WO2017170516A1 - Flexible polarizing film, manufacturing method for same and image display device - Google Patents

Flexible polarizing film, manufacturing method for same and image display device Download PDF

Info

Publication number
WO2017170516A1
WO2017170516A1 PCT/JP2017/012588 JP2017012588W WO2017170516A1 WO 2017170516 A1 WO2017170516 A1 WO 2017170516A1 JP 2017012588 W JP2017012588 W JP 2017012588W WO 2017170516 A1 WO2017170516 A1 WO 2017170516A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl alcohol
polarizing film
meth
resin
flexible polarizing
Prior art date
Application number
PCT/JP2017/012588
Other languages
French (fr)
Japanese (ja)
Inventor
康隆 石原
友徳 上野
岸 敦史
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187028928A priority Critical patent/KR102219925B1/en
Priority to CN201780020448.1A priority patent/CN108885295A/en
Priority to JP2018508051A priority patent/JPWO2017170516A1/en
Priority to TW106110465A priority patent/TWI722157B/en
Publication of WO2017170516A1 publication Critical patent/WO2017170516A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a flexible polarizing film and a manufacturing method thereof.
  • the flexible polarizing film can form an image display device such as a liquid crystal display device (LCD) or an organic EL display device alone or as an optical film obtained by laminating the flexible polarizing film.
  • LCD liquid crystal display device
  • organic EL display device alone or as an optical film obtained by laminating the flexible polarizing film.
  • a polarizer In a liquid crystal display device, it is indispensable to dispose a polarizer on both sides of a glass substrate that forms the surface of a liquid crystal panel because of its image forming method.
  • the polarizer generally used is a polyvinyl alcohol polarizer in which a polyvinyl alcohol resin is oriented in one direction and iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol resin.
  • polyvinyl alcohol polarizers have the problem that they are brittle and easy to tear.
  • a polyvinyl alcohol-based polarizer is easy to tear parallel to the direction in which the polyvinyl alcohol-based resin is oriented (absorption axis direction). For example, when an external force that contracts in the absorption axis direction is applied, it is easily broken. .
  • the polyvinyl alcohol polarizer is used as a polarizing film in which a transparent protective film is bonded to one or both sides.
  • a general polarizing film using a polyvinyl alcohol-based polarizer has rigidity (rigidity) because a transparent protective film is bonded, and lacks flexibility (flexibility). Therefore, when twisting is applied to the polarizing film, the entire film may be cracked, broken marks (folded marks) may remain, or light leakage may occur in the polarizer. It was constrained.
  • the grid polarizer has flexibility but lacks versatility.
  • An object of the present invention is to provide a flexible polarizing film having a high degree of flexibility despite the use of a polyvinyl alcohol polarizer and a method for producing the same.
  • Another object of the present invention is to provide an image display device having the flexible polarizing film.
  • the present invention comprises a polyvinyl alcohol polarizer having a thickness of 10 ⁇ m or less, wherein the polyvinyl alcohol resin is oriented in one direction and iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol resin, and
  • the present invention relates to a flexible polarizing film characterized by being free from cracks, folds, and light leakage after being subjected to a twist test in which the polyvinyl alcohol resin is twisted in the direction in which the polyvinyl alcohol resin is oriented.
  • the flexible polarizing film after performing a U-shaped expansion / contraction test that repeatedly expands and contracts in a U-shape in an alignment direction in which the polyvinyl alcohol-based resin is aligned and in a direction orthogonal to the alignment direction, cracks occur in any direction. It is preferable that there are no folds and no light leakage.
  • the bent shape is maintained in any direction. In addition, it is preferable that no cracks occur.
  • the bending resistance (mm) is preferably 60 mm or less in the bending test in the alignment direction in which the polyvinyl alcohol-based resin is aligned and in the direction orthogonal to the alignment direction.
  • the tensile strength in the direction orthogonal to the orientation direction in which the polyvinyl alcohol resin is oriented in a tensile test is 5 N / 10 mm or more.
  • the polyvinyl alcohol polarizer has an optical property represented by the following formula: P> ⁇ (10 0.929T-42.4 ⁇ 1) ⁇ 100 However, T ⁇ 42.3) or It is preferable that the lens is configured to satisfy the condition of P ⁇ 99.9 (however, T ⁇ 42.3).
  • the flexible polarizing film preferably has a reinforcing film in close contact with the polyvinyl alcohol polarizer on at least one surface of the polyvinyl alcohol polarizer.
  • the thickness of the reinforcing film is preferably 15 ⁇ m or less.
  • the flexible polarizing film preferably has a first reinforcing film having a thickness of 15 ⁇ m or less on the first side of the polyvinyl alcohol-based polarizer and a second reinforcing film having a thickness of 15 ⁇ m or less on the other second side. .
  • the thickness difference between the first reinforcing film and the second reinforcing film is preferably 10 ⁇ m or less.
  • the ratio of the thickness of the reinforcing film to the thickness of the polyvinyl alcohol polarizer is preferably 0.4 or more.
  • the reinforcing film preferably has a compressive elastic modulus at 23 ° C. of 1 MPa or more.
  • the reinforcing film that is not substantially oriented can be used.
  • a resin film can be used as the reinforcing film.
  • the resin film is preferably a thermosetting resin or an active energy ray curable resin.
  • the present invention is a method for producing the flexible polarizing film, A step (1) of preparing a polyvinyl alcohol polarizer having a thickness of 10 ⁇ m or less, wherein the polyvinyl alcohol resin is oriented in one direction and iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol resin; By applying a liquid material containing a curable component capable of constituting a resin component or a resin film on at least one surface of the polyvinyl alcohol polarizer, and then solidifying or curing the liquid material, a reinforcing film
  • the manufacturing method of the flexible polarizing film characterized by including the process (2) of forming.
  • the present invention also relates to an image display device having the flexible polarizing film.
  • the flexible polarizing film of the present invention uses a polyvinyl alcohol polarizer and can satisfy general versatility. Moreover, the polyvinyl alcohol-type polarizer is 10 micrometers or less in thickness, and is suitable also at the point currently made thin.
  • the flexible polarizing film of the present invention has a high degree of flexibility despite the fact that it uses a polyvinyl alcohol polarizer that is brittle and easy to tear, and has deformed its shape by twisting. Even in this case, there is no occurrence of cracks in the entire film, no broken marks (fold marks), and no light leakage from the polarizer.
  • the flexible polarizing film of the present invention can have flexibility against various deformations such as expansion and contraction. As described above, the flexible polarizing film of the present invention itself has flexibility, and a normal polyvinyl alcohol-based polarizer alone has a remarkably small tensile breaking stress, so that it is substantially impossible to handle. On the other hand, it is thin and easy to handle.
  • the flexible polarizing film of the present invention has flexibility even when used in combination with other members or by using the flexibility, and can suppress cracks in the polarizer. Yes, it can be used for various purposes. For this reason, the use of the flexible polarizing film is greatly expanded by expanding the application of the flexible polarizing film alone or expanding the tolerance in the process. Therefore, the flexible polarizing film of the present invention can be used as an alternative to a polarizer, for example, a design that could not be applied due to the brittleness and tearing of conventional polarizers, and a polarizing film (transparent protection to the polarizer). As an alternative to the one provided with a film), for example, it is possible to deal with various deformed shapes that could not be applied due to the rigidity of the conventional polarizing film, and the application development can be expanded.
  • the flexible polarizing film of the present invention has a polyvinyl alcohol polarizer.
  • the polyvinyl alcohol-based polarizer is obtained by aligning a polyvinyl alcohol-based resin in one direction (absorption axis direction) and adsorbing or aligning iodine or a dichroic dye on the polyvinyl alcohol-based resin.
  • the polyvinyl alcohol-based resin include polyvinyl alcohol, partially formalized polyvinyl alcohol, ethylene / vinyl acetate copolymer partially saponified products, and the like.
  • a polarizer can be obtained by adsorbing a dichroic dye such as iodine or a dichroic dye to a polyvinyl alcohol film using the polyvinyl alcohol resin and stretching the film uniaxially.
  • a polarizer obtained by dying a polyvinyl alcohol film with iodine or a dichroic dye and uniaxially stretching it is prepared, for example, by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. can do. If necessary, it may contain boric acid, zinc sulfate, zinc chloride, or the like, or may be immersed in an aqueous solution such as potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing.
  • Stretching may be performed after dyeing with iodine or a dichroic dye, may be performed while dyeing, or may be dyed with iodine or a dichroic dye after stretching.
  • the film can be stretched even in an aqueous solution such as boric acid or potassium iodide or in a water bath.
  • the polyvinyl alcohol polarizer preferably contains boric acid from the viewpoint of stretching stability and optical durability.
  • the boric acid content contained in the polarizer is preferably 25% by weight or less, more preferably 20% by weight or less, based on the total amount of the polarizer, from the viewpoint of suppressing the occurrence of light leakage. Further, it is preferably 18% by weight or less, more preferably 16% by weight or less.
  • the boric acid content with respect to the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
  • a polyvinyl alcohol polarizer having a thickness of 10 ⁇ m or less is used.
  • the thickness of the polarizer is preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less, and further preferably 6 ⁇ m or less from the viewpoints of thinning and flexibility.
  • the thickness of the polarizer is preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • Such a thin polarizer has less thickness unevenness, excellent visibility, and less dimensional change, and therefore excellent durability against thermal shock.
  • Patent No. 4751486 Japanese Patent No. 4751481, Patent No. 4815544, Patent No. 5048120, International Publication No. 2014/077599 pamphlet, International Publication No. 2014/077636 Pamphlet, And the thin polarizers obtained from the production methods described therein.
  • the polarizer has an optical characteristic expressed by a single transmittance T and a polarization degree P of the following formula P> ⁇ (10 0.929T-42.4 ⁇ 1) ⁇ 100 (where T ⁇ 42.3), Or It is configured to satisfy the condition of P ⁇ 99.9 (however, T ⁇ 42.3).
  • a polarizer configured so as to satisfy the above-described conditions uniquely has performance required as a display for a liquid crystal television using a large display element. Specifically, the contrast ratio is 1000: 1 or more and the maximum luminance is 500 cd / m 2 or more. As other uses, for example, it is bonded to the viewing side of the organic EL display device.
  • a polarizer configured to satisfy the above conditions has a high orientation of a polymer (for example, a polyvinyl alcohol-based molecule), so that the thickness of the polarizer is 10 ⁇ m or less.
  • the tensile rupture stress in the direction orthogonal to the absorption axis direction (transmission axis direction) is significantly reduced.
  • the flexible polarizing film of the present invention has excellent flexibility in spite of the use of such a polyvinyl alcohol-based polarizer that is weak against impact of 10 ⁇ m or less.
  • Patent No. 4751486, Patent in that it can be stretched at a high magnification and the polarization performance can be improved.
  • stretching in a boric-acid aqueous solution as described in the 4751481 specification and the patent 4815544 specification is preferable, and it describes especially in the patent 4751481 specification and the patent 4815544 specification.
  • stretching in the boric-acid aqueous solution which has this is preferable.
  • These thin polarizers can be obtained by a production method including a step of stretching a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a stretching resin base material in a laminated state and a step of dyeing.
  • PVA-based resin polyvinyl alcohol-based resin
  • a stretching resin base material in a laminated state
  • dyeing a step of dyeing
  • the flexible polarizing film of the present invention is characterized in that after the twist test shown in the examples is performed, the polyvinyl alcohol-based polarizer is free from cracks, generation of fold marks, and light leakage.
  • the twist test is an index indicating the flexibility in the twisted state in the orientation direction (absorption axis direction) in which the polyvinyl alcohol-based resin that is likely to generate cracks, fold marks, and light leakage is oriented. It can be seen that the flexible polarizing film of the present invention has excellent flexibility in a twisted state in the twisting test without occurrence of cracks, folds and light leakage.
  • the flexible polarizing film of the present invention is preferably capable of suppressing the generation of cracks, creases and light leakage after the U-shaped expansion / contraction test shown in the examples.
  • the U-shaped expansion / contraction test is an index indicating the flexibility related to unfolded bending in a U-shape in the alignment direction (absorption axis direction) in which the polyvinyl alcohol-based resin is aligned and in the orthogonal direction (transmission axis direction). .
  • the flexible polarizing film of the present invention has excellent unfolded bendability in both the absorption axis direction and the transmission axis direction by suppressing the generation of cracks, fold marks and light leakage in the U-shaped stretch test. It can be seen that it has the flexibility involved.
  • the flexible polarizing film of the present invention preferably retains the bent shape and suppresses cracking after the bending holding test shown in the examples.
  • the flexible polarizing film maintains its original shape even when it is bent and bent in the orientation direction (absorption axis direction) in which the polyvinyl alcohol resin is oriented and in the orthogonal direction (transmission axis direction). It is an index indicating the flexibility related to the retention that can be performed. It can be seen that the flexible polarizing film of the present invention has excellent holding properties in both the absorption axis direction and the transmission axis direction by holding the bent shape and suppressing cracking in the bending holding test.
  • the flexible polarizing film of the present invention preferably satisfies the bending resistance (mm) of 60 mm or less in the bending resistance test specifically shown in the examples.
  • the bending resistance test is an index indicating flexibility related to the bending followability (low resistance to bending) in the orientation direction (absorption axis direction) in which the polyvinyl alcohol-based resin is oriented and in the orthogonal direction (transmission axis direction).
  • the flexible polarizing film of the present invention has a bending flexibility (low resistance to bending) having a bending resistance of 60 mm or less.
  • the index indicating the flexibility of the bending resistance (mm) is preferably 50 mm or less, and more preferably 40 mm or less.
  • the flexible polarizing film of the present invention preferably satisfies a tensile strength of 5 N / 10 mm or more in the tensile test specifically shown in the examples.
  • the tensile test is an index indicating the strength in the direction (transmission axis direction) orthogonal to the orientation direction (absorption axis direction) in which the polyvinyl alcohol-based resin is oriented. It can be seen that the flexible polarizing film of the present invention has strength in the transmission axis direction when the tensile strength satisfies 5 N / 10 mm or more.
  • the tensile strength is preferably 7 N / 10 mm or more, more preferably 10 N / 10 mm or more from the viewpoint of strength.
  • the flexible polarizing film 1 in FIG. 1A is a case where the first reinforcing film b1 is provided only on the first one surface of the polyvinyl alcohol polarizer a.
  • the flexible polarizing film 1 of FIG. 1 (B) has the 1st reinforcement film
  • the first reinforcing film b1 and / or the second reinforcing film b2 are provided directly on the polyvinyl alcohol polarizer 1.
  • the flexible polarizing film 1 of the present invention has flexibility in the twist test, and has a transparent protective film or the like on one side or both sides of the polyvinyl alcohol-based polarizer a, and cannot satisfy the flexibility. This is clearly distinguished from a normal polarizing film.
  • the thickness of the reinforcing membrane is preferably 15 ⁇ m or less from the viewpoint of thinning and flexibility, more preferably 10 ⁇ m or less, and further preferably 7 ⁇ m or less.
  • the thickness of the reinforcing membrane is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more from the viewpoint of flexibility and strength.
  • the ratio (t2 / t1) of the thickness (t2) of the reinforcing film to the thickness (t1) of the polyvinyl alcohol polarizer is preferably 0.4 or more from the viewpoint of flexibility and strength, and more preferably 0. .6 or more is preferable, and further 0.8 or more is preferable.
  • the ratio (t2 / t1) is preferably 2.0 or less, more preferably 1.5 or less, and further preferably 1.2 or less from the viewpoint of thinning. preferable.
  • the reinforcing film has a polyvinyl alcohol polarizer as shown in FIG. 1 (B), rather than having the first reinforcing film b1 only on one side of the polyvinyl alcohol polarizer 1 as shown in FIG. 1 (A).
  • 1 having both the first reinforcing film b1 and the second reinforcing film b2 can satisfy the flexibility in the twist test, the U-shaped stretch test, and the like, and can satisfy the strength in the tensile test. It is preferable from the point.
  • each reinforcing film may be the same or different.
  • the thickness difference between the first reinforcing film b1 and the second reinforcing film b2 is good, it is normal (a state where the flexible polarizing film is left alone) and a flexibility test (various tests such as a twist test). Is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and even more preferably 5 ⁇ m or less, because the stress in the flexible polarizing film is made uniform (symmetric) and strength and flexibility are easily secured. It is preferable that they have the same thickness.
  • the reinforcing membrane preferably has a compressive elastic modulus at 23 ° C. of 1 MPa or more from the viewpoint of strength. Furthermore, the compressive elastic modulus of the reinforcing membrane is preferably 10 MPa or more, and more preferably 100 MPa or more. On the other hand, when the compressive elastic modulus of the reinforcing membrane layer increases, the compressive elastic modulus is preferably 10 GPa or less, and more preferably 1 GPa or less, because it tends to be too hard and poor flexibility.
  • the reinforcing film can be formed from various forming materials.
  • the reinforcing film can be formed, for example, by applying a resin material to a polyvinyl alcohol polarizer, or by depositing an inorganic oxide such as SiO 2 on the polyvinyl alcohol polarizer by a sputtering method or the like. You can also
  • the reinforcing film is preferably a resin film formed from a resin material from the viewpoint of simple formation.
  • the reinforcing film may or may not be oriented, and any of them can be used.
  • the reinforcing film When the reinforcing film is oriented, a phase difference occurs and the optical characteristics of the polyvinyl alcohol polarizer change. Therefore, when maintaining the optical characteristics of the polarizer, the reinforcing film that is not substantially oriented.
  • “Substantially not oriented” refers to a state in which the treatment for positively orienting the reinforcing film is not performed although the orientation exists inside the reinforcing film due to the orientation of the polarizer.
  • a reinforcing film that is not practically oriented can be formed by, for example, applying a resin film forming material to a polyvinyl alcohol polarizer.
  • an oriented film can be used as the reinforcing film.
  • the oriented reinforcing film expresses a phase difference and can be used as an optical compensation film or the like.
  • a material for forming the reinforcing film is not particularly limited as long as it is a material that can be adhered to a polyvinyl alcohol polarizer.
  • a polyester resin, a polyether resin, a polycarbonate resin, a polyurethane resin, a silicone resin examples thereof include resins, polyamide resins, polyimide resins, PVA resins, acrylic resins, and epoxy resins. These resin materials can be used singly or in combination of two or more, and among these, one or more selected from the group consisting of polyurethane resins, PVA resins, acrylic resins, and epoxy resins Are preferred, and polyurethane resins and acrylic resins are more preferred.
  • the reinforcing film is formed by applying a liquid material containing a curable component capable of constituting the surface of the polarizer, the resin component or the resin, and then solidifying or curing the liquid material. Can do.
  • the form of the liquid coating liquid is not particularly limited as long as it exhibits a liquid state, and may be any of water-based, water-dispersed, solvent-based, and solvent-free.
  • the forming material may contain an additive as long as the function of the reinforcing film is not impaired.
  • silane coupling agents polyalkylene glycol polyether compounds such as polypropylene glycol
  • powders such as colorants and pigments, dyes, surfactants, plasticizers, tackifiers, antistatic agents, surface lubricants,
  • leveling agents softeners, antioxidants, antioxidants, light stabilizers, UV absorbers, polymerization inhibitors, inorganic or organic fillers, metal powders, particles, foils, etc. It can be added as appropriate.
  • the liquid (coating liquid) has a lower viscosity.
  • the viscosity measured at 25 ° C. is preferably 2000 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, further preferably 500 mPa ⁇ s or less, and further 100 mPa ⁇ s. It is preferable that:
  • the resin component is solidified according to the type.
  • the liquid substance containing the resin component is a solution obtained by dissolving or dispersing the resin component in a solvent, and is used as, for example, an aqueous solution, an aqueous dispersion, or a solvent solution.
  • the solidification means forming a resin layer by removing a solvent from the liquid material.
  • An aqueous resin emulsion can be used as the aqueous dispersion.
  • the aqueous resin emulsion contains emulsion resin particles emulsified in water (dispersion medium).
  • the reinforcing film of the present invention can be formed by directly applying a forming material containing the aqueous resin emulsion to a polarizer and drying it.
  • the resin constituting the emulsion resin is not particularly limited, and examples thereof include acrylic resins, silicone resins, polyurethane resins, and fluorine resins. Among these, in the present invention, polyurethane resins and acrylic resins are preferable because they are excellent in optical transparency and weather resistance and heat resistance.
  • water-based resin emulsion examples include trade name: SE-2915E (acrylic emulsion containing UV absorber) manufactured by Taisei Fine Chemical Co., Ltd., trade names: Aron A-104 and Aron A-106 manufactured by Toagosei Co., Ltd. It is done.
  • SE-2915E acrylic emulsion containing UV absorber
  • the curable component forms a resin according to the type of the curable component.
  • the liquid material containing a curable component that can constitute the resin can be used in a solventless system as long as the curable component exhibits a liquid material.
  • the liquid material may be a solution in which the curable component is dissolved in a solvent.
  • the said curable component exhibits a liquid substance, it can be used as a solution.
  • the solvent can be appropriately selected according to the curable component to be used.
  • the liquid material containing the curable component is irradiated with active energy rays (ultraviolet rays). Curing by irradiation) or the like can be performed.
  • a curable forming material containing a curable component capable of constituting a resin will be described.
  • the curable component can be roughly classified into an active energy ray curable type such as an electron beam curable type, an ultraviolet ray curable type, and a visible light curable type, and a thermosetting type.
  • the ultraviolet curable type and the visible light curable type can be classified into a radical polymerization curable type and a cationic polymerization curable type.
  • an active energy ray having a wavelength range of 10 nm to less than 380 nm is expressed as ultraviolet light
  • an active energy ray having a wavelength range of 380 nm to 800 nm is expressed as visible light.
  • the radical polymerization curable component can be used as a thermosetting curable component.
  • the curable component examples include a radical polymerizable compound.
  • the radical polymerizable compound examples include compounds having a radical polymerizable functional group of a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group.
  • these curable components either a monofunctional radical polymerizable compound or a bifunctional or higher polyfunctional radical polymerizable compound can be used.
  • these radically polymerizable compounds can be used individually by 1 type or in combination of 2 or more types.
  • compounds having a (meth) acryloyl group are suitable.
  • (meth) acryloyl means an acryloyl group and / or methacryloyl group, and “(meth)” has the same meaning hereinafter.
  • Examples of the monofunctional radical polymerizable compound include (meth) acrylamide derivatives having a (meth) acrylamide group.
  • the (meth) acrylamide derivative is preferable in terms of ensuring adhesion with the polarizer and having a high polymerization rate and excellent productivity.
  • (meth) acrylamide derivatives include, for example, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N N-alkyl group-containing (meth) acrylamide derivatives such as butyl (meth) acrylamide and N-hexyl (meth) acrylamide; N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N— N-hydroxyalkyl group-containing (meth) acrylamide derivatives such as propane (meth) acrylamide; N-aminoalkyl group-containing (meth) acrylamide derivatives such as aminomethyl (meth) acrylamide and aminoethyl (meth) acrylamide; N-methoxymethyl N-alkoxy group-containing (meth) acrylamide derivatives such as
  • heterocyclic-containing (meth) acrylamide derivative in which the nitrogen atom of the (meth) acrylamide group forms a heterocyclic ring examples include, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine. Etc.
  • an N-hydroxyalkyl group-containing (meth) acrylamide derivative is preferable from the viewpoint of adhesion to a polarizer, and N-hydroxyethyl (meth) acrylamide is particularly preferable.
  • examples of the monofunctional radical polymerizable compound include various (meth) acrylic acid derivatives having a (meth) acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-
  • Examples of the (meth) acrylic acid derivative include cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and cyclopentyl (meth) acrylate; Aralkyl (meth) acrylates such as benzyl (meth) acrylate; 2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclo Polycyclic (meth) acrylates such as pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like; 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (
  • Examples of the (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4- Hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, etc.
  • hydroxyl groups such as [4- (hydroxymethyl) cyclohexyl] methyl acrylate, cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, etc.
  • Meth) acrylate Epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl ether; 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) ) Halogen-containing (meth) acrylates such as acrylate, heptadecafluorodecyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate; Alkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate; 3-Oxetanylmethyl (meth) acrylate
  • examples of the monofunctional radically polymerizable compound include carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • Examples of the monofunctional radical polymerizable compound include lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone; vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, Examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole and vinyl morpholine.
  • lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl- ⁇ -caprolactam, and methylvinylpyrrolidone
  • vinylpyridine vinylpiperidone
  • vinylpyrimidine vinylpiperazine
  • vinylpyrazine examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole and vinyl morpholine.
  • a radically polymerizable compound having an active methylene group can be used as the monofunctional radically polymerizable compound.
  • the radical polymerizable compound having an active methylene group is a compound having an active methylene group having an active double bond group such as a (meth) acryl group at the terminal or in the molecule.
  • the active methylene group include an acetoacetyl group, an alkoxymalonyl group, and a cyanoacetyl group.
  • the active methylene group is preferably an acetoacetyl group.
  • radical polymerizable compound having an active methylene group examples include 2-acetoacetoxyethyl (meth) acrylate, 2-acetoacetoxypropyl (meth) acrylate, 2-acetoacetoxy-1-methylethyl (meth) acrylate, and the like.
  • Examples include acrylamide, N- (4-acetoacetoxymethylbenzyl) acrylamide, and N- (2-acetoacetylaminoethyl) acrylamide.
  • the radical polymerizable compound having an active methylene group is preferably acetoacetoxyalkyl (meth) acrylate.
  • Examples of the bifunctional or higher polyfunctional radical polymerizable compound include tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 -Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) ) Acrylate, bisphenol A propylene oxide adduct di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) Acryte, cyclic trimethylol
  • Aronix M-220, M-306 manufactured by Toagosei Co., Ltd.
  • light acrylate 1,9ND-A manufactured by Kyoeisha Chemical Co., Ltd.
  • light acrylate DGE-4A manufactured by Kyoeisha Chemical Co., Ltd.
  • light acrylate DCP- A manufactured by Kyoeisha Chemical Co., Ltd.
  • SR-531 manufactured by Sartomer
  • CD-536 manufactured by Sartomer
  • various epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, various (meth) acrylate monomers, and the like are included as necessary.
  • the radical polymerizable compound is preferably used in combination with a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound from the viewpoint of achieving both adhesion to the polarizer and optical durability.
  • the radical polymerization curable forming material can be used as an active energy ray curable forming material or a thermosetting forming material.
  • the active energy ray curable forming material does not need to contain a photopolymerization initiator, but when using ultraviolet rays or visible light for the active energy ray, It preferably contains a photopolymerization initiator.
  • the curable component when used as a thermosetting component, the forming material preferably contains a thermal polymerization initiator.
  • the photopolymerization initiator in the case of using the radical polymerizable compound is appropriately selected depending on the active energy ray.
  • a photopolymerization initiator for ultraviolet light or visible light cleavage is used.
  • photopolymerization initiator examples include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone; 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2 -Propyl) ketone, aromatic ketone compounds such as ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, ⁇ -hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinopropane-1; benzoin methyl ether; Benzoin ethyl ether, benzoin Benzoin ether compounds such as isopropyl ether, benzoin butyl ether and ani
  • the blending amount of the photopolymerization initiator is 20 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound).
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and further preferably 0.1 to 5 parts by weight.
  • a photopolymerization initiator that is particularly sensitive to light of 380 nm or more.
  • a photopolymerization initiator that is highly sensitive to light of 380 nm or more will be described later.
  • the compound represented by following General formula (1) (Wherein R 1 and R 2 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 1 and R 2 may be the same or different), respectively, or a general formula ( It is preferable to use together the compound represented by 1) and a photopolymerization initiator that is highly sensitive to light of 380 nm or more, which will be described later.
  • the adhesion is excellent as compared with the case where a photopolymerization initiator having high sensitivity to light of 380 nm or more is used alone.
  • diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable.
  • the composition ratio of the compound represented by the general formula (1) in the forming material is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable component, and preferably 0.5 to 4 parts. More preferred are parts by weight, and even more preferred is 0.9 to 3 parts by weight.
  • polymerization initiators include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, etc. Among them, ethyl 4-dimethylaminobenzoate is particularly preferable.
  • a polymerization initiation assistant When a polymerization initiation assistant is used, its addition amount is usually 0 to 5 parts by weight, preferably 0 to 4 parts by weight, most preferably 0 to 3 parts by weight, based on 100 parts by weight of the total amount of the curable component. is there.
  • a known photopolymerization initiator can be used in combination as necessary.
  • the photopolymerization initiator it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more.
  • a photopolymerization initiator in addition to the photopolymerization initiator of the general formula (1), a compound represented by the following general formula (2); Wherein R 3 , R 4 and R 5 represent —H, —CH 3 , —CH 2 CH 3 , —iPr or Cl, and R 3 , R 4 and R 5 may be the same or different. It is preferable to use it.
  • the compound represented by the general formula (2) 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (trade name: IRGACURE907 manufacturer: BASF) which is also a commercial product is suitable. Can be used.
  • 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (trade name: IRGACURE369 manufacturer: BASF)
  • 2- (dimethylamino) -2-[(4-methylphenyl) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: IRGACURE379 manufacturer: BASF) is preferred because of its high sensitivity.
  • a radical polymerizable compound having an active methylene group when used as the radical polymerizable compound, it is preferably used in combination with a radical polymerization initiator having a hydrogen abstraction function.
  • radical polymerization initiator having a hydrogen abstracting action examples include thioxanthone radical polymerization initiators and benzophenone radical polymerization initiators.
  • the radical polymerization initiator is preferably a thioxanthone radical polymerization initiator.
  • examples of the thioxanthone radical polymerization initiator include compounds represented by the above general formula (1).
  • Specific examples of the compound represented by the general formula (1) include thioxanthone, dimethylthioxanthone, diethylthioxanthone, isopropylthioxanthone, and chlorothioxanthone.
  • diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable.
  • the radical polymerizable compound having an active methylene group and a radical polymerization initiator having a hydrogen abstraction function when the total amount of the curable component is 100% by weight, It is preferable to contain 1 to 50% by weight of the radical polymerizable compound having an active methylene group and 0.1 to 10 parts by weight of the radical polymerization initiator with respect to 100 parts by weight of the total amount of the curable component.
  • thermal polymerization initiator those in which polymerization does not start by thermal cleavage when the reinforcing film is formed are preferable.
  • thermal polymerization initiator those having a 10-hour half-life temperature of 65 ° C. or higher, more preferably 75 to 90 ° C. are preferable.
  • the half-life is an index representing the decomposition rate of the polymerization initiator and refers to the time until the remaining amount of the polymerization initiator is halved.
  • the decomposition temperature for obtaining a half-life at an arbitrary time and the half-life time at an arbitrary temperature are described in the manufacturer catalog, for example, “Organic peroxide catalog 9th edition by Nippon Oil & Fats Co., Ltd.” (May 2003) ".
  • thermal polymerization initiator examples include lauroyl peroxide (10 hour half-life temperature: 64 ° C.), benzoyl peroxide (10 hour half-life temperature: 73 ° C.), 1,1-bis (t-butylperoxy) -3.
  • thermal polymerization initiator examples include 2,2′-azobisisobutyronitrile (10 hour half-life temperature: 67 ° C.), 2,2′-azobis (2-methylbutyronitrile) (10 hours). And azo compounds such as 1,1-azobis-cyclohexane-1-carbonitrile (10 hour half-life temperature: 87 ° C.).
  • the blending amount of the thermal polymerization initiator is 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound).
  • the blending amount of the thermal polymerization initiator is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 3 parts by weight.
  • Examples of the curable component of the cationic polymerization curable forming material include compounds having an epoxy group or an oxetanyl group.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used.
  • a preferable epoxy compound a compound having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compound), or at least two epoxy groups in the molecule, at least one of them. Examples thereof include a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
  • the cationic polymerization curable forming material contains the epoxy compound and the oxetane compound described above as the curable component, and both of these are cured by cationic polymerization, and therefore, a photocationic polymerization initiator is blended therein.
  • This cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and starts a polymerization reaction of an epoxy group or an oxetanyl group.
  • the curable forming material according to the present invention preferably contains the following components.
  • the active energy ray-curable forming material according to the present invention can contain an acrylic oligomer obtained by polymerizing a (meth) acrylic monomer, in addition to the curable component related to the radical polymerizable compound.
  • an acrylic oligomer in the active energy ray-curable forming material curing shrinkage when irradiating and curing the active energy ray to the reinforcing film is reduced, and the interfacial stress between the reinforcing film and the polarizer is reduced. can do.
  • the content of the acrylic oligomer is preferably 20 parts by weight or less and more preferably 15 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component.
  • the acrylic oligomer is preferably contained in an amount of 3 parts by weight or more, more preferably 5 parts by weight or more, based on 100 parts by weight of the total amount of the curable component.
  • the active energy ray-curable forming material preferably has a low viscosity in consideration of workability and uniformity during coating, and thus an acrylic oligomer obtained by polymerizing a (meth) acrylic monomer also has a low viscosity. It is preferable.
  • the acrylic oligomer having a low viscosity and capable of preventing curing shrinkage of the reinforcing film preferably has a weight average molecular weight (Mw) of 15000 or less, more preferably 10,000 or less, and particularly preferably 5000 or less. .
  • the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more, and preferably 1500 or more. Particularly preferred.
  • the (meth) acrylic monomer constituting the acrylic oligomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl- 2-nitropropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, S-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (Meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (
  • acrylic oligomer examples include “ARUFON” manufactured by Toagosei Co., Ltd., “Act Flow” manufactured by Soken Chemical Co., Ltd., “JONCRYL” manufactured by BASF Japan.
  • the active energy ray-curable forming material may contain a photoacid generator.
  • the active energy ray-curable forming material contains a photoacid generator, the water resistance and durability of the reinforcing film can be dramatically improved as compared with a case where no photoacid generator is contained.
  • the photoacid generator can be represented by the following general formula (3).
  • onium salts constituting the photoacid generator include PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SbCl 6 ⁇ , BiCl 5 ⁇ , SnCl 6 ⁇ , ClO 4 ⁇ , dithiocarbamate anion, SCN ⁇ . It is an onium salt comprising an anion selected from more.
  • the content of the photoacid generator is 10 parts by weight or less, preferably 0.01 to 10 parts by weight, and preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable component. More preferred is 0.1 to 3 parts by weight.
  • the formation of the reinforcing film by the curable forming material is performed by coating the curable forming material on the surface of the polarizer and then curing.
  • the polarizer may be subjected to a surface modification treatment before coating the curable forming material.
  • Specific examples of the treatment include corona treatment, plasma treatment, and saponification treatment.
  • the coating method of the curable forming material is appropriately selected depending on the viscosity of the curable forming material and the target thickness.
  • coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like.
  • a method such as a dapping method can be appropriately used.
  • the curable forming material is used as an active energy ray curable forming material or a thermosetting forming material.
  • the active energy ray curable forming material can be used in an electron beam curable type, an ultraviolet curable type, or a visible light curable type.
  • active energy ray curing type In the active energy ray curable forming material, after applying the active energy ray curable forming material to the polarizer, the active energy ray (electron beam, ultraviolet ray, visible light, etc.) is irradiated, and the active energy ray curable forming material is applied. Curing to form a reinforcing film.
  • the irradiation direction of active energy rays can be irradiated from any appropriate direction. Preferably, irradiation is performed from the reinforcing film side.
  • the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the deepest part of the reinforcing film and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetrating force through the sample is too strong and damages the polarizer. There is a fear.
  • the irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy.
  • the adhesive is insufficiently cured, and when it exceeds 100 kGy, the polarizer is damaged, resulting in a decrease in mechanical strength and yellowing, and the predetermined optical characteristics cannot be obtained.
  • the electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition where a little oxygen is introduced.
  • an active energy ray containing visible light having a wavelength range of 380 nm to 450 nm particularly an active energy ray having the largest irradiation amount of visible light having a wavelength range of 380 nm to 450 nm.
  • the active energy ray a gallium-filled metal halide lamp and an LED light source that emits light in the wavelength range of 380 to 440 nm are preferable.
  • low pressure mercury lamp medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight
  • a light source including visible light can be used, and ultraviolet light having a wavelength shorter than 380 nm can be blocked using a band pass filter.
  • thermosetting type forming material after applying to a polarizer, by heating, polymerization is started by a thermal polymerization initiator to form a cured product layer (reinforcing film).
  • the heating temperature is set according to the thermal polymerization initiator, but is about 60 to 200 ° C., preferably 80 to 150 ° C.
  • a material for forming the reinforcing film for example, a cyanoacrylate-based forming material, an epoxy-based forming material, or an isocyanate-based forming material can be used.
  • Examples of the cyanoacrylate-based forming material include alkyl- ⁇ -cyanoacrylates such as methyl- ⁇ -cyanoacrylate, ethyl- ⁇ -cyanoacrylate, butyl- ⁇ -cyanoacrylate, octyl- ⁇ -cyanoacrylate, and cyclohexyl- ⁇ -. And cyanoacrylate and methoxy- ⁇ -cyanoacrylate.
  • alkyl- ⁇ -cyanoacrylates such as methyl- ⁇ -cyanoacrylate, ethyl- ⁇ -cyanoacrylate, butyl- ⁇ -cyanoacrylate, octyl- ⁇ -cyanoacrylate, and cyclohexyl- ⁇ -.
  • cyanoacrylate and methoxy- ⁇ -cyanoacrylate methoxy- ⁇ -cyanoacrylate.
  • those used as a cyanoacrylate-based adhesive can be used as the cyanoacrylate-based adhesive can be used.
  • the epoxy-based forming material may be used alone as an epoxy resin or may contain an epoxy curing agent. When the epoxy resin is used alone, it is cured by adding a photopolymerization initiator and irradiating active energy rays. When an epoxy curing agent is added as an epoxy-based forming material, for example, those used as an epoxy-based adhesive can be used.
  • the usage form of the epoxy-based forming material can be used as a one-component type containing an epoxy resin and its curing agent, but it is used as a two-component type in which a curing agent is blended with the epoxy resin.
  • Epoxy-based forming materials are usually used as solutions.
  • the solution may be a solvent system or an aqueous system such as an emulsion, a colloidal dispersion, or an aqueous solution.
  • the epoxy resin examples include various compounds containing two or more epoxy groups in the molecule.
  • the epoxy resin examples include various compounds containing two or more epoxy groups in the molecule.
  • bisphenol type epoxy resin aliphatic type epoxy resin, aromatic type epoxy resin, halogenated bisphenol type epoxy resin, biphenyl And epoxy resin.
  • an epoxy resin can be suitably determined according to an epoxy equivalent and the number of functional groups, the epoxy equivalent of 500 or less is used suitably from a durable viewpoint.
  • the curing agent for the epoxy resin is not particularly limited, and various types such as phenol resin type, acid anhydride type, carboxylic acid type, and polyamine type can be used.
  • phenol resin-based curing agent for example, phenol novolak resin, bisphenol novolak resin, xylylene phenol resin, cresol novolak resin, or the like is used.
  • acid anhydride-based curing agents include: maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, succinic anhydride, and the like.
  • carboxylic acid-based curing agents include carboxylic acids such as pyromellitic acid and trimellitic acid.
  • Examples thereof include block carboxylic acids added with acids and vinyl ether.
  • an epoxy-type two-component formation material what consists of two liquids of an epoxy resin and a polythiol, what consists of two liquids of an epoxy resin and polyamide, etc. can be used, for example.
  • the blending amount of the curing agent varies depending on the equivalent to the epoxy resin, but is preferably 30 to 70 parts by weight, more preferably 40 to 60 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • curing accelerators can be used for the epoxy-based forming material.
  • the curing accelerator include various imidazole compounds and derivatives thereof, dicyandiamide, and the like.
  • Examples of the isocyanate-based forming material include those used as a crosslinking agent in the formation of the pressure-sensitive adhesive layer.
  • As the isocyanate-based crosslinking agent a compound having at least two isocyanate groups can be used.
  • the polyisocyanate compound can be used as an isocyanate-based forming material.
  • Examples include those reacted with polyhydric alcohols and polyhydric amines.
  • isocyanate-based crosslinking agent those having three or more isocyanate groups such as isocyanuric acid tris (6-inocyanate hexyl) are preferable.
  • isocyanate type formation material what is used as an isocyanate type adhesive agent is mention
  • the isocyanate-based forming materials in the present invention, it is preferable to use those having a rigid structure in which a cyclic structure (benzene ring, cyanurate ring, isocyanurate ring, etc.) accounts for a large proportion in the structure.
  • a cyclic structure benzene ring, cyanurate ring, isocyanurate ring, etc.
  • the isocyanate-based forming material for example, trimethylolpropane-tri-tolylene isocyanate, tris (hexamethylene isocyanate) isocyanurate and the like are preferably used.
  • the said isocyanate type crosslinking agent can also use what provided the protective group to the terminal isocyanate group.
  • Protecting groups include oximes and lactams. In the case where the isocyanate group is protected, the protecting group is dissociated from the isocyanate group by heating, and the isocyanate group reacts.
  • a reaction catalyst can be used to increase the reactivity of the isocyanate group.
  • the reaction catalyst is not particularly limited, but a tin-based catalyst or an amine-based catalyst is suitable.
  • the reaction catalyst can use 1 type (s) or 2 or more types.
  • the amount of the reaction catalyst used is usually 5 parts by weight or less with respect to 100 parts by weight of the isocyanate-based crosslinking agent. When the amount of the reaction catalyst is large, the crosslinking reaction rate increases and foaming of the forming material occurs. Even if the forming material after foaming is used, sufficient adhesion cannot be obtained.
  • a reaction catalyst it is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 4 parts by weight.
  • the tin-based catalyst both inorganic and organic catalysts can be used, but an organic catalyst is preferred.
  • the inorganic tin-based catalyst include stannous chloride and stannic chloride.
  • the organic tin-based catalyst is preferably one having at least one organic group such as an aliphatic group or alicyclic group having a skeleton such as a methyl group, an ethyl group, an ether group or an ester group. Examples include tetra-n-butyltin, tri-n-butyltin acetate, n-butyltin trichloride, trimethyltin hydroxide, dimethyltin dichloride, dibutyltin dilaurate, and the like.
  • the amine catalyst is not particularly limited. For example, those having at least one organic group such as an alicyclic group such as quinoclidine, amidine, and diazabicycloundecene are preferable.
  • examples of the amine catalyst include triethylamine.
  • reaction catalysts other than the above include cobalt naphthenate and benzyltrimethylammonium hydroxide.
  • the isocyanate-based forming material is usually used as a solution.
  • the solution may be a solvent system or an aqueous system such as an emulsion, a colloidal dispersion, or an aqueous solution.
  • the organic solvent is not particularly limited as long as the components constituting the forming material are uniformly dissolved. Examples of the organic solvent include toluene, methyl ethyl ketone, ethyl acetate and the like.
  • alcohols such as n-butyl alcohol and isopropyl alcohol and ketones such as acetone can be blended.
  • a dispersant is used, or an isocyanate-based crosslinking agent, a functional group having low reactivity with an isocyanate group such as a carboxylate, a sulfonate, or a quaternary ammonium salt, or an aqueous dispersion such as polyethylene glycol. It can carry out by introduce
  • the formation (curing) of the reinforcing film by the cyanoacrylate-based forming material, the epoxy-based forming material, or the isocyanate-based forming material can be appropriately selected depending on the type of the forming material, but is usually 30 to 100 ° C. It is carried out by drying at a temperature of preferably about 50 to 80 ° C. for about 0.5 to 15 minutes. In the case of a cyanoacrylate-based forming material, since the curing is fast, the reinforcing film can be formed in a time shorter than the above time.
  • polyurethane can be used as a material for forming the reinforcing film.
  • polyurethane it is preferable to use a reaction product of a high-molecular polyol compound and / or a low-molecular polyol and an isocyanate compound and an isocyanate compound.
  • the polyurethane can be further reacted with a low molecular polyamino compound and / or a polyol compound as a chain extender.
  • the polymer polyol compound preferably has a weight average molecular weight of 100 to 4000 and has two or more hydroxyl groups in one molecule, and polyether polyol, polyester polyol, polycarbonate polyol and the like are used.
  • the polymer polyol compound preferably has a weight average molecular weight of 500 to 4000, more preferably 600 to 3500, and even more preferably 1000 to 3000.
  • polyether polyols examples include aliphatic polyether polyols and aromatic polyether polyols. More specifically, for example, low molecular polyols such as dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol and hexamethylene glycol, and trihydric alcohols such as trimethylolpropane, glycerin and pentaerythritol, ethylene oxide , Polyether obtained by addition polymerization of propylene oxide, tetrahydrofuran, or the like is used. These may be used singly or in combination of two or more.
  • low molecular polyols such as dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol and hexamethylene glycol
  • trihydric alcohols such as trimethylolpropane, glycerin and pentaerythritol, ethylene oxide
  • polyester polyols examples include aliphatic polyester polyols and aromatic polyester polyols. More specifically, alcohols such as the above dihydric alcohols, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol and neopentyl glycol, and two bases such as adipic acid, azelaic acid and sebacic acid Polyester composed of a polycondensate with an acid is used. These may be used singly or in combination of two or more.
  • polydiene-based polyols such as polybutadiene, butadiene-acrylonitrile copolymer, polyisoprene having hydroxyl groups at both ends of the molecule, polybutadiene hydrogenated products, polyisoprene hydrogenated products having hydroxyl groups at both ends of the molecules, polyisoprene
  • polyolefin polyols such as isobutylene.
  • examples of the polyamino compound used as the chain extender include aliphatic polyamino compounds and aromatic polyamino compounds. More specifically, for example, ethylenediamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane (MOCA), diethyltoluenediamine (DETDA), 44′-bis- (sec-butyl) diphenylmethane, 2,4 -Tolylenediamine, 2,6-tolylenediamine, xylylenediamine, hexanediamine, isophoronediamine and the like. Of these, ethylenediamine and the like are preferable. These may be used singly or in combination of two or more.
  • MOCA 3,3′-dichloro-4,4′-diaminodiphenylmethane
  • DETDA diethyltoluenediamine
  • 44′-bis- (sec-butyl) diphenylmethane 2,4 -To
  • examples of the low molecular polyol and the polyol compound used as the chain extender include low molecular polyols exemplified in polyether polyol and polyester polyol.
  • the chain extender is preferably used in an amount of 0.1 to 10 parts by weight, more preferably 0.5 to 7 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the polymer polyol compound. More preferably, The use of a chain extender can sufficiently increase the molecular weight and improve the durability.
  • the isocyanate compound is a polyisocyanate (isocyanate compound) having two or more isocyanate groups, and the same as the isocyanate-based forming material can be used.
  • the isocyanate compound can also be used as a urethane prepolymer obtained by reacting the low-molecular polyol exemplified in the polyester polyol and the exemplified isocyanate compound in advance.
  • the formation (curing) of the reinforcing film with polyurethane may be usually performed by applying a liquid material (coating solution) of polyurethane prepared in advance to the polarizer, or contains the polymer polyol compound and the isocyanate compound. After applying the composition to the polarizer, a reinforcing film may be formed of polyurethane as a cured reaction product.
  • the reinforcing membrane can be formed usually by drying at about 30 to 100 ° C., preferably 50 to 80 ° C., for about 0.5 to 15 minutes.
  • an annealing treatment may be performed.
  • Annealing treatment promotes the reaction especially when isocyanate is not sufficiently reacted even after the initial curing in the isocyanate-based forming agent, polyurethane-based forming material, etc. (reactive group remains in the reinforcing film).
  • the annealing treatment can be performed in any atmosphere of a dry condition or a humidified condition.
  • the annealing temperature is about 30 to 100 ° C., preferably 50 to 80 ° C., similarly to the conditions for the initial curing. There is no particular limitation on the annealing time.
  • the weight average molecular weight of polyurethane is preferably 30,000 to 200,000, more preferably 40 to 150,000, and still more preferably 50,000 to 130,000.
  • the weight average molecular weight of the polymer polyol compound and polyurethane was measured under the following conditions of GPC (gel permeation chromatography).
  • Analyzing apparatus HLC-8120GPC manufactured by Tosoh Corporation. Column: manufactured by Tosoh Corporation, G7000HXL + GMHXL + GMHXL. Column size: 7.8 mm ⁇ ⁇ 30 cm each 90 cm in total. Column temperature: 40 ° C. Flow rate: 0.8 ml / min. Injection volume: 100 ⁇ l.
  • Eluent tetrahydrofuran.
  • Detector Suggested refractometer. Standard sample: polystyrene.
  • the reinforcing film has a functional group capable of forming a covalent bond with PVA such as an isocyanate group or an epoxy group, and has a carbon-carbon double bond such as a (meth) acryloyl group or a vinyl group.
  • a compound having a radical polymerizable functional group can be used. Examples of the compound include 2-isocyanatoethyl acrylate (manufactured by Showa Denko, product name Karenz AOI), 1,1- (bisacryloyloxymethyl) ethyl isocyanate (manufactured by Showa Denko, Karenz BEI), and the like. It is done.
  • a reaction product of a polymer containing a diisocyanate compound as a constituent and a hydroxyl group-containing hydroxyl group-containing (meth) acrylate, or the like can be used as the compound.
  • a reaction product of 2-hydroxyethyl acrylate and a polymer containing 1,6-diisocyanatohexane BASF, product name Ralomer LR9000.
  • the compound has a functional group such as an isocyanate group or an epoxy group, a reinforcing film can be formed by thermosetting in the same manner as the isocyanate-based forming agent, and further, an annealing treatment can be performed.
  • the said compound since the said compound has a radically polymerizable functional group, it can be used as an active energy ray hardening type or thermosetting type forming material concerning a radical polymerization hardening type forming material.
  • the compound can be used in combination with other radical polymerizable compounds.
  • the reinforcing film may be formed from a forming material that does not contain a curable component, for example, a forming material that contains the polyvinyl alcohol-based resin as a main component.
  • the polyvinyl alcohol resin forming the reinforcing film may be the same as or different from the polyvinyl alcohol resin contained in the polarizer as long as it is a “polyvinyl alcohol resin”.
  • polyvinyl alcohol resin examples include polyvinyl alcohol.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • polyvinyl alcohol-based resin examples include a saponified product of a copolymer of vinyl acetate and a monomer having copolymerizability.
  • the copolymerizable monomer is ethylene
  • an ethylene-vinyl alcohol copolymer is obtained.
  • the copolymerizable monomer include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof; ethylene, propylene, etc.
  • ⁇ -olefin (meth) allylsulfonic acid (soda), sulfonic acid soda (monoalkylmalate), disulfonic acid soda alkylmalate, N-methylolacrylamide, acrylamide alkylsulfonic acid alkali salt, N-vinylpyrrolidone, N- Examples include vinyl pyrrolidone derivatives.
  • These polyvinyl alcohol resins can be used alone or in combination of two or more.
  • Polyvinyl alcohol obtained by saponifying polyvinyl acetate is preferable from the viewpoint of satisfying moisture heat resistance and water resistance by controlling the heat of crystal fusion of the reinforcing film to 30 mj / mg or more.
  • the saponification degree of the polyvinyl alcohol-based resin can be, for example, 95% or more, but the heat of crystal fusion of the reinforcing film is controlled to 30 mj / mg or more to satisfy the heat and moisture resistance and water resistance. From the viewpoint, the degree of saponification is preferably 99.0% or more, and more preferably 99.7% or more.
  • the degree of saponification represents the proportion of units that are actually saponified to vinyl alcohol units among the units that can be converted to vinyl alcohol units by saponification, and the residue is a vinyl ester unit.
  • the degree of saponification can be determined according to JIS K 6726-1994.
  • the average degree of polymerization of the polyvinyl alcohol-based resin can be, for example, 500 or more, but the viewpoint of satisfying moisture heat resistance and water resistance by controlling the heat of crystal fusion of the reinforcing film to 30 mj / mg or more. Therefore, the average degree of polymerization is preferably 1000 or more, more preferably 1500 or more, and further preferably 2000 or more.
  • the average degree of polymerization of the polyvinyl alcohol resin is measured according to JIS-K6726.
  • a modified polyvinyl alcohol resin having a hydrophilic functional group in the side chain of the polyvinyl alcohol or a copolymer thereof can be used.
  • the hydrophilic functional group include an acetoacetyl group and a carbonyl group.
  • modified polyvinyl alcohol obtained by acetalization, urethanization, etherification, grafting, phosphoric esterification or the like of a polyvinyl alcohol resin can be used.
  • the forming material containing the polyvinyl alcohol-based resin as a main component can contain a curable component (crosslinking agent) and the like.
  • the proportion of the polyvinyl alcohol resin in the reinforcing film or the forming material (solid content) is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more.
  • the forming material does not contain a curable component (crosslinking agent) from the viewpoint of easily controlling the heat of crystal fusion of the reinforcing film to 30 mj / mg or more.
  • a compound having at least two functional groups having reactivity with the polyvinyl alcohol resin can be used.
  • alkylenediamine having two alkylene groups and two amino groups such as ethylenediamine, triethylenediamine, hexamethylenediamine; tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylolpropane tolylene diisocyanate adduct, triphenylmethane triisocyanate, methylene bis (4-Phenylmethane triisocyanate, isophorone diisocyanate and isocyanates such as ketoxime block product or phenol block product thereof; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin di or triglycidyl ether, 1,6-hexane Diol diglycidyl ether, trimethylolpropane triglycidyl ether, di Epoxies
  • amino-formaldehyde resins and water-soluble dihydrazine are preferred, and the amino-formaldehyde resin is preferably a compound having a methylol group, particularly methylol melamine, which is a compound having a methylol group.
  • hardenable component crosslinking agent
  • the ratio is 20 weight part or less, 10 weight part or less, 5 weight part with respect to 100 weight part of polyvinyl alcohol-type resin. It is preferable that:
  • the forming material is prepared as a solution in which the polyvinyl alcohol resin is dissolved in a solvent.
  • the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide N-methylpyrrolidone, various glycols, polyhydric alcohols such as alcohols, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Among these, it is preferable to use it as an aqueous solution using water as a solvent.
  • the concentration of the polyvinyl alcohol-based resin in the forming material is not particularly limited, but is 0.1 to 15% by weight, preferably 0.5%, in consideration of coating properties and storage stability. ⁇ 10% by weight.
  • a plasticizer examples include polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant examples include nonionic surfactants.
  • the reinforcing film can be formed by applying the forming material to a polarizer and drying it.
  • the application operation is not particularly limited, and any appropriate method can be adopted.
  • various means such as a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) can be employed.
  • a surface treatment layer can be provided on one side or both sides of the flexible polarizing film of the present invention.
  • the surface treatment layer include a hard coat layer, an antiglare treatment layer, an antireflection layer, and an antisticking layer.
  • the surface treatment layer is preferably a hard coat layer.
  • a material for forming the hard coat layer for example, a thermoplastic resin or a material that is cured by heat or radiation can be used.
  • the material include radiation curable resins such as thermosetting resins, ultraviolet curable resins, and electron beam curable resins.
  • an ultraviolet curable resin that can efficiently form a cured resin layer by a simple processing operation by a curing treatment by ultraviolet irradiation is preferable.
  • these curable resins include polyesters, acrylics, urethanes, amides, silicones, epoxies, melamines, and the like, and these monomers, oligomers, polymers, and the like are included.
  • an antiglare treatment layer or an antireflection layer for the purpose of improving visibility can be provided.
  • An antiglare treatment layer or an antireflection layer can be provided on the hard coat layer.
  • the constituent material of the antiglare layer is not particularly limited, and for example, a radiation curable resin, a thermosetting resin, a thermoplastic resin, or the like can be used.
  • As the antireflection layer titanium oxide, zirconium oxide, silicon oxide, magnesium fluoride, or the like is used.
  • the antireflection layer can be provided with a plurality of layers.
  • examples of the surface treatment layer include a sticking prevention layer.
  • the thickness of the surface treatment layer can be appropriately set depending on the type of the surface treatment layer, but is generally preferably 0.1 to 100 ⁇ m.
  • the thickness of the hard coat layer is preferably 0.5 to 20 ⁇ m.
  • An adhesive layer can be provided on one side or both sides of the flexible polarizing film of the present invention.
  • An appropriate pressure-sensitive adhesive can be used for forming the pressure-sensitive adhesive layer, and the type thereof is not particularly limited.
  • Adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinyl pyrrolidone adhesives, polyacrylamide adhesives, Examples thereof include cellulose-based pressure-sensitive adhesives.
  • pressure-sensitive adhesives those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive pressure characteristics, and excellent weather resistance and heat resistance are preferably used.
  • An acrylic pressure-sensitive adhesive is preferably used as one exhibiting such characteristics.
  • the pressure-sensitive adhesive layer for example, a method in which the pressure-sensitive adhesive is applied to a peeled separator, the polymerization solvent is dried and removed to form a pressure-sensitive adhesive layer, and then transferred to a flexible polarizing film, or flexible
  • the pressure-sensitive adhesive is produced by a method of applying the pressure-sensitive adhesive to the polarizing film, drying and removing the polymerization solvent, and forming a pressure-sensitive adhesive layer on the polarizer.
  • one or more solvents other than the polymerization solvent may be added as appropriate.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 100 ⁇ m.
  • the thickness is preferably 2 to 50 ⁇ m, more preferably 2 to 40 ⁇ m, and still more preferably 5 to 35 ⁇ m.
  • the pressure-sensitive adhesive layer When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected with a peeled sheet (separator) until practical use.
  • the flexible polarizing film of the present invention can be provided with a surface protective film.
  • the surface protective film usually has a base film and an adhesive layer, and protects the flexible polarizing film via the adhesive layer.
  • a film material having isotropic property or close to isotropic property is selected from the viewpoints of inspection property and manageability.
  • film materials include polyester resins such as polyethylene terephthalate film, cellulose resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, and the like. Examples thereof include transparent polymers such as resins. Of these, polyester resins are preferred.
  • the base film can be used as a laminate of one kind or two or more kinds of film materials, and a stretched product of the film can also be used.
  • the thickness of the base film is generally 500 ⁇ m or less, preferably 10 to 200 ⁇ m.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer of the surface protective film includes a (meth) acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or a rubber-based pressure-sensitive adhesive. Can be appropriately selected and used. From the viewpoints of transparency, weather resistance, heat resistance and the like, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferable.
  • the thickness (dry film thickness) of the pressure-sensitive adhesive layer is determined according to the required adhesive force. Usually, it is about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the surface protective film can be provided with a release treatment layer on the surface opposite to the surface on which the pressure-sensitive adhesive layer is provided on the base film, using a low adhesion material such as silicone treatment, long-chain alkyl treatment, or fluorine treatment. .
  • the flexible polarizing film of the present invention is intended to expand various applications that cannot be applied to conventional polarizers and polarizing films as an alternative to polarizers or polarizing films (those provided with a transparent protective film on the polarizer). For example, it can be used as an optical film laminated with another optical layer.
  • the optical layer is not particularly limited.
  • a protective film used for protecting the polarizer.
  • One optical layer or two or more optical layers that may be used for forming an image display device such as a liquid crystal display device or an organic EL display device can be used.
  • the optical layer and the flexible polarizing film can be laminated via an intervening layer such as an adhesive layer, a pressure-sensitive adhesive layer, or an undercoat layer (primer layer). At this time, it is desirable that the both are laminated without an air gap by an intervening layer.
  • an intervening layer such as an adhesive layer, a pressure-sensitive adhesive layer, or an undercoat layer (primer layer).
  • the flexible polarizing film of the present invention or an optical film using the same can be preferably used for forming various image display devices such as liquid crystal display devices and organic EL display devices.
  • the liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a flexible polarizing film of the present invention or an optical film using the same, and an illumination system as required, and incorporating a drive circuit.
  • the flexible polarizing film of the present invention is used, and the conventional method can be applied.
  • As the liquid crystal cell an arbitrary type such as an IPS type or a VA type can be used, but is particularly suitable for the IPS type.
  • ⁇ Preparation of polarizer A0> One side of an amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 ⁇ m) having a water absorption of 0.75% and Tg of 75 ° C. is subjected to corona treatment.
  • Alcohol polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.6%, saponification degree 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • aqueous solution containing 9: 1 ratio of the trade name “Gosefimer Z200”) was applied and dried at 25 ° C. to form a PVA-based resin layer having a thickness of 11 ⁇ m, thereby preparing a laminate.
  • the obtained laminate was uniaxially stretched in the longitudinal direction (longitudinal direction) 2.0 times between rolls having different peripheral speeds in an oven at 120 ° C. (air-assisted stretching process).
  • the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water.
  • Crosslinking treatment Thereafter, the laminate was immersed in a boric acid aqueous solution (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 70 ° C.
  • uniaxial stretching was performed between rolls having different peripheral speeds in the longitudinal direction (longitudinal direction) so that the total stretching ratio was 5.5 times (in-water stretching treatment).
  • the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. (cleaning treatment).
  • a cleaning bath an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water
  • cleaning treatment a liquid temperature of 30 ° C.
  • Polarizers A1 and A2 were produced in the same manner as in the production of the polarizer A0 except that the production conditions for the polarizer A0 were changed as shown in Table 1.
  • Table 1 shows the thickness, optical characteristics (single transmittance, polarization degree), and boric acid concentration of the polarizers A0 to A2.
  • ⁇ Preparation of Polarizer B1 (12 ⁇ m Thick Polarizer)>
  • a polyvinyl alcohol film having an average polymerization degree of 2400 and a saponification degree of 99.9 mol% and a thickness of 30 ⁇ m was immersed in warm water at 30 ° C. for 60 seconds to swell.
  • the thickness of the obtained polarizer B1 was 12 ⁇ m.
  • the optical properties of the obtained polarizer B1 were a transmittance of 42.8% and a polarization degree of 99.99%.
  • Polyurethane material 50 parts of urethane prepolymer consisting of tolylene diisocyanate and trimethylolpropane (manufactured by Tosoh Corporation, Coronate L), 50 parts of polycarbonate polyol (manufactured by Sumika Bayer Urethane Co., Ltd., Desmophen C3100XP), dioctyltin dilaurate system 0.1 parts of a catalyst (manufactured by Tokyo Fine Chemical Co., Ltd., ENBOLiser OL-1) was added, and methyl isobutyl ketone was used as a solvent to obtain a coating solution adjusted to a solid content concentration of 35%.
  • urethane prepolymer consisting of tolylene diisocyanate and trimethylolpropane
  • polycarbonate polyol manufactured by Sumika Bayer Urethane Co., Ltd., Desmophen C3100XP
  • dioctyltin dilaurate system
  • UV curable material Reaction product of 2-hydroxyethyl acrylate and a polymer containing 1,6-diisocyanatohexane as a component in 50 parts of urethane acrylate oligomer (manufactured by Nippon Synthetic Chemical Co., Ltd., purple light UV1700TL) BASF, product name Laromar LR9000 (50 parts) and photoinitiator (BASF, IRGACURE907) (3 parts) were added, and methyl isobutyl ketone was used as a solvent to obtain a coating solution adjusted to a solid content concentration of 35%. .
  • HEAA N-hydroxyethylacrylamide
  • ACMO acryloylmorpholine
  • UVGACURE 819 photoinitiator
  • Example 1 Preparation of flexible polarizing film
  • the polyurethane-based material (1) of the reinforcing film is cured on the polarizer (first surface) of the polarizer A0 (optical film laminate including a polarizer having a thickness of 5 ⁇ m) obtained above.
  • initial curing is performed under conditions of 60 ° C. and 10 minutes, and then a first reinforcing film is formed by performing annealing treatment under conditions of 60 ° C. and 12 hours. did.
  • the amorphous PET substrate of the optical film laminate was peeled off. Thereafter, the polyurethane-based material (1) of the reinforcing film was applied to a polarizer (second surface as a peeling surface) using a wire bar coater so that the thickness after curing was 5 ⁇ m, and then 60 ° C.
  • the second reinforcing film was formed by initial curing under conditions of 10 minutes, and then annealing treatment at 60 ° C. for 12 hours. Then, the flexible polarizing film which has a reinforcement film on both surfaces of a polarizer was obtained by removing the surface protection film bonded on the 1st reinforcement film.
  • Example 1 a flexible polarizing film having a reinforcing film on both sides of the polarizer was prepared in the same manner as in Example 1 except that the type of polarizer and the thickness of the reinforcing film were changed as shown in Table 2. .
  • Example 5 Preparation of flexible polarizing film
  • the UV curable material (2) of the reinforcing film is applied to the polarizer (first surface) of the polarizer A0 (optical film laminate including a polarizer having a thickness of 5 ⁇ m) obtained above.
  • the coating was heated at 60 ° C. for 1 minute.
  • a first reinforcing film was formed by irradiating the heated coating film with ultraviolet light having an integrated light quantity of 300 mJ / cm 2 with a high-pressure mercury lamp.
  • the amorphous PET substrate of the optical film laminate was peeled off.
  • the UV curable material (2) of the reinforcing film was applied to a polarizer (second surface as a peeling surface) using a wire bar coater so that the thickness after curing was 5 ⁇ m, and then 60 Heated at 0 ° C. for 1 minute.
  • a second reinforcing film was formed by irradiating the heated coating film with ultraviolet light having an integrated light quantity of 300 mJ / cm 2 using a high-pressure mercury lamp.
  • the flexible polarizing film which has a reinforcement film on both surfaces of a polarizer was obtained by removing the surface protection film bonded on the 1st reinforcement film.
  • Example 6 Preparation of flexible polarizing film
  • the aqueous resin emulsion material (3) of the reinforcing film is used with a wire bar coater. After coating so that the thickness after curing was 5 ⁇ m, the coating was cured under the conditions of 80 ° C. for 5 minutes to form a first reinforcing film.
  • a surface protective film manufactured by Nitto Denko, RP301
  • the amorphous PET substrate of the optical film laminate was peeled off.
  • Example 7 In Example 1, a flexible polarizing film having a second reinforcing film only on one side of the polarizer was produced in the same manner as in Example 1 except that the first reinforcing film was not provided.
  • Example 8 In Example 1, a flexible polarizing film having the first reinforcing film only on one surface of the polarizer was produced in the same manner as in Example 1 except that the second reinforcing film was not provided.
  • Comparative Examples 1 to 3 A polarizing film having a reinforcing film having reinforcing films on both sides of the polarizer in the same manner as in Example 1 except that the type of polarizer and the thickness of the reinforcing film were changed as shown in Table 2 in Example 1. Was made.
  • Comparative Example 4 (Production of a piece protective polarizing film) On the polarizer (first surface) of the polarizer A0 (optical film laminate including a polarizer having a thickness of 5 ⁇ m) obtained above, the thickness of the adhesive layer after curing the ultraviolet curable adhesive becomes 1 ⁇ m. Then, the protective film (acrylic) was applied, and ultraviolet rays were applied as active energy rays to cure the adhesive. Ultraviolet irradiation is performed using a gallium-encapsulated metal halide lamp, an irradiation device: Fusion UV Systems, Inc.
  • Light HAMMER 10, Inc. bulb: V bulb, peak illuminance: 1600 mW / cm 2 , integrated irradiation amount 1000 / mJ / cm 2 (wavelength 380 to 440 nm) ), And the illuminance of ultraviolet rays was measured using a Sola-Check system manufactured by Solatell. Subsequently, the amorphous PET base material of the optical film laminate was peeled off to obtain a piece protective polarizing film.
  • ⁇ Single transmittance T and polarization degree P of polarizer> The single transmittance T and the polarization degree P of the obtained polarizing film were measured using a spectral transmittance measuring device with an integrating sphere (Dot-3c of Murakami Color Research Laboratory).
  • the degree of polarization P is the transmittance when two identical polarizing films are overlapped so that their transmission axes are parallel (parallel transmittance: Tp), and overlapped so that their transmission axes are orthogonal to each other. It is calculated
  • Polarization degree P (%) ⁇ (Tp ⁇ Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • Each transmittance is indicated by a Y value obtained by correcting visibility with a two-degree field of view (C light source) of JIS Z8701 with 100% of the completely polarized light obtained through the Granteller prism.
  • TI900 TriboIndenter manufactured by Hystron was used for the measurement of compression modulus.
  • the obtained polarizer with a reinforcing film (polarizing film) was cut into a size of 10 mm ⁇ 10 mm, fixed to a support equipped with a TriboIndenter, and the compression modulus was measured by a nanoindentation method. At that time, the position was adjusted so that the used indenter pushed in the vicinity of the center of the transparent layer.
  • the measurement conditions are shown below.
  • Working indenter Berkovich (triangular pyramid type) Measuring method: Single indentation measurement Measuring temperature: 23 ° C Indentation depth setting: 100 nm
  • ⁇ Torsion test> It was performed using a planar body no-load twist tester (product name: main body TCDM111LH and jig: planar body no-load twist test jig) manufactured by Yuasa System Equipment Co., Ltd. After sandwiching and fixing both short sides of the rectangular object 1 (sample) of 100 mm (absorption axis direction) ⁇ 150 mm (transmission axis direction) with the twisting clips 11 and 12 of the tester, one short side is the clip 12. The clip 11 on the other short side was twisted under the following conditions while being fixed at. The state of twisting is shown in FIG.
  • Twist speed 10rpm Twist angle: 45 degrees Twist number: 100 times
  • No cracking or light leakage occurred. And there were no creases left.
  • No cracking or light leakage occurred. However, fold marks remained.
  • X Cracks and light leakage occurred. And there were creases left.
  • the bending by the expansion and contraction was performed in the same manner as described above so that the other one side (second surface) of the rectangular object was inwardly U-shaped (bending on the second surface side in the transmission axis direction). ). Further, the bending by the expansion and contraction is performed so that the first surface and the second surface are inwardly U-shaped with respect to a rectangular object (sample) of 50 mm (transmission axis direction) ⁇ 100 mm (absorption axis direction). The same was done (bending on the first surface side and the second surface side in the absorption axis direction).
  • Criteria for cracks, creases and light leakage in the twist test and U-shaped stretch test are as follows. “Crack” means that cracks or cracks have occurred through the sample (a flexible polarizing film, a polarizing film having a reinforcing film, or all or part of a layer constituting a single protective polarizing film). Show. “Fold marks” are applied to the sample (flexible polarizing film, polarizing film having a reinforcing film, or all or part of a layer constituting a single protective polarizing film) even after the load is removed by bending or local load. It shows that the remaining visible trace has occurred. “Light loss” indicates that the polarizer itself is torn or cracked.
  • Confirmation of light leakage is performed by using a sample after testing (flexible polarizing film, polarizing film having a reinforcing film, or all layers constituting a piece of protective polarizing film) and other normal polarizing films on both sides of the glass in a crossed Nicol state. It was carried out by pasting light such as a backlight.
  • a rectangular object 1 (sample) of 200 mm (absorption axis direction) ⁇ 300 mm (transmission axis direction) was placed on a horizontal base 31.
  • the rectangular object 1 was folded in three in the transmission axis direction (major axis direction), and then a load 32 of 100 g was applied so as to apply a load to the entire uppermost surface, and left for 5 minutes. The state of bending is shown in FIG. Thereafter, the load 32 was removed.
  • the same operation (however, the sample was folded in three in the absorption axis direction (major axis direction)) was performed on a rectangular object (sample) of 200 mm (transmission axis direction) ⁇ 300 mm (absorption axis direction). . After the bending holding test, it is visually confirmed whether the sample is held in a tri-folded state, and when the tri-folded shape is maintained, the sample is returned to the original state (planar) and visually checked as follows. Evaluated by criteria. The evaluation was performed three times for each sample of the long side in the transmission axis direction and the long side in the absorption axis direction.
  • the sample was gently slid and moved to the slope side at an extrusion speed of 10 mm / sec (1).
  • the sample stopped moving at the point where the tip of the sample first contacted the slope (2).
  • the distance L (mm) by which the sample moved while the top was flat was measured.
  • a rectangular object (flexible polarizing film sample) of 50 mm (transmission axis direction) ⁇ 150 mm (absorption axis direction) the same operation as described above (however, the sample was set to have a slope in the absorption axis direction) was performed. .
  • the bending resistance (mm) is the shortest linear distance for each of the two patterns with the first surface on the upper side and the second surface on the upper side for the samples with the transmission axis direction long side and the absorption axis direction long side, respectively.
  • L (mm) was measured (12 samples in total) and used as the arithmetic average value thereof. Further, in any one or more measurements of 12 samples, when there was a sample that could not be measured due to deformation or curl of the sample, it was determined that the sample was not measurable.
  • ⁇ Tensile test> A sample (flexible polarizing film sample) was prepared by cutting into a predetermined shape of 10 mm (absorption axis direction) ⁇ 150 mm (transmission axis direction) with a multipurpose test piece cutter (dumbbell). About the said sample, the tension test was implemented by autograph AG-IS by Shimadzu Corporation at the tension

