供給が開始されるので、第一蓄電池150を確実に活用することができる。つまり、増設された第一電力供給装置100から負荷500に対して安定した電力供給が可能となるため、設備全体を置き換えなくても、鉛蓄電池とは異なる第一蓄電池150を安定して活用することができる。 According to the present embodiment, when the first power supply device 100 including the first storage battery 150 is added to the second power supply device 200 that is an existing device including the lead storage battery, the commercial power supply 300 is stopped. However, since the power supply by the 2nd line is started after the power supply by the 1st storage battery 150 was performed previously, the 1st storage battery 150 can be utilized reliably. That is, since it is possible to stably supply power to the load 500 from the added first power supply device 100, the first storage battery 150 different from the lead storage battery can be stably utilized without replacing the entire facility. be able to.
 第一状態と第二状態とが無瞬断で切り替えられるので、第二電力供給装置200に対して第一電力供給装置100を増設したとしても、既設の第二蓄電池240と、他の第一蓄電池150との電力供給タイミングを適切に切り替えることができる。したがって、負荷500に対する電力供給を安定して行うことができる。 Since the first state and the second state are switched without interruption, even if the first power supply device 100 is added to the second power supply device 200, the existing second storage battery 240 and the other first The power supply timing with the storage battery 150 can be appropriately switched. Therefore, power supply to the load 500 can be performed stably.
 第一蓄電池150が追加されるので、第二蓄電池240のみの場合と比べても、より長時間の停電時バックアップに対応できる。 Since the first storage battery 150 is added, the backup at the time of a power failure for a longer time can be supported as compared with the case of the second storage battery 240 alone.
 第一蓄電池150で給電する第一状態が、第二蓄電池240で給電する第二状態よりも常に先に実行されるので、短時間の停電は、概ね第一蓄電池150で対応することができる。特に、第一蓄電池150がリチウムイオン電池で、第二蓄電池240が鉛蓄電池の場合には、比較的サイクル寿命が長く急速充電可能なリチウムイオン電池で、短時間の停電に対応し、長時間の停電には、リチウムイオン電池と鉛蓄電池との両者で対応することができる。 Since the first state in which power is supplied by the first storage battery 150 is always executed before the second state in which power is supplied by the second storage battery 240, short-time power outages can be generally handled by the first storage battery 150. In particular, when the first storage battery 150 is a lithium ion battery and the second storage battery 240 is a lead storage battery, it is a lithium ion battery that has a relatively long cycle life and can be rapidly charged, and can handle a short power outage for a long time. A power failure can be handled by both a lithium ion battery and a lead storage battery.
 電源が復電した際に、第一ライン130に対する電源の電力供給を停止するとともに、電源から第二ライン120を介して負荷500に電力を供給するので、復電直後においては第一蓄電池150の蓄電は行われない。これにより、復電直後には、電源による第一蓄電池150の蓄電と、負荷500に対する電力供給とが同時に行われないことになり、入力容量オーバーを抑制することができる。 When power is restored, power supply to the first line 130 is stopped and power is supplied from the power source to the load 500 via the second line 120. Power storage is not performed. Thereby, immediately after the power recovery, the power storage of the first storage battery 150 by the power source and the power supply to the load 500 are not performed at the same time, and the input capacity over can be suppressed.
 第二ライン120の電圧が第二所定値以上であるか、または第一所定時間経過すると、第一ライン130に対する電源の電力供給を開始するので、第二ライン120が安定した後に、第一蓄電池150の蓄電を行うことができる。 When the voltage of the second line 120 is equal to or higher than the second predetermined value or the first predetermined time elapses, the power supply of the power source to the first line 130 is started. 150 power storages can be performed.
 第一蓄電池150の電圧が第三所定値以上になると、第一ライン130から負荷に電力を供給するとともに、第二ラインからの電力供給を停止するので、復電後においても第一蓄電池150が安定した蓄電量を確保することができる。 When the voltage of the first storage battery 150 becomes equal to or higher than the third predetermined value, power is supplied from the first line 130 to the load and power supply from the second line is stopped. A stable amount of electricity can be secured.
 第一電力供給装置100をなす交流入力端子112と、直流入力端子111と、出力端子113と、第二ライン120と、第一ライン130とがユニット化されているので、既設の第二電力供給装置200に対して第一電力供給装置100を後付けで簡単に取り付けることができる。これにより、第二蓄電池240を有する既設の第二電力供給装置200に対して、第一蓄電池150を備える第一電力供給装置100を簡単に増設することができ、既設装置を利用しつつ、電力供給システム全体としての安定性と耐久性を向上することができる。 Since the AC input terminal 112, the DC input terminal 111, the output terminal 113, the second line 120, and the first line 130 forming the first power supply apparatus 100 are unitized, the existing second power supply The first power supply device 100 can be easily attached to the device 200 by retrofitting. Thereby, it is possible to easily add the first power supply device 100 including the first storage battery 150 to the existing second power supply device 200 having the second storage battery 240, while using the existing device. The stability and durability of the entire supply system can be improved.
 第一電圧センサ132、第二電圧センサ131、第三電圧センサ121及び切替制御部140が、第二電力供給装置200に対して後付け可能にユニット化されているので、これらについても、既設の第二電力供給装置200に対して一括で後付けすることができる。 The first voltage sensor 132, the second voltage sensor 131, the third voltage sensor 121, and the switching control unit 140 are unitized so as to be retrofitted to the second power supply apparatus 200. The two power supply devices 200 can be retrofitted at once.
 切替制御部140が、第一電圧センサ132、第二電圧センサ131及び第三電圧センサ121の検出結果に基づいて、負荷500に対する供給電力を第一直流電力及び第二直流電力の中で切り替えるので、第一電力供給装置100を第二電力供給装置200に後付けで取り付けたとしても、既設の電源(商用電源300及び発電機400)及び第二蓄電池240と、後付けの第一蓄電池150とをスムーズに切り替えることができる。 The switching control unit 140 switches the power supplied to the load 500 between the first DC power and the second DC power based on the detection results of the first voltage sensor 132, the second voltage sensor 131, and the third voltage sensor 121. Even if the first power supply device 100 is retrofitted to the second power supply device 200, the existing power supply (commercial power supply 300 and generator 400), the second storage battery 240, and the retrofit first storage battery 150 can be smoothly connected. You can switch to
 第一蓄電池150が着脱自在であるので、第一電力供給装置100がユニット化されていても、第一蓄電池150を交換することができる。 Since the first storage battery 150 is detachable, the first storage battery 150 can be replaced even if the first power supply apparatus 100 is unitized.
 また、第一蓄電池150がリチウムイオン電池であるので、鉛蓄電池により電力を充放電する既設の第二電力供給装置200に対して、リチウムイオン電池を備える第一電力供給装置100を容易に取り付けることができる。これは、リチウムイオン電池が鉛蓄電池に比べて小型で軽量である点、短時間の停電用に鉛蓄電池よりも小容量に設定されている点などに起因する。 Moreover, since the 1st storage battery 150 is a lithium ion battery, the 1st power supply apparatus 100 provided with a lithium ion battery is easily attached with respect to the existing 2nd power supply apparatus 200 which charges / discharges electric power with a lead storage battery. Can do. This is due to the fact that lithium-ion batteries are smaller and lighter than lead-acid batteries, and have a smaller capacity than lead-acid batteries for short-time power outages.
 第一電力供給装置100が外装体101によってユニット化され、さらに、この外装体101がラック210に対してスライド可能に収容されているので、第一電力供給装置100の後付け作業や、取り外し作業を容易に行うことができる。 Since the first power supply device 100 is unitized by the exterior body 101 and the exterior body 101 is slidably accommodated with respect to the rack 210, the first power supply device 100 can be retrofitted or removed. It can be done easily.
 ラック210内においては、第二蓄電池240が、第一蓄電池150よりも上方に配置されている。例えば、第二蓄電池240が鉛蓄電池、第一蓄電池150がリチウムイオン電池である場合、鉛蓄電池は、リチウムイオン電池よりも重量があるので、鉛蓄電池が下方に配置されていれば、交換などのメンテナンス作業を効率的に行うことが可能である。 In the rack 210, the second storage battery 240 is disposed above the first storage battery 150. For example, when the second storage battery 240 is a lead storage battery and the first storage battery 150 is a lithium ion battery, the lead storage battery is heavier than the lithium ion battery. Maintenance work can be performed efficiently.
 また、第一スイッチ142と、第二スイッチ141と、第三スイッチ143とが外装体101に収容されているので、砂漠や森林などの劣悪な環境に第一電力供給装置100が設置される場合であっても、各スイッチを塵埃や雨水から保護することができる。 Moreover, since the 1st switch 142, the 2nd switch 141, and the 3rd switch 143 are accommodated in the exterior body 101, when the 1st power supply apparatus 100 is installed in inferior environments, such as a desert and a forest Even so, each switch can be protected from dust and rainwater.
 (他の実施の形態)
 本発明は、上記実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものも、あるいは、上記説明された複数の構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
(Other embodiments)
The present invention is not limited to the above embodiment. Unless it deviates from the gist of the present invention, various modifications conceived by those skilled in the art have been applied to the above-described embodiments, or forms constructed by combining a plurality of the constituent elements described above are within the scope of the present invention. include.
 以下の説明において、第一実施形態と同一の部分は、同一の符号を付してその説明を省略する場合がある。 In the following description, the same parts as those in the first embodiment may be denoted by the same reference numerals and the description thereof may be omitted.
 第一実施形態では、第一スイッチ142、第二スイッチ141及び第三スイッチ143を備える第一電力供給装置100を例示したが、第三スイッチ143を除くことも可能である。図8は、変形例1に係る第一電力供給装置100Aが取り付けられた第二電力供給装置200の主制御構成を示すブロック図である。具体的には図8は図4に対応する図である。 In the first embodiment, the first power supply device 100 including the first switch 142, the second switch 141, and the third switch 143 is illustrated, but the third switch 143 may be omitted. FIG. 8 is a block diagram illustrating a main control configuration of the second power supply device 200 to which the first power supply device 100A according to the first modification is attached. Specifically, FIG. 8 corresponds to FIG.
 図8に示すように、第一電力供給装置100Aには、第三スイッチ143が設けられていない。切替制御部140は、第一状態から第二状態に切り替わった後に交流電力が復電した場合、第二スイッチ141をON、第一スイッチ142をOFFとし、第一条件を満たすと、一時的に第二スイッチ141をON、第一スイッチ142をONとした後、第二スイッチ141をOFF、第一スイッチ142をONとする。 As shown in FIG. 8, the first power supply device 100 </ b> A is not provided with the third switch 143. When the AC power is restored after switching from the first state to the second state, the switching control unit 140 temporarily turns on the second switch 141 and the first switch 142 when the first condition is satisfied. After the second switch 141 is turned on and the first switch 142 is turned on, the second switch 141 is turned off and the first switch 142 is turned on.
 つまり、このステップが、電源が復電した際に、第二ライン120の電圧が第二所定値に達するか、第一所定時間経過すると、第一ライン130から負荷に電力を供給するとともに、第二ライン120からの電力供給を停止する第七ステップである。 That is, this step supplies power from the first line 130 to the load when the voltage of the second line 120 reaches the second predetermined value or the first predetermined time elapses when the power is restored. This is a seventh step of stopping power supply from the two lines 120.
 このような制御が行われるために、復電後、すぐに第一蓄電池150に蓄電させるとともに、部品点数を少なくし制御も簡略化できる。商用電源300の容量が大きく、かつ発電機400がない場合に好適である。 Since such control is performed, the first storage battery 150 can be stored immediately after power recovery, and the number of parts can be reduced to simplify the control. This is suitable when the capacity of the commercial power supply 300 is large and the generator 400 is not provided.
 電源が復電した際に、第一ライン130から負荷500に電力を供給するとともに、第二ライン120からの電力供給を停止する第八ステップを含んでもよい。これによれば、電源が復電した際に、すぐに第一蓄電池150に蓄電し、第一ライン130から負荷500に電力を供給するとともに、第二ライン120からの電力供給を停止するので、部品点数を少なくし、制御をさらに簡素化することができる。この場合も商用電源300の容量が大きく、かつ発電機400がない場合に好適である。 An eighth step of supplying power from the first line 130 to the load 500 and stopping power supply from the second line 120 when the power source is restored may be included. According to this, when the power is restored, the first storage battery 150 is immediately stored, and the power is supplied from the first line 130 to the load 500 and the power supply from the second line 120 is stopped. Control can be further simplified by reducing the number of parts. This case is also suitable when the capacity of the commercial power supply 300 is large and the generator 400 is not provided.
 第一実施形態では、第一電力供給装置100の外装体101内に第一蓄電池150が搭載されている場合を例示した。代替的に、外装体と、第一蓄電池とが別体であってもよい。 1st embodiment illustrated the case where the 1st storage battery 150 was mounted in the exterior body 101 of the 1st electric power supply apparatus 100. As shown in FIG. Alternatively, the exterior body and the first storage battery may be separate bodies.
 図9は、変形例2に係る第一電力供給装置100Bの概略構成を示す斜視図である。 FIG. 9 is a perspective view showing a schematic configuration of the first power supply apparatus 100B according to the second modification.
