WO2017170769A1 - Lubricant oil composition for internal combustion engines - Google Patents

Lubricant oil composition for internal combustion engines Download PDF

Info

Publication number
WO2017170769A1
WO2017170769A1 PCT/JP2017/013058 JP2017013058W WO2017170769A1 WO 2017170769 A1 WO2017170769 A1 WO 2017170769A1 JP 2017013058 W JP2017013058 W JP 2017013058W WO 2017170769 A1 WO2017170769 A1 WO 2017170769A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
component
internal combustion
group
Prior art date
Application number
PCT/JP2017/013058
Other languages
French (fr)
Japanese (ja)
Inventor
元治 石川
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2017170769A1 publication Critical patent/WO2017170769A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/56Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/24Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals

Definitions

  • the present invention relates to a lubricating oil composition for an internal combustion engine, for example, a lubricating oil composition for an internal combustion engine that is driven by burning a fuel containing biofuel.
  • Patent Document 1 a succinic monoimide boron derivative and succinic acid bisimide are blended as a ashless dispersant in a lubricating oil for an internal combustion engine, particularly a diesel engine, and a predetermined amount of a specific antioxidant is blended. Thus, it is disclosed that the deterioration of the lubricating oil is prevented.
  • diesel engines as a means for removing and collecting exhaust gas components such as particulate matter and NO X, it is known to mount such an exhaust purifying device as a diesel particulate filter (DPF) .
  • DPF diesel particulate filter
  • an internal combustion engine equipped with an exhaust gas purification device it is desired to reduce the ash content of the lubricating oil in order to prevent clogging of the filter, deterioration of the performance of the catalyst in the exhaust gas purification device, and the like.
  • biofuels have attracted attention as fuels used in automobiles from the viewpoint of reducing carbon dioxide, which is a main factor of global warming. For example, biodiesel fuels are sometimes used.
  • Biofuels can be mixed in lubricating oils in internal combustion engines, but if they are mixed, they tend to accumulate in lubricating oils due to their chemical structure, and polar compounds are generated when they are degraded and decomposed. There is a concern that this may be reduced.
  • Patent Document 2 in order to improve the cleanliness of the engine when using biodiesel fuel while suppressing the adverse effect on the exhaust gas purification device, the mass ratio of boron and nitrogen
  • a lubricating oil in which a boron derivative of a succinimide compound in which is adjusted to a predetermined range and an alkaline earth metal detergent are blended and the sulfated ash content is adjusted to 1.1 mass% or less.
  • a lubricating compound may be blended with a molybdenum compound as a friction modifier.
  • a molybdenum compound is blended, the viscosity of the lubricating oil increases. May progress more. Therefore, when biofuel is mixed in the lubricating oil, it is difficult to suppress an increase in the viscosity of the lubricating oil while improving fuel economy.
  • the ash content ie, sulfate ash content
  • the blending amount of the friction modifier and the metal detergent is limited, and it becomes difficult to lower the intermetallic friction coefficient or to improve the oxidation stability. For this reason, it becomes difficult to improve fuel economy, and it is also difficult to suppress an increase in the viscosity of the lubricating oil that occurs when biofuel is mixed.
  • the present invention has been made in view of the above circumstances, and the problem of the present invention is that biofuels are mixed in lubricating oil while reducing adverse effects on the exhaust gas purification device and improving fuel economy. Even in such a case, it is an object to provide a lubricating oil composition for an internal combustion engine that can suppress an increase in the viscosity of the lubricating oil and prolong the replacement period of the lubricating oil.
  • this invention provides the following lubricating oil composition for internal combustion engines, and its manufacturing method.
  • (1) base oil At least one succinimide compound (A) selected from the group consisting of alkenyl or alkyl succinic acid monoimide and its boron derivative (A1), and alkenyl or alkyl succinic acid bisimide and its boron derivative (A2); At least one molybdenum-based compound (B) selected from the group consisting of a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2); Overbased sodium sulfonate (C); Including at least one overbased calcium-based detergent (D) selected from the group consisting of overbased calcium salicylate (D1) and overbased calcium phenate (D2);
  • the content of the component (A) is 550 mass ppm or more in terms of nitrogen atoms, the content of the component (B) is 200 mass ppm to 600 mass ppm in terms of molybdenum atoms, and the component (C).
  • the lubricating oil composition for an internal combustion engine which is 0.8% by mass or less.
  • the blending amount of the component (A) on the basis of the total amount of the lubricating oil composition is 550 mass ppm or more in terms of nitrogen atoms, the
  • the adverse effect on the exhaust gas purification device is reduced and the fuel efficiency is excellent, and even when biofuel is mixed in the lubricating oil, the increase in the viscosity of the lubricating oil is suppressed, and the lubricating oil
  • a lubricating oil composition for an internal combustion engine capable of extending the replacement period is provided.
  • a lubricating oil composition for internal combustion engines includes a base oil, a succinimide compound (A), and a molybdenum compound (B). And an overbased sodium sulfonate (C) and an overbased calcium detergent (D).
  • lubricating oil composition includes a base oil, a succinimide compound (A), and a molybdenum compound (B). And an overbased sodium sulfonate (C) and an overbased calcium detergent (D).
  • Base oil There is no restriction
  • mineral oil for example, a lubricating oil fraction obtained by distillation under reduced pressure of atmospheric residual oil obtained by atmospheric distillation of crude oil can be desolvated, solvent extracted, hydrocracked, solvent dewaxed, catalytic dehydrated.
  • Mineral oil hydroorefined mineral oil
  • Synthetic oils include, for example, poly ⁇ -olefins such as polybutene, ⁇ -olefin homopolymers and copolymers (for example, ethylene- ⁇ -olefin copolymers), such as polyol esters, dibasic acid esters, and phosphate esters. And various esters, for example, various ethers such as polyphenyl ether and polyglycol, alkylbenzene, alkylnaphthalene and the like. Of these synthetic oils, poly ⁇ -olefins are particularly preferred.
  • base oil mineral oil may be used independently and may be used in combination of 2 or more type.
  • synthetic oil may be used independently and may be used in combination of 2 or more type.
  • one or more mineral oils and one or more synthetic oils may be used in combination.
  • base oil is a base oil which consists of mineral oil and synthetic oil.
  • hydrorefined mineral oil as the mineral oil and poly ⁇ -olefin as the synthetic oil.
  • the mass ratio of the synthetic oil content to the total base oil is preferably 0.1 or more and 0.6 or less. 0.15 or more and 0.5 or less is more preferable, and 0.2 or more and 0.4 or less is more preferable.
  • the base oil is usually 65% by mass or more, preferably 70% by mass or more and 97% by mass or less, more preferably 75% by mass or more and 95% by mass or less, based on the total amount of the lubricating oil composition. Is done.
  • the viscosity of the base oil is not particularly limited, but the kinematic viscosity at 100 ° C. is preferably 2 mm 2 / s to 30 mm 2 / s, more preferably 3 mm 2 / s to 15 mm 2 / s, and still more preferably 3 .5mm or less in the range 2 / s or more 10 mm 2 / s.
  • the kinematic viscosity at 100 ° C. is 2 mm 2 / s or more, the evaporation loss is small, and when it is 30 mm 2 / s or less, the power loss due to the viscous resistance is suppressed, and the fuel efficiency improvement effect is obtained.
  • the viscosity index of the base oil is preferably 100 or more, more preferably 110 or more, still more preferably 120 or more, and still more preferably 130 or more.
  • a base oil having a viscosity index of 100 or more has a small change in viscosity due to a change in temperature. By making the viscosity index of the base oil within the above range, it becomes easy to improve the viscosity characteristics of the lubricating oil composition.
  • the NOACK evaporation amount (250 ° C., 1 hour) of the base oil is preferably 15.0% by mass or less, more preferably 14.0% by mass or less.
  • the mineral oil those having an aromatic content (% C A ) of 3.0% or less and a sulfur content of 10 mass ppm or less by ring analysis are preferably used.
  • the% C A by ring analysis shows a proportion of aromatic content calculated by ring analysis n-d-M method (percentage).
  • a mineral oil having a% CA of 3.0% or less and a sulfur content of 10 mass ppm or less has good oxidation stability, and more easily suppresses an increase in viscosity when mixed with biofuel.
  • Preferred% C A is 1.0 or less, more preferably 0.5 or less, even more preferably 0.1 or less, sulfur content is more preferably at most 5 mass ppm.
  • mineral oils, paraffin content by ring analysis is preferably at least 75, more preferably 80 or more, more preferably 85 or more.
  • the oxidation stability of the base oil becomes good, and it becomes easier to suppress an increase in viscosity when mixed with biofuel.
  • the% C P by ring analysis shows a proportion of paraffin component calculated in ring analysis n-d-M method (percentage).
  • each property of base oil such as kinematic viscosity and a viscosity index, is specifically measured by the method described in the Example mentioned later.
  • the succinimide compound (A) used in the present embodiment is an ashless dispersant, an alkenyl or alkyl succinic monoimide and its boron derivative (A1), and an alkenyl or alkyl succinic acid bisimide and its boron derivative (A2). 1 type or 2 types or more selected from.
  • the content of the component (A) on the basis of the total amount of the lubricating oil composition is 550 mass ppm or more in terms of nitrogen atoms. If it is less than 550 mass ppm, the effect of blending the component (A) cannot be sufficiently obtained, and it may be difficult to suppress an increase in viscosity when mixed with biofuel.
  • the content of the component (A) in terms of nitrogen atom is preferably 560 mass ppm or more, more preferably 700 mass ppm or more from the above viewpoint.
  • the upper limit of the content of component (A) in terms of nitrogen atom is not particularly limited, but is usually 1500 ppm by mass or less, preferably 1250 ppm by mass or less, in order to exert an effect commensurate with the addition amount. Preferably it is 1000 mass ppm or less.
  • the ratio [(A1 / A2)] of the content in terms of nitrogen atom of the component (A1) and the content in terms of nitrogen atom of the component (A2) in the lubricating oil composition is 0 or more and 0.3. It becomes the following. That is, as the component (A), the content of the component (A1) (monoimide) is relatively reduced or not included. In this embodiment, if the ratio [(A1 / A2)] is greater than 0.3, that is, if the monoimide content is relatively increased, it is difficult to suppress an increase in viscosity when biofuel is mixed.
  • the ratio [(A1 / A2)] is preferably 0 or more and 0.23 or less, and more preferably 0 or more and 0.20 or less, from the viewpoint of appropriately suppressing an increase in viscosity when biofuel is mixed.
  • alkenyl or alkyl succinic monoimide used as the component (A1) examples include compounds represented by the following formula (1).
  • alkenyl or alkyl succinic acid bisimide used as the component (A2) examples include compounds represented by the following formula (2). Further, it is selected from the group consisting of a compound represented by the following formula (1) or a compound represented by the following formula (2) and an alcohol, aldehyde, ketone, alkylphenol, cyclic carbonate, epoxy compound, organic acid and the like.
  • a modified polybutenyl succinimide obtained by reacting with one compound can also be used.
  • R 1 , R 3 and R 4 are each an alkenyl group or an alkyl group, R 3 and R 4 may be the same or different from each other, and R 2 , R 5 and R 6 are each a carbon number.
  • R 5 and R 6 may be the same or different from each other, r represents an integer of 1 to 10, and s represents 0 or an integer of 1 to 10.
  • the number average molecular weights of R 1 , R 3 and R 4 are each 500 or more and 3000 or less, more preferably 700 or more and 2700 or less, and further preferably 800 or more and 2500 or less. .
  • R 1 , R 3 and R 4 have a number average molecular weight of 500 or more, the solubility in the base oil is improved. Moreover, it becomes easy to obtain favorable cleanliness and it becomes easy to exhibit the function as a dispersing agent because it will be 3000 or less.
  • R is preferably 2 or more and 5 or less, more preferably 3 or more and 4 or less. When r is 2 or more, good cleanliness is exhibited, and when r is 5 or less, solubility in base oil is improved.
  • s is preferably 3 or more and 8 or less, more preferably 4 or more and 7 or less. When s is 3 or more, good cleanliness is exhibited, and when s is 8 or less, solubility in base oil is improved.
  • alkenyl group examples include a polybutenyl group, a polyisobutenyl group, and a group derived from an ethylene-propylene copolymer, and examples of the alkyl group include hydrogenated groups thereof.
  • Suitable alkenyl groups include polybutenyl or polyisobutenyl groups.
  • the polybutenyl group can be obtained, for example, by polymerizing a mixture of 1-butene and isobutene or high-purity isobutene.
  • a polybutenyl group or a polyisobutenyl group is hydrogenated.
  • Alkenyl or alkyl succinic acid monoimide and alkenyl or alkyl succinic acid bisimide are usually alkenyl succinic anhydride obtained by reaction of polyolefin with maleic anhydride, or alkyl succinic anhydride obtained by hydrogenation thereof. It can be produced by reacting with a polyamine. Succinic monoimide and succinic bisimide can be prepared by changing the reaction ratio of alkenyl succinic anhydride or alkyl succinic anhydride and polyamine, respectively.
  • polystyrene resin As the olefin monomer for forming the polyolefin, one or more of ⁇ -olefins having 2 to 8 carbon atoms can be mixed and used, and a mixture of isobutene and 1-butene is preferably used. it can.
  • polyamines include diamines such as ethylenediamine, propylenediamine, butylenediamine, and pentylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, dibutylenetriamine, and butylenetetramine.
  • polyalkylene polyamines such as pentapentylenehexamine.
  • the boron derivative of alkenyl or alkyl succinic acid monoimide those prepared by a conventional method can be used.
  • the above polyamine and boron oxide, boron halide, boric acid, boric anhydride, boric acid ester, ammonium boric acid It is obtained by reacting with an intermediate obtained by reacting a boron compound such as a salt and imidizing.
  • the component (A1) contains a boron derivative
  • the boron content in the component (A1) is not particularly limited, but is usually 0.1% by mass to 5% by mass, preferably 0.5% by mass to 3% by mass. It is as follows.
  • a boron derivative of alkenyl or alkyl succinic acid bisimide can be produced in the same manner, and the preferred range of the boron content in the component (A2) is also the same.
  • the component (A1) may or may not be contained in the lubricating oil composition as described above.
  • the component (A1) may be composed of one of alkenyl or alkyl succinic monoimide and its boron derivative, or may include both.
  • the component (A1) preferably contains a boron derivative of alkenyl or alkyl succinic monoimide.
  • the component (A1) contains a boron derivative, it is easy to reduce the coefficient of friction between metals due to the component (A), and it is easy to suppress an increase in viscosity when mixed with biofuel.
  • the boron content derived from the component (A1) is preferably 50 ppm by mass or more and 300 ppm by mass or less based on the total amount of the lubricating oil composition.
  • the boron content is more preferably 80 ppm to 300 ppm by mass, and further preferably 100 ppm to 250 ppm by mass.
  • the component (A2) is contained as an essential component in the lubricating oil composition.
  • the component (A2) may contain both alkenyl or alkyl succinic acid bisimide and its boron derivative, or may consist of either one, but is preferably made of alkenyl or alkyl succinic acid bisimide.
  • (A) component contains both (A1) and (A2) component, while (A1) component contains the boron derivative of alkenyl or alkyl succinic monoimide
  • (A2) component is alkenyl or It preferably consists of an alkyl succinic acid bisimide. This makes it easier to reduce the coefficient of friction between metals while appropriately suppressing an increase in viscosity when biofuel is mixed.
  • the molybdenum compound (B) is one or more selected from a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2).
  • the molybdenum-based compound (B) in the lubricating oil composition, it is possible to lower the coefficient of friction between metals and to improve fuel economy.
  • the lubricating oil composition contains the molybdenum-based compound (B)
  • the viscosity of the lubricating oil composition tends to increase when biofuel is mixed.
  • the content of the molybdenum-based compound (B) on the basis of the total amount of the lubricating oil composition is in the range of 200 mass ppm to 600 mass ppm in terms of molybdenum atoms. If it is less than 200 ppm by mass, the coefficient of friction between metals cannot be made sufficiently low, and the fuel economy cannot be made excellent.
  • the content of the molybdenum compound (B) is preferably 250 mass ppm or more and 500 mass ppm or less, and more preferably 300 mass ppm or more and 500 mass ppm or less.
  • Examples of the dinuclear organic molybdenum compound (B1) include dinuclear molybdenum dithiocarbamate, and specifically include a compound represented by the following formula (3).
  • R 11 to R 14 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 11 to R 14 may be the same or different.
  • X 1 to X 4 each represents a sulfur atom or an oxygen atom.
  • the number of carbon atoms of R 11 to R 14 is preferably 7 to 18, more preferably 7 to 14, and particularly preferably 8 to 13.
  • the total number of carbon atoms of R 11 to R 14 is preferably 34 to 80, more preferably 36 to 60, and still more preferably 38 to 54.
  • Examples of the hydrocarbon group for R 11 to R 14 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group, and a branched or straight chain alkyl group or alkenyl group is preferable.
  • a chain or straight chain alkyl group is more preferred.
  • Examples of the branched or straight chain alkyl group include n-octyl group, 2-ethylhexyl group, isononyl group, n-decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group and the like.
  • the binuclear organomolybdenum compound represented by the formula (3) is an alkyl group in which R 11 and R 12 are the same, R 13 and R 14. Are the same alkyl groups, and the alkyl groups of R 11 and R 12 are preferably different from the alkyl groups of R 13 and R 14 .
  • X 1 to X 4 represent a sulfur atom or an oxygen atom, and X 1 to X 4 may be the same or different.
  • Examples of the trinuclear organic molybdenum compound include those represented by the following formula (4).
  • Mo 3 S k E m L n A p Q z (4) [In formula (4), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or a positive integer, and k + m is 4 or more and 10 or less.
  • L is independently an anionic ligand having an organic group containing a carbon atom, and the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same or different. It may be.
  • n is a positive integer of 1 or more and 4 or less.
  • A is an anion other than L.
  • p is 0 or a positive integer.
  • Q is a compound which donates a neutral electron independently.
  • z is 0 or more and 5 or less, and includes a non-stoichiometric value. ]
  • the solubility in the base oil is good.
  • the total number of carbon atoms of the organic group in each ligand is preferably 14 to 50, more preferably 16 to 30, and still more preferably 18 to 24.
  • the anionic ligand is preferably a monoanionic ligand (monovalent anionic ligand).
  • Each ligand is preferably any one selected from, for example, ligands represented by the following formulas (4-A) to (4-D).
  • X 21 to X 27 and Y are each independently an oxygen atom or a sulfur atom.
  • R 21 to R 25 are independent organic groups, and R 21 to R 25 are the same. It may or may not be.
  • the organic group of R 21 to R 23 has 14 or more carbon atoms. The sum of the carbon number of the organic group of R 24 and the carbon number of the organic group of R 25 is 14 or more.
  • R 21 carbon atoms organic group of each - R 23 is 14 to 50, more preferably 16 to 30, 18 - and more preferably a 24.
  • the total number of carbon atoms of the organic group of R 24 and the organic group of R 25 is preferably 14 to 50, more preferably 16 to 30, and more preferably 18 to 24. Is more preferable.
  • the carbon number of the organic group of R 24 and the carbon number of the organic group of R 25 are each preferably 7 to 30, more preferably 7 to 20, and 8 to 13 Is more preferable.
  • the organic group of R 24 and the organic group of R 25 may be the same or different, but are preferably different.
  • the carbon number of the organic group of R 24 and the carbon number of the organic group of R 25 may be the same or different, but are preferably different.
  • the ligand preferably includes a ligand represented by the formula (4-D). In the formula (4), it is preferable that all ligands are the same. Furthermore, it is more preferable that all the ligands are ligands represented by the above formula (4-D).
  • the organic group is a hydrocarbyl group such as an alkyl group, an aryl group, a substituted aryl group, and an ether group. More preferably, each ligand has the same hydrocarbyl group.
  • hydrocarbyl refers to a substituent having a carbon atom that is directly bonded to the remainder of the ligand, and within the scope of this embodiment, the property is primarily hydrocarbyl. Such substituents include the following. 1.
  • Hydrocarbon substituents As hydrocarbon substituents, substituted with aliphatic substituents such as alkyl and alkenyl, alicyclic substituents such as cycloalkyl and cycloalkenyl, aromatic groups, aliphatic groups and alicyclic groups An aromatic nucleus, a cyclic group in which the ring is completed via another location in the ligand (ie any two of the indicated substituents may together form an alicyclic group) Can be mentioned. 2. Substituted hydrocarbon substituents Examples of substituted hydrocarbon substituents include those in which the hydrocarbon substituent is substituted with a non-hydrocarbon group that does not change the properties of the hydrocarbyl.
  • non-hydrocarbon group examples include halogen groups such as chloro and fluoro, amino groups, alkoxy groups, mercapto groups, alkyl mercapto groups, nitro groups, nitroso groups, and sulfoxy groups.
  • Preferred ligands include alkyl xanthates, carboxylates, dialkyldithiocarbamates, and mixtures thereof. Most preferred is a dialkyldithiocarbamate.
  • E oxygen or selenium
  • k + m is preferably 4 or more and 7 or less.
  • Q in Formula (4) water, an amine, alcohol, ether, a phosphine, etc. are mentioned.
  • the anions of Q may be the same or different, but are preferably the same.
  • the neutral electron donating compound Q is present to satisfy the empty coordination on the trinuclear molybdenum compound.
  • the anion of A in Formula (4) may be a monovalent anion or a divalent anion. Specific examples of A include disulfide, hydroxide, alkoxide, amide and thiocyanate or derivatives thereof.