Abstract

The present invention is a flexible polarizing film comprising a polyvinyl alcohol polarizer, not thicker than 10μm, in which polyvinyl alcohol resin is orientated in one direction and iodine or a dichromatic pigment is adsorbed and orientated on the polyvinyl alcohol resin, wherein the flexible polarizing film exhibits no breaking, traces of cracking or light-loss after being subjected to a twisting test in which the film is twisted in the orientation direction in which the polyvinyl alcohol resin is orientated. The flexible polarizing film according to the present invention has a high level of flexibility despite using a polyvinyl alcohol polarizer.

Description

フレキシブル偏光膜、その製造方法および画像表示装置Flexible polarizing film, manufacturing method thereof, and image display device
 本発明は、フレキシブル偏光膜およびその製造方法に関する。前記フレキシブル偏光膜はこれ単独で、またはこれを積層した光学フィルムとして液晶表示装置(LCD)、有機EL表示装置などの画像表示装置を形成しうる。 The present invention relates to a flexible polarizing film and a manufacturing method thereof. The flexible polarizing film can form an image display device such as a liquid crystal display device (LCD) or an organic EL display device alone or as an optical film obtained by laminating the flexible polarizing film.
 液晶表示装置には、その画像形成方式から液晶パネル表面を形成するガラス基板の両側に偏光子を配置することが必要不可欠である。偏光子としては、一般的には、ポリビニルアルコール系樹脂が一方向に配向し、かつ前記ポリビニルアルコール系樹脂にヨウ素又は二色性色素が吸着配向してなるポリビニルアルコール系偏光子が用いられている。しかし、ポリビニルアルコール系偏光子は、単体では脆く、裂け易いという問題がある。特に、ポリビニルアルコール系偏光子は、ポリビニルアルコール系樹脂が配向する方向(吸収軸方向)に平行に裂けやすく、例えば、吸収軸方向に収縮させるような外力が加わったりすると、いとも簡単に裂けてしまう。 In a liquid crystal display device, it is indispensable to dispose a polarizer on both sides of a glass substrate that forms the surface of a liquid crystal panel because of its image forming method. As the polarizer, generally used is a polyvinyl alcohol polarizer in which a polyvinyl alcohol resin is oriented in one direction and iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol resin. . However, polyvinyl alcohol polarizers have the problem that they are brittle and easy to tear. In particular, a polyvinyl alcohol-based polarizer is easy to tear parallel to the direction in which the polyvinyl alcohol-based resin is oriented (absorption axis direction). For example, when an external force that contracts in the absorption axis direction is applied, it is easily broken. .
 そのため、ポリビニルアルコール系偏光子は、その片面または両面に透明保護フィルムを貼り合わせた偏光フィルムとして用いられていることが一般的である。 Therefore, it is general that the polyvinyl alcohol polarizer is used as a polarizing film in which a transparent protective film is bonded to one or both sides.
 その他の偏光子としては、ポリビニルアルコール系偏光子の他に、グリッド偏光子が知られている(特許文献1,2)。 As other polarizers, in addition to polyvinyl alcohol polarizers, grid polarizers are known (Patent Documents 1 and 2).
特開2005-316495号公報JP 2005-316495 A 特開2007-232792号公報JP 2007-232792 A
 しかし、ポリビニルアルコール系偏光子を用いた一般的な偏光フィルムは、透明保護フィルムが貼り合されているために剛性(コシ)を有しており、柔軟性(フレキシブル性)に欠けている。そのため、当該偏光フィルムに捻りを加えたりした場合には、フィルム全体に割れが発生したり、折れた痕(折れ跡)が残ったり、また前記偏光子に光抜けが発生するなどして用途が制約されていた。一方、グリッド偏光子は、柔軟性を有するものであるが、汎用性に欠けるものであった。 However, a general polarizing film using a polyvinyl alcohol-based polarizer has rigidity (rigidity) because a transparent protective film is bonded, and lacks flexibility (flexibility). Therefore, when twisting is applied to the polarizing film, the entire film may be cracked, broken marks (folded marks) may remain, or light leakage may occur in the polarizer. It was constrained. On the other hand, the grid polarizer has flexibility but lacks versatility.
 本発明は、ポリビニルアルコール系偏光子を用いているにも拘わらず、高度な柔軟性を有するフレキシブル偏光膜およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a flexible polarizing film having a high degree of flexibility despite the use of a polyvinyl alcohol polarizer and a method for producing the same.
 また本発明は、前記フレキシブル偏光膜を有する画像表示装置を提供することを目的とする。 Another object of the present invention is to provide an image display device having the flexible polarizing film.
 本願発明者らは、鋭意検討の結果、下記のフレキシブル偏光膜等により上記課題を解決し得ることを見出し、本発明に至った。 As a result of intensive studies, the inventors of the present application have found that the above-described problems can be solved by the following flexible polarizing film and the like, and have reached the present invention.
 即ち本発明は、ポリビニルアルコール系樹脂が一方向に配向し、かつ前記ポリビニルアルコール系樹脂にヨウ素又は二色性色素が吸着配向してなる厚み10μm以下のポリビニルアルコール系偏光子を有し、かつ、前記ポリビニルアルコール系樹脂が配向する方向に捻回させる捻回試験を施した後において、割れ、折れ跡及び光抜けがないことを特徴とするフレキシブル偏光膜、に関する。 That is, the present invention comprises a polyvinyl alcohol polarizer having a thickness of 10 μm or less, wherein the polyvinyl alcohol resin is oriented in one direction and iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol resin, and The present invention relates to a flexible polarizing film characterized by being free from cracks, folds, and light leakage after being subjected to a twist test in which the polyvinyl alcohol resin is twisted in the direction in which the polyvinyl alcohol resin is oriented.
 前記フレキシブル偏光膜において、前記ポリビニルアルコール系樹脂が配向する配向方向および前記配向方向に対して直交する方向にU字状に伸縮を繰り返すU字伸縮試験を施した後において、いずれの方向にも割れ、折れ跡及び光抜けがないことが好ましい。 In the flexible polarizing film, after performing a U-shaped expansion / contraction test that repeatedly expands and contracts in a U-shape in an alignment direction in which the polyvinyl alcohol-based resin is aligned and in a direction orthogonal to the alignment direction, cracks occur in any direction. It is preferable that there are no folds and no light leakage.
 前記フレキシブル偏光膜において、前記ポリビニルアルコール系樹脂が配向する配向方向および前記配向方向に対して直交する方向に折り曲げて保持する折り曲げ保持試験を施した後において、いずれの方向にも折り曲げ形状が保持されると共に、割れが生じないことが好ましい。 In the flexible polarizing film, after performing a bending holding test in which the polyvinyl alcohol resin is bent and held in a direction orthogonal to the alignment direction, the bent shape is maintained in any direction. In addition, it is preferable that no cracks occur.
 前記フレキシブル偏光膜において、前記ポリビニルアルコール系樹脂が配向する配向方向および前記配向方向に対して直交する方向への剛軟性試験において、剛軟度(mm)が60mm以下であることが好ましい。 In the flexible polarizing film, the bending resistance (mm) is preferably 60 mm or less in the bending test in the alignment direction in which the polyvinyl alcohol-based resin is aligned and in the direction orthogonal to the alignment direction.
 前記フレキシブル偏光膜において、引張試験における、前記ポリビニルアルコール系樹脂が配向する配向方向に対して直交する方向の引張強度が5N/10mm以上であることが好ましい。 In the flexible polarizing film, it is preferable that the tensile strength in the direction orthogonal to the orientation direction in which the polyvinyl alcohol resin is oriented in a tensile test is 5 N / 10 mm or more.
 前記フレキシブル偏光膜において、前記ポリビニルアルコール系偏光子は、単体透過率T及び偏光度Pによって表される光学特性が、下記式
 P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
 P≧99.9(ただし、T≧42.3)の条件を満足するように構成されたものであることが好ましい。
In the flexible polarizing film, the polyvinyl alcohol polarizer has an optical property represented by the following formula: P> − (10 0.929T-42.4 −1) × 100 However, T <42.3) or
It is preferable that the lens is configured to satisfy the condition of P ≧ 99.9 (however, T ≧ 42.3).
 前記フレキシブル偏光膜において、前記ポリビニルアルコール系偏光子の少なくとも片面に、前記ポリビニルアルコール系偏光子に密着した補強膜を有することが好ましい。前記補強膜の厚みが15μm以下であることが好ましい。 The flexible polarizing film preferably has a reinforcing film in close contact with the polyvinyl alcohol polarizer on at least one surface of the polyvinyl alcohol polarizer. The thickness of the reinforcing film is preferably 15 μm or less.
 前記フレキシブル偏光膜において、前記ポリビニルアルコール系偏光子の第1の片面に厚み15μm以下の第1補強膜を有し、他方の第2の片面に厚み15μm以下の第2補強膜を有することが好ましい。前記第1補強膜と第2補強膜の厚み差が10μm以下であることが好ましい。 The flexible polarizing film preferably has a first reinforcing film having a thickness of 15 μm or less on the first side of the polyvinyl alcohol-based polarizer and a second reinforcing film having a thickness of 15 μm or less on the other second side. . The thickness difference between the first reinforcing film and the second reinforcing film is preferably 10 μm or less.
 前記フレキシブル偏光膜において、前記ポリビニルアルコール系偏光子の厚みに対する、補強膜の厚みの比は0.4以上であることが好ましい。 In the flexible polarizing film, the ratio of the thickness of the reinforcing film to the thickness of the polyvinyl alcohol polarizer is preferably 0.4 or more.
 前記フレキシブル偏光膜において、前記補強膜は、23℃における圧縮弾性率が1MPa以上であることが好ましい。 In the flexible polarizing film, the reinforcing film preferably has a compressive elastic modulus at 23 ° C. of 1 MPa or more.
 前記フレキシブル偏光膜において、前記補強膜は、実質的に配向していないものを用いることができる。 In the flexible polarizing film, the reinforcing film that is not substantially oriented can be used.
 前記フレキシブル偏光膜において、前記補強膜として、樹脂膜を用いることができる。前記樹脂膜は、熱硬化型樹脂または活性エネルギー線硬化型樹脂の形成物であることが好ましい。 In the flexible polarizing film, a resin film can be used as the reinforcing film. The resin film is preferably a thermosetting resin or an active energy ray curable resin.
 また、本発明は、前記フレキシブル偏光膜の製造方法であって、
 ポリビニルアルコール系樹脂が一方向に配向し、かつ前記ポリビニルアルコール系樹脂にヨウ素又は二色性色素が吸着配向してなる厚み10μm以下のポリビニルアルコール系偏光子を準備する工程(1)、
 前記ポリビニルアルコール系偏光子の少なくとも片面に、樹脂成分または樹脂膜を構成することができる硬化性成分を含む液状物を塗工し、その後に、当該液状物を固化または硬化することにより、補強膜を形成する工程(2)を含むことを特徴とするフレキシブル偏光膜の製造方法、に関する。
Further, the present invention is a method for producing the flexible polarizing film,
A step (1) of preparing a polyvinyl alcohol polarizer having a thickness of 10 μm or less, wherein the polyvinyl alcohol resin is oriented in one direction and iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol resin;
By applying a liquid material containing a curable component capable of constituting a resin component or a resin film on at least one surface of the polyvinyl alcohol polarizer, and then solidifying or curing the liquid material, a reinforcing film The manufacturing method of the flexible polarizing film characterized by including the process (2) of forming.
 また本発明は、前記フレキシブル偏光膜を有する画像表示装置、に関する。 The present invention also relates to an image display device having the flexible polarizing film.
 本発明のフレキシブル偏光膜は、ポリビニルアルコール系偏光子を用いるものであり、汎用性を満足することができる。また、ポリビニルアルコール系偏光子は、厚み10μm以下であり、薄型化されている点でも好適である。 The flexible polarizing film of the present invention uses a polyvinyl alcohol polarizer and can satisfy general versatility. Moreover, the polyvinyl alcohol-type polarizer is 10 micrometers or less in thickness, and is suitable also at the point currently made thin.
 また、本発明のフレキシブル偏光膜は、単体では脆く、裂け易いポリビニルアルコール系偏光子を用いているにも拘わらず、高度な柔軟性を有しており、捻りを加えて形状に変形を行った場合にもフィルム全体に割れが発生したり、折れた痕(折れ跡)が残ったり、前記偏光子に光抜けを生じることがない。また、本発明のフレキシブル偏光膜は、伸縮、折り曲げ等の種々の変形に対する柔軟性を有することができる。このように、本発明のフレキシブル偏光膜は当該偏光膜自身がフレキシブル性を有しており、通常のポリビニルアルコール系偏光子が単体では引張破断応力が顕著に小さくなり実質的に取り扱いが不可能であるのに対して、薄くてハンドリング性が良い。 In addition, the flexible polarizing film of the present invention has a high degree of flexibility despite the fact that it uses a polyvinyl alcohol polarizer that is brittle and easy to tear, and has deformed its shape by twisting. Even in this case, there is no occurrence of cracks in the entire film, no broken marks (fold marks), and no light leakage from the polarizer. In addition, the flexible polarizing film of the present invention can have flexibility against various deformations such as expansion and contraction. As described above, the flexible polarizing film of the present invention itself has flexibility, and a normal polyvinyl alcohol-based polarizer alone has a remarkably small tensile breaking stress, so that it is substantially impossible to handle. On the other hand, it is thin and easy to handle.
 また、本発明のフレキシブル偏光膜は、柔軟性を生かして、他部材と併用したり、または貼り合せて用いたりする場合にもフレキシブル性を有しており、前記偏光子のクラックを抑制可能であり、各種用途に利用することができる。そのため、フレキシブル偏光膜単体での用途拡大やプロセス中における許容度の拡大等により使用用途が大幅に広がる。そのため、本発明のフレキシブル偏光膜は、偏光子の代替として、例えば、従来の偏光子では脆さ、裂け易さゆえに適用できなかった設計に対応することができ、偏光フィルム(偏光子に透明保護フィルムを設けたもの)の代替として、例えば、従来の偏光フィルムが有する剛性から適用できなかった種々の変形形状に対応することができ、用途展開の拡大を図ることができる。 In addition, the flexible polarizing film of the present invention has flexibility even when used in combination with other members or by using the flexibility, and can suppress cracks in the polarizer. Yes, it can be used for various purposes. For this reason, the use of the flexible polarizing film is greatly expanded by expanding the application of the flexible polarizing film alone or expanding the tolerance in the process. Therefore, the flexible polarizing film of the present invention can be used as an alternative to a polarizer, for example, a design that could not be applied due to the brittleness and tearing of conventional polarizers, and a polarizing film (transparent protection to the polarizer). As an alternative to the one provided with a film), for example, it is possible to deal with various deformed shapes that could not be applied due to the rigidity of the conventional polarizing film, and the application development can be expanded.
本発明のフレキシブル偏光膜の概略断面図の一例である。It is an example of the schematic sectional drawing of the flexible polarizing film of this invention. 捻回試験における捻回の状態を示す概略図である。It is the schematic which shows the state of the twist in a twist test. U字伸縮試験におけるU字の状態を示す概略図である。It is the schematic which shows the state of the U character in a U character expansion-contraction test. 折り曲げ保持試験における折り曲げの状態を示す概略図である。It is the schematic which shows the state of the bending in a bending holding | maintenance test. 剛軟性試験における剛軟度を示す概略図である。It is the schematic which shows the bending resistance in a bending resistance test. 引張試験を示す概略図である。It is the schematic which shows a tension test.
 以下に本発明のフレキシブル偏光膜を説明する。本発明のフレキシブル偏光膜はポリビニルアルコール系偏光子を有する。 Hereinafter, the flexible polarizing film of the present invention will be described. The flexible polarizing film of the present invention has a polyvinyl alcohol polarizer.
 <ポリビニルアルコール系偏光子>
 ポリビニルアルコール系偏光子は、ポリビニルアルコール系樹脂が一方向(吸収軸方向)に配向し、かつ前記ポリビニルアルコール系樹脂にヨウ素又は二色性色素が吸着配向してなるものである。ポリビニルアルコール系樹脂としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール、エチレン・酢酸ビニル共重合体系部分ケン化物等が挙げられる。偏光子は、前記ポリビニルアルコール系樹脂を用いたポリビニルアルコール系フィルムに、ヨウ素や二色性染料の二色性色素を吸着させて一軸延伸することにより得ることができる。
<Polyvinyl alcohol polarizer>
The polyvinyl alcohol-based polarizer is obtained by aligning a polyvinyl alcohol-based resin in one direction (absorption axis direction) and adsorbing or aligning iodine or a dichroic dye on the polyvinyl alcohol-based resin. Examples of the polyvinyl alcohol-based resin include polyvinyl alcohol, partially formalized polyvinyl alcohol, ethylene / vinyl acetate copolymer partially saponified products, and the like. A polarizer can be obtained by adsorbing a dichroic dye such as iodine or a dichroic dye to a polyvinyl alcohol film using the polyvinyl alcohol resin and stretching the film uniaxially.
 ポリビニルアルコール系フィルムをヨウ素又は二色性色素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いし、ヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素又は二色性色素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延伸してからヨウ素又は二色性色素で染色しても良い。ホウ酸やヨウ化カリウムなどの水溶液や水浴中でも延伸することができる。 A polarizer obtained by dying a polyvinyl alcohol film with iodine or a dichroic dye and uniaxially stretching it is prepared, for example, by immersing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. can do. If necessary, it may contain boric acid, zinc sulfate, zinc chloride, or the like, or may be immersed in an aqueous solution such as potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there. Stretching may be performed after dyeing with iodine or a dichroic dye, may be performed while dyeing, or may be dyed with iodine or a dichroic dye after stretching. The film can be stretched even in an aqueous solution such as boric acid or potassium iodide or in a water bath.
 ポリビニルアルコール系偏光子はホウ酸を含有していることが延伸安定性や光学耐久性の点から好ましい。また、前記偏光子に含まれるホウ酸含有量は、光抜けの発生抑制の観点から、偏光子全量に対して25重量%以下であるのが好ましく、さらには20重量%以下であるのが好ましく、さらには18重量%以下、さらには16重量%以下であることが好ましい。一方、偏光子の延伸安定性や光学耐久性の観点から、偏光子全量に対するホウ酸含有量は10重量%以上であることが好ましく、さらには12重量%以上であることが好ましい。 The polyvinyl alcohol polarizer preferably contains boric acid from the viewpoint of stretching stability and optical durability. The boric acid content contained in the polarizer is preferably 25% by weight or less, more preferably 20% by weight or less, based on the total amount of the polarizer, from the viewpoint of suppressing the occurrence of light leakage. Further, it is preferably 18% by weight or less, more preferably 16% by weight or less. On the other hand, from the viewpoint of the stretching stability and optical durability of the polarizer, the boric acid content with respect to the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
 本発明では、厚み10μm以下のポリビニルアルコール系偏光子を用いる。ポリビニルアルコール系偏光子の厚みが10μmを超える場合には、十分な柔軟性を得ることが困難である。前記偏光子の厚みは薄型化および柔軟性の観点から8μm以下であるのが好ましく、さらには7μm以下、さらには6μm以下であるのが好ましい。一方、偏光子の厚みは2μm以上、さらには3μm以上であるのが好ましい。このような薄型の偏光子は、厚みムラが少なく、視認性が優れており、また寸法変化が少ないため熱衝撃に対する耐久性に優れる。 In the present invention, a polyvinyl alcohol polarizer having a thickness of 10 μm or less is used. When the thickness of the polyvinyl alcohol polarizer exceeds 10 μm, it is difficult to obtain sufficient flexibility. The thickness of the polarizer is preferably 8 μm or less, more preferably 7 μm or less, and further preferably 6 μm or less from the viewpoints of thinning and flexibility. On the other hand, the thickness of the polarizer is preferably 2 μm or more, and more preferably 3 μm or more. Such a thin polarizer has less thickness unevenness, excellent visibility, and less dimensional change, and therefore excellent durability against thermal shock.
 薄型の偏光子としては、代表的には、
特許第4751486号明細書、
特許第4751481号明細書、
特許第4815544号明細書、
特許第5048120号明細書、
国際公開第2014/077599号パンフレット、
国際公開第2014/077636号パンフレット、
等に記載されている薄型偏光子またはこれらに記載の製造方法から得られる薄型偏光子を挙げることができる。
As a thin polarizer, typically,
Patent No. 4751486,
Japanese Patent No. 4751481,
Patent No. 4815544,
Patent No. 5048120,
International Publication No. 2014/077599 pamphlet,
International Publication No. 2014/077636 Pamphlet,
And the thin polarizers obtained from the production methods described therein.
 前記偏光子は、単体透過率T及び偏光度Pによって表される光学特性が、次式
P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
P≧99.9(ただし、T≧42.3)の条件を満足するように構成されている。前記条件を満足するように構成された偏光子は、一義的には、大型表示素子を用いた液晶テレビ用のディスプレイとして求められる性能を有する。具体的にはコントラスト比1000:1以上かつ最大輝度500cd/m以上である。他の用途としては、例えば有機EL表示装置の視認側に貼り合される。
The polarizer has an optical characteristic expressed by a single transmittance T and a polarization degree P of the following formula P> − (10 0.929T-42.4 −1) × 100 (where T <42.3), Or
It is configured to satisfy the condition of P ≧ 99.9 (however, T ≧ 42.3). A polarizer configured so as to satisfy the above-described conditions uniquely has performance required as a display for a liquid crystal television using a large display element. Specifically, the contrast ratio is 1000: 1 or more and the maximum luminance is 500 cd / m 2 or more. As other uses, for example, it is bonded to the viewing side of the organic EL display device.
 一方、前記条件を満足するように構成された偏光子は、構成する高分子(例えばポリビニルアルコール系分子)が高い配向性を示すため、厚み10μm以下であることと相俟って、偏光子の吸収軸方向に直交する方向(透過軸方向)の引張破断応力が顕著に小さくなる。その結果、例えば、一般的な偏光フィルムでは、光抜けが偏光子の吸収軸方向に生じる可能性が極めて高い。本発明のフレキシブル偏光膜は、このような厚み10μm以下の衝撃に弱いポリビニルアルコール系偏光子を用いているにも拘わらず、優れた柔軟性を有する。 On the other hand, a polarizer configured to satisfy the above conditions has a high orientation of a polymer (for example, a polyvinyl alcohol-based molecule), so that the thickness of the polarizer is 10 μm or less. The tensile rupture stress in the direction orthogonal to the absorption axis direction (transmission axis direction) is significantly reduced. As a result, for example, in a general polarizing film, there is a very high possibility that light leakage will occur in the absorption axis direction of the polarizer. The flexible polarizing film of the present invention has excellent flexibility in spite of the use of such a polyvinyl alcohol-based polarizer that is weak against impact of 10 μm or less.
 前記薄型偏光子としては、積層体の状態で延伸する工程と染色する工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、特許第4751486号明細書、特許第4751481号明細書、特許4815544号明細書に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特許第4751481号明細書、特許4815544号明細書に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。これら薄型偏光子は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法によって得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断などの不具合なく延伸することが可能となる。 As the thin polarizer, among the production methods including the step of stretching in the state of a laminate and the step of dyeing, Patent No. 4751486, Patent, in that it can be stretched at a high magnification and the polarization performance can be improved. What is obtained by the manufacturing method including the process of extending | stretching in a boric-acid aqueous solution as described in the 4751481 specification and the patent 4815544 specification is preferable, and it describes especially in the patent 4751481 specification and the patent 4815544 specification. What is obtained by the manufacturing method including the process of extending | stretching in the air auxiliary before extending | stretching in the boric-acid aqueous solution which has this is preferable. These thin polarizers can be obtained by a production method including a step of stretching a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a stretching resin base material in a laminated state and a step of dyeing. With this manufacturing method, even if the PVA-based resin layer is thin, it can be stretched without problems such as breakage due to stretching by being supported by the stretching resin substrate.
 本発明のフレキシブル偏光膜は、具体的には実施例に示す捻回試験を施した後において、ポリビニルアルコール系偏光子に割れ、折れ跡の発生及び光抜けがないことを特徴とする。捻回試験は、割れ、折れ跡の発生及び光抜けの生じ易いポリビニルアルコール系樹脂が配向する配向方向(吸収軸方向)の捻り状態における柔軟性を示す指標である。本発明のフレキシブル偏光膜は、捻回試験において、割れ、折れ跡の発生及び光抜けがなく、捻り状態において優れた柔軟性を有することが分かる。 Specifically, the flexible polarizing film of the present invention is characterized in that after the twist test shown in the examples is performed, the polyvinyl alcohol-based polarizer is free from cracks, generation of fold marks, and light leakage. The twist test is an index indicating the flexibility in the twisted state in the orientation direction (absorption axis direction) in which the polyvinyl alcohol-based resin that is likely to generate cracks, fold marks, and light leakage is oriented. It can be seen that the flexible polarizing film of the present invention has excellent flexibility in a twisted state in the twisting test without occurrence of cracks, folds and light leakage.
 また、本発明のフレキシブル偏光膜は、具体的には実施例に示す、U字伸縮試験を施した後において、割れ、折れ跡の発生及び光抜けを抑制できることが好ましい。U字伸縮試験は、ポリビニルアルコール系樹脂が配向する配向方向(吸収軸方向)およびその直交方向(透過軸方向)にU字状での無負荷での折り曲げ性に係る柔軟性を示す指標である。本発明のフレキシブル偏光膜は、U字伸縮試験において、割れ、折れ跡の発生及び光抜けを抑えることで、吸収軸方向および透過軸方向のいずれの方向にも優れた無負荷での折り曲げ性に関わる柔軟性を有することが分かる。 In addition, the flexible polarizing film of the present invention is preferably capable of suppressing the generation of cracks, creases and light leakage after the U-shaped expansion / contraction test shown in the examples. The U-shaped expansion / contraction test is an index indicating the flexibility related to unfolded bending in a U-shape in the alignment direction (absorption axis direction) in which the polyvinyl alcohol-based resin is aligned and in the orthogonal direction (transmission axis direction). . The flexible polarizing film of the present invention has excellent unfolded bendability in both the absorption axis direction and the transmission axis direction by suppressing the generation of cracks, fold marks and light leakage in the U-shaped stretch test. It can be seen that it has the flexibility involved.
 また、本発明のフレキシブル偏光膜は、具体的には実施例に示す、折り曲げ保持試験を施した後において、折り曲げ形状が保持されると共に割れを抑制することが好ましい。折り曲げ保持試験は、ポリビニルアルコール系樹脂が配向する配向方向(吸収軸方向)およびその直交方向(透過軸方向)に折り曲げて屈曲した状態におかれた場合にも、フレキシブル偏光膜は、原状を維持することができる保持性に係る柔軟性を示す指標である。本発明のフレキシブル偏光膜は、折り曲げ保持試験において折り曲げ形状が保持されると共に割れが抑えられることで、吸収軸方向および透過軸方向のいずれの方向にも優れた保持性を有することが分かる。 Further, the flexible polarizing film of the present invention preferably retains the bent shape and suppresses cracking after the bending holding test shown in the examples. In the bending retention test, the flexible polarizing film maintains its original shape even when it is bent and bent in the orientation direction (absorption axis direction) in which the polyvinyl alcohol resin is oriented and in the orthogonal direction (transmission axis direction). It is an index indicating the flexibility related to the retention that can be performed. It can be seen that the flexible polarizing film of the present invention has excellent holding properties in both the absorption axis direction and the transmission axis direction by holding the bent shape and suppressing cracking in the bending holding test.
 また、本発明のフレキシブル偏光膜は、具体的には実施例に示す、剛軟性試験において、剛軟度(mm)が60mm以下を満足することが好ましい。剛軟性試験は、ポリビニルアルコール系樹脂が配向する配向方向(吸収軸方向)およびその直交方向(透過軸方向)の曲げ追従性(曲げに対する低抵抗性)に係る柔軟性を示す指標である。本発明のフレキシブル偏光膜は、前記剛軟度が60mm以下であり、曲げ追従性(曲げに対する低抵抗性)に係る柔軟性を有することが分かる。なお、前記剛軟度(mm)の前記柔軟性を示す指標であり、50mm以下が好ましく、さらには40mm以下が好ましい。一方、剛軟度(mm)の下限については特に制限はない。 Further, the flexible polarizing film of the present invention preferably satisfies the bending resistance (mm) of 60 mm or less in the bending resistance test specifically shown in the examples. The bending resistance test is an index indicating flexibility related to the bending followability (low resistance to bending) in the orientation direction (absorption axis direction) in which the polyvinyl alcohol-based resin is oriented and in the orthogonal direction (transmission axis direction). It can be seen that the flexible polarizing film of the present invention has a bending flexibility (low resistance to bending) having a bending resistance of 60 mm or less. The index indicating the flexibility of the bending resistance (mm) is preferably 50 mm or less, and more preferably 40 mm or less. On the other hand, there is no particular limitation on the lower limit of the bending resistance (mm).
 また、本発明のフレキシブル偏光膜は、具体的には実施例に示す、引張試験において、引張強度が5N/10mm以上を満足することが好ましい。引張試験は、ポリビニルアルコール系樹脂が配向する配向する配向方向(吸収軸方向)に対して直交する方向(透過軸方向)の強度を示す指標である。本発明のフレキシブル偏光膜は、前記引張強度が5N/10mm以上を満足することで、透過軸方向に強度を有することが分かる。なお、前記引張強度は、強度の観点からは7N/10mm以上が好ましく、さらには10N/10mm以上が好ましい。 In addition, the flexible polarizing film of the present invention preferably satisfies a tensile strength of 5 N / 10 mm or more in the tensile test specifically shown in the examples. The tensile test is an index indicating the strength in the direction (transmission axis direction) orthogonal to the orientation direction (absorption axis direction) in which the polyvinyl alcohol-based resin is oriented. It can be seen that the flexible polarizing film of the present invention has strength in the transmission axis direction when the tensile strength satisfies 5 N / 10 mm or more. The tensile strength is preferably 7 N / 10 mm or more, more preferably 10 N / 10 mm or more from the viewpoint of strength.
 以下に、本発明のフレキシブル偏光膜の一例について、図1を参照しながら説明する。
 本発明のフレキシブル偏光膜は、例えば、ポリビニルアルコール系偏光子の少なくとも片面に補強膜を有するものを用いることができる。図1(A)のフレキシブル偏光膜1は、ポリビニルアルコール系偏光子aの第1の片面にのみ第1補強膜b1を有する場合である。また、図1(B)のフレキシブル偏光膜1は、ポリビニルアルコール系偏光子1の第1の片面に第1補強膜b1を有し、他方の第2の片面には第2補強膜b2を有する場合である。本発明のフレキシブル偏光膜1において、第1補強膜b1および/または第2補強膜b2は、前記ポリビニルアルコール系偏光子1に、直接、設けられている。
Hereinafter, an example of the flexible polarizing film of the present invention will be described with reference to FIG.
As the flexible polarizing film of the present invention, for example, a polyvinyl alcohol polarizer having a reinforcing film on at least one surface can be used. The flexible polarizing film 1 in FIG. 1A is a case where the first reinforcing film b1 is provided only on the first one surface of the polyvinyl alcohol polarizer a. Moreover, the flexible polarizing film 1 of FIG. 1 (B) has the 1st reinforcement film | membrane b1 on the 1st one surface of the polyvinyl alcohol-type polarizer 1, and has the 2nd reinforcement film | membrane b2 on the other 2nd one surface. Is the case. In the flexible polarizing film 1 of the present invention, the first reinforcing film b1 and / or the second reinforcing film b2 are provided directly on the polyvinyl alcohol polarizer 1.
 本発明のフレキシブル偏光膜1は、前記捻回試験における柔軟性を有するものであり、ポリビニルアルコール系偏光子aの片面または両面に透明保護フィルム等を有し、前記柔軟性を満足することができない通常の偏光フィルムとは明らかに区別されるものである。 The flexible polarizing film 1 of the present invention has flexibility in the twist test, and has a transparent protective film or the like on one side or both sides of the polyvinyl alcohol-based polarizer a, and cannot satisfy the flexibility. This is clearly distinguished from a normal polarizing film.
 <補強膜>
 補強膜の厚さは、薄層化および柔軟性の観点から15μm以下であるのが好ましく、さらには10μm以下であるのが好ましく、さらには7μm以下であるのが好ましい。一方、補強膜の厚さは、柔軟性および強度の観点から、1μm以上であるのが好ましく、さらには3μm以上が好ましく、さらには5μm以上であるのが好ましい。
<Reinforcing membrane>
The thickness of the reinforcing membrane is preferably 15 μm or less from the viewpoint of thinning and flexibility, more preferably 10 μm or less, and further preferably 7 μm or less. On the other hand, the thickness of the reinforcing membrane is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more from the viewpoint of flexibility and strength.
 また、ポリビニルアルコール系偏光子の厚み(t1)に対する、補強膜の厚み(t2)の比(t2/t1)は、柔軟性および強度の点から0.4以上であることが好ましく、さらには0.6以上が好ましく、さらには0.8以上であるのが好ましい。一方、前記比(t2/t1)は、薄層化の点から、2.0以下であるのが好ましく、さらには1.5以下であるのが好ましく、さらには1.2以下であるのが好ましい。 Further, the ratio (t2 / t1) of the thickness (t2) of the reinforcing film to the thickness (t1) of the polyvinyl alcohol polarizer is preferably 0.4 or more from the viewpoint of flexibility and strength, and more preferably 0. .6 or more is preferable, and further 0.8 or more is preferable. On the other hand, the ratio (t2 / t1) is preferably 2.0 or less, more preferably 1.5 or less, and further preferably 1.2 or less from the viewpoint of thinning. preferable.
 前記補強膜は、図1(A)に示すように、ポリビニルアルコール系偏光子1の片面にのみ第1補強膜b1を有する場合よりも、図1(B)に示すようにポリビニルアルコール系偏光子1の両面に第1補強膜b1および第2補強膜b2を有する場合が、前記捻回試験、U字伸縮試験等における柔軟性をより満足でき、また、引張試験における強度を満足することができる点から好ましい。 As shown in FIG. 1 (A), the reinforcing film has a polyvinyl alcohol polarizer as shown in FIG. 1 (B), rather than having the first reinforcing film b1 only on one side of the polyvinyl alcohol polarizer 1 as shown in FIG. 1 (A). 1 having both the first reinforcing film b1 and the second reinforcing film b2 can satisfy the flexibility in the twist test, the U-shaped stretch test, and the like, and can satisfy the strength in the tensile test. It is preferable from the point.
 図1(B)のように、ポリビニルアルコール系偏光子1の両面に第1補強膜b1および第2補強膜b2を有する場合において、各補強膜の厚さは、同じでもよく、異なっていてもよいが、第1補強膜b1と第2補強膜b2の厚みの差は、通常時(フレキシブル偏光膜のみの状態で放置している状態)および柔軟性試験(捻回試験等の各種の試験)におけるフレキシブル偏光膜中の応力を均一(対称)にし、強度および柔軟性を確保しやすい事から10μm以下であることが好ましく、さらには7μm以下が好ましく、さらには5μm以下であるのが好ましく、特に、同じ厚さであることが好ましい。 As shown in FIG. 1B, when the first reinforcing film b1 and the second reinforcing film b2 are provided on both surfaces of the polyvinyl alcohol polarizer 1, the thickness of each reinforcing film may be the same or different. Although the thickness difference between the first reinforcing film b1 and the second reinforcing film b2 is good, it is normal (a state where the flexible polarizing film is left alone) and a flexibility test (various tests such as a twist test). Is preferably 10 μm or less, more preferably 7 μm or less, and even more preferably 5 μm or less, because the stress in the flexible polarizing film is made uniform (symmetric) and strength and flexibility are easily secured. It is preferable that they have the same thickness.
 前記補強膜は、23℃における圧縮弾性率が1MPa以上であることが、強度の点から好ましい。さらには前記補強膜の圧縮弾性率は10MPa以上であるのが好ましく、さらには100MPa以上であるのが好ましい。一方、前記補強膜層の圧縮弾性率が大きくなると硬くなりすぎて柔軟性が悪くなる傾向があるため、前記圧縮弾性率は10GPa以下であるのが好ましく、さらには1GPa以下であるのが好ましい。 The reinforcing membrane preferably has a compressive elastic modulus at 23 ° C. of 1 MPa or more from the viewpoint of strength. Furthermore, the compressive elastic modulus of the reinforcing membrane is preferably 10 MPa or more, and more preferably 100 MPa or more. On the other hand, when the compressive elastic modulus of the reinforcing membrane layer increases, the compressive elastic modulus is preferably 10 GPa or less, and more preferably 1 GPa or less, because it tends to be too hard and poor flexibility.