 図9に示すように、第一電力供給装置100Bの外装体101Bの前面には、第一ライン130に導通する蓄電池用端子119が端子群110の近傍に設けられている。この蓄電池用端子119には、外装体101Bとは別体の第一蓄電池150Bの端子150a,150bが配線部材604を介して電気的に接続されている。つまり、蓄電池用端子119が接続部である。このように、第一蓄電池150Bが外装体101Bの外部に設けられているので、第一蓄電池150の交換を容易に行うことができる。 As shown in FIG. 9, a storage battery terminal 119 that conducts to the first line 130 is provided in the vicinity of the terminal group 110 on the front surface of the exterior body 101 </ b> B of the first power supply apparatus 100 </ b> B. The terminals 150a and 150b of the first storage battery 150B separate from the exterior body 101B are electrically connected to the storage battery terminal 119 via the wiring member 604. That is, the storage battery terminal 119 is a connection portion. Thus, since the 1st storage battery 150B is provided in the exterior of the exterior body 101B, replacement | exchange of the 1st storage battery 150 can be performed easily.
 なお、第一電力供給装置100Bには、蓄電池用端子119が複数対設けられている。蓄電池用端子119が複数対あるので、第一電力供給装置100Bに汎用性を持たせることができる。これにより、第一電力供給装置100Bの設置時に第一蓄電池150Bの個数を調整できる。あるいは第一電力供給装置100Bの設置後において第一蓄電池150Bの増設が必要になった場合でも容易に対応できる。 The first power supply device 100B is provided with a plurality of pairs of storage battery terminals 119. Since there are a plurality of pairs of storage battery terminals 119, the first power supply apparatus 100B can have versatility. Thereby, the number of the 1st storage batteries 150B can be adjusted at the time of installation of the 1st electric power supply apparatus 100B. Alternatively, even when the first storage battery 150B needs to be added after the installation of the first power supply apparatus 100B, it can be easily handled.
 第一実施形態では、第二蓄電池240を鉛蓄電池とし、第一蓄電池150をリチウムイオン電池とした場合を例示した。蓄電池の種類はこれに限定されない。その他の蓄電池としてはアルカリ電池などが挙げられる。 In the first embodiment, the second storage battery 240 is a lead storage battery, and the first storage battery 150 is a lithium ion battery. The type of storage battery is not limited to this. Examples of other storage batteries include alkaline batteries.
 第一実施形態では、ラック210内に第二電力供給装置200の主要構成部205や、第一電力供給装置100が搭載される場合を例示した。代替的に、第二電力供給装置200の主要構成部205や、第一電力供給装置100は、ラック210以外の什器や建具に収納されていてもよく、電力供給施設としての建築物に直接設置されていてもよい。 In the first embodiment, the case where the main component 205 of the second power supply device 200 and the first power supply device 100 are mounted in the rack 210 is exemplified. Alternatively, the main component 205 of the second power supply device 200 and the first power supply device 100 may be housed in fixtures and fittings other than the rack 210, and are directly installed in a building as a power supply facility. May be.
 第一実施形態では、第一ライン130に電力を供給する電源と、第二ライン120に電力を供給する電源とが、商用電源300と発電機400とで共通化されている場合を例示した。代替的に、第一ライン130に電力を供給する第一電源と、第二ライン120に電力を供給する第二電源とをそれぞれ個別に設けていてもよい。 In the first embodiment, the case where the power source that supplies power to the first line 130 and the power source that supplies power to the second line 120 are shared by the commercial power source 300 and the generator 400 is illustrated. Alternatively, a first power source that supplies power to the first line 130 and a second power source that supplies power to the second line 120 may be provided separately.
 第三スイッチ143は、第一ライン130から分岐した経路に設けられていてもよい。 The third switch 143 may be provided on a route branched from the first line 130.
 図10は、変形例3に係る第一電力供給装置が取り付けられた第二電力供給装置の制御構成の概略を示すブロック図である。図10は図4に対応する図である。 FIG. 10 is a block diagram showing an outline of a control configuration of the second power supply apparatus to which the first power supply apparatus according to the modification 3 is attached. FIG. 10 corresponds to FIG.
 図10に示すように、切替部220は、第一電力供給装置100の交流入力端子112に接続されている。この交流入力端子112と第一AC/DCコンバータ133との間で第一ライン130は分岐されており、その分岐点の下流には、第三スイッチ143を介して、交流出力端子270が設けられている。交流出力端子270と、第二電力供給装置200の端子251とは、配線部材605を介して電気的に接続されている。 As shown in FIG. 10, the switching unit 220 is connected to the AC input terminal 112 of the first power supply apparatus 100. The first line 130 is branched between the AC input terminal 112 and the first AC / DC converter 133, and an AC output terminal 270 is provided downstream of the branch point via a third switch 143. ing. The AC output terminal 270 and the terminal 251 of the second power supply device 200 are electrically connected via the wiring member 605.
 これにより、商用電源300或いは発電機400から出力された交流電力は、交流入力端子112から第一電力供給装置100に入力された後に、その一部は第一AC/DCコンバータ133に入力されて、その他の一部は、第三スイッチ143及び交流出力端子270、配線部材605を介して、第二電力供給装置200に入力される。 As a result, the AC power output from the commercial power supply 300 or the generator 400 is input to the first power supply device 100 from the AC input terminal 112 and then a part thereof is input to the first AC / DC converter 133. The other part is input to the second power supply apparatus 200 via the third switch 143, the AC output terminal 270, and the wiring member 605.
 このような構成であれば、入力容量オーバーを防ぎつつ、第一蓄電池150側から先に充電することができる。つまり、短時間停電が多く、長時間停電が少ない場合に適している。 With such a configuration, the first storage battery 150 can be charged first while preventing input capacity from being exceeded. That is, it is suitable when there are many short-time power outages and long-time power outages.
 第一ライン130への電力は直流電力でもよい。具体的には、他の直流系統から供給される直流電力でもよいし、太陽光発電などからの直流電力でもよい。直流電力の場合、第一AC/DCコンバータ133は不要となる。必要に応じてDC/DCコンバータ、パワーコンディショナを用いてもよい。 The power to the first line 130 may be DC power. Specifically, it may be DC power supplied from another DC system, or DC power from solar power generation or the like. In the case of DC power, the first AC / DC converter 133 is not necessary. A DC / DC converter and a power conditioner may be used as necessary.
 変形例2では、第一電力供給装置100Bの外装体101Bと第一蓄電池150とが別体化された場合を例示した。この場合、外装体101B及び当該外装体101Bに組み付けられた各部を、スイッチングユニット700(図11参照)とすることもできる。スイッチングユニット700は、負荷500に供給する電力を切り替える装置である。スイッチングユニット700は、第一蓄電池150の上方に配置されている。また、第一蓄電池150は、第二蓄電池240の上方に配置されている。このように、第一蓄電池150の下方に第二蓄電池240が配置されて、第一蓄電池150の上方にスイッチングユニット700が配置されているので、それぞれ別の熱源である第一蓄電池150、第二蓄電池240及びスイッチングユニット700を上下方向に離して配置することができる。したがって、幅方向にサイズを大きくしなくても、放熱効率を高めることができる。 In Modification 2, the case where the exterior body 101B of the first power supply device 100B and the first storage battery 150 are separated is illustrated. In this case, the exterior body 101B and each part assembled | attached to the said exterior body 101B can also be used as the switching unit 700 (refer FIG. 11). The switching unit 700 is a device that switches the power supplied to the load 500. The switching unit 700 is disposed above the first storage battery 150. Further, the first storage battery 150 is disposed above the second storage battery 240. Thus, since the 2nd storage battery 240 is arrange | positioned under the 1st storage battery 150, and the switching unit 700 is arrange | positioned above the 1st storage battery 150, the 1st storage battery 150 and 2nd which are respectively different heat sources. The storage battery 240 and the switching unit 700 can be spaced apart in the vertical direction. Therefore, the heat radiation efficiency can be increased without increasing the size in the width direction.
 なお、スイッチングユニット700と、第一蓄電池150と、第二蓄電池240とを接続する配線を全体として短くするのであれば、下から順に、第二蓄電池240、スイッチングユニット700、第一蓄電池150という配置としてもよい。 In addition, if the wiring which connects the switching unit 700, the 1st storage battery 150, and the 2nd storage battery 240 is shortened as a whole, arrangement | positioning called the 2nd storage battery 240, the switching unit 700, and the 1st storage battery 150 in order from the bottom. It is good.
 以下、第二実施形態に係るスイッチングユニット700について説明する。 Hereinafter, the switching unit 700 according to the second embodiment will be described.
 図11は、スイッチングユニット700の制御構成の概略を示すブロック図である。図11は、図4に対応する図である。なお、以降の説明においては、第一実施形態と異なる部分を重点的に説明する。図11に示すように、スイッチングユニット700は、直流入力端子111と、交流入力端子112と、出力端子113と、第一ライン130と、第二ライン120とを備えている。 FIG. 11 is a block diagram showing an outline of the control configuration of the switching unit 700. As shown in FIG. FIG. 11 is a diagram corresponding to FIG. In the following description, parts different from the first embodiment will be mainly described. As shown in FIG. 11, the switching unit 700 includes a DC input terminal 111, an AC input terminal 112, an output terminal 113, a first line 130, and a second line 120.
 第二ライン120は、直流入力端子111から入力された第二直流電力を出力端子113まで供給するための電力系統である。第二ライン120には、第二ダイオード122が設けられている。第一実施形態と比べると、第二ライン120には、第三電圧センサ121と、第二スイッチ141とが設けられていない。第二ライン120は、スイッチングユニット700の外装体の中に配置されていることが好ましい。 The second line 120 is a power system for supplying the second DC power input from the DC input terminal 111 to the output terminal 113. A second diode 122 is provided in the second line 120. Compared to the first embodiment, the second line 120 is not provided with the third voltage sensor 121 and the second switch 141. The second line 120 is preferably disposed in the exterior body of the switching unit 700.
 第一ライン130は、交流入力端子112から入力された交流電力を第一直流電力に変換して出力端子113まで供給するための電力系統である。第一ライン130と第二ライン120の接続点は、スイッチングユニット700の外装体の中に配置されていることが好ましい。 The first line 130 is a power system for converting AC power input from the AC input terminal 112 into first DC power and supplying it to the output terminal 113. The connection point between the first line 130 and the second line 120 is preferably disposed in the exterior body of the switching unit 700.
 第一ライン130には、停電検出部160と、遅延部170と、第一AC/DCコンバータ133と、スイッチ145と、第一ダイオード134と、第一蓄電池150とが設けられている。第一実施形態と比べると、スイッチ145は第一スイッチ142に相当するが、第一ライン130には、第三スイッチ143と切替制御部140とが設けられていない。ここでは、停電検出部160と、遅延部170とが第一ライン130に備えられている場合を例示したが、停電検出部160と遅延部170とは、第一ライン130とは別系統で設けられていてもよい。第一AC/DCコンバータ133は、スイッチングユニット700の外装体の外に配置されてもよい。つまり、第一AC/DCコンバータ133は、スイッチングユニット700とは別に設けられてもよく、例えば、端子251と交流入力端子112との間に設けられてもよい。 The first line 130 is provided with a power failure detection unit 160, a delay unit 170, a first AC / DC converter 133, a switch 145, a first diode 134, and a first storage battery 150. Compared to the first embodiment, the switch 145 corresponds to the first switch 142, but the first line 130 is not provided with the third switch 143 and the switching control unit 140. Here, the case where the power failure detection unit 160 and the delay unit 170 are provided in the first line 130 is illustrated, but the power failure detection unit 160 and the delay unit 170 are provided in a separate system from the first line 130. It may be done. The first AC / DC converter 133 may be disposed outside the exterior body of the switching unit 700. That is, the first AC / DC converter 133 may be provided separately from the switching unit 700, and may be provided between the terminal 251 and the AC input terminal 112, for example.
 停電検出部160は、第一ライン130における交流入力端子112と、スイッチ145との間に接続されている。停電検出部160は、停電である場合には信号を出力せず、停電でない場合には信号を出力し続ける停電検出器である。具体的には、停電検出部160は、交流入力端子112と第一AC/DCコンバータ133間に電圧がある場合には遅延部170に信号を出力し続けており、電圧がなくなった場合(停電時)には遅延部170に信号を出力しない。停電検出部160は、端子251と、スイッチ145との間に接続されてもよい。この場合、停電検出部160は、端子251に電圧がある時に遅延部170に信号を出力する。 The power failure detection unit 160 is connected between the AC input terminal 112 in the first line 130 and the switch 145. The power failure detection unit 160 is a power failure detector that does not output a signal when there is a power failure and continues to output a signal when there is no power failure. Specifically, the power failure detection unit 160 continues to output a signal to the delay unit 170 when there is a voltage between the AC input terminal 112 and the first AC / DC converter 133, and when the voltage disappears (power failure) At this time, no signal is output to the delay unit 170. The power failure detection unit 160 may be connected between the terminal 251 and the switch 145. In this case, the power failure detection unit 160 outputs a signal to the delay unit 170 when there is a voltage at the terminal 251.
 遅延部170は、停電を検知したタイミングよりも遅延させて、スイッチ145による導通又は遮断を切り替える遅延回路である。つまり、遅延部170は、停電検出部160での信号切替タイミングよりも遅延させて、スイッチ145のON/OFFを切り替える。具体的には、遅延部170は、停電検出部160から信号が入力されている状態では、その信号をスイッチ145に出力し、信号が入力されていない状態では、スイッチ145に対しても信号を出力しない。この信号の有無によってスイッチ145のON/OFFが切り替えられる。遅延部170では、信号の有無を切り替えるタイミングが、実際に停電検出部160で信号の有無が切り替わったタイミングよりも所定時間だけ遅れて行われている。つまり、停電検出部160からの信号の有無が安定した状態で、遅延部170ではスイッチ145に対する信号の有無が切り替わる。 The delay unit 170 is a delay circuit that switches conduction or interruption by the switch 145 with a delay from the timing at which a power failure is detected. That is, the delay unit 170 switches ON / OFF of the switch 145 with a delay from the signal switching timing in the power failure detection unit 160. Specifically, the delay unit 170 outputs the signal to the switch 145 when the signal is input from the power failure detection unit 160, and outputs the signal to the switch 145 when the signal is not input. Do not output. The switch 145 is turned on / off depending on the presence or absence of this signal. In the delay unit 170, the timing for switching the presence / absence of a signal is delayed by a predetermined time from the timing at which the presence / absence of the signal is actually switched in the power failure detection unit 160. That is, in the state where the presence or absence of the signal from the power failure detection unit 160 is stable, the presence or absence of the signal for the switch 145 is switched in the delay unit 170.