  • k is 4 or more and 7 or less, n is 1 or 2, L is a monoanionic ligand, and p is a compound based on an anionic charge in A. It is an integer that imparts electrical neutrality, and each of m and z is 0.
  • k is 4 or more and 7 or less, L is a monoanionic ligand, n is 4, and each of p, m, and z is 0.
  • the trinuclear organomolybdenum compound of the formula (4) has, for example, a core represented by the following formula (4-E) or (4-F). Each core has a net electrical charge of +4. These cores are surrounded by anionic ligands and anions other than the anionic ligands present as needed.
  • the trinuclear molybdenum-sulfur compound may also contain cations other than molybdenum, such as (alkyl) ammonium, amine or sodium, if the anionic charge exceeds -4.
  • a preferred embodiment of the anionic ligand (L) and the other anion (A) is a configuration having four monoanionic ligands.
  • Molybdenum-sulfur cores for example, structures represented by the above formulas (4-E) and (4-F), bind to one or more polydentate ligands, ie molybdenum atoms, to form oligomers. Can be interconnected by ligands having more than one possible functional group.
  • the trinuclear organic molybdenum compound can be prepared, for example, by the following methods (1) to (3).
  • the solvent used in (1) to (3) may be, for example, aqueous or organic.
  • a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 .n (H 2 O)
  • a ligand source such as tetraalkylthiuram disulfide and dialkyldithiocarbamic acid, a cyanide ion, and sulfurous acid It reacts with a sulfur extracting agent such as ions.
  • Trinuclear molybdenum-sulfur such as [M ′] 2 [Mo 3 S 7 A 6 ] (where M ′ is a counter ion and A is a halogen such as Cl, Br, or I).
  • the halide salt is reacted with a ligand source such as a dialkyldithiocarbamic acid in a suitable solvent.
  • the trinuclear organic molybdenum compound is preferably a dithiocarbamate compound, that is, a trinuclear molybdenum dithiocarbamate.
  • Particularly useful compounds are trinuclear molybdenum dialkyl dithiocarbamate represented by the formula Mo 3 S 7 ((alkyl) 2 dithiocarbamate) 4.
  • the lubricating oil composition may further contain a mononuclear organic molybdenum compound as long as the friction reducing effect is not impaired.
  • the lubricating oil composition contains overbased sodium sulfonate (C).
  • overbased sodium sulfonate (C) as a metallic detergent, in addition to the basic calcium detergent (D) described later, an overbased sodium sulfonate (C) is used in combination so that the base number of the lubricating oil composition can be extended over a long period of time. It becomes possible to maintain it well. And oxidation stability becomes favorable and it becomes possible to suppress especially the viscosity increase at the time of biofuel mixing appropriately.
  • the content of the overbased sodium sulfonate (C) on the basis of the total amount of the lubricating oil composition is 250 mass ppm or more in terms of sodium atoms.
  • the upper limit of the content of the component (C) is not limited as long as the sulfated ash is within a specified range described later, but is preferably 500 ppm by mass or less. By setting it as 500 mass ppm or less, it is prevented that the abrasion resistance of the lubricating oil composition for internal combustion engines falls by excessive addition of (C) component. From the above viewpoint, the content of the component (C) is preferably 280 mass ppm or more and 480 mass ppm or less, more preferably 350 mass ppm or more and 450 mass ppm or less in terms of sodium atom.
  • overbased sodium sulfonate examples include those obtained by overbasing sodium salts of various sulfonic acids.
  • examples of the sulfonic acid used here include aromatic petroleum sulfonic acid, alkyl sulfonic acid, aryl sulfonic acid, alkylaryl sulfonic acid, and the like.
  • dodecyl benzene sulfonic acid dilauryl cetyl benzene sulfonic acid
  • examples thereof include paraffin wax-substituted benzenesulfonic acid, polyolefin-substituted benzenesulfonic acid, polyisobutylene-substituted benzenesulfonic acid, and naphthalenesulfonic acid.
  • the base number of the overbased sodium sulfonate (C) is preferably 200 mgKOH / g or more. By setting it as 200 mgKOH / g or more, the base number maintenance property and oxidation stability of a lubricating oil composition become favorable, and it becomes easy to suppress an above-mentioned viscosity raise.
  • the upper limit of the base number of the component (C) is not particularly limited, but is preferably 500 mgKOH / g or less in order to prevent the formation of a precipitate or the like.
  • the base number of the component (C) is more preferably from 300 mgKOH / g to 500 mgKOH / g, still more preferably from 400 mgKOH / g to 500 mgKOH / g.
  • the base number is the total base number measured by the perchloric acid method specified in JISK-2501: 2003.
  • the lubricating oil composition contains one or more selected from overbased calcium salicylate (D1) and overbased calcium phenate (D2) as the overbased calcium detergent (D). .
  • the content of the overbased calcium detergent (D) based on the total amount of the composition may be adjusted so that the sulfated ash content described later falls within a specified range, but preferably 500 mass ppm or more and 1500 mass in terms of calcium atom. ppm or less. By setting the content within this range, it becomes easy to improve the cleanliness of the lubricating oil composition, and it becomes easy to suppress an increase in viscosity when mixed with biofuel. From these viewpoints, the content of the component (D) is preferably 750 mass ppm or more and 1450 mass ppm or less, and more preferably 1000 mass ppm or more and 1350 mass ppm or less in terms of calcium atom.
  • the base number of the overbased calcium-based detergent (D) is preferably 150 mgKOH / g or more.
  • the base number is 150 mgKOH / g or more, the function of the component (D) as a detergent is easily exhibited, and the base number maintenance property and oxidation stability of the lubricating oil composition are easily improved.
  • the base number of an overbased calcium type detergent (D) is 500 mgKOH / g or less. By setting it as 500 mgKOH / g or less, it becomes difficult to produce a precipitate in the composition.
  • the base number of the overbased calcium-based detergent (D) is more preferably 200 mass ppm or more and 400 mgKOH / g or less, and further preferably 200 mass ppm or more and 350 mgKOH / g or less.
  • the component (D) is preferably an overbased calcium salicylate in order to more easily suppress an increase in viscosity when mixed with biofuel.
  • Examples of the overbased calcium salicylate (D1) include those obtained by overbasing a calcium metal salt of an alkyl salicylic acid such as a dialkyl salicylic acid.
  • the alkyl group constituting the alkyl salicylic acid preferably has 4 to 30 carbon atoms, more preferably a linear or branched alkyl group having 6 to 18 carbon atoms.
  • Examples of the overbased calcium phenate (D2) include those obtained by overbasing calcium metal salts such as alkylphenol, alkylphenol sulfide, and Mannich reaction product of alkylphenol.
  • the alkyl group in the calcium phenate preferably has 4 to 30 carbon atoms, and more preferably a linear or branched alkyl group having 6 to 18 carbon atoms.
  • the lubricating oil composition preferably contains one or more antioxidants (E) selected from a phenolic antioxidant (E1) and an amine antioxidant (E2).
  • the content of the antioxidant (E) is preferably 1.0% by mass or more based on the total amount of the lubricating oil composition. When the content is 1.0% by mass or more, the oxidation stability of the lubricating oil composition is improved, and the increase in viscosity when mixed with biofuel is more easily suppressed. Further, the content of the antioxidant (E) is more preferably 1.0% by mass or more and 3.0% by mass or less, and 1.25% by mass or more and 2.0% by mass based on the total amount of the lubricating oil composition. More preferably, it is as follows.
  • the lubricating oil composition may contain any one of a phenolic antioxidant and an amine antioxidant as the antioxidant (E), but both the phenolic antioxidant and the amine antioxidant are contained. It is more preferable to contain.
  • phenolic antioxidant (E1) examples include monophenolic antioxidants and bisphenolic antioxidants.
  • Monophenol antioxidants include alkyl esters of 3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropanoic acid (the alkyl group has 4 to 20, preferably 6 to 18, carbon atoms, More preferably 7-9); 2,6-di-t-butyl-4 such as 2,6-di-t-butyl-4-methylphenol and 2,6-di-t-butyl-4-ethylphenol -Alkylphenol (alkyl group having 1 to 4 carbon atoms); 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-amyl-p-cresol and the like.
  • amine-based antioxidant examples include mono-t-butyldiphenylamine, monooctyldiphenylamine, and monononyldiphenylamine, which are monoalkyldiphenylamines having an alkyl group having 4 to 12 carbon atoms; bis (4-butylphenyl) amine Bis (4-pentylphenyl) amine, bis (4-hexylphenyl) amine, bis (4-heptylphenyl) amine, bis (4-octylphenyl) amine, bis (4-nonylphenyl) amine, 4-butyl- 4'-octyldiphenylamine and other dialkyldiphenylamines having 4 to 12 carbon atoms in each alkyl group; tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine,
  • alkylphenyl- ⁇ -naphthylamine having at least one alkyl group having 1 to 12 carbon atoms, or phenyl- ⁇ -naphthylamines exemplified by phenyl- ⁇ -naphthylamine and the like.
  • alkyl esters of 3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropanoic acid and dialkyldiphenylamine are preferably used. It is more preferable.
  • the most preferred combination is an alkyl ester of 3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropanoic acid (the alkyl group has 7 to 9 carbon atoms) and bis (4-nonyl). And a combination with phenyl) amine.
  • the lubricating oil composition may contain a viscosity index improver (F) in order to improve the viscosity index of the lubricating oil composition.
  • a viscosity index improver (F) polymethacrylate; olefin copolymer such as ethylene-propylene copolymer; styrene such as styrene-diene copolymer, styrene-isoprene copolymer, styrene-isobutylene copolymer
  • a styrene-based polymer is preferable among them.
  • the weight average molecular weight of the viscosity index improver (F) is usually 10,000 or more and 1,000,000 or less, preferably 50,000 or more and 800,000 or less, more preferably 100,000 or more and 700,000 or less.
  • the weight average molecular weight here is a value obtained using polystyrene as a calibration curve by the GPC method.
  • the content of the viscosity index improver (F) is appropriately adjusted according to the weight average molecular weight and the desired viscosity index value, but is preferably 10% by mass or less, more preferably, based on the total amount of the lubricating oil composition. It is 0.1 mass% or more and 6 mass% or less, More preferably, it is 0.2 mass% or more and 4 mass% or less.
  • viscosity index improvers are usually distributed in a diluted state in a diluent oil (mineral oil or synthetic oil) in consideration of handling properties and solubility in base oils.
  • the content of the above-mentioned viscosity index improver (F) means a resin equivalent amount excluding diluent oil.
  • the lubricating oil composition may further contain other additives other than the components (A) to (F) as long as the effects of the present invention are not impaired.
  • additives include one or more selected from antiwear agents, pour point depressants, metal deactivators, antifoaming agents, and the like.
  • the other additive is usually 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, based on the total amount of the lubricating oil composition.
  • additives containing metal components such as organic zinc dithiophosphate, but the content of such additives is adjusted so that the sulfated ash content described later is within a predetermined range. Is done.
  • organic zinc dithiophosphate is preferably used as the antiwear agent.
  • the organic zinc zinc dithiophosphate include zinc dihydrocarbyl dithiophosphate.
  • Each hydrocarbyl group contained in zinc dihydrocarbyl dithiophosphate has 1 to 24 carbon atoms, preferably 3 to 24 carbon atoms, more preferably 5 to 18 carbon atoms.
  • the hydrocarbyl group include an alkyl group, an alkenyl group, an aryl group, an alkylaryl group, and an arylalkyl group.
  • the alkyl group and alkenyl group may be branched, straight chain, or have a cyclic structure.
  • the zinc dialkyl dithiophosphate whose hydrocarbyl group is an alkyl group is preferable.
  • an antiwear agent instead of organic dithiophosphate or in combination with organic dithiophosphate, zinc dithiocarbamate, zinc phosphate, disulfides, sulfurized olefins, sulfurized fats and oils, sulfurized esters, thiols Sulfur-containing compounds such as carbonates; phosphorus-containing compounds such as phosphites, phosphate esters, phosphonate esters, and amine salts or metal salts thereof; thiophosphites, thiophosphonates, And sulfur and phosphorus-containing antiwear agents such as amine salts or metal salts thereof may be used.
  • Examples of the metal deactivator include benzotriazole, triazole derivatives, benzotriazole derivatives, and thiadiazole derivatives.
  • Examples of the pour point depressant include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene, etc. Polymethacrylate is preferably used.
  • Examples of the antifoaming agent include silicone oil, fluorosilicone oil, and fluoroalkyl ether.
  • the lubricating oil composition may contain additives other than those described above as other additives, for example, antioxidants other than the antioxidant (E), specifically, sulfur-based oxidation.
  • antioxidants other than the antioxidant (E)
  • An inhibitor, a phosphorus antioxidant, etc. may be contained, and an ashless friction modifier, a rust inhibitor, etc. may be contained.
  • the lubricating oil composition has a sulfated ash content of 0.8% by mass or less. If the sulfated ash content exceeds 0.8% by mass, the filter in the exhaust gas purification device such as DPF is clogged, and the performance of the catalyst in the exhaust gas purification device is likely to decrease. From the viewpoint of further suppressing these adverse effects on the exhaust gas purification device, the sulfated ash content is preferably 0.78% by mass or less, and more preferably 0.75% by mass or less.
  • the lower limit of sulfated ash is not particularly limited, but is usually 0.4% by mass or more, preferably 0.8% in order to contain an appropriate amount of the above components (A) to (D) in the lubricating oil composition. It is 50 mass% or more, More preferably, it is 0.60 mass% or more.
  • sulfate ash means the value measured based on JISK2272: 1998.
  • the lubricating oil composition may contain metal atoms by containing the components (B) to (D), and may contain boron atoms derived from the component (A).
  • the amount of metal and the amount of boron in each component are adjusted so that the sulfated ash content is 0.8% by mass or less. Since the lubricating oil composition of the present embodiment has a low sulfated ash content, it is difficult to increase the content of the components (B) to (D) and the boron content derived from the component (A).
  • D a combination of D component in an appropriate amount, it is possible to suppress an increase in viscosity when biofuel is mixed while lowering the coefficient of friction between metals.
  • the lubricating oil composition includes a base oil and the components (A), (B), (C), and (D), and the above-mentioned various lubricating oil additives. More specifically, for example, base oil, alkenyl or alkyl succinic acid monoimide and its boron derivative (A1), and alkenyl or alkyl succinic acid bisimide and its boron derivative ( At least one succinimide compound (A) selected from the group consisting of A2), at least selected from the group consisting of a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2) One molybdenum-based compound (B), overbased sodium sulfonate (C), overbased calcium salicylate (D1), and persalt At least one overbased calcium detergent (D) selected from the group consisting of soluble calcium phenates (D2), phenolic antioxidants and amine antioxidants, viscosity index
  • the lubricating oil composition is used for lubricating various internal combustion engines for automobiles and the like, but is preferably used for an internal combustion engine that is driven by burning a fuel containing biofuel.
  • the internal combustion engine include a gasoline engine, a diesel engine, and a gas engine, and a diesel engine is preferable. That is, what is called biodiesel fuel is used as the biofuel.
  • Examples of the biofuel include one or more selected from natural fats and oils, hydrogenated products of natural fats and oils, transesterified products of natural fats and oils, and hydrotreated products of transesterified products of natural fats and oils.
  • natural fats and oils various animal and vegetable fats and oils widely existing in the natural world can be used, but vegetable oils mainly composed of esters of fatty acids and glycerin, such as safflower oil, soybean oil, rapeseed oil, palm oil, and palm kernel.
  • Oil, cottonseed oil, coconut oil, rice bran oil, sesame oil, castor oil, linseed oil, olive oil, tung oil, coconut oil, peanut oil, kapok oil, cacao oil, wood wax, sunflower oil, corn oil, etc. are preferably used, more preferably Soybean oil and rapeseed oil are used.
  • the hydrotreated product of natural fats and oils is a so-called hydrogenated product of the aforementioned fats and oils in the presence of a suitable hydrogenation catalyst.
  • a suitable hydrogenation catalyst nickel catalysts, platinum group (Pt, Pd, Rh, Ru) catalysts, cobalt catalysts, chromium oxide catalysts, copper catalysts, osmium catalysts, iridium catalysts, molybdenum catalysts Etc. Further, it is also preferable to use a combination of two or more of the above catalysts as the hydrogenation catalyst.
  • the transesterified product of natural fats and oils is an ester obtained by subjecting a triglyceride constituting natural fats and oils to a transesterification reaction in the presence of a suitable ester synthesis catalyst.
  • the fatty acid ester used as a biofuel is manufactured by transesterifying a lower alcohol and fats and oils in the presence of the ester synthesis catalyst.
  • the lower alcohol is used as an esterifying agent, and examples thereof include alcohols having 5 or less carbon atoms such as methanol, ethanol, propanol, butanol, and pentanol. Is preferred.
  • Such a lower alcohol is generally used in an amount equal to or greater than that of the oil or fat.
  • the hydrotreated product of the transesterified product of natural fats and oils is a product obtained by hydrogenating the transesterified product described above in the presence of an appropriate hydrogenation catalyst.
  • Biofuel can be suitably used as a mixed fuel by adding it to a fuel composed of hydrocarbons such as light oil.
  • a lubricating method using the lubricating oil composition for internal combustion engines which is one embodiment of the present invention the lubricating oil composition for internal combustion engines which is one embodiment of the present invention is applied to an internal combustion engine such as an engine, for example. There is a method of filling and lubricating between the parts related to the internal combustion engine.
  • the internal combustion engine which is one embodiment of the present invention is filled with the lubricating oil composition for an internal combustion engine of the present invention, and examples thereof include gasoline engines, diesel engines, gas engines and the like used for automobiles and the like.
  • an internal combustion engine that is driven by burning fuel including biofuel is a suitable example.
  • a method for producing a lubricating oil composition according to an embodiment of the present invention includes a base oil containing at least a succinimide compound (A), a molybdenum compound (B), an overbased sodium sulfonate (C), and an overbase. It is a manufacturing method of the lubricating oil composition which mix
  • Kinematic viscosity It is a value measured using a glass capillary viscometer according to JISK2283: 2000.
  • Viscosity index It measured based on JISK2283: 2000.
  • NOACK evaporation 250 ° C, 1 hour It is a value measured according to the method prescribed in ASTM D5800.
  • Aromatic content (% C A ) and paraffin content (% C P ) This is a value measured by ring analysis (ndM method) of ASTM D-3238.
  • Sulfur content This is a value measured in accordance with JIS K2541-6: 2003 “Crude oil and petroleum products—Sulfur content test method”.
  • Biofuel addition IOT test In a glass test tube, 5 mass of biodiesel fuel B100 (80% RME (rapeseed oil methyl ester), 20% SME (soybean oil methyl ester), produced by Haltermann Solutions, Inc.) as a lubricating oil composition. % Sample oil added 100% and tris (2,4-pentanedionato) iron (III) 63.24 mg as a catalyst, air was blown at 160 ° C. at a flow rate of 10 L / h, and 168 hours oxidation deterioration I let you.
  • the 100 degreeC kinematic viscosity of the sample oil before a test and the sample oil after a test was measured, and the 100 degreeC kinematic viscosity increase rate was calculated
  • the components (A) to (D) are contained, and the content and ratio (A1 / A2) of the components (A) to (C) are set within a predetermined range.
  • the intermetallic friction coefficient was lowered while the sulfated ash content was lowered, and the viscosity increase rate of the lubricating oil composition was suppressed in the biofuel addition IOT test. Therefore, it is understood that it is possible to suppress an increase in the viscosity of the lubricating oil even when biofuel is mixed into the lubricating oil composition, while reducing adverse effects on the exhaust gas purification device and improving fuel efficiency. it can.
  • Comparative Example 1 the components (A) to (D) were contained, and the contents of the components (A) to (C) were within a predetermined range, but the ratio (A1 / A2) was defined. Since it was not within the range, the rate of increase in viscosity of the lubricating oil composition could not be suppressed. Further, as in Comparative Examples 2 and 3, when the molybdenum-based compound (B) is not contained or the content is outside the specified range, both the intermetallic friction coefficient and the viscosity increase rate are reduced. I could not.
  • the overbased sodium sulfonate (component (C)) was not contained, or even if it was contained, the content thereof was small, so that an increase in the viscosity of the lubricating oil composition could be suppressed. There wasn't. This result was the same even when the amount of the overbased calcium-based detergent (component (D)) was increased instead of containing the component (C) as in Comparative Example 7. Further, in Comparative Example 8, the component (C) was not contained, and the ratio (A1 / A2) was also large, so that an increase in viscosity could not be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

The present invention minimizes negative effects on an exhaust gas purification device and achieves excellent energy efficiency while inhibiting an increase in viscosity of a lubricant oil when biofuel gets mixed therein, by using a lubricant oil composition for internal combustion engines, which comprises: a base oil; (A) at least one component selected from (A1) alkenyl or alkyl succinic acid monoimide and boron derivatives thereof and (A2) alkenyl or alkyl succinic acid bisimide and boron derivatives thereof; (B) at least one component selected from binuclear and trinuclear organomolybdenum compounds; (C) superbasic sodium sulfonate; and (D) at least one component selected from superbasic calcium salicylate (D1) and superbasic calcium phenate (D2), wherein the contained amounts of components (A) to (C) and the contained amount ratio between component (A1) and component (A2) are respectively specified to fall within prescribed ranges, while the contained amount of sulfuric acid ash is specified to be 0.8 mass% or less.