 前記補強膜は、各種の形成材から形成することができる。補強膜は、例えば、樹脂材料をポリビニルアルコール系偏光子に塗布することにより形成することができるし、SiO等の無機酸化物をポリビニルアルコール系偏光子にスパッタリング法等により蒸着することで形成することもできる。補強膜は、簡便に形成する観点から、樹脂材料から形成される樹脂膜であることが好ましい。 The reinforcing film can be formed from various forming materials. The reinforcing film can be formed, for example, by applying a resin material to a polyvinyl alcohol polarizer, or by depositing an inorganic oxide such as SiO 2 on the polyvinyl alcohol polarizer by a sputtering method or the like. You can also The reinforcing film is preferably a resin film formed from a resin material from the viewpoint of simple formation.
 前記補強膜は、配向していてもよく、配向していなくともよく、いずれも用いることができる。前記補強膜が配向していると位相差が発生しポリビニルアルコール系偏光子の光学特性が変わってしまうため、前記偏光子の光学特性を維持する場合には、実質的に配向していない補強膜であるのが好ましい。実質的に配向していないとは、偏光子の配向に起因して補強膜内部に配向は存在するものの積極的に補強膜を配向させる処理を施していない状態をいう。実施的に配向していない補強膜は、例えば、ポリビニルアルコール系偏光子に、樹脂膜の形成材料を塗布することにより形成することができる。一方、前記補強膜として、配向しているものを用いることができる。配向している補強膜は、位相差を発現しており光学補償膜等として利用することもできる。 The reinforcing film may or may not be oriented, and any of them can be used. When the reinforcing film is oriented, a phase difference occurs and the optical characteristics of the polyvinyl alcohol polarizer change. Therefore, when maintaining the optical characteristics of the polarizer, the reinforcing film that is not substantially oriented. Is preferred. “Substantially not oriented” refers to a state in which the treatment for positively orienting the reinforcing film is not performed although the orientation exists inside the reinforcing film due to the orientation of the polarizer. A reinforcing film that is not practically oriented can be formed by, for example, applying a resin film forming material to a polyvinyl alcohol polarizer. On the other hand, an oriented film can be used as the reinforcing film. The oriented reinforcing film expresses a phase difference and can be used as an optical compensation film or the like.
 前記補強膜の形成材料としては、ポリビニルアルコール系偏光子との密着が可能な材料である限り特に制限されず、例えば、ポリエステル系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、PVA系樹脂、アクリル系樹脂、エポキシ系樹脂等を挙げることができる。これら樹脂材料は1種を単独で又は2種以上を組み合わせて用いることができるが、これらの中でもポリウレタン系樹脂、PVA系樹脂、アクリル系樹脂、エポキシ系樹脂からなる群から選択される1種以上が好ましく、ポリウレタン系樹脂、アクリル系樹脂がより好ましい。 A material for forming the reinforcing film is not particularly limited as long as it is a material that can be adhered to a polyvinyl alcohol polarizer. For example, a polyester resin, a polyether resin, a polycarbonate resin, a polyurethane resin, a silicone resin Examples thereof include resins, polyamide resins, polyimide resins, PVA resins, acrylic resins, and epoxy resins. These resin materials can be used singly or in combination of two or more, and among these, one or more selected from the group consisting of polyurethane resins, PVA resins, acrylic resins, and epoxy resins Are preferred, and polyurethane resins and acrylic resins are more preferred.
 前記補強膜は、前記偏光子の表面、前記樹脂成分または樹脂を構成することができる硬化性成分を含む液状物を塗工し、その後に、当該液状物を固化または硬化することにより形成することができる。また、前記液状物である塗工液の形態は、液状を示すものであれば特に制限はなく、水系、水分散系、溶剤系、無溶剤のいずれでもよい。 The reinforcing film is formed by applying a liquid material containing a curable component capable of constituting the surface of the polarizer, the resin component or the resin, and then solidifying or curing the liquid material. Can do. The form of the liquid coating liquid is not particularly limited as long as it exhibits a liquid state, and may be any of water-based, water-dispersed, solvent-based, and solvent-free.
 なお、前記形成材には、補強膜の機能を阻害しない範囲で添加剤を含有することができる。例えば、シランカップリング剤、ポリプロピレングリコール等のポリアルキレングリコールのポリエーテル化合物、着色剤、顔料等の粉体、染料、界面活性剤、可塑剤、粘着性付与剤、帯電防止剤、表面潤滑剤、レベリング剤、軟化剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、重合禁止剤、無機または有機の充填剤、金属粉、粒子状、箔状物等を使用する用途に応じて適宜添加することができる。また、制御できる範囲内で、還元剤を加えてのレドックス系を採用してもよい。 Note that the forming material may contain an additive as long as the function of the reinforcing film is not impaired. For example, silane coupling agents, polyalkylene glycol polyether compounds such as polypropylene glycol, powders such as colorants and pigments, dyes, surfactants, plasticizers, tackifiers, antistatic agents, surface lubricants, Depending on the use of leveling agents, softeners, antioxidants, antioxidants, light stabilizers, UV absorbers, polymerization inhibitors, inorganic or organic fillers, metal powders, particles, foils, etc. It can be added as appropriate. Moreover, you may employ | adopt the redox system which added a reducing agent within the controllable range.
 前記液状物(塗工液)は、粘度が低い方が有利である。前記粘度は、25℃で測定した値が2000mPa・s以下であるのが好ましく、さらには1000mPa・s以下であるのが好ましく、さらには500mPa・s以下であるのが好ましく、さらには100mPa・s以下であるのが好ましい。 It is advantageous that the liquid (coating liquid) has a lower viscosity. The viscosity measured at 25 ° C. is preferably 2000 mPa · s or less, more preferably 1000 mPa · s or less, further preferably 500 mPa · s or less, and further 100 mPa · s. It is preferable that:
 前記補強膜の形成にあたり、前記樹脂成分を含む液状物を塗工した後には、当該樹脂成分に種類に応じて固化させる。前記樹脂成分を含む液状物は、前記樹脂成分を溶剤に溶解した溶液または分散させた分散液であり、例えば、水系の溶液、水分散系の分散液、または溶剤系の溶液として用いられる。前記固化は、前記液状物中から溶剤を除去することにより樹脂層を形成することをいう。 In forming the reinforcing film, after applying a liquid material containing the resin component, the resin component is solidified according to the type. The liquid substance containing the resin component is a solution obtained by dissolving or dispersing the resin component in a solvent, and is used as, for example, an aqueous solution, an aqueous dispersion, or a solvent solution. The solidification means forming a resin layer by removing a solvent from the liquid material.
 前記水分散系の分散液として、水系樹脂エマルションを用いることができる。水系樹脂エマルションは、水(分散媒)中に乳化しているエマルション樹脂粒子を含有するものである。本発明の補強膜は、前記水系樹脂エマルションを含む形成材を偏光子に直接塗布し、乾燥することで形成することができる。 An aqueous resin emulsion can be used as the aqueous dispersion. The aqueous resin emulsion contains emulsion resin particles emulsified in water (dispersion medium). The reinforcing film of the present invention can be formed by directly applying a forming material containing the aqueous resin emulsion to a polarizer and drying it.
 前記エマルション樹脂を構成する樹脂としては、特に限定されるものではないが、例えば、アクリル系樹脂、シリコーン系樹脂、ポリウレタン系樹脂、フッ素系樹脂等を挙げることができる。これらの中でも、本発明では、光学的透明性に優れ、耐候性や耐熱性等に優れる点から、ポリウレタン系樹脂、アクリル系樹脂が好ましい。 The resin constituting the emulsion resin is not particularly limited, and examples thereof include acrylic resins, silicone resins, polyurethane resins, and fluorine resins. Among these, in the present invention, polyurethane resins and acrylic resins are preferable because they are excellent in optical transparency and weather resistance and heat resistance.
 前記水系樹脂エマルションとしては、例えば、大成ファインケミカル社製の商品名:SE‐2915E(UV吸収材含有のアクリルエマルション)、東亞合成社製の商品名:アロンA‐104、アロンA‐106等が挙げられる。 Examples of the water-based resin emulsion include trade name: SE-2915E (acrylic emulsion containing UV absorber) manufactured by Taisei Fine Chemical Co., Ltd., trade names: Aron A-104 and Aron A-106 manufactured by Toagosei Co., Ltd. It is done.
 一方、前記透明樹脂層の形成にあたり、樹脂を構成することができる硬化性成分を含む液状物を塗工した後には、当該硬化性成分の種類に応じて、当該硬化性成分が樹脂を形成することができる硬化を施す。前記樹脂を構成することができる硬化性成分を含む液状物は、前記硬化性成分が液状物を呈するものであれば、無溶剤系で用いることができる。また、前記液状物は、前記硬化性成分を溶剤に溶解した溶液を用いることができる。なお、前記硬化性成分が液状物を呈する場合にも溶液として用いることができる。前記溶剤としは、用いる硬化性成分に応じて適宜に選択することができる。例えば、前記硬化性成分として、アクリル系樹脂を形成するアクリル系モノマーを用いる場合、エポキシ樹脂を形成するエポキシ系モノマーを用いる場合には、前記硬化性成分を含む液状物に活性エネルギー線照射(紫外線照射)等による硬化を施すことができる。 On the other hand, in forming the transparent resin layer, after applying a liquid material containing a curable component capable of constituting the resin, the curable component forms a resin according to the type of the curable component. Can be cured. The liquid material containing a curable component that can constitute the resin can be used in a solventless system as long as the curable component exhibits a liquid material. The liquid material may be a solution in which the curable component is dissolved in a solvent. In addition, when the said curable component exhibits a liquid substance, it can be used as a solution. The solvent can be appropriately selected according to the curable component to be used. For example, when an acrylic monomer that forms an acrylic resin is used as the curable component, or when an epoxy monomer that forms an epoxy resin is used, the liquid material containing the curable component is irradiated with active energy rays (ultraviolet rays). Curing by irradiation) or the like can be performed.
 補強膜について、樹脂を構成することができる硬化性成分を含有する硬化型形成材におついて説明する。硬化性成分としては、電子線硬化型、紫外線硬化型、可視光線硬化型等の活性エネルギー線硬化型と熱硬化型に大別することができる。さらには、紫外線硬化型、可視光線硬化型は、ラジカル重合硬化型とカチオン重合硬化型に区分出来る。本発明において、波長範囲10nm~380nm未満の活性エネルギー線を紫外線、波長範囲380nm~800nmの活性エネルギー線を可視光線として表記する。前記ラジカル重合硬化型の硬化性成分は、熱硬化型の硬化性成分として用いることができる。 Regarding the reinforcing film, a curable forming material containing a curable component capable of constituting a resin will be described. The curable component can be roughly classified into an active energy ray curable type such as an electron beam curable type, an ultraviolet ray curable type, and a visible light curable type, and a thermosetting type. Furthermore, the ultraviolet curable type and the visible light curable type can be classified into a radical polymerization curable type and a cationic polymerization curable type. In the present invention, an active energy ray having a wavelength range of 10 nm to less than 380 nm is expressed as ultraviolet light, and an active energy ray having a wavelength range of 380 nm to 800 nm is expressed as visible light. The radical polymerization curable component can be used as a thermosetting curable component.
 ≪ラジカル重合硬化型形成材≫
 前記硬化性成分としては、例えば、ラジカル重合性化合物が挙げられる。ラジカル重合性化合物は、(メタ)アクリロイル基、ビニル基等の炭素-炭素二重結合のラジカル重合性の官能基を有する化合物が挙げられる。これら硬化性成分は、単官能ラジカル重合性化合物または二官能以上の多官能ラジカル重合性化合物のいずれも用いることができる。また、これらラジカル重合性化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。これらラジカル重合性化合物としては、例えば、(メタ)アクリロイル基を有する化合物が好適である。なお、本発明において、(メタ)アクリロイルとは、アクリロイル基および/またはメタクリロイル基を意味し、「(メタ)」は以下同様の意味である。
≪Radical polymerization curable forming material≫
Examples of the curable component include a radical polymerizable compound. Examples of the radical polymerizable compound include compounds having a radical polymerizable functional group of a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group. As these curable components, either a monofunctional radical polymerizable compound or a bifunctional or higher polyfunctional radical polymerizable compound can be used. Moreover, these radically polymerizable compounds can be used individually by 1 type or in combination of 2 or more types. As these radically polymerizable compounds, for example, compounds having a (meth) acryloyl group are suitable. In the present invention, (meth) acryloyl means an acryloyl group and / or methacryloyl group, and “(meth)” has the same meaning hereinafter.
 ≪単官能ラジカル重合性化合物≫
 単官能ラジカル重合性化合物としては、例えば、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体が挙げられる。(メタ)アクリルアミド誘導体は、偏光子との密着性を確保するうえで、また、重合速度が速く生産性に優れる点で好ましい。(メタ)アクリルアミド誘導体の具体例としては、例えば、N-メチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド等のN-アルキル基含有(メタ)アクリルアミド誘導体;N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール-N-プロパン(メタ)アクリルアミド等のN-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体;アミノメチル(メタ)アクリルアミド、アミノエチル(メタ)アクリルアミド等のN-アミノアルキル基含有(メタ)アクリルアミド誘導体;N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド等のN-アルコキシ基含有(メタ)アクリルアミド誘導体;メルカプトメチル(メタ)アクリルアミド、メルカプトエチル(メタ)アクリルアミド等のN-メルカプトアルキル基含有(メタ)アクリルアミド誘導体;などが挙げられる。また、(メタ)アクリルアミド基の窒素原子が複素環を形成している複素環含有(メタ)アクリルアミド誘導体としては、例えば、N-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルピロリジン等があげられる。
≪Monofunctional radical polymerizable compound≫
Examples of the monofunctional radical polymerizable compound include (meth) acrylamide derivatives having a (meth) acrylamide group. The (meth) acrylamide derivative is preferable in terms of ensuring adhesion with the polarizer and having a high polymerization rate and excellent productivity. Specific examples of (meth) acrylamide derivatives include, for example, N-methyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N N-alkyl group-containing (meth) acrylamide derivatives such as butyl (meth) acrylamide and N-hexyl (meth) acrylamide; N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-methylol-N— N-hydroxyalkyl group-containing (meth) acrylamide derivatives such as propane (meth) acrylamide; N-aminoalkyl group-containing (meth) acrylamide derivatives such as aminomethyl (meth) acrylamide and aminoethyl (meth) acrylamide; N-methoxymethyl N-alkoxy group-containing (meth) acrylamide derivatives such as acrylamide and N-ethoxymethylacrylamide; N-mercaptoalkyl group-containing (meth) acrylamide derivatives such as mercaptomethyl (meth) acrylamide and mercaptoethyl (meth) acrylamide; It is done. Examples of the heterocyclic-containing (meth) acrylamide derivative in which the nitrogen atom of the (meth) acrylamide group forms a heterocyclic ring include, for example, N-acryloylmorpholine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acryloylpyrrolidine. Etc.
 前記(メタ)アクリルアミド誘導体のなかでも、偏光子との密着性の点から、N-ヒドロキシアルキル基含有(メタ)アクリルアミド誘導体が好ましく、特に、N-ヒドロキシエチル(メタ)アクリルアミドが好ましい。 Among the (meth) acrylamide derivatives, an N-hydroxyalkyl group-containing (meth) acrylamide derivative is preferable from the viewpoint of adhesion to a polarizer, and N-hydroxyethyl (meth) acrylamide is particularly preferable.
 また、単官能ラジカル重合性化合物としては、例えば、(メタ)アクリロイルオキシ基を有する各種の(メタ)アクリル酸誘導体が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、n-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類が挙げられる。 In addition, examples of the monofunctional radical polymerizable compound include various (meth) acrylic acid derivatives having a (meth) acryloyloxy group. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl-2-nitropropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 4-methyl-2-propylpentyl ( (Meth) acrylate, n-o Tadeshiru (meth) (meth) acrylic acid (1-20 carbon atoms) such as acrylates alkyl esters.
 また、前記(メタ)アクリル酸誘導体としては、例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート;
 ベンジル(メタ)アクリレート等のアラルキル(メタ)アクリレート;
 2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、ジシクロペンタニル(メタ)アクリレ-ト、等の多環式(メタ)アクリレート;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、アルキルフェノキシポリエチレングリコール(メタ)アクリレート等のアルコキシ基またはフェノキシ基含有(メタ)アクリレート;等が挙げられる。
Examples of the (meth) acrylic acid derivative include cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and cyclopentyl (meth) acrylate;
Aralkyl (meth) acrylates such as benzyl (meth) acrylate;
2-isobornyl (meth) acrylate, 2-norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, dicyclo Polycyclic (meth) acrylates such as pentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like;
2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) Examples thereof include alkoxy groups such as acrylates and alkylphenoxypolyethylene glycol (meth) acrylates or phenoxy group-containing (meth) acrylates.
 また、前記(メタ)アクリル酸誘導体としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、[4-(ヒドロキシメチル)シクロヘキシル]メチルアクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;
 グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等のエポキシ基含有(メタ)アクリレート;
 2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート;
 ジメチルアミノエチル(メタ)アクリレート等のアルキルアミノアルキル(メタ)アクリレート;
 3-オキセタニルメチル(メタ)アクリレート、3-メチルーオキセタニルメチル(メタ)アクリレート、3-エチルーオキセタニルメチル(メタ)アクリレート、3-ブチルーオキセタニルメチル(メタ)アクリレート、3-ヘキシルーオキセタニルメチル(メタ)アクリレート等のオキセタン基含有(メタ)アクリレート;
 テトラヒドロフルフリル(メタ)アクリレート、ブチロラクトン(メタ)アクリレート、などの複素環を有する(メタ)アクリレートや、ヒドロキシピバリン酸ネオペンチルグリコール(メタ)アクリル酸付加物、p-フェニルフェノール(メタ)アクリレート等が挙げられる。
Examples of the (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4- Hydroxyalkyl (meth) acrylates such as hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, etc. And hydroxyl groups such as [4- (hydroxymethyl) cyclohexyl] methyl acrylate, cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, etc. Meth) acrylate;
Epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate glycidyl ether;
2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) ) Halogen-containing (meth) acrylates such as acrylate, heptadecafluorodecyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate;
Alkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate;
3-Oxetanylmethyl (meth) acrylate, 3-methyl-oxetanylmethyl (meth) acrylate, 3-ethyl-oxetanylmethyl (meth) acrylate, 3-butyl-oxetanylmethyl (meth) acrylate, 3-hexyloxetanylmethyl (meta) ) Oxetane group-containing (meth) acrylates such as acrylates;
(Meth) acrylates having a heterocyclic ring such as tetrahydrofurfuryl (meth) acrylate, butyrolactone (meth) acrylate, neopentyl glycol (meth) acrylic acid adducts such as hydroxypivalate, p-phenylphenol (meth) acrylate, etc. Can be mentioned.
 また、単官能ラジカル重合性化合物としては、(メタ)アクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などのカルボキシル基含有モノマーが挙げられる。 Also, examples of the monofunctional radically polymerizable compound include carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
 また、単官能ラジカル重合性化合物としては、例えば、N-ビニルピロリドン、N-ビニル-ε-カプロラクタム、メチルビニルピロリドン等のラクタム系ビニルモノマー;ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン等の窒素含有複素環を有するビニル系モノマー等が挙げられる。 Examples of the monofunctional radical polymerizable compound include lactam vinyl monomers such as N-vinylpyrrolidone, N-vinyl-ε-caprolactam, and methylvinylpyrrolidone; vinylpyridine, vinylpiperidone, vinylpyrimidine, vinylpiperazine, vinylpyrazine, Examples thereof include vinyl monomers having a nitrogen-containing heterocyclic ring such as vinyl pyrrole, vinyl imidazole, vinyl oxazole and vinyl morpholine.
 また、単官能ラジカル重合性化合物としては、活性メチレン基を有するラジカル重合性化合物を用いることができる。活性メチレン基を有するラジカル重合性化合物は、末端または分子中に(メタ)アクリル基などの活性二重結合基を有し、かつ活性メチレン基を有する化合物である。活性メチレン基としては、例えばアセトアセチル基、アルコキシマロニル基、またはシアノアセチル基などが挙げられる。前記活性メチレン基がアセトアセチル基であることが好ましい。活性メチレン基を有するラジカル重合性化合物の具体例としては、例えば2-アセトアセトキシエチル(メタ)アクリレート、2-アセトアセトキシプロピル(メタ)アクリレート、2-アセトアセトキシ-1-メチルエチル(メタ)アクリレートなどのアセトアセトキシアルキル(メタ)アクリレート;2-エトキシマロニルオキシエチル(メタ)アクリレート、2-シアノアセトキシエチル(メタ)アクリレート、N-(2-シアノアセトキシエチル)アクリルアミド、N-(2-プロピオニルアセトキシブチル)アクリルアミド、N-(4-アセトアセトキシメチルベンジル)アクリルアミド、N-(2-アセトアセチルアミノエチル)アクリルアミドなどが挙げられる。活性メチレン基を有するラジカル重合性化合物は、アセトアセトキシアルキル(メタ)アクリレートであることが好ましい。 Also, as the monofunctional radically polymerizable compound, a radically polymerizable compound having an active methylene group can be used. The radical polymerizable compound having an active methylene group is a compound having an active methylene group having an active double bond group such as a (meth) acryl group at the terminal or in the molecule. Examples of the active methylene group include an acetoacetyl group, an alkoxymalonyl group, and a cyanoacetyl group. The active methylene group is preferably an acetoacetyl group. Specific examples of the radical polymerizable compound having an active methylene group include 2-acetoacetoxyethyl (meth) acrylate, 2-acetoacetoxypropyl (meth) acrylate, 2-acetoacetoxy-1-methylethyl (meth) acrylate, and the like. Acetoacetoxyalkyl (meth) acrylate; 2-ethoxymalonyloxyethyl (meth) acrylate, 2-cyanoacetoxyethyl (meth) acrylate, N- (2-cyanoacetoxyethyl) acrylamide, N- (2-propionylacetoxybutyl) Examples include acrylamide, N- (4-acetoacetoxymethylbenzyl) acrylamide, and N- (2-acetoacetylaminoethyl) acrylamide. The radical polymerizable compound having an active methylene group is preferably acetoacetoxyalkyl (meth) acrylate.
 ≪多官能ラジカル重合性化合物≫
 また、二官能以上の多官能ラジカル重合性化合物としては、例えば、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジアクリレート、2-エチル-2-ブチルプロパンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオぺンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性ジグリセリンテトラ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル化物、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレンがあげられる。具体例としては、アロニックスM-220、M-306(東亞合成社製)、ライトアクリレート1,9ND-A(共栄社化学社製)、ライトアクリレートDGE-4A(共栄社化学社製)、ライトアクリレートDCP-A(共栄社化学社製)、SR-531(Sartomer社製)、CD-536(Sartomer社製)等が挙げられる。また必要に応じて、各種のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートや、各種の(メタ)アクリレート系モノマー等が挙げられる。
≪Polyfunctional radical polymerizable compound≫
Examples of the bifunctional or higher polyfunctional radical polymerizable compound include tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 -Nonanediol di (meth) acrylate, 1,10-decanediol diacrylate, 2-ethyl-2-butylpropanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol A ethylene oxide adduct di (meth) ) Acrylate, bisphenol A propylene oxide adduct di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) Acryte, cyclic trimethylolpropane formal (meth) acrylate, dioxane glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta Esterified products of (meth) acrylic acid and polyhydric alcohols such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, EO-modified diglycerin tetra (meth) acrylate, 9,9-bis [4- (2- (Meth) acryloyloxyethoxy) phenyl] fluorene. Specific examples include Aronix M-220, M-306 (manufactured by Toagosei Co., Ltd.), light acrylate 1,9ND-A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DGE-4A (manufactured by Kyoeisha Chemical Co., Ltd.), light acrylate DCP- A (manufactured by Kyoeisha Chemical Co., Ltd.), SR-531 (manufactured by Sartomer), CD-536 (manufactured by Sartomer) and the like. Moreover, various epoxy (meth) acrylates, urethane (meth) acrylates, polyester (meth) acrylates, various (meth) acrylate monomers, and the like are included as necessary.
 ラジカル重合性化合物は、偏光子との密着性と光学耐久性を両立させる観点から、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物を併用することが好ましい。通常は、ラジカル重合性化合物100重量%に対して、単官能ラジカル重合性化合物3~80重量%と多官能ラジカル重合性化合物20~97重量%の割合で併用することが好ましい。 The radical polymerizable compound is preferably used in combination with a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound from the viewpoint of achieving both adhesion to the polarizer and optical durability. Usually, it is preferable to use a combination of 3 to 80% by weight of the monofunctional radical polymerizable compound and 20 to 97% by weight of the polyfunctional radical polymerizable compound with respect to 100% by weight of the radical polymerizable compound.
 ≪ラジカル重合硬化型形成材の態様≫
 ラジカル重合硬化型形成材は、活性エネルギー線硬化型または熱硬化型の形成材として用いることができる。活性エネルギー線に電子線等を用いる場合には、当該活性エネルギー線硬化型形成材は光重合開始剤を含有することは必要ではないが、活性エネルギー線に紫外線または可視光線を用いる場合には、光重合開始剤を含有するのが好ましい。一方、前記硬化性成分を熱硬化性成分として用いる場合には、当該形成材は熱重合開始剤を含有するのが好ましい。
≪Aspects of radical polymerization curable forming material≫
The radical polymerization curable forming material can be used as an active energy ray curable forming material or a thermosetting forming material. When using an electron beam or the like for the active energy ray, the active energy ray curable forming material does not need to contain a photopolymerization initiator, but when using ultraviolet rays or visible light for the active energy ray, It preferably contains a photopolymerization initiator. On the other hand, when the curable component is used as a thermosetting component, the forming material preferably contains a thermal polymerization initiator.
 ≪光重合開始剤≫
 ラジカル重合性化合物を用いる場合の光重合開始剤は、活性エネルギー線によって適宜に選択される。紫外線または可視光線により硬化させる場合には紫外線または可視光線開裂の光重合開始剤が用いられる。前記光重合開始剤としては、例えば、ベンジル、ベンゾフェノン、ベンゾイル安息香酸、3,3′-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α´-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、α-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンゾインブチルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどの芳香族ケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、ドデシルチオキサントンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。
≪Photopolymerization initiator≫
The photopolymerization initiator in the case of using the radical polymerizable compound is appropriately selected depending on the active energy ray. In the case of curing by ultraviolet light or visible light, a photopolymerization initiator for ultraviolet light or visible light cleavage is used. Examples of the photopolymerization initiator include benzophenone compounds such as benzyl, benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone; 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2 -Propyl) ketone, aromatic ketone compounds such as α-hydroxy-α, α'-dimethylacetophenone, 2-methyl-2-hydroxypropiophenone, α-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy- Acetophenone compounds such as 2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- (methylthio) -phenyl] -2-morpholinopropane-1; benzoin methyl ether; Benzoin ethyl ether, benzoin Benzoin ether compounds such as isopropyl ether, benzoin butyl ether and anisoin methyl ether; aromatic ketal compounds such as benzyldimethyl ketal; aromatic sulfonyl chloride compounds such as 2-naphthalenesulfonyl chloride; 1-phenone-1 , 1-propanedione-2- (o-ethoxycarbonyl) oxime, etc .; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone Thioxanthone compounds such as Son, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, dodecylthioxanthone; camphorquinone; halogenated ketone; Inokishido; and acyl phospholipase diisocyanate, and the like.
 前記光重合開始剤の配合量は、硬化性成分(ラジカル重合性化合物)の全量100重量部に対して、20重量部以下である。光重合開始剤の配合量は、0.01~20重量部であるのが好ましく、さらには、0.05~10重量部、さらには0.1~5重量部であるのが好ましい。 The blending amount of the photopolymerization initiator is 20 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound). The blending amount of the photopolymerization initiator is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and further preferably 0.1 to 5 parts by weight.
 前記硬化型形成材を、硬化性成分としてラジカル重合性化合物を含有する可視光線硬化型で用いる場合には、特に380nm以上の光に対して高感度な光重合開始剤を用いることが好ましい。380nm以上の光に対して高感度な光重合開始剤については後述する。 When using the curable forming material in a visible light curable type containing a radical polymerizable compound as a curable component, it is preferable to use a photopolymerization initiator that is particularly sensitive to light of 380 nm or more. A photopolymerization initiator that is highly sensitive to light of 380 nm or more will be described later.
 前記光重合開始剤としては、下記一般式(1)で表される化合物;
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは-H、-CHCH、-iPrまたはClを示し、RおよびRは同一または異なっても良い)を単独で使用するか、あるいは一般式(1)で表される化合物と後述する380nm以上の光に対して高感度な光重合開始剤とを併用することが好ましい。一般式(1)で表される化合物を使用した場合、380nm以上の光に対して高感度な光重合開始剤を単独で使用した場合に比べて密着性に優れる。一般式(1)で表される化合物の中でも、RおよびRが-CHCHであるジエチルチオキサントンが特に好ましい。当該形成材中の一般式(1)で表される化合物の組成比率は、硬化性成分の全量100重量部に対して、0.1~5重量部であることが好ましく、0.5~4重量部であることがより好ましく、0.9~3重量部であることがさらに好ましい。
As said photoinitiator, the compound represented by following General formula (1);
Figure JPOXMLDOC01-appb-C000001
(Wherein R 1 and R 2 represent —H, —CH 2 CH 3 , —iPr or Cl, and R 1 and R 2 may be the same or different), respectively, or a general formula ( It is preferable to use together the compound represented by 1) and a photopolymerization initiator that is highly sensitive to light of 380 nm or more, which will be described later. When the compound represented by the general formula (1) is used, the adhesion is excellent as compared with the case where a photopolymerization initiator having high sensitivity to light of 380 nm or more is used alone. Among the compounds represented by the general formula (1), diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable. The composition ratio of the compound represented by the general formula (1) in the forming material is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable component, and preferably 0.5 to 4 parts. More preferred are parts by weight, and even more preferred is 0.9 to 3 parts by weight.
 また、必要に応じて重合開始助剤を添加することが好ましい。重合開始助剤としては、トリエチルアミン、ジエチルアミン、N-メチルジエタノールアミン、エタノールアミン、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどが挙げられ、4-ジメチルアミノ安息香酸エチルが特に好ましい。重合開始助剤を使用する場合、その添加量は、硬化性成分の全量100重量部に対して、通常0~5重量部、好ましくは0~4重量部、最も好ましくは0~3重量部である。 Further, it is preferable to add a polymerization initiation assistant as necessary. Examples of polymerization initiators include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, etc. Among them, ethyl 4-dimethylaminobenzoate is particularly preferable. When a polymerization initiation assistant is used, its addition amount is usually 0 to 5 parts by weight, preferably 0 to 4 parts by weight, most preferably 0 to 3 parts by weight, based on 100 parts by weight of the total amount of the curable component. is there.
 また、必要に応じて公知の光重合開始剤を併用することができる。光重合開始剤としては、380nm以上の光に対して高感度な光重合開始剤を使用することが好ましい。具体的には、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。 Further, a known photopolymerization initiator can be used in combination as necessary. As the photopolymerization initiator, it is preferable to use a photopolymerization initiator that is highly sensitive to light of 380 nm or more. Specifically, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole) 1-yl) -phenyl) titanium and the like.
 特に、光重合開始剤として、一般式(1)の光重合開始剤に加えて、さらに下記一般式(2)で表される化合物;
Figure JPOXMLDOC01-appb-C000002
(式中、R、RおよびRは-H、-CH、-CHCH、-iPrまたはClを示し、R、RおよびRは同一または異なっても良い)を使用することが好ましい。一般式(2)で表される化合物としては、市販品でもある2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:IRGACURE907 メーカー:BASF)が好適に使用可能である。その他、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(商品名:IRGACURE369 メーカー:BASF)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:IRGACURE379 メーカー:BASF)が感度が高いため好ましい。
In particular, as a photopolymerization initiator, in addition to the photopolymerization initiator of the general formula (1), a compound represented by the following general formula (2);
Figure JPOXMLDOC01-appb-C000002
Wherein R 3 , R 4 and R 5 represent —H, —CH 3 , —CH 2 CH 3 , —iPr or Cl, and R 3 , R 4 and R 5 may be the same or different. It is preferable to use it. As the compound represented by the general formula (2), 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (trade name: IRGACURE907 manufacturer: BASF) which is also a commercial product is suitable. Can be used. In addition, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (trade name: IRGACURE369 manufacturer: BASF), 2- (dimethylamino) -2-[(4-methylphenyl) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: IRGACURE379 manufacturer: BASF) is preferred because of its high sensitivity.
 <活性メチレン基を有するラジカル重合性化合物と、水素引き抜き作用のあるラジカル重合開始剤>
 上記活性エネルギー線硬化型形成材において、ラジカル重合性化合物として、活性メチレン基を有するラジカル重合性化合物を用いる場合には、水素引き抜き作用のあるラジカル重合開始剤と組み合わせて用いるのが好ましい。
<Radical polymerizable compound having active methylene group and radical polymerization initiator having hydrogen abstraction action>
In the active energy ray curable forming material, when a radical polymerizable compound having an active methylene group is used as the radical polymerizable compound, it is preferably used in combination with a radical polymerization initiator having a hydrogen abstraction function.
 水素引き抜き作用のあるラジカル重合開始剤として、例えばチオキサントン系ラジカル重合開始剤、ベンゾフェノン系ラジカル重合開始剤などが挙げられる。前記ラジカル重合開始剤は、チオキサントン系ラジカル重合開始剤であることが好ましい。チオキサントン系ラジカル重合開始剤としては、例えば上記一般式(1)で表される化合物が挙げられる。一般式(1)で表される化合物の具体例としては、例えば、チオキサントン、ジメチルチオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントンなどが挙げられる。一般式(1)で表される化合物の中でも、RおよびRが-CHCHであるジエチルチオキサントンが特に好ましい。 Examples of the radical polymerization initiator having a hydrogen abstracting action include thioxanthone radical polymerization initiators and benzophenone radical polymerization initiators. The radical polymerization initiator is preferably a thioxanthone radical polymerization initiator. Examples of the thioxanthone radical polymerization initiator include compounds represented by the above general formula (1). Specific examples of the compound represented by the general formula (1) include thioxanthone, dimethylthioxanthone, diethylthioxanthone, isopropylthioxanthone, and chlorothioxanthone. Among the compounds represented by the general formula (1), diethylthioxanthone in which R 1 and R 2 are —CH 2 CH 3 is particularly preferable.