 スイッチ145は、遅延部170からの信号の有無に基づいて、第一ライン130の電力のON/OFFを切り替えるスイッチである。具体的には、スイッチ145は、第一ライン130における接続部180と、第一ダイオード134との間に設けられている。スイッチ145は、遅延部170から信号が入力されている状態ではOFFとなり、第一ライン130の電力をOFFとする。他方、スイッチ145は、遅延部170からの信号が入力されていない状態(停電)でONとなり、第一ライン130の電力をONとする。 The switch 145 is a switch for switching ON / OFF the power of the first line 130 based on the presence / absence of a signal from the delay unit 170. Specifically, the switch 145 is provided between the connection part 180 in the first line 130 and the first diode 134. The switch 145 is turned off when a signal is input from the delay unit 170 and turns off the power of the first line 130. On the other hand, the switch 145 is turned on when the signal from the delay unit 170 is not input (power failure), and the power of the first line 130 is turned on.
 つまり、スイッチ145は、停電検出部160が停電を検知した場合には、接続部180から出力端子113までを電気的に導通させて、停電検出部160が停電を検知していない場合には、接続部180から出力端子113までの電気的な導通を遮断する。換言すると、スイッチ145は、商用電源300の停電が検知された場合には、接続部180から出力端子113までを電気的に導通させて、商用電源300の停電が検知されていない場合には、接続部180から出力端子113までの電気的な導通を遮断する。これにより、停電時には第一蓄電池150からの直流電力が負荷500に供給される。 That is, the switch 145 electrically connects the connection unit 180 to the output terminal 113 when the power failure detection unit 160 detects a power failure, and when the power failure detection unit 160 does not detect the power failure, The electrical conduction from the connection unit 180 to the output terminal 113 is interrupted. In other words, the switch 145 electrically connects the connection unit 180 to the output terminal 113 when a power failure of the commercial power supply 300 is detected, and when the power failure of the commercial power supply 300 is not detected, The electrical conduction from the connection unit 180 to the output terminal 113 is interrupted. As a result, DC power from the first storage battery 150 is supplied to the load 500 during a power failure.
 電力供給が不安定な地域では、瞬間的な電圧降下(瞬断)が頻繁に起こるが、その都度、スイッチ145が切り替わるとスイッチ145に負担をかけ好ましくない。上述したように、停電検出部160からの信号の有無が安定した状態で、遅延部170からスイッチ145に対する信号の有無が切り替われば、頻繁にスイッチ145が切り替わることが抑えられる。これにより、スイッチ145のチャタリングが防止される。つまり、遅延回路はチャタリング除去回路とも言える。 In areas where the power supply is unstable, instantaneous voltage drops (instant interruptions) frequently occur. However, each time the switch 145 is switched, a load is applied to the switch 145, which is not preferable. As described above, if the presence / absence of the signal from the power failure detection unit 160 is stable and the presence / absence of the signal from the delay unit 170 to the switch 145 is switched, frequent switching of the switch 145 can be suppressed. Thereby, chattering of the switch 145 is prevented. That is, the delay circuit can be said to be a chattering removal circuit.
 第一蓄電池150の充電電圧は、第二蓄電池240の充電電圧よりも高く設定されている。また、第一蓄電池150の放電終止電圧は、第二蓄電池240の放電終止電圧よりも高く設定されている。例えば、第一蓄電池150の充電電圧を56.7V、放電終止電圧を46.2Vとし、第二蓄電池240の充電電圧を54.0、放電終止電圧を43.2Vとする。これにより、第一ライン130の電力がONとなると、まず第一ライン130の第一蓄電池150から負荷500に電力が供給される。その後、第一蓄電池150の電圧が、第二蓄電池240の充電電圧まで低下すると、それ以降においては、第一蓄電池150と第二蓄電池240との両方から負荷500に電力が供給される。その後、第一蓄電池150が放電終止電圧に達すると、第二蓄電池240のみから負荷500に電力が供給される。このように、第一蓄電池150と第二蓄電池240との特性の違いによって、負荷500に対する電力供給が自動で切り替わるようになっている。第一蓄電池150は、スイッチングユニット700の外装体の外に配置されてもよい。つまり、第一蓄電池133は、スイッチングユニット700とは別に設けられてもよい(図9参照)。 The charging voltage of the first storage battery 150 is set higher than the charging voltage of the second storage battery 240. The discharge end voltage of the first storage battery 150 is set higher than the discharge end voltage of the second storage battery 240. For example, the charge voltage of the first storage battery 150 is 56.7 V, the discharge end voltage is 46.2 V, the charge voltage of the second storage battery 240 is 54.0, and the discharge end voltage is 43.2 V. As a result, when the power of the first line 130 is turned on, power is first supplied from the first storage battery 150 of the first line 130 to the load 500. Then, when the voltage of the 1st storage battery 150 falls to the charge voltage of the 2nd storage battery 240, electric power is supplied to the load 500 from both the 1st storage battery 150 and the 2nd storage battery 240 after that. Thereafter, when the first storage battery 150 reaches the end-of-discharge voltage, power is supplied to the load 500 only from the second storage battery 240. As described above, the power supply to the load 500 is automatically switched due to the difference in characteristics between the first storage battery 150 and the second storage battery 240. The first storage battery 150 may be disposed outside the exterior body of the switching unit 700. That is, the first storage battery 133 may be provided separately from the switching unit 700 (see FIG. 9).
 次に、スイッチングユニット700を備えた第一電力供給装置100Bの制御方法について説明する。 Next, a control method of the first power supply apparatus 100B provided with the switching unit 700 will be described.
 図12は、第一電力供給装置100Bの制御方法の流れを示すフローチャートである。図13は図12の制御方法実行時における負荷電圧変化及び各部のON/OFF切替タイミングを示すタイミングチャートである。 FIG. 12 is a flowchart showing the flow of the control method of the first power supply apparatus 100B. FIG. 13 is a timing chart showing the load voltage change and the ON / OFF switching timing of each part when the control method of FIG. 12 is executed.
 ここでは、商用電源300が停電になった場合に、既設の第二電力供給装置200の切替部220が第一電力供給装置100に対する電力供給元を商用電源300から発電機400に切り替える場合を例示する。 Here, a case where the switching unit 220 of the existing second power supply apparatus 200 switches the power supply source for the first power supply apparatus 100 from the commercial power supply 300 to the generator 400 when the commercial power supply 300 has a power failure is illustrated. To do.
 まず、第一電力供給装置100Bのスイッチングユニット700は、商用電源300から受電中であると、停電検出部160が信号を出力し続けているので、それに基づいて遅延部170もスイッチ145をOFFとし続けている(ステップS201)。これは図13に示す「商用電源による給電」期間である。 First, when the switching unit 700 of the first power supply apparatus 100B is receiving power from the commercial power supply 300, the power failure detection unit 160 continues to output a signal, and accordingly, the delay unit 170 also turns the switch 145 OFF. It continues (step S201). This is the “power supply by commercial power supply” period shown in FIG.
 具体的には、商用電源300から供給された交流電力の一部は、第二AC/DCコンバータ230によって第二直流電力に変換されて、端子250及び直流入力端子111を介して第二ライン120に供給される。これにより、交流電力の一部は、負荷500に供給される。なお、このとき、第二直流電力は第二蓄電池240にも供給されるため、第二蓄電池240が蓄電されることになる。 Specifically, a part of the AC power supplied from the commercial power source 300 is converted into second DC power by the second AC / DC converter 230, and the second line 120 is connected via the terminal 250 and the DC input terminal 111. To be supplied. Thereby, a part of the AC power is supplied to the load 500. At this time, since the second DC power is also supplied to the second storage battery 240, the second storage battery 240 is charged.
 商用電源300から供給された交流電力のその他の一部は、交流入力端子112を介して第一ライン130に供給される。このとき、第一ライン130では、スイッチ145がOFFであるので、交流電力が第一AC/DCコンバータ133によって第一直流電力に変換されて、第一蓄電池150に供給される。 Other part of the AC power supplied from the commercial power supply 300 is supplied to the first line 130 via the AC input terminal 112. At this time, in the first line 130, since the switch 145 is OFF, the AC power is converted into the first DC power by the first AC / DC converter 133 and supplied to the first storage battery 150.
 つまり、このステップS201は、第一ライン130とは別のラインである第二ライン120が商用電源300から交流電力を受電している状態では、第二ライン120を介して負荷500に電力を供給する第一ステップである。なお、本実施形態では、第二ライン120にスイッチ(第二スイッチ)が設けられていない。第二ライン120は、スイッチを介することなく、第二AC/DCコンバータ230及び第二蓄電池240と負荷500との間を電気的に接続している。したがって、スイッチが故障して、第二AC/DCコンバータ230または第二蓄電池240から負荷500への電力供給が停止する心配がない。 That is, this step S201 supplies power to the load 500 via the second line 120 when the second line 120, which is a line different from the first line 130, receives AC power from the commercial power supply 300. This is the first step. In the present embodiment, the second line 120 is not provided with a switch (second switch). The second line 120 electrically connects the second AC / DC converter 230 and the second storage battery 240 and the load 500 without going through a switch. Therefore, there is no fear that the power supply from the second AC / DC converter 230 or the second storage battery 240 to the load 500 is stopped due to a switch failure.
 次いで、停電検出部160からの信号出力が継続されている場合(ステップS202;NO)には、その状態が維持される。停電検出部160からの信号出力が停止された場合(ステップS202;YES)、つまり停電が発生した場合には、スイッチ145がOFFからONに切り替えられる(ステップS203)。具体的には、ステップS203においては、遅延部170によって、停電検出部160での信号切替タイミングよりも遅延させて、スイッチ145がOFFからONに切り替えられる(図13参照)。この遅延時間中においては、第二蓄電池240から負荷500に給電が行われる。そして、遅延時間が経過すると、スイッチ145がONとなるので第一蓄電池150が放電する(ステップS204)。これにより第一ライン130には、第一蓄電池150から直流電力が流れ、負荷500に対して直流電力が供給される。これは図13に示す「第一蓄電池による給電(第一状態)」期間である。ここで第一状態とは、第一蓄電池150からの直流電力が負荷500に供給されている状態である。 Next, when the signal output from the power failure detection unit 160 is continued (step S202; NO), the state is maintained. When the signal output from the power failure detection unit 160 is stopped (step S202; YES), that is, when a power failure occurs, the switch 145 is switched from OFF to ON (step S203). Specifically, in step S203, the delay unit 170 delays the signal switching timing in the power failure detection unit 160 and switches the switch 145 from OFF to ON (see FIG. 13). During this delay time, power is supplied from the second storage battery 240 to the load 500. When the delay time elapses, the switch 145 is turned on, and the first storage battery 150 is discharged (step S204). Thereby, DC power flows from the first storage battery 150 to the first line 130, and DC power is supplied to the load 500. This is the “power supply by the first storage battery (first state)” period shown in FIG. 13. Here, the first state is a state in which DC power from the first storage battery 150 is supplied to the load 500.
 つまり、このステップS203、S204が、商用電源300が停止すると、負荷500への電力供給を途絶えさせることなく、第一ライン130に接続された第一蓄電池150から負荷500に電力を供給する第二ステップである。 That is, when the commercial power supply 300 is stopped, the steps S203 and S204 are the second for supplying power to the load 500 from the first storage battery 150 connected to the first line 130 without interrupting the power supply to the load 500. It is a step.
 次いで、第一蓄電池150が第二蓄電池240と異なる電圧である場合(ステップS205;NO)には、第一状態が継続される。第一蓄電池150と第二蓄電池240とが同じ電圧になった場合(ステップS205;YES)には、第一蓄電池150と第二蓄電池240との両者が放電する(ステップS206)。つまり、負荷500に供給される電圧が第一電圧値以下となると、第二蓄電池240からの電力供給が開始される。これにより、第一ライン130には、第一蓄電池150から直流電力が流れ、第二ライン120には第二蓄電池240から直流電力が流れて、負荷500に対して直流電力が供給される。これは、図13に示す「第一蓄電池及び第二蓄電池による給電」期間である。この期間では、負荷500に対して第一蓄電池150と第二蓄電池240とが同時に給電する同時給電状態となっている。 Next, when the first storage battery 150 has a voltage different from that of the second storage battery 240 (step S205; NO), the first state is continued. When the first storage battery 150 and the second storage battery 240 have the same voltage (step S205; YES), both the first storage battery 150 and the second storage battery 240 are discharged (step S206). That is, when the voltage supplied to the load 500 becomes equal to or lower than the first voltage value, power supply from the second storage battery 240 is started. Thereby, DC power flows from the first storage battery 150 to the first line 130, DC power flows from the second storage battery 240 to the second line 120, and DC power is supplied to the load 500. This is the “power supply by the first storage battery and the second storage battery” period shown in FIG. 13. During this period, the first storage battery 150 and the second storage battery 240 simultaneously supply power to the load 500.
 次いで、第一蓄電池150が放電終止電圧(所定値)以下でない場合(ステップS207;NO)には、同時給電状態が継続される。第一蓄電池150が放電終止電圧以下となった場合(ステップS207;YES)には、第一蓄電池150の放電が停止して、第二蓄電池240のみから負荷500に直流電力が供給される(ステップS208)。 Next, when the first storage battery 150 is not equal to or lower than the discharge end voltage (predetermined value) (step S207; NO), the simultaneous power feeding state is continued. When the first storage battery 150 becomes equal to or lower than the discharge end voltage (step S207; YES), the discharge of the first storage battery 150 is stopped, and DC power is supplied to the load 500 only from the second storage battery 240 (step S207). S208).