Description

内燃機関用潤滑油組成物Lubricating oil composition for internal combustion engines
 本発明は、内燃機関用潤滑油組成物に関し、例えば、バイオ燃料を含む燃料を燃焼して駆動する内燃機関用の潤滑油組成物に関する。 The present invention relates to a lubricating oil composition for an internal combustion engine, for example, a lubricating oil composition for an internal combustion engine that is driven by burning a fuel containing biofuel.
 従来、潤滑油の劣化を抑制するために、金属系清浄剤、無灰分散剤、酸化防止剤等を潤滑油に配合することが広く知られている。例えば、特許文献1では、内燃機関用、特にディーゼルエンジン用の潤滑油に、無灰分散剤としてコハク酸モノイミドのホウ素誘導体及びコハク酸ビスイミドを配合するとともに、特定の酸化防止剤を所定量配合することで、潤滑油の劣化を防止することが開示されている。 Conventionally, in order to suppress the deterioration of the lubricating oil, it is widely known to add a metallic detergent, an ashless dispersant, an antioxidant, etc. to the lubricating oil. For example, in Patent Document 1, a succinic monoimide boron derivative and succinic acid bisimide are blended as a ashless dispersant in a lubricating oil for an internal combustion engine, particularly a diesel engine, and a predetermined amount of a specific antioxidant is blended. Thus, it is disclosed that the deterioration of the lubricating oil is prevented.
 また、ディーゼルエンジンにおいては、パティキュレートマターやNOXなどの排出ガス成分を捕集して除去する手段として、ディーゼルパティキュレートフィルター(DPF)などの排出ガス浄化装置を装着することが知られている。排出ガス浄化装置が装着された内燃機関では、フィルターの目詰り、排出ガス浄化装置における触媒の性能低下等を防止するために、潤滑油の灰分量を少なくすることが望まれている。
 さらに、近年、自動車に使用される燃料については、地球温暖化の主要因である二酸化炭素削減の観点から、いわゆるバイオ燃料が注目されており、例えば、バイオディーゼル燃料が使用されることがある。バイオ燃料は、内燃機関において潤滑油に混入することがあるが、混入するとその化学的構造から潤滑油に蓄積しやすく、また、劣化分解したときに極性化合物が生じるため、内燃機関の清浄性等を低下させることが懸念される。
Further, in diesel engines, as a means for removing and collecting exhaust gas components such as particulate matter and NO X, it is known to mount such an exhaust purifying device as a diesel particulate filter (DPF) . In an internal combustion engine equipped with an exhaust gas purification device, it is desired to reduce the ash content of the lubricating oil in order to prevent clogging of the filter, deterioration of the performance of the catalyst in the exhaust gas purification device, and the like.
Further, in recent years, so-called biofuels have attracted attention as fuels used in automobiles from the viewpoint of reducing carbon dioxide, which is a main factor of global warming. For example, biodiesel fuels are sometimes used. Biofuels can be mixed in lubricating oils in internal combustion engines, but if they are mixed, they tend to accumulate in lubricating oils due to their chemical structure, and polar compounds are generated when they are degraded and decomposed. There is a concern that this may be reduced.
 そのため、従来、例えば特許文献2に開示されるように、排出ガス浄化装置への悪影響を抑えつつ、バイオディーゼル燃料を用いた場合のエンジンの清浄性を向上させるために、ホウ素と窒素の質量比を所定範囲に調整したコハク酸イミド化合物のホウ素誘導体と、アルカリ土類金属系清浄剤とを配合し、かつ硫酸灰分を1.1質量%以下に調整した潤滑油が知られている。 Therefore, conventionally, as disclosed in, for example, Patent Document 2, in order to improve the cleanliness of the engine when using biodiesel fuel while suppressing the adverse effect on the exhaust gas purification device, the mass ratio of boron and nitrogen There is known a lubricating oil in which a boron derivative of a succinimide compound in which is adjusted to a predetermined range and an alkaline earth metal detergent are blended and the sulfated ash content is adjusted to 1.1 mass% or less.
特許第4806528号公報Japanese Patent No. 4806528 特許第5313879号公報Japanese Patent No. 5313879
 しかし、バイオ燃料は、潤滑油に混入すると、清浄性の悪化のみならず、潤滑油の粘度上昇を引き起こし、潤滑油の交換期間を短くするなどの問題を生じさせることがある。
 また、金属間摩擦係数を低くして省燃費性を良好にするために、潤滑油に摩擦調整剤としてモリブデン化合物を配合することがあるが、モリブデン化合物を配合すると、上記の潤滑油の粘度上昇がより進行することがある。そのため、バイオ燃料が潤滑油に混入するような場合には、省燃費性を優れたものとしつつ、潤滑油の粘度上昇を抑制することが難しい。
However, when the biofuel is mixed in the lubricating oil, not only the cleanliness is deteriorated but also the viscosity of the lubricating oil is increased, which may cause problems such as shortening the replacement period of the lubricating oil.
In addition, in order to reduce the coefficient of friction between metals and improve fuel efficiency, a lubricating compound may be blended with a molybdenum compound as a friction modifier. When a molybdenum compound is blended, the viscosity of the lubricating oil increases. May progress more. Therefore, when biofuel is mixed in the lubricating oil, it is difficult to suppress an increase in the viscosity of the lubricating oil while improving fuel economy.
 さらに、ディーゼルエンジンにおいては、上記したように、排出ガス浄化装置への悪影響を少なくするために、潤滑油の灰分量(すなわち、硫酸灰分)を低くすることが望まれている。しかし、灰分量を低くすると、摩擦調整剤、金属系清浄剤の配合量が制限され、金属間摩擦係数を低くしたり、酸化安定性を高めたりすることが難しくなる。そのため、省燃費性を改善しにくくなり、さらには、バイオ燃料混入時に発生する潤滑油の粘度上昇も抑制しにくくなる。 Furthermore, in the diesel engine, as described above, in order to reduce the adverse effect on the exhaust gas purification device, it is desired to reduce the ash content (ie, sulfate ash content) of the lubricating oil. However, when the ash content is lowered, the blending amount of the friction modifier and the metal detergent is limited, and it becomes difficult to lower the intermetallic friction coefficient or to improve the oxidation stability. For this reason, it becomes difficult to improve fuel economy, and it is also difficult to suppress an increase in the viscosity of the lubricating oil that occurs when biofuel is mixed.
 本発明は、以上の実情に鑑みてなされたものであり、本発明の課題は、排出ガス浄化装置への悪影響を少なくしかつ省燃費性を優れたものにしつつ、バイオ燃料が潤滑油に混入するような場合でも潤滑油の粘度上昇を抑制して、潤滑油の交換期間を長くすることが可能な内燃機関用潤滑油組成物を提供することである。 The present invention has been made in view of the above circumstances, and the problem of the present invention is that biofuels are mixed in lubricating oil while reducing adverse effects on the exhaust gas purification device and improving fuel economy. Even in such a case, it is an object to provide a lubricating oil composition for an internal combustion engine that can suppress an increase in the viscosity of the lubricating oil and prolong the replacement period of the lubricating oil.
 本発明者らは、鋭意検討した結果、以下の(A)~(D)成分を潤滑油組成物に配合し、硫酸灰分を0.8質量%以下となるように、これら各成分の含有量や含有量比を所定の範囲内とすることで上記課題を解決できることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の内燃機関用潤滑油組成物、及びその製造方法を提供する。(1)基油と、
 アルケニル若しくはアルキルコハク酸モノイミド及びそのホウ素誘導体(A1)、並びにアルケニル若しくはアルキルコハク酸ビスイミド及びそのホウ素誘導体(A2)からなる群から選択される少なくとも1種のコハク酸イミド系化合物(A)と、
 二核の有機モリブデン化合物(B1)及び三核の有機モリブデン化合物(B2)からなる群から選択される少なくとも1種のモリブデン系化合物(B)と、
 過塩基性ナトリウムスルホネート(C)と、
 過塩基性カルシウムサリシレート(D1)、及び過塩基性カルシウムフェネート(D2)からなる群から選択される少なくとも1種の過塩基性カルシウム系清浄剤(D)とを含み、
 潤滑油組成物全量基準で(A)成分の含有量が窒素原子換算で550質量ppm以上、(B)成分の含有量がモリブデン原子換算で200質量ppm以上600質量ppm以下、かつ(C)成分の含有量がナトリウム原子換算で250質量ppm以上であり、
 (A1)成分の窒素原子換算での含有量と(A2)成分の窒素原子換算での含有量との比〔(A1/A2)〕が、0以上0.3以下であるとともに、硫酸灰分が、0.8質量%以下である、内燃機関用潤滑油組成物。
(2)基油に、
 アルケニル若しくはアルキルコハク酸モノイミド及びそのホウ素誘導体(A1)、並びにアルケニル若しくはアルキルコハク酸ビスイミド及びそのホウ素誘導体(A2)からなる群から選択される少なくとも1種のコハク酸イミド系化合物(A)、
 二核の有機モリブデン化合物(B1)及び三核の有機モリブデン化合物(B2)からなる群から選択される少なくとも1種のモリブデン系化合物(B)、
 過塩基性ナトリウムスルホネート(C)、及び
 過塩基性カルシウムサリシレート(D1)、及び過塩基性カルシウムフェネート(D2)からなる群から選択される少なくとも1種の過塩基性カルシウム系清浄剤(D)を配合して潤滑油組成物を得る、内燃機関用潤滑油組成物の製造方法であって、
 潤滑油組成物全量基準で(A)成分の配合量が窒素原子換算で550質量ppm以上、(B)成分の配合量がモリブデン原子換算で200質量ppm以上600質量ppm以下、かつ(C)成分の配合量がナトリウム原子換算で250質量ppm以上であり、
 (A1)成分の窒素原子換算での配合量と(A2)成分の窒素原子換算での配合量との比〔(A1/A2)〕が、0以上0.3以下であるとともに、硫酸灰分が、0.8質量%以下である、内燃機関用潤滑油組成物の製造方法。
As a result of intensive studies, the present inventors have blended the following components (A) to (D) into the lubricating oil composition, and the contents of these components so that the sulfated ash content is 0.8% by mass or less. The inventors have found that the above problems can be solved by setting the content ratio within a predetermined range, and have completed the following present invention. That is, this invention provides the following lubricating oil composition for internal combustion engines, and its manufacturing method. (1) base oil;
At least one succinimide compound (A) selected from the group consisting of alkenyl or alkyl succinic acid monoimide and its boron derivative (A1), and alkenyl or alkyl succinic acid bisimide and its boron derivative (A2);
At least one molybdenum-based compound (B) selected from the group consisting of a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2);
Overbased sodium sulfonate (C);
Including at least one overbased calcium-based detergent (D) selected from the group consisting of overbased calcium salicylate (D1) and overbased calcium phenate (D2);
The content of the component (A) is 550 mass ppm or more in terms of nitrogen atoms, the content of the component (B) is 200 mass ppm to 600 mass ppm in terms of molybdenum atoms, and the component (C). Content is 250 mass ppm or more in terms of sodium atom,
The ratio [(A1 / A2)] of the content of the component (A1) in terms of nitrogen atom and the content of the component (A2) in terms of nitrogen atom is 0 or more and 0.3 or less, and the sulfated ash content is The lubricating oil composition for an internal combustion engine, which is 0.8% by mass or less.
(2) To base oil,
At least one succinimide compound (A) selected from the group consisting of alkenyl or alkyl succinic acid monoimide and its boron derivative (A1), and alkenyl or alkyl succinic acid bisimide and its boron derivative (A2),
At least one molybdenum-based compound (B) selected from the group consisting of a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2);
Overbased sodium sulfonate (C), and at least one overbased calcium detergent (D) selected from the group consisting of overbased calcium salicylate (D1) and overbased calcium phenate (D2) A method for producing a lubricating oil composition for an internal combustion engine, wherein a lubricating oil composition is obtained by blending
The blending amount of the component (A) on the basis of the total amount of the lubricating oil composition is 550 mass ppm or more in terms of nitrogen atoms, the blending amount of the component (B) is 200 to 600 ppm in terms of molybdenum atoms, and the component (C) The blending amount is 250 mass ppm or more in terms of sodium atom,
The ratio [(A1 / A2)] of the blending amount of the component (A1) in terms of nitrogen atoms and the blending amount of the component (A2) in terms of nitrogen atoms is 0 or more and 0.3 or less, and the sulfated ash content is The manufacturing method of the lubricating oil composition for internal combustion engines which is 0.8 mass% or less.
 本発明では、排出ガス浄化装置への悪影響を少なくし、かつ省燃費性を優れたものにしつつ、バイオ燃料が潤滑油に混入するような場合でも潤滑油の粘度上昇を抑制して、潤滑油の交換期間を長くすることが可能な内燃機関用潤滑油組成物を提供する。 In the present invention, the adverse effect on the exhaust gas purification device is reduced and the fuel efficiency is excellent, and even when biofuel is mixed in the lubricating oil, the increase in the viscosity of the lubricating oil is suppressed, and the lubricating oil A lubricating oil composition for an internal combustion engine capable of extending the replacement period is provided.
 以下、本発明の実施形態について詳細に説明する。
 本発明の一実施形態に係る内燃機関用潤滑油組成物(以下、単に「潤滑油組成物」ともいう)は、基油と、コハク酸イミド系化合物(A)と、モリブデン系化合物(B)と、過塩基性ナトリウムスルホネート(C)と、過塩基性カルシウム系清浄剤(D)とを含有する。以下、各成分について詳細に説明する。なお、数値範囲に関する「以上」「以下」の数値は、任意に組み合わせできる数値である。
Hereinafter, embodiments of the present invention will be described in detail.
A lubricating oil composition for internal combustion engines according to an embodiment of the present invention (hereinafter, also simply referred to as “lubricating oil composition”) includes a base oil, a succinimide compound (A), and a molybdenum compound (B). And an overbased sodium sulfonate (C) and an overbased calcium detergent (D). Hereinafter, each component will be described in detail. The numerical values “above” and “below” relating to the numerical range are numerical values that can be arbitrarily combined.
[基油]
 基油としては、特に制限はなく、潤滑油の基油として使用可能な鉱油及び合成油の中から任意のものを適宜選択して用いることができる。
 鉱油としては、例えば、原油を常圧蒸留して得られる常圧残油を減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等のうちの1つ以上の処理を行って精製した鉱油(水素化精製鉱油)や、GTL WAX(ガストゥリキッド ワックス)等のワックスを異性化することによって製造される基油等が挙げられるが、これらのうち水素化精製により処理した鉱油(水素化精製鉱油)が好ましい。水素化精製鉱油を用いることで、後述する%C、粘度指数を良好にしやすくなる。
 合成油としては、例えば、ポリブテン、α-オレフィン単独重合体や共重合体(例えばエチレン-α-オレフィン共重合体)等のポリα-オレフィン、例えば、ポリオールエステル、二塩基酸エステル、リン酸エステル等の各種のエステル、例えば、ポリフェニルエーテル、ポリグリコール等の各種のエーテル、アルキルベンゼン、アルキルナフタレン等が挙げられる。これらの合成油のうち、特にポリα-オレフィンが好ましい。
 基油としては、鉱油を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、合成油を単独で用いてもよく、二種以上を組み合わせて用いてもよい。更には、上記鉱油一種以上と上記合成油一種以上とを組み合わせて用いてもよい。
 中でも、基油は、鉱油と合成油とからなる基油であることが好ましい。この場合、鉱油としては、水素化精製鉱油を使用し、合成油としてはポリα-オレフィンを使用することがより好ましい。また、基油が鉱油と合成油からなる場合には、合成油の含有量の基油全量に対する質量比(合成油/基油全量)は、0.1以上0.6以下であることが好ましく、0.15以上0.5以下がより好ましく、0.2以上0.4以下であることがさらに好ましい。
 また、潤滑油組成物において基油は、潤滑油組成物全量に対して、通常、65質量%以上、好ましくは70質量%以上97質量%以下、より好ましくは75質量%以上95質量%以下含有される。
[Base oil]
There is no restriction | limiting in particular as a base oil, Arbitrary things can be suitably selected and used from the mineral oil and synthetic oil which can be used as a base oil of lubricating oil.
As mineral oil, for example, a lubricating oil fraction obtained by distillation under reduced pressure of atmospheric residual oil obtained by atmospheric distillation of crude oil can be desolvated, solvent extracted, hydrocracked, solvent dewaxed, catalytic dehydrated. Mineral oil (hydrorefined mineral oil) refined by one or more of wax, hydrorefining, etc., or base oil produced by isomerizing wax such as GTL WAX (Gas Liquid Wax) Of these, mineral oil (hydrorefined mineral oil) treated by hydrorefining is preferred. By using hydrorefined mineral oil, it becomes easy to improve the% C P and viscosity index described later.
Synthetic oils include, for example, polyα-olefins such as polybutene, α-olefin homopolymers and copolymers (for example, ethylene-α-olefin copolymers), such as polyol esters, dibasic acid esters, and phosphate esters. And various esters, for example, various ethers such as polyphenyl ether and polyglycol, alkylbenzene, alkylnaphthalene and the like. Of these synthetic oils, poly α-olefins are particularly preferred.
As base oil, mineral oil may be used independently and may be used in combination of 2 or more type. Moreover, synthetic oil may be used independently and may be used in combination of 2 or more type. Furthermore, one or more mineral oils and one or more synthetic oils may be used in combination.
Especially, it is preferable that base oil is a base oil which consists of mineral oil and synthetic oil. In this case, it is more preferable to use hydrorefined mineral oil as the mineral oil and poly α-olefin as the synthetic oil. When the base oil is composed of mineral oil and synthetic oil, the mass ratio of the synthetic oil content to the total base oil (synthetic oil / total base oil) is preferably 0.1 or more and 0.6 or less. 0.15 or more and 0.5 or less is more preferable, and 0.2 or more and 0.4 or less is more preferable.
In the lubricating oil composition, the base oil is usually 65% by mass or more, preferably 70% by mass or more and 97% by mass or less, more preferably 75% by mass or more and 95% by mass or less, based on the total amount of the lubricating oil composition. Is done.
 基油の粘度については特に制限はないが、100℃における動粘度が、好ましくは2mm/s以上30mm/s以下、より好ましくは3mm/s以上15mm/s以下、更に好ましくは3.5mm/s以上10mm/s以下の範囲である。
 100℃における動粘度が2mm/s以上であると蒸発損失が少なく、また、30mm/s以下であると、粘性抵抗による動力損失が抑制され、燃費改善効果が得られる。
 さらに、基油の粘度指数は、好ましくは100以上、より好ましくは110以上、更に好ましくは120以上、より更に好ましくは130以上である。当該粘度指数が100以上の基油は、温度の変化による粘度変化が小さい。
 上記基油の粘度指数を上記範囲とすることで、潤滑油組成物の粘度特性を良好にしやすくなる。
 なお、基油のNOACK蒸発量(250℃、1時間)は、好ましくは15.0質量%以下であり、より好ましくは14.0質量%以下である。
The viscosity of the base oil is not particularly limited, but the kinematic viscosity at 100 ° C. is preferably 2 mm 2 / s to 30 mm 2 / s, more preferably 3 mm 2 / s to 15 mm 2 / s, and still more preferably 3 .5mm or less in the range 2 / s or more 10 mm 2 / s.
When the kinematic viscosity at 100 ° C. is 2 mm 2 / s or more, the evaporation loss is small, and when it is 30 mm 2 / s or less, the power loss due to the viscous resistance is suppressed, and the fuel efficiency improvement effect is obtained.
Furthermore, the viscosity index of the base oil is preferably 100 or more, more preferably 110 or more, still more preferably 120 or more, and still more preferably 130 or more. A base oil having a viscosity index of 100 or more has a small change in viscosity due to a change in temperature.
By making the viscosity index of the base oil within the above range, it becomes easy to improve the viscosity characteristics of the lubricating oil composition.
The NOACK evaporation amount (250 ° C., 1 hour) of the base oil is preferably 15.0% by mass or less, more preferably 14.0% by mass or less.
 また、上記鉱油としては、環分析による芳香族分(%C)が3.0%以下で硫黄分の含有量が10質量ppm以下のものが好ましく用いられる。ここで、環分析による%Cとは、環分析n-d-M法にて算出した芳香族分の割合(百分率)を示す。
 %Cが3.0%以下で、硫黄分が10質量ppm以下の鉱油は、良好な酸化安定性を有し、バイオ燃料混入時の粘度上昇をより抑制しやすくなる。好ましい%Cは1.0以下、更に好ましくは0.5以下、より更に好ましくは0.1以下であり、また、より好ましい硫黄分は5質量ppm以下である。
 また、鉱油は、環分析によるパラフィン分(%C)が好ましくは75以上で、より好ましくは80以上、さらに好ましくは85以上である。パラフィン分を75以上とすることで、基油の酸化安定性が良好になり、バイオ燃料混入時の粘度上昇をより抑制しやすくなる。ここで、環分析による%Cとは、環分析n-d-M法にて算出したパラフィン分の割合(百分率)を示す。
 なお、動粘度、及び粘度指数等の基油の各性状は、具体的には後述する実施例に記載された方法により測定されるものである。
Further, as the mineral oil, those having an aromatic content (% C A ) of 3.0% or less and a sulfur content of 10 mass ppm or less by ring analysis are preferably used. Here, the% C A by ring analysis shows a proportion of aromatic content calculated by ring analysis n-d-M method (percentage).
A mineral oil having a% CA of 3.0% or less and a sulfur content of 10 mass ppm or less has good oxidation stability, and more easily suppresses an increase in viscosity when mixed with biofuel. Preferred% C A is 1.0 or less, more preferably 0.5 or less, even more preferably 0.1 or less, sulfur content is more preferably at most 5 mass ppm.
Moreover, mineral oils, paraffin content by ring analysis (% C P) is preferably at least 75, more preferably 80 or more, more preferably 85 or more. By making the paraffin content 75 or more, the oxidation stability of the base oil becomes good, and it becomes easier to suppress an increase in viscosity when mixed with biofuel. Here, the% C P by ring analysis shows a proportion of paraffin component calculated in ring analysis n-d-M method (percentage).
In addition, each property of base oil, such as kinematic viscosity and a viscosity index, is specifically measured by the method described in the Example mentioned later.
[コハク酸イミド系化合物(A)]
 本実施形態で使用されるコハク酸イミド系化合物(A)は、無灰分散剤であり、アルケニル若しくはアルキルコハク酸モノイミド及びそのホウ素誘導体(A1)、並びにアルケニル若しくはアルキルコハク酸ビスイミド及びそのホウ素誘導体(A2)から選択される1種又は2種以上である。
 潤滑油組成物全量基準で(A)成分の含有量は、窒素原子換算で550質量ppm以上である。550質量ppm未満であると、(A)成分を配合した効果が十分に得られず、バイオ燃料混入時の粘度増加を抑制することが難しくなることもある。
 (A)成分の窒素原子換算の含有量は、上記観点から、好ましくは560質量ppm以上、より好ましくは700質量ppm以上である。
 一方、(A)成分の窒素原子換算の含有量は、その上限が特に限定されないが、添加量に見合った効果を発揮させるために、通常、1500質量ppm以下、好ましくは1250質量ppm以下、より好ましく1000質量ppm以下である。
[Succinimide compound (A)]
The succinimide compound (A) used in the present embodiment is an ashless dispersant, an alkenyl or alkyl succinic monoimide and its boron derivative (A1), and an alkenyl or alkyl succinic acid bisimide and its boron derivative (A2). 1 type or 2 types or more selected from.
The content of the component (A) on the basis of the total amount of the lubricating oil composition is 550 mass ppm or more in terms of nitrogen atoms. If it is less than 550 mass ppm, the effect of blending the component (A) cannot be sufficiently obtained, and it may be difficult to suppress an increase in viscosity when mixed with biofuel.
The content of the component (A) in terms of nitrogen atom is preferably 560 mass ppm or more, more preferably 700 mass ppm or more from the above viewpoint.
On the other hand, the upper limit of the content of component (A) in terms of nitrogen atom is not particularly limited, but is usually 1500 ppm by mass or less, preferably 1250 ppm by mass or less, in order to exert an effect commensurate with the addition amount. Preferably it is 1000 mass ppm or less.
 また、潤滑油組成物における(A1)成分の窒素原子換算での含有量と、(A2)成分の窒素原子換算での含有量との比〔(A1/A2)〕は、0以上0.3以下となるものである。すなわち、(A)成分として、(A1)成分(モノイミド)の含有量を相対的に少なくし、又は含有させないようにする。本実施形態では、比〔(A1/A2)〕を0.3より大きくすると、すなわち、モノイミドの含有量を相対的に多くすると、バイオ燃料混入時の粘度増加を抑制することが難しくなる。
 比〔(A1/A2)〕は、バイオ燃料混入時の粘度増加をより適切に抑制する観点から、0以上0.23以下が好ましく、0以上0.20以下がより好ましい。
Further, the ratio [(A1 / A2)] of the content in terms of nitrogen atom of the component (A1) and the content in terms of nitrogen atom of the component (A2) in the lubricating oil composition is 0 or more and 0.3. It becomes the following. That is, as the component (A), the content of the component (A1) (monoimide) is relatively reduced or not included. In this embodiment, if the ratio [(A1 / A2)] is greater than 0.3, that is, if the monoimide content is relatively increased, it is difficult to suppress an increase in viscosity when biofuel is mixed.
The ratio [(A1 / A2)] is preferably 0 or more and 0.23 or less, and more preferably 0 or more and 0.20 or less, from the viewpoint of appropriately suppressing an increase in viscosity when biofuel is mixed.
 (A1)成分として使用されるアルケニル若しくはアルキルコハク酸モノイミドとしては、下記の式(1)で示される化合物が挙げられる。また、(A2)成分として使用されるアルケニル若しくはアルキルコハク酸ビスイミドとしては、下記の式(2)で示される化合物が挙げられる。
 また、下記の式(1)で示される化合物、又は下記の式(2)で示される化合物と、アルコール、アルデヒド、ケトン、アルキルフェノール、環状カーボネート、エポキシ化合物、有機酸等からなる群から選択される1種の化合物とを反応させた変性ポリブテニルコハク酸イミドを用いることもできる。
Examples of the alkenyl or alkyl succinic monoimide used as the component (A1) include compounds represented by the following formula (1). Examples of the alkenyl or alkyl succinic acid bisimide used as the component (A2) include compounds represented by the following formula (2).
Further, it is selected from the group consisting of a compound represented by the following formula (1) or a compound represented by the following formula (2) and an alcohol, aldehyde, ketone, alkylphenol, cyclic carbonate, epoxy compound, organic acid and the like. A modified polybutenyl succinimide obtained by reacting with one compound can also be used.
Figure JPOXMLDOC01-appb-C000002