 上記活性エネルギー線硬化型形成材において、活性メチレン基を有するラジカル重合性化合物と、水素引き抜き作用のあるラジカル重合開始剤を含有する場合には、硬化性成分の全量を100重量%としたとき、前記活性メチレン基を有するラジカル重合性化合物を1~50重量%、およびラジカル重合開始剤を、硬化性成分の全量100重量部に対して0.1~10重量部含有することが好ましい。 In the active energy ray-curable forming material, when the radical polymerizable compound having an active methylene group and a radical polymerization initiator having a hydrogen abstraction function are contained, when the total amount of the curable component is 100% by weight, It is preferable to contain 1 to 50% by weight of the radical polymerizable compound having an active methylene group and 0.1 to 10 parts by weight of the radical polymerization initiator with respect to 100 parts by weight of the total amount of the curable component.
 ≪熱重合開始剤≫
 熱重合開始剤としては、補強膜の形成の際には熱開裂によって重合が開始しないものが好ましい。例えば、熱重合開始剤としては、10時間半減期温度が65℃以上、さらには75~90℃であるものが好ましい。なお、この半減期とは、重合開始剤の分解速度を表す指標であり、重合開始剤の残存量が半分になるまでの時間をいう。任意の時間で半減期を得るための分解温度や、任意の温度での半減期時間に関しては、メーカーカタログなどに記載されており、たとえば、日本油脂株式会社の「有機過酸化物カタログ第9版(2003年5月)」などに記載されている。
≪Thermal polymerization initiator≫
As the thermal polymerization initiator, those in which polymerization does not start by thermal cleavage when the reinforcing film is formed are preferable. For example, as the thermal polymerization initiator, those having a 10-hour half-life temperature of 65 ° C. or higher, more preferably 75 to 90 ° C. are preferable. The half-life is an index representing the decomposition rate of the polymerization initiator and refers to the time until the remaining amount of the polymerization initiator is halved. The decomposition temperature for obtaining a half-life at an arbitrary time and the half-life time at an arbitrary temperature are described in the manufacturer catalog, for example, “Organic peroxide catalog 9th edition by Nippon Oil & Fats Co., Ltd.” (May 2003) ".
 熱重合開始剤としては、例えば、過酸化ラウロイル(10時間半減期温度:64℃)、過酸化ベンゾイル(10時間半減期温度:73℃)、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロへキサン(10時間半減期温度:90℃)、ジ(2-エチルヘキシル)パーオキシジカーボネート(10時間半減期温度:49℃)、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート(10時間半減期温度:51℃)、t-ブチルパーオキシネオデカノエート(10時間半減期温度:48℃)、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジラウロイルパーオキシド(10時間半減期温度:64℃)、ジ-n-オクタノイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(10時間半減期温度:66℃)、ジ(4-メチルベンゾイル)パーオキシド、ジベンゾイルパーオキシド(10時間半減期温度:73℃)、t-ブチルパーオキシイソブチレート(10時間半減期温度:81℃)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン等の有機系過酸化物があげられる。 Examples of the thermal polymerization initiator include lauroyl peroxide (10 hour half-life temperature: 64 ° C.), benzoyl peroxide (10 hour half-life temperature: 73 ° C.), 1,1-bis (t-butylperoxy) -3. , 3,5-trimethylcyclohexane (10-hour half-life temperature: 90 ° C.), di (2-ethylhexyl) peroxydicarbonate (10-hour half-life temperature: 49 ° C.), di (4-t-butylcyclohexyl) Peroxydicarbonate, di-sec-butylperoxydicarbonate (10-hour half-life temperature: 51 ° C.), t-butyl peroxyneodecanoate (10-hour half-life temperature: 48 ° C.), t-hexyl peroxy Pivalate, t-butylperoxypivalate, dilauroyl peroxide (10 hour half-life temperature: 64 ° C.), di-n- octanoyl peroxide 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (10-hour half-life temperature: 66 ° C.), di (4-methylbenzoyl) peroxide, dibenzoyl peroxide (half-hour 10 hours) Organic peroxide such as t-butyl peroxyisobutyrate (10-hour half-life temperature: 81 ° C.), 1,1-di (t-hexylperoxy) cyclohexane, and the like.
 また、熱重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(10時間半減期温度:67℃)、2,2’-アゾビス(2-メチルブチロニトリル)(10時間半減期温度:67℃)、1,1-アゾビス-シクロへキサン-1-カルボニトリル(10時間半減期温度:87℃)などのアゾ系化合物があげられる。 Examples of the thermal polymerization initiator include 2,2′-azobisisobutyronitrile (10 hour half-life temperature: 67 ° C.), 2,2′-azobis (2-methylbutyronitrile) (10 hours). And azo compounds such as 1,1-azobis-cyclohexane-1-carbonitrile (10 hour half-life temperature: 87 ° C.).
 熱重合開始剤の配合量は、硬化性成分(ラジカル重合性化合物)の全量100重量部に対して、0.01~20重量部である。熱重合開始剤の配合量は、さらには0.05~10重量部、さらには0.1~3重量部であるのが好ましい。 The blending amount of the thermal polymerization initiator is 0.01 to 20 parts by weight with respect to 100 parts by weight of the total amount of the curable component (radical polymerizable compound). The blending amount of the thermal polymerization initiator is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 3 parts by weight.
 ≪カチオン重合硬化型形成材≫
 カチオン重合硬化型形成材の硬化性成分としては、エポキシ基やオキセタニル基を有する化合物が挙げられる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が例として挙げられる。
≪Cation polymerization curable forming material≫
Examples of the curable component of the cationic polymerization curable forming material include compounds having an epoxy group or an oxetanyl group. The compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used. As a preferable epoxy compound, a compound having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compound), or at least two epoxy groups in the molecule, at least one of them. Examples thereof include a compound (alicyclic epoxy compound) formed between two adjacent carbon atoms constituting an alicyclic ring.
 ≪光カチオン重合開始剤≫
 カチオン重合硬化型形成材は、硬化性成分として以上説明したエポキシ化合物及びオキセタン化合物を含有し、これらはいずれもカチオン重合により硬化するものであることから、光カチオン重合開始剤が配合される。この光カチオン重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、エポキシ基やオキセタニル基の重合反応を開始する。
≪Photo cationic polymerization initiator≫
The cationic polymerization curable forming material contains the epoxy compound and the oxetane compound described above as the curable component, and both of these are cured by cationic polymerization, and therefore, a photocationic polymerization initiator is blended therein. This cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and starts a polymerization reaction of an epoxy group or an oxetanyl group.
 <その他の成分>
 本発明に係る硬化型形成材は、下記成分を含有することが好ましい。
<Other ingredients>
The curable forming material according to the present invention preferably contains the following components.
 <アクリル系オリゴマー>
 本発明に係る活性エネルギー線硬化型形成材は、前記ラジカル重合性化合物に係る硬化性成分に加えて、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーを含有することができる。活性エネルギー線硬化型形成材中にアクリル系オリゴマーを含有することで、前記補強膜に活性エネルギー線を照射・硬化させる際の硬化収縮を低減し、補強膜と、偏光子との界面応力を低減することができる。硬化収縮を十分に抑制するためには、硬化性成分の全量100重量部に対して、アクリル系オリゴマーの含有量は、20重量部以下であることが好ましく、15重量部以下であることがより好ましい。形成材中のアクリル系オリゴマーの含有量が多すぎると、該形成材に活性エネルギー線を照射した際の反応速度の低下が激しく、硬化不良となる場合がある。一方、硬化性成分の全量100重量部に対して、アクリル系オリゴマーを3重量部以上含有することが好ましく、5重量部以上含有することがより好ましい。
<Acrylic oligomer>
The active energy ray-curable forming material according to the present invention can contain an acrylic oligomer obtained by polymerizing a (meth) acrylic monomer, in addition to the curable component related to the radical polymerizable compound. By containing an acrylic oligomer in the active energy ray-curable forming material, curing shrinkage when irradiating and curing the active energy ray to the reinforcing film is reduced, and the interfacial stress between the reinforcing film and the polarizer is reduced. can do. In order to sufficiently suppress the curing shrinkage, the content of the acrylic oligomer is preferably 20 parts by weight or less and more preferably 15 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component. preferable. When the content of the acrylic oligomer in the forming material is too large, the reaction rate when the forming material is irradiated with active energy rays is drastically reduced, which may result in poor curing. On the other hand, the acrylic oligomer is preferably contained in an amount of 3 parts by weight or more, more preferably 5 parts by weight or more, based on 100 parts by weight of the total amount of the curable component.
 活性エネルギー線硬化型形成材は、塗工時の作業性や均一性を考慮した場合、低粘度であることが好ましいため、(メタ)アクリルモノマーを重合してなるアクリル系オリゴマーも低粘度であることが好ましい。低粘度であって、かつ補強膜の硬化収縮を防止できるアクリル系オリゴマーとしては、重量平均分子量(Mw)が15000以下のものが好ましく、10000以下のものがより好ましく、5000以下のものが特に好ましい。一方、補強膜の硬化収縮を十分に抑制するためには、アクリル系オリゴマーの重量平均分子量(Mw)が500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが特に好ましい。アクリル系オリゴマーを構成する(メタ)アクリルモノマーとしては、具体的には例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、2-メチル-2-ニトロプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、S-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、t-ペンチル(メタ)アクリレート、3-ペンチル(メタ)アクリレート、2,2-ジメチルブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、セチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、4-メチル-2-プロピルペンチル(メタ)アクリレート、N-オクタデシル(メタ)アクリレートなどの(メタ)アクリル酸(炭素数1-20)アルキルエステル類、さらに、例えば、シクロアルキル(メタ)アクリレート(例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなど)、アラルキル(メタ)アクリレート(例えば、ベンジル(メタ)アクリレートなど)、多環式(メタ)アクリレート(例えば、2-イソボルニル(メタ)アクリレート、2-ノルボルニルメチル(メタ)アクリレート、5-ノルボルネン-2-イル-メチル(メタ)アクリレート、3-メチル-2-ノルボルニルメチル(メタ)アクリレートなど)、ヒドロキシル基含有(メタ)アクリル酸エステル類(例えば、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピルメチル-ブチル(メタ)メタクリレートなど)、アルコキシ基またはフェノキシ基含有(メタ)アクリル酸エステル類(2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-メトキシメトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなど)、エポキシ基含有(メタ)アクリル酸エステル類(例えば、グリシジル(メタ)アクリレートなど)、ハロゲン含有(メタ)アクリル酸エステル類(例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリフルオロエチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなど)、アルキルアミノアルキル(メタ)アクリレート(例えば、ジメチルアミノエチル(メタ)アクリレートなど)などが挙げられる。これら(メタ)アクリレートは、単独使用または2種類以上併用することができる。アクリル系オリゴマーの具体例としては、東亞合成社製「ARUFON」、綜研化学社製「アクトフロー」、BASFジャパン社製「JONCRYL」などが挙げられる。 The active energy ray-curable forming material preferably has a low viscosity in consideration of workability and uniformity during coating, and thus an acrylic oligomer obtained by polymerizing a (meth) acrylic monomer also has a low viscosity. It is preferable. The acrylic oligomer having a low viscosity and capable of preventing curing shrinkage of the reinforcing film preferably has a weight average molecular weight (Mw) of 15000 or less, more preferably 10,000 or less, and particularly preferably 5000 or less. . On the other hand, in order to sufficiently suppress the curing shrinkage of the reinforcing film, the weight average molecular weight (Mw) of the acrylic oligomer is preferably 500 or more, more preferably 1000 or more, and preferably 1500 or more. Particularly preferred. Specific examples of the (meth) acrylic monomer constituting the acrylic oligomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, 2-methyl- 2-nitropropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, S-butyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, t-pentyl (Meth) acrylate, 3-pentyl (meth) acrylate, 2,2-dimethylbutyl (meth) acrylate, n-hexyl (meth) acrylate, cetyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate (Meth) acrylic acid (carbon number 1-20) alkyl esters such as 4-methyl-2-propylpentyl (meth) acrylate and N-octadecyl (meth) acrylate, and further, for example, cycloalkyl (meth) acrylate (for example, Cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, etc.), aralkyl (meth) acrylate (eg benzyl (meth) acrylate, etc.), polycyclic (meth) acrylate (eg 2-isobornyl (meth) acrylate, 2 -Norbornylmethyl (meth) acrylate, 5-norbornen-2-yl-methyl (meth) acrylate, 3-methyl-2-norbornylmethyl (meth) acrylate, etc.), hydroxyl group-containing (meth) acrylic acid ester (E.g. hydro (Methyl) acrylate, 2-hydroxypropyl (meth) acrylate, 2,3-dihydroxypropylmethyl-butyl (meth) methacrylate, etc.), alkoxy group or phenoxy group-containing (meth) acrylic acid esters (2-methoxyethyl ( (Meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-methoxymethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxyethyl (meth) acrylate, etc.), epoxy Group-containing (meth) acrylic acid esters (for example, glycidyl (meth) acrylate), halogen-containing (meth) acrylic acid esters (for example, 2,2,2-trifluoroethyl (meth) acrylate, 2,2, 2- Trifluoroethylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoropropyl (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, etc.), alkylaminoalkyl (meth) An acrylate (for example, dimethylaminoethyl (meth) acrylate etc.) etc. are mentioned. These (meth) acrylates can be used alone or in combination of two or more. Specific examples of the acrylic oligomer include “ARUFON” manufactured by Toagosei Co., Ltd., “Act Flow” manufactured by Soken Chemical Co., Ltd., “JONCRYL” manufactured by BASF Japan.
 <光酸発生剤>
 上記活性エネルギー線硬化型形成材において、光酸発生剤を含有することができる。上記活性エネルギー線硬化型形成材に、光酸発生剤を含有する場合、光酸発生剤を含有しない場合に比べて、補強膜の耐水性および耐久性を飛躍的に向上することができる。光酸発生剤は、下記一般式(3)で表すことができる。
<Photo acid generator>
The active energy ray-curable forming material may contain a photoacid generator. When the active energy ray-curable forming material contains a photoacid generator, the water resistance and durability of the reinforcing film can be dramatically improved as compared with a case where no photoacid generator is contained. The photoacid generator can be represented by the following general formula (3).
 一般式(3)
Figure JPOXMLDOC01-appb-C000003
 (ただし、Lは、任意のオニウムカチオンを表す。また、Xは、PF6 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCN-よりからなる群より選択されるカウンターアニオンを表す。)
General formula (3)
Figure JPOXMLDOC01-appb-C000003
(However, L + represents any onium cation. X represents PF6 6 , SbF 6 , AsF 6 , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , dithiocarbamate. Represents a counter anion selected from the group consisting of an anion and SCN-)
 光酸発生剤を構成する好ましいオニウム塩の具体例としては、PF 、SbF 、AsF 、SbCl 、BiCl 、SnCl 、ClO 、ジチオカルバメートアニオン、SCNより選ばれるアニオンとからなるオニウム塩である。 Specific examples of preferred onium salts constituting the photoacid generator include PF 6 , SbF 6 , AsF 6 , SbCl 6 , BiCl 5 , SnCl 6 , ClO 4 , dithiocarbamate anion, SCN −. It is an onium salt comprising an anion selected from more.
 具体的には、「サイラキュアーUVI-6992」、「サイラキュアーUVI-6974」(以上、ダウ・ケミカル日本株式会社製)、「アデカオプトマーSP150」、「アデカオプトマーSP152」、「アデカオプトマーSP170」、「アデカオプトマーSP172」(以上、株式会社ADEKA製)、「IRGACURE250」(チバスペシャルティーケミカルズ社製)、「CI-5102」、「CI-2855」(以上、日本曹達社製)、「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-110L」、「サンエイドSI-180L」(以上、三新化学社製)、「CPI-100P」、「CPI-100A」(以上、サンアプロ株式会社製)、「WPI-069」、「WPI-113」、「WPI-116」、「WPI-041」、「WPI-044」、「WPI-054」、「WPI-055」、「WPAG-281」、「WPAG-567」、「WPAG-596」(以上、和光純薬社製)が光酸発生剤の好ましい具体例として挙げられる。 Specifically, “Syracure UVI-6922”, “Syracure UVI-6974” (manufactured by Dow Chemical Japan Co., Ltd.), “Adekaoptomer SP150”, “Adekaoptomer SP152”, “Adekaoptomer” “SP170”, “Adekaoptomer SP172” (manufactured by ADEKA Corporation), “IRGACURE250” (manufactured by Ciba Specialty Chemicals), “CI-5102”, “CI-2855” (manufactured by Nippon Soda Co., Ltd.), “Sun-Aid SI-60L”, “Sun-Aid SI-80L”, “Sun-Aid SI-100L”, “Sun-Aid SI-110L”, “Sun-Aid SI-180L” (manufactured by Sanshin Chemical Co., Ltd.), “CPI-100P”, "CPI-100A" (San Apro Co., Ltd.), "WPI-06 ], "WPI-113", "WPI-116", "WPI-041", "WPI-044", "WPI-054", "WPI-055", "WPAG-281", "WPAG-567" “WPAG-596” (manufactured by Wako Pure Chemical Industries, Ltd.) is a preferred specific example of the photoacid generator.
 光酸発生剤の含有量は、硬化性成分の全量100重量部に対して、10重量部以下であり、0.01~10重量部であることが好ましく、0.05~5重量部であることがより好ましく、0.1~3重量部であることが特に好ましい。 The content of the photoacid generator is 10 parts by weight or less, preferably 0.01 to 10 parts by weight, and preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the total amount of the curable component. More preferred is 0.1 to 3 parts by weight.
 前記硬化型の形成材による補強膜の形成は、偏光子の面に、硬化型形成材を塗工し、その後、硬化することにより行う。 The formation of the reinforcing film by the curable forming material is performed by coating the curable forming material on the surface of the polarizer and then curing.
 偏光子は、上記硬化型形成材を塗工する前に、表面改質処理を行ってもよい。具体的な処理としては、コロナ処理、プラズマ処理、ケン化処理による処理などが挙げられる。 The polarizer may be subjected to a surface modification treatment before coating the curable forming material. Specific examples of the treatment include corona treatment, plasma treatment, and saponification treatment.
 硬化型形成材の塗工方式は、当該硬化型形成材の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーターなどが挙げられる。その他、塗工には、デイッピング方式などの方式を適宜に使用することができる。 The coating method of the curable forming material is appropriately selected depending on the viscosity of the curable forming material and the target thickness. Examples of coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like. In addition, for coating, a method such as a dapping method can be appropriately used.
 <形成材の硬化>
 前記硬化型形成材は、活性エネルギー線硬化型形成材または熱硬化型形成材として用いられる。活性エネルギー線硬化型形成材では、電子線硬化型、紫外線硬化型、可視光線硬化型の態様で用いることができる。
<Curing of forming material>
The curable forming material is used as an active energy ray curable forming material or a thermosetting forming material. The active energy ray curable forming material can be used in an electron beam curable type, an ultraviolet curable type, or a visible light curable type.
 ≪活性エネルギー線硬化型≫
 活性エネルギー線硬化型形成材では、偏光子に活性エネルギー線硬化型形成材を塗工した後、活性エネルギー線(電子線、紫外線、可視光線など)を照射し、活性エネルギー線硬化型形成材を硬化して補強膜を形成する。活性エネルギー線(電子線、紫外線、可視光線など)の照射方向は、任意の適切な方向から照射することができる。好ましくは、補強膜側から照射する。
≪Active energy ray curing type≫
In the active energy ray curable forming material, after applying the active energy ray curable forming material to the polarizer, the active energy ray (electron beam, ultraviolet ray, visible light, etc.) is irradiated, and the active energy ray curable forming material is applied. Curing to form a reinforcing film. The irradiation direction of active energy rays (electron beam, ultraviolet ray, visible light, etc.) can be irradiated from any appropriate direction. Preferably, irradiation is performed from the reinforcing film side.
 ≪電子線硬化型≫
 電子線硬化型において、電子線の照射条件は、上記活性エネルギー線硬化型形成材を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が補強膜最深部まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて、偏光子にダメージを与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。
≪Electron beam curing type≫
In the electron beam curable type, any appropriate condition can be adopted as the electron beam irradiation condition as long as the active energy ray curable forming material can be cured. For example, in the electron beam irradiation, the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the deepest part of the reinforcing film and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetrating force through the sample is too strong and damages the polarizer. There is a fear. The irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy. When the irradiation dose is less than 5 kGy, the adhesive is insufficiently cured, and when it exceeds 100 kGy, the polarizer is damaged, resulting in a decrease in mechanical strength and yellowing, and the predetermined optical characteristics cannot be obtained.
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。 The electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition where a little oxygen is introduced.
 ≪紫外線硬化型、可視光線硬化型≫
 活性エネルギー線として、波長範囲380nm~450nmの可視光線を含むもの、特には波長範囲380nm~450nmの可視光線の照射量が最も多い活性エネルギー線を使用することが好ましい。活性エネルギー線としては、ガリウム封入メタルハライドランプ、波長範囲380~440nmを発光するLED光源が好ましい。あるいは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザーまたは太陽光などの紫外線と可視光線を含む光源を使用することができ、バンドパスフィルターを用いて380nmより短波長の紫外線を遮断して用いることもできる。
≪Ultraviolet curing type, visible light curing type≫
It is preferable to use an active energy ray containing visible light having a wavelength range of 380 nm to 450 nm, particularly an active energy ray having the largest irradiation amount of visible light having a wavelength range of 380 nm to 450 nm. As the active energy ray, a gallium-filled metal halide lamp and an LED light source that emits light in the wavelength range of 380 to 440 nm are preferable. Or low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight A light source including visible light can be used, and ultraviolet light having a wavelength shorter than 380 nm can be blocked using a band pass filter.
 ≪熱硬化型≫
 一方、熱硬化型形成材では、偏光子に塗布した後に、加熱することにより、熱重合開始剤により重合を開始して、硬化物層(補強膜)を形成する。加熱温度は、熱重合開始剤に応じて設定されるが、60~200℃程度、好ましくは80~150℃である。
≪Thermosetting type≫
On the other hand, in a thermosetting type forming material, after applying to a polarizer, by heating, polymerization is started by a thermal polymerization initiator to form a cured product layer (reinforcing film). The heating temperature is set according to the thermal polymerization initiator, but is about 60 to 200 ° C., preferably 80 to 150 ° C.
 また、前記補強膜を形成する材料として、例えば、シアノアクリレート系形成材、エポキシ系形成材、またはイソシアネート系形成材を用いることができる。 Also, as a material for forming the reinforcing film, for example, a cyanoacrylate-based forming material, an epoxy-based forming material, or an isocyanate-based forming material can be used.
 シアノアクリレート系形成材としては、例えば、メチル-α-シアノアクリレート、エチル-α-シアノアクリレート、ブチル-α-シアノアクリレート、オクチル-α-シアノアクリレート等のアルキル-α-シアノアクリレート、シクロヘキシル-α-シアノアクリレート、メトキシ-α-シアノアクリレート等があげられる。シアノアクリレート系形成材としては、例えば、シアノアクリレート系接着剤として用いられるものを用いることができる。 Examples of the cyanoacrylate-based forming material include alkyl-α-cyanoacrylates such as methyl-α-cyanoacrylate, ethyl-α-cyanoacrylate, butyl-α-cyanoacrylate, octyl-α-cyanoacrylate, and cyclohexyl-α-. And cyanoacrylate and methoxy-α-cyanoacrylate. As the cyanoacrylate-based forming material, for example, those used as a cyanoacrylate-based adhesive can be used.
 エポキシ系形成材は、エポキシ樹脂単体で用いてもよいし、エポキシ硬化剤を含有してもよい。エポキシ樹脂を単体で用いる場合には、光重合開始剤を添加し活性エネルギー線を照射することで硬化させる。エポキシ系形成材としてエポキシ硬化剤を添加する場合には、例えば、エポキシ系接着剤として用いられるものを用いることができる。エポキシ系形成材の使用形態は、エポキシ樹脂とその硬化剤を含有してなる1液型として用いることもできるが、エポキシ樹脂に硬化剤を配合する2液型として用いられる。エポキシ系形成材は、通常、溶液として用いられる。溶液は溶剤系であってもよいし、エマルション、コロイド分散液、水溶液等の水系であってもよい。 The epoxy-based forming material may be used alone as an epoxy resin or may contain an epoxy curing agent. When the epoxy resin is used alone, it is cured by adding a photopolymerization initiator and irradiating active energy rays. When an epoxy curing agent is added as an epoxy-based forming material, for example, those used as an epoxy-based adhesive can be used. The usage form of the epoxy-based forming material can be used as a one-component type containing an epoxy resin and its curing agent, but it is used as a two-component type in which a curing agent is blended with the epoxy resin. Epoxy-based forming materials are usually used as solutions. The solution may be a solvent system or an aqueous system such as an emulsion, a colloidal dispersion, or an aqueous solution.
 エポキシ樹脂としては、分子内に2個以上のエポキシ基を含有する各種化合物を例示でき、例えば、ビスフェノール型エポキシ樹脂、脂肪族系エポキシ樹脂、芳香族系エポキシ樹脂、ハロゲン化ビスフェノール型エポキシ樹脂、ビフェニル系エポキシ樹脂などがあげられる。また、エポキシ樹脂は、エポキシ当量や官能基数に応じて適宜に決定することができるが、耐久性の観点よりエポキシ当量500以下のものが好適に用いられる。 Examples of the epoxy resin include various compounds containing two or more epoxy groups in the molecule. For example, bisphenol type epoxy resin, aliphatic type epoxy resin, aromatic type epoxy resin, halogenated bisphenol type epoxy resin, biphenyl And epoxy resin. Moreover, although an epoxy resin can be suitably determined according to an epoxy equivalent and the number of functional groups, the epoxy equivalent of 500 or less is used suitably from a durable viewpoint.
 エポキシ樹脂の硬化剤は特に制限されず、フェノール樹脂系、酸無水物系、カルボン酸系、ポリアミン系等の各種のものを使用できる。フェノール樹脂系の硬化剤としては、例えば、フェノールノボラック樹脂、ビスフェノールノボラック樹脂、キシリレンフェノール樹脂、クレゾールノボラツク樹脂等が用いられる。酸無水物系の硬化剤としては;無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水コハク酸等があげられ、カルボン酸系の硬化剤としてはピロメリット酸、トリメリット酸等のカルボン酸類及びビニルエーテルを付加したブロックカルボン酸類があげられる。また、エポキシ系二液形成材としては、例えば、エポキシ樹脂とポリチオールの二液からなるもの、エポキシ樹脂とポリアミドの二液からなるものなどを用いることができる。 The curing agent for the epoxy resin is not particularly limited, and various types such as phenol resin type, acid anhydride type, carboxylic acid type, and polyamine type can be used. As the phenol resin-based curing agent, for example, phenol novolak resin, bisphenol novolak resin, xylylene phenol resin, cresol novolak resin, or the like is used. Examples of acid anhydride-based curing agents include: maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, succinic anhydride, and the like. Examples of carboxylic acid-based curing agents include carboxylic acids such as pyromellitic acid and trimellitic acid. Examples thereof include block carboxylic acids added with acids and vinyl ether. Moreover, as an epoxy-type two-component formation material, what consists of two liquids of an epoxy resin and a polythiol, what consists of two liquids of an epoxy resin and polyamide, etc. can be used, for example.
 硬化剤の配合量は、エポキシ樹脂との当量により異なるが、エポキシ樹脂100重量部に対して、30~70重量部、さらには40~60重量部とするのが好ましい。 The blending amount of the curing agent varies depending on the equivalent to the epoxy resin, but is preferably 30 to 70 parts by weight, more preferably 40 to 60 parts by weight with respect to 100 parts by weight of the epoxy resin.
 さらに、エポキシ系形成材には、エポキシ樹脂およびその硬化剤に加えて、各種の硬化促進剤を用いることができる。硬化促進剤としては、例えば、各種イミダゾール系化合物及びその誘導体、ジシアンジアミド等があげられる。 In addition to the epoxy resin and its curing agent, various curing accelerators can be used for the epoxy-based forming material. Examples of the curing accelerator include various imidazole compounds and derivatives thereof, dicyandiamide, and the like.
 イソシアネート系形成材としては、粘着剤層の形成において架橋剤として用いるものがあげられる。イソシアネート系架橋剤としては、少なくとも2つのイソシアネート基を有する化合物を使用できる。例えば、前記ポリイソシアネート化合物をイソシアネート系形成材として使用できる。詳しくは、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、1,3-ビスイソシアナトメチルシクロヘキサン、ヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メチレンビス4-フェニルイソシアネート、p-フェニレンジイソシアネートまたはこれらの2量体やイソシアヌル酸トリス(6-インシアネートヘキシル)などの3量体、さらにはこれらのビウレットやトリメチロールプロパンなどの多価アルコールや多価アミンと反応させたものなどがあげられる。またイソシアネート系架橋剤としては、イソシアヌル酸トリス(6-インシアネートヘキシル)などのイソシアネート基を3個以上有するものが好ましい。イソシアネート系形成材としては、例えば、イソシアネート系接着剤として用いられるものがあげられる。 Examples of the isocyanate-based forming material include those used as a crosslinking agent in the formation of the pressure-sensitive adhesive layer. As the isocyanate-based crosslinking agent, a compound having at least two isocyanate groups can be used. For example, the polyisocyanate compound can be used as an isocyanate-based forming material. Specifically, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, 1,3-bisisocyanatomethylcyclohexane, hexamethylene diisocyanate, tetramethylxylylene diisocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, methylene bis 4-phenyl isocyanate, p-phenylene diisocyanate or their dimers, trimers such as isocyanuric acid tris (6-inocyanate hexyl), biuret, trimethylolpropane, etc. Examples include those reacted with polyhydric alcohols and polyhydric amines. As the isocyanate-based crosslinking agent, those having three or more isocyanate groups such as isocyanuric acid tris (6-inocyanate hexyl) are preferable. As an isocyanate type formation material, what is used as an isocyanate type adhesive agent is mention | raise | lifted, for example.
 イソシアネート系形成材のなかでも、本発明では、分子構造的に環状構造(ベンゼン環、シアヌレート環、イソシアヌレート環等)が構造中で占める割合の大きなリジットな構造のものを使用することが好ましい。イソシアネート系形成材としては、例えば、トリメチロールプロパン-トリ-トリレンイソシアネート、トリス(ヘキサメチレンイソシアネート)イソシアヌレート等が好まし用いられる。 Among the isocyanate-based forming materials, in the present invention, it is preferable to use those having a rigid structure in which a cyclic structure (benzene ring, cyanurate ring, isocyanurate ring, etc.) accounts for a large proportion in the structure. As the isocyanate-based forming material, for example, trimethylolpropane-tri-tolylene isocyanate, tris (hexamethylene isocyanate) isocyanurate and the like are preferably used.
 なお前記イソシアネート系架橋剤は、末端イソシアネート基に保護基を付与したものを用いることもできる。保護基としてはオキシムやラクタムなどがある。イソシアネート基を保護したものは、加熱することによりイソシアネート基から保護基を解離させ、イソシアネート基が反応するようになる。 In addition, the said isocyanate type crosslinking agent can also use what provided the protective group to the terminal isocyanate group. Protecting groups include oximes and lactams. In the case where the isocyanate group is protected, the protecting group is dissociated from the isocyanate group by heating, and the isocyanate group reacts.
 さらにイソシアネート基の反応性をあげるために反応触媒を用いることができる。反応触媒は特に制限されないが、スズ系触媒またはアミン系触媒が好適である。反応触媒は1種または2種以上を用いることができる。反応触媒の使用量は、通常、イソシアネート系架橋剤100重量部に対して、5重量部以下で使用される。反応触媒量が多いと、架橋反応速度が速くなり形成材の発泡が起こる。発泡後の形成材を使用しても十分な接着性は得られない。通常、反応触媒を使用する場合には、0.01~5重量部、さらには0.05~4重量部が好ましい。 Further, a reaction catalyst can be used to increase the reactivity of the isocyanate group. The reaction catalyst is not particularly limited, but a tin-based catalyst or an amine-based catalyst is suitable. The reaction catalyst can use 1 type (s) or 2 or more types. The amount of the reaction catalyst used is usually 5 parts by weight or less with respect to 100 parts by weight of the isocyanate-based crosslinking agent. When the amount of the reaction catalyst is large, the crosslinking reaction rate increases and foaming of the forming material occurs. Even if the forming material after foaming is used, sufficient adhesion cannot be obtained. Usually, when a reaction catalyst is used, it is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 4 parts by weight.
 スズ系触媒としては、無機系、有機系のいずれも使用できるが有機系が好ましい。無機系スズ系触媒としては、例えば、塩化第一スズ、塩化第二スズ等があげられる。有機系スズ系触媒は、メチル基、エチル基、エーテル基、エステル基などの骨格を有する脂肪族基、脂環族基などの有機基を少なくとも1つ有するものが好ましい。例えば、テトラ-n-ブチルスズ、トリ-n-ブチルスズアセテート、n-ブチルスズトリクロライド、トリメチルスズハイドロオキサイド、ジメチルスズジクロライド、ジブチルスズジラウレート、等があげられる。 As the tin-based catalyst, both inorganic and organic catalysts can be used, but an organic catalyst is preferred. Examples of the inorganic tin-based catalyst include stannous chloride and stannic chloride. The organic tin-based catalyst is preferably one having at least one organic group such as an aliphatic group or alicyclic group having a skeleton such as a methyl group, an ethyl group, an ether group or an ester group. Examples include tetra-n-butyltin, tri-n-butyltin acetate, n-butyltin trichloride, trimethyltin hydroxide, dimethyltin dichloride, dibutyltin dilaurate, and the like.
 またアミン系触媒としては、特に制限されない。例えば、キノクリジン、アミジン、ジアザビシクロウンデセンなどの脂環族基等の有機基を少なくとも1つ有するものが好ましい。その他、アミン系触媒としては、トリエチルアミン等があげられる。また前記以外の反応触媒としては、ナフテン酸コバルト、ベンジルトリメチルアンモニウムハイドロオキサイド等が例示できる。 The amine catalyst is not particularly limited. For example, those having at least one organic group such as an alicyclic group such as quinoclidine, amidine, and diazabicycloundecene are preferable. In addition, examples of the amine catalyst include triethylamine. Examples of reaction catalysts other than the above include cobalt naphthenate and benzyltrimethylammonium hydroxide.
 イソシアネート系形成材は、通常、溶液として用いられる。溶液は溶剤系であってもよいし、エマルション、コロイド分散液、水溶液等の水系であってもよい。有機溶剤としては、形成材を構成する成分を均一に溶解すれば特に制限はない。有機溶剤としては、例えば、トルエン、メチルエチルケトン、酢酸エチル等があげられる。なお、水系にする場合にも、例えば、n-ブチルアルコール、イソプロピルアルコール等のアルコール類、アセトン等のケトン類を配合することもできる。水系にする場合には、分散剤を用いたり、イソシアネート系架橋剤に、カルボン酸塩、スルホン酸塩、4級アンモニウム塩等のイソシアネート基と反応性の低い官能基や、ポリエチレングリコール等の水分散性成分を導入することにより行うことができる。 The isocyanate-based forming material is usually used as a solution. The solution may be a solvent system or an aqueous system such as an emulsion, a colloidal dispersion, or an aqueous solution. The organic solvent is not particularly limited as long as the components constituting the forming material are uniformly dissolved. Examples of the organic solvent include toluene, methyl ethyl ketone, ethyl acetate and the like. In the case of using an aqueous system, for example, alcohols such as n-butyl alcohol and isopropyl alcohol and ketones such as acetone can be blended. In the case of using an aqueous system, a dispersant is used, or an isocyanate-based crosslinking agent, a functional group having low reactivity with an isocyanate group such as a carboxylate, a sulfonate, or a quaternary ammonium salt, or an aqueous dispersion such as polyethylene glycol. It can carry out by introduce | transducing a sex component.
 シアノアクリレート系形成材、エポキシ系形成材、またはイソシアネート系形成材による補強膜の形成(硬化)は、前記形成材の種類に応じて適宜に選択することができるが、通常は、30~100℃程度、好ましくは50~80℃で、0.5~15分間程度乾燥することにより行う。なお、シアノアクリレート系形成材の場合には、硬化が早いため、前記時間より短い時間により、補強膜を形成することができる。 The formation (curing) of the reinforcing film by the cyanoacrylate-based forming material, the epoxy-based forming material, or the isocyanate-based forming material can be appropriately selected depending on the type of the forming material, but is usually 30 to 100 ° C. It is carried out by drying at a temperature of preferably about 50 to 80 ° C. for about 0.5 to 15 minutes. In the case of a cyanoacrylate-based forming material, since the curing is fast, the reinforcing film can be formed in a time shorter than the above time.
 また、前記補強膜を形成する材料としては、ポリウレタンを用いることができる。ポリウレタンは、高分子ポリオール化合物および/または低分子ポリオールとイソシアネート化合物の反応物をとイソシアネート化合物との反応物を用いることが好ましい。なお、前記ポリウレタンには、高分子ポリオール化合物とイソシアネート化合物の他に、さらに、鎖延長剤として低分子のポリアミノ化合物および/またはポリオール化合物を反応させることができる。 Also, polyurethane can be used as a material for forming the reinforcing film. For polyurethane, it is preferable to use a reaction product of a high-molecular polyol compound and / or a low-molecular polyol and an isocyanate compound and an isocyanate compound. In addition to the polymer polyol compound and the isocyanate compound, the polyurethane can be further reacted with a low molecular polyamino compound and / or a polyol compound as a chain extender.
 前記高分子ポリオール化合物は、重量平均分子量100~4000であって、1分子中に水酸基を2個またはそれ以上有するものが好ましく、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールなどが用いられる。前記高分子ポリオール化合物としては、重量平均分子量が500~4000が好ましく、さらには600~3500であることが好ましく、1000~3000であることがより好ましい。 The polymer polyol compound preferably has a weight average molecular weight of 100 to 4000 and has two or more hydroxyl groups in one molecule, and polyether polyol, polyester polyol, polycarbonate polyol and the like are used. The polymer polyol compound preferably has a weight average molecular weight of 500 to 4000, more preferably 600 to 3500, and even more preferably 1000 to 3000.
 ポリエーテルポリオールとしては、脂肪族ポリエーテルポリオールや芳香族ポリエーテルポリオールがあげられる。より具体的には、たとえば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサメチレングリコールなどの2価アルコール、トリメチロールプロパン、グリセリン、ペンタエリスリトールなどの3価アルコールなどの低分子ポリオールに、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフランなどを付加重合させてなるポリエーテルが用いられる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 Examples of polyether polyols include aliphatic polyether polyols and aromatic polyether polyols. More specifically, for example, low molecular polyols such as dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol and hexamethylene glycol, and trihydric alcohols such as trimethylolpropane, glycerin and pentaerythritol, ethylene oxide , Polyether obtained by addition polymerization of propylene oxide, tetrahydrofuran, or the like is used. These may be used singly or in combination of two or more.
 ポリエステルポリールとしては、脂肪族ポリエステルポリオールや芳香族ポリエステルポリオールがあげられる。より具体的には、上記の2価アルコール、ジプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどのアルコールと、アジピン酸、アゼライン酸、セバチン酸などの2塩基酸との重縮合物からなるポリエステルが用いられる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 Examples of polyester polyols include aliphatic polyester polyols and aromatic polyester polyols. More specifically, alcohols such as the above dihydric alcohols, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol and neopentyl glycol, and two bases such as adipic acid, azelaic acid and sebacic acid Polyester composed of a polycondensate with an acid is used. These may be used singly or in combination of two or more.
 また、分子の両末端に水酸基を有する、ポリブタジエン、ブタジエン・アクリロニトリル共重合体、ポリイソプレンなどのポリジエン系ポリオール類、分子の両末端に水酸基を有する、ポリブタジエン水添物、ポリイソプレン水添物、ポリイソブチレンなどのポリオレフィン系ポリオール類などもあげられる。 In addition, polydiene-based polyols such as polybutadiene, butadiene-acrylonitrile copolymer, polyisoprene having hydroxyl groups at both ends of the molecule, polybutadiene hydrogenated products, polyisoprene hydrogenated products having hydroxyl groups at both ends of the molecules, polyisoprene Examples thereof include polyolefin polyols such as isobutylene.
 また、前記鎖延長剤として用いられるポリアミノ化合物としては、脂肪族ポリアミノ化合物や芳香族ポリアミノ化合物があげられる。より具体的には、たとえば、エチレンジアミン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(MOCA)、ジエチルトルエンジアミン(DETDA)、44’-ビス-(sec-ブチル)ジフェニルメタン、2,4-トリレンジアミン、2,6-トリレンジアミン、キシリレンジアミン、ヘキサンジアミン、イソホロンジアミンなどがあげられる。なかでも、エチレンジアミンなどが好ましい。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 In addition, examples of the polyamino compound used as the chain extender include aliphatic polyamino compounds and aromatic polyamino compounds. More specifically, for example, ethylenediamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane (MOCA), diethyltoluenediamine (DETDA), 44′-bis- (sec-butyl) diphenylmethane, 2,4 -Tolylenediamine, 2,6-tolylenediamine, xylylenediamine, hexanediamine, isophoronediamine and the like. Of these, ethylenediamine and the like are preferable. These may be used singly or in combination of two or more.
 また、前記低分子ポリオール、鎖延長剤として用いられるポリオール化合物としては、ポリエーテルポリオール、ポリエステルポリールに例示した低分子ポリオールが挙げられる。 Further, examples of the low molecular polyol and the polyol compound used as the chain extender include low molecular polyols exemplified in polyether polyol and polyester polyol.
 前記鎖延長剤は、上記高分子ポリオール化合物100重量部に対して0.1~10重量部用いられることが好ましく、0.5~7重量部用いられることがより好ましく、1~5重量部用いられることがさらに好ましい。鎖延長剤の使用により、十分に分子量をあげて、耐久性を向上させることができる。 The chain extender is preferably used in an amount of 0.1 to 10 parts by weight, more preferably 0.5 to 7 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the polymer polyol compound. More preferably, The use of a chain extender can sufficiently increase the molecular weight and improve the durability.
 前記イソシアネート化合物は、イソシアネート基を2個以上有するポリイソシアネート(イソシアネート化合物)であり、前記イソシアネート系形成材と同様のものを用いることができる。また、イソシアネート化合物は、前記ポリエステルポリールに例示した低分子ポリオールと、前記例示のイソシアネート化合物とを予め反応させた、ウレタンプレポリマーとして用いることもできる。 The isocyanate compound is a polyisocyanate (isocyanate compound) having two or more isocyanate groups, and the same as the isocyanate-based forming material can be used. The isocyanate compound can also be used as a urethane prepolymer obtained by reacting the low-molecular polyol exemplified in the polyester polyol and the exemplified isocyanate compound in advance.
 また、これらポリイソシアネートのイソシアネート基と水酸基とを反応させるため、触媒として、ジブチル錫ジラウレート、オクトエ酸錫、1,4-ジアザビシクロ(2,2,2)オクタンなどを用いるのが望ましい。 In order to react the isocyanate group and hydroxyl group of these polyisocyanates, it is desirable to use dibutyltin dilaurate, tin octoate, 1,4-diazabicyclo (2,2,2) octane or the like as a catalyst.
 ポリウレタンによる補強膜の形成(硬化)は、通常、予め調製したポリウレタンの液状物(塗工液)を偏光子に塗布することにより行ってもよく、または前記高分子ポリオール化合物とイソシアネート化合物を含有する組成物を偏光子に塗布した後に、硬化させた反応物としてポリウレタンにより補強膜を形成してもよい。補強膜の形成は、通常は、30~100℃程度、好ましくは50~80℃で、0.5~15分間程度乾燥することにより行うこいとができる。 The formation (curing) of the reinforcing film with polyurethane may be usually performed by applying a liquid material (coating solution) of polyurethane prepared in advance to the polarizer, or contains the polymer polyol compound and the isocyanate compound. After applying the composition to the polarizer, a reinforcing film may be formed of polyurethane as a cured reaction product. The reinforcing membrane can be formed usually by drying at about 30 to 100 ° C., preferably 50 to 80 ° C., for about 0.5 to 15 minutes.
 また、前記補強膜の形成(硬化:これを初期硬化という)の後には、アニール処理を施してもよい。アニール処理は、特に、イソシアネート系形成剤、ポリウレタン系形成材等において、初期硬化後もイソシアネートが十分に反応していない場合(補強膜中に反応基が残留する状態)において反応を促進することを目的に実施することができる。アニール処理は、乾燥条件または加湿条件のいずれの雰囲気でも行うことができる。アニール処理温度は、上記初期硬化時の条件と同様に30~100℃程度、好ましくは50~80℃である。アニール処理時間に特に制限はない。 Further, after the formation of the reinforcing film (curing: this is referred to as initial curing), an annealing treatment may be performed. Annealing treatment promotes the reaction especially when isocyanate is not sufficiently reacted even after the initial curing in the isocyanate-based forming agent, polyurethane-based forming material, etc. (reactive group remains in the reinforcing film). Can be implemented for the purpose. The annealing treatment can be performed in any atmosphere of a dry condition or a humidified condition. The annealing temperature is about 30 to 100 ° C., preferably 50 to 80 ° C., similarly to the conditions for the initial curing. There is no particular limitation on the annealing time.
 なお、ポリウレタンの重量平均分子量は、3万~20万であることが好ましく、4~15万であることがより好ましく、5~13万であることがさらに好ましい。 The weight average molecular weight of polyurethane is preferably 30,000 to 200,000, more preferably 40 to 150,000, and still more preferably 50,000 to 130,000.
 (重量平均分子量の測定)
 高分子ポリオール化合物、ポリウレタンの重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)方の下記条件にて測定した。
 分析装置:東ソー製、HLC-8120GPC。
 カラム:東ソー製、G7000HXL+GMHXL+GMHXL。
 カラムサイズ:各7.8mmφ×30cm 計90cm。
 カラム温度:40℃。
 流速:0.8ml/min。
 注入量:100μl。
 溶離液:テトラヒドロフラン。
 検出器:示唆屈折計。
 標準試料:ポリスチレン。
(Measurement of weight average molecular weight)
The weight average molecular weight of the polymer polyol compound and polyurethane was measured under the following conditions of GPC (gel permeation chromatography).
Analyzing apparatus: HLC-8120GPC manufactured by Tosoh Corporation.
Column: manufactured by Tosoh Corporation, G7000HXL + GMHXL + GMHXL.
Column size: 7.8 mmφ × 30 cm each 90 cm in total.
Column temperature: 40 ° C.
Flow rate: 0.8 ml / min.
Injection volume: 100 μl.
Eluent: tetrahydrofuran.
Detector: Suggested refractometer.
Standard sample: polystyrene.
 また、補強膜の形成材料として、イソシアネート基、エポキシ基等のPVAと共有結合を形成することができる官能基を有し、かつ、(メタ)アクリロイル基、ビニル基等の炭素-炭素二重結合のラジカル重合性の官能基を有する化合物を用いることができる。前記化合物としては、例えば、2-イソシアナトエチルアクリラート(昭和電工社製,製品名カレンズAOI)、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート(昭和電工社製,カレンズBEI)等が挙げられる。また、前記化合物としては、ジイソシアネート化合物を構成成分とする重合物と、水酸基含有水酸基含有(メタ)アクリレートとの反応物等を用いることができる。かかる反応物としては、例えば、2-ヒドロキシエチルアクリレートと1,6-ジイソシアナトヘキサンを構成成分とする重合物との反応物(BASF社製,製品名ラロマーLR9000)等が挙げられる。 Further, as a material for forming the reinforcing film, it has a functional group capable of forming a covalent bond with PVA such as an isocyanate group or an epoxy group, and has a carbon-carbon double bond such as a (meth) acryloyl group or a vinyl group. A compound having a radical polymerizable functional group can be used. Examples of the compound include 2-isocyanatoethyl acrylate (manufactured by Showa Denko, product name Karenz AOI), 1,1- (bisacryloyloxymethyl) ethyl isocyanate (manufactured by Showa Denko, Karenz BEI), and the like. It is done. Moreover, as the compound, a reaction product of a polymer containing a diisocyanate compound as a constituent and a hydroxyl group-containing hydroxyl group-containing (meth) acrylate, or the like can be used. Examples of such a reaction product include a reaction product of 2-hydroxyethyl acrylate and a polymer containing 1,6-diisocyanatohexane (BASF, product name Ralomer LR9000).
 前記化合物は、イソシアネート基、エポキシ基等の官能基を有することから、前記イソシアネート系形成剤等と同様に熱硬化により補強膜を形成することができ、さらには、アニール処理を施すことができる。また、前記化合物は、ラジカル重合性の官能基を有するため、ラジカル重合硬化型形成材に係る、活性エネルギー線硬化型または熱硬化型の形成材として用いることができる。ラジカル重合硬化型形成材として用いる場合には、前記化合物は、他のラジカル重合性化合物を併用することができる。 Since the compound has a functional group such as an isocyanate group or an epoxy group, a reinforcing film can be formed by thermosetting in the same manner as the isocyanate-based forming agent, and further, an annealing treatment can be performed. Moreover, since the said compound has a radically polymerizable functional group, it can be used as an active energy ray hardening type or thermosetting type forming material concerning a radical polymerization hardening type forming material. When used as a radical polymerization curable forming material, the compound can be used in combination with other radical polymerizable compounds.
 また、補強膜は、硬化性成分を含有しない形成材から形成されていてもよく、例えば前記ポリビニルアルコール系樹脂を主成分として含有する形成材から形成されてもよい。補強膜を形成するポリビニルアルコール系樹脂は、「ポリビニルアルコール系樹脂」である限り、偏光子が含有するポリビニルアルコール系樹脂と同一でも異なってもいてもよい。 Further, the reinforcing film may be formed from a forming material that does not contain a curable component, for example, a forming material that contains the polyvinyl alcohol-based resin as a main component. The polyvinyl alcohol resin forming the reinforcing film may be the same as or different from the polyvinyl alcohol resin contained in the polarizer as long as it is a “polyvinyl alcohol resin”.
 前記ポリビニルアルコール系樹脂としては、例えば、ポリビニルアルコールが挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。また、ポリビニルアルコール系樹脂としては、酢酸ビニルと共重合性を有する単量体との共重合体のケン化物が挙げられる。前記共重合性を有する単量体がエチレンの場合には、エチレン-ビニルアルコール共重合体が得られる。また、前記共重合性を有する単量体としては、(無水)マレイン酸、フマル酸、クロトン酸、イタコン酸、(メタ)アクリル酸等の不飽和カルボン酸およびそのエステル類;エチレン、プロピレン等のα-オレフィン、(メタ)アリルスルホン酸(ソーダ)、スルホン酸ソーダ(モノアルキルマレート)、ジスルホン酸ソーダアルキルマレート、N-メチロールアクリルアミド、アクリルアミドアルキルスルホン酸アルカリ塩、N-ビニルピロリドン、N-ビニルピロリドン誘導体等が挙げられる。これらポリビニルアルコール系樹脂は一種を単独で又は二種以上を併用することができる。前記補強膜の結晶融解熱量を30mj/mg以上に制御して、耐湿熱性や耐水性を満足させる観点から、ポリ酢酸ビニルをケン化して得られたポリビニルアルコールが好ましい。 Examples of the polyvinyl alcohol resin include polyvinyl alcohol. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. Examples of the polyvinyl alcohol-based resin include a saponified product of a copolymer of vinyl acetate and a monomer having copolymerizability. When the copolymerizable monomer is ethylene, an ethylene-vinyl alcohol copolymer is obtained. Examples of the copolymerizable monomer include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid, and esters thereof; ethylene, propylene, etc. α-olefin, (meth) allylsulfonic acid (soda), sulfonic acid soda (monoalkylmalate), disulfonic acid soda alkylmalate, N-methylolacrylamide, acrylamide alkylsulfonic acid alkali salt, N-vinylpyrrolidone, N- Examples include vinyl pyrrolidone derivatives. These polyvinyl alcohol resins can be used alone or in combination of two or more. Polyvinyl alcohol obtained by saponifying polyvinyl acetate is preferable from the viewpoint of satisfying moisture heat resistance and water resistance by controlling the heat of crystal fusion of the reinforcing film to 30 mj / mg or more.
 前記ポリビニルアルコール系樹脂のケン化度は、例えば、95%以上のものを用いることができるが、前記補強膜の結晶融解熱量を30mj/mg以上に制御して、耐湿熱性や耐水性を満足させる観点からは、ケン化度は99.0%以上が好ましく、さらには99.7%以上が好ましい。ケン化度は、ケン化によりビニルアルコール単位に変換され得る単位の中で、実際にビニルアルコール単位にケン化されている単位の割合を表したものであり、残基はビニルエステル単位である。ケン化度は、JIS K 6726-1994に準じて求めることができる。 The saponification degree of the polyvinyl alcohol-based resin can be, for example, 95% or more, but the heat of crystal fusion of the reinforcing film is controlled to 30 mj / mg or more to satisfy the heat and moisture resistance and water resistance. From the viewpoint, the degree of saponification is preferably 99.0% or more, and more preferably 99.7% or more. The degree of saponification represents the proportion of units that are actually saponified to vinyl alcohol units among the units that can be converted to vinyl alcohol units by saponification, and the residue is a vinyl ester unit. The degree of saponification can be determined according to JIS K 6726-1994.
 前記ポリビニルアルコール系樹脂の平均重合度は、例えば、500以上のものを用いることができるが、前記補強膜の結晶融解熱量を30mj/mg以上に制御して、耐湿熱性や耐水性を満足させる観点からは、平均重合度は、1000以上が好ましく、さらには1500以上が好ましく、さらには2000以上が好ましい。ポリビニルアルコール系樹脂の平均重合度はJIS-K6726に準じて測定される。 The average degree of polymerization of the polyvinyl alcohol-based resin can be, for example, 500 or more, but the viewpoint of satisfying moisture heat resistance and water resistance by controlling the heat of crystal fusion of the reinforcing film to 30 mj / mg or more. Therefore, the average degree of polymerization is preferably 1000 or more, more preferably 1500 or more, and further preferably 2000 or more. The average degree of polymerization of the polyvinyl alcohol resin is measured according to JIS-K6726.
 また前記ポリビニルアルコール系樹脂としては、前記ポリビニルアルコールまたはその共重合体の側鎖に親水性の官能基を有する変性ポリビニルアルコール系樹脂を用いることができる。前記親水性の官能基としては、例えば、アセトアセチル基、カルボニル基等が挙げられる。その他、ポリビニルアルコール系樹脂をアセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化等した変性ポリビニルアルコールを用いることができる。 As the polyvinyl alcohol resin, a modified polyvinyl alcohol resin having a hydrophilic functional group in the side chain of the polyvinyl alcohol or a copolymer thereof can be used. Examples of the hydrophilic functional group include an acetoacetyl group and a carbonyl group. In addition, modified polyvinyl alcohol obtained by acetalization, urethanization, etherification, grafting, phosphoric esterification or the like of a polyvinyl alcohol resin can be used.
 前記ポリビニルアルコール系樹脂を主成分として含有する形成材には、硬化性成分(架橋剤)等を含有することができる。補強膜または形成材(固形分)中のポリビニルアルコール系樹脂の割合は、80重量%以上であるのが好ましく、さらには90重量%以上、さらには95重量%以上であるのが好ましい。但し、前記形成材には、補強膜の結晶融解熱量を30mj/mg以上に制御しやすい観点から、硬化性成分(架橋剤)を含有しないことが好ましい。 The forming material containing the polyvinyl alcohol-based resin as a main component can contain a curable component (crosslinking agent) and the like. The proportion of the polyvinyl alcohol resin in the reinforcing film or the forming material (solid content) is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more. However, it is preferable that the forming material does not contain a curable component (crosslinking agent) from the viewpoint of easily controlling the heat of crystal fusion of the reinforcing film to 30 mj / mg or more.
 架橋剤としては、ポリビニルアルコール系樹脂と反応性を有する官能基を少なくとも2つ有する化合物を使用できる。たとえば、エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン等のアルキレン基とアミノ基を2個有するアルキレンジアミン類;トリレンジイソシアネート、水素化トリレンジイソシアネート、トリメチロールプロパントリレンジイソシアネートアダクト、トリフェニルメタントリイソシアネート、メチレンビス(4-フェニルメタントリイソシアネート、イソホロンジイソシアネートおよびこれらのケトオキシムブロック物またはフェノールブロック物等のイソシアネート類;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジまたはトリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン等のエポキシ類;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等のモノアルデヒド類;グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、フタルジアルデヒド等のジアルデヒド類;メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロール化メラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物等のアミノ-ホルムアルデヒド樹脂;アジピン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、イソフタル酸ジヒドラジド、セバシン酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジドなどのジカルボン酸ジヒドラジド;エチレン-1,2-ジヒドラジン、プロピレン-1,3-ジヒドラジン、ブチレン-1,4-ジヒドラジンなどの水溶性ジヒドラジンがあげられる。これらのなかでもアミノ-ホルムアルデヒド樹脂や水溶性ジヒドラジンが好ましい。アミノ-ホルムアルデヒド樹脂としてはメチロール基を有する化合物が好ましい。なかでもメチロール基を有する化合物である、メチロールメラミンが特に好適である。 As the crosslinking agent, a compound having at least two functional groups having reactivity with the polyvinyl alcohol resin can be used. For example, alkylenediamine having two alkylene groups and two amino groups such as ethylenediamine, triethylenediamine, hexamethylenediamine; tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylolpropane tolylene diisocyanate adduct, triphenylmethane triisocyanate, methylene bis (4-Phenylmethane triisocyanate, isophorone diisocyanate and isocyanates such as ketoxime block product or phenol block product thereof; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin di or triglycidyl ether, 1,6-hexane Diol diglycidyl ether, trimethylolpropane triglycidyl ether, di Epoxies such as ricidylaniline and diglycidylamine; monoaldehydes such as formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde; Dialdehydes; amino-formaldehyde resins such as methylolurea, methylolmelamine, alkylated methylolurea, alkylated methylolated melamine, acetoguanamine, condensate of benzoguanamine and formaldehyde; adipic acid dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, Succinic acid dihydrazide, glutaric acid dihydrazide, isophthalic acid dihydrazide, sebacic acid dihydrazide, maleic acid dihydrazide Examples thereof include dicarboxylic acid dihydrazides such as fumaric acid dihydrazide and itaconic acid dihydrazide; and water-soluble dihydrazines such as ethylene-1,2-dihydrazine, propylene-1,3-dihydrazine and butylene-1,4-dihydrazine. Of these, amino-formaldehyde resins and water-soluble dihydrazine are preferred, and the amino-formaldehyde resin is preferably a compound having a methylol group, particularly methylol melamine, which is a compound having a methylol group.
 前記硬化性成分(架橋剤)は、耐水性向上の観点から用いることができるが、その割合は、ポリビニルアルコール系樹脂100重量部に対して、20重量部以下、10重量部以下、5重量部以下であるのが好ましい。 Although the said sclerosing | hardenable component (crosslinking agent) can be used from a viewpoint of water resistance improvement, the ratio is 20 weight part or less, 10 weight part or less, 5 weight part with respect to 100 weight part of polyvinyl alcohol-type resin. It is preferable that:
 前記形成材は、前記ポリビニルアルコール系樹脂を溶媒に溶解させた溶液として調整される。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミドN-メチルピロリドン、各種グリコール類、アルコール類等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、溶剤として水を用いた水溶液として用いるのが好ましい。前記形成材(例えば水溶液)における、前記ポリビニルアルコール系樹脂の濃度は、特に制限はないが、塗工性や放置安定性等を考慮すれば、0.1~15重量%、好ましくは0.5~10重量%である。 The forming material is prepared as a solution in which the polyvinyl alcohol resin is dissolved in a solvent. Examples of the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide N-methylpyrrolidone, various glycols, polyhydric alcohols such as alcohols, and amines such as ethylenediamine and diethylenetriamine. These may be used alone or in combination of two or more. Among these, it is preferable to use it as an aqueous solution using water as a solvent. The concentration of the polyvinyl alcohol-based resin in the forming material (for example, an aqueous solution) is not particularly limited, but is 0.1 to 15% by weight, preferably 0.5%, in consideration of coating properties and storage stability. ~ 10% by weight.
 なお、前記形成材(例えば水溶液)に配合できる添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。 In addition, as an additive which can be mix | blended with the said forming material (for example, aqueous solution), a plasticizer, surfactant, etc. are mentioned, for example. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include nonionic surfactants.
 前記補強膜は、前記形成材を、偏光子に、塗布して乾燥することにより形成することができる。塗布操作は特に制限されず、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等各種手段を採用できる。 The reinforcing film can be formed by applying the forming material to a polarizer and drying it. The application operation is not particularly limited, and any appropriate method can be adopted. For example, various means such as a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) can be employed.
 <表面処理層>
 本発明のフレキシブル偏光膜の片面または両面には、表面処理層を設けることができる。前記表面処理層としては、ハードコート層、防眩処理層、反射防止層、スティッキング防止層などが挙がられる。前記表面処理層としては、ハードコート層であることが好ましい。ハードコート層の形成材料としては、例えば、熱可塑性樹脂、熱または放射線により硬化する材料を用いることができる。前記材料としては、熱硬化型樹脂や紫外線硬化型樹脂、電子線硬化型樹脂等の放射線硬化性樹脂があげられる。これらのなかでも、紫外線照射による硬化処理にて、簡単な加工操作にて効率よく硬化樹脂層を形成することができる紫外線硬化型樹脂が好適である。これら硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系、メラミン系等の各種のものがあげられ、これらのモノマー、オリゴマー、ポリマー等が含まれる。
<Surface treatment layer>
A surface treatment layer can be provided on one side or both sides of the flexible polarizing film of the present invention. Examples of the surface treatment layer include a hard coat layer, an antiglare treatment layer, an antireflection layer, and an antisticking layer. The surface treatment layer is preferably a hard coat layer. As a material for forming the hard coat layer, for example, a thermoplastic resin or a material that is cured by heat or radiation can be used. Examples of the material include radiation curable resins such as thermosetting resins, ultraviolet curable resins, and electron beam curable resins. Among these, an ultraviolet curable resin that can efficiently form a cured resin layer by a simple processing operation by a curing treatment by ultraviolet irradiation is preferable. Examples of these curable resins include polyesters, acrylics, urethanes, amides, silicones, epoxies, melamines, and the like, and these monomers, oligomers, polymers, and the like are included.
 また、前記表面処理層としては、視認性の向上を目的とした防眩処理層や反射防止層を設けることができる。また前記ハードコート層上に、防眩処理層や反射防止層を設けることができる。防眩処理層の構成材料としては特に限定されず、例えば放射線硬化型樹脂、熱硬化型樹脂、熱可塑性樹脂等を用いることができる。反射防止層としては、酸化チタン、酸化ジルコニウム、酸化ケイ素、フッ化マグネシウム等が用いられる。反射防止層は複数層を設けることができる。その他、表面処理層としては、スティッキング防止層等が挙げられる。 Moreover, as the surface treatment layer, an antiglare treatment layer or an antireflection layer for the purpose of improving visibility can be provided. An antiglare treatment layer or an antireflection layer can be provided on the hard coat layer. The constituent material of the antiglare layer is not particularly limited, and for example, a radiation curable resin, a thermosetting resin, a thermoplastic resin, or the like can be used. As the antireflection layer, titanium oxide, zirconium oxide, silicon oxide, magnesium fluoride, or the like is used. The antireflection layer can be provided with a plurality of layers. In addition, examples of the surface treatment layer include a sticking prevention layer.
 前記表面処理層の厚さは、表面処理層の種類によって適宜に設定することができるが、一般的には0.1~100μmであるのが好ましい。例えば、ハードコート層の厚さは、0.5~20μmであることが好ましい。 The thickness of the surface treatment layer can be appropriately set depending on the type of the surface treatment layer, but is generally preferably 0.1 to 100 μm. For example, the thickness of the hard coat layer is preferably 0.5 to 20 μm.
 <粘着剤層>
 本発明のフレキシブル偏光膜の片面または両面には粘着剤層を設けることができる。粘着剤層の形成には、適宜な粘着剤を用いることができ、その種類について特に制限はない。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などがあげられる。
<Adhesive layer>
An adhesive layer can be provided on one side or both sides of the flexible polarizing film of the present invention. An appropriate pressure-sensitive adhesive can be used for forming the pressure-sensitive adhesive layer, and the type thereof is not particularly limited. Adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinyl pyrrolidone adhesives, polyacrylamide adhesives, Examples thereof include cellulose-based pressure-sensitive adhesives.
 これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。 Among these pressure-sensitive adhesives, those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive pressure characteristics, and excellent weather resistance and heat resistance are preferably used. An acrylic pressure-sensitive adhesive is preferably used as one exhibiting such characteristics.
 粘着剤層を形成する方法としては、例えば、前記粘着剤を剥離処理したセパレータなどに塗布し、重合溶剤などを乾燥除去して粘着剤層を形成した後にフレキシブル偏光膜に転写する方法、またはフレキシブル偏光膜に前記粘着剤を塗布し、重合溶剤などを乾燥除去して粘着剤層を偏光子に形成する方法などにより作製される。なお、粘着剤の塗布にあたっては、適宜に、重合溶剤以外の一種以上の溶剤を新たに加えてもよい。 As a method for forming the pressure-sensitive adhesive layer, for example, a method in which the pressure-sensitive adhesive is applied to a peeled separator, the polymerization solvent is dried and removed to form a pressure-sensitive adhesive layer, and then transferred to a flexible polarizing film, or flexible The pressure-sensitive adhesive is produced by a method of applying the pressure-sensitive adhesive to the polarizing film, drying and removing the polymerization solvent, and forming a pressure-sensitive adhesive layer on the polarizer. In applying the pressure-sensitive adhesive, one or more solvents other than the polymerization solvent may be added as appropriate.
 粘着剤層の厚さは、特に制限されず、例えば、1~100μm程度である。好ましくは、2~50μm、より好ましくは2~40μmであり、さらに好ましくは、5~35μmである。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 100 μm. The thickness is preferably 2 to 50 μm, more preferably 2 to 40 μm, and still more preferably 5 to 35 μm.
 前記粘着剤層が露出する場合には、実用に供されるまで剥離処理したシート(セパレータ)で粘着剤層を保護してもよい。 When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected with a peeled sheet (separator) until practical use.
 <表面保護フィルム>
 また、本発明のフレキシブル偏光膜には、表面保護フィルムを設けることができる。表面保護フィルムは、通常、基材フィルムおよび粘着剤層を有し、当該粘着剤層を介してフレキシブル偏光膜を保護する。
<Surface protection film>
The flexible polarizing film of the present invention can be provided with a surface protective film. The surface protective film usually has a base film and an adhesive layer, and protects the flexible polarizing film via the adhesive layer.
 表面保護フィルムの基材フィルムとしては、検査性や管理性などの観点から、等方性を有する又は等方性に近いフィルム材料が選択される。そのフィルム材料としては、例えば、ポリエチレンテレフタレートフィルム等のポリエステル系樹脂、セルロース系樹脂、アセテート系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂のような透明なポリマーがあげられる。これらのなかでもポリエステル系樹脂が好ましい。基材フィルムは、1種または2種以上のフィルム材料のラミネート体として用いることもでき、また前記フィルムの延伸物を用いることもできる。基材フィルムの厚さは、一般的には、500μm以下、好ましくは10~200μmである。 As the base film of the surface protective film, a film material having isotropic property or close to isotropic property is selected from the viewpoints of inspection property and manageability. Examples of film materials include polyester resins such as polyethylene terephthalate film, cellulose resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, and the like. Examples thereof include transparent polymers such as resins. Of these, polyester resins are preferred. The base film can be used as a laminate of one kind or two or more kinds of film materials, and a stretched product of the film can also be used. The thickness of the base film is generally 500 μm or less, preferably 10 to 200 μm.
 表面保護フィルムの粘着剤層を形成する粘着剤としては、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとする粘着剤を適宜に選択して用いることができる。透明性、耐候性、耐熱性などの観点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。粘着剤層の厚さ(乾燥膜厚)は、必要とされる粘着力に応じて決定される。通常1~100μm程度、好ましくは5~50μmである。 The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer of the surface protective film includes a (meth) acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or a rubber-based pressure-sensitive adhesive. Can be appropriately selected and used. From the viewpoints of transparency, weather resistance, heat resistance and the like, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferable. The thickness (dry film thickness) of the pressure-sensitive adhesive layer is determined according to the required adhesive force. Usually, it is about 1 to 100 μm, preferably 5 to 50 μm.
 なお、表面保護フィルムには、基材フィルムにおける粘着剤層を設けた面の反対面に、シリコーン処理、長鎖アルキル処理、フッ素処理などの低接着性材料により、剥離処理層を設けることができる。 The surface protective film can be provided with a release treatment layer on the surface opposite to the surface on which the pressure-sensitive adhesive layer is provided on the base film, using a low adhesion material such as silicone treatment, long-chain alkyl treatment, or fluorine treatment. .
 <他の光学層>
 本発明のフレキシブル偏光膜は、偏光子又は偏光フィルム(偏光子に透明保護フィルムを設けたもの)の代替として、従来の偏光子や偏光フィルムでは適用できなかった種々の用途展開の拡大を図ることができ、例えば他の光学層と積層した光学フィルムとしても用いることができる。その光学層については特に限定はないが、例えば、本発明のフレキシブル偏光膜を、偏光子の代替として用いる場合には、偏光子の保護に用いられる保護フィルム(位相差フィルム、輝度向上フィルム、拡散フィルム等も含む)を用いることができ、偏光フィルムの代替として用いる場合には、反射板や半透過板、位相差フィルム(1/2や1/4などの波長板を含む)、視角補償フィルムなど、液晶表示装置や有機EL表示装置といった画像表示装置などの形成に用いられることのある光学層を1層または2層以上用いることができる。
<Other optical layers>
The flexible polarizing film of the present invention is intended to expand various applications that cannot be applied to conventional polarizers and polarizing films as an alternative to polarizers or polarizing films (those provided with a transparent protective film on the polarizer). For example, it can be used as an optical film laminated with another optical layer. The optical layer is not particularly limited. For example, when the flexible polarizing film of the present invention is used as a substitute for a polarizer, a protective film (retardation film, brightness enhancement film, diffusion) used for protecting the polarizer. (Including films, etc.), and when used as an alternative to polarizing films, reflectors, transflective plates, retardation films (including wavelength plates such as 1/2 and 1/4), viewing angle compensation films One optical layer or two or more optical layers that may be used for forming an image display device such as a liquid crystal display device or an organic EL display device can be used.
 <介在層>
 前記光学層とフレキシブル偏光膜は接着剤層、粘着剤層、下塗り層(プライマー層)などの介在層を介して積層することができる。この際、介在層により両者を空気間隙なく積層することが望ましい。
<Intervening layer>
The optical layer and the flexible polarizing film can be laminated via an intervening layer such as an adhesive layer, a pressure-sensitive adhesive layer, or an undercoat layer (primer layer). At this time, it is desirable that the both are laminated without an air gap by an intervening layer.
 本発明のフレキシブル偏光膜又はそれを用いた光学フィルムは液晶表示装置、有機EL表示装置などの各種画像表示装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと本発明のフレキシブル偏光膜又はそれを用いた光学フィルム、及び必要に応じての照明システムなどの構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明のフレキシブル偏光膜を用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばIPS型、VA型などの任意なタイプのものを用いうるが、特にIPS型に好適である。 The flexible polarizing film of the present invention or an optical film using the same can be preferably used for forming various image display devices such as liquid crystal display devices and organic EL display devices. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a flexible polarizing film of the present invention or an optical film using the same, and an illumination system as required, and incorporating a drive circuit. However, there is no particular limitation except that the flexible polarizing film of the present invention is used, and the conventional method can be applied. As the liquid crystal cell, an arbitrary type such as an IPS type or a VA type can be used, but is particularly suitable for the IPS type.