 つまり、このステップS207、S208は、第一蓄電池150の電圧が、第一電圧値よりも小さい第二電圧値以下となると、第一ライン130と第二ライン120との切り替えをすることなく第二蓄電池240の電力供給のみとしている。 In other words, these steps S207 and S208 are performed without switching between the first line 130 and the second line 120 when the voltage of the first storage battery 150 becomes equal to or lower than the second voltage value smaller than the first voltage value. Only the power supply of the storage battery 240 is used.
 その後、発電機400からの電力供給が行わると、停電検出部160が遅延部170に対して信号を出力する(ステップS209)。これにより、遅延部170を介してスイッチ145にも信号が出力されるので、スイッチ145はOFFとなって(ステップS210)、ステップS202に移行する。これは図13に示す「復電」期間である。なお、ここでの復電期間には、商用電源300の復電も含む。 Thereafter, when power is supplied from the generator 400, the power failure detection unit 160 outputs a signal to the delay unit 170 (step S209). As a result, a signal is also output to the switch 145 via the delay unit 170, so that the switch 145 is turned off (step S210), and the process proceeds to step S202. This is the “power recovery” period shown in FIG. Note that the power recovery period here includes power recovery of the commercial power supply 300.
 なお、第一蓄電池150の充電は、ステップS210でスイッチ145がOFFとなる前に行ってもよい。また、ステップS210でスイッチ145がOFFとなった後に、一時的にスイッチ145をONとして、第一蓄電池150を充電してから、再度スイッチ145をOFFとしてもよい。 The first storage battery 150 may be charged before the switch 145 is turned off in step S210. Further, after the switch 145 is turned off in step S210, the switch 145 may be temporarily turned on to charge the first storage battery 150, and then the switch 145 may be turned off again.
 次に、スイッチングユニット700を有する第一電力供給装置100Bの製造方法について説明する。まず、作業者は、外装体101Bにスイッチングユニット700をなす各部を組み付けてユニット化する。スイッチングユニット700をなす各部は、例えば、直流入力端子111と、交流入力端子112と、出力端子113と、第一ライン130と、第二ライン120などである。これにより、スイッチ145も外装体101Bに収容される。例えば、砂漠や森林などの劣悪な環境にスイッチングユニット700が設置される場合であっても、スイッチ145を塵埃や雨水から保護することができる。 Next, a method for manufacturing the first power supply apparatus 100B having the switching unit 700 will be described. First, an operator assembles each part which comprises the switching unit 700 in the exterior body 101B, and unitizes it. Each part which comprises the switching unit 700 is the DC input terminal 111, the AC input terminal 112, the output terminal 113, the 1st line 130, the 2nd line 120, etc., for example. Thereby, the switch 145 is also accommodated in the exterior body 101B. For example, even when the switching unit 700 is installed in a poor environment such as a desert or a forest, the switch 145 can be protected from dust and rainwater.
 その後、作業者は、直流入力端子111と、第二電力供給装置200の端子250とを配線部材601で接続する。また、作業者は、出力端子113と負荷500とを配線部材603で接続する。さらに、作業者は、交流入力端子112と端子251とを配線部材602で接続する。前述したように直流入力端子111、交流入力端子112及び出力端子113は、外装体101の全面に設けられているので、これらに対する配線作業を円滑に行うことができる。そして、これにより、スイッチングユニット700が第二電力供給装置200に取り付けられる。この間、若しくはこの後に、作業者は、第一ライン130の接続部180に第一蓄電池150を接続する。これにより、第一電力供給装置100Bが完成する。 Thereafter, the worker connects the DC input terminal 111 and the terminal 250 of the second power supply apparatus 200 with the wiring member 601. The worker connects the output terminal 113 and the load 500 with the wiring member 603. Further, the worker connects the AC input terminal 112 and the terminal 251 with the wiring member 602. As described above, since the DC input terminal 111, the AC input terminal 112, and the output terminal 113 are provided on the entire surface of the exterior body 101, wiring work for these can be performed smoothly. As a result, the switching unit 700 is attached to the second power supply apparatus 200. During or after this time, the operator connects the first storage battery 150 to the connection portion 180 of the first line 130. Thereby, the first power supply apparatus 100B is completed.
 以上のように、スイッチングユニット700の交流入力端子112と、出力端子113と、第一ライン130とがユニット化されているので、第二電力供給装置200に対してスイッチングユニット700を後付けで簡単に取り付けることができる。したがって、第二電力供給装置200に対して、別の電力系統を簡単に増設することができる。このように既設の第二電力供給装置200に対して、第一蓄電池150を備える第一電力供給装置100を簡単に増設することで、既設装置を利用しつつ、電力供給システム全体としての安定性と耐久性を向上することができる。 As described above, since the AC input terminal 112, the output terminal 113, and the first line 130 of the switching unit 700 are unitized, the switching unit 700 can be easily retrofitted to the second power supply apparatus 200. Can be attached. Therefore, another power system can be easily added to the second power supply apparatus 200. As described above, the first power supply device 100 including the first storage battery 150 is simply added to the existing second power supply device 200, so that the stability of the entire power supply system can be achieved while using the existing device. And durability can be improved.
 また、スイッチングユニット700の第一ライン130には、第一蓄電池150が接続される接続部180が備えられているので、この接続部180に対して第一蓄電池150を接続すれば、第二電力供給装置200に対して第一蓄電池150を増設することも可能である。 Moreover, since the connection part 180 to which the 1st storage battery 150 is connected is provided in the 1st line 130 of the switching unit 700, if the 1st storage battery 150 is connected with this connection part 180, it will be 2nd electric power. It is also possible to add the first storage battery 150 to the supply device 200.
 遅延部170が、商用電源300の停電を検知したタイミングよりも遅延させて、スイッチ145による導通又は遮断を切り替えているので、電圧降下(瞬断)が頻繁に起こったとしても、その度にスイッチ145が作動しないようにすることができる。つまり、スイッチ145のチャタリングを防止することができる。 Since the delay unit 170 delays the timing of detecting a power failure of the commercial power supply 300 and switches between conduction and interruption by the switch 145, even if a voltage drop (instant interruption) frequently occurs, the switch 145 may be disabled. That is, chattering of the switch 145 can be prevented.
 第一蓄電池150が接続された第一電力供給装置100Bを第二電力供給装置200に増設した場合に、商用電源300が停止したとしても、第一蓄電池150による電力供給が行われるので、第一蓄電池150を確実に活用することができる。つまり、増設された第一電力供給装置100Bから負荷500に対して安定した電力供給が可能となるため、設備全体を置き換えなくても、第一蓄電池150を安定して活用することができる。 When the first power supply device 100B to which the first storage battery 150 is connected is added to the second power supply device 200, even if the commercial power supply 300 is stopped, the power supply by the first storage battery 150 is performed. The storage battery 150 can be used reliably. That is, since it is possible to stably supply power to the load 500 from the added first power supply apparatus 100B, the first storage battery 150 can be stably utilized without replacing the entire facility.
 例えば鉛蓄電池などの第二蓄電池240が、第一ライン130とは別の第二ライン120から負荷500に電力可能に接続されていた場合、負荷500に供給される電圧が第一電圧値以下となると第二蓄電池240からの電力供給が開始されるので、第一蓄電池150と第二蓄電池240とを効率的に切り替えることができる。 For example, when the second storage battery 240 such as a lead storage battery is connected to the load 500 from the second line 120 different from the first line 130, the voltage supplied to the load 500 is equal to or lower than the first voltage value. Then, since the electric power supply from the 2nd storage battery 240 is started, the 1st storage battery 150 and the 2nd storage battery 240 can be switched efficiently.
 負荷500に供給される電圧が、第一電圧値よりも小さい第二電圧値以下となると、第二蓄電池240からの電力供給のみとなるので、第一蓄電池150と第二蓄電池240とをスムーズに切り替えることができる。 When the voltage supplied to the load 500 is equal to or lower than the second voltage value that is smaller than the first voltage value, only the power supply from the second storage battery 240 is performed, so the first storage battery 150 and the second storage battery 240 are smoothly connected. Can be switched.
 負荷500に供給される電圧が第二電圧値以下となると、第一ライン130と第二ライン120との切り替えをすることなく第二蓄電池240からの電力供給のみとしているので、第一ライン130と第二ライン120とを切り替えるための回路部品が不要となる。 When the voltage supplied to the load 500 is equal to or lower than the second voltage value, only the power supply from the second storage battery 240 is performed without switching between the first line 130 and the second line 120. A circuit component for switching to the second line 120 becomes unnecessary.
 停電時において、負荷500に供給される電圧が、第二電圧値よりも小さい第三電圧値以下となると、第二ライン120を介して発電機400からの電力供給を開始してもよい。 When the voltage supplied to the load 500 becomes equal to or lower than the third voltage value smaller than the second voltage value during a power failure, power supply from the generator 400 may be started via the second line 120.
 これにより、停電時における負荷500への電力供給を安定して継続することができる。 Thereby, power supply to the load 500 at the time of a power failure can be stably continued.
 スイッチングユニット700が第二ライン120を備えている場合を例示した。代替的に、第二ライン120は、スイッチングユニット700に設けられていなくてもよい。この場合、負荷500に対して第二蓄電池240が直接接続されていてもよい。この場合においても、第一蓄電池150が放電終止電圧に達すると、第二蓄電池240からの給電に切り替えることができる。 The case where the switching unit 700 includes the second line 120 is illustrated. Alternatively, the second line 120 may not be provided in the switching unit 700. In this case, the second storage battery 240 may be directly connected to the load 500. Even in this case, when the first storage battery 150 reaches the end-of-discharge voltage, the power supply from the second storage battery 240 can be switched.
 また、スイッチングユニット700と第一蓄電池150とを備えた第一電力供給装置100Bを例示したが、この第一電力供給装置100Bを通信基地局バックアップシステムに適用することも可能である。例えば、通信基地局で停電が発生すると、単に停電時にデータ通信が行えなくなるだけでなく、復電後においても、停電前のデータ通信を再度行わなければならず、非効率である。これは、電力供給事情の悪い発展途上国では、深刻な問題である。しかしながら、上記の第一電力供給装置100Bを通信基地局バックアップシステムとして通信基地局に設置すれば、通信基地局に対する電力供給を安定化することができ、通信の安定化も実現することが可能である。また、通信基地局バックアップシステムが、既設装置である第二電力供給装置200を備えていてもよい。また、通信基地局だけでなくその他の設備に対して設けられる電源システムが、第一電力供給装置100Bと、既設装置である第二電力供給装置200とを備えていてもよい。 Further, although the first power supply device 100B including the switching unit 700 and the first storage battery 150 has been illustrated, the first power supply device 100B can be applied to a communication base station backup system. For example, when a power outage occurs at a communication base station, not only data communication cannot be performed at the time of a power outage, but also after power recovery, data communication before the power outage must be performed again, which is inefficient. This is a serious problem in developing countries where power supply conditions are poor. However, if the first power supply apparatus 100B is installed in a communication base station as a communication base station backup system, power supply to the communication base station can be stabilized, and communication can be stabilized. is there. In addition, the communication base station backup system may include the second power supply device 200 that is an existing device. Moreover, the power supply system provided with respect to not only a communication base station but other facilities may be provided with the 1st power supply apparatus 100B and the 2nd power supply apparatus 200 which is an existing apparatus.
 また、上記実施の形態では、第二電力供給装置200が既設装置である場合を例示したが、第二電力供給装置200は既設でなく、第一電力供給装置100とともに設置されてもよい。 Moreover, although the case where the second power supply device 200 is an existing device has been illustrated in the above embodiment, the second power supply device 200 may be installed together with the first power supply device 100 instead of the existing device.
 第二実施形態では、第一ライン130にスイッチ145が設けられている場合を例示したが、この第三実施形態では、第一蓄電池150と第一ライン130との間にスイッチ145cが取り付けられている場合を例示する。 In the second embodiment, the case where the switch 145 is provided in the first line 130 is illustrated. However, in the third embodiment, the switch 145c is attached between the first storage battery 150 and the first line 130. An example is given.
 以下、第三実施形態に係るスイッチングユニット700Cについて説明する。 Hereinafter, the switching unit 700C according to the third embodiment will be described.
 図14は、スイッチングユニット700Cの制御構成の概略を示すブロック図である。図14は、図11に対応する図である。以降の説明においては、第二実施形態と異なる部分を重点的に説明する。図14に示すように、スイッチングユニット700Cの第一ライン130は、交流入力端子112から入力された交流電力を第一直流電力に変換して出力端子113まで供給するための電力系統である。 FIG. 14 is a block diagram showing an outline of the control configuration of the switching unit 700C. FIG. 14 is a diagram corresponding to FIG. In the following description, parts different from the second embodiment will be mainly described. As shown in FIG. 14, the first line 130 of the switching unit 700 </ b> C is a power system for converting AC power input from the AC input terminal 112 into first DC power and supplying the first DC power to the output terminal 113.
 第一ライン130には、第一AC/DCコンバータ133と、低電圧検出回路146と、スイッチ145cと、第一ダイオード134と、第一蓄電池150とが設けられている。 The first line 130 is provided with a first AC / DC converter 133, a low voltage detection circuit 146, a switch 145c, a first diode 134, and a first storage battery 150.
 低電圧検出回路146は、第一ライン130における第一AC/DCコンバータ133と、第一蓄電池150との間に接続されている。低電圧検出回路146は、第一ライン130での電圧が所定値(例えば第一蓄電池150の放電終止電圧)よりも大きい場合にはスイッチ145cに信号を出力し続け、所定値以下になった場合にはスイッチ145cに信号を出力しない。 The low voltage detection circuit 146 is connected between the first AC / DC converter 133 in the first line 130 and the first storage battery 150. The low voltage detection circuit 146 continues to output a signal to the switch 145c when the voltage at the first line 130 is higher than a predetermined value (for example, the discharge end voltage of the first storage battery 150), and when the voltage is lower than the predetermined value. Does not output a signal to the switch 145c.