(式中、R1、R3及びR4は、それぞれアルケニル基若しくはアルキル基で、R3及びR4は互いに同一でも異なっていてもよく、R2、R5及びR6は、それぞれ炭素数2~5のアルキレン基で、R5及びR6は互いに同一でも異なっていてもよく、rは1以上10以下の整数を示し、sは0又は1以上10以下の整数を示す。)
Figure JPOXMLDOC01-appb-C000002

(In the formula, R 1 , R 3 and R 4 are each an alkenyl group or an alkyl group, R 3 and R 4 may be the same or different from each other, and R 2 , R 5 and R 6 are each a carbon number. In the alkylene group of 2 to 5, R 5 and R 6 may be the same or different from each other, r represents an integer of 1 to 10, and s represents 0 or an integer of 1 to 10.
 式(1)、(2)において、R1、R3及びR4の数平均分子量は、それぞれ500以上3000以下であるが、より好ましくは700以上2700以下、さらに好ましくは800以上2500以下である。
 上記R1、R3及びR4は数平均分子量が500以上となることで、基油への溶解性が良好となる。また、3000以下となることで、良好な清浄性を得やすくなり、分散剤としての機能を発揮しやすくなる。
 また、rは、好ましくは2以上5以下、より好ましくは3以上4以下である。rが2以上となることで良好な清浄性を発揮し、rが5以下となることで基油に対する溶解性が良好となる。
 さらに、式(2)において、sは好ましくは3以上8以下、より好ましくは4以上7以下である。sが3以上となることで、良好な清浄性を発揮し、sが8以下となることで基油に対する溶解性が良好となる。
In the formulas (1) and (2), the number average molecular weights of R 1 , R 3 and R 4 are each 500 or more and 3000 or less, more preferably 700 or more and 2700 or less, and further preferably 800 or more and 2500 or less. .
When R 1 , R 3 and R 4 have a number average molecular weight of 500 or more, the solubility in the base oil is improved. Moreover, it becomes easy to obtain favorable cleanliness and it becomes easy to exhibit the function as a dispersing agent because it will be 3000 or less.
R is preferably 2 or more and 5 or less, more preferably 3 or more and 4 or less. When r is 2 or more, good cleanliness is exhibited, and when r is 5 or less, solubility in base oil is improved.
Further, in the formula (2), s is preferably 3 or more and 8 or less, more preferably 4 or more and 7 or less. When s is 3 or more, good cleanliness is exhibited, and when s is 8 or less, solubility in base oil is improved.
 アルケニル基としては、ポリブテニル基、ポリイソブテニル基、エチレン-プロピレン共重合体に由来する基を挙げることができ、アルキル基としてはこれらを水添したものが挙げられる。
 好適なアルケニル基としては、ポリブテニル基又はポリイソブテニル基が挙げられる。ポリブテニル基は、例えば、1-ブテンとイソブテンの混合物あるいは高純度のイソブテンを重合させたものとして得られる。また、好適なアルキル基としては、ポリブテニル基又はポリイソブテニル基を水添したものである。
Examples of the alkenyl group include a polybutenyl group, a polyisobutenyl group, and a group derived from an ethylene-propylene copolymer, and examples of the alkyl group include hydrogenated groups thereof.
Suitable alkenyl groups include polybutenyl or polyisobutenyl groups. The polybutenyl group can be obtained, for example, by polymerizing a mixture of 1-butene and isobutene or high-purity isobutene. Moreover, as a suitable alkyl group, a polybutenyl group or a polyisobutenyl group is hydrogenated.
 アルケニル若しくはアルキルコハク酸モノイミド、及びアルケニル若しくはアルキルコハク酸ビスイミドは、通常、ポリオレフィンと無水マレイン酸との反応で得られるアルケニルコハク酸無水物、又はそれを水添して得られるアルキルコハク酸無水物を、ポリアミンと反応させることによって製造することができる。コハク酸モノイミド及びコハク酸ビスイミドはそれぞれ、アルケニルコハク酸無水物若しくはアルキルコハク酸無水物とポリアミンとの反応比率を変えることによって製造することができる。
 上記ポリオレフィンを形成するオレフィン単量体としては、炭素数2~8のα-オレフィンの一種又は二種以上を混合して用いることができるが、イソブテンと1-ブテンの混合物を好適に用いることができる。
 一方、ポリアミンとしては、エチレンジアミン,プロピレンジアミン,ブチレンジアミン,ペンチレンジアミン等のジアミン、ジエチレントリアミン,トリエチレンテトラミン,テトラエチレンペンタミン,ペンタエチレンヘキサミン、ジ(メチルエチレン)トリアミン、ジブチレントリアミン、トリブチレンテトラミン、ペンタペンチレンヘキサミン等のポリアルキレンポリアミンを挙げることができる。
Alkenyl or alkyl succinic acid monoimide and alkenyl or alkyl succinic acid bisimide are usually alkenyl succinic anhydride obtained by reaction of polyolefin with maleic anhydride, or alkyl succinic anhydride obtained by hydrogenation thereof. It can be produced by reacting with a polyamine. Succinic monoimide and succinic bisimide can be prepared by changing the reaction ratio of alkenyl succinic anhydride or alkyl succinic anhydride and polyamine, respectively.
As the olefin monomer for forming the polyolefin, one or more of α-olefins having 2 to 8 carbon atoms can be mixed and used, and a mixture of isobutene and 1-butene is preferably used. it can.
On the other hand, polyamines include diamines such as ethylenediamine, propylenediamine, butylenediamine, and pentylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, di (methylethylene) triamine, dibutylenetriamine, and butylenetetramine. And polyalkylene polyamines such as pentapentylenehexamine.
 アルケニル若しくはアルキルコハク酸モノイミドのホウ素誘導体は、常法により製造したものを使用することができる。
 例えば、上記のポリオレフィンを無水マレイン酸と反応させてアルケニルコハク酸無水物とした後、更に上記のポリアミンと酸化ホウ素、ハロゲン化ホウ素、ホウ酸、ホウ酸無水物、ホウ酸エステル、ホウ酸のアンモニウム塩等のホウ素化合物を反応させて得られる中間体と反応させてイミド化させることによって得られる。
 (A1)成分がホウ素誘導体を含む場合、(A1)成分中のホウ素含有量は、特に制限されないが、通常0.1質量%以上5質量%以下、好ましくは0.5質量%以上3質量%以下である。
 また、アルケニル若しくはアルキルコハク酸ビスイミドのホウ素誘導体も同様に製造することが可能であり、(A2)成分中のホウ素含有量の好適な範囲も同様である。
As the boron derivative of alkenyl or alkyl succinic acid monoimide, those prepared by a conventional method can be used.
For example, after reacting the above polyolefin with maleic anhydride to make alkenyl succinic anhydride, the above polyamine and boron oxide, boron halide, boric acid, boric anhydride, boric acid ester, ammonium boric acid It is obtained by reacting with an intermediate obtained by reacting a boron compound such as a salt and imidizing.
When the component (A1) contains a boron derivative, the boron content in the component (A1) is not particularly limited, but is usually 0.1% by mass to 5% by mass, preferably 0.5% by mass to 3% by mass. It is as follows.
Further, a boron derivative of alkenyl or alkyl succinic acid bisimide can be produced in the same manner, and the preferred range of the boron content in the component (A2) is also the same.
 (A1)成分は、上記のように潤滑油組成物に含有されていなくてもよいし、含有されてもよい。(A1)成分が含有される場合、(A1)成分は、アルケニル若しくはアルキルコハク酸モノイミドと、そのホウ素誘導体のうち一方からなるものであってもよいし、両方を含むものであってもよい。ただし、(A1)成分は、アルケニル若しくはアルキルコハク酸モノイミドのホウ素誘導体を含むことが好ましい。(A1)成分が、ホウ素誘導体を含むことで、(A)成分により金属間摩擦係数を低減させやすく、またバイオ燃料混入時の粘度増加を抑制しやすくなる。
 (A1)成分が、ホウ素誘導体を含む場合には、潤滑油組成物全量基準で(A1)成分由来のホウ素含有量は、50質量ppm以上300質量ppm以下であることが好ましい。ホウ素含有量を50質量ppm以上とすることで、(A)成分により金属間摩擦係数を低減させる効果をより発揮しやすくなる。また、300質量ppm以下とすることで、(A)成分における(A1)成分の割合を少なくしやすくなる。
 上記の観点から(A1)成分由来のホウ素含有量は、80質量ppm以上300質量ppm以下がより好ましく、100質量ppm以上250質量ppm以下がさらに好ましい。
The component (A1) may or may not be contained in the lubricating oil composition as described above. When the component (A1) is contained, the component (A1) may be composed of one of alkenyl or alkyl succinic monoimide and its boron derivative, or may include both. However, the component (A1) preferably contains a boron derivative of alkenyl or alkyl succinic monoimide. When the component (A1) contains a boron derivative, it is easy to reduce the coefficient of friction between metals due to the component (A), and it is easy to suppress an increase in viscosity when mixed with biofuel.
When the component (A1) contains a boron derivative, the boron content derived from the component (A1) is preferably 50 ppm by mass or more and 300 ppm by mass or less based on the total amount of the lubricating oil composition. By setting the boron content to 50 mass ppm or more, the effect of reducing the coefficient of friction between metals by the component (A) is more easily exhibited. Moreover, it becomes easy to reduce the ratio of (A1) component in (A) component by setting it as 300 mass ppm or less.
From the above viewpoint, the boron content derived from the component (A1) is more preferably 80 ppm to 300 ppm by mass, and further preferably 100 ppm to 250 ppm by mass.
 一方で、(A2)成分は、潤滑油組成物に必須成分として含有されるものである。(A2)成分は、アルケニル若しくはアルキルコハク酸ビスイミド、及びそのホウ素誘導体の両方を含んでいてもよいし、いずれか一方からなるものでもよいが、アルケニル若しくはアルキルコハク酸ビスイミドからなることが好ましい。
 そして、(A)成分が、(A1)及び(A2)成分の両方を含む場合には、(A1)成分がアルケニル若しくはアルキルコハク酸モノイミドのホウ素誘導体を含む一方で、(A2)成分がアルケニル若しくはアルキルコハク酸ビスイミドからなることが好ましい。これにより、バイオ燃料混入時の粘度増加を適切に抑制しつつ、金属間摩擦係数をより低減させやすくなる。
On the other hand, the component (A2) is contained as an essential component in the lubricating oil composition. The component (A2) may contain both alkenyl or alkyl succinic acid bisimide and its boron derivative, or may consist of either one, but is preferably made of alkenyl or alkyl succinic acid bisimide.
And when (A) component contains both (A1) and (A2) component, while (A1) component contains the boron derivative of alkenyl or alkyl succinic monoimide, (A2) component is alkenyl or It preferably consists of an alkyl succinic acid bisimide. This makes it easier to reduce the coefficient of friction between metals while appropriately suppressing an increase in viscosity when biofuel is mixed.
[モリブデン系化合物(B)]
 モリブデン系化合物(B)は、二核の有機モリブデン化合物(B1)及び三核の有機モリブデン化合物(B2)から選択される1種又は2種以上である。本実施形態では、潤滑油組成物にモリブデン系化合物(B)を含有させることで、金属間摩擦係数を低くして、省燃費性を優れたものとすることが可能になる。
 また、潤滑油組成物にモリブデン系化合物(B)を含有させると、バイオ燃料が混入したとき潤滑油組成物の粘度が増加しやすくなるが、本実施形態では、(B)成分に加えて、(A)、(C)、及び(D)成分を適切な含有量比又は含有量で含有させることで、バイオ燃料混入時の粘度増加を防止することが可能になる。
 潤滑油組成物全量基準でモリブデン系化合物(B)の含有量は、モリブデン原子換算で200質量ppm以上600質量ppm以下の範囲内である。200質量ppm未満となると、金属間摩擦係数を十分に低くすることができず、省燃費性を優れたものとすることができない。一方で、600質量ppmを越えると、(A)、(C)、及び(D)成分を適切に含有させても、バイオ燃料混入時の潤滑油組成物の粘度増加を抑制することが難しくなる。
 以上の観点から、上記モリブデン系化合物(B)の含有量は、250質量ppm以上500質量ppm以下好ましく、300質量ppm以上500質量ppm以下がより好ましい。
[Molybdenum compound (B)]
The molybdenum compound (B) is one or more selected from a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2). In the present embodiment, by including the molybdenum-based compound (B) in the lubricating oil composition, it is possible to lower the coefficient of friction between metals and to improve fuel economy.
In addition, when the lubricating oil composition contains the molybdenum-based compound (B), the viscosity of the lubricating oil composition tends to increase when biofuel is mixed. In this embodiment, in addition to the component (B), By containing the components (A), (C), and (D) at an appropriate content ratio or content, it becomes possible to prevent an increase in viscosity when biofuel is mixed.
The content of the molybdenum-based compound (B) on the basis of the total amount of the lubricating oil composition is in the range of 200 mass ppm to 600 mass ppm in terms of molybdenum atoms. If it is less than 200 ppm by mass, the coefficient of friction between metals cannot be made sufficiently low, and the fuel economy cannot be made excellent. On the other hand, if it exceeds 600 ppm by mass, it is difficult to suppress an increase in the viscosity of the lubricating oil composition when biofuel is mixed even if the components (A), (C), and (D) are appropriately contained. .
From the above viewpoint, the content of the molybdenum compound (B) is preferably 250 mass ppm or more and 500 mass ppm or less, and more preferably 300 mass ppm or more and 500 mass ppm or less.
 二核の有機モリブデン化合物(B1)としては、二核モリブデンジチオカーバメートが挙げられ、具体的には、以下の式(3)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003

[式(3)中、R11~R14は炭素数7~22の炭化水素基を表し、R11~R14は、同一であってもよいし、異なっていてもよい。X1~X4は、硫黄原子又は酸素原子を表す。]
Examples of the dinuclear organic molybdenum compound (B1) include dinuclear molybdenum dithiocarbamate, and specifically include a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000003