 以下に、本発明を実施例を挙げて説明するが、本発明は以下に示した実施例に制限されるものではない。なお、各例中の部および%はいずれも重量基準である。以下に特に規定のない室温放置条件は全て23℃、65%RHである。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the examples shown below. In addition, all the parts and% in each example are based on weight. The room temperature standing conditions not specifically defined below are all 23 ° C. and 65% RH.
<偏光子A0の作製>
 吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上、日本合成化学工業社製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布および乾燥して、厚み11μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.0倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴に、偏光板が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.0重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。
 次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 以上により、厚み5μmの偏光子を含む光学フィルム積層体を得た。
<Preparation of polarizer A0>
One side of an amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 μm) having a water absorption of 0.75% and Tg of 75 ° C. is subjected to corona treatment. Alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetoacetyl-modified PVA (polymerization degree 1200, acetoacetyl modification degree 4.6%, saponification degree 99.0 mol% or more, manufactured by Nippon Synthetic Chemical Industry Co., Ltd. An aqueous solution containing 9: 1 ratio of the trade name “Gosefimer Z200”) was applied and dried at 25 ° C. to form a PVA-based resin layer having a thickness of 11 μm, thereby preparing a laminate.
The obtained laminate was uniaxially stretched in the longitudinal direction (longitudinal direction) 2.0 times between rolls having different peripheral speeds in an oven at 120 ° C. (air-assisted stretching process).
Next, the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Subsequently, it was immersed in a dyeing bath having a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance. In this example, 0.2 parts by weight of iodine was blended with 100 parts by weight of water, and immersed in an aqueous iodine solution obtained by blending 1.0 part by weight of potassium iodide (dyeing treatment). .
Subsequently, it was immersed for 30 seconds in a crosslinking bath having a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (Crosslinking treatment).
Thereafter, the laminate was immersed in a boric acid aqueous solution (an aqueous solution obtained by blending 4 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 70 ° C. However, uniaxial stretching was performed between rolls having different peripheral speeds in the longitudinal direction (longitudinal direction) so that the total stretching ratio was 5.5 times (in-water stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. (cleaning treatment).
As a result, an optical film laminate including a polarizer having a thickness of 5 μm was obtained.
 <偏光子A1~A2の作製>
 上記の偏光子A0の作製において、製造条件を表1に示すように変えたこと以外は偏光子A0の作製と同様にして、偏光子A1~A2を作製した。偏光子A0~A2の厚み、光学特性(単体透過率、偏光度)、ホウ酸濃度を表1に示す。
<Preparation of polarizers A1 and A2>
Polarizers A1 and A2 were produced in the same manner as in the production of the polarizer A0 except that the production conditions for the polarizer A0 were changed as shown in Table 1. Table 1 shows the thickness, optical characteristics (single transmittance, polarization degree), and boric acid concentration of the polarizers A0 to A2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <偏光子B1(厚さ12μmの偏光子)の作製>
 平均重合度2400、ケン化度99.9モル%の厚み30μmのポリビニルアルコールフィルムを、30℃の温水中に60秒間浸漬し膨潤させた。次いで、ヨウ素/ヨウ化カリウム(重量比=0.5/8)の濃度0.3%の水溶液に浸漬し、3.5倍まで延伸させながらフィルムを染色した。その後、65℃のホウ酸エステル水溶液中で、総延伸倍率が6倍となるように延伸を行った。延伸後に、40℃のオーブンにて3分間乾燥を行い、偏光子B1を得た。得られた偏光子B1の厚みは12μmであった。得られた偏光子B1の光学特性は、透過率42.8%、偏光度99.99%であった。
<Preparation of Polarizer B1 (12 μm Thick Polarizer)>
A polyvinyl alcohol film having an average polymerization degree of 2400 and a saponification degree of 99.9 mol% and a thickness of 30 μm was immersed in warm water at 30 ° C. for 60 seconds to swell. Next, the film was dyed while being immersed in an aqueous solution of 0.3% concentration of iodine / potassium iodide (weight ratio = 0.5 / 8) and stretched to 3.5 times. Then, it extended | stretched so that the total draw ratio might be 6 time in 65 degreeC borate ester aqueous solution. After extending | stretching, it dried for 3 minutes in 40 degreeC oven, and obtained polarizer B1. The thickness of the obtained polarizer B1 was 12 μm. The optical properties of the obtained polarizer B1 were a transmittance of 42.8% and a polarization degree of 99.99%.
 <偏光子B2(厚さ23μmの偏光子)の作製>
 平均重合度2400、ケン化度99.9モル%の厚み75μmのポリビニルアルコールフィルムを、30℃の温水中に60秒間浸漬し膨潤させた。次いで、ヨウ素/ヨウ化カリウム(重量比=0.5/8)の濃度0.3%の水溶液に浸漬し、3.5倍まで延伸させながらフィルムを染色した。その後、65℃のホウ酸エステル水溶液中で、トータルの延伸倍率が6倍となるように延伸を行った。延伸後に、40℃のオーブンにて3分間乾燥を行い、偏光子B2を得た。得られた偏光子B2の厚みは23μmであった。得られた偏光子B2の光学特性は、透過率42.8%、偏光度99.99%であった。
<Preparation of Polarizer B2 (23 μm Thick Polarizer)>
A polyvinyl alcohol film having an average polymerization degree of 2400 and a saponification degree of 99.9 mol% and a thickness of 75 μm was immersed in warm water at 30 ° C. for 60 seconds to swell. Next, the film was dyed while being immersed in an aqueous solution of 0.3% concentration of iodine / potassium iodide (weight ratio = 0.5 / 8) and stretched to 3.5 times. Then, it extended | stretched so that the total draw ratio might be 6 times in 65 degreeC borate ester aqueous solution. After extending | stretching, it dried for 3 minutes in 40 degreeC oven, and obtained polarizer B2. The thickness of the obtained polarizer B2 was 23 μm. The optical properties of the obtained polarizer B2 were a transmittance of 42.8% and a polarization degree of 99.99%.
 <補強膜の形成材料>
 (1)ポリウレタン系材料
 トリレンジイソシアネートとトリメチロールプロパンよりなるウレタンプレポリマー(東ソー社製,コロネートL)50部に、ポリカーボネートポリオール(住化バイエルウレタン社製,デスモフェンC3100XP)50部、ジオクチルスズジラウレート系触媒(東京ファインケミカル社製,エンビライザーOL-1)0.1部を加え、溶媒としてメチルイソブチルケトンを用いて、固形分濃度35%に調整した塗工液を得た。
<Reinforcing film forming material>
(1) Polyurethane material 50 parts of urethane prepolymer consisting of tolylene diisocyanate and trimethylolpropane (manufactured by Tosoh Corporation, Coronate L), 50 parts of polycarbonate polyol (manufactured by Sumika Bayer Urethane Co., Ltd., Desmophen C3100XP), dioctyltin dilaurate system 0.1 parts of a catalyst (manufactured by Tokyo Fine Chemical Co., Ltd., ENBOLiser OL-1) was added, and methyl isobutyl ketone was used as a solvent to obtain a coating solution adjusted to a solid content concentration of 35%.
 (2)UV硬化系材料
 ウレタンアクリレートオリゴマー(日本合成化学社製,紫光UV1700TL)50部に、2-ヒドロキシエチルアクリレートと1,6-ジイソシアナトヘキサンを構成成分とする重合物との反応物(BASF社製,製品名ラロマーLR9000)50部、光開始剤(BASF社製,IRGACURE907)3部を加え、溶媒としてメチルイソブチルケトンを用いて、固形分濃度35%に調整した塗工液を得た。
(2) UV curable material Reaction product of 2-hydroxyethyl acrylate and a polymer containing 1,6-diisocyanatohexane as a component in 50 parts of urethane acrylate oligomer (manufactured by Nippon Synthetic Chemical Co., Ltd., purple light UV1700TL) ( BASF, product name Laromar LR9000 (50 parts) and photoinitiator (BASF, IRGACURE907) (3 parts) were added, and methyl isobutyl ketone was used as a solvent to obtain a coating solution adjusted to a solid content concentration of 35%. .
 (3)水系樹脂エマルション材料
 アクリルエマルション(大成ファインケミカル社製の商品名:SE‐2915E)に、溶媒として純水を加えて固形分濃度30%に調整した塗工液を得た。
(3) Water-based resin emulsion material A coating liquid prepared by adding pure water as a solvent to an acrylic emulsion (trade name: SE-2915E manufactured by Taisei Fine Chemical Co., Ltd.) to a solid content concentration of 30% was obtained.
 <保護フィルム(アクリル)および接着剤>
 厚み20μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムの易接着処理面にコロナ処理を施して用いた。
<Protective film (acrylic) and adhesive>
A (meth) acrylic resin film having a lactone ring structure with a thickness of 20 μm was subjected to corona treatment on the easy adhesion treated surface.
 上記の保護フィルム(アクリル)に適用する接着剤として、N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、紫外線硬化型接着剤を調製した。 As an adhesive applied to the protective film (acrylic), 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloylmorpholine (ACMO), and 3 parts by weight of a photoinitiator “IRGACURE 819” (manufactured by BASF) Were mixed to prepare an ultraviolet curable adhesive.
 実施例1(フレキシブル偏光膜の作製)
 上記で得られた偏光子A0(厚み5μmの偏光子を含む光学フィルム積層体)の偏光子(第1面)に、上記補強膜のポリウレタン系材料(1)をワイヤーバーコーターを用いて、硬化後の厚みが5μmになるように塗工した後、60℃、10分の条件下で初期硬化させ、その後さらに60℃、12時間の条件下でアニール処理を施すことで第1補強膜を形成した。次いで、前記第1補強膜上に、表面保護フィルム(日東電工製,RP301)を貼り合せた後に、前記光学フィルム積層体の非晶性PET基材を剥離した。その後、偏光子(剥離面である第2面)に、上記補強膜のポリウレタン系材料(1)をワイヤーバーコーターを用いて、硬化後の厚みが5μmになるように塗工した後、60℃、10分の条件下で初期硬化させ、その後さらに60℃、12時間の条件下でアニール処理を施すことで、第2補強膜を形成した。その後、第1補強膜上に貼り合せていた表面保護フィルム取り外すことで、偏光子の両面に補強膜を有するフレキシブル偏光膜を得た。
Example 1 (Preparation of flexible polarizing film)
Using the wire bar coater, the polyurethane-based material (1) of the reinforcing film is cured on the polarizer (first surface) of the polarizer A0 (optical film laminate including a polarizer having a thickness of 5 μm) obtained above. After coating to a subsequent thickness of 5 μm, initial curing is performed under conditions of 60 ° C. and 10 minutes, and then a first reinforcing film is formed by performing annealing treatment under conditions of 60 ° C. and 12 hours. did. Next, after a surface protective film (manufactured by Nitto Denko, RP301) was bonded onto the first reinforcing film, the amorphous PET substrate of the optical film laminate was peeled off. Thereafter, the polyurethane-based material (1) of the reinforcing film was applied to a polarizer (second surface as a peeling surface) using a wire bar coater so that the thickness after curing was 5 μm, and then 60 ° C. The second reinforcing film was formed by initial curing under conditions of 10 minutes, and then annealing treatment at 60 ° C. for 12 hours. Then, the flexible polarizing film which has a reinforcement film on both surfaces of a polarizer was obtained by removing the surface protection film bonded on the 1st reinforcement film.
 実施例2~4
 実施例1において、偏光子の種類、補強膜の厚みを表2に示すように変えたこと以外は、実施例1と同様にして、偏光子の両面に補強膜を有するフレキシブル偏光膜を作製した。
Examples 2-4
In Example 1, a flexible polarizing film having a reinforcing film on both sides of the polarizer was prepared in the same manner as in Example 1 except that the type of polarizer and the thickness of the reinforcing film were changed as shown in Table 2. .
 実施例5(フレキシブル偏光膜の作製)
 上記で得られた偏光子A0(厚み5μmの偏光子を含む光学フィルム積層体)の偏光子(第1面)に、上記補強膜のUV硬化系材料(2)をワイヤーバーコーターを用いて、硬化後の厚みが5μmになるように塗工した後、60℃で1分加熱した。加熱後の塗布膜に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して、第1補強膜を形成した。次いで、前記第1補強膜上に表面保護フィルム(日東電工製,RP301)を貼り合せた後に、前記光学フィルム積層体の非晶性PET基材を剥離した。その後、偏光子(剥離面である第2面)に、上記補強膜のUV硬化系材料(2)をワイヤーバーコーターを用いて、硬化後の厚みが5μmになるように塗工した後、60℃で1分加熱した。加熱後の塗布膜に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射することで、第2補強膜を形成した。その後、第1補強膜上に貼り合せていた表面保護フィルム取り外すことで、偏光子の両面に補強膜を有するフレキシブル偏光膜を得た。
Example 5 (Preparation of flexible polarizing film)
Using a wire bar coater, the UV curable material (2) of the reinforcing film is applied to the polarizer (first surface) of the polarizer A0 (optical film laminate including a polarizer having a thickness of 5 μm) obtained above. After coating so that the thickness after curing was 5 μm, the coating was heated at 60 ° C. for 1 minute. A first reinforcing film was formed by irradiating the heated coating film with ultraviolet light having an integrated light quantity of 300 mJ / cm 2 with a high-pressure mercury lamp. Next, after a surface protective film (manufactured by Nitto Denko, RP301) was bonded onto the first reinforcing film, the amorphous PET substrate of the optical film laminate was peeled off. Thereafter, the UV curable material (2) of the reinforcing film was applied to a polarizer (second surface as a peeling surface) using a wire bar coater so that the thickness after curing was 5 μm, and then 60 Heated at 0 ° C. for 1 minute. A second reinforcing film was formed by irradiating the heated coating film with ultraviolet light having an integrated light quantity of 300 mJ / cm 2 using a high-pressure mercury lamp. Then, the flexible polarizing film which has a reinforcement film on both surfaces of a polarizer was obtained by removing the surface protection film bonded on the 1st reinforcement film.
 実施例6(フレキシブル偏光膜の作製)
 上記で得られた偏光子A0(厚み5μmの偏光子を含む光学フィルム積層体)の偏光子(第1面)に、上記補強膜の水系樹脂エマルション材料(3)をワイヤーバーコーターを用いて、硬化後の厚みが5μmになるように塗工した後、80℃、5分の条件下で硬化させ、第1補強膜を形成した。次いで、前記第1補強膜上に、表面保護フィルム(日東電工製,RP301)を貼り合せた後に、前記光学フィルム積層体の非晶性PET基材を剥離した。その後、偏光子(剥離面である第2面)に、上記補強膜の水系樹脂エマルション材料(3)をワイヤーバーコーターを用いて、硬化後の厚みが5μmになるように塗工した後、80℃、5分の条件下で硬化させ、第2補強膜を形成した。その後、第1補強膜上に貼り合せていた表面保護フィルム取り外すことで、偏光子の両面に補強膜を有するフレキシブル偏光膜を得た。
Example 6 (Preparation of flexible polarizing film)
To the polarizer (first surface) of the polarizer A0 (optical film laminate including a polarizer having a thickness of 5 μm) obtained above, the aqueous resin emulsion material (3) of the reinforcing film is used with a wire bar coater. After coating so that the thickness after curing was 5 μm, the coating was cured under the conditions of 80 ° C. for 5 minutes to form a first reinforcing film. Next, after a surface protective film (manufactured by Nitto Denko, RP301) was bonded onto the first reinforcing film, the amorphous PET substrate of the optical film laminate was peeled off. Then, after applying the water-based resin emulsion material (3) of the reinforcing film to a polarizer (second surface as a peeling surface) using a wire bar coater so that the thickness after curing becomes 5 μm, 80 Curing was carried out at 5 ° C. for 5 minutes to form a second reinforcing film. Then, the flexible polarizing film which has a reinforcement film on both surfaces of a polarizer was obtained by removing the surface protection film bonded on the 1st reinforcement film.
 実施例7
 実施例1において、第1補強膜を設けなかったこと以外は、実施例1と同様にして、偏光子の片面にのみ第2補強膜を有するフレキシブル偏光膜を作製した。
Example 7
In Example 1, a flexible polarizing film having a second reinforcing film only on one side of the polarizer was produced in the same manner as in Example 1 except that the first reinforcing film was not provided.
 実施例8
 実施例1において、第2補強膜を設けなかったこと以外は、実施例1と同様にして、偏光子の片面にのみ第1補強膜を有するフレキシブル偏光膜を作製した。
Example 8
In Example 1, a flexible polarizing film having the first reinforcing film only on one surface of the polarizer was produced in the same manner as in Example 1 except that the second reinforcing film was not provided.
 比較例1~3
 実施例1において、偏光子の種類、補強膜の厚みを表2に示すように変えたこと以外は、実施例1と同様にして、偏光子の両面に補強膜を有する補強膜を有する偏光膜を作製した。
Comparative Examples 1 to 3
A polarizing film having a reinforcing film having reinforcing films on both sides of the polarizer in the same manner as in Example 1 except that the type of polarizer and the thickness of the reinforcing film were changed as shown in Table 2 in Example 1. Was made.
 比較例4(片保護偏光フィルムの作製)
 上記で得られた偏光子A0(厚み5μmの偏光子を含む光学フィルム積層体)の偏光子(第1面)に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚みが1μmになるように塗布し、上記保護フィルム(アクリル)を貼合せたのち、活性エネルギー線として、紫外線を照射し、接着剤を硬化させた。紫外線照射は、ガリウム封入メタルハライドランプ、照射装置:Fusion UV Systems,Inc社製のLight HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用し、紫外線の照度は、Solatell社製のSola-Checkシステムを使用して測定した。次いで、光学フィルム積層体の非晶性PET基材を剥離して、片保護偏光フィルムを得た。
Comparative Example 4 (Production of a piece protective polarizing film)
On the polarizer (first surface) of the polarizer A0 (optical film laminate including a polarizer having a thickness of 5 μm) obtained above, the thickness of the adhesive layer after curing the ultraviolet curable adhesive becomes 1 μm. Then, the protective film (acrylic) was applied, and ultraviolet rays were applied as active energy rays to cure the adhesive. Ultraviolet irradiation is performed using a gallium-encapsulated metal halide lamp, an irradiation device: Fusion UV Systems, Inc. Light HAMMER 10, Inc., bulb: V bulb, peak illuminance: 1600 mW / cm 2 , integrated irradiation amount 1000 / mJ / cm 2 (wavelength 380 to 440 nm) ), And the illuminance of ultraviolet rays was measured using a Sola-Check system manufactured by Solatell. Subsequently, the amorphous PET base material of the optical film laminate was peeled off to obtain a piece protective polarizing film.
 上記実施例で得られたフレキシブル偏光膜および比較例で得られた補強膜を有する偏光膜、片保護偏光フィルムについて、サンプルを調製して下記評価を行った。結果を表2に示す。なお、比較例5乃至7では、偏光子A0、A1、B1の単体について評価した。膜厚が薄い偏光子A0、A1は脆く、単体での評価は剛軟性以外は測定不能であった。評価は23℃、65%RHの条件で行った。 Samples were prepared for the polarizing films having the flexible polarizing films obtained in the above examples and the reinforcing films obtained in the comparative examples and the piece protective polarizing films, and the following evaluation was performed. The results are shown in Table 2. In Comparative Examples 5 to 7, the simple substances of the polarizers A0, A1, and B1 were evaluated. Thin polarizers A0 and A1 were fragile, and evaluation by themselves was impossible except for stiffness and softness. The evaluation was performed under conditions of 23 ° C. and 65% RH.
 <偏光子の単体透過率Tおよび偏光度P>
 得られた偏光膜の単体透過率Tおよび偏光度Pを、積分球付き分光透過率測定器(村上色彩技術研究所のDot-3c)を用いて測定した。
 なお、偏光度Pは、2枚の同じ偏光フィルムを両者の透過軸が平行となるように重ね合わせた場合の透過率(平行透過率:Tp)および、両者の透過軸が直交するように重ね合わせた場合の透過率(直交透過率:Tc)を以下の式に適用することにより求められるものである。偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 各透過率は、グランテラープリズムを通して得られた完全偏光を100%として、JIS Z8701の2度視野(C光源)により視感度補整したY値で示したものである。
<Single transmittance T and polarization degree P of polarizer>
The single transmittance T and the polarization degree P of the obtained polarizing film were measured using a spectral transmittance measuring device with an integrating sphere (Dot-3c of Murakami Color Research Laboratory).
The degree of polarization P is the transmittance when two identical polarizing films are overlapped so that their transmission axes are parallel (parallel transmittance: Tp), and overlapped so that their transmission axes are orthogonal to each other. It is calculated | required by applying the transmittance | permeability (orthogonal transmittance | permeability: Tc) at the time of combining to the following formula | equation. Polarization degree P (%) = {(Tp−Tc) / (Tp + Tc)} 1/2 × 100
Each transmittance is indicated by a Y value obtained by correcting visibility with a two-degree field of view (C light source) of JIS Z8701 with 100% of the completely polarized light obtained through the Granteller prism.
 <圧縮弾性率の測定>
 圧縮弾性率の測定には、TI900 TriboIndenter(Hysitron社製)を使用した。得られた補強膜付き偏光子(偏光膜)を10mm×10mmのサイズに裁断しTriboIndenter備付の支持体に固定し、ナノインデンテーション法により圧縮弾性率の測定を行った。その際、使用圧子が透明層の中心部付近を押し込むように位置を調整した。測定条件を以下に示す。
 使用圧子:Berkovich(三角錐型)
 測定方法:単一押し込み測定
 測定温度:23℃
 押し込み深さ設定:100nm
<Measurement of compression modulus>
TI900 TriboIndenter (manufactured by Hystron) was used for the measurement of compression modulus. The obtained polarizer with a reinforcing film (polarizing film) was cut into a size of 10 mm × 10 mm, fixed to a support equipped with a TriboIndenter, and the compression modulus was measured by a nanoindentation method. At that time, the position was adjusted so that the used indenter pushed in the vicinity of the center of the transparent layer. The measurement conditions are shown below.
Working indenter: Berkovich (triangular pyramid type)
Measuring method: Single indentation measurement Measuring temperature: 23 ° C
Indentation depth setting: 100 nm
 <捻回試験>
 ユアサシステム機器社製の面状体無負荷捻回試験機(製品名:本体TCDM111LH及び治具:面状体無負荷捻回試験治具)を用いて行った。
 100mm(吸収軸方向)×150mm(透過軸方向)の矩形物1(サンプル)の両短辺を、前記試験機の捻回用クリップ11、12で挟み固定した後、一方の短辺はクリップ12で固定したまま、もう一方の短辺側のクリップ11を下記条件で捻回した。捻回の状態を図2に示す。
 捻回速度:10rpm
 捻回角度:45度
 捻回回数:100回
 捻回試験後のサンプルの状態を、目視により下記基準で評価した。
 〇:割れおよび光抜けは発生しなかった。かつ、折れ跡の残りはなかった。
 △:割れおよび光抜けは発生しなかった。しかし折れ跡が残っていた
 ×:割れおよび光抜けが発生した。かつ、折れ跡が残っていた。
<Torsion test>
It was performed using a planar body no-load twist tester (product name: main body TCDM111LH and jig: planar body no-load twist test jig) manufactured by Yuasa System Equipment Co., Ltd.
After sandwiching and fixing both short sides of the rectangular object 1 (sample) of 100 mm (absorption axis direction) × 150 mm (transmission axis direction) with the twisting clips 11 and 12 of the tester, one short side is the clip 12. The clip 11 on the other short side was twisted under the following conditions while being fixed at. The state of twisting is shown in FIG.
Twist speed: 10rpm
Twist angle: 45 degrees Twist number: 100 times The state of the sample after the twist test was visually evaluated according to the following criteria.
◯: No cracking or light leakage occurred. And there were no creases left.
Δ: No cracking or light leakage occurred. However, fold marks remained. X: Cracks and light leakage occurred. And there were creases left.
 <U字伸縮試験>
 ユアサシステム機器社製の面状体無負荷U字伸縮試験機(製品名:本体DLDM111LH及び治具:面状体無負荷U字伸縮試験治具)を用いて行った。
 50mm(吸収軸方向)×100mm(透過軸方向)の矩形物1(サンプル)の両端部x、y(50mm)を、前記試験機の支持部21、22に両面テープ(図示せず)で固定した後、前記矩形物1の片面側(第1面)が内側にU字状になるような伸縮を下記条件で行い、前記矩形物を折り曲げた(透過軸方向の第1面側の折り曲げ)。U字伸縮の一過程の状態を図3に示す。U字伸縮では、折り曲げR(曲げ半径)が0になるように設定し、平面の状態から、矩形物1(サンプル)が二つ折り状態で接触するまで折り曲げた。前記折り曲げは、両端部x、yを支持部の作動により両端部x、yの接触を行うとともに、矩形物1(サンプル)の他の部分は別途設置されている板部23、24により両外側から無負荷で挟み込むようにして接触させた。
 また、前記伸縮による折り曲げは、前記矩形物の他の片面側(第2面)についても内側にU字状になるような伸縮を前記同様に行った(透過軸方向の第2面側の折り曲げ)。
 さらに、前記伸縮による折り曲げは、50mm(透過軸方向)×100mm(吸収軸方向)の矩形物(サンプル)についても、第1面および第2面が内側にU字状になるような伸縮を前記同様に行った(吸収軸方向の第1面側および第2面側の折り曲げ)。
 伸縮速度 :30rpm
 折り曲げR:0
 伸縮回数 :100回
 U字伸縮試験のサンプルの状態を、目視により下記基準で評価した。
 〇:前記透過軸方向の第1面側および第2面側の折り曲げ、吸収軸方向の第1面側および第2面側の折り曲げの、いずれの折り曲げにおいても、割れおよび光抜けは発生しなかった。かつ、折れ跡の残りはなかった。
 ×:前記透過軸方向の第1面側および第2面側の折り曲げ、吸収軸方向の第1面側および第2面側の折り曲げの、いずれかの折り曲げにおいて、割れもしくは光抜けが発生した。または、折れ跡が確認された。
<U-shaped stretch test>
It was carried out using a planar body unloaded U-shaped expansion tester (product name: main body DLDM111LH and jig: planar body unloaded U-shaped expansion test jig) manufactured by Yuasa System Equipment Co., Ltd.
Both ends x and y (50 mm) of a rectangular object 1 (sample) of 50 mm (absorption axis direction) × 100 mm (transmission axis direction) are fixed to the support parts 21 and 22 of the tester with double-sided tape (not shown). Then, expansion and contraction was performed under the following conditions so that one side (first surface) of the rectangular object 1 was inwardly U-shaped, and the rectangular object was bent (bending on the first surface side in the transmission axis direction). . The state of one process of U-shaped expansion / contraction is shown in FIG. In U-shaped expansion and contraction, the bending R (bending radius) was set to be 0, and bending was performed from a flat state until the rectangular object 1 (sample) was in a folded state. In the bending, both ends x and y are brought into contact with both ends x and y by the operation of the support portion, and the other parts of the rectangular object 1 (sample) are both outside by plate portions 23 and 24 which are separately installed. And contacted with no load.
Further, the bending by the expansion and contraction was performed in the same manner as described above so that the other one side (second surface) of the rectangular object was inwardly U-shaped (bending on the second surface side in the transmission axis direction). ).
Further, the bending by the expansion and contraction is performed so that the first surface and the second surface are inwardly U-shaped with respect to a rectangular object (sample) of 50 mm (transmission axis direction) × 100 mm (absorption axis direction). The same was done (bending on the first surface side and the second surface side in the absorption axis direction).
Telescopic speed: 30rpm
Bending R: 0
Number of expansions / contractions: 100 times The state of the sample of the U-shaped expansion / contraction test was visually evaluated according to the following criteria.
◯: No cracking or light leakage occurred in any of the bending on the first surface side and the second surface side in the transmission axis direction and the bending on the first surface side and the second surface side in the absorption axis direction. It was. And there were no creases left.
X: Cracking or light leakage occurred in any of the bending of the first surface side and the second surface side in the transmission axis direction and the bending of the first surface side and the second surface side in the absorption axis direction. Or a crease was confirmed.
 上記捻回試験、U字伸縮試験における割れ、折れ跡及び光抜けの基準は下記のとおりである。
 “割れ”は、サンプル(フレキシブル偏光膜、補強膜を有する偏光膜、または片保護偏光フィルムを構成する全層又はその一部の層)に貫通して、裂けまたはクラックが発生していることを示す。
 “折れ跡”は、サンプル(フレキシブル偏光膜、補強膜を有する偏光膜、または片保護偏光フィルムを構成する全層又はその一部の層)に、折り曲げや局所的な負荷により、負荷除去後も残留する視認可能な跡が発生していることを示す。
 “光抜け”は、偏光子自体に裂けまたはクラックが発生していることを示す。光抜けの確認は、試験後のサンプル(フレキシブル偏光膜、補強膜を有する偏光膜、または片保護偏光フィルムを構成する全層)と他の通常の偏光フィルムを、クロスニコルの状態でガラスの両面に貼り合せ、バックライト等の光を透かすことで行った。
Criteria for cracks, creases and light leakage in the twist test and U-shaped stretch test are as follows.
“Crack” means that cracks or cracks have occurred through the sample (a flexible polarizing film, a polarizing film having a reinforcing film, or all or part of a layer constituting a single protective polarizing film). Show.
“Fold marks” are applied to the sample (flexible polarizing film, polarizing film having a reinforcing film, or all or part of a layer constituting a single protective polarizing film) even after the load is removed by bending or local load. It shows that the remaining visible trace has occurred.
“Light loss” indicates that the polarizer itself is torn or cracked. Confirmation of light leakage is performed by using a sample after testing (flexible polarizing film, polarizing film having a reinforcing film, or all layers constituting a piece of protective polarizing film) and other normal polarizing films on both sides of the glass in a crossed Nicol state. It was carried out by pasting light such as a backlight.
 <折り曲げ保持試験>
 200mm(吸収軸方向)×300mm(透過軸方向)の矩形物1(サンプル)を水平な台31に設置した。次いで、前記矩形物1を透過軸方向(長軸方向)に3つ折りとした後、最上部の全面に荷重がかかるように100gの荷重32を掛けて、5分間放置した。折り曲げの状態を図4に示す。その後に、前記荷重32を除いた。
 また、200mm(透過軸方向)×300mm(吸収軸方向)の矩形物(サンプル)についても、前記同様の操作(但し、サンプルは吸収軸方向(長軸方向)に3つ折りとした)を行った。
 折り曲げ保持試験後にサンプルが3つ折り状態を保持しているかを目視で確認すると共に、3つ折り形状が維持されていた場合には、サンプルを元の状態(平面)の状態に戻して、目視により下記基準で評価した。評価は透過軸方向長辺および吸収軸方向長辺のサンプルについてそれぞれ3回行った。
 〇:いずれのサンプルでも3つ折り形状が保持されると共に割れはなく元の状態が維持された(保持性有り)。
 ×:いずれかのサンプルで3つ折り形状が保持されなかった。または、3つ折り形状は保持されていたが、荷重時に割れが生じた(保持性なし)。
 なお、“割れ”の判断は上記捻回試験、U字伸縮試験と同じである。
<Bending test>
A rectangular object 1 (sample) of 200 mm (absorption axis direction) × 300 mm (transmission axis direction) was placed on a horizontal base 31. Next, the rectangular object 1 was folded in three in the transmission axis direction (major axis direction), and then a load 32 of 100 g was applied so as to apply a load to the entire uppermost surface, and left for 5 minutes. The state of bending is shown in FIG. Thereafter, the load 32 was removed.
In addition, the same operation (however, the sample was folded in three in the absorption axis direction (major axis direction)) was performed on a rectangular object (sample) of 200 mm (transmission axis direction) × 300 mm (absorption axis direction). .
After the bending holding test, it is visually confirmed whether the sample is held in a tri-folded state, and when the tri-folded shape is maintained, the sample is returned to the original state (planar) and visually checked as follows. Evaluated by criteria. The evaluation was performed three times for each sample of the long side in the transmission axis direction and the long side in the absorption axis direction.
◯: In any sample, the tri-fold shape was maintained and the original state was maintained without cracking (with retaining property).
X: Trifold shape was not hold | maintained by any sample. Alternatively, the tri-fold shape was retained, but cracking occurred during loading (no retainability).
The determination of “cracking” is the same as in the above twist test and U-shaped stretch test.
 <剛軟性試験>
 安田精機製作所製のNo.476のカンチレバー型柔軟度試験機を用いた。また、本試験では静電気の影響を排除するため、試験に用いるサンプル等を適切に除電して行った。
 50mm(吸収軸方向)×150mm(透過軸方向)の矩形物1(サンプル)を、頂部が平面(50mm×150mm:サンプルと同じサイズ)で、長辺の一端に45°の斜面を持ち、断面が台形の滑らかなSUS板台41の頂面に、収まるように設置した(図5参照)。サンプルの設置は透過軸方向に斜面があるように行った。
 前記サンプルを、押し出し速度10mm/secで、斜面側に静かに滑らせ移動させた(1)。サンプルの先端が斜面に初めて接した箇所でサンプルの移動を止めた(2)。頂部が平面においてサンプルが移動した距離L(mm)を測定した。
 50mm(透過軸方向)×150mm(吸収軸方向)の矩形物(フレキシブル偏光膜のサンプル)について、前記同様の操作(但し、サンプルの設置は吸収軸方向に斜面があるようにした)を行った。
 剛軟度(mm)は、透過軸方向長辺および吸収軸方向長辺のサンプルについてそれぞれ第1面を上側の場合および第2面を上側とした場合の2パターンについてそれぞれ3回、最短直線距離L(mm)を測定(合計12サンプル)し、それらの算術平均値とした。
 また12サンプルのいずれか1回以上の測定において、サンプルの変形やカールにより測定不可能なサンプルがあった場合には、そのサンプルは測定不可と判定とした。
<Flexibility test>
No. made by Yasuda Seiki Seisakusho. A 476 cantilever type flexibility tester was used. Moreover, in this test, in order to eliminate the influence of static electricity, the sample used for the test was appropriately discharged.
A rectangular object 1 (sample) of 50 mm (absorption axis direction) x 150 mm (transmission axis direction), the top is flat (50 mm x 150 mm: the same size as the sample), and has a 45 ° slope at one end of the long side. Was placed on the top surface of the trapezoid smooth SUS plate base 41 (see FIG. 5). The sample was placed so that there was a slope in the direction of the transmission axis.
The sample was gently slid and moved to the slope side at an extrusion speed of 10 mm / sec (1). The sample stopped moving at the point where the tip of the sample first contacted the slope (2). The distance L (mm) by which the sample moved while the top was flat was measured.
For a rectangular object (flexible polarizing film sample) of 50 mm (transmission axis direction) × 150 mm (absorption axis direction), the same operation as described above (however, the sample was set to have a slope in the absorption axis direction) was performed. .
The bending resistance (mm) is the shortest linear distance for each of the two patterns with the first surface on the upper side and the second surface on the upper side for the samples with the transmission axis direction long side and the absorption axis direction long side, respectively. L (mm) was measured (12 samples in total) and used as the arithmetic average value thereof.
Further, in any one or more measurements of 12 samples, when there was a sample that could not be measured due to deformation or curl of the sample, it was determined that the sample was not measurable.
 <引張試験>
 多目的試験片裁断機(ダンベル)にて、10mm(吸収軸方向)×150mm(透過軸方向)の所定形状に裁断してサンプル(フレキシブル偏光膜のサンプル)を作成した。
 前記サンプルについて、島津製作所製のオートグラフAG‐ISを使用して、引張速度:50mm/minで、引張試験を実施した。
 前記サンプルは、透過軸方向の両辺の側をクランプ51、52に固定し(初期クランプ間の距離53は50mm)、一方のクランプ52側を引張ることにより行った(図6参照)。サンプルが破断または塑性変形を開始した点を“引張強度”として評価した。
 引張強度は3回測定した結果の算術平均値とした。
<Tensile test>
A sample (flexible polarizing film sample) was prepared by cutting into a predetermined shape of 10 mm (absorption axis direction) × 150 mm (transmission axis direction) with a multipurpose test piece cutter (dumbbell).
About the said sample, the tension test was implemented by autograph AG-IS by Shimadzu Corporation at the tension | pulling speed: 50 mm / min.
The sample was obtained by fixing both sides in the transmission axis direction to the clamps 51 and 52 (the distance 53 between the initial clamps was 50 mm) and pulling one of the clamps 52 (see FIG. 6). The point at which the sample started to break or plastically deformed was evaluated as “tensile strength”.
The tensile strength was an arithmetic average value obtained by measuring three times.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
  1   フレキシブル偏光膜
  a   透明保護フィルム
  b1  第1補強膜
  b2  第2補強膜
DESCRIPTION OF SYMBOLS 1 Flexible polarizing film a Transparent protective film b1 1st reinforcement film b2 2nd reinforcement film

Claims (17)

  1.  ポリビニルアルコール系樹脂が一方向に配向し、かつ前記ポリビニルアルコール系樹脂にヨウ素又は二色性色素が吸着配向してなる厚み10μm以下のポリビニルアルコール系偏光子を有し、かつ、前記ポリビニルアルコール系樹脂が配向する方向に捻回させる捻回試験を施した後において、割れ、折れ跡及び光抜けがないことを特徴とするフレキシブル偏光膜。 The polyvinyl alcohol resin has a polyvinyl alcohol polarizer having a thickness of 10 μm or less, in which the polyvinyl alcohol resin is oriented in one direction and iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol resin, and the polyvinyl alcohol resin. A flexible polarizing film characterized by being free from cracks, folds and light leakage after being subjected to a twisting test in which the film is twisted in the direction in which it is oriented.
  2.  前記ポリビニルアルコール系樹脂が配向する配向方向および前記配向方向に対して直交する方向にU字状に伸縮を繰り返すU字伸縮試験を施した後において、いずれの方向にも割れ、折れ跡及び光抜けがないことを特徴とする請求項1記載のフレキシブル偏光膜。 After conducting a U-shaped expansion / contraction test in which the polyvinyl alcohol-based resin is repeatedly aligned and expanded in a U-shape in a direction perpendicular to the alignment direction, cracks, fold marks and light leakage are observed in either direction. The flexible polarizing film according to claim 1, wherein the flexible polarizing film is not present.
  3.  前記ポリビニルアルコール系樹脂が配向する配向方向および前記配向方向に対して直交する方向に折り曲げて保持する折り曲げ保持試験を施した後において、いずれの方向にも折り曲げ形状が保持されると共に、割れが生じないことを特徴とする請求項1または2記載のフレキシブル偏光膜。 After performing a bending holding test in which the polyvinyl alcohol-based resin is bent and held in a direction perpendicular to the alignment direction, the bent shape is maintained in both directions and cracks are generated. The flexible polarizing film according to claim 1, wherein the flexible polarizing film is not present.
  4.  前記ポリビニルアルコール系樹脂が配向する配向方向および前記配向方向に対して直交する方向への剛軟性試験において、剛軟度(mm)が60mm以下であることを特徴とする1~3のいずれかに記載のフレキシブル偏光膜。 In any one of 1 to 3, wherein the bending resistance (mm) is 60 mm or less in a bending test in an alignment direction in which the polyvinyl alcohol-based resin is aligned and in a direction orthogonal to the alignment direction. The flexible polarizing film as described.
  5.  引張試験において、前記ポリビニルアルコール系樹脂が配向する配向方向に対して直交する方向の引張強度が5N/10mm以上であることを特徴とする1~4のいずれかに記載のフレキシブル偏光膜。 5. The flexible polarizing film according to any one of 1 to 4, wherein, in a tensile test, the tensile strength in a direction orthogonal to the orientation direction in which the polyvinyl alcohol-based resin is oriented is 5 N / 10 mm or more.
  6.  前記ポリビニルアルコール系偏光子は、単体透過率T及び偏光度Pによって表される光学特性が、下記式
     P>-(100.929T-42.4-1)×100(ただし、T<42.3)、又は、
     P≧99.9(ただし、T≧42.3)の条件を満足するように構成されたものであることを特徴とする請求項1~5のいずれかに記載のフレキシブル偏光膜。
    The polyvinyl alcohol-based polarizer has an optical characteristic expressed by a single transmittance T and a polarization degree P of the following formula: P> − (10 0.929T-42.4 −1) × 100 (where T <42. 3) or
    6. The flexible polarizing film according to claim 1, wherein the flexible polarizing film is configured to satisfy a condition of P ≧ 99.9 (however, T ≧ 42.3).
  7.  前記ポリビニルアルコール系偏光子の少なくとも片面に、前記ポリビニルアルコール系偏光子に密着した補強膜を有することを特徴とする請求項1~6のいずれかに記載のフレキシブル偏光膜。 The flexible polarizing film according to any one of claims 1 to 6, further comprising a reinforcing film in close contact with the polyvinyl alcohol polarizer on at least one surface of the polyvinyl alcohol polarizer.
  8.  前記補強膜の厚みが15μm以下であることを特徴とする請求項7記載のフレキシブル偏光膜。 The flexible polarizing film according to claim 7, wherein the reinforcing film has a thickness of 15 μm or less.
  9.  前記ポリビニルアルコール系偏光子の第1の片面に厚み15μm以下の第1補強膜を有し、他方の第2の片面に厚み15μm以下の第2補強膜を有することを特徴とする請求項8記載のフレキシブル偏光膜。 The first reinforcing film having a thickness of 15 μm or less is provided on a first surface of the polyvinyl alcohol polarizer, and a second reinforcing film having a thickness of 15 μm or less is provided on the other second surface. Flexible polarizing film.
  10.  前記第1補強膜と第2補強膜の厚み差が10μm以下であることを特徴とする請求項9記載のフレキシブル偏光膜。 The flexible polarizing film according to claim 9, wherein a thickness difference between the first reinforcing film and the second reinforcing film is 10 μm or less.
  11.  前記ポリビニルアルコール系偏光子の厚みに対する、補強膜の厚みの比は0.4以上であることを特徴とする請求項7~10のいずれかに記載のフレキシブル偏光膜。 The flexible polarizing film according to any one of claims 7 to 10, wherein the ratio of the thickness of the reinforcing film to the thickness of the polyvinyl alcohol-based polarizer is 0.4 or more.
  12.  前記補強膜は、23℃における圧縮弾性率が1MPa以上であることを特徴とする請求項7~11のいずれかに記載のフレキシブル偏光膜。 12. The flexible polarizing film according to claim 7, wherein the reinforcing film has a compressive elastic modulus at 23 ° C. of 1 MPa or more.
  13.  前記補強膜は、実質的に配向していないことを特徴とする請求項7~12のいずれかに記載のフレキシブル偏光膜。 The flexible polarizing film according to any one of claims 7 to 12, wherein the reinforcing film is not substantially oriented.
  14.  前記補強膜が、樹脂膜であることを特徴とする請求項7~13のいずれかに記載のフレキシブル偏光膜。 The flexible polarizing film according to any one of claims 7 to 13, wherein the reinforcing film is a resin film.
  15.  前記樹脂膜は、熱硬化型樹脂または活性エネルギー線硬化型樹脂の形成物であることを特徴とする請求項14記載のフレキシブル偏光膜。 15. The flexible polarizing film according to claim 14, wherein the resin film is a thermosetting resin or an active energy ray curable resin.
  16.  請求項14または15記載のフレキシブル偏光膜の製造方法であって、
     ポリビニルアルコール系樹脂が一方向に配向し、かつ前記ポリビニルアルコール系樹脂にヨウ素又は二色性色素が吸着配向してなる厚み10μm以下のポリビニルアルコール系偏光子を準備する工程(1)、
     前記ポリビニルアルコール系偏光子の少なくとも片面に、樹脂成分または樹脂膜を構成することができる硬化性成分を含む液状物を塗工し、その後に、当該液状物を固化または硬化することにより、補強膜を形成する工程(2)を含むことを特徴とするフレキシブル偏光膜の製造方法。
    It is a manufacturing method of the flexible polarizing film according to claim 14 or 15,
    A step (1) of preparing a polyvinyl alcohol polarizer having a thickness of 10 μm or less, wherein the polyvinyl alcohol resin is oriented in one direction and iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol resin;
    By applying a liquid material containing a curable component capable of constituting a resin component or a resin film on at least one surface of the polyvinyl alcohol polarizer, and then solidifying or curing the liquid material, a reinforcing film The manufacturing method of the flexible polarizing film characterized by including the process (2) of forming.
  17.  請求項1~15のいずれかに記載のフレキシブル偏光膜を有する画像表示装置。 An image display device comprising the flexible polarizing film according to any one of claims 1 to 15.
PCT/JP2017/012588 2016-03-29 2017-03-28 Flexible polarizing film, manufacturing method for same and image display device WO2017170516A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187028928A KR102219925B1 (en) 2016-03-29 2017-03-28 Flexible polarizing film, manufacturing method thereof, and image display device
CN201780020448.1A CN108885295A (en) 2016-03-29 2017-03-28 Flexible polarizing coating, its manufacturing method and image display device
JP2018508051A JPWO2017170516A1 (en) 2016-03-29 2017-03-28 Flexible polarizing film, manufacturing method thereof, and image display device
TW106110465A TWI722157B (en) 2016-03-29 2017-03-29 Flexible polarizing film, its manufacturing method and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-066377 2016-03-29
JP2016066377 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170516A1 true WO2017170516A1 (en) 2017-10-05

Family

ID=59964608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012588 WO2017170516A1 (en) 2016-03-29 2017-03-28 Flexible polarizing film, manufacturing method for same and image display device

Country Status (5)

Country Link
JP (2) JPWO2017170516A1 (en)
KR (1) KR102219925B1 (en)
CN (1) CN108885295A (en)
TW (1) TWI722157B (en)
WO (1) WO2017170516A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170525A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device
JPWO2017170522A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device
JPWO2017170527A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device
EP3858931A4 (en) * 2018-09-26 2022-06-15 Mitsui Chemicals, Inc. Functional layer including adhesive layer, laminate, and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183726A (en) * 1997-12-18 1999-07-09 Nippon Synthetic Chem Ind Co Ltd:The Polarizing film and polarizing plate using the same
JP2000249833A (en) * 1999-03-01 2000-09-14 Nitto Denko Corp Polarizing film, optical member and liquid crystal display device
JP2006291173A (en) * 2005-03-16 2006-10-26 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based film and manufacturing method thereof
JP2007009056A (en) * 2005-06-30 2007-01-18 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film for optical film, its manufacturing method and polarizing film and polarizing plate obtained using the same
JP2013125077A (en) * 2011-12-13 2013-06-24 Nitto Denko Corp Adhesive for polarizing plate, polarizing plate, manufacturing method of the same, optical film, and image display device
JP2016033215A (en) * 2013-06-21 2016-03-10 日東電工株式会社 Adhesive layer with separator and method for producing the same, polarization film having adhesive layer with separator and method for producing the same, and image display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306269B2 (en) * 2003-02-12 2009-07-29 住友化学株式会社 Polarizing plate, manufacturing method thereof, optical member, and liquid crystal display device
KR100632510B1 (en) 2004-04-30 2006-10-09 엘지전자 주식회사 Wire grid polarizer and its manufacturing method
JP2007232792A (en) 2006-02-27 2007-09-13 Nippon Zeon Co Ltd Method of manufacturing grid polarizing film
JP2010133987A (en) * 2007-03-12 2010-06-17 Toagosei Co Ltd Optical film laminate and display device using the same
JP2010107969A (en) * 2008-10-02 2010-05-13 Dainippon Printing Co Ltd Optical film for protecting polarizer, polarizing plate and image display device
JP4691205B1 (en) * 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film
JP5983098B2 (en) * 2012-06-29 2016-08-31 東亞合成株式会社 Polarizer
JP2014206725A (en) * 2013-03-19 2014-10-30 富士フイルム株式会社 Polarizing plate and liquid crystal display device
WO2014175040A1 (en) * 2013-04-26 2014-10-30 コニカミノルタ株式会社 Polarizing plate, method for producing same and liquid crystal display device
JP6378525B2 (en) * 2014-04-17 2018-08-22 日東電工株式会社 Organic electroluminescence display device
JPWO2017170527A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device
JPWO2017170522A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device
JPWO2017170525A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183726A (en) * 1997-12-18 1999-07-09 Nippon Synthetic Chem Ind Co Ltd:The Polarizing film and polarizing plate using the same
JP2000249833A (en) * 1999-03-01 2000-09-14 Nitto Denko Corp Polarizing film, optical member and liquid crystal display device
JP2006291173A (en) * 2005-03-16 2006-10-26 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based film and manufacturing method thereof
JP2007009056A (en) * 2005-06-30 2007-01-18 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film for optical film, its manufacturing method and polarizing film and polarizing plate obtained using the same
JP2013125077A (en) * 2011-12-13 2013-06-24 Nitto Denko Corp Adhesive for polarizing plate, polarizing plate, manufacturing method of the same, optical film, and image display device
JP2016033215A (en) * 2013-06-21 2016-03-10 日東電工株式会社 Adhesive layer with separator and method for producing the same, polarization film having adhesive layer with separator and method for producing the same, and image display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170525A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device
JPWO2017170522A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device
JPWO2017170527A1 (en) * 2016-03-29 2018-10-18 日東電工株式会社 Flexible polarizing film, manufacturing method thereof, and image display device
EP3858931A4 (en) * 2018-09-26 2022-06-15 Mitsui Chemicals, Inc. Functional layer including adhesive layer, laminate, and use thereof

Also Published As

Publication number Publication date
TWI722157B (en) 2021-03-21
KR102219925B1 (en) 2021-02-25
KR20180120744A (en) 2018-11-06
CN108885295A (en) 2018-11-23
JP2020160460A (en) 2020-10-01
JPWO2017170516A1 (en) 2018-10-18
TW201738092A (en) 2017-11-01

Similar Documents

Publication Publication Date Title
WO2017170527A1 (en) Flexible polarizing film, manufacturing method for same and image display device
JP6077619B2 (en) Single protective polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof
JP6077618B2 (en) Single protective polarizing film, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method thereof
WO2017170522A1 (en) Flexible polarizing film, manufacturing method for same and image display device
KR102567394B1 (en) One-side-protected polarizing film, adhesive-layer-equipped polarizing film, image display device, and method for continuously producing same
WO2017170525A1 (en) Flexible polarizing film, manufacturing method for same and image display device
JP2020160460A (en) Flexible polarizing film, manufacturing method therefor, and image display device
WO2016052549A1 (en) One-side-protected polarizing film, adhesive-layer-equipped polarizing film, image display device, and method for continuously producing same
US20140315019A1 (en) Adhesive film having a phase difference, method for manufacturing same, and optical member including same
WO2016052531A1 (en) One-side-protected polarizing film, adhesive-layer-equipped polarizing film, image display device, and method for continuously producing same
JP7178776B2 (en) Method for manufacturing polarizing film
JP2017045023A (en) Production method of polarizing film
TWI683142B (en) Single-sided protective polarizing film, polarizing film with adhesive layer, image display device and continuous manufacturing method thereof
JP6931518B2 (en) Single-sided protective polarizing film, polarizing film with adhesive layer, image display device and its continuous manufacturing method
JP2019053210A (en) Polarization film and picture display unit
WO2016052534A1 (en) Polarizing film protected on one side, polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production process therefor
CN114341682A (en) Polarizing film laminate with adhesive layer, and optical display panel using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187028928

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775053

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775053

Country of ref document: EP

Kind code of ref document: A1