 スイッチ145cは、低電圧検出回路146からの信号の有無に基づいて、第一蓄電池150への電力経路のON/OFFを切り替えるスイッチである。具体的には、スイッチ145cは、第一ライン130における第一蓄電池150までの経路途中に設けられている。スイッチ145cは、低電圧検出回路146から信号が入力されている状態ではONとなり、第一蓄電池150の電力経路をONとする。他方、スイッチ145cは、低電圧検出回路146からの信号が入力されていない状態でOFFとなり、第一蓄電池150の電力経路をOFFとする。 The switch 145c is a switch that switches ON / OFF of the power path to the first storage battery 150 based on the presence / absence of a signal from the low voltage detection circuit 146. Specifically, the switch 145 c is provided on the way to the first storage battery 150 in the first line 130. The switch 145c is turned on when a signal is input from the low voltage detection circuit 146, and the power path of the first storage battery 150 is turned on. On the other hand, the switch 145c is turned off when the signal from the low voltage detection circuit 146 is not inputted, and the power path of the first storage battery 150 is turned off.
 第二実施形態と同様に、第一蓄電池150の充電電圧は、第二蓄電池240の充電電圧よりも高く設定されている。また、第一蓄電池150の放電終止電圧は、第二蓄電池240の放電終止電圧よりも高く設定されている。例えば、第一蓄電池150の充電電圧を56.7V、放電終止電圧を46.2Vとし、第二蓄電池240の充電電圧を54.0、放電終止電圧を43.2Vとする。これにより、停電直後では、まず第一ライン130の第一蓄電池150から負荷500に電力が供給される。その後、第一蓄電池150の電圧が、第二蓄電池240の充電電圧まで低下すると、それ以降においては、第一蓄電池150と第二蓄電池240との両方から負荷500に電力が供給される。そして、第一蓄電池150が放電終止電圧に達すると、低電圧検出回路146がそれを検出してスイッチ145cをOFFとする。これにより、第二蓄電池240のみから負荷500に電力が供給される。 As in the second embodiment, the charging voltage of the first storage battery 150 is set higher than the charging voltage of the second storage battery 240. The discharge end voltage of the first storage battery 150 is set higher than the discharge end voltage of the second storage battery 240. For example, the charge voltage of the first storage battery 150 is 56.7 V, the discharge end voltage is 46.2 V, the charge voltage of the second storage battery 240 is 54.0, and the discharge end voltage is 43.2 V. Thereby, immediately after a power failure, power is first supplied from the first storage battery 150 of the first line 130 to the load 500. Then, when the voltage of the 1st storage battery 150 falls to the charge voltage of the 2nd storage battery 240, electric power is supplied to the load 500 from both the 1st storage battery 150 and the 2nd storage battery 240 after that. When the first storage battery 150 reaches the end-of-discharge voltage, the low voltage detection circuit 146 detects this and turns off the switch 145c. Thereby, electric power is supplied to the load 500 only from the second storage battery 240.
 次に、スイッチングユニット700Cを備えた第一電力供給装置100B(通信基地局バックアップシステム)の制御方法について説明する。 Next, a control method of the first power supply apparatus 100B (communication base station backup system) provided with the switching unit 700C will be described.
 図15は、第一電力供給装置100Bの制御方法の流れを示すフローチャートである。図16は図15の制御方法実行時における負荷電圧変化及び各部のON/OFF切替タイミングを示すタイミングチャートである。 FIG. 15 is a flowchart showing the flow of the control method of the first power supply apparatus 100B. FIG. 16 is a timing chart showing load voltage change and ON / OFF switching timing of each part when the control method of FIG. 15 is executed.
 ここでは、商用電源300が停電になった場合に、既設の第二電力供給装置200の切替部220が第一電力供給装置100に対する電力供給元を商用電源300から発電機400に切り替える場合を例示する。 Here, a case where the switching unit 220 of the existing second power supply apparatus 200 switches the power supply source for the first power supply apparatus 100 from the commercial power supply 300 to the generator 400 when the commercial power supply 300 has a power failure is illustrated. To do.
 まず、第一電力供給装置100Bのスイッチングユニット700Cは、商用電源300から受電中であると、第一ライン130での電圧が所定値よりも大きいために、低電圧検出回路146が信号を出力し続けて、スイッチ145cをONとしている(ステップS301)。これは図16に示す「商用電源による給電」期間である。 First, when the switching unit 700C of the first power supply apparatus 100B is receiving power from the commercial power supply 300, the voltage on the first line 130 is larger than a predetermined value, so the low voltage detection circuit 146 outputs a signal. Subsequently, the switch 145c is turned on (step S301). This is the “power supply by commercial power supply” period shown in FIG.
 具体的には、商用電源300から供給された交流電力の一部は、第二AC/DCコンバータ230によって第二直流電力に変換されて、第二蓄電池240に供給され、第二蓄電池を蓄電する。 Specifically, a part of the AC power supplied from the commercial power supply 300 is converted into the second DC power by the second AC / DC converter 230 and supplied to the second storage battery 240 to store the second storage battery. .
 商用電源300から供給された交流電力のその他の一部は、交流入力端子112を介して第一ライン130に供給される。これにより、交流電力の一部は、第一AC/DCコンバータ133によって第一直流電力に変換されて負荷500に供給される。なお、このとき、第一ライン130では、スイッチ145cがON、つまり第一蓄電池150への電力経路がONとなっているので、第一AC/DCコンバータ133によって変換された第一直流電力の一部は、第一蓄電池150に供給される。 Other part of the AC power supplied from the commercial power supply 300 is supplied to the first line 130 via the AC input terminal 112. Thereby, a part of the AC power is converted into the first DC power by the first AC / DC converter 133 and supplied to the load 500. At this time, in the first line 130, since the switch 145c is ON, that is, the power path to the first storage battery 150 is ON, one of the first DC power converted by the first AC / DC converter 133 is used. The part is supplied to the first storage battery 150.
 次いで、商用電源300から交流電力の供給が継続されている場合(ステップS302;NO)には、その状態が維持される。一方、商用電源300が停電した場合(ステップS302;YES)には、第一蓄電池150に対する供給電圧も低下するために、第一蓄電池150から負荷500に対して直流電力が供給される(ステップS303)。これは図16に示す「第一蓄電池による給電(第一状態)」期間である。ここで第一状態とは、第一蓄電池150からの直流電力が負荷500に供給されている状態である。 Next, when the supply of AC power from the commercial power supply 300 is continued (step S302; NO), the state is maintained. On the other hand, when the commercial power supply 300 has a power failure (step S302; YES), the supply voltage to the first storage battery 150 is also reduced, so that DC power is supplied from the first storage battery 150 to the load 500 (step S303). ). This is the “power supply by the first storage battery (first state)” period shown in FIG. 16. Here, the first state is a state in which DC power from the first storage battery 150 is supplied to the load 500.
 次いで、第一蓄電池150が第二蓄電池240と異なる電圧である場合(ステップS304;NO)には、第一状態が継続される。第一蓄電池150と第二蓄電池240とが同じ電圧になった場合(ステップS304;YES)には、第一蓄電池150と第二蓄電池240との両者が放電する(ステップS305)。これにより、第一ライン130には第一蓄電池150から直流電力が流れ、第二ライン120には第二蓄電池240から直流電力が流れて、負荷500に対して直流電力が供給される。これは、図16に示す「第一蓄電池及び第二蓄電池による給電」期間である。この期間では、負荷500に対して第一蓄電池150と第二蓄電池240とが同時に給電する同時給電状態となっている。 Next, when the first storage battery 150 has a voltage different from that of the second storage battery 240 (step S304; NO), the first state is continued. When the first storage battery 150 and the second storage battery 240 have the same voltage (step S304; YES), both the first storage battery 150 and the second storage battery 240 are discharged (step S305). Thereby, DC power flows from the first storage battery 150 to the first line 130, DC power flows from the second storage battery 240 to the second line 120, and DC power is supplied to the load 500. This is the “power supply by the first storage battery and the second storage battery” period shown in FIG. 16. During this period, the first storage battery 150 and the second storage battery 240 simultaneously supply power to the load 500.
 次いで、第一ライン130の電圧が、第一蓄電池150の放電終止電圧以下でない場合(ステップS306;NO)には、同時給電状態が継続される。一方、第一ライン130の電圧が、第一蓄電池150の放電終止電圧以下となった場合(ステップS306;YES)には、低電圧検出回路146がスイッチ145cをOFFとする(ステップS307)。 Next, when the voltage of the first line 130 is not equal to or lower than the discharge end voltage of the first storage battery 150 (step S306; NO), the simultaneous power feeding state is continued. On the other hand, when the voltage of the first line 130 becomes equal to or lower than the discharge end voltage of the first storage battery 150 (step S306; YES), the low voltage detection circuit 146 turns off the switch 145c (step S307).
 これにより、第一蓄電池150の放電が停止して、第二蓄電池240のみから負荷500に直流電力が供給される(ステップS308)。 Thereby, the discharge of the first storage battery 150 is stopped, and DC power is supplied from only the second storage battery 240 to the load 500 (step S308).
 その後、発電機400からの電力供給が行わると、負荷500に対する給電が再開する。このとき、第一ライン130の電圧が、第一蓄電池150の放電終止電圧以下である場合(ステップS309;NO)には、その状態が維持される。一方、第一ライン130の電圧が、第一蓄電池150の放電終止電圧よりも大きくなった場合(ステップS309;YES)には、低電圧検出回路146がスイッチ145cをONとして(ステップS310)、第一蓄電池150に対する給電も再開し、第一蓄電池150の蓄電が行われる。一方、第二蓄電池240に対する給電も再開され、第二蓄電池240の蓄電が行われる。そして、ステップS302に移行する。これは図16に示す「復電」期間である。なお、ここでの復電期間には、商用電源300の復電も含む。 Thereafter, when power is supplied from the generator 400, power supply to the load 500 is resumed. At this time, when the voltage of the first line 130 is equal to or lower than the discharge end voltage of the first storage battery 150 (step S309; NO), the state is maintained. On the other hand, when the voltage of the first line 130 becomes higher than the discharge end voltage of the first storage battery 150 (step S309; YES), the low voltage detection circuit 146 turns on the switch 145c (step S310), Power supply to the single storage battery 150 is also resumed, and the first storage battery 150 is charged. On the other hand, the power supply to the second storage battery 240 is also restarted, and the second storage battery 240 is charged. Then, the process proceeds to step S302. This is the “power recovery” period shown in FIG. Note that the power recovery period here includes power recovery of the commercial power supply 300.
 また、低電圧検出回路146に対して、前出のチャタリング防止機能である遅延回路を設けることも可能である。例えば、ステップS310でスイッチ145cがONとなってから、第一蓄電池150が所定以上充電されたことをトリガーとして、一旦、スイッチ145をOFFとしても構わない。この場合、低電圧検出回路で低電圧を検出し、遅延回路により低電圧が所定時間以上継続したときにスイッチ145をONとしてもよい。 It is also possible to provide a delay circuit as the chattering prevention function described above for the low voltage detection circuit 146. For example, after the switch 145c is turned on in step S310, the switch 145 may be turned off once, triggered by the first storage battery 150 being charged a predetermined amount or more. In this case, the low voltage may be detected by the low voltage detection circuit, and the switch 145 may be turned on when the low voltage continues for a predetermined time or more by the delay circuit.
 なお、スイッチングユニット700Cを製造(組立)する際においては、第一蓄電池150と第一ライン130との間にスイッチ145cと低電圧検出回路146とを取り付けるものとする。 In addition, when manufacturing (assembling) the switching unit 700C, the switch 145c and the low voltage detection circuit 146 are attached between the first storage battery 150 and the first line 130.
 なお、この第三実施形態では、第一ライン130の電圧が第一蓄電池150の放電終止電圧以下であるか否かを低電圧検出回路146が検出し、この検出結果に基づいてスイッチ145cのON/OFFを制御する場合を説明した。しかしながら、低電圧検出回路146は、第一蓄電池150の蓄電時にスイッチ145cをONする機能や、第一蓄電池150が所定電圧(例えば充電電圧56.7V)に到達したときにスイッチ145cをOFFとする機能を有していてもよい。これらの機能は、別の専用回路で実現されていてもよい。 In the third embodiment, the low voltage detection circuit 146 detects whether or not the voltage of the first line 130 is equal to or lower than the discharge end voltage of the first storage battery 150, and the switch 145c is turned on based on the detection result. The case where / OFF is controlled has been described. However, the low voltage detection circuit 146 functions to turn on the switch 145c when the first storage battery 150 is charged, or turns off the switch 145c when the first storage battery 150 reaches a predetermined voltage (for example, charging voltage 56.7V). It may have a function. These functions may be realized by another dedicated circuit.
 また、低電圧検出回路146は、停電が検知されていない場合には、スイッチ145cをOFFにして、第一蓄電池150から出力端子113までの電気的な導通を遮断してもよい。 Further, the low voltage detection circuit 146 may turn off the switch 145c to cut off the electrical continuity from the first storage battery 150 to the output terminal 113 when no power failure is detected.
 なお、電力供給装置の切替方法は、電源からの電力を負荷に供給する既設装置に対して取り付けられ、電源からの電力を第一ラインまたは当該第一ラインとは異なる別のラインを介して負荷に供給可能な電力供給装置の切替方法であって、第一ラインまたは別のラインが電源から電力を受電している状態では、第一ラインおよび別のラインの少なくともいずれかを介して負荷に電力を供給する第一ステップと、電源が停止すると、負荷への電力供給を途絶えさせることなく、第一ラインに接続された第一蓄電池から負荷に電力を供給する第二ステップとを含んでもよい。 The power supply device switching method is attached to an existing device that supplies power from the power source to the load, and the power from the power source is loaded via the first line or another line different from the first line. In the state where the first line or another line is receiving power from the power source, the power is supplied to the load via at least one of the first line and the other line. And a second step of supplying power to the load from the first storage battery connected to the first line without interrupting power supply to the load when the power supply is stopped.