[In the formula (3), R 11 to R 14 represent a hydrocarbon group having 7 to 22 carbon atoms, and R 11 to R 14 may be the same or different. X 1 to X 4 each represents a sulfur atom or an oxygen atom. ]
 上記式(3)の化合物は、R11~R14の各炭素数が7以上となることで、油溶性が良好となり、潤滑油組成物中に溶解させやすくなる。また、22以下になると融点が低くなってハンドリング性が良好になるととともに、摩擦低減効果を発揮しやすくなる。これらの観点から、R11~R14の各炭素数は、好ましくは7~18、さらに好ましくは7~14、特に好ましくは8~13である。また、R11~R14の炭素数の合計は34~80であることが好ましく、36~60であることがより好ましく、38~54であることがさらに好ましい。
 R11~R14の炭化水素基としては、アルキル基、アルケニル基、アルキルアリール基、シクロアルキル基、シクロアルケニル基が挙げられ、分枝鎖または直鎖のアルキル基又はアルケニル基が好ましく、分枝鎖または直鎖のアルキル基がより好ましい。分枝鎖または直鎖のアルキル基としては、n-オクチル基、2-エチルヘキシル基、イソノニル基、n-デシル基、イソデシル基、ドデシル基、トリデシル基、イソトリデシル基等が挙げられる。
 また、基油への溶解性、貯蔵安定性及び摩擦低減能の観点から、式(3)に示す二核の有機モリブデン化合物は、R11及びR12が同一のアルキル基、R13及びR14が同一のアルキル基であって、R11及びR12のアルキル基とR13及びR14のアルキル基が異なることが好ましい。
In the compound of the above formula (3), when the carbon number of each of R 11 to R 14 is 7 or more, the oil solubility becomes good and it is easy to dissolve in the lubricating oil composition. On the other hand, when it is 22 or less, the melting point becomes low, the handling property becomes good, and the friction reducing effect is easily exhibited. From these viewpoints, the number of carbon atoms of R 11 to R 14 is preferably 7 to 18, more preferably 7 to 14, and particularly preferably 8 to 13. The total number of carbon atoms of R 11 to R 14 is preferably 34 to 80, more preferably 36 to 60, and still more preferably 38 to 54.
Examples of the hydrocarbon group for R 11 to R 14 include an alkyl group, an alkenyl group, an alkylaryl group, a cycloalkyl group, and a cycloalkenyl group, and a branched or straight chain alkyl group or alkenyl group is preferable. A chain or straight chain alkyl group is more preferred. Examples of the branched or straight chain alkyl group include n-octyl group, 2-ethylhexyl group, isononyl group, n-decyl group, isodecyl group, dodecyl group, tridecyl group, isotridecyl group and the like.
In addition, from the viewpoint of solubility in base oil, storage stability, and friction reducing ability, the binuclear organomolybdenum compound represented by the formula (3) is an alkyl group in which R 11 and R 12 are the same, R 13 and R 14. Are the same alkyl groups, and the alkyl groups of R 11 and R 12 are preferably different from the alkyl groups of R 13 and R 14 .
 また、式(3)において、X~Xは硫黄原子又は酸素原子を表し、X~Xは同一であってもよいし、異なっていてもよい。硫黄原子と酸素原子の両方を含む場合、好ましくは硫黄原子と酸素原子の比が、硫黄原子/酸素原子=1/3~3/1、より好ましくは1.5/2.5~3/1である。また、X~Xの全てが硫黄原子又は酸素原子であってもよいが、全てが酸素原子であることがより好ましい。 In the formula (3), X 1 to X 4 represent a sulfur atom or an oxygen atom, and X 1 to X 4 may be the same or different. When both sulfur atoms and oxygen atoms are contained, the ratio of sulfur atoms to oxygen atoms is preferably sulfur atom / oxygen atoms = 1/3 to 3/1, more preferably 1.5 / 2.5 to 3/1. It is. Further, all of X 1 to X 4 may be sulfur atoms or oxygen atoms, but it is more preferable that all of them are oxygen atoms.
 また、三核の有機モリブデン化合物は、下記式(4)に示すものが挙げられる。
     Mo    (4)
[式(4)中、Eはそれぞれ独立して酸素又はセレンである。kは少なくとも1の整数であり、mは0又は正の整数であり、k+mは4以上10以下である。Lはそれぞれ独立に、炭素原子を含有する有機基を有するアニオン性リガンドであり、各リガンドにおける有機基の炭素原子の合計が14個以上であり、各リガンドは同一であってもよいし、異なっていてもよい。nは1以上4以下の正の整数である。AはL以外のアニオンである。pは0又は正の整数である。Qはそれぞれ独立に中性電子を供与する化合物である。zは0以上5以下であり、非化学量論の値を含む。]
Examples of the trinuclear organic molybdenum compound include those represented by the following formula (4).
Mo 3 S k E m L n A p Q z (4)
[In formula (4), each E is independently oxygen or selenium. k is an integer of at least 1, m is 0 or a positive integer, and k + m is 4 or more and 10 or less. L is independently an anionic ligand having an organic group containing a carbon atom, and the total number of carbon atoms of the organic group in each ligand is 14 or more, and each ligand may be the same or different. It may be. n is a positive integer of 1 or more and 4 or less. A is an anion other than L. p is 0 or a positive integer. Q is a compound which donates a neutral electron independently. z is 0 or more and 5 or less, and includes a non-stoichiometric value. ]
 式(4)において、Lで示す各リガンドにおける有機基の炭素原子合計を14以上とすると、基油への溶解性が良好となる。各リガンドにおける有機基の炭素原子合計は、14~50個であることが好ましく、16~30個であることがより好ましく、18~24個であることがさらに好ましい。また、アニオン性リガンドは、モノアニオン性リガンド(1価のアニオン性リガンド)であることが好ましい。 In the formula (4), when the total number of carbon atoms of the organic group in each ligand represented by L is 14 or more, the solubility in the base oil is good. The total number of carbon atoms of the organic group in each ligand is preferably 14 to 50, more preferably 16 to 30, and still more preferably 18 to 24. The anionic ligand is preferably a monoanionic ligand (monovalent anionic ligand).
 各リガンドは、例えば、下記の式(4-A)~(4-D)に示すリガンドから選択される何れかであることが好ましい。
Figure JPOXMLDOC01-appb-C000004

[式(4-A)、(4-B)、(4-C)及び(4-D)中、X21~X27及びYは、それぞれ独立して、酸素原子又は硫黄原子である。また、式(4-A)、(4-B)、(4-C)及び(4-D)中、R21~R25はそれぞれ独立した有機基であり、R21~R25は同一であっても異なっていてもよい。R21~R23の有機基の炭素数は14個以上である。R24の有機基の炭素数と、R25の有機基の炭素数との合計は14個以上である。]
 R21~R23の有機基それぞれの炭素数は14~50個であることが好ましく、16~30個であることがより好ましく、18~24個であることがさらに好ましい。R24の有機基の炭素数とR25の有機基の炭素数との合計は、14~50個であることが好ましく、16~30個であることがより好ましく、18~24個であることがさらに好ましい。また、R24の有機基の炭素数及びR25の有機基の炭素数は、それぞれ7~30個であることが好ましく、7~20個であることがより好ましく、8~13個であることがさらに好ましい。
 R24の有機基と、R25の有機基とは、同一であっても異なっていてもよいが、異なることが好ましい。また、R24の有機基の炭素数と、R25の有機基の炭素数とは、同一であっても異なっていてもよいが、異なることが好ましい。
 式(4)において、リガンドは、式(4-D)に示すリガンドを含むことが好ましい。また、式(4)において、全てのリガンドは同一であることが好ましい。さらに、全てのリガンドが上記式(4-D)に示すリガンドであることがより好ましい。
Each ligand is preferably any one selected from, for example, ligands represented by the following formulas (4-A) to (4-D).
Figure JPOXMLDOC01-appb-C000004

[In the formulas (4-A), (4-B), (4-C) and (4-D), X 21 to X 27 and Y are each independently an oxygen atom or a sulfur atom. In the formulas (4-A), (4-B), (4-C) and (4-D), R 21 to R 25 are independent organic groups, and R 21 to R 25 are the same. It may or may not be. The organic group of R 21 to R 23 has 14 or more carbon atoms. The sum of the carbon number of the organic group of R 24 and the carbon number of the organic group of R 25 is 14 or more. ]
Preferably R 21 carbon atoms organic group of each - R 23 is 14 to 50, more preferably 16 to 30, 18 - and more preferably a 24. The total number of carbon atoms of the organic group of R 24 and the organic group of R 25 is preferably 14 to 50, more preferably 16 to 30, and more preferably 18 to 24. Is more preferable. Further, the carbon number of the organic group of R 24 and the carbon number of the organic group of R 25 are each preferably 7 to 30, more preferably 7 to 20, and 8 to 13 Is more preferable.
The organic group of R 24 and the organic group of R 25 may be the same or different, but are preferably different. Further, the carbon number of the organic group of R 24 and the carbon number of the organic group of R 25 may be the same or different, but are preferably different.
In the formula (4), the ligand preferably includes a ligand represented by the formula (4-D). In the formula (4), it is preferable that all ligands are the same. Furthermore, it is more preferable that all the ligands are ligands represented by the above formula (4-D).
 好ましくは、上記有機基は、アルキル基、アリール基、置換アリール基及びエーテル基等のヒドロカルビル基である。より好ましくは、それぞれのリガンドは、同一のヒドロカルビル基を有する。
 「ヒドロカルビル」なる用語は、リガンドの残部に直接結合する炭素原子を有する置換基を示し、本実施形態の範囲内において、その特性が主にヒドロカルビルである。かかる置換基は、以下のものが挙げられる。
1.炭化水素置換基
 炭化水素置換基としては、アルキル、アルケニル等の脂肪族の置換基、シクロアルキル、シクロアルケニル等の脂環式の置換基、芳香族基、脂肪族基及び脂環式基に置換された芳香核、環がリガンド中のもう一つの箇所を介して完結している環式基(即ち、任意の2つの示された置換基がともに脂環式基を形成してもよい)が挙げられる。
2.置換された炭化水素置換基
 置換された炭化水素置換基としては、上記炭化水素置換基をヒドロカルビルの特性を変化させない非炭化水素基で置換したものが挙げられる。非炭化水素基としては、例えば、特にクロロ、フルオロ等のハロゲン基、アミノ基、アルコキシ基、メルカプト基、アルキルメルカプト基、ニトロ基、ニトロソ基、スルホキシ基等が挙げられる。
Preferably, the organic group is a hydrocarbyl group such as an alkyl group, an aryl group, a substituted aryl group, and an ether group. More preferably, each ligand has the same hydrocarbyl group.
The term “hydrocarbyl” refers to a substituent having a carbon atom that is directly bonded to the remainder of the ligand, and within the scope of this embodiment, the property is primarily hydrocarbyl. Such substituents include the following.
1. Hydrocarbon substituents As hydrocarbon substituents, substituted with aliphatic substituents such as alkyl and alkenyl, alicyclic substituents such as cycloalkyl and cycloalkenyl, aromatic groups, aliphatic groups and alicyclic groups An aromatic nucleus, a cyclic group in which the ring is completed via another location in the ligand (ie any two of the indicated substituents may together form an alicyclic group) Can be mentioned.
2. Substituted hydrocarbon substituents Examples of substituted hydrocarbon substituents include those in which the hydrocarbon substituent is substituted with a non-hydrocarbon group that does not change the properties of the hydrocarbyl. Examples of the non-hydrocarbon group include halogen groups such as chloro and fluoro, amino groups, alkoxy groups, mercapto groups, alkyl mercapto groups, nitro groups, nitroso groups, and sulfoxy groups.
 好ましいリガンドは、アルキルキサントゲン酸塩、カルボン酸塩、ジアルキルジチオカルバミン酸塩、及びこれらの混合物を含む。最も好ましいものは、ジアルキルジチオカルバミン酸塩である。 Preferred ligands include alkyl xanthates, carboxylates, dialkyldithiocarbamates, and mixtures thereof. Most preferred is a dialkyldithiocarbamate.
 式(4)中、E(酸素又はセレン)は、例えば、後述するコアにおいて硫黄を置換し得るものである。k+mは4以上7以下であることが好ましい。
 また、式(4)中のQとしては、水、アミン、アルコール、エーテル及びホスフィン等が挙げられる。Qのアニオンとしてはそれぞれ同一であっても異なっていてもよいが、それぞれ同一であることが好ましい。中性電子供与化合物Qは、三核モリブデン化合物上における空の配位を満たすために存在する。
 また、式(4)中のAのアニオンは、1価のアニオンであっても、2価のアニオンであってもよい。Aの具体例としては、ジスルフィド、ヒドロキシド、アルコキシド、アミド及びチオシアネート又はそれらの誘導体が挙げられる。
In the formula (4), E (oxygen or selenium) can replace sulfur in the core described later, for example. k + m is preferably 4 or more and 7 or less.
Moreover, as Q in Formula (4), water, an amine, alcohol, ether, a phosphine, etc. are mentioned. The anions of Q may be the same or different, but are preferably the same. The neutral electron donating compound Q is present to satisfy the empty coordination on the trinuclear molybdenum compound.
Moreover, the anion of A in Formula (4) may be a monovalent anion or a divalent anion. Specific examples of A include disulfide, hydroxide, alkoxide, amide and thiocyanate or derivatives thereof.
 式(4)の一態様において、kは4以上7以下であり、nは1又は2のいずれかであり、Lはモノアニオン性リガンドであり、pはAにおけるアニオン電荷をベースとする化合物に電気的中性を付与する整数であり、かつ、m及びzのそれぞれが0である。
 また、式(4)の別の態様では、kが4以上7以下であり、Lがモノアニオン性リガンドであり、nが4であり、かつ、p、m及びzのそれぞれが0である。
In one embodiment of Formula (4), k is 4 or more and 7 or less, n is 1 or 2, L is a monoanionic ligand, and p is a compound based on an anionic charge in A. It is an integer that imparts electrical neutrality, and each of m and z is 0.
In another embodiment of formula (4), k is 4 or more and 7 or less, L is a monoanionic ligand, n is 4, and each of p, m, and z is 0.
 また、式(4)の三核の有機モリブデン化合物は、例えば、下記式(4-E)又は(4-F)で表されるコアを有する。各コアは、+4の実効電荷(net electrical charge)を有する。これらのコアは、アニオン性リガンド、及び必要に応じて存在するアニオン性リガンド以外のアニオンによって囲まれている。
Figure JPOXMLDOC01-appb-C000005
In addition, the trinuclear organomolybdenum compound of the formula (4) has, for example, a core represented by the following formula (4-E) or (4-F). Each core has a net electrical charge of +4. These cores are surrounded by anionic ligands and anions other than the anionic ligands present as needed.
Figure JPOXMLDOC01-appb-C000005
 当業者は、三核モリブデン-硫黄化合物の形成には、例えば、コア中に存在する硫黄及びE原子数に依存して、適切なアニオン性リガンド(L)及び他のアニオン(A)を選択することが必要であろうこと、即ち、硫黄原子、存在するならE原子、L及び存在するならAにより構成される全アニオン電荷が-4でなければならないことを理解するであろう。三核モリブデン-硫黄化合物は、また、アニオン電荷が-4を超える場合、モリブデン以外のカチオン、例えば、(アルキル)アンモニウム、アミン又はナトリウムを含んでいてもよい。アニオン性リガンド(L)及び他のアニオン(A)の好ましい態様は、4個のモノアニオン性のリガンドを有する構成である。
 モリブデン-硫黄コア、例えば、上記式(4-E)及び(4-F)で表される構造体は、1又は2以上の多座リガンド、即ち、モリブデン原子に結合して、オリゴマーを形成することが可能な官能基を1つより多く有するリガンドにより相互接続(interconnect)させることができる。
One skilled in the art will select the appropriate anionic ligand (L) and other anions (A) for the formation of the trinuclear molybdenum-sulfur compound, depending on, for example, the sulfur and number of E atoms present in the core. It will be appreciated that the total anionic charge constituted by the sulfur atom, E atom if present, L and A if present must be -4. The trinuclear molybdenum-sulfur compound may also contain cations other than molybdenum, such as (alkyl) ammonium, amine or sodium, if the anionic charge exceeds -4. A preferred embodiment of the anionic ligand (L) and the other anion (A) is a configuration having four monoanionic ligands.
Molybdenum-sulfur cores, for example, structures represented by the above formulas (4-E) and (4-F), bind to one or more polydentate ligands, ie molybdenum atoms, to form oligomers. Can be interconnected by ligands having more than one possible functional group.
 三核の有機モリブデン化合物は、例えば、以下の(1)~(3)の手法により調製することができる。(1)~(3)で用いる溶媒は、例えば水性のものであっても有機物のものであってもよい。
(1)適切な溶媒中で、(NHMo13・n(HO)等のモリブデン源(ここで、nは0と2との間で変化し、非化学量論の値を含む)を、テトラアルキルチウラムジスルフィド等の適切なリガンド源と反応させる。
(2)適切な溶媒中で、(NHMo13・n(H2O)等のモリブデン源と、テトラアルキルチウラムジスルフィド、ジアルキルジチオカルバミン酸等のリガンド源と、シアン化物イオン、亜硫酸イオン等の硫黄引き抜き剤とを反応させる。
(3)[M’][Mo](ここで、M’は対イオンであり、AはCl、Br、又はI等のハロゲンである)等の三核のモリブデン-硫黄ハロゲン化物塩を、適切な溶媒中でジアルキルジチオカルバミン酸等のリガンド源と反応させる。
The trinuclear organic molybdenum compound can be prepared, for example, by the following methods (1) to (3). The solvent used in (1) to (3) may be, for example, aqueous or organic.
(1) in a suitable solvent, (NH 4) 2 Mo 3 S 13 · n (H 2 O) a molybdenum source such as (where, n represents vary between 0 and 2, the non-stoichiometric Is reacted with a suitable ligand source such as tetraalkyl thiuram disulfide.
(2) In an appropriate solvent, a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 .n (H 2 O), a ligand source such as tetraalkylthiuram disulfide and dialkyldithiocarbamic acid, a cyanide ion, and sulfurous acid It reacts with a sulfur extracting agent such as ions.
(3) Trinuclear molybdenum-sulfur such as [M ′] 2 [Mo 3 S 7 A 6 ] (where M ′ is a counter ion and A is a halogen such as Cl, Br, or I). The halide salt is reacted with a ligand source such as a dialkyldithiocarbamic acid in a suitable solvent.
 本実施形態においては、三核の有機モリブデン化合物は、ジチオカルバミン酸塩化合物、すなわち、三核モリブデンジチオカーバメートであることが好ましい。特に有効な化合物は、式Mo((アルキル)2ジチオカーバメート)により表される三核モリブデンジアルキルジチオカーバメートである。
 また、潤滑油組成物は、摩擦低減効果を損なわない範囲であれば、さらに、一核の有機モリブデン化合物を含有していてもよい。
In the present embodiment, the trinuclear organic molybdenum compound is preferably a dithiocarbamate compound, that is, a trinuclear molybdenum dithiocarbamate. Particularly useful compounds are trinuclear molybdenum dialkyl dithiocarbamate represented by the formula Mo 3 S 7 ((alkyl) 2 dithiocarbamate) 4.
Moreover, the lubricating oil composition may further contain a mononuclear organic molybdenum compound as long as the friction reducing effect is not impaired.
[過塩基性ナトリウムスルホネート(C)]
 潤滑油組成物は、過塩基性ナトリウムスルホネート(C)を含有する。本実施形態では、金属系清浄剤として、後述する塩基性カルシウム系清浄剤(D)に加えて、過塩基性ナトリウムスルホネート(C)を併用することで、潤滑油組成物の塩基価を長期にわたって良好に維持することが可能になる。そして、酸化安定性が良好となり、特に、バイオ燃料混入時の粘度増加を適切に抑制することが可能になる。
 潤滑油組成物全量基準で過塩基性ナトリウムスルホネート(C)の含有量は、ナトリウム原子換算で250質量ppm以上である。250質量ppm未満であると、(C)成分の効果を十分に発揮することができず、バイオ燃料混入時の粘度増加を抑制しにくくなる。一方で、(C)成分の含有量の上限は、硫酸灰分が後述する規定の範囲になればよいが、500質量ppm以下であることが好ましい。500質量ppm以下とすることで、(C)成分の過剰添加により内燃機関用潤滑油組成物の耐摩耗性が低下することが防止される。
 上記の観点から、(C)成分の含有量は、ナトリウム原子換算で280質量ppm以上480質量ppm以下が好ましく、350質量ppm以上450質量ppm以下であることがより好ましい。
[Overbased sodium sulfonate (C)]
The lubricating oil composition contains overbased sodium sulfonate (C). In this embodiment, as a metallic detergent, in addition to the basic calcium detergent (D) described later, an overbased sodium sulfonate (C) is used in combination so that the base number of the lubricating oil composition can be extended over a long period of time. It becomes possible to maintain it well. And oxidation stability becomes favorable and it becomes possible to suppress especially the viscosity increase at the time of biofuel mixing appropriately.
The content of the overbased sodium sulfonate (C) on the basis of the total amount of the lubricating oil composition is 250 mass ppm or more in terms of sodium atoms. If it is less than 250 ppm by mass, the effect of the component (C) cannot be fully exhibited, and it becomes difficult to suppress an increase in viscosity when biofuel is mixed. On the other hand, the upper limit of the content of the component (C) is not limited as long as the sulfated ash is within a specified range described later, but is preferably 500 ppm by mass or less. By setting it as 500 mass ppm or less, it is prevented that the abrasion resistance of the lubricating oil composition for internal combustion engines falls by excessive addition of (C) component.
From the above viewpoint, the content of the component (C) is preferably 280 mass ppm or more and 480 mass ppm or less, more preferably 350 mass ppm or more and 450 mass ppm or less in terms of sodium atom.
 過塩基性ナトリウムスルホネートは、各種スルホン酸のナトリウム塩を過塩基化したものが挙げられる。ここで使用されるスルホン酸としては、芳香族石油スルホン酸、アルキルスルホン酸、アリールスルホン酸、アルキルアリールスルホン酸等があり、具体的には、例えばドデシルベンゼンスルホン酸、ジラウリルセチルベンゼンスルホン酸、パラフィンワックス置換ベンゼンスルホン酸、ポリオレフィン置換ベンゼンスルホン酸、ポリイソブチレン置換ベンゼンスルホン酸、ナフタレンスルホン酸などを挙げることができる。 Examples of the overbased sodium sulfonate include those obtained by overbasing sodium salts of various sulfonic acids. Examples of the sulfonic acid used here include aromatic petroleum sulfonic acid, alkyl sulfonic acid, aryl sulfonic acid, alkylaryl sulfonic acid, and the like. Specifically, for example, dodecyl benzene sulfonic acid, dilauryl cetyl benzene sulfonic acid, Examples thereof include paraffin wax-substituted benzenesulfonic acid, polyolefin-substituted benzenesulfonic acid, polyisobutylene-substituted benzenesulfonic acid, and naphthalenesulfonic acid.
 過塩基性ナトリウムスルホネート(C)の塩基価は、200mgKOH/g以上であることが好ましい。200mgKOH/g以上とすることで、潤滑油組成物の塩基価維持性及び酸化安定性が良好となり、上記した粘度上昇を抑制しやすくなる。また、(C)成分の塩基価の上限は、特に限定されないが、沈殿物等が生じたりすることを防止するために、500mgKOH/g以下であることが好ましい。これら観点から(C)成分の塩基価は、300mgKOH/g以上500mgKOH/g以下がより好ましく、400mgKOH/g以上500mgKOH/g以下がさらに好ましい。
 なお、塩基価とは、JISK-2501:2003で規定される過塩素酸法で測定された全塩基価である。
The base number of the overbased sodium sulfonate (C) is preferably 200 mgKOH / g or more. By setting it as 200 mgKOH / g or more, the base number maintenance property and oxidation stability of a lubricating oil composition become favorable, and it becomes easy to suppress an above-mentioned viscosity raise. In addition, the upper limit of the base number of the component (C) is not particularly limited, but is preferably 500 mgKOH / g or less in order to prevent the formation of a precipitate or the like. From these viewpoints, the base number of the component (C) is more preferably from 300 mgKOH / g to 500 mgKOH / g, still more preferably from 400 mgKOH / g to 500 mgKOH / g.
The base number is the total base number measured by the perchloric acid method specified in JISK-2501: 2003.
[過塩基性カルシウム系清浄剤(D)]
 潤滑油組成物は、過塩基性カルシウム系清浄剤(D)として、過塩基性カルシウムサリシレート(D1)、及び過塩基性カルシウムフェネート(D2)から選択される1種又は2種以上を含有する。
 組成物全量基準の過塩基性カルシウム系清浄剤(D)の含有量は、後述する硫酸灰分が規定の範囲になるように調整すればよいが、好ましくはカルシウム原子換算で500質量ppm以上1500質量ppm以下である。含有量をこの範囲内とすることで、潤滑油組成物の清浄性を良好にしやすくなるとともに、バイオ燃料混入時の粘度上昇を抑制しやすくなる。これら観点から(D)成分の含有量は、カルシウム原子換算で750質量ppm以上1450質量ppm以下が好ましく、1000質量ppm以上1350質量ppm以下がより好ましい。
[Overbased calcium detergent (D)]
The lubricating oil composition contains one or more selected from overbased calcium salicylate (D1) and overbased calcium phenate (D2) as the overbased calcium detergent (D). .
The content of the overbased calcium detergent (D) based on the total amount of the composition may be adjusted so that the sulfated ash content described later falls within a specified range, but preferably 500 mass ppm or more and 1500 mass in terms of calcium atom. ppm or less. By setting the content within this range, it becomes easy to improve the cleanliness of the lubricating oil composition, and it becomes easy to suppress an increase in viscosity when mixed with biofuel. From these viewpoints, the content of the component (D) is preferably 750 mass ppm or more and 1450 mass ppm or less, and more preferably 1000 mass ppm or more and 1350 mass ppm or less in terms of calcium atom.
 過塩基性カルシウム系清浄剤(D)の塩基価は、150mgKOH/g以上が好ましい。塩基価が150mgKOH/g以上であると、(D)成分の清浄剤としての機能を発揮させやすくなり、潤滑油組成物の塩基価維持性や酸化安定性を良好にしやすくなる。また、過塩基性カルシウム系清浄剤(D)の塩基価は、500mgKOH/g以下であることが好ましい。500mgKOH/g以下とすることで組成物中に沈殿物が生じにくくなる。これらの観点から過塩基性カルシウム系清浄剤(D)の塩基価は、200質量ppm以上400mgKOH/g以下がより好ましく、200質量ppm以上350mgKOH/g以下がさらに好ましい。
 また、(D)成分としては、バイオ燃料混入時の粘度上昇をより抑制しやすくするために、過塩基性カルシウムサリシレートであることが好ましい。
The base number of the overbased calcium-based detergent (D) is preferably 150 mgKOH / g or more. When the base number is 150 mgKOH / g or more, the function of the component (D) as a detergent is easily exhibited, and the base number maintenance property and oxidation stability of the lubricating oil composition are easily improved. Moreover, it is preferable that the base number of an overbased calcium type detergent (D) is 500 mgKOH / g or less. By setting it as 500 mgKOH / g or less, it becomes difficult to produce a precipitate in the composition. From these viewpoints, the base number of the overbased calcium-based detergent (D) is more preferably 200 mass ppm or more and 400 mgKOH / g or less, and further preferably 200 mass ppm or more and 350 mgKOH / g or less.
The component (D) is preferably an overbased calcium salicylate in order to more easily suppress an increase in viscosity when mixed with biofuel.
 過塩基性カルシウムサリシレート(D1)としては、ジアルキルサリチル酸等のアルキルサリチル酸のカルシウム金属塩を過塩基化したものが挙げられる。アルキルサリチル酸を構成するアルキル基は、炭素数4~30のものが好ましく、より好ましくは炭素数6~18の直鎖又は分枝アルキル基である。
 また、過塩基性カルシウムフェネート(D2)としては、アルキルフェノール、アルキルフェノールサルファイド、アルキルフェノールのマンニッヒ反応物等のカルシウム金属塩を過塩基化したものが挙げられる。ここで、カルシウムフェネートにおけるアルキル基は、炭素数4~30のものが好ましく、より好ましくは炭素数6~18の直鎖又は分枝アルキル基である。
Examples of the overbased calcium salicylate (D1) include those obtained by overbasing a calcium metal salt of an alkyl salicylic acid such as a dialkyl salicylic acid. The alkyl group constituting the alkyl salicylic acid preferably has 4 to 30 carbon atoms, more preferably a linear or branched alkyl group having 6 to 18 carbon atoms.
Examples of the overbased calcium phenate (D2) include those obtained by overbasing calcium metal salts such as alkylphenol, alkylphenol sulfide, and Mannich reaction product of alkylphenol. Here, the alkyl group in the calcium phenate preferably has 4 to 30 carbon atoms, and more preferably a linear or branched alkyl group having 6 to 18 carbon atoms.
[酸化防止剤(E)]
 潤滑油組成物は、フェノール系酸化防止剤(E1)及びアミン系酸化防止剤(E2)から選択される1種又は2種以上の酸化防止剤(E)を含むことが好ましい。
 酸化防止剤(E)の含有量は、潤滑油組成物全量基準で1.0質量%以上であることが好ましい。含有量が1.0質量%以上であることで、潤滑油組成物の酸化安定性を向上させて、バイオ燃料混入時の粘度増加をより抑制しやすくなる。
 また、酸化防止剤(E)の含有量は、潤滑油組成物全量基準で1.0質量%以上3.0質量%以下であることがより好ましく、1.25質量%以上2.0質量%以下であることがさらに好ましい。酸化防止剤(E)は、含有量を上記上限値以下とすることで、含有量に見合った効果を発揮させやすくなる。潤滑油組成物は、酸化防止剤(E)として、フェノール系酸化防止剤及びアミン系酸化防止剤のいずれか一方を含有すればよいが、フェノール系酸化防止剤及びアミン系酸化防止剤の両方を含有することがより好ましい。
[Antioxidant (E)]
The lubricating oil composition preferably contains one or more antioxidants (E) selected from a phenolic antioxidant (E1) and an amine antioxidant (E2).
The content of the antioxidant (E) is preferably 1.0% by mass or more based on the total amount of the lubricating oil composition. When the content is 1.0% by mass or more, the oxidation stability of the lubricating oil composition is improved, and the increase in viscosity when mixed with biofuel is more easily suppressed.
Further, the content of the antioxidant (E) is more preferably 1.0% by mass or more and 3.0% by mass or less, and 1.25% by mass or more and 2.0% by mass based on the total amount of the lubricating oil composition. More preferably, it is as follows. Antioxidant (E) makes it easy to exhibit an effect commensurate with the content by setting the content to the upper limit or less. The lubricating oil composition may contain any one of a phenolic antioxidant and an amine antioxidant as the antioxidant (E), but both the phenolic antioxidant and the amine antioxidant are contained. It is more preferable to contain.
(フェノール系酸化防止剤(E1))
 フェノール系酸化防止剤(E1)としては、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤が挙げられる。
 モノフェノール系酸化防止剤としては、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシベンゼンプロパン酸のアルキルエステル(該アルキル基の炭素数は4~20、好ましくは6~18、より好ましくは7~9);2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノールなどの2,6-ジ-t-ブチル-4-アルキルフェノール(アルキル基の炭素数1~4);2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-アミル-p-クレゾールなどが挙げられる。
(Phenolic antioxidant (E1))
Examples of the phenolic antioxidant (E1) include monophenolic antioxidants and bisphenolic antioxidants.
Monophenol antioxidants include alkyl esters of 3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropanoic acid (the alkyl group has 4 to 20, preferably 6 to 18, carbon atoms, More preferably 7-9); 2,6-di-t-butyl-4 such as 2,6-di-t-butyl-4-methylphenol and 2,6-di-t-butyl-4-ethylphenol -Alkylphenol (alkyl group having 1 to 4 carbon atoms); 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-amyl-p-cresol and the like.
 また、ビスフェノール酸化防止剤としては、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-ビス(2,6-ジ-t-ブチルフェノール)、4,4’-ビス(2-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-イソプロピリデンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-ノニルフェノール)、2,2’-イソブチリデンビス(4,6-ジメチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、4,4’-チオビス(2-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-チオビス(4-メチル-6-t-ブチルフェノール)、ビス(3-メチル-4-ヒドロキシ-5-t-ブチルベンジル)スルフィド、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]等が挙げられる。 As bisphenol antioxidants, 4,4′-methylenebis (2,6-di-t-butylphenol), 4,4′-bis (2,6-di-t-butylphenol), 4,4′- Bis (2-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 4 , 4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-isopropylidenebis (2,6-di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6- Nonylphenol), 2,2′-isobutylidenebis (4,6-dimethylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 4,4 -Thiobis (2-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,2'-thiobis (4-methyl-6-t-butylphenol), Bis (3-methyl-4-hydroxy-5-t-butylbenzyl) sulfide, bis (3,5-di-t-butyl-4-hydroxybenzyl) sulfide, thiodiethylenebis [3- (3,5-di -T-butyl-4-hydroxyphenyl) propionate] and the like.
(アミン系酸化防止剤(E2))
 アミン系酸化防止剤(E2)としては、モノ-t-ブチルジフェニルアミン、モノオクチルジフェニルアミン及びモノノニルジフェニルアミンなど、炭素数が4~12のアルキル基を有するモノアルキルジフェニルアミン;ビス(4-ブチルフェニル)アミン、ビス(4-ペンチルフェニル)アミン、ビス(4-ヘキシルフェニル)アミン、ビス(4-ヘプチルフェニル)アミン、ビス(4-オクチルフェニル)アミン、ビス(4-ノニルフェニル)アミン、4-ブチル-4’-オクチルジフェニルアミンなど、各アルキル基の炭素数が4~12のジアルキルジフェニルアミン;テトラブチルジフェニルアミン、テトラヘキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミン、ジ(2,4-ジエチルフェニル)アミン、ジ(2-エチル-4-ノニルフェニル)アミンなど、アルキル基を3つ以上有し、各アルキル基の炭素数が1~10のポリアルキルジフェニルアミン;メチルフェニル-α-ナフチルアミン、エチルフェニル-α-ナフチルアミン、ブチルフェニル-α-ナフチルアミン、ヘキシルフェニル-α-ナフチルアミン、ヘプチルフェニル-α-ナフチルアミン、オクチルフェニル-α-ナフチルアミン、ノニルフェニル-α-ナフチルアミン、t-ドデシルフェニル-α-ナフチルアミンなど、炭素数1~12のアルキル基を少なくとも1つ有するアルキルフェニル-α-ナフチルアミン、またはフェニル-α-ナフチルアミン等で例示されるフェニル-α-ナフチルアミン類などが挙げられる。
(Amine-based antioxidant (E2))
Examples of the amine-based antioxidant (E2) include mono-t-butyldiphenylamine, monooctyldiphenylamine, and monononyldiphenylamine, which are monoalkyldiphenylamines having an alkyl group having 4 to 12 carbon atoms; bis (4-butylphenyl) amine Bis (4-pentylphenyl) amine, bis (4-hexylphenyl) amine, bis (4-heptylphenyl) amine, bis (4-octylphenyl) amine, bis (4-nonylphenyl) amine, 4-butyl- 4'-octyldiphenylamine and other dialkyldiphenylamines having 4 to 12 carbon atoms in each alkyl group; tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine, tetranonyldiphenylamine, di (2,4-diethylphenyl) Nyl) amine, di (2-ethyl-4-nonylphenyl) amine and the like, polyalkyldiphenylamine having 3 or more alkyl groups, each alkyl group having 1 to 10 carbon atoms; methylphenyl-α-naphthylamine, ethyl Phenyl-α-naphthylamine, butylphenyl-α-naphthylamine, hexylphenyl-α-naphthylamine, heptylphenyl-α-naphthylamine, octylphenyl-α-naphthylamine, nonylphenyl-α-naphthylamine, t-dodecylphenyl-α-naphthylamine, etc. And alkylphenyl-α-naphthylamine having at least one alkyl group having 1 to 12 carbon atoms, or phenyl-α-naphthylamines exemplified by phenyl-α-naphthylamine and the like.
 酸化防止剤(E)としては、上記の中では、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシベンゼンプロパン酸のアルキルエステル、ジアルキルジフェニルアミンが好ましくは、これらの両方を使用することがより好ましい。そして、最も好適な組み合わせとしては、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシベンゼンプロパン酸のアルキルエステル(アルキル基の炭素数が7~9)と、ビス(4-ノニルフェニル)アミンとの組み合わせが挙げられる。 As the antioxidant (E), among the above, alkyl esters of 3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropanoic acid and dialkyldiphenylamine are preferably used. It is more preferable. The most preferred combination is an alkyl ester of 3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropanoic acid (the alkyl group has 7 to 9 carbon atoms) and bis (4-nonyl). And a combination with phenyl) amine.
[粘度指数向上剤(F)]
 潤滑油組成物は、潤滑油組成物の粘度指数を向上させるために粘度指数向上剤(F)を含有してもよい。粘度指数向上剤(F)としては、ポリメタクリレート;エチレン-プロピレン共重合体などのオレフィン系共重合体;スチレン-ジエン共重合体、スチレン-イソプレン共重合体、スチレン-イソブチレン共重合体などのスチレン系共重合体が挙げられ、これらの中では、スチレン系重合体が好ましい。
 粘度指数向上剤(F)の重量平均分子量は、通常10,000以上1,000,000以下、好ましくは50,000以上800,000以下、より好ましくは100,000以上700,000以下である。なお、ここでいう重量平均分子量は、GPC法により、ポリスチレンを検量線として用いて得た値である。
 粘度指数向上剤(F)の含有量は、重量平均分子量、及び所望する粘度指数の値に応じて適宜調整されるが、潤滑油組成物全量基準で、好ましくは10質量%以下、より好ましくは0.1質量%以上6質量%以下、更に好ましくは0.2質量%以上4質量%以下である。なお、一般的に、市販の粘度指数向上剤は、ハンドリング性や基油への溶解性を考慮し、通常希釈油(鉱油又は合成油)に希釈された状態で流通されていることが多いが、上記の粘度指数向上剤(F)の含有量は、希釈油を除いた樹脂分換算量を意味する。
[Viscosity index improver (F)]
The lubricating oil composition may contain a viscosity index improver (F) in order to improve the viscosity index of the lubricating oil composition. As the viscosity index improver (F), polymethacrylate; olefin copolymer such as ethylene-propylene copolymer; styrene such as styrene-diene copolymer, styrene-isoprene copolymer, styrene-isobutylene copolymer A styrene-based polymer is preferable among them.
The weight average molecular weight of the viscosity index improver (F) is usually 10,000 or more and 1,000,000 or less, preferably 50,000 or more and 800,000 or less, more preferably 100,000 or more and 700,000 or less. In addition, the weight average molecular weight here is a value obtained using polystyrene as a calibration curve by the GPC method.
The content of the viscosity index improver (F) is appropriately adjusted according to the weight average molecular weight and the desired viscosity index value, but is preferably 10% by mass or less, more preferably, based on the total amount of the lubricating oil composition. It is 0.1 mass% or more and 6 mass% or less, More preferably, it is 0.2 mass% or more and 4 mass% or less. In general, commercially available viscosity index improvers are usually distributed in a diluted state in a diluent oil (mineral oil or synthetic oil) in consideration of handling properties and solubility in base oils. The content of the above-mentioned viscosity index improver (F) means a resin equivalent amount excluding diluent oil.
[その他の添加剤]
 潤滑油組成物は、本発明の効果を阻害しない範囲で、上記(A)~(F)成分以外のその他の添加剤を更に含有してもよい。その他の添加剤としては、例えば、耐摩耗剤、流動点降下剤、金属不活性化剤、消泡剤等から選択される1種又は2種以上が挙げられる。その他の添加剤は、潤滑油組成物全量基準で通常20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下である。また、その他の添加剤として、有機ジチオリン酸亜鉛のように金属分を含有する添加剤もあるが、そのような添加剤の含有量は、後述する硫酸灰分が所定の範囲内となるように調整される。
[Other additives]
The lubricating oil composition may further contain other additives other than the components (A) to (F) as long as the effects of the present invention are not impaired. Examples of other additives include one or more selected from antiwear agents, pour point depressants, metal deactivators, antifoaming agents, and the like. The other additive is usually 20% by mass or less, preferably 15% by mass or less, more preferably 10% by mass or less, based on the total amount of the lubricating oil composition. In addition, as other additives, there are additives containing metal components such as organic zinc dithiophosphate, but the content of such additives is adjusted so that the sulfated ash content described later is within a predetermined range. Is done.
 本実施形態において耐摩耗剤としては、有機ジチオリン酸亜鉛が好ましく使用される。有機ジチオリン酸亜鉛としては、ジヒドロカルビルジチオリン酸亜鉛が挙げられる。ジヒドロカルビルジチオリン酸亜鉛に含まれる各ヒドロカルビル基は、炭素数1~24、好ましくは炭素数3~24、より好ましくは炭素数5~18である。また、ヒドロカルビル基としては、アルキル基、アルケニル基、アリール基、アルキルアリール基、アリールアルキル基等が挙げられる。なお、アルキル基、アルケニル基は、分枝鎖でもよいし、直鎖でもよいし、環状構造を有してもよい。これらの中では、ヒドロカルビル基がアルキル基であるジアルキルジチオリン酸亜鉛が好ましい。
 ただし、耐摩耗剤としては、有機ジチオリン酸亜鉛の代わりに、又は有機ジチオリン酸亜鉛と併用して、ジチオカルバミン酸亜鉛、リン酸亜鉛、ジスルフィド類、硫化オレフィン類、硫化油脂類、硫化エステル類、チオカーボネート類等の硫黄含有化合物;亜リン酸エステル類、リン酸エステル類、ホスホン酸エステル類、およびこれらのアミン塩または金属塩等のリン含有化合物;チオ亜リン酸エステル類、チオホスホン酸エステル類、およびこれらのアミン塩または金属塩等の硫黄およびリン含有摩耗防止剤等を使用してもよい。
In the present embodiment, as the antiwear agent, organic zinc dithiophosphate is preferably used. Examples of the organic zinc zinc dithiophosphate include zinc dihydrocarbyl dithiophosphate. Each hydrocarbyl group contained in zinc dihydrocarbyl dithiophosphate has 1 to 24 carbon atoms, preferably 3 to 24 carbon atoms, more preferably 5 to 18 carbon atoms. Examples of the hydrocarbyl group include an alkyl group, an alkenyl group, an aryl group, an alkylaryl group, and an arylalkyl group. The alkyl group and alkenyl group may be branched, straight chain, or have a cyclic structure. In these, the zinc dialkyl dithiophosphate whose hydrocarbyl group is an alkyl group is preferable.
However, as an antiwear agent, instead of organic dithiophosphate or in combination with organic dithiophosphate, zinc dithiocarbamate, zinc phosphate, disulfides, sulfurized olefins, sulfurized fats and oils, sulfurized esters, thiols Sulfur-containing compounds such as carbonates; phosphorus-containing compounds such as phosphites, phosphate esters, phosphonate esters, and amine salts or metal salts thereof; thiophosphites, thiophosphonates, And sulfur and phosphorus-containing antiwear agents such as amine salts or metal salts thereof may be used.
 金属不活性化剤としては、例えば、ベンゾトリアゾール、トリアゾール誘導体、ベンゾトリアゾール誘導体、チアジアゾール誘導体が挙げられる。
 流動点降下剤としては、例えば、エチレン-酢酸ビニル共重合体、塩素化パラフィンとナフタレンとの縮合物、塩素化パラフィンとフェノールとの縮合物、ポリメタクリレート、ポリアルキルスチレン等が挙げられ、特に、ポリメタクリレートが好ましく用いられる。
 消泡剤としては、例えば、シリコーン油、フルオロシリコーン油及びフルオロアルキルエーテル等が挙げられる。
 なお、潤滑油組成物は、その他の添加剤として、上記したもの以外の添加剤を含有してもよく、例えば、酸化防止剤(E)以外の酸化防止剤、具体的には、硫黄系酸化防止剤、リン系酸化防止剤等を含有してもよいし、無灰系摩擦調整剤、防錆剤等を含有してもよい。
Examples of the metal deactivator include benzotriazole, triazole derivatives, benzotriazole derivatives, and thiadiazole derivatives.
Examples of the pour point depressant include ethylene-vinyl acetate copolymer, condensate of chlorinated paraffin and naphthalene, condensate of chlorinated paraffin and phenol, polymethacrylate, polyalkylstyrene, etc. Polymethacrylate is preferably used.
Examples of the antifoaming agent include silicone oil, fluorosilicone oil, and fluoroalkyl ether.
The lubricating oil composition may contain additives other than those described above as other additives, for example, antioxidants other than the antioxidant (E), specifically, sulfur-based oxidation. An inhibitor, a phosphorus antioxidant, etc. may be contained, and an ashless friction modifier, a rust inhibitor, etc. may be contained.
<硫酸灰分>
 潤滑油組成物は、硫酸灰分が、0.8質量%以下となるものである。硫酸灰分が0.8質量%を超えると、DPF等の排出ガス浄化装置におけるフィルターの目詰り、排出ガス浄化装置における触媒の性能低下等が発生しやすくなる。排出ガス浄化装置に対するこれら悪影響をより抑制する観点から、硫酸灰分は0.78質量%以下が好ましく、0.75質量%以下がより好ましい。
 また、硫酸灰分は、その下限値については特に限定されないが、潤滑油組成物に上記(A)~(D)成分を適正量含有させるために、通常0.4質量%以上、好ましくは0.50質量%以上、より好ましくは0.60質量%以上である。
 なお、硫酸灰分はJIS K2272:1998に準拠して測定した値を意味する。
<Sulfated ash>
The lubricating oil composition has a sulfated ash content of 0.8% by mass or less. If the sulfated ash content exceeds 0.8% by mass, the filter in the exhaust gas purification device such as DPF is clogged, and the performance of the catalyst in the exhaust gas purification device is likely to decrease. From the viewpoint of further suppressing these adverse effects on the exhaust gas purification device, the sulfated ash content is preferably 0.78% by mass or less, and more preferably 0.75% by mass or less.
Further, the lower limit of sulfated ash is not particularly limited, but is usually 0.4% by mass or more, preferably 0.8% in order to contain an appropriate amount of the above components (A) to (D) in the lubricating oil composition. It is 50 mass% or more, More preferably, it is 0.60 mass% or more.
In addition, sulfate ash means the value measured based on JISK2272: 1998.
 潤滑油組成物は、上記したように、(B)~(D)成分を含有することで金属原子を含有し、また、(A)成分由来のホウ素原子を含有することがあるが、これら(A)~(D)成分は、硫酸灰分が0.8質量%以下となるように各成分の金属量、及びホウ素量が調整される。
 本実施形態の潤滑油組成物は、硫酸灰分が低いため、上記(B)~(D)成分の含有量、及び(A)成分由来のホウ素量を高くしにくいが、上記(A)~(D)成分を適正量組み合わせて使用することで、金属間摩擦係数を低くしつつ、バイオ燃料混入時の粘度増加を抑制することが可能になる。
As described above, the lubricating oil composition may contain metal atoms by containing the components (B) to (D), and may contain boron atoms derived from the component (A). In the components A) to (D), the amount of metal and the amount of boron in each component are adjusted so that the sulfated ash content is 0.8% by mass or less.
Since the lubricating oil composition of the present embodiment has a low sulfated ash content, it is difficult to increase the content of the components (B) to (D) and the boron content derived from the component (A). By using a combination of D) component in an appropriate amount, it is possible to suppress an increase in viscosity when biofuel is mixed while lowering the coefficient of friction between metals.
 本発明の一実施態様である潤滑油組成物としては、基油と前記(A)成分、(B)成分、(C)成分及び(D)成分を含み、さらに上記各種の潤滑油用添加剤を任意に含んで構成されるが、より具体的な構成としては、例えば基油と、アルケニル若しくはアルキルコハク酸モノイミド及びそのホウ素誘導体(A1)、並びに、アルケニル若しくはアルキルコハク酸ビスイミド及びそのホウ素誘導体(A2)からなる群から選択される少なくとも1種のコハク酸イミド系化合物(A)と、二核の有機モリブデン化合物(B1)及び三核の有機モリブデン化合物(B2)からなる群から選択される少なくとも1種のモリブデン系化合物(B)と、過塩基性ナトリウムスルホネート(C)と、過塩基性カルシウムサリシレート(D1)、及び過塩基性カルシウムフェネート(D2)からなる群から選択される少なくとも1種の過塩基性カルシウム系清浄剤(D)と、フェノール系酸化防止剤及びアミン系酸化防止剤と、粘度指数向上剤と、ジアルキルジチオリン酸亜鉛と、金属不活性化剤と、流動点降下剤と、消泡剤とからなり、(A)成分、(B)成分及び(C)成分の含有量が前記所定の範囲であり、(A1/A2)及び硫酸灰分量が前記所定の範囲である潤滑油組成物が挙げられる。 The lubricating oil composition according to one embodiment of the present invention includes a base oil and the components (A), (B), (C), and (D), and the above-mentioned various lubricating oil additives. More specifically, for example, base oil, alkenyl or alkyl succinic acid monoimide and its boron derivative (A1), and alkenyl or alkyl succinic acid bisimide and its boron derivative ( At least one succinimide compound (A) selected from the group consisting of A2), at least selected from the group consisting of a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2) One molybdenum-based compound (B), overbased sodium sulfonate (C), overbased calcium salicylate (D1), and persalt At least one overbased calcium detergent (D) selected from the group consisting of soluble calcium phenates (D2), phenolic antioxidants and amine antioxidants, viscosity index improvers, and dialkyls It consists of zinc dithiophosphate, a metal deactivator, a pour point depressant, and an antifoaming agent, and the contents of the component (A), the component (B) and the component (C) are within the predetermined range, (A1 / A2) and the lubricating oil composition whose sulfated ash content is the said predetermined range is mentioned.
<潤滑油組成物の使用方法、潤滑方法>
 潤滑油組成物は、自動車用等の各種の内燃機関の潤滑のために使用されるものであるが、バイオ燃料を含む燃料を燃焼して駆動する内燃機関に好適に使用される。内燃機関としては、ガソリンエンジン、ディーゼルエンジン、ガスエンジンが挙げられるが、ディーゼルエンジンであることが好ましい。すなわち、上記バイオ燃料としては、いわゆるバイオディーゼル燃料と呼ばれるものが使用される。
<Usage method of lubricating oil composition, lubricating method>
The lubricating oil composition is used for lubricating various internal combustion engines for automobiles and the like, but is preferably used for an internal combustion engine that is driven by burning a fuel containing biofuel. Examples of the internal combustion engine include a gasoline engine, a diesel engine, and a gas engine, and a diesel engine is preferable. That is, what is called biodiesel fuel is used as the biofuel.
 バイオ燃料としては、天然油脂、天然油脂の水素化処理物、天然油脂のエステル交換物、及び天然油脂のエステル交換物の水素化処理物から選ばれた1種又は2種以上が挙げられる。
 天然油脂としては、天然界に広く存在する各種の動植物油脂を用いることができるが、脂肪酸とグリセリンとのエステルを主成分とする植物油、例えばサフラワー油、大豆油、菜種油、パーム油、パーム核油、綿実油、ヤシ油、米糠油、ゴマ油、ヒマシ油、亜麻仁油、オリーブ油、桐油、椿油、落花生油、カポック油、カカオ油、木蝋、ヒマワリ油、コーン油などが好適に使用され、より好ましくは大豆油、菜種油が使用される。
Examples of the biofuel include one or more selected from natural fats and oils, hydrogenated products of natural fats and oils, transesterified products of natural fats and oils, and hydrotreated products of transesterified products of natural fats and oils.
As natural fats and oils, various animal and vegetable fats and oils widely existing in the natural world can be used, but vegetable oils mainly composed of esters of fatty acids and glycerin, such as safflower oil, soybean oil, rapeseed oil, palm oil, and palm kernel. Oil, cottonseed oil, coconut oil, rice bran oil, sesame oil, castor oil, linseed oil, olive oil, tung oil, coconut oil, peanut oil, kapok oil, cacao oil, wood wax, sunflower oil, corn oil, etc. are preferably used, more preferably Soybean oil and rapeseed oil are used.
 天然油脂の水素化処理物とは、前記した油脂を適当な水素化触媒の存在下でいわゆる水添したものである。なお、水素化触媒としては、ニッケル系触媒、白金族(Pt,Pd,Rh,Ru)系触媒、コバルト系触媒、酸化クロム系触媒、銅系触媒、オスミウム系触媒、イリジウム系触媒、モリブデン系触媒などが挙げられる。また、水素化触媒としては上記触媒を2つ以上組み合わせて使用することも好ましい。
 天然油脂のエステル交換物とは、適当なエステル合成触媒の存在下で、天然油脂を構成するトリグリセリドに対してエステル交換反応を行って得られたエステルである。例えば、低級アルコールと油脂とを、上記エステル合成触媒の存在下でエステル交換反応させることにより、バイオ燃料となる脂肪酸エステルが製造される。低級アルコールは、エステル化剤として使用されるものであり、メタノール、エタノール、プロパノール、ブタノール、ペンタノール等の炭素数5以下のアルコールを挙げることができるが、反応性の点でもコストの点でもメタノールが好ましい。このような低級アルコールは、一般に油脂に対して当量以上の量で用いられる。
 また、天然油脂のエステル交換物の水素化処理物とは、前記したエステル交換物を適当な水素化触媒の存在下で水添したものである。
 バイオ燃料は、軽油などの炭化水素で構成される燃料に添加することで、混合燃料として好適に使用することができる。
 なお、本発明の一実施形態である内燃機関用潤滑油組成物を用いる潤滑方法としては、上記本発明の一実施形態である内燃機関用潤滑油組成物を、例えば、エンジン等の内燃機関に充填し、当該内燃機関に係る各部品間を潤滑する方法が挙げられる。
The hydrotreated product of natural fats and oils is a so-called hydrogenated product of the aforementioned fats and oils in the presence of a suitable hydrogenation catalyst. As hydrogenation catalysts, nickel catalysts, platinum group (Pt, Pd, Rh, Ru) catalysts, cobalt catalysts, chromium oxide catalysts, copper catalysts, osmium catalysts, iridium catalysts, molybdenum catalysts Etc. Further, it is also preferable to use a combination of two or more of the above catalysts as the hydrogenation catalyst.
The transesterified product of natural fats and oils is an ester obtained by subjecting a triglyceride constituting natural fats and oils to a transesterification reaction in the presence of a suitable ester synthesis catalyst. For example, the fatty acid ester used as a biofuel is manufactured by transesterifying a lower alcohol and fats and oils in the presence of the ester synthesis catalyst. The lower alcohol is used as an esterifying agent, and examples thereof include alcohols having 5 or less carbon atoms such as methanol, ethanol, propanol, butanol, and pentanol. Is preferred. Such a lower alcohol is generally used in an amount equal to or greater than that of the oil or fat.
The hydrotreated product of the transesterified product of natural fats and oils is a product obtained by hydrogenating the transesterified product described above in the presence of an appropriate hydrogenation catalyst.
Biofuel can be suitably used as a mixed fuel by adding it to a fuel composed of hydrocarbons such as light oil.
In addition, as a lubricating method using the lubricating oil composition for internal combustion engines which is one embodiment of the present invention, the lubricating oil composition for internal combustion engines which is one embodiment of the present invention is applied to an internal combustion engine such as an engine, for example. There is a method of filling and lubricating between the parts related to the internal combustion engine.
<内燃機関>
 本発明の一実施形態である内燃機関は、上記本発明の内燃機関用潤滑油組成物を充填したものであり、自動車等に用いられるガソリンエンジン、ディーゼルエンジン、ガスエンジンなどが挙げられる。特に、バイオ燃料を含む燃料を燃焼して駆動する内燃機関が好適な例として挙げられる。
<Internal combustion engine>
The internal combustion engine which is one embodiment of the present invention is filled with the lubricating oil composition for an internal combustion engine of the present invention, and examples thereof include gasoline engines, diesel engines, gas engines and the like used for automobiles and the like. In particular, an internal combustion engine that is driven by burning fuel including biofuel is a suitable example.
<潤滑油組成物の製造方法>
 本発明の一実施形態に係る潤滑油組成物の製造方法は、基油に、少なくともコハク酸イミド系化合物(A)、モリブデン系化合物(B)、過塩基性ナトリウムスルホネート(C)、及び過塩基性カルシウム系清浄剤(D)を配合して、潤滑油組成物を得る潤滑油組成物の製造方法である。また、本製造方法においては、さらに酸化防止剤(E)を配合することが好ましく、粘度指数向上剤(F)やその他の添加剤を適宜配合してもよい。
 これら(A)~(F)成分及びその他添加剤の詳細、これらの配合量の詳細、並びに得られる潤滑油組成物の詳細は、上記した各成分の詳細、含有量の詳細、並びに潤滑油組成物の詳細と同様であるので、その説明は省略する。
<Method for producing lubricating oil composition>
A method for producing a lubricating oil composition according to an embodiment of the present invention includes a base oil containing at least a succinimide compound (A), a molybdenum compound (B), an overbased sodium sulfonate (C), and an overbase. It is a manufacturing method of the lubricating oil composition which mix | blends a basic calcium type detergent (D) and obtains a lubricating oil composition. Moreover, in this manufacturing method, it is preferable to mix | blend antioxidant (E) further and you may mix | blend a viscosity index improver (F) and another additive suitably.
Details of these components (A) to (F) and other additives, details of their blending amounts, and details of the resulting lubricating oil composition, details of each component described above, details of content, and lubricating oil composition Since it is the same as the detail of a thing, the description is abbreviate | omitted.
 以下に、本発明を、実施例により、さらに具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、各種性状及び潤滑油組成物の評価は、以下に示す要領に従って求めたものである。
EXAMPLES The present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
Various properties and the evaluation of the lubricating oil composition were determined according to the following procedure.
(1)動粘度
 JISK2283:2000に準じ、ガラス製毛管式粘度計を用いて測定した値である。
(2)粘度指数
 JISK2283:2000に準拠して測定した。
(3)NOACK蒸発量(250℃、1時間)
 ASTM D5800に規定の方法に従って測定した値である。
(4)芳香族分(%C)及びパラフィン分(%C
 ASTM D-3238の環分析(n-d-M法)により測定した値である。
(5)硫黄分
 JIS K2541-6:2003「原油及び石油製品-硫黄分試験方法」に準拠して測定した値である。
(6)塩基価
 JIS K2501:2003に準拠して、過塩素酸法により測定したものである。
(7)硫酸灰分
 JIS K2272:1998に準拠して測定した値である。
(8)SRV往復動摩擦試験
 往復動摩擦試験機(オプティマール社製、SRV往復動摩擦試験機)を用いて、以下の方法により摩擦係数を測定した。テストピースとして、SUJ-2製ディスク(φ24mm×7.9mm)を用い、その上に試料油(潤滑油組成物)を数滴滴下する。SUJ-2製のシリンダー(φ15mm×22mm)を上記ディスク上部にセットした状態で、荷重400N、振幅1.5mm、周波数50Hz、温度80℃の条件で摩擦係数を測定した。
(9)バイオ燃料添加IOT試験
 ガラス製試験管に、潤滑油組成物にバイオディーゼル燃料B100(80%RME(菜種油メチルエステル)、20%SME(大豆油メチルエステル)、HaltermannSolutions社製)を5質量%添加した試料油を100g、及び触媒としてトリス(2,4-ペンタンジオナト)鉄(III)を63.24mg加え、160℃にて空気を10L/hの流量で吹込み、168時間酸化劣化させた。試験前の試料油、及び試験後の試料油の100℃動粘度を測定し、100℃動粘度増加率を求めた。100℃動粘度増加率が小さいほど、酸化安定性が優れていることを示す。
(1) Kinematic viscosity It is a value measured using a glass capillary viscometer according to JISK2283: 2000.
(2) Viscosity index It measured based on JISK2283: 2000.
(3) NOACK evaporation (250 ° C, 1 hour)
It is a value measured according to the method prescribed in ASTM D5800.
(4) Aromatic content (% C A ) and paraffin content (% C P )
This is a value measured by ring analysis (ndM method) of ASTM D-3238.
(5) Sulfur content This is a value measured in accordance with JIS K2541-6: 2003 “Crude oil and petroleum products—Sulfur content test method”.
(6) Base number It is measured by the perchloric acid method according to JIS K2501: 2003.
(7) Sulfated ash content This is a value measured according to JIS K2272: 1998.
(8) SRV reciprocating friction test Using a reciprocating friction tester (manufactured by Optimar, SRV reciprocating friction tester), the friction coefficient was measured by the following method. As a test piece, a SUJ-2 disk (φ24 mm × 7.9 mm) is used, and several drops of sample oil (lubricating oil composition) are dropped on it. The friction coefficient was measured under the conditions of a load of 400 N, an amplitude of 1.5 mm, a frequency of 50 Hz, and a temperature of 80 ° C. with a SUJ-2 cylinder (φ15 mm × 22 mm) set on the top of the disk.
(9) Biofuel addition IOT test In a glass test tube, 5 mass of biodiesel fuel B100 (80% RME (rapeseed oil methyl ester), 20% SME (soybean oil methyl ester), produced by Haltermann Solutions, Inc.) as a lubricating oil composition. % Sample oil added 100% and tris (2,4-pentanedionato) iron (III) 63.24 mg as a catalyst, air was blown at 160 ° C. at a flow rate of 10 L / h, and 168 hours oxidation deterioration I let you. The 100 degreeC kinematic viscosity of the sample oil before a test and the sample oil after a test was measured, and the 100 degreeC kinematic viscosity increase rate was calculated | required. The smaller the 100 ° C. kinematic viscosity increase rate, the better the oxidation stability.
実施例1~8、比較例1~8
 各実施例、比較例において表1に示す潤滑油組成物を調製して、得られた潤滑油組成物について硫酸灰分を測定するとともに、SRV往復動摩擦試験及びバイオ燃料添加IOT試験を行った。
Examples 1-8, Comparative Examples 1-8
In each example and comparative example, the lubricating oil composition shown in Table 1 was prepared, and the resulting lubricating oil composition was measured for sulfated ash, and an SRV reciprocating friction test and a biofuel addition IOT test were performed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表中の各成分は以下のとおりである。
(基油)
・水素化精製基油:100℃動粘度4.15mm2/s、粘度指数133、硫黄含有量5質量ppm未満、NOACK蒸発量13.8質量%、%C0.1以下、%C89.5
・ポリα-オレフィン:Durasyn145(INEOS社製)、100℃における動粘度5.194mm2/s、粘度指数145、NOACK蒸発量5.14質量%
((A)成分)
・ポリブテニルコハク酸モノイミドのホウ素誘導体(A1):ポリブテニル基の数平均分子量1000、窒素含有量1.23質量%、ホウ素含有量1.30質量%、塩素含有量、0.06質量%
・ポリブテニルコハク酸ビスイミド(A2):ポリブテニル基の数平均分子量2300、窒素含有量0.99質量%、塩素含有量0.01質量%以下
((B)成分)
・二核の有機モリブデン化合物(B1):サクラルーブ515(株式会社ADEKA製)、モリブデン含有量10.0質量%、硫黄含有量11.5質量%、R11~R14それぞれの炭素数が8又は13であり、X~Xが酸素原子である式(3)で示される二核モリブデンジチオカルバメート
・三核の有機モリブデン化合物(B2):InfineumC9455B(Infineum社製)、式(4)で示される三核モリブデンジチオカルバメート、モリブデン含有量5.5質量%、硫黄含有量9.9質量%
((C)成分)
・過塩基性ナトリウムスルホネート:塩基価(過塩素酸法)448mgKOH/g、ナトリウム含有量19.5質量%、硫黄含有量1.2質量%
((D)成分)
・過塩基性カルシウムサリシレート(D1):塩基価(過塩素酸法)225mgKOH/g、カルシウム含有量8.0質量%、硫黄含有量0.15質量%
・過塩基性カルシウムフェネート(D2):塩基価(過塩素酸法)255mgKOH/g、カルシウム含有量9.3質量%、硫黄含有量3.0質量%
((E)成分)
・フェノール系酸化防止剤(E1):3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシベンゼンプロパン酸のC7-C9アルキルエステル(BASF社製、商品名「IRGANOX(登録商標)L135」)
・アミン系酸化防止剤(E2):ビス(4-ノニルフェニル)アミン、窒素含有量3.5質量%
粘度指数向上剤(F):スチレン-イソブチレン共重合体、質量平均子量584,000、樹脂量10質量%
その他の添加剤:ジアルキルジチオリン酸亜鉛、金属不活性化剤、流動点降下剤、及び消泡剤
Each component in the table is as follows.
(Base oil)
・ Hydrorefined base oil: 100 ° C. kinematic viscosity 4.15 mm 2 / s, viscosity index 133, sulfur content less than 5 mass ppm, NOACK evaporation 13.8 mass%,% C A 0.1 or less,% C P 89.5
Poly α-olefin: Durasyn 145 (manufactured by INEOS), kinematic viscosity at 100 ° C. 5.194 mm 2 / s, viscosity index 145, NOACK evaporation 5.14% by mass
((A) component)
-Boron derivative of polybutenyl succinic acid monoimide (A1): polybutenyl group number average molecular weight 1000, nitrogen content 1.23 mass%, boron content 1.30 mass%, chlorine content, 0.06 mass%
Polybutenyl succinic acid bisimide (A2): number average molecular weight of polybutenyl group 2300, nitrogen content 0.99% by mass, chlorine content 0.01% by mass or less (component (B))
-Binuclear organic molybdenum compound (B1): SakuraLube 515 (manufactured by ADEKA Co., Ltd.), molybdenum content 10.0 mass%, sulfur content 11.5 mass%, R 11 to R 14 each having 8 or 8 carbon atoms A dinuclear molybdenum dithiocarbamate / trinuclear organomolybdenum compound (B2) represented by formula (3) wherein X 1 to X 4 are oxygen atoms: Infineum C9455B (manufactured by Infineum), represented by formula (4) Trinuclear molybdenum dithiocarbamate, molybdenum content 5.5% by mass, sulfur content 9.9% by mass
((C) component)
Overbased sodium sulfonate: base number (perchloric acid method) 448 mg KOH / g, sodium content 19.5 mass%, sulfur content 1.2 mass%
((D) component)
・ Overbased calcium salicylate (D1): base number (perchloric acid method) 225 mgKOH / g, calcium content 8.0 mass%, sulfur content 0.15 mass%
・ Overbased calcium phenate (D2): base number (perchloric acid method) 255 mgKOH / g, calcium content 9.3 mass%, sulfur content 3.0 mass%
((E) component)
Phenolic antioxidant (E1): C7-C9 alkyl ester of 3,5-bis (1,1-dimethylethyl) -4-hydroxybenzenepropanoic acid (trade name “IRGANOX® L135, manufactured by BASF AG) ")
Amine-based antioxidant (E2): bis (4-nonylphenyl) amine, nitrogen content 3.5% by mass
Viscosity index improver (F): styrene-isobutylene copolymer, mass average molecular weight 584,000, resin content 10% by mass
Other additives: zinc dialkyldithiophosphates, metal deactivators, pour point depressants, and antifoaming agents
 以上のように、実施例1~8では、(A)~(D)成分を含有させ、かつ(A)~(C)成分の含有量、比(A1/A2)を所定の範囲とすることで、硫酸灰分を低くしつつも金属間摩擦係数を低くし、かつバイオ燃料添加IOT試験において潤滑油組成物の粘度増加率を抑えることができた。したがって、排出ガス浄化装置への悪影響を少なくしかつ省燃費性を優れたものにしつつ、潤滑油組成物にバイオ燃料が混入するような場合でも潤滑油の粘度上昇を抑制可能であることが理解できる。
 それに対して、比較例1では、(A)~(D)成分を含有させ、かつ(A)~(C)成分の含有量を所定範囲内としたが、比(A1/A2)を規定の範囲にしなかったため、潤滑油組成物の粘度増加率を抑制することができなかった。また、比較例2,3のように、モリブデン系化合物(B)を含有させず、または、その含有量を規定の範囲外とすると、金属間摩擦係数、及び粘度増加率の両方を低減させることができなかった。
 さらに、比較例4~6では、過塩基性ナトリウムスルホネート((C)成分)が含有されず、又は含有されてもその含有量が少なかったため、潤滑油組成物の粘度増加を抑制することができなかった。この結果は、比較例7のように、(C)成分を含有させる代わりに、過塩基性カルシウム系清浄剤((D)成分)を増量しても同様であった。また、比較例8では(C)成分が含有されず、さらに比(A1/A2)も大きかったため、粘度増加を抑制することができなかった。
As described above, in Examples 1 to 8, the components (A) to (D) are contained, and the content and ratio (A1 / A2) of the components (A) to (C) are set within a predetermined range. Thus, the intermetallic friction coefficient was lowered while the sulfated ash content was lowered, and the viscosity increase rate of the lubricating oil composition was suppressed in the biofuel addition IOT test. Therefore, it is understood that it is possible to suppress an increase in the viscosity of the lubricating oil even when biofuel is mixed into the lubricating oil composition, while reducing adverse effects on the exhaust gas purification device and improving fuel efficiency. it can.
In contrast, in Comparative Example 1, the components (A) to (D) were contained, and the contents of the components (A) to (C) were within a predetermined range, but the ratio (A1 / A2) was defined. Since it was not within the range, the rate of increase in viscosity of the lubricating oil composition could not be suppressed. Further, as in Comparative Examples 2 and 3, when the molybdenum-based compound (B) is not contained or the content is outside the specified range, both the intermetallic friction coefficient and the viscosity increase rate are reduced. I could not.
Further, in Comparative Examples 4 to 6, the overbased sodium sulfonate (component (C)) was not contained, or even if it was contained, the content thereof was small, so that an increase in the viscosity of the lubricating oil composition could be suppressed. There wasn't. This result was the same even when the amount of the overbased calcium-based detergent (component (D)) was increased instead of containing the component (C) as in Comparative Example 7. Further, in Comparative Example 8, the component (C) was not contained, and the ratio (A1 / A2) was also large, so that an increase in viscosity could not be suppressed.

Claims (15)

  1.  基油と、
     アルケニル若しくはアルキルコハク酸モノイミド及びそのホウ素誘導体(A1)、並びに、アルケニル若しくはアルキルコハク酸ビスイミド及びそのホウ素誘導体(A2)からなる群から選択される少なくとも1種のコハク酸イミド系化合物(A)と、
     二核の有機モリブデン化合物(B1)及び三核の有機モリブデン化合物(B2)からなる群から選択される少なくとも1種のモリブデン系化合物(B)と、
     過塩基性ナトリウムスルホネート(C)と、
     過塩基性カルシウムサリシレート(D1)、及び過塩基性カルシウムフェネート(D2)からなる群から選択される少なくとも1種の過塩基性カルシウム系清浄剤(D)とを含み、
     潤滑油組成物全量基準で(A)成分の含有量が窒素原子換算で550質量ppm以上、(B)成分の含有量がモリブデン原子換算で200質量ppm以上600質量ppm以下、かつ(C)成分の含有量がナトリウム原子換算で250質量ppm以上であり、
     (A1)成分の窒素原子換算での含有量と(A2)成分の窒素原子換算での含有量との比〔(A1/A2)〕が、0以上0.3以下であるとともに、硫酸灰分が、0.8質量%以下である、内燃機関用潤滑油組成物。
    Base oil,
    At least one succinimide compound (A) selected from the group consisting of alkenyl or alkyl succinic acid monoimide and its boron derivative (A1), and alkenyl or alkyl succinic acid bisimide and its boron derivative (A2);
    At least one molybdenum-based compound (B) selected from the group consisting of a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2);
    Overbased sodium sulfonate (C);
    Including at least one overbased calcium-based detergent (D) selected from the group consisting of overbased calcium salicylate (D1) and overbased calcium phenate (D2);
    The content of the component (A) is 550 mass ppm or more in terms of nitrogen atoms, the content of the component (B) is 200 mass ppm to 600 mass ppm in terms of molybdenum atoms, and the component (C). Content is 250 mass ppm or more in terms of sodium atom,
    The ratio [(A1 / A2)] of the content of the component (A1) in terms of nitrogen atom and the content of the component (A2) in terms of nitrogen atom is 0 or more and 0.3 or less, and the sulfated ash content is The lubricating oil composition for an internal combustion engine, which is 0.8% by mass or less.
  2.  フェノール系酸化防止剤及びアミン系酸化防止剤からなる群から選択される少なくとも1種の酸化防止剤(E)を潤滑油組成物全量基準で1.0質量%以上含有する、請求項1に記載の内燃機関用潤滑油組成物。 The at least 1 sort (s) of antioxidant (E) selected from the group which consists of a phenolic antioxidant and an amine antioxidant contains 1.0 mass% or more on the basis of the total amount of lubricating oil composition. A lubricating oil composition for internal combustion engines.
  3.  前記基油が鉱油及び合成油からなる請求項1又は2に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to claim 1 or 2, wherein the base oil comprises mineral oil and synthetic oil.
  4.  前記基油がポリα-オレフィンを含む請求項1~3のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 3, wherein the base oil contains a poly α-olefin.
  5.  コハク酸イミド系化合物(A)が、アルケニル若しくはアルキルコハク酸モノイミドのホウ素誘導体を含む、請求項1~4のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for internal combustion engines according to any one of claims 1 to 4, wherein the succinimide compound (A) comprises a boron derivative of alkenyl or alkyl succinic monoimide.
  6.  潤滑油組成物全量基準で(A1)成分由来のホウ素含有量が50質量ppm以上300質量ppm以下である請求項5に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to claim 5, wherein the boron content derived from the component (A1) is 50 mass ppm or more and 300 mass ppm or less based on the total amount of the lubricating oil composition.
  7.  (A2)成分が、アルケニル若しくはアルキルコハク酸ビスイミドからなる請求項1~6のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 6, wherein the component (A2) comprises alkenyl or alkyl succinic acid bisimide.
  8.  前記アルケニル若しくはアルキルコハク酸モノイミドが下記式(1)で示される化合物であるとともに、前記アルケニル若しくはアルキルコハク酸ビスイミドが、下記式(2)で示される化合物である請求項1~7のいずれか1項に記載の内燃機関用潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1、R3及びR4は、それぞれアルケニル基若しくはアルキル基で、R3及びR4は互いに同一でも異なっていてもよく、R2、R5及びR6は、それぞれ炭素数2~5のアルキレン基で、R5及びR6は互いに同一でも異なっていてもよく、rは1以上10以下の整数を示し、sは0又は1以上10以下の整数を示す。R1、R3及びR4の数平均分子量は、それぞれ500以上3000以下である。)
    8. The alkenyl or alkyl succinic acid monoimide is a compound represented by the following formula (1), and the alkenyl or alkyl succinic acid bisimide is a compound represented by the following formula (2). The lubricating oil composition for an internal combustion engine according to Item.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, R 1 , R 3 and R 4 are each an alkenyl group or an alkyl group, R 3 and R 4 may be the same or different from each other, and R 2 , R 5 and R 6 are each a carbon number. 2 to 5 alkylene groups, R 5 and R 6 may be the same or different from each other, r represents an integer of 1 to 10, and s represents 0 or an integer of 1 to 10. R 1 , The number average molecular weights of R 3 and R 4 are 500 or more and 3000 or less, respectively.
  9.  二核の有機モリブデン化合物(B1)が二核モリブデンジチオカーバメートであるとともに、三核の有機モリブデン化合物(B2)が三核モリブデンジチオカーバメートである請求項1~8のいずれか1項に記載の内燃機関用潤滑油組成物。 The internal combustion engine according to any one of claims 1 to 8, wherein the dinuclear organic molybdenum compound (B1) is a dinuclear molybdenum dithiocarbamate and the trinuclear organic molybdenum compound (B2) is a trinuclear molybdenum dithiocarbamate. Lubricating oil composition for engines.
  10.  過塩基性ナトリウムスルホネート(C)の塩基価は、200mgKOH/g以上である請求項1~9のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for internal combustion engines according to any one of claims 1 to 9, wherein the base number of the overbased sodium sulfonate (C) is 200 mgKOH / g or more.
  11.  潤滑油組成物全量基準で、(D)成分の含有量がカルシウム原子換算で500質量ppm以上1500質量ppm以下である請求項1~10のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for internal combustion engines according to any one of claims 1 to 10, wherein the content of component (D) is 500 mass ppm or more and 1500 mass ppm or less in terms of calcium atom, based on the total amount of the lubricating oil composition. .
  12.  過塩基性カルシウム系清浄剤(D)が過塩基性カルシウムサリシレートである請求項1~11のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 11, wherein the overbased calcium-based detergent (D) is an overbased calcium salicylate.
  13.  過塩基性カルシウム系清浄剤(D)の塩基価が、150mgKOH/g以上である請求項1~12のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for internal combustion engines according to any one of claims 1 to 12, wherein the base number of the overbased calcium detergent (D) is 150 mgKOH / g or more.
  14.  バイオ燃料を含有する燃料を燃焼して駆動する内燃機関で用いられる請求項1~13のいずれか1項に記載の内燃機関用潤滑油組成物。 The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 13, which is used in an internal combustion engine driven by burning a fuel containing biofuel.
  15.  基油に、
     アルケニル若しくはアルキルコハク酸モノイミド及びそのホウ素誘導体(A1)、並びにアルケニル若しくはアルキルコハク酸ビスイミド及びそのホウ素誘導体(A2)からなる群から選択される少なくとも1種のコハク酸イミド系化合物(A)、
     二核の有機モリブデン化合物(B1)及び三核の有機モリブデン化合物(B2)からなる群から選択される少なくとも1種のモリブデン系化合物(B)、
     過塩基性ナトリウムスルホネート(C)、及び
     過塩基性カルシウムサリシレート(D1)、及び過塩基性カルシウムフェネート(D2)からなる群から選択される少なくとも1種の過塩基性カルシウム系清浄剤(D)を配合して潤滑油組成物を得る、内燃機関用潤滑油組成物の製造方法であって、
     潤滑油組成物全量基準で(A)成分の配合量が窒素原子換算で550質量ppm以上、(B)成分の配合量がモリブデン原子換算で200質量ppm以上600質量ppm以下、かつ(C)成分の配合量がナトリウム原子換算で250質量ppm以上であり、
     (A1)成分の窒素原子換算での配合量と(A2)成分の窒素原子換算での配合量との比〔(A1/A2)〕が、0以上0.3以下であるとともに、硫酸灰分が、0.8質量%以下である、内燃機関用潤滑油組成物の製造方法。
    Base oil,
    At least one succinimide compound (A) selected from the group consisting of alkenyl or alkyl succinic acid monoimide and its boron derivative (A1), and alkenyl or alkyl succinic acid bisimide and its boron derivative (A2),
    At least one molybdenum-based compound (B) selected from the group consisting of a dinuclear organic molybdenum compound (B1) and a trinuclear organic molybdenum compound (B2);
    Overbased sodium sulfonate (C), and at least one overbased calcium detergent (D) selected from the group consisting of overbased calcium salicylate (D1) and overbased calcium phenate (D2) A method for producing a lubricating oil composition for an internal combustion engine, wherein a lubricating oil composition is obtained by blending
    The blending amount of the component (A) on the basis of the total amount of the lubricating oil composition is 550 mass ppm or more in terms of nitrogen atoms, the blending amount of the component (B) is 200 to 600 ppm in terms of molybdenum atoms, and the component (C) The blending amount is 250 mass ppm or more in terms of sodium atom,
    The ratio [(A1 / A2)] of the blending amount of the component (A1) in terms of nitrogen atoms and the blending amount of the component (A2) in terms of nitrogen atoms is 0 or more and 0.3 or less, and the sulfated ash content is The manufacturing method of the lubricating oil composition for internal combustion engines which is 0.8 mass% or less.
PCT/JP2017/013058 2016-03-30 2017-03-29 Lubricant oil composition for internal combustion engines WO2017170769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069739A JP2017179156A (en) 2016-03-30 2016-03-30 Lubricant composition for internal combustion engine
JP2016-069739 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170769A1 true WO2017170769A1 (en) 2017-10-05

Family

ID=59965794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013058 WO2017170769A1 (en) 2016-03-30 2017-03-29 Lubricant oil composition for internal combustion engines

Country Status (2)

Country Link
JP (1) JP2017179156A (en)
WO (1) WO2017170769A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210466A (en) * 2018-06-05 2019-12-12 アフトン・ケミカル・コーポレーションAfton Chemical Corporation Lubricant composition and dispersant therefor having a beneficial effect on oxidation stability
CN112646632A (en) * 2019-10-10 2021-04-13 中国石油化工股份有限公司 Novel friction reducer for engine oil and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7493373B2 (en) * 2020-03-31 2024-05-31 出光興産株式会社 Lubricating Oil Composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077810A1 (en) * 2009-12-24 2011-06-30 Jx日鉱日石エネルギー株式会社 Cylinder lubricant oil composition for crosshead-type diesel engine
JP2011195774A (en) * 2010-03-23 2011-10-06 Adeka Corp Lubricating oil composition for internal combustion engine
JP2013522392A (en) * 2010-03-10 2013-06-13 ザ ルブリゾル コーポレイション Titanium compounds and complexes and molybdenum compounds and complexes as additives in lubricants.
JP2013540879A (en) * 2010-10-29 2013-11-07 シェブロン・オロナイト・カンパニー・エルエルシー Lubricating oil composition for natural gas engines
WO2014136973A1 (en) * 2013-03-08 2014-09-12 出光興産株式会社 Lubricating-oil composition
WO2015151769A1 (en) * 2014-03-31 2015-10-08 出光興産株式会社 Lubricating oil composition for gas engines
WO2016152993A1 (en) * 2015-03-24 2016-09-29 出光興産株式会社 Lubricant oil composition for spark ignition type internal combustion engine, method for producing lubricant oil composition, spark ignition type internal combustion engine using lubricant oil composition, and method for lubricating internal combustion engine
WO2016159258A1 (en) * 2015-03-31 2016-10-06 出光興産株式会社 Gasoline engine lubricant oil composition and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077810A1 (en) * 2009-12-24 2011-06-30 Jx日鉱日石エネルギー株式会社 Cylinder lubricant oil composition for crosshead-type diesel engine
JP2013522392A (en) * 2010-03-10 2013-06-13 ザ ルブリゾル コーポレイション Titanium compounds and complexes and molybdenum compounds and complexes as additives in lubricants.
JP2011195774A (en) * 2010-03-23 2011-10-06 Adeka Corp Lubricating oil composition for internal combustion engine
JP2013540879A (en) * 2010-10-29 2013-11-07 シェブロン・オロナイト・カンパニー・エルエルシー Lubricating oil composition for natural gas engines
WO2014136973A1 (en) * 2013-03-08 2014-09-12 出光興産株式会社 Lubricating-oil composition
WO2015151769A1 (en) * 2014-03-31 2015-10-08 出光興産株式会社 Lubricating oil composition for gas engines
WO2016152993A1 (en) * 2015-03-24 2016-09-29 出光興産株式会社 Lubricant oil composition for spark ignition type internal combustion engine, method for producing lubricant oil composition, spark ignition type internal combustion engine using lubricant oil composition, and method for lubricating internal combustion engine
WO2016159258A1 (en) * 2015-03-31 2016-10-06 出光興産株式会社 Gasoline engine lubricant oil composition and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210466A (en) * 2018-06-05 2019-12-12 アフトン・ケミカル・コーポレーションAfton Chemical Corporation Lubricant composition and dispersant therefor having a beneficial effect on oxidation stability
JP7320991B2 (en) 2018-06-05 2023-08-04 アフトン・ケミカル・コーポレーション Lubricant compositions and their dispersants that have a beneficial effect on oxidation stability
CN112646632A (en) * 2019-10-10 2021-04-13 中国石油化工股份有限公司 Novel friction reducer for engine oil and application thereof
CN112646632B (en) * 2019-10-10 2022-09-16 中国石油化工股份有限公司 Antifriction agent for engine oil and application thereof

Also Published As

Publication number Publication date
JP2017179156A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6027170B1 (en) Lubricating oil composition for internal combustion engines
JP5313879B2 (en) Lubricating oil composition
JP5431947B2 (en) Lubricating oil composition
JP6097296B2 (en) Lubricating oil composition for internal combustion engines
JP5175462B2 (en) Lubricating oil composition for internal combustion engines
RU2451720C2 (en) Lubricating oil composition
EP2546324B1 (en) Lubricant composition
JP5952846B2 (en) Lubricating oil composition
JP5806802B2 (en) Lubricating oil composition
JP6849204B2 (en) Lubricating oil composition
KR20100087722A (en) Lubricant composition
JP5571290B2 (en) Lubricating oil composition
WO2014136973A1 (en) Lubricating-oil composition
WO2015111746A1 (en) Lubricating oil composition for internal combustion engine
JP7444782B2 (en) Lubricating oil composition and method for producing the same
US20180171259A1 (en) Lubricating oil composition for gas engines
WO2017170769A1 (en) Lubricant oil composition for internal combustion engines
WO2013141077A1 (en) Lubricating oil composition for engine made of aluminum alloy and lubrication method
JP2018168344A (en) Lubricating oil composition for internal combustion engine
JP2019147864A (en) Lubricant composition
JP6247822B2 (en) Lubricating oil composition for aluminum alloy engine and lubricating method
JP6247820B2 (en) Lubricating oil composition for aluminum alloy engine and lubricating method
JP2013224404A (en) Lubricating oil composition for engine made of aluminum alloy and lubrication method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775303

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775303

Country of ref document: EP

Kind code of ref document: A1