 本発明の一態様に係る制御方法は、第一電源からの電力を第一ラインを介して負荷に供給可能であるとともに、第二電源からの電力を第二ラインを介して負荷に供給可能である電力供給装置の制御方法であって、第一ラインは、第一蓄電池を備え、第一ラインが第一電源から電力を受電している状態では、第一ラインを介して負荷に電力を供給する第一ステップと、第一電源が停止すると、第一蓄電池から負荷に電力を供給する第二ステップと、第一蓄電池の電圧が第一所定値以下となると、第二ラインからの電力供給を開始するとともに、第一蓄電池からの電力供給を停止する第三ステップとを含んでもよい。 The control method according to one aspect of the present invention can supply power from the first power source to the load via the first line and can supply power from the second power source to the load via the second line. A control method for a certain power supply device, wherein the first line includes a first storage battery and supplies power to the load via the first line when the first line is receiving power from the first power source. When the first power supply stops, the second step of supplying power from the first storage battery to the load, and when the voltage of the first storage battery is equal to or lower than the first predetermined value, the power supply from the second line is performed. A third step of starting and stopping power supply from the first storage battery may be included.
 この構成によれば、鉛蓄電池を備えた既設装置に、第一蓄電池を備えた電力供給装置を増設した場合に、第一電源が停止したとしても、先に第一蓄電池による電力供給が行われた後に第二ラインによる電力供給が開始されるので、第一蓄電池を確実に活用することができる。つまり、増設された電力供給装置から負荷に対して安定した電力供給が可能となるため、電力供給システムの安定性と耐久性を向上させることができる。さらに、設備全体を置き換えなくても、鉛蓄電池とは異なる第一蓄電池を安定して活用することができる。 According to this configuration, when the power supply device including the first storage battery is added to the existing device including the lead storage battery, even if the first power supply is stopped, the power supply by the first storage battery is performed first. After that, since the power supply by the second line is started, the first storage battery can be used reliably. That is, since it is possible to supply power stably to the load from the added power supply device, the stability and durability of the power supply system can be improved. Furthermore, the first storage battery different from the lead storage battery can be stably utilized without replacing the entire facility.
 第一電源と第二電源とは共通の電源であり、第三ステップの後、電源が復電した際に、第一ラインに対する電源の電力供給を停止するとともに、電源から第二ラインを介して負荷に電力を供給する第四ステップを含んでもよい。 The first power supply and the second power supply are a common power supply. After the third step, when the power supply is restored, the power supply of the power supply to the first line is stopped and the power supply from the power supply through the second line A fourth step of supplying power to the load may be included.
 この構成によれば、電源が復電した際に、第一ラインに対する電源の電力供給を停止するとともに、電源から第二ラインを介して負荷に電力を供給するので、復電直後においては第一蓄電池の蓄電は行われない。これにより、復電直後には、電源による第一蓄電池の蓄電と、負荷に対する電力供給とが同時に行われないことになり、入力容量オーバーを抑制することができる。 According to this configuration, when the power source is restored, the power supply of the power source to the first line is stopped and the power is supplied from the power source to the load via the second line. The storage battery is not charged. Thereby, immediately after power recovery, the storage of the first storage battery by the power source and the power supply to the load are not performed at the same time, and it is possible to suppress the input capacity over.
 第二ラインの電圧が第二所定値以上であるか、または第一所定時間経過すると、第一ラインに対する電源の電力供給を開始する第五ステップを含んでもよい。 A fifth step of starting power supply of the power source to the first line when the voltage of the second line is equal to or higher than the second predetermined value or when the first predetermined time elapses may be included.
 この構成によれば、第二ラインの電圧が第二所定値以上であるか、または第一所定時間経過すると、第一ラインに対する電源の電力供給を開始するので、第二ラインが安定した後に、第一蓄電池の蓄電を行うことができる。 According to this configuration, when the voltage of the second line is equal to or higher than the second predetermined value, or when the first predetermined time elapses, the power supply of the power source to the first line is started. The first storage battery can be charged.
 第一蓄電池の電圧が第三所定値以上になると、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止する第六ステップを含んでもよい。 A sixth step of supplying power from the first line to the load and stopping power supply from the second line when the voltage of the first storage battery becomes equal to or higher than the third predetermined value may be included.
 この構成によれば、第一蓄電池の電圧が第三所定値以上になると、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止するので、復電後においても第一蓄電池が安定した蓄電量を確保することができる。 According to this configuration, when the voltage of the first storage battery becomes equal to or higher than the third predetermined value, the power is supplied from the first line to the load and the power supply from the second line is stopped. A single storage battery can secure a stable amount of electricity.
 第一電源と第二電源とは共通の電源であり、第三ステップの後、電源が復電した際に、第二ラインの電圧が第二所定値に達するか、第一所定時間経過すると、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止する第七ステップを含んでもよい。 The first power source and the second power source are a common power source, and after the third step, when the power source is restored, when the voltage of the second line reaches the second predetermined value or the first predetermined time elapses, A seventh step of supplying power from the first line to the load and stopping the power supply from the second line may be included.
 この構成によれば、電源が復電した際に、第二ラインの電圧が第二所定値に達するか、第一所定時間経過すると、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止するので、復電後、すぐに第一蓄電池に蓄電させるとともに、第一蓄電池を短時間停電対応で効果的に使用することができる。 According to this configuration, when the power supply recovers, when the voltage of the second line reaches the second predetermined value or when the first predetermined time elapses, power is supplied from the first line to the load, and the second line Since the power supply from is stopped, the first storage battery can be stored immediately after the power recovery, and the first storage battery can be effectively used for a short-time power failure.
 第一電源と第二電源とは共通の電源であり、第三ステップの後、電源が復電した際に、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止する第八ステップを含んでもよい。 The first power supply and the second power supply are a common power supply. After the third step, when the power supply recovers, the power is supplied from the first line to the load and the power supply from the second line is stopped. An eighth step may be included.
 この構成によれば、電源が復電した際に、第一ラインから負荷に電力を供給するとともに、第二ラインからの電力供給を停止するので、制御内容を簡素化することができる。 According to this configuration, when power is restored, power is supplied from the first line to the load and power supply from the second line is stopped, so that the control content can be simplified.
 本発明の一態様に係る電力供給装置の切替方法は、電源からの電力を第一ラインとは異なる別のラインを介して負荷に供給可能な電力供給装置の切替方法であって、別のラインが電源から電力を受電している状態では、別のラインを介して負荷に電力を供給する第一ステップと、電源が停止すると、負荷への電力供給を途絶えさせることなく、第一ラインに接続された第一蓄電池から負荷に電力を供給する第二ステップとを含んでもよい。 A switching method for a power supply apparatus according to an aspect of the present invention is a switching method for a power supply apparatus that can supply power from a power source to a load via a line different from the first line, and the line is a separate line. In the state where power is being received from the power supply, the first step is to supply power to the load via another line, and when the power supply is stopped, the power supply to the load is not interrupted and connected to the first line. And a second step of supplying electric power from the first storage battery to the load.
 この構成によれば、第一蓄電池が接続された電力供給装置を既設装置に増設した場合に、電源が停止したとしても、第一蓄電池による電力供給が行われるので、第一蓄電池を確実に活用することができる。つまり、増設された電力供給装置から負荷に対して安定した電力供給が可能となるため、設備全体を置き換えなくても、第一蓄電池を活用することができる。 According to this configuration, when the power supply device to which the first storage battery is connected is added to the existing device, even if the power supply is stopped, the power supply by the first storage battery is performed, so the first storage battery is reliably used. can do. That is, since it is possible to stably supply power to the load from the added power supply device, the first storage battery can be used without replacing the entire facility.
 負荷には、別のラインから電力を供給する第二蓄電池が接続されており、負荷に供給される電圧が第一電圧値以下となると、第二蓄電池からの電力供給を開始してもよい。 A second storage battery that supplies power from another line is connected to the load, and when the voltage supplied to the load is equal to or lower than the first voltage value, the power supply from the second storage battery may be started.
 この構成によれば、第二蓄電池が、第一ラインとは別のラインから負荷に電力可能に接続されていた場合、負荷に供給される電圧が第一電圧値以下となると第二蓄電池からの電力供給が開始されるので、第一蓄電池と第二蓄電池とを効率的に切り替えることができる。 According to this configuration, when the second storage battery is connected to the load from a line different from the first line so that power can be supplied, when the voltage supplied to the load becomes equal to or lower than the first voltage value, Since power supply is started, a 1st storage battery and a 2nd storage battery can be switched efficiently.
 負荷に供給される電圧が、第一電圧値よりも小さい第二電圧値以下となると、第二蓄電池からの電力供給のみとしてもよい。 When the voltage supplied to the load is equal to or lower than the second voltage value smaller than the first voltage value, only the power supply from the second storage battery may be used.
 この構成によれば、負荷に供給される電圧が、第一電圧値よりも小さい第二電圧値以下となると、第二蓄電池からの電力供給のみとなるので、第一蓄電池と第二蓄電池とをスムーズに切り替えることができる。 According to this configuration, when the voltage supplied to the load is equal to or lower than the second voltage value smaller than the first voltage value, only the power supply from the second storage battery is performed. You can switch smoothly.
 負荷に供給される電圧が第二電圧値以下となると、第一ラインと別ラインの切り替えをすることなく第二蓄電池からの電力供給のみとしてもよい。 When the voltage supplied to the load is equal to or lower than the second voltage value, only power supply from the second storage battery may be performed without switching the first line and another line.
 この構成によれば、負荷に供給される電圧が第二電圧値以下となると、第一ラインと第二ラインとの切り替えをすることなく第二蓄電池からの電力供給のみとしているので、第一ラインと第二ラインとを切り替えるための回路部品が不要となる。 According to this configuration, when the voltage supplied to the load is equal to or lower than the second voltage value, only the power supply from the second storage battery is performed without switching between the first line and the second line. And a circuit component for switching between the second line and the second line become unnecessary.
 負荷に供給される電圧が、第二電圧値よりも小さい第三電圧値以下となると、別のラインを介して発電機からの電力供給を開始してもよい。 When the voltage supplied to the load falls below the third voltage value smaller than the second voltage value, the power supply from the generator may be started via another line.
 この構成によれば、負荷に供給される電圧が、第二電圧値よりも小さい第三電圧値以下となると、別のラインを介して発電機からの電力供給を開始されるので、停電時における負荷への電力供給を安定して継続することができる。 According to this configuration, when the voltage supplied to the load is equal to or lower than the third voltage value smaller than the second voltage value, the power supply from the generator is started via another line. The power supply to the load can be continued stably.
 なお、上記実施の形態及び上記変形例を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。 In addition, the form constructed | assembled combining the said embodiment and the said modification arbitrarily is also contained in the scope of the present invention.
 本発明は、既設装置に対して取り付けられる電力供給装置(電力供給ユニット)等に適用できる。 The present invention can be applied to a power supply device (power supply unit) attached to an existing device.
100、100A、100B 第一電力供給装置
101、101B 外装体
102 取っ手
110 端子群
111 直流入力端子
112 交流入力端子
113 出力端子
119 蓄電池用端子
120 第二ライン(別のライン)
121 第三電圧センサ
122 第二ダイオード
130 第一ライン
131 第二電圧センサ
132 第一電圧センサ
133 第一AC/DCコンバータ
134 第一ダイオード
140、140a 切替制御部
141 第二スイッチ
142 第一スイッチ
143 第三スイッチ
145、145c スイッチ
146 低電圧検出回路
150、150B 第一蓄電池
150a、150b、250、251 端子
180 接続部
200 第二電力供給装置(既設装置)
201 第一収納部
202 第二収納部
205 主要構成部
210 ラック
211 扉
220 切替部
230 第二AC/DCコンバータ
240 第二蓄電池
270 交流出力端子
300 商用電源
400 発電機
500 負荷
601、602、603、604、605 配線部材
700、700C スイッチングユニット
100, 100A, 100B First power supply device 101, 101B Exterior body 102 Handle 110 Terminal group 111 DC input terminal 112 AC input terminal 113 Output terminal 119 Storage battery terminal 120 Second line (another line)
121 3rd voltage sensor 122 2nd diode 130 1st line 131 2nd voltage sensor 132 1st voltage sensor 133 1st AC / DC converter 134 1st diode 140,140a switching control part 141 2nd switch 142 1st switch 143 1st Three switches 145, 145c Switch 146 Low voltage detection circuits 150, 150B First storage batteries 150a, 150b, 250, 251 Terminal 180 Connection unit 200 Second power supply device (existing device)
201 first storage unit 202 second storage unit 205 main component 210 rack 211 door 220 switching unit 230 second AC / DC converter 240 second storage battery 270 AC output terminal 300 commercial power source 400 generator 500 loads 601, 602, 603, 604, 605 Wiring member 700, 700C Switching unit

Claims (12)

  1.  電源からの電力を負荷に供給する既設装置に対して取り付けられ、前記電源からの電力を第一ラインまたは当該第一ラインとは異なる別のラインを介して前記負荷に供給可能な電力供給装置の切替方法であって、
     前記第一ラインまたは前記別のラインが前記電源から電力を受電している状態では、前記第一ラインおよび前記別のラインの少なくともいずれかを介して前記負荷に電力を供給する第一ステップと、
     前記電源が停止すると、前記第一ラインに接続された第一蓄電池から前記負荷に電力を供給する第二ステップとを含む
     電力供給装置の切替方法。
    A power supply device that is attached to an existing device that supplies power from a power source to a load, and that can supply power from the power source to the load via a first line or another line different from the first line. A switching method,
    A first step of supplying power to the load via at least one of the first line and the another line when the first line or the other line is receiving power from the power source;
    And a second step of supplying power from the first storage battery connected to the first line to the load when the power supply is stopped.
  2.  前記電源が停止して所定時間経過した後に、前記第一蓄電池から前記負荷に電力を供給する
     請求項1に記載の電力供給装置の切替方法。
    The power supply apparatus switching method according to claim 1, wherein power is supplied from the first storage battery to the load after a predetermined time has elapsed since the power supply was stopped.
  3.  前記負荷には、前記別のラインから電力を供給する第二蓄電池が接続されており、
     前記負荷に供給される電圧が第一電圧値以下となると、前記第二蓄電池からの電力供給を開始する
     請求項1または2に記載の電力供給装置の切替方法。
    A second storage battery that supplies power from the other line is connected to the load,
    The power supply apparatus switching method according to claim 1 or 2, wherein when the voltage supplied to the load becomes equal to or lower than a first voltage value, power supply from the second storage battery is started.
  4.  前記負荷に供給される電圧が、前記第一電圧値よりも小さい第二電圧値以下となると、前記第二蓄電池からの電力供給のみとする
     請求項3に記載の電力供給装置の切替方法。
    The method for switching a power supply apparatus according to claim 3, wherein when the voltage supplied to the load is equal to or less than a second voltage value smaller than the first voltage value, only power supply from the second storage battery is performed.
  5.  前記負荷に供給される電圧が、前記第二電圧値よりも小さい第三電圧値以下となると、前記別のラインを介して発電機からの電力供給を開始する
     請求項4に記載の電力供給装置の切替方法。
    The power supply device according to claim 4, wherein when the voltage supplied to the load becomes equal to or lower than a third voltage value smaller than the second voltage value, power supply from the generator is started via the another line. Switching method.
  6.  第一電源からの電力を第一ラインを介して負荷に供給可能であるとともに、第二電源からの電力を第二ラインを介して前記負荷に供給可能である電力供給装置の制御方法であって、
     前記第一ラインは、第一蓄電池を備え、
     前記第一ラインが前記第一電源から電力を受電している状態では、前記第一ラインを介して前記負荷に電力を供給する第一ステップと、
     前記第一電源が停止すると、前記第一蓄電池から前記負荷に電力を供給する第二ステップと、
     前記第一蓄電池の電圧が第一所定値以下となると、前記第二ラインからの電力供給を開始するとともに、前記第一蓄電池からの電力供給を停止する第三ステップとを含む
     電力供給装置の制御方法。
    A control method for a power supply device capable of supplying power from a first power source to a load via a first line and supplying power from a second power source to the load via a second line, ,
    The first line includes a first storage battery,
    In a state where the first line is receiving power from the first power source, a first step of supplying power to the load via the first line;
    When the first power supply stops, a second step of supplying power from the first storage battery to the load;
    And a third step of starting power supply from the second line and stopping power supply from the first storage battery when the voltage of the first storage battery falls below a first predetermined value. Method.
  7.  前記第一電源と前記第二電源とは共通の電源であり、
     前記第三ステップの後、前記電源が復電した際に、前記第一ラインに対する前記電源の電力供給を停止するとともに、前記電源から前記第二ラインを介して前記負荷に電力を供給する第四ステップを含む
     請求項6に記載の電力供給装置の制御方法。
    The first power source and the second power source are a common power source,
    After the third step, when the power supply recovers, the power supply of the power supply to the first line is stopped and the power is supplied from the power supply to the load via the second line. The control method of the electric power supply apparatus of Claim 6 including a step.
  8.  前記第二ラインの電圧が第二所定値以上であるか、または第一所定時間経過すると、前記第一ラインに対する前記電源の電力供給を開始する第五ステップを含む
     請求項7に記載の電力供給装置の制御方法。
    The power supply according to claim 7, further comprising a fifth step of starting power supply of the power source to the first line when the voltage of the second line is equal to or higher than a second predetermined value or when a first predetermined time elapses. Control method of the device.
  9.  前記第一蓄電池の電圧が第三所定値以上になると、前記第一ラインから前記負荷に電力を供給するとともに、前記第二ラインからの電力供給を停止する第六ステップを含む
     請求項8に記載の電力供給装置の制御方法。
    The sixth step of supplying power from the first line to the load and stopping power supply from the second line when the voltage of the first storage battery becomes equal to or higher than a third predetermined value. Method for controlling the power supply apparatus.
  10.  前記第一電源と前記第二電源とは共通の電源であり、
     前記第三ステップの後、前記電源が復電した際に、前記第二ラインの電圧が第二所定値に達するか、第一所定時間経過すると、前記第一ラインから前記負荷に電力を供給するとともに、前記第二ラインからの電力供給を停止する第七ステップを含む
     請求項6に記載の電力供給装置の制御方法。
    The first power source and the second power source are a common power source,
    After the third step, when the power supply is restored, when the voltage of the second line reaches a second predetermined value or when a first predetermined time elapses, power is supplied from the first line to the load. A control method for the power supply apparatus according to claim 6, further comprising a seventh step of stopping power supply from the second line.
  11.  前記第一電源と前記第二電源とは共通の電源であり、
     前記第三ステップの後、前記電源が復電した際に、前記第一ラインから前記負荷に電力を供給するとともに、前記第二ラインからの電力供給を停止する第八ステップを含む
     請求項6に記載の電力供給装置の制御方法。
    The first power source and the second power source are a common power source,
    The eighth step of supplying power from the first line to the load and stopping power supply from the second line when the power source recovers after the third step. The control method of the electric power supply apparatus of description.
  12.  電源からの電力を負荷に供給する既設装置と、
     前記既設装置に取り付けられて、前記電源からの電力を第一ラインまたは当該第一ラインとは異なる別のラインを介して前記負荷に供給可能な電力供給装置とを備え、
     前記第一ラインには第一蓄電池が接続されていて、
     前記既設装置には、前記別のラインを介して前記負荷に電力を供給する第二蓄電池が設けられていて、
     前記電力供給装置は、前記第一ラインまたは前記別のラインが前記電源から電力を受電している状態では、前記第一ラインおよび前記別のラインの少なくともいずれかを介して前記負荷に電力を供給し、前記電源が停止すると、前記第一ラインに接続された前記第一蓄電池から前記負荷に電力を供給する
     電源システム。
    An existing device that supplies power from the power source to the load;
    A power supply device attached to the existing device and capable of supplying power from the power source to the load via a first line or another line different from the first line;
    A first storage battery is connected to the first line,
    The existing device is provided with a second storage battery that supplies power to the load via the another line,
    The power supply device supplies power to the load via at least one of the first line and the another line when the first line or the other line receives power from the power source. And when the said power supply stops, the power supply system which supplies electric power to the said load from said 1st storage battery connected to said 1st line.
PCT/JP2017/013088 2016-03-31 2017-03-29 Switching method for power supply device, control method for power supply device, and power supply system WO2017170783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2017244882A AU2017244882A1 (en) 2016-03-31 2017-03-29 Method for switching power supply device, method for controlling power supply device, and power source system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-073332 2016-03-31
JP2016073332 2016-03-31
JP2017000576 2017-01-05
JP2017-000576 2017-01-16

Publications (1)

Publication Number Publication Date
WO2017170783A1 true WO2017170783A1 (en) 2017-10-05

Family

ID=59964727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013088 WO2017170783A1 (en) 2016-03-31 2017-03-29 Switching method for power supply device, control method for power supply device, and power supply system

Country Status (2)

Country Link
AU (1) AU2017244882A1 (en)
WO (1) WO2017170783A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437792A (en) * 2019-12-13 2021-09-24 漳州科华技术有限责任公司 Power supply control circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179441U (en) * 1983-05-19 1984-11-30 日本電気株式会社 Uninterruptible power system
JPH05276689A (en) * 1992-03-24 1993-10-22 Toshiba Corp Uninterruptible power source system
JP2012253983A (en) * 2011-06-07 2012-12-20 Sanica:Kk Uninterruptible power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179441U (en) * 1983-05-19 1984-11-30 日本電気株式会社 Uninterruptible power system
JPH05276689A (en) * 1992-03-24 1993-10-22 Toshiba Corp Uninterruptible power source system
JP2012253983A (en) * 2011-06-07 2012-12-20 Sanica:Kk Uninterruptible power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437792A (en) * 2019-12-13 2021-09-24 漳州科华技术有限责任公司 Power supply control circuit

Also Published As

Publication number Publication date
AU2017244882A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
US9509156B2 (en) Power supply apparatus
US9128138B2 (en) Electrical storage system
EP2579425B1 (en) Smooth switching device and method for double power supplies
WO2018123494A1 (en) Electric power supply device, method for controlling electric power supply device, electric power supply system, and communication base station backup system
WO2009028135A1 (en) Charging circuit, and battery pack and charging system equipped with same
US20140320084A1 (en) Power supply system
WO2012050207A1 (en) Electricity storage system
US20150203060A1 (en) Power supply management system and power supply management method
WO2017170782A1 (en) Switching unit, power supply device, communications base station backup system, power supply system, and production method for power supply device
US10177586B2 (en) Electric energy storage apparatus
WO2014174808A1 (en) Power supply system
JP5878393B2 (en) Power supply system
KR20140107098A (en) Electric energy storage device
JP2009011082A (en) Power supply system
JP2007043802A (en) Uninterruptible power supply and distribution panel
JP4538435B2 (en) Battery pack charging system
KR101549172B1 (en) Battery management apparatus assembly and Battery management apparatus applied for the same
WO2017170783A1 (en) Switching method for power supply device, control method for power supply device, and power supply system
JP6062162B2 (en) Charge / discharge device
JP6481938B2 (en) Power storage system
JP2009148110A (en) Charger/discharger and power supply device using the same
JP2014117083A (en) Input power supply switching method for power storage device
JP2007202241A (en) Power supply system, program for controlling power supply system, and recording medium stored with the program
WO2013136655A1 (en) Charge/discharge control apparatus
JP5073436B2 (en) Uninterruptible backup power supply

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017244882

Country of ref document: AU

Date of ref document: 20170329

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775317

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP