WO2017170314A1 - Light-emitting element - Google Patents

Light-emitting element Download PDF

Info

Publication number
WO2017170314A1
WO2017170314A1 PCT/JP2017/012226 JP2017012226W WO2017170314A1 WO 2017170314 A1 WO2017170314 A1 WO 2017170314A1 JP 2017012226 W JP2017012226 W JP 2017012226W WO 2017170314 A1 WO2017170314 A1 WO 2017170314A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
ring
represented
light emitting
Prior art date
Application number
PCT/JP2017/012226
Other languages
French (fr)
Japanese (ja)
Inventor
敏明 佐々田
大介 福島
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2018509296A priority Critical patent/JP6979400B2/en
Publication of WO2017170314A1 publication Critical patent/WO2017170314A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a light emitting element.
  • Light emitting elements such as organic electroluminescence elements can be suitably used for display and lighting applications, and research and development are being conducted.
  • Patent Document 1 discloses an organic layer containing a polymer compound (P0-1) containing a structural unit represented by the following formula (M0-1) and a light emission represented by the following formula (EM0-1). A light-emitting element having a light-emitting layer containing a material is described.
  • the polymer compound (P0-1) is a polymer compound having no crosslinking group.
  • Patent Document 2 discloses an organic layer containing a crosslinked product of a polymer compound (P0-2) represented by the following formula and a light emitting layer containing a light emitting material represented by the following formula (EM0-2) Are described.
  • the polymer compound (P0-2) includes a crosslinked structural unit having a group represented by the formula (XL-A) described later and a crosslinked structural unit having a group represented by the formula (XL-B). Different from polymer compounds.
  • an object of the present invention is to provide a light emitting element with a low driving voltage.
  • the present invention provides the following [1] to [15].
  • a light emitting device having an anode, a cathode, and a first organic layer and a second organic layer provided between the anode and the cathode
  • the first organic layer is a layer containing a light emitting material represented by the formula (B)
  • the maximum peak wavelength of the emission spectrum of the luminescent material represented by the formula (B) is 380 nm or more and 750 nm or less
  • the second organic layer contains a crosslinked product of a polymer compound containing a structural unit having a group represented by the formula (XL-A) and a structural unit having a group represented by the formula (XL-B) Layer to A light-emitting element in which the group represented by the formula (XL-A) and the group represented by the formula (XL-B) are different from each other.
  • n 1B represents an integer of 0 to 15.
  • Ar 1B represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • R 1B is a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, alkenyl group, cycloalkenyl group, alkynyl group or cycloalkynyl. Represents a group, and these groups may have a substituent.
  • R 1B s When there are a plurality of R 1B s , they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • L A and L B each independently represent an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, It may have a substituent.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • X A and X B each independently represent a crosslinking group.
  • X A or X B is at least one crosslinking group selected from the crosslinking group A group.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • * 1 represents a binding position.
  • the crosslinked structural unit having a group represented by the formula (XL-A) is a structural unit represented by the formula (XL-A1) or a structural unit represented by the formula (XL-A2).
  • n A1 represents an integer of 1 to 4. When a plurality of n A1 are present, they may be the same or different.
  • n A2 represents an integer of 0 or 1.
  • XLA represents a bridging group represented by the formula (XL-A), a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups have a substituent. May be.
  • XLA is a crosslinking group represented by the formula (XL-A).
  • Ar A3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • Ar A5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
  • Ar A4 and Ar A6 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar A4 , Ar A5 and Ar A6 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or a sulfur atom to form a ring. It may be.
  • the crosslinked structural unit having a group represented by the formula (XL-B) is a structural unit represented by the formula (XL-B1) or a structural unit represented by the formula (XL-B2).
  • n B1 represents an integer of 1 to 4. When a plurality of n B1 are present, they may be the same or different.
  • n B2 represents an integer of 0 or 1.
  • X LB represents a bridging group represented by the above formula (XL-B), a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups have a substituent. May be. When a plurality of X LB are present, they may be the same or different. However, at least one X LB is a bridging group represented by the formula (XL-B).
  • Ar B3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • Ar B5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
  • Ar B4 and Ar B6 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar B4 , Ar B5, and Ar B6 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or a sulfur atom to form a ring. It may be.
  • X A is formula selected from the crosslinking group A (XL-3), formula (XL-4), the formula (XL-13) or Formula bridging group represented by (XL-17)
  • the light emitting device according to any one of [2] to [4].
  • [6] The formula (XL-1), formula (XL-2), formula (XL-5), formula (XL-6), formula (XL-7) wherein X B is selected from the bridging group A group Any one of [2] to [5], which is a crosslinking group represented by formula (XL-8), formula (XL-14), formula (XL-15), or formula (XL-16) Light emitting element.
  • Ar 1B is an aromatic hydrocarbon group.
  • the Ar 1B is a benzene ring, biphenyl ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, triphenylene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene ring, chrysene ring,
  • the light emission according to [7] which is a group formed by removing one or more hydrogen atoms directly bonded to carbon atoms constituting a ring from an indene ring, a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring.
  • Ar 1B has at least one hydrogen atom directly bonded to a carbon atom constituting the ring from a biphenyl ring, a fluorene ring, a pyrene ring, a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring.
  • R 1B is an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, or a cycloalkenyl group (these groups may have a substituent), [1] to [10]
  • the light emitting element in any one.
  • the first organic layer is a layer containing a light emitting material represented by the formula (B) and a host material, and the host material is a compound or a formula represented by the formula (FH-1)
  • the light-emitting device according to any one of [1] to [11], which is a polymer compound including a structural unit represented by (Y).
  • Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups optionally have a substituent.
  • n H1 represents an integer of 0 to 15.
  • L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent.
  • n H11 represents an integer of 1 to 10.
  • R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent.
  • a light emitting element with a low driving voltage can be provided.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • Polymer compound means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • “Structural unit” means one or more units present in a polymer compound.
  • the “alkyl group” may be either linear or branched.
  • the number of carbon atoms of the linear alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group, heptyl.
  • the alkyl group may have a substituent, for example, a group in which part or all of the hydrogen atoms in the alkyl group are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be.
  • the alkyl group having a substituent include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, a perfluorooctyl group, a 3-phenylpropyl group, and 3- (4-methylphenyl).
  • a propyl group, a 3- (3,5-di-hexylphenyl) propyl group and a 6-ethyloxyhexyl group can be mentioned.
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • the cycloalkyl group may have a substituent.
  • part or all of the hydrogen atoms in the cycloalkyl group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, and the like. It may be a substituted group.
  • Examples of the cycloalkyl group having a substituent include a cyclohexylmethyl group and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • Examples of the aryl group include a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, Examples include 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, and 4-phenylphenyl group.
  • the aryl group may have a substituent.
  • part or all of the hydrogen atoms in the aryl group are substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be a radical.
  • the “alkoxy group” may be either linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • alkoxy group examples include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, 2 -Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and lauryloxy group.
  • the alkoxy group may have a substituent, for example, a group in which part or all of the hydrogen atoms in the alkoxy group are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be.
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • cycloalkoxy group examples include a cyclopentyloxy group and a cyclohexyloxy group.
  • the cycloalkoxy group may have a substituent.
  • part or all of the hydrogen atoms in the cycloalkoxy group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, and the like. It may be a substituted group.
  • Aryloxy group means an atomic group in which one aryl group is bonded to an oxygen atom.
  • the number of carbon atoms of the aryloxy group is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • aryloxy group examples include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthracenyloxy group, a 9-anthracenyloxy group, and a 1-pyrenyloxy group.
  • the aryloxy group may have a substituent. For example, part or all of the hydrogen atoms in the aryloxy group are substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like. It may be a group.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity and a compound in which an aromatic ring is condensed to a heterocyclic ring, even if the heterocyclic ring itself does not exhibit aromaticity, such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran Means.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • Examples of the monovalent heterocyclic group include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, and triazinyl group.
  • the monovalent heterocyclic group may have a substituent.
  • part or all of the hydrogen atoms in the monovalent heterocyclic group are an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, and the like. It may be a substituted group.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • substituted amino group examples include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • Specific examples of the substituted amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, and bis (3,5- A di-tert-butylphenyl) amino group.
  • alkenyl group may be either linear or branched.
  • the number of carbon atoms of the straight chain alkenyl group is usually 2 to 30, preferably 3 to 20, not including the carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the carbon atoms of the substituent.
  • the number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • alkenyl group and cycloalkenyl group examples include a vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 5 -Hexenyl group and 7-octenyl group.
  • the alkenyl group may have a substituent, for example, a group in which part or all of the hydrogen atoms in the alkenyl group are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be.
  • the cycloalkenyl group may have a substituent.
  • a part or all of the hydrogen atoms in the cycloalkenyl group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms. It may be a group substituted with or the like.
  • alkynyl group may be either linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • alkynyl group and cycloalkynyl group examples include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group and 5 -A hexynyl group is mentioned.
  • the alkynyl group may have a substituent, for example, a group in which some or all of the hydrogen atoms in the alkynyl group are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • the cycloalkynyl group may have a substituent.
  • a part or all of the hydrogen atoms in the cycloalkynyl group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms. It may be a group substituted with or the like.
  • “Arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • arylene group examples include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthenediyl group, a dihydrophenanthenediyl group, a naphthacenediyl group, a fluorenediyl group, a pyrenediyl group, a perylenediyl group, and a chrysenediyl group.
  • the arylene group may have a substituent.
  • part or all of the hydrogen atoms in the arylene group are substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be a radical.
  • the arylene group is preferably a group represented by formula (A-1) to formula (A-20).
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 without including the number of carbon atoms of the substituent.
  • divalent heterocyclic group examples include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan, thiophene, azole, Examples thereof include divalent groups obtained by removing two hydrogen atoms from a hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound such as diazole or triazole.
  • the divalent heterocyclic group may have a substituent.
  • some or all of the hydrogen atoms in the divalent heterocyclic group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryls. It may be a group substituted with a group, a fluorine atom or the like.
  • the divalent heterocyclic group is preferably a group represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups are bonded.
  • R and R a represent the same meaning as described above.
  • crosslinking group is a group capable of generating a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc. This is a group represented by the formula (XL-1) to (XL-17) of the group A group.
  • Examples of the “substituent” include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, Examples include alkenyl group, cycloalkenyl group, alkynyl group and cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • the light emitting device includes an anode, a cathode, and a first organic layer and a second organic layer provided between the anode and the cathode.
  • the first organic layer is a layer containing a light-emitting material represented by the formula (B) (hereinafter also referred to as “first light-emitting material”)
  • the second organic layer has a formula (XL-A And a crosslinked structural unit of a polymer compound containing a crosslinked structural unit having a group represented by formula (XL-B) and a crosslinked structural unit having a group represented by the formula (XL-B).
  • Examples of the method for forming the first organic layer and the second organic layer include a dry method such as a vacuum deposition method and a wet method such as a spin coating method and an ink jet printing method, and a wet method is preferable.
  • first ink an ink for a first organic layer described below
  • the second organic layer is formed by a wet method, it is preferable to use an ink for a second organic layer described below (hereinafter also referred to as “second ink”).
  • second ink an ink for a second organic layer described below
  • the polymer compound of the second organic layer described later contained in the second organic layer can be crosslinked by heating or light irradiation. It is preferable to crosslink the polymer compound of the second organic layer described later contained in the second organic layer.
  • the second organic layer is contained in the second organic layer in a state where the polymer compound of the second organic layer described later is crosslinked (crosslinked product of the polymer compound of the second organic layer described later), the second organic layer Is substantially insolubilized in the solvent. Therefore, the second organic layer can be suitably used for stacking light emitting elements.
  • the heating temperature for crosslinking is usually 25 to 300 ° C, preferably 50 to 250 ° C, more preferably 150 ° C to 200 ° C, and still more preferably 170 ° C to 190 ° C.
  • the heating time for crosslinking is usually 0.1 to 1000 minutes, preferably 0.5 to 500 minutes, more preferably 1 to 120 minutes, and further preferably 30 to 90 minutes. .
  • the types of light used for light irradiation are, for example, ultraviolet light, near ultraviolet light, and visible light.
  • Examples of the analysis method of the components contained in the first organic layer or the second organic layer include chemical separation analysis methods such as extraction, infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), Examples include instrumental analysis methods such as mass spectrometry (MS), and analysis methods combining chemical separation analysis methods and instrumental analysis methods.
  • chemical separation analysis methods such as extraction, infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR)
  • Examples include instrumental analysis methods such as mass spectrometry (MS), and analysis methods combining chemical separation analysis methods and instrumental analysis methods.
  • insoluble Component components that are substantially insoluble in the organic solvent
  • dissolved component components that dissolves in an organic solvent
  • insoluble components can be analyzed by infrared spectroscopy or nuclear magnetic resonance spectroscopy, and dissolved components can be analyzed by nuclear magnetic resonance spectroscopy or mass spectrometry.
  • the first organic layer is a layer containing a first light emitting material.
  • the first light emitting material may be contained singly or in combination of two or more.
  • the maximum peak wavelength of the emission spectrum of the first luminescent material is usually 380 nm or more and 750 nm or less, preferably 380 nm or more and 570 nm or less, more preferably 400 nm or more and 550 nm or less, and further preferably 420 or more and 520 nm or less. It is particularly preferably 430 nm or more and 510 nm or less.
  • the maximum peak wavelength of the emission spectrum of a compound is determined by dissolving the compound in an organic solvent such as xylene, toluene, chloroform, tetrahydrofuran, and preparing a dilute solution (1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 3 It can be evaluated by measuring the PL spectrum of the diluted solution at room temperature.
  • an organic solvent such as xylene, toluene, chloroform, tetrahydrofuran
  • the first light emitting material is a compound represented by the formula (B).
  • n 1B represents an integer of 0 to 15, preferably an integer of 1 to 8, more preferably an integer of 1 to 6, still more preferably an integer of 1 to 4, and particularly preferably 2 to 4 Is an integer.
  • Ar 1B represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • aromatic carbon atoms of the hydrocarbon group has usually 6 to 60, preferably 6 to 40, more preferably 6 to 30.
  • Examples of the aromatic hydrocarbon group in Ar 1B include benzene ring, biphenyl ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, triphenylene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene. And a group formed by removing one or more hydrogen atoms directly bonded to the carbon atoms constituting the ring from the ring, chrysene ring, indene ring, fluoranthene ring, benzofluoranthene ring or acenaphthofluoranthene ring.
  • the aromatic hydrocarbon group is preferably a benzene ring, biphenyl ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, triphenylene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene ring, chrysene A group formed by removing one or more hydrogen atoms directly bonded to carbon atoms constituting a ring from a ring, a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring, and more preferably a benzene ring or biphenyl A ring is composed of a ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, fluorene ring,
  • the number of carbon atoms of the aromatic heterocyclic group is usually 2 to 60, preferably 3 to 30, and more preferably 3 to 20.
  • Examples of the aromatic heterocyclic group in Ar 1B include a pyrrole ring, a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, an azanaphthalene ring, a diazanaphthalene ring, a triazanaphthalene ring, an indole ring, and a benzodi ring.
  • the aromatic heterocyclic group is preferably a diazole ring, triazole ring, pyridine ring, diazabenzene ring, triazine ring, indole ring, benzodiazole ring, benzotriazole ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine ring.
  • Ar 1B is preferably an aromatic hydrocarbon group.
  • R 1B is a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, alkenyl group, cycloalkenyl group, alkynyl group or cycloalkynyl. Represents a group, and these groups may have a substituent.
  • R 1B is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, a halogen atom, an alkenyl group or a cycloalkenyl group, more preferably ,
  • R 1B is an aryl group
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 40, more preferably 6 to 30 excluding the number of carbon atoms of the substituent. More preferably, it is 6-14.
  • R 1B is an aryl group
  • examples of the aryl group include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, dihydrophenanthrene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, And a group formed by removing one hydrogen atom directly bonded to the carbon atom constituting the ring from the perylene ring, chrysene ring, indene ring, fluoranthene ring and benzofluoranthene ring.
  • the aryl group is preferably a carbon atom that forms a ring from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, fluorene ring, spirobifluorene ring, pyrene ring, fluoranthene ring or benzofluoranthene ring.
  • a group formed by removing one hydrogen atom directly bonded to the ring is composed of a benzene ring, naphthalene ring, anthracene ring, fluorene ring, spirobifluorene ring, fluoranthene ring or benzofluoranthene ring
  • a group formed by removing one hydrogen atom directly bonded to a carbon atom more preferably, more preferably from a benzene ring, a naphthalene ring, a fluorene ring or a spirobifluorene ring, directly to the carbon atom constituting the ring.
  • a group formed by removing one hydrogen atom to be bonded particularly preferably Phenyl group, a naphthyl group or a fluorenyl group. These groups may further have a substituent.
  • R 1B is a monovalent heterocyclic group
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 3 to 30, not including the number of carbon atoms of the substituent. Yes, more preferably 3-20.
  • R 1B is a monovalent heterocyclic group
  • examples of the monovalent heterocyclic group include a pyrrole ring, a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, an azanaphthalene ring, and a diazanaphthalene.
  • Ring triazanaphthalene ring, indole ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine ring, phenothiazine ring, acridine ring, 9,10-dihydroacridine ring, acridone ring, Examples thereof include a group formed by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a phenazine ring and a 5,10-dihydrophenazine ring.
  • the monovalent heterocyclic group is preferably a pyridine ring, diazabenzene ring, triazine ring, azanaphthalene ring, diazanaphthalene ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine.
  • These groups may further have a substituent.
  • R 1B may have is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, a halogen atom, or an alkenyl group.
  • a cycloalkenyl group more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, an alkenyl group or a cycloalkenyl group, and still more preferably an alkyl group.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent that R 1B may have are the same as examples and preferred ranges of the aryl group and monovalent heterocyclic group in R 1B , respectively. is there.
  • the substituent that the substituent which R 1B may have may further include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group.
  • alkyl group More preferred are an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group or a cycloalkenyl group, and particularly preferred is an alkyl group or a cycloalkyl group. These groups may further have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent that the substituent which R 1B may further have may further include the aryl group and monovalent complex in R 1B , respectively.
  • Examples of the cyclic group and the preferred range are the same.
  • the maximum peak wavelength of the emission spectrum of the compound represented by the formula (B) is a short wavelength, when there are a plurality of R 1B , it is preferable that they are bonded to each other and do not form a ring with the atoms to which they are bonded.
  • Examples of the compound represented by the formula (B) include a compound represented by the following formula.
  • the compound represented by the formula (B) is Aldrich, Luminescence Technology Corp. , AK Scientific, etc.
  • International Publication No. 2007/100010, International Publication No. 2008/059713, International Publication No. 2011/012212, International Publication No. 2012/096263, International Publication No. 2006/025273, International Publication No. 2006 / 030527 can be synthesized according to the method described in US Pat.
  • the first organic layer is composed of the first light emitting material and the group consisting of hole injecting property, hole transporting property, electron injecting property, and electron transporting property.
  • a layer containing a host material having at least one function selected from When the first organic layer is a layer containing the first light emitting material and the host material, the host material may be contained singly or in combination of two or more.
  • the content of the first light emitting material is 100 parts by mass of the total of the first light emitting material and the host material. In this case, it is usually 0.05 to 80 parts by mass, preferably 0.1 to 50 parts by mass, more preferably 1 to 30 parts by mass, and further preferably 5 to 15 parts by mass.
  • the lowest excited singlet state (S 1 ) of the host material is that the driving voltage of the light emitting element according to this embodiment is Since it becomes lower, it is preferable that it is the energy level equivalent to S1 which a 1st light emitting material has, or a higher energy level. That is, the maximum peak wavelength of the emission spectrum of the host material is equal to or shorter than the maximum peak wavelength of the emission spectrum of the first light emitting material because the external quantum efficiency of the light emitting device according to this embodiment is excellent. It is preferable.
  • the host material since the light-emitting element according to this embodiment can be manufactured by a solution coating process, the host material is soluble in a solvent capable of dissolving the first light-emitting material contained in the first organic layer. It is preferable.
  • Host materials are classified into low molecular compounds and high molecular compounds.
  • the below-mentioned hole transport material and the below-mentioned electron transport material are mentioned, for example.
  • Low molecular host A low molecular compound (hereinafter also referred to as “low molecular host”) that is preferable as a host material will be described.
  • the low molecular host is preferably a compound represented by the formula (FH-1).
  • Ar H1 and Ar H2 are preferably an aryl group or a monovalent heterocyclic group, and more preferably an aryl group. These groups may have a substituent.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 30, and more preferably not including the number of carbon atoms of the substituent. 6 to 20, more preferably 6 to 14.
  • Ar H1 and Ar H2 are aryl groups
  • examples of the aryl group include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, dihydrophenanthrene ring, naphthacene ring, fluorene ring, spirobifluorene ring, Examples thereof include a group formed by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from a pyrene ring, a perylene ring, a chrysene ring, an indene ring, a fluoranthene ring or a benzofluoranthene ring.
  • the aryl group is preferably a hydrogen atom directly bonded to a carbon atom constituting the ring from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, fluorene ring, spirobifluorene ring, pyrene ring or chrysene ring. More preferably, one hydrogen atom directly bonded to the carbon atom constituting the ring is selected from a benzene ring, naphthalene ring, anthracene ring, pyrene ring, fluorene ring or spirobifluorene ring.
  • a group to be excluded more preferably a phenyl group, a naphthyl group or an anthracenyl group, and particularly preferably a phenyl group or a naphthyl group. These groups may further have a substituent.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 3 to 60, not including the number of carbon atoms of the substituent. -30, more preferably 3-20.
  • examples of the monovalent heterocyclic group include a pyrrole ring, diazole ring, triazole ring, pyridine ring, diazabenzene ring, triazine ring, azanaphthalene ring, Diazanaphthalene ring, triazanaphthalene ring, indole ring, benzodiazole ring, benzotriazole ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine ring, phenothiazine ring, acridine ring , 9,10-dihydroacridine ring, acridone ring, phenazine ring and 5,10-dihydrophenazine ring, a group obtained by removing one hydrogen atom directly bonded to a carbon atom
  • the monovalent heterocyclic group is preferably a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, an indole ring, a benzodiazole ring, a benzotriazole ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, or a phenoxazine.
  • the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent. It may be. Examples and preferred ranges of the aryl group in the substituent that the amino group has are the same as examples and preferred ranges of the aryl group in Ar H1 and Ar H2 . Examples and preferred ranges of the monovalent heterocyclic group in the substituent that the amino group has are the same as examples and preferred ranges of the monovalent heterocyclic group in Ar H1 and Ar H2 .
  • Ar H1 and Ar H2 may have is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, or a substituted amino group.
  • halogen atom more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and still more preferably an alkyl group or a cycloalkyl group A group, an aryl group or a monovalent heterocyclic group, particularly preferably an alkyl group, a cycloalkyl group or an aryl group. These groups may further have a substituent.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent that Ar H1 and Ar H2 may have are the aryl group and monovalent complex in Ar H1 and Ar H2 , respectively.
  • the examples and preferred ranges of the cyclic group and the substituted amino group are the same.
  • substituent that the substituent that Ar H1 and Ar H2 may have further may preferably have, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, A cycloalkoxy group, an aryloxy group, a substituted amino group or a halogen atom, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group.
  • they are an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and particularly preferably an alkyl group or a cycloalkyl group. These groups may further have a substituent.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent that the substituent which Ar H1 and Ar H2 may have further have, and preferred ranges thereof are Ar H1 and Ar H1 , respectively.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group in Ar H2 are the same as the preferred range.
  • n H1 is preferably an integer of 0 to 10, more preferably an integer of 1 to 5, and still more preferably an integer of 1 to 3.
  • L H1 is preferably an arylene group or a divalent heterocyclic group, and more preferably an arylene group.
  • Examples and preferred ranges of the substituent that L H1 may have are the same as examples and preferred ranges of the substituent that Ar H1 and Ar H2 may have.
  • the arylene group in L H1 is preferably a group represented by the formula (A-1) to the formula (A-14) or the formula (A-17) to the formula (A-20), more preferably the formula A group represented by formula (A-1) to formula (A-9), formula (A-11) to formula (A-14), formula (A-19) or formula (A-20), more preferably Is a group represented by formula (A-1) to formula (A-7), formula (A-9), formula (A-11) to formula (A-14), or formula (A-19) Particularly preferred are groups represented by formula (A-1) to formula (A-6), formula (A-11) or formula (A-12).
  • the divalent heterocyclic group in L H1 is preferably the formula (AA-1) to formula (AA-6), formula (AA-10) to formula (AA-22) or formula (AA-24) to formula And more preferably a group represented by formula (AA-1) to formula (AA-4), formula (AA-10) to formula (AA-15), formula (AA-18) ) To formula (AA-21) or formula (AA-27) to formula (AA-34), more preferably formula (AA-1) to formula (AA-4), formula (AA) It is a group represented by AA-10) to formula (AA-15) or formula (AA-27) to formula (AA-32).
  • n H11 is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and even more preferably 1.
  • R H11 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and a hydrogen atom or an alkyl group. More preferably. These groups may have a substituent.
  • Examples and preferred ranges of the substituent that R H11 may have are the same as examples and preferred ranges of the substituent that Ar H1 and Ar H2 may have.
  • Examples of the compound represented by the formula (FH-1) include compounds represented by the following formula.
  • Polymer host A polymer compound (hereinafter also referred to as “polymer host”) preferable as a host material will be described.
  • the polymer host is preferably a polymer compound containing a structural unit represented by the formula (Y).
  • the arylene group represented by Ar Y1 is preferably formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11), formula (A-11), -13) or a group represented by formula (A-19), more preferably formula (A-1), formula (A-7), formula (A-9), formula (A-11) or formula A group represented by (A-19); These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is preferably the formula (AA-4), formula (AA-10), formula (AA-13), formula (AA-15), formula (AA-18) Or a group represented by formula (AA-20), more preferably a group represented by formula (AA-4), formula (AA-10), formula (AA-18) or formula (AA-20) It is. These groups may have a substituent.
  • Preferred range and more preferred range of arylene group and divalent heterocyclic group in a divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded. are respectively the same as the preferred range and more preferred range of the arylene group and divalent heterocyclic group represented by Ar Y1 described above.
  • the divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded at least represented by Ar X2 and Ar X4 in the formula (X) Examples thereof include the same divalent groups in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group. These groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1) to (Y-7). From the viewpoint of the driving voltage of the light emitting device according to this embodiment. Is preferably a structural unit represented by the formula (Y-1) or (Y-2), and preferably from the viewpoint of electron transport properties of the polymer host, the formula (Y-3) or the formula ( Y-4), and from the viewpoint of the hole transport property of the polymer host, it is preferably a structural unit represented by formula (Y-5) to formula (Y-7).
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group. These groups may have a substituent.
  • the structural unit represented by the formula (Y-1) is preferably a structural unit represented by the formula (Y-1 ′).
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, and more preferably an alkyl group or a cycloalkyl group. These groups may have a substituent.
  • R Y1 represents the same meaning as described above.
  • X Y1 is, -C (R Y2) 2 -
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups have a substituent. May be.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — in X Y1 is preferably both an alkyl group or a cycloalkyl group, both an aryl group, and both monovalent complex
  • One is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group.
  • These groups may have a substituent.
  • R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded, and when R Y2 forms a ring, the group represented by —C (R Y2 ) 2 — Is preferably a group represented by the formula (Y-A1) to the formula (Y-A5), more preferably a group represented by the formula (Y-A4). These groups may have a substituent.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably both an alkyl group or a cycloalkyl group, or one of which is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group. These groups may have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a substituent which may have a substituent. It is a cycloalkyl group that may have.
  • a plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • R Y2 forms a ring —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented is preferably a group represented by the formula (Y-B1) to the formula (Y-B5), and more preferably a group represented by the formula (Y-B3). These groups may have a substituent.
  • R Y2 represents the same meaning as described above.
  • the structural unit represented by the formula (Y-2) is preferably a structural unit represented by the formula (Y-2 ′).
  • R Y1 and X Y1 represent the same meaning as described above.
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group. These groups may have a substituent.
  • R Y1 represents the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and more preferably an aryl group. These groups may have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formula (Y-11) to the formula (Y-56), and preferably the formula (Y-11) to the formula (Y Y-55).
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, has a lower driving voltage of the light-emitting element according to the present embodiment.
  • the amount is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, based on the total amount.
  • the structural unit which is a group is preferably 0.5 to 40 mol%, more preferably 3%, based on the total amount of the structural units contained in the polymer host, since the charge transport property of the polymer host is excellent. ⁇ 30 mol%.
  • the polymer host is excellent in hole transportability, it is preferable that the polymer host further includes a structural unit represented by the formula (X).
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded to each other. And these groups may have a substituent.
  • Ar X2 and Ar X4 When a plurality of Ar X2 and Ar X4 are present, they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R X2 and R X3 may be the same or different.
  • a X1 is preferably an integer of 2 or less, more preferably 1, since the driving voltage of the light emitting device according to the present embodiment becomes lower.
  • a X2 is preferably an integer of 2 or less, more preferably 0, because the driving voltage of the light emitting device according to the present embodiment becomes lower.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and more preferably an aryl group. These groups may have a substituent.
  • the arylene group represented by Ar X1 and Ar X3 is preferably a group represented by the formula (A-1) or the formula (A-9), more preferably a group represented by the formula (A-1). It is. These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is preferably represented by Formula (AA-1), Formula (AA-2), or Formula (AA-7) to Formula (AA-26). It is a group. These groups may have a substituent.
  • Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
  • the arylene group represented by Ar X2 and Ar X4 is preferably represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11) or A group represented by formula (A-19); These groups may have a substituent.
  • the preferred range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the preferred range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
  • Preferred ranges of the arylene group and the divalent heterocyclic group in the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and the at least one divalent heterocyclic group are directly bonded More preferable ranges are the same as the preferable range and the more preferable range of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 , respectively.
  • Examples of the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded include groups represented by the following formulae: These may have a substituent.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
  • the substituent that the group represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group. These groups may further have a substituent.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formula (X-1) to the formula (X-7), more preferably the formula (X-3) to the formula (X -7), more preferably structural units represented by formulas (X-3) to (X-6).
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group, or a cyano group. These groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • a plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 50 mol%, more preferably based on the total amount of the structural units contained in the polymer host. It is 1 to 40 mol%, and more preferably 5 to 30 mol%.
  • Examples of the structural unit represented by the formula (X) include structural units represented by the formula (X1-1) to the formula (X1-19), preferably the formula (X1-6) to the formula (X1 -14).
  • polymer host examples include polymer compounds (P-1) to (P-6) shown in Table 1.
  • the “other structural unit” means a structural unit other than the structural unit represented by the formula (Y) and the structural unit represented by the formula (X).
  • p, q, r, s, and t represent the molar ratio of each structural unit.
  • p + q + r + s + t 100 and 100 ⁇ p + q + r + s ⁇ 70.
  • the polymer host may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes.
  • a copolymer obtained by polymerization is preferred.
  • the number average molecular weight in terms of polystyrene of the polymer host is preferably 5 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 5 ⁇ 10 5 , and even more preferably 1.5 ⁇ 10 4. ⁇ 2 ⁇ 10 5 .
  • the polymer host can be produced by using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pages 897-1091 (2009), etc., and the Suzuki reaction, Buchwald reaction, Stille Examples thereof include a polymerization method by a coupling reaction using a transition metal catalyst such as a reaction, a Negishi reaction and a Kumada reaction.
  • a method of charging the monomer a method of charging the entire amount of the monomer into the reaction system at once, a part of the monomer is charged and reacted, and then the remaining monomer is batched, Examples thereof include a method of charging continuously or divided, a method of charging monomer continuously or divided, and the like.
  • transition metal catalysts examples include palladium catalysts and nickel catalysts.
  • Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are performed alone or in combination.
  • a lower alcohol such as methanol
  • filtering the deposited precipitate and then drying.
  • These methods are performed alone or in combination.
  • the purity of the polymer host is low, it can be purified by usual methods such as crystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, and the like.
  • the first organic layer is composed of the first light emitting material and the above-described host material, hole transport material, hole injection material, electron transport material, electron injection material, antioxidant, and second light emitting material. It may be a layer containing a composition containing at least one material selected from the group (hereinafter also referred to as “first composition”). However, in the first composition, the second light emitting material is different from the first light emitting material.
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and is preferably a high molecular compound.
  • the hole transport material may have a crosslinking group.
  • polymer compound examples include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, and fullerene is preferable.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass, when the first light emitting material is 100 parts by mass.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular compounds and high molecular compounds.
  • the electron transport material may have a crosslinking group.
  • low molecular weight compounds examples include phosphorescent compounds having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene. And diphenoquinone, and derivatives thereof.
  • polymer compound examples include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the compounding amount of the electron transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass when the first light emitting material is 100 parts by mass.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole injection material and the electron injection material are classified into a low molecular compound and a high molecular compound, respectively.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain. A functional polymer.
  • the compounding amounts of the hole injecting material and the electron injecting material are each usually 1 to 400 parts by mass, preferably 5 to 150 parts when the first light emitting material is 100 parts by mass. Part by mass.
  • the electron injection material and the hole injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the ions to be doped may be used alone or in combination of two or more.
  • the second light emitting material is classified into a low molecular compound and a high molecular compound.
  • the second light emitting material may have a crosslinking group.
  • low molecular weight compound examples include naphthalene and derivatives thereof, anthracene and derivatives thereof, perylene and derivatives thereof, and triplet light-emitting complexes having iridium, platinum, or europium as a central metal.
  • Examples of the polymer compound include a phenylene group, a naphthalenediyl group, a fluorenediyl group, a phenanthrene diyl group, a dihydrophenanthrene diyl group, a structural unit represented by the formula (X), a carbazole diyl group, a phenoxazine diyl group, and a phenothiazine.
  • Examples thereof include polymer compounds containing a diyl group, an anthracene diyl group, a pyrenediyl group, and the like.
  • the second light emitting material preferably contains a triplet light emitting complex and / or a polymer compound.
  • triplet light-emitting complex examples include the metal complexes shown below.
  • the blending amount of the second light emitting material is usually 1 to 400 parts by weight, preferably 5 to 150 parts by weight, when the first light emitting material is 100 parts by weight.
  • the second luminescent material may be used alone or in combination of two or more.
  • the antioxidant may be any compound that is soluble in the same solvent as the first light-emitting material and does not inhibit light emission and charge transport. Examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the first luminescent material is 100 parts by mass.
  • Antioxidants may be used alone or in combination of two or more.
  • first ink As the first ink for forming the first organic layer, a composition containing a first light emitting material and a solvent can be used.
  • the first ink is spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method.
  • wet methods such as offset printing, ink jet printing, capillary coating, and nozzle coating.
  • the viscosity of the first ink may be adjusted according to the type of wet method. However, when a solution such as an ink jet printing method is applied to a printing method that passes through a discharge device, clogging at the time of discharge and flight bending occur. Since it is difficult, it is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the first ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as THF, dioxane, anisole and 4-methylanisole; Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl; ketone solvents such as acetone,
  • the blending amount of the solvent is usually 1000 to 100,000 parts by mass, preferably 2000 to 20000 parts by mass, when the first light emitting material is 100 parts by mass.
  • the second organic layer includes a polymer compound (hereinafter referred to as “a cross-linking structural unit having a group represented by the formula (XL-A)” and a cross-linking structural unit having a group represented by the formula (XL-B). It is also a layer containing a crosslinked product of "second organic layer polymer compound”.
  • the crosslinked polymer compound of the second organic layer may be contained singly or in combination of two or more.
  • the crosslinked product of the polymer compound of the second organic layer can be obtained by bringing the polymer compound of the second organic layer into a crosslinked state by the above-described method and conditions.
  • the group represented by the formula (XL-A) and the group represented by the formula (XL-B) are different from each other means that nA and nB are different. , L A and L B are different, or X A and X B are different.
  • nA and nB each independently represent an integer of 0 to 5, and since the driving voltage of the light emitting device according to the present embodiment is lower, it is preferably an integer of 0 to 3, more preferably 0 to 2. It is an integer.
  • nA and nB are different, since synthesis is easy, one of nA and nB is preferably 0 or 1, one is 0 and the other is 1 or 2, or Is more preferably 1 and the other is preferably 0 or 2.
  • L A and L B each independently represent an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, It may have a substituent.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the number of carbon atoms of the alkylene group represented by L A and L B is usually 1 to 20, preferably 1 to 15, more preferably 1 to 10, not including the carbon atoms of the substituent. is there.
  • the number of carbon atoms of the cycloalkylene group represented by L A and L B is usually 3 to 20, excluding the number of carbon atoms of the substituent.
  • alkylene group represented by L A and L B for example, methylene group, ethylene group, propylene group, butylene group, hexylene group, and octylene group.
  • Alkylene group represented by L A and L B may have a substituent, and examples of the substituent, a cycloalkyl group, an alkoxy group, cycloalkoxy group, a halogen atom, a cyano group are preferable. These groups may further have a substituent.
  • the cycloalkylene group represented by L A and L B for example, cyclopentylene group, cyclohexylene group and the like.
  • Cycloalkylene group represented by L A and L B may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, cycloalkoxy group, a halogen atom, a cyano Groups are preferred. These groups may further have a substituent.
  • Arylene group represented by L A and L B may have a substituent.
  • the arylene group is preferably a phenylene group or a fluorenediyl group, more preferably an m-phenylene group, a p-phenylene group, a fluorene-2,7-diyl group, or a fluorene-9,9-diyl group.
  • the substituent that the arylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom, a cyano group, or a bridging group A.
  • a crosslinking group selected from the group is preferred. These groups may further have a substituent.
  • the divalent heterocyclic group represented by L A and L B is preferably a group represented by formula (AA-1) to formula (AA-34).
  • L A and L B are preferably an arylene group or an alkylene group, more preferably a phenylene group, a fluorenediyl group, or an alkylene group, because the production of the polymer compound of the second organic layer is facilitated. is there. These groups may have a substituent.
  • the driving voltage of the light emitting device according to this embodiment is lower, among the L A and L B, are preferably one of them is an alkylene group.
  • the combination of L A and L B is a combination of the two alkylene groups, combinations of the two arylene group or an alkylene group and arylene A combination of groups is preferable, and a combination of two alkylene groups or a combination of an alkylene group and an arylene group is more preferable.
  • X A and X B each independently represent a crosslinking group.
  • X A or X B is preferably at least one cross-linking group selected from the cross-linking group A group, since the driving voltage of the light emitting device according to this embodiment is lower, and X A and X B are More preferably, the crosslinking group is at least one crosslinking group selected from the group A.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5
  • * 1 represents a bonding position.
  • the X A and X B differ.
  • Crosslinking is better than the polymer compound of the second organic layer, and, since the driving voltage of the light emitting device according to this embodiment is lower, X A has the formula (XL-3), formula (XL-4 ), A crosslinking group represented by formula (XL-13) or formula (XL-17), and preferably represented by formula (XL-3), formula (XL-4) or formula (XL-17). And more preferably a crosslinking group represented by the formula (XL-17).
  • X B represents formula (XL-1), formula (XL-2), formula (XL-5), formula (XL-6), formula (XL-7), formula (XL-8), formula (XL) XL-14), a crosslinking group represented by formula (XL-15) or formula (XL-16) is preferred, and formula (XL-1), formula (XL-2), formula (XL-14) And more preferably a crosslinking group represented by the formula (XL-15) or the formula (XL-16), and a crosslinking group represented by the formula (XL-1) or the formula (XL-16). More preferred is a crosslinking group represented by the formula (XL-1).
  • the crosslinked structural unit having a group represented by the formula (XL-A) and the crosslinked structural unit having a group represented by the formula (XL-B) may be a structural unit represented by the following formula.
  • the crosslinked structural unit having a group represented by the formula (XL-A) is preferably a structural unit represented by the formula (XL-A1) or a structural unit represented by the formula (XL-A2).
  • a structural unit represented by (XL-A1) is more preferable.
  • the crosslinked structural unit having a group represented by the formula (XL-B) is preferably a structural unit represented by the formula (XL-B1) or a structural unit represented by the formula (XL-B2).
  • a structural unit represented by (XL-B1) is more preferable.
  • n A1 represents an integer of 1 to 4, and is preferably 1 or 2 and more preferably 2 because the driving voltage of the light emitting device according to this embodiment becomes lower.
  • n A2 represents an integer of 0 or 1, and the production of the polymer compound of the second organic layer is facilitated, and the driving voltage of the light-emitting device according to this embodiment is further reduced. is there.
  • Ar A3 represents an aromatic hydrocarbon group or a heterocyclic group, and since the driving voltage of the light emitting device according to this embodiment is lower, it is preferably an aromatic hydrocarbon group which may have a substituent. .
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar A3 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
  • the arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar A3 is preferably a group represented by any of the formulas (A-1) to (A-20). More preferably, in the formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) A group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19). And these groups may have a substituent.
  • the number of carbon atoms of the heterocyclic group represented by Ar A3 is usually 2 to 60, preferably 3 to 30, and more preferably 4 to 18, excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group moiety excluding n substituents of the heterocyclic group represented by Ar A3 is preferably a group represented by the formula (AA-1) to the formula (AA-34). is there.
  • the aromatic hydrocarbon group and heterocyclic group represented by Ar A3 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • Group, halogen atom, monovalent heterocyclic group and cyano group are preferred.
  • Ar A5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded.
  • Ar A5 is preferably an aromatic hydrocarbon group which may have a substituent since the driving voltage of the light emitting device according to this embodiment is further reduced.
  • the definition and example of the arylene group part excluding m substituents of the aromatic hydrocarbon group represented by Ar A5 are the same as the definition and example of the arylene group represented by Ar X2 in formula (X). .
  • divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar A5 are the same as those of the divalent heterocyclic group part represented by Ar X2 in formula (X). Definitions and examples are the same.
  • n B1 represents an integer of 1 to 4, and is preferably 1 or 2 and more preferably 2 because the driving voltage of the light emitting device according to this embodiment becomes lower.
  • n B2 represents an integer of 0 or 1, and it is easy to produce the polymer compound of the second organic layer, and the driving voltage of the light emitting device according to this embodiment is lower, and therefore preferably 0. is there.
  • Ar B3 represents an aromatic hydrocarbon group or a heterocyclic group, and since the driving voltage of the light emitting device according to this embodiment is lower, it is preferably an aromatic hydrocarbon group which may have a substituent. .
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar B3 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
  • the arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar B3 is preferably a group represented by any of the formulas (A-1) to (A-20). More preferably, in the formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) A group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19). And these groups may have a substituent.
  • the number of carbon atoms of the heterocyclic group represented by Ar B3 is usually 2 to 60, preferably 3 to 30, more preferably 4 to 18, excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group portion excluding n substituents of the heterocyclic group represented by Ar B3 is preferably a group represented by the formula (AA-1) to the formula (AA-34). is there.
  • the aromatic hydrocarbon group and heterocyclic group represented by Ar B3 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • Group, halogen atom, monovalent heterocyclic group and cyano group are preferred.
  • Ar B5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded.
  • Ar B5 is preferably an aromatic hydrocarbon group which may have a substituent since the driving voltage of the light emitting device according to this embodiment is further lowered.
  • the definition and example of the arylene group part excluding m substituents of the aromatic hydrocarbon group represented by Ar B5 are the same as the definition and example of the arylene group represented by Ar X2 in formula (X). .
  • divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar B5 are the same as those of the divalent heterocyclic group part represented by Ar X2 in formula (X). Definitions and examples are the same.
  • Ar A4 and Ar A6 each independently represent an arylene group or a divalent heterocyclic group.
  • Ar B4 and Ar B6 each independently represent an arylene group or a divalent heterocyclic group.
  • the definitions and examples of the arylene groups represented by Ar A4 , Ar A6 , Ar B4 and Ar B6 are the same as the definitions and examples of the arylene groups represented by Ar X1 and Ar X3 in Formula (X).
  • the definition and examples of the divalent heterocyclic group represented by Ar A4 , Ar A6 , Ar B4 and Ar B6 are the definition of the divalent heterocyclic group represented by Ar X1 and Ar X3 in Formula (X) and Same as example.
  • the group represented by Ar A4 , Ar A5 , Ar A6 , Ar B4 , Ar B5 and Ar B6 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, and a cycloalkoxy Group, aryl group, aryloxy group, halogen atom, monovalent heterocyclic group and cyano group are preferred.
  • the total amount of the structural units contained in the polymer compound in the second organic layer Is preferably 0.5 to 90 mol%, more preferably 3 to 70 mol%, and still more preferably 5 to 50 mol%.
  • the total amount of the structural units contained in the polymer compound in the second organic layer Is preferably 0.5 to 90 mol%, more preferably 3 to 70 mol%, and still more preferably 5 to 50 mol%.
  • the structural unit represented by the formula (XL-A2) has excellent stability of the polymer compound of the second organic layer and excellent crosslinkability of the polymer compound of the second organic layer.
  • it is 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 5 to 20 mol%, based on the total amount of structural units contained in the polymer compound of the organic layer. is there.
  • the structural unit represented by the formula (XL-B2) has excellent stability of the polymer compound of the second organic layer and excellent crosslinkability of the polymer compound of the second organic layer.
  • it is 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 5 to 20 mol%, based on the total amount of structural units contained in the polymer compound of the organic layer. is there.
  • the structural units represented by the formula (XL-A1), the formula (XL-B1), the formula (XL-A2), and the formula (XL-B2) each have 1 in the polymer compound of the second organic layer. Only the seed
  • the total amount of the structural unit having the group represented by the formula (XL-A) and the structural unit having the group represented by the formula (XL-B) contained in the polymer compound of the second organic layer is Since the polymer compound of the second organic layer is excellent in stability and crosslinkability, it is preferably 0.5 to 90 mol% with respect to the total amount of structural units contained in the polymer compound of the second organic layer. More preferably, it is 3 to 75 mol%, and still more preferably 5 to 60 mol%.
  • the structural unit having a group represented by the formula (XL-A) and the structural unit having a group represented by the formula (XL-B) are each only one kind in the polymer compound of the second organic layer. It may be included and two or more types may be included.
  • the second organic layer further includes a structural unit represented by the formula (X). Moreover, since the high molecular compound of a 2nd organic layer becomes lower in the drive voltage of the light emitting element which concerns on this embodiment, it is preferable that the structural unit represented by Formula (Y) is further included.
  • the structural unit and the formula represented by the formula (X) are further reduced. It is preferable that the structural unit represented by (Y) is included.
  • the definitions, examples and preferred ranges of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y) that may be contained in the polymer compound of the second organic layer are the above-mentioned high
  • the definition, examples, and preferred ranges of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y) that may be contained in the molecular host are the same.
  • each of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y) may be included alone or in combination of two or more. It may be.
  • the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 90 mol% with respect to the total amount of the structural units contained in the polymer compound of the second organic layer. More preferably, it is 1 to 70 mol%, and further preferably 10 to 50 mol%.
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is more excellent in the light emitting efficiency of the light emitting device according to this embodiment.
  • the amount is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%, based on the total amount of the constituent units contained.
  • the structural unit that is a group of the organic group is preferably excellent in charge transporting property of the polymer compound of the second organic layer, and is preferably 0. 0 relative to the total amount of the structural units contained in the polymer compound of the second organic layer. It is 5 to 40 mol%, and more preferably 3 to 30 mol%.
  • Examples of the polymer compound in the second organic layer include polymer compounds (P-7) to (P-37) shown in Table 2.
  • the “other structural unit” refers to the formula (XL-A1), the formula (XL-A2), the formula (XL-B1), the formula (XL-B2), the formula (X), and the formula (Y). Means a structural unit other than the structural unit represented.
  • p ′, p ′′, q ′, q ′′, r ′, s ′, and t ′ represent the molar ratio of each structural unit.
  • p ′ + p ′′ + q ′ + q ′′ + r ′ + s ′ + t ′ 100 and 70 ⁇ p ′ + p ′′ + q ′ + q ′′ + r ′ + s ′ ⁇ 100.
  • the polymer compound of the second organic layer may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes.
  • a copolymer obtained by copolymerizing seed raw material monomers is preferable.
  • the number average molecular weight in terms of polystyrene of the polymer compound of the second organic layer is preferably 5 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 5 ⁇ 10 5 , and still more preferably. 1.5 ⁇ 10 4 to 1 ⁇ 10 5 .
  • the polymer compound of the second organic layer can be produced by the same method as the polymer host production method described above.
  • the second organic layer is a group consisting of a crosslinked polymer of the second organic layer, a hole transport material, a hole injection material, an electron transport material, an electron injection material, an antioxidant, and a light emitting material. It may be a layer containing a composition containing at least one material selected from (hereinafter also referred to as “second composition”).
  • Examples and preferred ranges of the hole transport material, electron transport material, hole injection material, electron injection material and light-emitting material contained in the second composition are the hole transport material contained in the first composition, The examples and preferred ranges of the electron transport material, hole injection material, electron injection material, and light emitting material are the same.
  • the compounding amounts of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light emitting material are each 100 parts by mass of the crosslinked polymer of the second organic layer. In general, it is 1 to 400 parts by mass, preferably 5 to 150 parts by mass.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the crosslinked polymer of the polymer compound of the second organic layer is 100 parts by mass.
  • the second ink for forming the second organic layer a composition containing the polymer compound of the second organic layer and a solvent can be used.
  • the second ink can be suitably used in the wet method described in the first ink section.
  • the preferable range of the viscosity of the second ink is the same as the preferable range of the viscosity of the first ink.
  • Examples and preferred ranges of the solvent contained in the second ink are the same as examples and preferred ranges of the solvent contained in the first ink.
  • the blending amount of the solvent is usually 1000 to 100,000 parts by mass, preferably 2000 to 20000 parts by mass, when the polymer compound of the second organic layer is 100 parts by mass.
  • the light emitting device includes an anode, a cathode, and a first organic layer and a second organic layer provided between the anode and the cathode.
  • the light emitting device may have a layer other than the anode, the cathode, the first organic layer, and the second organic layer.
  • the first organic layer is usually a light emitting layer (hereinafter, also referred to as “first light emitting layer”).
  • the second organic layer is usually a hole transport layer, a light emitting layer (hereinafter also referred to as “second light emitting layer”) or an electron transport layer, preferably a hole. It is a transport layer or a second light emitting layer, more preferably a hole transport layer.
  • the first organic layer and the second organic layer are preferably adjacent to each other because the driving voltage of the light emitting device becomes lower.
  • the second organic layer is preferably a layer provided between the anode and the first organic layer because the driving voltage of the light emitting device is lower. More preferably, it is a hole transport layer or a second light emitting layer provided between one organic layer, and more preferably a hole transport layer provided between an anode and a first organic layer. .
  • the driving voltage of the light emitting device when the second organic layer is a hole transport layer provided between the anode and the first organic layer, the driving voltage of the light emitting device is lower, so the anode and the first It is preferable to further have a hole injection layer between the two organic layers. Further, when the second organic layer is a hole transport layer provided between the anode and the first organic layer, the driving voltage of the light emitting element becomes lower, so that the gap between the cathode and the first organic layer is low. In addition, it is preferable to further include at least one of an electron injection layer and an electron transport layer.
  • the driving voltage of the light emitting device when the second organic layer is a second light emitting layer provided between the anode and the first organic layer, the driving voltage of the light emitting device is lower, It is preferable to further include at least one of a hole injection layer and a hole transport layer between the second organic layer.
  • the driving voltage of the light emitting element becomes lower, so that the cathode and the first organic layer It is preferable to further have at least one of an electron injection layer and an electron transport layer in between.
  • the driving voltage of the light emitting device when the second organic layer is a second light emitting layer provided between the cathode and the first organic layer, the driving voltage of the light emitting device is lower, It is preferable to further have at least one of a hole injection layer and a hole transport layer between the first organic layer.
  • the driving voltage of the light emitting element becomes lower, so that the cathode and the second organic layer It is preferable to further have at least one of an electron injection layer and an electron transport layer in between.
  • the driving voltage of the light emitting device when the second organic layer is an electron transport layer provided between the cathode and the first organic layer, the driving voltage of the light emitting device is lower, so the anode and the first It is preferable to further have at least one layer of a hole injection layer and a hole transport layer between the organic layer.
  • the second organic layer is an electron transport layer provided between the cathode and the first organic layer, the driving voltage of the light emitting element is lower, so that the gap between the cathode and the second organic layer is low. It is preferable to further have an electron injection layer.
  • the layer configuration of the light emitting device includes the layer configurations represented by the following (D1) to (D15).
  • the light-emitting element usually has a substrate, but may be laminated from the anode on the substrate, or may be laminated from the cathode on the substrate.
  • “/” means that the layers before and after are stacked adjacent to each other.
  • “second light emitting layer (second organic layer) / first light emitting layer (first organic layer)” means the second light emitting layer (second organic layer) and the first light emitting layer (second organic layer). The light emitting layer (first organic layer) is adjacently laminated.
  • the layer configuration represented by (D3) to (D12) is preferable, and the layer configuration represented by (D7) to (D10) is more preferable.
  • the anode, the hole injection layer, the hole transport layer, the second light emitting layer, the electron transport layer, the electron injection layer, and the cathode are each provided in two or more layers as necessary. It may be.
  • hole injection layers When there are a plurality of anodes, hole injection layers, hole transport layers, second light emitting layers, electron transport layers, electron injection layers, and cathodes, they may be the same or different.
  • the thickness of the anode, hole injection layer, hole transport layer, first light emitting layer, second light emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 ⁇ m, preferably 2 nm to It is 500 nm, more preferably 5 nm to 150 nm.
  • the order, number, and thickness of the layers to be stacked may be adjusted in consideration of the light-emitting efficiency and element lifetime of the light-emitting element.
  • the second light emitting layer is usually a layer containing a second organic layer or a light emitting material.
  • the second light emitting layer is a layer containing a light emitting material
  • examples of the light emitting material contained in the second light emitting layer include the light emitting material that may be contained in the first composition. It is done.
  • the light emitting material contained in the second light emitting layer may be contained singly or in combination of two or more.
  • the second light-emitting layer is the second light-emitting layer.
  • An organic layer is preferred.
  • the hole transport layer is usually a layer containing a second organic layer or a hole transport material.
  • the hole transport layer is a layer containing a hole transport material
  • examples of the hole transport material include a hole transport material that may be contained in the first composition described above.
  • the hole transport material contained in the hole transport layer may be contained singly or in combination of two or more.
  • the hole-transport layer is the second organic layer.
  • a layer is preferred.
  • the electron transport layer is usually the second organic layer or a layer containing an electron transport material, and preferably a layer containing an electron transport material.
  • the electron transport layer is a layer containing an electron transport material
  • examples of the electron transport material contained in the electron transport layer include the electron transport material that may be contained in the first composition described above. .
  • the electron transport material contained in the electron transport layer may be contained singly or in combination of two or more.
  • the hole injection layer is a layer containing a hole injection material.
  • a hole injection material contained in a hole injection layer the hole injection material which the above-mentioned 1st composition may contain is mentioned, for example.
  • the hole injection material contained in the hole injection layer may be contained singly or in combination of two or more.
  • the electron injection layer is a layer containing an electron injection material.
  • an electron injection material contained in an electron injection layer the electron injection material which the above-mentioned 1st composition may contain is mentioned, for example.
  • the electron injection material contained in the electron injection layer may be contained singly or in combination of two or more.
  • the substrate in the light-emitting element may be any substrate that can form electrodes and does not change chemically when the organic layer is formed.
  • the substrate is made of a material such as glass, plastic, or silicon.
  • the electrode farthest from the substrate is transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • ITO indium tin oxide
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • At least one of the anode and the cathode is usually transparent or translucent, but the anode is preferably transparent or translucent.
  • Examples of the method for forming the anode and the cathode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a laminating method.
  • each layer such as the first light emitting layer, the second light emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, the electron injection layer, etc.
  • a vacuum deposition method from a powder a method by film formation from a solution or a molten state
  • a polymer compound for example, a method by film formation from a solution or a molten state can be mentioned.
  • the first light-emitting layer, the second light-emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection layer are the first ink, the second ink, and the above-described light-emitting material and hole. It can be formed by a wet method such as a spin coating method or an ink jet printing method using inks each containing a transport material, an electron transport material, a hole injection material, and an electron injection material.
  • planar anode and the cathode may be arranged so as to overlap each other.
  • pattern-like light emission a method in which a mask having a pattern-like window is provided on the surface of a planar light-emitting element, a layer that is desired to be a non-light-emitting portion is formed extremely thick and substantially non-light-emitting. There is a method, a method of forming an anode or a cathode, or both electrodes in a pattern.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or can be driven actively in combination with TFTs. These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source and display device.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by size exclusion chromatography (SEC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp). Determined by The SEC measurement conditions are as follows. [Measurement condition] The polymer compound to be measured was dissolved in tetrahydrofuran (THF) at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC. THF was used as the mobile phase of SEC, and flowed at a flow rate of 2.0 mL / min. As the column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV-VIS detector (manufactured by Shimadzu Corporation, trade name: SPD-10Avp) was used as the detector.
  • SEC size exclusion chromatography
  • the maximum peak wavelength of the emission spectrum of the compound was measured at room temperature with a spectrophotometer (trade name: FP-6500, manufactured by JASCO Corporation).
  • a spectrophotometer (trade name: FP-6500, manufactured by JASCO Corporation).
  • a toluene solution in which the compound was dissolved in xylene at a concentration of about 0.8 ⁇ 10 ⁇ 4 mass% was used as a sample.
  • excitation light UV light having a wavelength of 325 nm was used.
  • Compound HM-1 was synthesized according to the method described in JP2011-174059A.
  • Compound HM-2 was purchased from AK Scientific.
  • Compound HM-3 was synthesized according to the method described in International Publication No. 2011/137922.
  • Compound HM-4 and Compound HM-5 were synthesized according to the methods described in JP2011-10000942 and International Publication No. 2011-137922.
  • Compound HM-6 was synthesized according to the method described in International Publication No. 2011/098030.
  • the maximum peak wavelength of the emission spectrum of Compound HM-1 was 426 nm.
  • the maximum peak wavelength of the emission spectrum of Compound HM-2 was 425 nm.
  • the maximum peak wavelength of the emission spectrum of compound HM-3 was 430 nm.
  • the maximum peak wavelength of the emission spectrum of Compound HM-4 was 430 nm.
  • the maximum peak wavelength of the emission spectrum of Compound HM-5 was 415 nm.
  • the maximum peak wavelength of the emission spectrum of compound HM-6 was 431 nm.
  • Compound EM-1 was synthesized according to the method described in JP2011-176304A.
  • Compound EM-2 was synthesized according to the method described in International Publication No. 2008/059713.
  • Compound EM-3 was synthesized according to the methods described in JP2009-290091A and JP2011-176304A.
  • Compound EM-4 and Compound EM-10 were purchased from Tokyo Chemical Industry Co., Ltd.
  • Compound EM-5 was synthesized according to the method described in JP-A-2006-176491.
  • Compound EM-6 was synthesized according to the method described in International Publication No. 2010/013006.
  • Compound EM-7 was synthesized according to the method described in International Publication No. 2005/033051.
  • Compound EM-8 was synthesized according to the method described in JP-A-2007-142171.
  • Compound EM-11 was purchased from Aldrich.
  • the maximum peak wavelength of the emission spectrum of Compound EM-1 was 439 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-2 was 441 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-3 was 460 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-4 was 446 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-5 was 446 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-6 was 453 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-7 was 453 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-8 was 502 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-9 was 440 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-10 was 404 nm.
  • the maximum peak wavelength of the emission spectrum of Compound EM-11 was 448 nm.
  • Compound M1 was synthesized according to the method described in JP2011-174062.
  • Compound M2 was synthesized according to the method described in JP-A-2008-106241.
  • Compound M3 was synthesized according to the method described in International Publication No. 2015/145871.
  • Compound M4 was synthesized according to the method described in International Publication No. 2013/146806.
  • Compound M5 was synthesized according to the method described in WO2005 / 049546.
  • Compound M6 was synthesized according to the method described in JP 2010-215886 A.
  • Compound M7 was synthesized according to the method described in International Publication No. 2013/146806.
  • Compound M8 was synthesized according to the method described in JP 2010-189630 A.
  • the theoretical value obtained from the amount of the raw material used for polymer compound HTL-1 is that the structural unit derived from compound M1, the structural unit derived from compound M5, and the structural unit derived from compound M2 are: It is a copolymer composed of a molar ratio of 50: 42.5: 7.5.
  • the polymer compound HTL-2 had an Mn of 4.5 ⁇ 10 4 and an Mw of 1.5 ⁇ 10 5 .
  • the high molecular compound HTL-2 has a theoretical value obtained from the amount of the charged raw materials, wherein the structural unit derived from the compound M5 and the structural unit derived from the compound M8 are formed in a molar ratio of 50:50. It is a copolymer.
  • Step 1 After making the inside of the reaction vessel an inert gas atmosphere, Compound M1 (1.09 g), Compound M5 (0.917 g), Compound M2 (0. 0669 g), Compound M6 (0.0578 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) and toluene (35 mL) were added, and the mixture was heated to 105 ° C.
  • Step 2 A 20% by mass aqueous tetraethylammonium hydroxide solution (22 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 5 hours.
  • Step 3 After the reaction, phenylboronic acid (61 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) were added thereto and refluxed for 18 hours.
  • Step 4 After cooling the reaction solution, it was washed twice with water, twice with a 3% by mass acetic acid aqueous solution and twice with water, and when the resulting solution was added dropwise to methanol, precipitation occurred. The precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.31 g of a polymer compound HTL-3.
  • the polymer compound HTL-3 had an Mn of 4.6 ⁇ 10 4 and an Mw of 1.5 ⁇ 10 5 .
  • the high molecular compound HTL-3 has a structural value derived from the compound M1, a structural unit derived from the compound M5, a structural unit derived from the compound M2, and the The structural unit derived from M6 is a copolymer composed of a molar ratio of 50: 40: 5: 5.
  • the polymer compound HTL-4 had an Mn of 2.3 ⁇ 10 4 and an Mw of 1.2 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for polymer compound HTL-4 is that the structural unit derived from compound M3, the structural unit derived from compound M4, and the structural unit derived from compound M5 are: It is a copolymer formed by a molar ratio of 45: 5: 50.
  • the polymer compound HTL-5 had an Mn of 4.3 ⁇ 10 4 and an Mw of 3.6 ⁇ 10 5 .
  • the polymer compound HTL-5 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound M8, a structural unit derived from the compound M7, a structural unit derived from the compound M2, and a compound.
  • the structural unit derived from M6 is a copolymer composed of a molar ratio of 50: 40: 5: 5.
  • Example D1 Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • a hole injection material ND-3202 manufactured by Nissan Chemical Industries
  • the hole injection layer was formed by heating at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
  • the polymer compound HTL-4 was dissolved in xylene at a concentration of 0.6% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by spin coating, and heated in a nitrogen gas atmosphere on a hot plate at 180 ° C. for 60 minutes to form a second film. An organic layer of was formed. By this heating, the polymer compound HTL-4 became a crosslinked product.
  • the substrate on which the first organic layer is formed is depressurized to 1 ⁇ 10 ⁇ 4 Pa or less in a vapor deposition machine, and then, as a cathode, sodium fluoride is about 4 nm on the first organic layer, and then fluorinated. About 80 nm of aluminum was deposited on the sodium layer. After vapor deposition, the light emitting element D1 was produced by sealing using a glass substrate.
  • Example D2 Production and evaluation of light-emitting device D2 A light-emitting device D2 was produced in the same manner as in Example D1, except that Compound EM-1 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D2.
  • the driving voltage at 400 cd / m 2 was 5.6 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
  • Example D3 Production and evaluation of light-emitting device D3 A light-emitting device D3 was produced in the same manner as in Example D1, except that Compound EM-3 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D3.
  • the driving voltage at 400 cd / m 2 was 6.0 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
  • Example D4 Production and evaluation of light-emitting device D4 A light-emitting device D4 was produced in the same manner as in Example D1, except that Compound EM-4 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D4.
  • the driving voltage at 400 cd / m 2 was 6.0 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
  • Example D5 Production and evaluation of light-emitting device D5 A light-emitting device D5 was produced in the same manner as in Example D1, except that Compound EM-5 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D5.
  • the driving voltage at 400 cd / m 2 was 5.6 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.19).
  • Example D6 Production and evaluation of light-emitting device D6 A light-emitting device D6 was produced in the same manner as in Example D1, except that Compound EM-6 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D6.
  • the driving voltage at 400 cd / m 2 was 5.8 V, and the CIE chromaticity coordinates (x, y) were (0.15, 0.18).
  • Example D7 Production and evaluation of light-emitting device D7 A light-emitting device D7 was produced in the same manner as in Example D1, except that Compound EM-7 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D7.
  • the driving voltage at 400 cd / m 2 was 6.5 V, and the CIE chromaticity coordinates (x, y) were (0.17, 0.24).
  • Example D8 Production and evaluation of light-emitting device D8 A light-emitting device D8 was produced in the same manner as in Example D1, except that Compound EM-8 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D8.
  • the driving voltage at 400 cd / m 2 was 5.5 V, and the CIE chromaticity coordinates (x, y) were (0.25, 0.50).
  • Example D9 Production and evaluation of light-emitting device D9 A light-emitting device D9 was produced in the same manner as in Example D1, except that compound HM-3 was used instead of compound HM-2 in Example D1.
  • Example D10 Production and evaluation of light-emitting device D10 A light-emitting device D10 was produced in the same manner as in Example D1, except that compound HM-4 was used instead of compound HM-2 in Example D1.
  • Example D11 Production and evaluation of light-emitting device D11 A light-emitting device D11 was produced in the same manner as in Example D1, except that compound HM-5 was used instead of compound HM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D11.
  • the driving voltage at 400 cd / m 2 was 5.2 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
  • Example D12 Production and evaluation of light-emitting device D12 A light-emitting device D12 was produced in the same manner as in Example D1, except that Compound EM-9 was used instead of Compound EM-2 in Example D1.
  • Example D13 Production and evaluation of light-emitting device D13 A light-emitting device D13 was produced in the same manner as in Example D1, except that Compound HM-6 was used instead of Compound HM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D13.
  • the driving voltage at 400 cd / m 2 was 6.5 V, and the CIE chromaticity coordinates (x, y) were (0.17, 0.18).
  • Example D14 Production and evaluation of light-emitting device D14 A light-emitting device D14 was produced in the same manner as in Example D13, except that Compound EM-8 was used instead of Compound EM-2 in Example D13.
  • EL light emission was observed by applying a voltage to the light emitting element D14.
  • the driving voltage at 400 cd / m 2 was 6.6 V, and the CIE chromaticity coordinates (x, y) were (0.25, 0.46).
  • Example D15 Production and evaluation of light-emitting device D15 Light-emitting device D15 was prepared in the same manner as in Example D1, except that polymer compound HTL-5 was used instead of polymer compound HTL-4 in Example D1. Was made.
  • EL light emission was observed by applying a voltage to the light emitting element D15.
  • the drive voltage at 400 cd / m 2 was 4.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.20).
  • Example D16 Fabrication and evaluation of light-emitting device D16
  • Light-emitting device D16 was prepared in the same manner as in Example D1, except that polymer compound HTL-3 was used instead of polymer compound HTL-4 in Example D1. Was made.
  • EL light emission was observed by applying a voltage to the light emitting element D16.
  • the driving voltage at 400 cd / m 2 was 5.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.22).
  • EL light emission was observed by applying a voltage to the light emitting device CD1.
  • the drive voltage at 400 cd / m 2 was 7.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.19).
  • Table 3 shows the results of Examples and Comparative Examples.
  • EL light emission was observed by applying a voltage to the light emitting element D17.
  • the driving voltage at 100 cd / m 2 was 10.0V.
  • EL light emission was observed by applying a voltage to the light emitting element D18.
  • the driving voltage at 100 cd / m 2 was 9.2V.
  • EL light emission was observed by applying a voltage to the light emitting device CD2.
  • the driving voltage at 100 cd / m 2 was 11.7V.
  • Table 4 shows the results of Examples and Comparative Examples.
  • Example D19 Production and evaluation of light-emitting device D19 A light-emitting device D19 was produced in the same manner as in Example D16.
  • EL light emission was observed by applying a voltage to the light emitting element D19.
  • the driving voltage at 100 cd / m 2 was 4.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
  • EL light emission was observed by applying a voltage to the light emitting device CD3.
  • the driving voltage at 100 cd / m 2 was 6.6 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.20).
  • Table 5 shows the results of Examples and Comparative Examples.
  • Example D20 Fabrication and evaluation of light-emitting element D20 A light-emitting element D20 was fabricated in the same manner as in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D20.
  • the drive voltage at 5000 cd / m 2 was 9.1 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
  • Example D21 Fabrication and evaluation of light-emitting element D21 A light-emitting element D21 was fabricated in the same manner as in Example D2.
  • EL light emission was observed by applying a voltage to the light emitting element D21.
  • the drive voltage at 5000 cd / m 2 was 9.5 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.20).
  • Example D22 Production and evaluation of light-emitting element D22 A light-emitting element D22 was produced in the same manner as in Example D12.
  • EL light emission was observed by applying a voltage to the light emitting element D22.
  • the drive voltage at 5000 cd / m 2 was 9.5 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
  • Example D23 Production and evaluation of light-emitting element D23 A light-emitting element D23 was produced in the same manner as in Example D5.
  • EL light emission was observed by applying a voltage to the light emitting element D23.
  • the drive voltage at 5000 cd / m 2 was 9.5 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
  • Example D24 Production and evaluation of light-emitting element D24 A light-emitting element D24 was produced in the same manner as in Example D8.
  • EL light emission was observed by applying a voltage to the light emitting element D24.
  • the drive voltage at 5000 cd / m 2 was 8.8 V, and the CIE chromaticity coordinates (x, y) were (0.24, 0.49).
  • Example D25 Production and evaluation of light-emitting device D25 A light-emitting device D25 was produced in the same manner as in Example D1, except that Compound EM-10 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D25.
  • the drive voltage at 5000 cd / m 2 was 11.0 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
  • EL light emission was observed by applying a voltage to the light emitting device CD4.
  • the drive voltage at 5000 cd / m 2 was 11.7 V, and the CIE chromaticity coordinates (x, y) were (0.17, 0.23).
  • Table 6 shows the results of Examples and Comparative Examples.
  • Example D26 Production and evaluation of light-emitting element D26 A light-emitting element D26 was produced in the same manner as in Example D6.
  • Example D27 Production and evaluation of light-emitting device D27 A light-emitting device D27 was produced in the same manner as in Example D1, except that Compound EM-11 was used instead of Compound EM-2 in Example D1.
  • EL light emission was observed by applying a voltage to the light emitting element D27.
  • the drive voltage at 7500 cd / m 2 was 11.8 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.18).
  • a light emitting element with a low driving voltage can be provided.

Abstract

A light-emitting element having a positive electrode, a negative electrode, and a first organic layer and a second organic layer that are provided between the positive electrode and the negative electrode, wherein the first organic layer is a layer that includes a light-emitting material expressed by formula (B), the maximum peak wavelength of the emission spectrum of the light-emitting material expressed by formula (B) is 380nm-750nm, the second organic layer is a layer that includes a crosslinked body of a high-molecular compound, said high-molecular compound including a structural unit that has a group expressed by formula (XL-A) and a structural unit that has a group expressed by formula (XL-B), and the group expressed by formula (XL-A) and the group expressed by formula (XL-B) are different groups.

Description

発光素子Light emitting element
 本発明は、発光素子に関する。 The present invention relates to a light emitting element.
 有機エレクトロルミネッセンス素子等の発光素子は、ディスプレイ及び照明の用途に好適に使用することが可能であり、研究開発が行われている。 Light emitting elements such as organic electroluminescence elements can be suitably used for display and lighting applications, and research and development are being conducted.
 例えば、特許文献1には、下記式(M0-1)で表される構成単位を含む高分子化合物(P0-1)を含有する有機層と、下記式(EM0-1)で表される発光材料を含有する発光層とを有する発光素子が記載されている。なお、該高分子化合物(P0-1)は架橋基を有さない高分子化合物である。 For example, Patent Document 1 discloses an organic layer containing a polymer compound (P0-1) containing a structural unit represented by the following formula (M0-1) and a light emission represented by the following formula (EM0-1). A light-emitting element having a light-emitting layer containing a material is described. The polymer compound (P0-1) is a polymer compound having no crosslinking group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 例えば、特許文献2には、下記式で表される高分子化合物(P0-2)の架橋体を含有する有機層と、下記式(EM0-2)で表される発光材料を含有する発光層とを有する発光素子が記載されている。なお、該高分子化合物(P0-2)は、後述する式(XL-A)で表される基を有する架橋構成単位及び式(XL-B)で表される基を有する架橋構成単位を含む高分子化合物とは異なる。 For example, Patent Document 2 discloses an organic layer containing a crosslinked product of a polymer compound (P0-2) represented by the following formula and a light emitting layer containing a light emitting material represented by the following formula (EM0-2) Are described. The polymer compound (P0-2) includes a crosslinked structural unit having a group represented by the formula (XL-A) described later and a crosslinked structural unit having a group represented by the formula (XL-B). Different from polymer compounds.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
国際公開第2007-100010号International Publication No. 2007-100010 特開2010-183010号公報JP 2010-183010 A
 発光素子としては、駆動電圧が十分に低いものが求められている。そこで、本発明は、駆動電圧が低い発光素子を提供することを目的とする。 As a light-emitting element, one having a sufficiently low driving voltage is required. Therefore, an object of the present invention is to provide a light emitting element with a low driving voltage.
 本発明は、以下の[1]~[15]を提供する。 The present invention provides the following [1] to [15].
[1]陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有する発光素子であって、
 前記第1の有機層が、式(B)で表される発光材料を含有する層であり、
 前記式(B)で表される発光材料の発光スペクトルの最大ピーク波長が380nm以上750nm以下であり、
 前記第2の有機層が、式(XL-A)で表される基を有する構成単位と式(XL-B)で表される基を有する構成単位とを含む高分子化合物の架橋体を含有する層であり、
 式(XL-A)で表される基と式(XL-B)で表される基とが互いに異なる基である、発光素子。
Figure JPOXMLDOC01-appb-C000010
[式中、
 n1Bは、0~15の整数を表す。
 Ar1Bは、芳香族炭化水素基又は芳香族複素環基を表す。
 R1Bは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表し、これらの基は置換基を有していてもよい。R1Bが複数存在する場合、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000011
[式中、
 nA及びnBは、それぞれ独立に、0~5の整数を表す。
 L及びLは、それぞれ独立に、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。L及びLが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 X及びXは、それぞれ独立に、架橋基を表す。]
[2]前記X又は前記Xが、架橋基A群から選ばれる少なくとも1種の架橋基である、[1]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000012
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
[3]前記式(XL-A)で表される基を有する架橋構成単位が、式(XL-A1)で表される構成単位又は式(XL-A2)で表される構成単位である、[1]又は[2]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000013
[式中、
 nA1は、1~4の整数を表す。nA1が複数存在する場合、それらは同一でも異なっていてもよい。
 nA2は、0又は1の整数を表す。
 XLAは、前記式(XL-A)で表される架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。XLAが複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのXLAは、前記式(XL-A)で表される架橋基である。
 ArA3は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArA5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 ArA4及びArA6は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArA4、ArA5及びArA6はそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。]
[4]前記式(XL-B)で表される基を有する架橋構成単位が、式(XL-B1)で表される構成単位又は式(XL-B2)で表される構成単位である、[1]又は[2]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000014
[式中、
 nB1は、1~4の整数を表す。nB1が複数存在する場合、それらは同一でも異なっていてもよい。
 nB2は、0又は1の整数を表す。
 XLBは、前記式(XL-B)で表される架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。XLBが複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのXLBは、前記式(XL-B)で表される架橋基である。
 ArB3は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArB5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 ArB4及びArB6は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArB4、ArB5及びArB6はそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。]
[5]前記Xが、前記架橋基A群から選ばれる式(XL-3)、式(XL-4)、式(XL-13)又は式(XL-17)で表される架橋基である、[2]~[4]のいずれかに記載の発光素子。
[6]前記Xが、前記架橋基A群から選ばれる式(XL-1)、式(XL-2)、式(XL-5)、式(XL-6)、式(XL-7)、式(XL-8)、式(XL-14)、式(XL-15)又は式(XL-16)で表される架橋基である、[2]~[5]のいずれかに記載の発光素子。
[7]前記Ar1Bが、芳香族炭化水素基である、[1]~[6]のいずれかに記載の発光素子。
[8]前記Ar1Bが、ベンゼン環、ビフェニル環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、トリフェニレン環、ナフタセン環、フルオレン環、スピロビフルオレン環、ピレン環、ペリレン環、クリセン環、インデン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基である、[7]に記載の発光素子。
[9]前記Ar1Bが、ビフェニル環、フルオレン環、ピレン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基である、[8]に記載の発光素子。
[10]前記n1Bが、1~8の整数である、[1]~[9]のいずれかに記載の発光素子。
[11]前記R1Bが、アルキル基、シクロアルキル基、アリール基、アルケニル基又はシクロアルケニル基(これらの基は置換基を有していてもよい)である、[1]~[10]のいずれかに記載の発光素子。
[12]前記第1の有機層が、前記式(B)で表される発光材料とホスト材料とを含有する層であり、前記ホスト材料が式(FH-1)で表される化合物又は式(Y)で表される構成単位を含む高分子化合物である、[1]~[11]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000015
[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。
 nH1は、0~15の整数を表す。
 LH1は、アリーレン基、2価の複素環基、又は、-[C(RH11]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1~10の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000016
[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
[13]前記式(B)で表される発光材料の発光スペクトルの最大ピーク波長が380nm以上570nm以下である、[1]~[12]のいずれかに記載の発光素子。
[14]前記第1の有機層と、前記第2の有機層とが、隣接している、[1]~[13]のいずれかに記載の発光素子。
[15]前記第2の有機層が、前記陽極及び前記第1の有機層との間に設けられた層である、[1]~[14]のいずれかに記載の発光素子。
[1] A light emitting device having an anode, a cathode, and a first organic layer and a second organic layer provided between the anode and the cathode,
The first organic layer is a layer containing a light emitting material represented by the formula (B),
The maximum peak wavelength of the emission spectrum of the luminescent material represented by the formula (B) is 380 nm or more and 750 nm or less,
The second organic layer contains a crosslinked product of a polymer compound containing a structural unit having a group represented by the formula (XL-A) and a structural unit having a group represented by the formula (XL-B) Layer to
A light-emitting element in which the group represented by the formula (XL-A) and the group represented by the formula (XL-B) are different from each other.
Figure JPOXMLDOC01-appb-C000010
[Where:
n 1B represents an integer of 0 to 15.
Ar 1B represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
R 1B is a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, alkenyl group, cycloalkenyl group, alkynyl group or cycloalkynyl. Represents a group, and these groups may have a substituent. When there are a plurality of R 1B s , they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
Figure JPOXMLDOC01-appb-C000011
[Where:
nA and nB each independently represents an integer of 0 to 5.
L A and L B each independently represent an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, It may have a substituent. R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. When there are a plurality of L A and L B , they may be the same or different from each other.
X A and X B each independently represent a crosslinking group. ]
[2] The light emitting device according to [1], wherein X A or X B is at least one crosslinking group selected from the crosslinking group A group.
Figure JPOXMLDOC01-appb-C000012
[Wherein R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When a plurality of R XL are present, they may be the same or different, and when a plurality of n XL are present, they may be the same or different. * 1 represents a binding position. These crosslinking groups may have a substituent. ]
[3] The crosslinked structural unit having a group represented by the formula (XL-A) is a structural unit represented by the formula (XL-A1) or a structural unit represented by the formula (XL-A2). The light emitting device according to [1] or [2].
Figure JPOXMLDOC01-appb-C000013
[Where:
n A1 represents an integer of 1 to 4. When a plurality of n A1 are present, they may be the same or different.
n A2 represents an integer of 0 or 1.
XLA represents a bridging group represented by the formula (XL-A), a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups have a substituent. May be. When a plurality of XLA are present, they may be the same or different. However, at least one XLA is a crosslinking group represented by the formula (XL-A).
Ar A3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
Ar A5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
Ar A4 and Ar A6 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
Ar A4 , Ar A5 and Ar A6 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or a sulfur atom to form a ring. It may be. ]
[4] The crosslinked structural unit having a group represented by the formula (XL-B) is a structural unit represented by the formula (XL-B1) or a structural unit represented by the formula (XL-B2). The light emitting device according to [1] or [2].
Figure JPOXMLDOC01-appb-C000014
[Where:
n B1 represents an integer of 1 to 4. When a plurality of n B1 are present, they may be the same or different.
n B2 represents an integer of 0 or 1.
X LB represents a bridging group represented by the above formula (XL-B), a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups have a substituent. May be. When a plurality of X LB are present, they may be the same or different. However, at least one X LB is a bridging group represented by the formula (XL-B).
Ar B3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
Ar B5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
Ar B4 and Ar B6 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
Ar B4 , Ar B5, and Ar B6 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or a sulfur atom to form a ring. It may be. ]
[5] wherein X A is formula selected from the crosslinking group A (XL-3), formula (XL-4), the formula (XL-13) or Formula bridging group represented by (XL-17) The light emitting device according to any one of [2] to [4].
[6] The formula (XL-1), formula (XL-2), formula (XL-5), formula (XL-6), formula (XL-7) wherein X B is selected from the bridging group A group Any one of [2] to [5], which is a crosslinking group represented by formula (XL-8), formula (XL-14), formula (XL-15), or formula (XL-16) Light emitting element.
[7] The light emitting device according to any one of [1] to [6], wherein Ar 1B is an aromatic hydrocarbon group.
[8] The Ar 1B is a benzene ring, biphenyl ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, triphenylene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene ring, chrysene ring, The light emission according to [7], which is a group formed by removing one or more hydrogen atoms directly bonded to carbon atoms constituting a ring from an indene ring, a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring. element.
[9] Ar 1B has at least one hydrogen atom directly bonded to a carbon atom constituting the ring from a biphenyl ring, a fluorene ring, a pyrene ring, a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring. The light emitting device according to [8], which is a group formed by removal.
[10] The light emitting device according to any one of [1] to [9], wherein the n 1B is an integer of 1 to 8.
[11] The above-mentioned R 1B is an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, or a cycloalkenyl group (these groups may have a substituent), [1] to [10] The light emitting element in any one.
[12] The first organic layer is a layer containing a light emitting material represented by the formula (B) and a host material, and the host material is a compound or a formula represented by the formula (FH-1) The light-emitting device according to any one of [1] to [11], which is a polymer compound including a structural unit represented by (Y).
Figure JPOXMLDOC01-appb-C000015
[Where:
Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups optionally have a substituent.
n H1 represents an integer of 0 to 15.
L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent. When a plurality of L H1 are present, they may be the same or different. n H11 represents an integer of 1 to 10. R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
Figure JPOXMLDOC01-appb-C000016
[In the formula, Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent. ]
[13] The light emitting device according to any one of [1] to [12], wherein a maximum peak wavelength of an emission spectrum of the light emitting material represented by the formula (B) is 380 nm or more and 570 nm or less.
[14] The light emitting device according to any one of [1] to [13], wherein the first organic layer and the second organic layer are adjacent to each other.
[15] The light emitting device according to any one of [1] to [14], wherein the second organic layer is a layer provided between the anode and the first organic layer.
 本発明によれば、駆動電圧が低い発光素子を提供することができる。 According to the present invention, a light emitting element with a low driving voltage can be provided.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
<共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
<Explanation of common terms>
Terms commonly used in this specification have the following meanings unless otherwise specified.
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。 Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, i-Pr represents an isopropyl group, and t-Bu represents a tert-butyl group.
 水素原子は、重水素原子であっても、軽水素原子であってもよい。 The hydrogen atom may be a deuterium atom or a light hydrogen atom.
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。 In the formula representing the metal complex, the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10~1×10である重合体を意味する。 “Polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 × 10 3 to 1 × 10 8 .
 「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。 “Low molecular weight compound” means a compound having no molecular weight distribution and a molecular weight of 1 × 10 4 or less.
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。 “Structural unit” means one or more units present in a polymer compound.
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。 The “alkyl group” may be either linear or branched. The number of carbon atoms of the linear alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent. The number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基及びドデシル基が挙げられる。アルキル基は置換基を有していてもよく、例えば、アルキル基における水素原子の一部又は全部が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。置換基を有するアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基及び6-エチルオキシヘキシル基が挙げられる。 Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group, heptyl. Group, octyl group, 2-ethylhexyl group, 3-propylheptyl group, decyl group, 3,7-dimethyloctyl group, 2-ethyloctyl group, 2-hexyldecyl group and dodecyl group. The alkyl group may have a substituent, for example, a group in which part or all of the hydrogen atoms in the alkyl group are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be. Examples of the alkyl group having a substituent include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, a perfluorooctyl group, a 3-phenylpropyl group, and 3- (4-methylphenyl). A propyl group, a 3- (3,5-di-hexylphenyl) propyl group and a 6-ethyloxyhexyl group can be mentioned.
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。 The number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
 シクロアルキル基としては、例えば、シクロペンチル基及びシクロヘキシル基が挙げられる。シクロアルキル基は置換基を有していてもよく、例えば、シクロアルキル基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。置換基を有するシクロアルキル基としては、例えば、シクロヘキシルメチル基及びシクロヘキシルエチル基が挙げられる。 Examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group. The cycloalkyl group may have a substituent. For example, part or all of the hydrogen atoms in the cycloalkyl group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, and the like. It may be a substituted group. Examples of the cycloalkyl group having a substituent include a cyclohexylmethyl group and a cyclohexylethyl group.
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。 “Aryl group” means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon. The number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
 アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基及び4-フェニルフェニル基が挙げられる。アリール基は置換基を有していてもよく、例えば、アリール基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。 Examples of the aryl group include a phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, Examples include 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 2-phenylphenyl group, 3-phenylphenyl group, and 4-phenylphenyl group. The aryl group may have a substituent. For example, part or all of the hydrogen atoms in the aryl group are substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be a radical.
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。 The “alkoxy group” may be either linear or branched. The number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent. The number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基及びラウリルオキシ基が挙げられる。アルコキシ基は置換基を有していてもよく、例えば、アルコキシ基における水素原子の一部又は全部が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。 Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, 2 -Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group and lauryloxy group. The alkoxy group may have a substituent, for example, a group in which part or all of the hydrogen atoms in the alkoxy group are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be.
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。 The number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
 シクロアルコキシ基としては、例えば、シクロペンチルオキシ基及びシクロヘキシルオキシ基が挙げられる。シクロアルコキシ基は置換基を有していてもよく、例えば、シクロアルコキシ基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。 Examples of the cycloalkoxy group include a cyclopentyloxy group and a cyclohexyloxy group. The cycloalkoxy group may have a substituent. For example, part or all of the hydrogen atoms in the cycloalkoxy group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms, and the like. It may be a substituted group.
 「アリールオキシ基」は、酸素原子にアリール基が1つ結合した原子団を意味する。アリールオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。 “Aryloxy group” means an atomic group in which one aryl group is bonded to an oxygen atom. The number of carbon atoms of the aryloxy group is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
 アリールオキシ基としては、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基及び1-ピレニルオキシ基が挙げられる。アリールオキシ基は置換基を有していてもよく、例えば、アリールオキシ基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基であってよい。 Examples of the aryloxy group include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthracenyloxy group, a 9-anthracenyloxy group, and a 1-pyrenyloxy group. The aryloxy group may have a substituent. For example, part or all of the hydrogen atoms in the aryloxy group are substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like. It may be a group.
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。 The “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮合されている化合物を意味する。 `` Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc. A compound in which the ring itself exhibits aromaticity, and a compound in which an aromatic ring is condensed to a heterocyclic ring, even if the heterocyclic ring itself does not exhibit aromaticity, such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran Means.
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは4~20である。 The number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
 1価の複素環基としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基及びトリアジニル基が挙げられる。1価の複素環基は置換基を有していてもよく、例えば、1価の複素環基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基であってよい。 Examples of the monovalent heterocyclic group include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, and triazinyl group. The monovalent heterocyclic group may have a substituent. For example, part or all of the hydrogen atoms in the monovalent heterocyclic group are an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, and the like. It may be a substituted group.
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。 “Halogen atom” means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。 The “amino group” may have a substituent, and a substituted amino group is preferable. As a substituent which an amino group has, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。具体的な置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基及びビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。 Examples of the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group. Specific examples of the substituted amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, and bis (3,5- A di-tert-butylphenyl) amino group.
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。 The “alkenyl group” may be either linear or branched. The number of carbon atoms of the straight chain alkenyl group is usually 2 to 30, preferably 3 to 20, not including the carbon atoms of the substituent. The number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the carbon atoms of the substituent.
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。 The number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
 アルケニル基及びシクロアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基及び7-オクテニル基が挙げられる。アルケニル基は置換基を有していてもよく、例えば、アルケニル基における水素原子の一部又は全部が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。また、シクロアルケニル基は置換基を有していてもよく、例えば、シクロアルケニル基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。 Examples of the alkenyl group and cycloalkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group, 5 -Hexenyl group and 7-octenyl group. The alkenyl group may have a substituent, for example, a group in which part or all of the hydrogen atoms in the alkenyl group are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be. In addition, the cycloalkenyl group may have a substituent. For example, a part or all of the hydrogen atoms in the cycloalkenyl group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms. It may be a group substituted with or the like.
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。 The “alkynyl group” may be either linear or branched. The number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent. The number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。 The number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
 アルキニル基及びシクロアルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基及び5-ヘキシニル基が挙げられる。アルキニル基は置換基を有していてもよく、例えば、アルキニル基における水素原子の一部又は全部が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。また、シクロアルキニル基は置換基を有していてもよく、例えば、シクロアルキニル基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。 Examples of the alkynyl group and cycloalkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group and 5 -A hexynyl group is mentioned. The alkynyl group may have a substituent, for example, a group in which some or all of the hydrogen atoms in the alkynyl group are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be. In addition, the cycloalkynyl group may have a substituent. For example, a part or all of the hydrogen atoms in the cycloalkynyl group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, fluorine atoms. It may be a group substituted with or the like.
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。 “Arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon. The number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
 アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基及びクリセンジイル基が挙げられる。アリーレン基は置換基を有していてもよく、例えば、アリーレン基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。 Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthenediyl group, a dihydrophenanthenediyl group, a naphthacenediyl group, a fluorenediyl group, a pyrenediyl group, a perylenediyl group, and a chrysenediyl group. The arylene group may have a substituent. For example, part or all of the hydrogen atoms in the arylene group are substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, or the like. It may be a radical.
 アリーレン基は、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。 The arylene group is preferably a group represented by formula (A-1) to formula (A-20). The arylene group includes a group in which a plurality of these groups are bonded.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式中、R及びRは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRは、各々、同一でも異なっていてもよく、R同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。 In the formula, R and R a each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group. A plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which each is bonded.
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。 The number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 without including the number of carbon atoms of the substituent.
 2価の複素環基としては、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾール等の複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられる。2価の複素環基は置換基を有していてもよく、例えば、2価の複素環基における水素原子の一部又は全部が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってよい。 Examples of the divalent heterocyclic group include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan, thiophene, azole, Examples thereof include divalent groups obtained by removing two hydrogen atoms from a hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound such as diazole or triazole. The divalent heterocyclic group may have a substituent. For example, some or all of the hydrogen atoms in the divalent heterocyclic group are alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryls. It may be a group substituted with a group, a fluorine atom or the like.
 2価の複素環基は、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。 The divalent heterocyclic group is preferably a group represented by formula (AA-1) to formula (AA-34). The divalent heterocyclic group includes a group in which a plurality of these groups are bonded.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式中、R及びRは、前記と同じ意味を表す。 In the formula, R and R a represent the same meaning as described above.
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、上記架橋基A群の式(XL-1)~式(XL-17)で表される基である。 The “crosslinking group” is a group capable of generating a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc. This is a group represented by the formula (XL-1) to (XL-17) of the group A group.
 「置換基」としては、例えば、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基及びシクロアルキニル基が挙げられる。置換基は架橋基であってもよい。 Examples of the “substituent” include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, Examples include alkenyl group, cycloalkenyl group, alkynyl group and cycloalkynyl group. The substituent may be a crosslinking group.
<発光素子>
 次に、本発明の一実施形態に係る発光素子について説明する。
<Light emitting element>
Next, a light emitting device according to an embodiment of the present invention will be described.
 本実施形態に係る発光素子は、陽極と、陰極と、陽極及び陰極の間に設けられた第1の有機層及び第2の有機層と、を有する。第1の有機層は、式(B)で表される発光材料(以下、「第1の発光材料」ともいう。)を含有する層であり、第2の有機層は、式(XL-A)で表される基を有する架橋構成単位と式(XL-B)で表される基を有する架橋構成単位とを含む高分子化合物の架橋体を含有する層である。 The light emitting device according to the present embodiment includes an anode, a cathode, and a first organic layer and a second organic layer provided between the anode and the cathode. The first organic layer is a layer containing a light-emitting material represented by the formula (B) (hereinafter also referred to as “first light-emitting material”), and the second organic layer has a formula (XL-A And a crosslinked structural unit of a polymer compound containing a crosslinked structural unit having a group represented by formula (XL-B) and a crosslinked structural unit having a group represented by the formula (XL-B).
 第1の有機層及び第2の有機層の形成方法としては、例えば、真空蒸着法等の乾式法、並びに、スピンコート法及びインクジェット印刷法等の湿式法が挙げられ、湿式法が好ましい。 Examples of the method for forming the first organic layer and the second organic layer include a dry method such as a vacuum deposition method and a wet method such as a spin coating method and an ink jet printing method, and a wet method is preferable.
 第1の有機層を湿式法により形成する場合、後述する第1の有機層用のインク(以下、「第1のインク」ともいう。)を用いることが好ましい。 When the first organic layer is formed by a wet method, it is preferable to use an ink for a first organic layer described below (hereinafter also referred to as “first ink”).
 第2の有機層を湿式法により形成する場合、後述する第2の有機層用のインク(以下、「第2のインク」ともいう。)を用いることが好ましい。第2の有機層を形成後、加熱又は光照射することで、第2の有機層に含有される後述する第2の有機層の高分子化合物を架橋させることができ、加熱することで、第2の有機層に含有される後述する第2の有機層の高分子化合物を架橋させることが好ましい。後述する第2の有機層の高分子化合物が架橋した状態(後述する第2の有機層の高分子化合物の架橋体)で、第2の有機層に含有されている場合、第2の有機層は溶媒に対して実質的に不溶化されている。そのため、第2の有機層は、発光素子の積層化に好適に使用することができる。 In the case where the second organic layer is formed by a wet method, it is preferable to use an ink for a second organic layer described below (hereinafter also referred to as “second ink”). After forming the second organic layer, the polymer compound of the second organic layer described later contained in the second organic layer can be crosslinked by heating or light irradiation. It is preferable to crosslink the polymer compound of the second organic layer described later contained in the second organic layer. When the second organic layer is contained in the second organic layer in a state where the polymer compound of the second organic layer described later is crosslinked (crosslinked product of the polymer compound of the second organic layer described later), the second organic layer Is substantially insolubilized in the solvent. Therefore, the second organic layer can be suitably used for stacking light emitting elements.
 架橋させるための加熱の温度は、通常、25~300℃であり、好ましくは50~250℃であり、より好ましくは150℃~200℃であり、更に好ましくは170℃~190℃である。架橋させるための加熱の時間は、通常、0.1~1000分であり、好ましくは0.5~500分であり、より好ましくは1~120分であり、更に好ましくは30~90分である。 The heating temperature for crosslinking is usually 25 to 300 ° C, preferably 50 to 250 ° C, more preferably 150 ° C to 200 ° C, and still more preferably 170 ° C to 190 ° C. The heating time for crosslinking is usually 0.1 to 1000 minutes, preferably 0.5 to 500 minutes, more preferably 1 to 120 minutes, and further preferably 30 to 90 minutes. .
 光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。 The types of light used for light irradiation are, for example, ultraviolet light, near ultraviolet light, and visible light.
 第1の有機層又は第2の有機層に含有される成分の分析方法としては、例えば、抽出等の化学的分離分析法、赤外分光法(IR)、核磁気共鳴分光法(NMR)、質量分析法(MS)等の機器分析法、並びに、化学的分離分析法及び機器分析法を組み合わせた分析法が挙げられる。 Examples of the analysis method of the components contained in the first organic layer or the second organic layer include chemical separation analysis methods such as extraction, infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), Examples include instrumental analysis methods such as mass spectrometry (MS), and analysis methods combining chemical separation analysis methods and instrumental analysis methods.
 第1の有機層又は第2の有機層に対して、トルエン、キシレン、クロロホルム、テトラヒドロフラン等の有機溶媒を用いた固液抽出を行うことで、有機溶媒に対して実質的に不溶な成分(不溶成分)と、有機溶媒に対して溶解する成分(溶解成分)とに分離することが可能である。不溶成分は赤外分光法又は核磁気共鳴分光法により分析することが可能であり、溶解成分は核磁気共鳴分光法又は質量分析法により分析することが可能である。 By subjecting the first organic layer or the second organic layer to solid-liquid extraction using an organic solvent such as toluene, xylene, chloroform, tetrahydrofuran, etc., components that are substantially insoluble in the organic solvent (insoluble Component) and a component that dissolves in an organic solvent (dissolved component). Insoluble components can be analyzed by infrared spectroscopy or nuclear magnetic resonance spectroscopy, and dissolved components can be analyzed by nuclear magnetic resonance spectroscopy or mass spectrometry.
<第1の有機層>
 第1の有機層は、第1の発光材料を含有する層である。第1の有機層には、第1の発光材料が1種単独で含有されていてもよく、2種以上含有されていてもよい。
<First organic layer>
The first organic layer is a layer containing a first light emitting material. In the first organic layer, the first light emitting material may be contained singly or in combination of two or more.
[第1の発光材料] [First Luminescent Material]
 第1の発光材料の発光スペクトルの最大ピーク波長は、通常、380nm以上750nm以下であり、好ましくは380nm以上570nm以下であり、より好ましくは400nm以上550nm以下であり、更に好ましくは420以上520nm以下であり、特に好ましくは430nm以上510nm以下である。 The maximum peak wavelength of the emission spectrum of the first luminescent material is usually 380 nm or more and 750 nm or less, preferably 380 nm or more and 570 nm or less, more preferably 400 nm or more and 550 nm or less, and further preferably 420 or more and 520 nm or less. It is particularly preferably 430 nm or more and 510 nm or less.
 本明細書において、化合物の発光スペクトルの最大ピーク波長は、化合物を、キシレン、トルエン、クロロホルム、テトラヒドロフラン等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6~1×10-3質量%程度)、該希薄溶液のPLスペクトルを室温で測定することで評価することができる。化合物を溶解させる有機溶媒としては、トルエンが好ましい。 In this specification, the maximum peak wavelength of the emission spectrum of a compound is determined by dissolving the compound in an organic solvent such as xylene, toluene, chloroform, tetrahydrofuran, and preparing a dilute solution (1 × 10 −6 to 1 × 10 −3 It can be evaluated by measuring the PL spectrum of the diluted solution at room temperature. As the organic solvent for dissolving the compound, toluene is preferable.
 第1の発光材料は、式(B)で表される化合物である。 The first light emitting material is a compound represented by the formula (B).
[式(B)で表される化合物]
 n1Bは、0~15の整数を表し、好ましくは1~8の整数であり、より好ましくは1~6の整数であり、更に好ましくは1~4の整数であり、特に好ましくは2~4の整数である。
[Compound represented by Formula (B)]
n 1B represents an integer of 0 to 15, preferably an integer of 1 to 8, more preferably an integer of 1 to 6, still more preferably an integer of 1 to 4, and particularly preferably 2 to 4 Is an integer.
 Ar1Bは、芳香族炭化水素基又は芳香族複素環基を表す。 Ar 1B represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
 Ar1Bにおいて、芳香族炭化水素基の炭素原子数は、通常6~60であり、好ましくは6~40であり、より好ましくは6~30である。 In Ar 1B, aromatic carbon atoms of the hydrocarbon group has usually 6 to 60, preferably 6 to 40, more preferably 6 to 30.
 Ar1Bにおける芳香族炭化水素基としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、トリフェニレン環、ナフタセン環、フルオレン環、スピロビフルオレン環、ピレン環、ペリレン環、クリセン環、インデン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基が挙げられる。芳香族炭化水素基は、好ましくは、ベンゼン環、ビフェニル環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、トリフェニレン環、ナフタセン環、フルオレン環、スピロビフルオレン環、ピレン環、ペリレン環、クリセン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、より好ましくは、ベンゼン環、ビフェニル環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、フルオレン環、スピロビフルオレン環、ピレン環、ペリレン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、更に好ましくは、ベンゼン環、ビフェニル環、ナフタレン環、フルオレン環、スピロビフルオレン環、ピレン環、ペリレン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、特に好ましくは、ビフェニル環、ナフタレン環、フルオレン環、ピレン環、ペリレン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、とりわけ好ましくは、ビフェニル環、フルオレン環、ピレン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基であり、とりわけより好ましくは、ピレン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基である。 Examples of the aromatic hydrocarbon group in Ar 1B include benzene ring, biphenyl ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, triphenylene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene. And a group formed by removing one or more hydrogen atoms directly bonded to the carbon atoms constituting the ring from the ring, chrysene ring, indene ring, fluoranthene ring, benzofluoranthene ring or acenaphthofluoranthene ring. The aromatic hydrocarbon group is preferably a benzene ring, biphenyl ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, triphenylene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene ring, chrysene A group formed by removing one or more hydrogen atoms directly bonded to carbon atoms constituting a ring from a ring, a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring, and more preferably a benzene ring or biphenyl A ring is composed of a ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene ring, fluoranthene ring, benzofluoranthene ring or acenaphthofluoranthene ring. Bond directly to carbon atom A group formed by removing one or more elemental atoms, more preferably a benzene ring, biphenyl ring, naphthalene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene ring, fluoranthene ring, benzofluoranthene ring or asena A group formed by removing one or more hydrogen atoms directly bonded to the carbon atoms constituting the ring from the fluorfluorene ring, particularly preferably a biphenyl ring, a naphthalene ring, a fluorene ring, a pyrene ring, a perylene ring, a fluoranthene A ring, a benzofluoranthene ring or an acenaphthofluoranthene ring, a group formed by removing one or more hydrogen atoms directly bonded to the carbon atoms constituting the ring, particularly preferably a biphenyl ring, a fluorene ring, a pyrene Ring, fluoranthene ring, benzofluoranthene ring or acenaphthofluoranthene ring A group formed by removing one or more hydrogen atoms directly bonded to a carbon atom, and more preferably, a ring is composed of a pyrene ring, a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring A group formed by removing one or more hydrogen atoms directly bonded to a carbon atom.
 Ar1Bにおいて、芳香族複素環基の炭素原子数は、通常2~60であり、好ましくは3~30であり、より好ましくは3~20である。 In Ar 1B , the number of carbon atoms of the aromatic heterocyclic group is usually 2 to 60, preferably 3 to 30, and more preferably 3 to 20.
 Ar1Bにおける芳香族複素環基としては、例えば、ピロール環、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、インドール環、ベンゾジアゾール環、ベンゾトリアゾール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、アクリジン環、9,10-ジヒドロアクリジン環、アクリドン環、フェナジン環又は5,10-ジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基が挙げられる。芳香族複素環基は、好ましくは、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、インドール環、ベンゾジアゾール環、ベンゾトリアゾール環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、9,10-ジヒドロアクリジン環又は5,10-ジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基であり、より好ましくは、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、ベンゾジアゾール環、ベンゾトリアゾール環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基である。 Examples of the aromatic heterocyclic group in Ar 1B include a pyrrole ring, a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, an azanaphthalene ring, a diazanaphthalene ring, a triazanaphthalene ring, an indole ring, and a benzodi ring. Azole ring, benzotriazole ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine ring, phenothiazine ring, acridine ring, 9,10-dihydroacridine ring, acridone ring, phenazine ring or Examples thereof include a group formed by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a 5,10-dihydrophenazine ring. The aromatic heterocyclic group is preferably a diazole ring, triazole ring, pyridine ring, diazabenzene ring, triazine ring, indole ring, benzodiazole ring, benzotriazole ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine ring. , A phenothiazine ring, a 9,10-dihydroacridine ring or a 5,10-dihydrophenazine ring, and a group obtained by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting the ring, more preferably A hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a diazole ring, triazole ring, pyridine ring, diazabenzene ring, triazine ring, benzodiazole ring, benzotriazole ring, carbazole ring, dibenzofuran ring or dibenzothiophene ring Except for one That is a group.
 Ar1Bは、好ましくは、芳香族炭化水素基である。 Ar 1B is preferably an aromatic hydrocarbon group.
 R1Bは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表し、これらの基は置換基を有していてもよい。R1Bは、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、ハロゲン原子、アルケニル基又はシクロアルケニル基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、アルケニル基又はシクロアルケニル基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、アルケニル基又はシクロアルケニル基であり、特に好ましくは、アルキル基、アリール基又はアルケニル基であり、とりわけ好ましくは、アリール基である。これらの基は更に置換基を有していてもよい。 R 1B is a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, alkenyl group, cycloalkenyl group, alkynyl group or cycloalkynyl. Represents a group, and these groups may have a substituent. R 1B is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, a halogen atom, an alkenyl group or a cycloalkenyl group, more preferably , An alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, an alkenyl group or a cycloalkenyl group, more preferably an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group. Or a cycloalkenyl group, particularly preferably an alkyl group, an aryl group or an alkenyl group, and particularly preferably an aryl group. These groups may further have a substituent.
 R1Bがアリール基である場合、該アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~30であり、更に好ましくは6~14である。 When R 1B is an aryl group, the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 40, more preferably 6 to 30 excluding the number of carbon atoms of the substituent. More preferably, it is 6-14.
 R1Bがアリール基である場合、該アリール基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ジヒドロフェナントレン環、ナフタセン環、フルオレン環、スピロビフルオレン環、ピレン環、ペリレン環、クリセン環、インデン環、フルオランテン環及びベンゾフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個を除いてなる基が挙げられる。アリール基は、好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、フルオレン環、スピロビフルオレン環、ピレン環、フルオランテン環又はベンゾフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個を除いてなる基であり、より好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環、スピロビフルオレン環、フルオランテン環又はベンゾフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個を除いてなる基であり、更に好ましくは、更に好ましくは、ベンゼン環、ナフタレン環、フルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いてなる基であり、特に好ましくは、フェニル基、ナフチル基又はフルオレニル基である。これらの基は更に置換基を有していてもよい。 When R 1B is an aryl group, examples of the aryl group include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, dihydrophenanthrene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, And a group formed by removing one hydrogen atom directly bonded to the carbon atom constituting the ring from the perylene ring, chrysene ring, indene ring, fluoranthene ring and benzofluoranthene ring. The aryl group is preferably a carbon atom that forms a ring from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, fluorene ring, spirobifluorene ring, pyrene ring, fluoranthene ring or benzofluoranthene ring. A group formed by removing one hydrogen atom directly bonded to the ring, more preferably, a ring is composed of a benzene ring, naphthalene ring, anthracene ring, fluorene ring, spirobifluorene ring, fluoranthene ring or benzofluoranthene ring A group formed by removing one hydrogen atom directly bonded to a carbon atom, more preferably, more preferably from a benzene ring, a naphthalene ring, a fluorene ring or a spirobifluorene ring, directly to the carbon atom constituting the ring. A group formed by removing one hydrogen atom to be bonded, particularly preferably Phenyl group, a naphthyl group or a fluorenyl group. These groups may further have a substituent.
 R1Bが1価の複素環基である場合、該1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは3~20である。 When R 1B is a monovalent heterocyclic group, the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 3 to 30, not including the number of carbon atoms of the substituent. Yes, more preferably 3-20.
 R1Bが1価の複素環基である場合、該1価の複素環基としては、例えば、ピロール環、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、インドール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、アクリジン環、9,10-ジヒドロアクリジン環、アクリドン環、フェナジン環及び5,10-ジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基が挙げられる。1価の複素環基は、好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、9,10-ジヒドロアクリジン環又は5,10-ジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基であり、より好ましくは、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基である。これらの基は更に置換基を有していてもよい。 When R 1B is a monovalent heterocyclic group, examples of the monovalent heterocyclic group include a pyrrole ring, a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, an azanaphthalene ring, and a diazanaphthalene. Ring, triazanaphthalene ring, indole ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine ring, phenothiazine ring, acridine ring, 9,10-dihydroacridine ring, acridone ring, Examples thereof include a group formed by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a phenazine ring and a 5,10-dihydrophenazine ring. The monovalent heterocyclic group is preferably a pyridine ring, diazabenzene ring, triazine ring, azanaphthalene ring, diazanaphthalene ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine. A group obtained by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a ring, a phenothiazine ring, a 9,10-dihydroacridine ring or a 5,10-dihydrophenazine ring, more preferably , A pyridine ring, a diazabenzene ring, a triazine ring, an azanaphthalene ring, a diazanaphthalene ring, a carbazole ring, a dibenzofuran ring or a dibenzothiophene ring, except for one hydrogen atom directly bonded to the carbon atom or hetero atom constituting the ring Is a group. These groups may further have a substituent.
 R1Bが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、ハロゲン原子、アルケニル基又はシクロアルケニル基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、アルケニル基又はシクロアルケニル基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、アルケニル基又はシクロアルケニル基であり、特に好ましくは、アルキル基又はアリール基である。これらの基は更に置換基を有していてもよい。 The substituent that R 1B may have is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, a halogen atom, or an alkenyl group. Or a cycloalkenyl group, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, an alkenyl group or a cycloalkenyl group, and still more preferably an alkyl group. A cycloalkyl group, an aryl group, an alkenyl group or a cycloalkenyl group, particularly preferably an alkyl group or an aryl group. These groups may further have a substituent.
 R1Bが有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、R1Bにおけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。 Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent that R 1B may have are the same as examples and preferred ranges of the aryl group and monovalent heterocyclic group in R 1B , respectively. is there.
 R1Bが有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、ハロゲン原子、アルケニル基又はシクロアルケニル基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、アルケニル基又はシクロアルケニル基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、アルケニル基又はシクロアルケニル基であり、特に好ましくは、アルキル基又はシクロアルキル基である。これらの基は更に置換基を有していてもよい。 The substituent that the substituent which R 1B may have may further include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group. Group, halogen atom, alkenyl group or cycloalkenyl group, more preferably an alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, monovalent heterocyclic group, alkenyl group or cycloalkenyl group. More preferred are an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group or a cycloalkenyl group, and particularly preferred is an alkyl group or a cycloalkyl group. These groups may further have a substituent.
 R1Bが有していてもよい置換基が更に有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、R1Bにおけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。 Examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent that the substituent which R 1B may further have may further include the aryl group and monovalent complex in R 1B , respectively. Examples of the cyclic group and the preferred range are the same.
 式(B)で表される化合物の発光スペクトルの最大ピーク波長が短波長になるので、R1Bが複数存在する場合、互いに結合して、それぞれが結合する原子とともに環を形成しないことが好ましい。 Since the maximum peak wavelength of the emission spectrum of the compound represented by the formula (B) is a short wavelength, when there are a plurality of R 1B , it is preferable that they are bonded to each other and do not form a ring with the atoms to which they are bonded.
 式(B)で表される化合物としては、例えば、下記式で表される化合物が挙げられる。 Examples of the compound represented by the formula (B) include a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式(B)で表される化合物は、Aldrich、Luminescence Technology Corp.、AK Scientific等から入手可能である。その他には、例えば、国際公開第2007/100010号、国際公開第2008/059713号、国際公開第2011/012212号、国際公開第2012/096263号、国際公開第2006/025273号、国際公開第2006/030527号に記載されている方法に従って合成することができる。 The compound represented by the formula (B) is Aldrich, Luminescence Technology Corp. , AK Scientific, etc. In addition, for example, International Publication No. 2007/100010, International Publication No. 2008/059713, International Publication No. 2011/012212, International Publication No. 2012/096263, International Publication No. 2006/025273, International Publication No. 2006 / 030527 can be synthesized according to the method described in US Pat.
[ホスト材料]
 本実施形態に係る発光素子の駆動電圧がより低くなるので、第1の有機層は、第1の発光材料と、正孔注入性、正孔輸送性、電子注入性及び電子輸送性からなる群から選ばれる少なくとも1つの機能を有するホスト材料とを含有する層であることが好ましい。第1の有機層が、第1の発光材料とホスト材料とを含有する層である場合、ホスト材料は、1種単独で含有されていても、2種以上含有されていてもよい。
[Host material]
Since the driving voltage of the light emitting device according to this embodiment is lower, the first organic layer is composed of the first light emitting material and the group consisting of hole injecting property, hole transporting property, electron injecting property, and electron transporting property. A layer containing a host material having at least one function selected from When the first organic layer is a layer containing the first light emitting material and the host material, the host material may be contained singly or in combination of two or more.
 第1の有機層が、第1の発光材料とホスト材料とを含有する層である場合、第1の発光材料の含有量は、第1の発光材料とホスト材料との合計を100質量部とした場合、通常、0.05~80質量部であり、好ましくは0.1~50質量部であり、より好ましくは1~30質量部であり、更に好ましくは5~15質量部である。 In the case where the first organic layer is a layer containing the first light emitting material and the host material, the content of the first light emitting material is 100 parts by mass of the total of the first light emitting material and the host material. In this case, it is usually 0.05 to 80 parts by mass, preferably 0.1 to 50 parts by mass, more preferably 1 to 30 parts by mass, and further preferably 5 to 15 parts by mass.
 第1の有機層が、第1の発光材料とホスト材料とを含有する層である場合、ホスト材料の有する最低励起一重項状態(S)は、本実施形態に係る発光素子の駆動電圧がより低くなるので、第1の発光材料の有するSと同等のエネルギー準位、又は、より高いエネルギー準位であることが好ましい。すなわち、ホスト材料の発光スペクトルの最大ピーク波長は、本実施形態に係る発光素子の外部量子効率が優れるので、第1の発光材料の発光スペクトルの最大ピーク波長と同等、又は、より短い波長であることが好ましい。 When the first organic layer is a layer containing the first light emitting material and the host material, the lowest excited singlet state (S 1 ) of the host material is that the driving voltage of the light emitting element according to this embodiment is Since it becomes lower, it is preferable that it is the energy level equivalent to S1 which a 1st light emitting material has, or a higher energy level. That is, the maximum peak wavelength of the emission spectrum of the host material is equal to or shorter than the maximum peak wavelength of the emission spectrum of the first light emitting material because the external quantum efficiency of the light emitting device according to this embodiment is excellent. It is preferable.
 ホスト材料としては、本実施形態に係る発光素子を溶液塗布プロセスで作製できるので、第1の有機層に含有される第1の発光材料を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。 As the host material, since the light-emitting element according to this embodiment can be manufactured by a solution coating process, the host material is soluble in a solvent capable of dissolving the first light-emitting material contained in the first organic layer. It is preferable.
 ホスト材料は、低分子化合物と高分子化合物とに分類される。ホスト材料としては、例えば、後述の正孔輸送材料、及び、後述の電子輸送材料が挙げられる。 ∙ Host materials are classified into low molecular compounds and high molecular compounds. As a host material, the below-mentioned hole transport material and the below-mentioned electron transport material are mentioned, for example.
[低分子ホスト]
 ホスト材料として好ましい低分子化合物(以下、「低分子ホスト」ともいう。)に関して説明する。
[Low molecular host]
A low molecular compound (hereinafter also referred to as “low molecular host”) that is preferable as a host material will be described.
 低分子ホストは、好ましくは、式(FH-1)で表される化合物である。 The low molecular host is preferably a compound represented by the formula (FH-1).
 ArH1及びArH2は、好ましくはアリール基又は1価の複素環基であり、より好ましくはアリール基である。これらの基は置換基を有していてもよい。 Ar H1 and Ar H2 are preferably an aryl group or a monovalent heterocyclic group, and more preferably an aryl group. These groups may have a substituent.
 ArH1及びArH2がアリール基である場合、該アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~20であり、更に好ましくは6~14である。 When Ar H1 and Ar H2 are aryl groups, the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 30, and more preferably not including the number of carbon atoms of the substituent. 6 to 20, more preferably 6 to 14.
 ArH1及びArH2がアリール基である場合、該アリール基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、ジヒドロフェナントレン環、ナフタセン環、フルオレン環、スピロビフルオレン環、ピレン環、ペリレン環、クリセン環、インデン環、フルオランテン環又はベンゾフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個を除いてなる基が挙げられる。アリール基は、好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、フルオレン環、スピロビフルオレン環、ピレン環又はクリセン環から、環を構成する炭素原子に直接結合する水素原子1個を除いてなる基であり、より好ましくは、ベンゼン環、ナフタレン環、アントラセン環、ピレン環、フルオレン環又はスピロビフルオレン環から、環を構成する炭素原子に直接結合する水素原子1個を除いてなる基であり、更に好ましくは、更に好ましくは、フェニル基、ナフチル基又はアントラセニル基であり、特に好ましくは、フェニル基又はナフチル基である。これらの基は更に置換基を有していてもよい。 When Ar H1 and Ar H2 are aryl groups, examples of the aryl group include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, triphenylene ring, dihydrophenanthrene ring, naphthacene ring, fluorene ring, spirobifluorene ring, Examples thereof include a group formed by removing one hydrogen atom directly bonded to a carbon atom constituting a ring from a pyrene ring, a perylene ring, a chrysene ring, an indene ring, a fluoranthene ring or a benzofluoranthene ring. The aryl group is preferably a hydrogen atom directly bonded to a carbon atom constituting the ring from a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, fluorene ring, spirobifluorene ring, pyrene ring or chrysene ring. More preferably, one hydrogen atom directly bonded to the carbon atom constituting the ring is selected from a benzene ring, naphthalene ring, anthracene ring, pyrene ring, fluorene ring or spirobifluorene ring. A group to be excluded, more preferably a phenyl group, a naphthyl group or an anthracenyl group, and particularly preferably a phenyl group or a naphthyl group. These groups may further have a substituent.
 ArH1及びArH2が1価の複素環基である場合、該1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは3~20である。 When Ar H1 and Ar H2 are monovalent heterocyclic groups, the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 3 to 60, not including the number of carbon atoms of the substituent. -30, more preferably 3-20.
 ArH1及びArH2が1価の複素環基である場合、該1価の複素環基としては、例えば、ピロール環、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、アザナフタレン環、ジアザナフタレン環、トリアザナフタレン環、インドール環、ベンゾジアゾール環、ベンゾトリアゾール環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、アクリジン環、9,10-ジヒドロアクリジン環、アクリドン環、フェナジン環及び5,10-ジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基が挙げられる。1価の複素環基は、好ましくは、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、インドール環、ベンゾジアゾール環、ベンゾトリアゾール環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェノチアジン環、9,10-ジヒドロアクリジン環又は5,10-ジヒドロフェナジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基であり、より好ましくは、ジアゾール環、トリアゾール環、ピリジン環、ジアザベンゼン環、トリアジン環、ベンゾジアゾール環、ベンゾトリアゾール環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個を除いてなる基である。これらの基は更に置換基を有していてもよい。 When Ar H1 and Ar H2 are monovalent heterocyclic groups, examples of the monovalent heterocyclic group include a pyrrole ring, diazole ring, triazole ring, pyridine ring, diazabenzene ring, triazine ring, azanaphthalene ring, Diazanaphthalene ring, triazanaphthalene ring, indole ring, benzodiazole ring, benzotriazole ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring, dibenzothiophene ring, phenoxazine ring, phenothiazine ring, acridine ring , 9,10-dihydroacridine ring, acridone ring, phenazine ring and 5,10-dihydrophenazine ring, a group obtained by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting the ring. The monovalent heterocyclic group is preferably a diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, an indole ring, a benzodiazole ring, a benzotriazole ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, or a phenoxazine. A group obtained by removing one hydrogen atom directly bonded to a carbon atom or a hetero atom constituting a ring from a ring, a phenothiazine ring, a 9,10-dihydroacridine ring or a 5,10-dihydrophenazine ring, more preferably , A diazole ring, a triazole ring, a pyridine ring, a diazabenzene ring, a triazine ring, a benzodiazole ring, a benzotriazole ring, a carbazole ring, a dibenzofuran ring, or a dibenzothiophene ring, directly bonded to the carbon atom or heteroatom constituting the ring Except one atom That is a group. These groups may further have a substituent.
 ArH1及びArH2が置換アミノ基である場合、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基の例及び好ましい範囲は、ArH1及びArH2におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基における1価の複素環基の例及び好ましい範囲は、ArH1及びArH2における1価の複素環基の例及び好ましい範囲と同じである。 When Ar H1 and Ar H2 are substituted amino groups, the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent. It may be. Examples and preferred ranges of the aryl group in the substituent that the amino group has are the same as examples and preferred ranges of the aryl group in Ar H1 and Ar H2 . Examples and preferred ranges of the monovalent heterocyclic group in the substituent that the amino group has are the same as examples and preferred ranges of the monovalent heterocyclic group in Ar H1 and Ar H2 .
 ArH1及びArH2が有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、特に好ましくは、アルキル基、シクロアルキル基又はアリール基である。これらの基は更に置換基を有していてもよい。 The substituent that Ar H1 and Ar H2 may have is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, or a substituted amino group. Or a halogen atom, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and still more preferably an alkyl group or a cycloalkyl group A group, an aryl group or a monovalent heterocyclic group, particularly preferably an alkyl group, a cycloalkyl group or an aryl group. These groups may further have a substituent.
 ArH1及びArH2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。 Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent that Ar H1 and Ar H2 may have are the aryl group and monovalent complex in Ar H1 and Ar H2 , respectively. The examples and preferred ranges of the cyclic group and the substituted amino group are the same.
 ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、特に好ましくは、アルキル基又はシクロアルキル基である。これらの基は更に置換基を有していてもよい。 As the substituent that the substituent that Ar H1 and Ar H2 may have further may preferably have, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, A cycloalkoxy group, an aryloxy group, a substituted amino group or a halogen atom, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group. More preferably, they are an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and particularly preferably an alkyl group or a cycloalkyl group. These groups may further have a substituent.
 ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。 Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent that the substituent which Ar H1 and Ar H2 may have further have, and preferred ranges thereof are Ar H1 and Ar H1 , respectively. Examples of the aryl group, monovalent heterocyclic group and substituted amino group in Ar H2 are the same as the preferred range.
 nH1は、好ましくは0~10の整数であり、より好ましくは1~5の整数であり、更に好ましくは1~3の整数である。 n H1 is preferably an integer of 0 to 10, more preferably an integer of 1 to 5, and still more preferably an integer of 1 to 3.
 LH1は、好ましくは、アリーレン基又は2価の複素環基であり、より好ましくはアリーレン基である。 L H1 is preferably an arylene group or a divalent heterocyclic group, and more preferably an arylene group.
 LH1が有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of the substituent that L H1 may have are the same as examples and preferred ranges of the substituent that Ar H1 and Ar H2 may have.
 LH1におけるアリーレン基は、好ましくは、式(A-1)~式(A-14)又は式(A-17)~式(A-20)で表される基であり、より好ましくは、式(A-1)~式(A-9)、式(A-11)~式(A-14)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)~式(A-7)、式(A-9)、式(A-11)~式(A-14)又は式(A-19)で表される基であり、特に好ましくは、式(A-1)~式(A-6)、式(A-11)又は式(A-12)で表される基である。 The arylene group in L H1 is preferably a group represented by the formula (A-1) to the formula (A-14) or the formula (A-17) to the formula (A-20), more preferably the formula A group represented by formula (A-1) to formula (A-9), formula (A-11) to formula (A-14), formula (A-19) or formula (A-20), more preferably Is a group represented by formula (A-1) to formula (A-7), formula (A-9), formula (A-11) to formula (A-14), or formula (A-19) Particularly preferred are groups represented by formula (A-1) to formula (A-6), formula (A-11) or formula (A-12).
 LH1における2価の複素環基は、好ましくは、式(AA-1)~式(AA-6)、式(AA-10)~式(AA-22)又は式(AA-24)~式(AA-34)で表される基であり、より好ましくは、式(AA-1)~式(AA-4)、式(AA-10)~式(AA-15)、式(AA-18)~式(AA-21)又は式(AA-27)~式(AA-34)で表される基であり、更に好ましくは、式(AA-1)~式(AA-4)、式(AA-10)~式(AA-15)又は式(AA-27)~式(AA-32)で表される基である。 The divalent heterocyclic group in L H1 is preferably the formula (AA-1) to formula (AA-6), formula (AA-10) to formula (AA-22) or formula (AA-24) to formula And more preferably a group represented by formula (AA-1) to formula (AA-4), formula (AA-10) to formula (AA-15), formula (AA-18) ) To formula (AA-21) or formula (AA-27) to formula (AA-34), more preferably formula (AA-1) to formula (AA-4), formula (AA) It is a group represented by AA-10) to formula (AA-15) or formula (AA-27) to formula (AA-32).
 nH11は、好ましくは1~5の整数であり、より好ましく1~3の整数であり、更に好ましく1である。 n H11 is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and even more preferably 1.
 RH11は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子又はアルキル基であることが更に好ましい。これらの基は置換基を有していてもよい。 R H11 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and a hydrogen atom or an alkyl group. More preferably. These groups may have a substituent.
 RH11が有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基の例及び好ましい範囲と同じである。 Examples and preferred ranges of the substituent that R H11 may have are the same as examples and preferred ranges of the substituent that Ar H1 and Ar H2 may have.
 式(FH-1)で表される化合物としては、例えば、下記式で表される化合物が挙げられる。 Examples of the compound represented by the formula (FH-1) include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
[高分子ホスト]
 ホスト材料として好ましい高分子化合物(以下、「高分子ホスト」ともいう。)に関して説明する。
[Polymer host]
A polymer compound (hereinafter also referred to as “polymer host”) preferable as a host material will be described.
 高分子ホストは、好ましくは、式(Y)で表される構成単位を含む高分子化合物である。 The polymer host is preferably a polymer compound containing a structural unit represented by the formula (Y).
 ArY1で表されるアリーレン基は、好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)、式(A-13)又は式(A-19)で表される基であり、より好ましくは式(A-1)、式(A-7)、式(A-9)、式(A-11)又は式(A-19)で表される基である。これらの基は置換基を有していてもよい。 The arylene group represented by Ar Y1 is preferably formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11), formula (A-11), -13) or a group represented by formula (A-19), more preferably formula (A-1), formula (A-7), formula (A-9), formula (A-11) or formula A group represented by (A-19); These groups may have a substituent.
 ArY1で表される2価の複素環基は、好ましくは式(AA-4)、式(AA-10)、式(AA-13)、式(AA-15)、式(AA-18)又は式(AA-20)で表される基であり、より好ましくは式(AA-4)、式(AA-10)、式(AA-18)又は式(AA-20)で表される基である。これらの基は置換基を有していてもよい。 The divalent heterocyclic group represented by Ar Y1 is preferably the formula (AA-4), formula (AA-10), formula (AA-13), formula (AA-15), formula (AA-18) Or a group represented by formula (AA-20), more preferably a group represented by formula (AA-4), formula (AA-10), formula (AA-18) or formula (AA-20) It is. These groups may have a substituent.
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基の好ましい範囲、より好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基の好ましい範囲、より好ましい範囲と同様である。 Preferred range and more preferred range of arylene group and divalent heterocyclic group in a divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded. Are respectively the same as the preferred range and more preferred range of the arylene group and divalent heterocyclic group represented by Ar Y1 described above.
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(X)のArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。 As the divalent group in which at least one arylene group represented by Ar Y1 and at least one divalent heterocyclic group are directly bonded, at least represented by Ar X2 and Ar X4 in the formula (X) Examples thereof include the same divalent groups in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded.
 ArY1で表される基が有してもよい置換基は、好ましくはアルキル基、シクロアルキル基又はアリール基である。これらの基は更に置換基を有していてもよい。 The substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group. These groups may further have a substituent.
 式(Y)で表される構成単位としては、例えば、式(Y-1)~式(Y-7)で表される構成単位が挙げられ、本実施形態に係る発光素子の駆動電圧の観点からは、好ましくは式(Y-1)又は式(Y-2)で表される構成単位であり、高分子ホストの電子輸送性の観点からは、好ましくは式(Y-3)又は式(Y-4)で表される構成単位であり、高分子ホストの正孔輸送性の観点からは、好ましくは式(Y-5)~式(Y-7)で表される構成単位である。 Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1) to (Y-7). From the viewpoint of the driving voltage of the light emitting device according to this embodiment. Is preferably a structural unit represented by the formula (Y-1) or (Y-2), and preferably from the viewpoint of electron transport properties of the polymer host, the formula (Y-3) or the formula ( Y-4), and from the viewpoint of the hole transport property of the polymer host, it is preferably a structural unit represented by formula (Y-5) to formula (Y-7).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。 In the formula, R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
 RY1は、好ましくは水素原子、アルキル基、シクロアルキル基又はアリール基である。これらの基は置換基を有していてもよい。 R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group. These groups may have a substituent.
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1’)で表される構成単位である。 The structural unit represented by the formula (Y-1) is preferably a structural unit represented by the formula (Y-1 ′).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。 In the formula, R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R Y11 may be the same or different.
 RY11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基である。これらの基は置換基を有していてもよい。 R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, and more preferably an alkyl group or a cycloalkyl group. These groups may have a substituent.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 式中、RY1は前記と同じ意味を表す。XY1は、-C(RY2-、-C(RY2)=C(RY2)-又は-C(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。 In the formula, R Y1 represents the same meaning as described above. X Y1 is, -C (R Y2) 2 - , - represents a group represented by - C (R Y2) = C (R Y2) - , or -C (R Y2) 2 -C ( R Y2) 2. R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
 RY2は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。 R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups have a substituent. May be.
 XY1において、-C(RY2-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基若しくはシクロアルキル基、双方がアリール基、双方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基である。これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基である。これらの基は置換基を有していてもよい。 The combination of two R Y2 in the group represented by —C (R Y2 ) 2 — in X Y1 is preferably both an alkyl group or a cycloalkyl group, both an aryl group, and both monovalent complex One is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group. These groups may have a substituent. Two R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded, and when R Y2 forms a ring, the group represented by —C (R Y2 ) 2 — Is preferably a group represented by the formula (Y-A1) to the formula (Y-A5), more preferably a group represented by the formula (Y-A4). These groups may have a substituent.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは双方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基である。これらの基は置換基を有していてもよい。 In X Y1 , the combination of two R Y2 in the group represented by —C (R Y2 ) ═C (R Y2 ) — is preferably both an alkyl group or a cycloalkyl group, or one of which is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group. These groups may have a substituent.
 XY1において、-C(RY2-C(RY2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-C(RY2-で表される基は、好ましくは式(Y-B1)~式(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基である。これらの基は置換基を有していてもよい。 In X Y1 , four R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a substituent which may have a substituent. It is a cycloalkyl group that may have. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 — The group represented is preferably a group represented by the formula (Y-B1) to the formula (Y-B5), and more preferably a group represented by the formula (Y-B3). These groups may have a substituent.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 式中、RY2は前記と同じ意味を表す。 In the formula, R Y2 represents the same meaning as described above.
 式(Y-2)で表される構成単位は、式(Y-2’)で表される構成単位であることが好ましい。 The structural unit represented by the formula (Y-2) is preferably a structural unit represented by the formula (Y-2 ′).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 式中、RY1及びXY1は前記と同じ意味を表す。 In the formula, R Y1 and X Y1 represent the same meaning as described above.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 式中、RY1は前記と同じ意味を表す。RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。 In the formula, R Y1 represents the same meaning as described above. R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基である。これらの基は置換基を有していてもよい。 R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group. These groups may have a substituent.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 式中、RY1は前記を同じ意味を表す。RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。 In the formula, R Y1 represents the same meaning as described above. R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基である。これらの基は置換基を有していてもよい。 R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and more preferably an aryl group. These groups may have a substituent.
 式(Y)で表される構成単位としては、例えば、式(Y-11)~式(Y-56)で表される構成単位が挙げられ、好ましくは、式(Y-11)~式(Y-55)で表される構成単位である。 Examples of the structural unit represented by the formula (Y) include structural units represented by the formula (Y-11) to the formula (Y-56), and preferably the formula (Y-11) to the formula (Y Y-55).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、本実施形態に係る発光素子の駆動電圧がより低くなるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは10~100モル%であり、より好ましくは50~100モル%である。 The structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, has a lower driving voltage of the light-emitting element according to the present embodiment. The amount is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, based on the total amount.
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、高分子ホストの電荷輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましくは3~30モル%である。 A structural unit represented by formula (Y), wherein Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group directly bonded to each other. The structural unit which is a group is preferably 0.5 to 40 mol%, more preferably 3%, based on the total amount of the structural units contained in the polymer host, since the charge transport property of the polymer host is excellent. ˜30 mol%.
 式(Y)で表される構成単位は、高分子ホスト中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 In the polymer host, only one type of structural unit represented by the formula (Y) may be contained, or two or more types may be contained.
 高分子ホストは、正孔輸送性が優れるので、更に、式(X)で表される構成単位を含むことが好ましい。 Since the polymer host is excellent in hole transportability, it is preferable that the polymer host further includes a structural unit represented by the formula (X).
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
X2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。
Where
a X1 and a X2 each independently represent an integer of 0 or more.
Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded to each other. And these groups may have a substituent. When a plurality of Ar X2 and Ar X4 are present, they may be the same or different.
R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
When a plurality of R X2 and R X3 are present, they may be the same or different.
 aX1は、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは2以下の整数であり、より好ましくは1である。 a X1 is preferably an integer of 2 or less, more preferably 1, since the driving voltage of the light emitting device according to the present embodiment becomes lower.
 aX2は、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは2以下の整数であり、より好ましくは0である。 a X2 is preferably an integer of 2 or less, more preferably 0, because the driving voltage of the light emitting device according to the present embodiment becomes lower.
 RX1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基である。これらの基は置換基を有していてもよい。 R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and more preferably an aryl group. These groups may have a substituent.
 ArX1及びArX3で表されるアリーレン基は、好ましくは式(A-1)又は式(A-9)で表される基であり、より好ましくは式(A-1)で表される基である。これらの基は置換基を有していてもよい。 The arylene group represented by Ar X1 and Ar X3 is preferably a group represented by the formula (A-1) or the formula (A-9), more preferably a group represented by the formula (A-1). It is. These groups may have a substituent.
 ArX1及びArX3で表される2価の複素環基は、好ましくは式(AA-1)、式(AA-2)又は式(AA-7)~式(AA-26)で表される基である。これらの基は置換基を有していてもよい。 The divalent heterocyclic group represented by Ar X1 and Ar X3 is preferably represented by Formula (AA-1), Formula (AA-2), or Formula (AA-7) to Formula (AA-26). It is a group. These groups may have a substituent.
 ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。 Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
 ArX2及びArX4で表されるアリーレン基は、好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)~式(A-11)又は式(A-19)で表される基である。これらの基は置換基を有していてもよい。 The arylene group represented by Ar X2 and Ar X4 is preferably represented by formula (A-1), formula (A-6), formula (A-7), formula (A-9) to formula (A-11) or A group represented by formula (A-19); These groups may have a substituent.
 ArX2及びArX4で表される2価の複素環基の好ましい範囲は、ArX1及びArX3で表される2価の複素環基の好ましい範囲と同じである。 The preferred range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the preferred range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基の好ましい範囲、より好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基の好ましい範囲、より好ましい範囲と同じである。 Preferred ranges of the arylene group and the divalent heterocyclic group in the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and the at least one divalent heterocyclic group are directly bonded, More preferable ranges are the same as the preferable range and the more preferable range of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 , respectively.
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。 Examples of the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded include groups represented by the following formulae: These may have a substituent.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。 In the formula, R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
 ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。 Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基である。これらの基は更に置換基を有していてもよい。 The substituent that the group represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group. These groups may further have a substituent.
 式(X)で表される構成単位としては、好ましくは式(X-1)~式(X-7)で表される構成単位であり、より好ましくは式(X-3)~式(X-7)で表される構成単位であり、更に好ましくは式(X-3)~式(X-6)で表される構成単位である。 The structural unit represented by the formula (X) is preferably a structural unit represented by the formula (X-1) to the formula (X-7), more preferably the formula (X-3) to the formula (X -7), more preferably structural units represented by formulas (X-3) to (X-6).
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。 In the formula, R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group, or a cyano group. These groups may have a substituent. A plurality of R X4 may be the same or different. A plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
 式(X)で表される構成単位は、正孔輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。 Since the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 50 mol%, more preferably based on the total amount of the structural units contained in the polymer host. It is 1 to 40 mol%, and more preferably 5 to 30 mol%.
 式(X)で表される構成単位としては、例えば、式(X1-1)~式(X1-19)で表される構成単位が挙げられ、好ましくは式(X1-6)~式(X1-14)で表される構成単位である。 Examples of the structural unit represented by the formula (X) include structural units represented by the formula (X1-1) to the formula (X1-19), preferably the formula (X1-6) to the formula (X1 -14).
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 高分子ホストにおいて、式(X)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。 In the polymer host, only one type of structural unit represented by the formula (X) may be included, or two or more types of structural units may be included.
 高分子ホストとしては、例えば、表1に示す高分子化合物(P-1)~(P-6)が挙げられる。ここで、「その他の構成単位」とは、式(Y)で表される構成単位及び式(X)で表される構成単位以外の構成単位を意味する。 Examples of the polymer host include polymer compounds (P-1) to (P-6) shown in Table 1. Here, the “other structural unit” means a structural unit other than the structural unit represented by the formula (Y) and the structural unit represented by the formula (X).
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
 表1中、p、q、r、s及びtは、各構成単位のモル比率を示す。p+q+r+s+t=100であり、かつ、100≧p+q+r+s≧70である。 In Table 1, p, q, r, s, and t represent the molar ratio of each structural unit. p + q + r + s + t = 100 and 100 ≧ p + q + r + s ≧ 70.
 高分子化合物(P-1)~(P-6)における、式(X)及び式(Y)で表される構成単位の例及び好ましい範囲は、上述のとおりである。 In the polymer compounds (P-1) to (P-6), examples of structural units represented by the formula (X) and the formula (Y) and preferred ranges thereof are as described above.
 高分子ホストは、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。 The polymer host may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes. A copolymer obtained by polymerization is preferred.
 高分子ホストのポリスチレン換算の数平均分子量は、好ましくは5×10~1×10であり、より好ましくは1×10~5×10であり、更に好ましくは1.5×10~2×10である。 The number average molecular weight in terms of polystyrene of the polymer host is preferably 5 × 10 3 to 1 × 10 6 , more preferably 1 × 10 4 to 5 × 10 5 , and even more preferably 1.5 × 10 4. ~ 2 × 10 5 .
[高分子ホストの製造方法]
 高分子ホストは、ケミカルレビュー(Chem. Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
[Method for producing polymer host]
The polymer host can be produced by using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pages 897-1091 (2009), etc., and the Suzuki reaction, Buchwald reaction, Stille Examples thereof include a polymerization method by a coupling reaction using a transition metal catalyst such as a reaction, a Negishi reaction and a Kumada reaction.
 前記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続又は分割して仕込む方法、単量体を連続又は分割して仕込む方法等が挙げられる。 In the polymerization method, as a method of charging the monomer, a method of charging the entire amount of the monomer into the reaction system at once, a part of the monomer is charged and reacted, and then the remaining monomer is batched, Examples thereof include a method of charging continuously or divided, a method of charging monomer continuously or divided, and the like.
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。 Examples of transition metal catalysts include palladium catalysts and nickel catalysts.
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独又は組み合わせて行う。高分子ホストの純度が低い場合、例えば、晶析、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。 Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are performed alone or in combination. When the purity of the polymer host is low, it can be purified by usual methods such as crystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, and the like.
[第1の組成物]
 第1の有機層は、第1の発光材料と、前述のホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、酸化防止剤、及び、第2の発光材料からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第1の組成物」ともいう。)を含有する層であってもよい。但し、第1の組成物において、第2の発光材料は第1の発光材料とは異なる。
[First composition]
The first organic layer is composed of the first light emitting material and the above-described host material, hole transport material, hole injection material, electron transport material, electron injection material, antioxidant, and second light emitting material. It may be a layer containing a composition containing at least one material selected from the group (hereinafter also referred to as “first composition”). However, in the first composition, the second light emitting material is different from the first light emitting material.
[正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物である。正孔輸送材料は、架橋基を有していてもよい。
[Hole transport material]
The hole transport material is classified into a low molecular compound and a high molecular compound, and is preferably a high molecular compound. The hole transport material may have a crosslinking group.
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。 Examples of the polymer compound include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof. The polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, and fullerene is preferable.
 第1の組成物において、正孔輸送材料の配合量は、第1の発光材料を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。 In the first composition, the compounding amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass, when the first light emitting material is 100 parts by mass.
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。 The hole transport material may be used alone or in combination of two or more.
[電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
[Electron transport materials]
Electron transport materials are classified into low molecular compounds and high molecular compounds. The electron transport material may have a crosslinking group.
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする燐光発光性化合物、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。 Examples of the low molecular weight compounds include phosphorescent compounds having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene. And diphenoquinone, and derivatives thereof.
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。 Examples of the polymer compound include polyphenylene, polyfluorene, and derivatives thereof. The polymer compound may be doped with a metal.
 第1の組成物において、電子輸送材料の配合量は、第1の発光材料を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。 In the first composition, the compounding amount of the electron transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass when the first light emitting material is 100 parts by mass.
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。 The electron transport material may be used alone or in combination of two or more.
[正孔注入材料及び電子注入材料]
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
[Hole injection material and electron injection material]
The hole injection material and the electron injection material are classified into a low molecular compound and a high molecular compound, respectively. The hole injection material and the electron injection material may have a crosslinking group.
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。 Examples of low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。 Examples of the polymer compound include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain. A functional polymer.
 第1の組成物において、正孔注入材料及び電子注入材料の配合量は、各々、第1の発光材料を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。 In the first composition, the compounding amounts of the hole injecting material and the electron injecting material are each usually 1 to 400 parts by mass, preferably 5 to 150 parts when the first light emitting material is 100 parts by mass. Part by mass.
 電子注入材料及び正孔注入材料は、各々、一種単独で用いても二種以上を併用してもよい。 The electron injection material and the hole injection material may be used alone or in combination of two or more.
[イオンドープ]
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
[Ion dope]
When the hole injection material or the electron injection material includes a conductive polymer, the electrical conductivity of the conductive polymer is preferably 1 × 10 −5 S / cm to 1 × 10 3 S / cm. In order to make the electric conductivity of the conductive polymer within such a range, the conductive polymer can be doped with an appropriate amount of ions.
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。 The kind of ions to be doped is an anion for a hole injection material and a cation for an electron injection material. Examples of the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion. Examples of the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。 The ions to be doped may be used alone or in combination of two or more.
[第2の発光材料]
 第2の発光材料は、低分子化合物と高分子化合物とに分類される。第2の発光材料は、架橋基を有していてもよい。
[Second Luminescent Material]
The second light emitting material is classified into a low molecular compound and a high molecular compound. The second light emitting material may have a crosslinking group.
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。 Examples of the low molecular weight compound include naphthalene and derivatives thereof, anthracene and derivatives thereof, perylene and derivatives thereof, and triplet light-emitting complexes having iridium, platinum, or europium as a central metal.
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、式(X)で表される構成単位、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、アントラセンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。 Examples of the polymer compound include a phenylene group, a naphthalenediyl group, a fluorenediyl group, a phenanthrene diyl group, a dihydrophenanthrene diyl group, a structural unit represented by the formula (X), a carbazole diyl group, a phenoxazine diyl group, and a phenothiazine. Examples thereof include polymer compounds containing a diyl group, an anthracene diyl group, a pyrenediyl group, and the like.
 第2の発光材料は、好ましくは、三重項発光錯体及び/又は高分子化合物を含む。 The second light emitting material preferably contains a triplet light emitting complex and / or a polymer compound.
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。 Examples of the triplet light-emitting complex include the metal complexes shown below.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 第1の組成物において、第2の発光材料の配合量は、第1の発光材料を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。 In the first composition, the blending amount of the second light emitting material is usually 1 to 400 parts by weight, preferably 5 to 150 parts by weight, when the first light emitting material is 100 parts by weight.
 第2の発光材料は、一種単独で用いても二種以上を併用してもよい。 The second luminescent material may be used alone or in combination of two or more.
[酸化防止剤]
 酸化防止剤は、第1の発光材料と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
[Antioxidant]
The antioxidant may be any compound that is soluble in the same solvent as the first light-emitting material and does not inhibit light emission and charge transport. Examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
 第1の組成物において、酸化防止剤の配合量は、第1の発光材料を100質量部とした場合、通常、0.001~10質量部である。 In the first composition, the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the first luminescent material is 100 parts by mass.
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。 Antioxidants may be used alone or in combination of two or more.
[第1のインク]
 第1の有機層を形成するための第1のインクとして、第1の発光材料と、溶媒とを含有する組成物を用いることができる。第1のインクは、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリーコート法、ノズルコート法等の湿式法に好適に使用することができる。
[First ink]
As the first ink for forming the first organic layer, a composition containing a first light emitting material and a solvent can be used. The first ink is spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method. In addition, it can be suitably used for wet methods such as offset printing, ink jet printing, capillary coating, and nozzle coating.
 第1のインクの粘度は、湿式法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。 The viscosity of the first ink may be adjusted according to the type of wet method. However, when a solution such as an ink jet printing method is applied to a printing method that passes through a discharge device, clogging at the time of discharge and flight bending occur. Since it is difficult, it is preferably 1 to 20 mPa · s at 25 ° C.
 第1のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;THF、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。 The solvent contained in the first ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink. Examples of the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as THF, dioxane, anisole and 4-methylanisole; Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, and acetophenone; esters such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, methyl benzoate, and phenyl acetate system Medium; polyhydric alcohol solvents such as ethylene glycol, glycerin and 1,2-hexanediol; alcohol solvents such as isopropyl alcohol and cyclohexanol; sulfoxide solvents such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N, Examples include amide solvents such as N-dimethylformamide. A solvent may be used individually by 1 type, or may use 2 or more types together.
 第1のインクにおいて、溶媒の配合量は、第1の発光材料を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。 In the first ink, the blending amount of the solvent is usually 1000 to 100,000 parts by mass, preferably 2000 to 20000 parts by mass, when the first light emitting material is 100 parts by mass.
<第2の有機層>
 第2の有機層は、式(XL-A)で表される基を有する架橋構成単位と式(XL-B)で表される基を有する架橋構成単位とを含む高分子化合物(以下、「第2の有機層の高分子化合物」ともいう。)の架橋体を含有する層である。
<Second organic layer>
The second organic layer includes a polymer compound (hereinafter referred to as “a cross-linking structural unit having a group represented by the formula (XL-A)” and a cross-linking structural unit having a group represented by the formula (XL-B). It is also a layer containing a crosslinked product of "second organic layer polymer compound".
 第2の有機層において、第2の有機層の高分子化合物の架橋体は、一種単独で含有されていても、二種以上含有されていてもよい。 In the second organic layer, the crosslinked polymer compound of the second organic layer may be contained singly or in combination of two or more.
 第2の有機層の高分子化合物の架橋体は、第2の有機層の高分子化合物を上述した方法及び条件等により架橋した状態にすることで得られる。 The crosslinked product of the polymer compound of the second organic layer can be obtained by bringing the polymer compound of the second organic layer into a crosslinked state by the above-described method and conditions.
[第2の有機層の高分子化合物]
 第2の有機層の高分子化合物において、「式(XL-A)で表される基と式(XL-B)で表される基とが互いに異なる」とは、nAとnBとが異なること、LとLとが異なること、又は、XとXとが異なることを意味する。
[High molecular compound of the second organic layer]
In the polymer compound of the second organic layer, “the group represented by the formula (XL-A) and the group represented by the formula (XL-B) are different from each other” means that nA and nB are different. , L A and L B are different, or X A and X B are different.
 nA及びnBは、それぞれ独立に、0~5の整数を表し、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは0~3の整数であり、より好ましくは0~2の整数である。 nA and nB each independently represent an integer of 0 to 5, and since the driving voltage of the light emitting device according to the present embodiment is lower, it is preferably an integer of 0 to 3, more preferably 0 to 2. It is an integer.
 nAとnBとが異なる場合、合成が容易であるので、nA及びnBのうち、一方は0又は1であることが好ましく、一方は0であり、他方が1若しくは2であること、又は、一方は1であり、他方が0若しくは2であることがより好ましい。 When nA and nB are different, since synthesis is easy, one of nA and nB is preferably 0 or 1, one is 0 and the other is 1 or 2, or Is more preferably 1 and the other is preferably 0 or 2.
 L及びLは、それぞれ独立に、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。L及びLで表されるアルキレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。L及びLで表されるシクロアルキレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~20である。 L A and L B each independently represent an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, It may have a substituent. R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. The number of carbon atoms of the alkylene group represented by L A and L B is usually 1 to 20, preferably 1 to 15, more preferably 1 to 10, not including the carbon atoms of the substituent. is there. The number of carbon atoms of the cycloalkylene group represented by L A and L B is usually 3 to 20, excluding the number of carbon atoms of the substituent.
 L及びLで表されるアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基が挙げられる。L及びLで表されるアルキレン基は、置換基を有していてもよく、該置換基としては、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子、シアノ基が好ましい。これらの基は更に置換基を有していてもよい。 The alkylene group represented by L A and L B, for example, methylene group, ethylene group, propylene group, butylene group, hexylene group, and octylene group. Alkylene group represented by L A and L B may have a substituent, and examples of the substituent, a cycloalkyl group, an alkoxy group, cycloalkoxy group, a halogen atom, a cyano group are preferable. These groups may further have a substituent.
 L及びLで表されるシクロアルキレン基としては、例えば、シクロペンチレン基、シクロヘキシレン基が挙げられる。L及びLで表されるシクロアルキレン基は、置換基を有していてもよく、該置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子、シアノ基が好ましい。これらの基は更に置換基を有していてもよい。 The cycloalkylene group represented by L A and L B, for example, cyclopentylene group, cyclohexylene group and the like. Cycloalkylene group represented by L A and L B may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, cycloalkoxy group, a halogen atom, a cyano Groups are preferred. These groups may further have a substituent.
 L及びLで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、フェニレン基又はフルオレンジイル基が好ましく、m-フェニレン基、p-フェニレン基、フルオレン-2,7-ジイル基、フルオレン-9,9-ジイル基がより好ましい。アリーレン基が有してもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基又は架橋基A群から選ばれる架橋基が好ましい。これらの基は更に置換基を有していてもよい。 Arylene group represented by L A and L B may have a substituent. The arylene group is preferably a phenylene group or a fluorenediyl group, more preferably an m-phenylene group, a p-phenylene group, a fluorene-2,7-diyl group, or a fluorene-9,9-diyl group. Examples of the substituent that the arylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom, a cyano group, or a bridging group A. A crosslinking group selected from the group is preferred. These groups may further have a substituent.
 L及びLで表される2価の複素環基としては、好ましくは式(AA-1)~式(AA-34)で表される基である。 The divalent heterocyclic group represented by L A and L B is preferably a group represented by formula (AA-1) to formula (AA-34).
 L及びLは、第2の有機層の高分子化合物の製造が容易になるので、好ましくは、アリーレン基又はアルキレン基であり、より好ましくは、フェニレン基、フルオレンジイル基又はアルキレン基である。これらの基は置換基を有していてもよい。 L A and L B are preferably an arylene group or an alkylene group, more preferably a phenylene group, a fluorenediyl group, or an alkylene group, because the production of the polymer compound of the second organic layer is facilitated. is there. These groups may have a substituent.
 LとLとが異なる場合、本実施形態に係る発光素子の駆動電圧がより低くなるので、L及びLのうち、一方はアルキレン基であることが好ましい。また、第2の有機層の高分子化合物の架橋性がより優れるので、L及びLの組み合わせは、2種のアルキレン基の組み合わせ、2種のアリーレン基の組み合わせ、又は、アルキレン基及びアリーレン基の組み合わせであることが好ましく、2種のアルキレン基の組み合わせ、又は、アルキレン基及びアリーレン基の組み合わせであることがより好ましい。 If the L A and L B are different, the driving voltage of the light emitting device according to this embodiment is lower, among the L A and L B, are preferably one of them is an alkylene group. Further, since the crosslinkable polymer compound of the second organic layer is more excellent, the combination of L A and L B is a combination of the two alkylene groups, combinations of the two arylene group or an alkylene group and arylene A combination of groups is preferable, and a combination of two alkylene groups or a combination of an alkylene group and an arylene group is more preferable.
 X及びXは、それぞれ独立に、架橋基を表す。X又はXは、本実施形態に係る発光素子の駆動電圧がより低くなるので、上記架橋基A群から選ばれる少なくとも1種の架橋基であることが好ましく、X及びXが、上記架橋基A群から選ばれる少なくとも1種の架橋基であることがより好ましい。 X A and X B each independently represent a crosslinking group. X A or X B is preferably at least one cross-linking group selected from the cross-linking group A group, since the driving voltage of the light emitting device according to this embodiment is lower, and X A and X B are More preferably, the crosslinking group is at least one crosslinking group selected from the group A.
 上記架橋基A群から選ばれる架橋基としては、合成が容易であるので、好ましくは、式(XL-1)~式(XL-4)、式(XL-7)~式(XL-10)又は式(XL-14)~式(XL-17)で表される架橋基であり、より好ましくは、式(XL-1)、式(XL-3)、式(XL-9)、式(XL-10)、式(XL-16)又は式(XL-17)で表される架橋基であり、更に好ましくは、式(XL-1)、式(XL-16)又は式(XL-17)で表される架橋基であり、特に好ましくは、式(XL-1)又は式(XL-17)で表される架橋基である。架橋基A群における式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表し、*1は結合位置を表す。 As the bridging group selected from the above bridging group A, since synthesis is easy, it is preferable that the formula (XL-1) to the formula (XL-4), the formula (XL-7) to the formula (XL-10). Or a bridging group represented by formula (XL-14) to formula (XL-17), more preferably formula (XL-1), formula (XL-3), formula (XL-9), formula (XL) XL-10), a crosslinking group represented by formula (XL-16) or formula (XL-17), more preferably formula (XL-1), formula (XL-16) or formula (XL-17) And particularly preferably a crosslinking group represented by the formula (XL-1) or the formula (XL-17). In the formula in the bridging group A, R XL represents a methylene group, an oxygen atom or a sulfur atom, n XL represents an integer of 0 to 5, and * 1 represents a bonding position.
 第2の有機層の高分子化合物の架橋性がより優れるので、XとXとが異なることが好ましい。 Since crosslinking of the polymer compound of the second organic layer is more excellent, it is preferable that the X A and X B differ.
 第2の有機層の高分子化合物の架橋性がより優れ、且つ、本実施形態に係る発光素子の駆動電圧がより低くなるので、Xは、式(XL-3)、式(XL-4)、式(XL-13)又は式(XL-17)で表される架橋基であることが好ましく、式(XL-3)、式(XL-4)又は式(XL-17)で表される架橋基であることがより好ましく、式(XL-17)で表される架橋基であることが更に好ましい。また、Xは、式(XL-1)、式(XL-2)、式(XL-5)、式(XL-6)、式(XL-7)、式(XL-8)、式(XL-14)、式(XL-15)又は式(XL-16)で表される架橋基であることが好ましく、式(XL-1)、式(XL-2)、式(XL-14)、式(XL-15)又は式(XL-16)で表される架橋基であることがより好ましく、式(XL-1)又は式(XL-16)で表される架橋基であることが更に好ましく、式(XL-1)で表される架橋基であることが特に好ましい。 Crosslinking is better than the polymer compound of the second organic layer, and, since the driving voltage of the light emitting device according to this embodiment is lower, X A has the formula (XL-3), formula (XL-4 ), A crosslinking group represented by formula (XL-13) or formula (XL-17), and preferably represented by formula (XL-3), formula (XL-4) or formula (XL-17). And more preferably a crosslinking group represented by the formula (XL-17). X B represents formula (XL-1), formula (XL-2), formula (XL-5), formula (XL-6), formula (XL-7), formula (XL-8), formula (XL) XL-14), a crosslinking group represented by formula (XL-15) or formula (XL-16) is preferred, and formula (XL-1), formula (XL-2), formula (XL-14) And more preferably a crosslinking group represented by the formula (XL-15) or the formula (XL-16), and a crosslinking group represented by the formula (XL-1) or the formula (XL-16). More preferred is a crosslinking group represented by the formula (XL-1).
 式(XL-A)で表される基を有する架橋構成単位及び式(XL-B)で表される基を有する架橋構成単位は、下記式で表される構成単位であってもよい。 The crosslinked structural unit having a group represented by the formula (XL-A) and the crosslinked structural unit having a group represented by the formula (XL-B) may be a structural unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 式(XL-A)で表される基を有する架橋構成単位は、式(XL-A1)で表される構成単位又は式(XL-A2)で表される構成単位であることが好ましく、式(XL-A1)で表される構成単位であることがより好ましい。 The crosslinked structural unit having a group represented by the formula (XL-A) is preferably a structural unit represented by the formula (XL-A1) or a structural unit represented by the formula (XL-A2). A structural unit represented by (XL-A1) is more preferable.
 式(XL-B)で表される基を有する架橋構成単位は、式(XL-B1)で表される構成単位又は式(XL-B2)で表される構成単位であることが好ましく、式(XL-B1)で表される構成単位であることがより好ましい。 The crosslinked structural unit having a group represented by the formula (XL-B) is preferably a structural unit represented by the formula (XL-B1) or a structural unit represented by the formula (XL-B2). A structural unit represented by (XL-B1) is more preferable.
[式(XL-A1)、式(XL-A2)、式(XL-B1)及び式(XL-B2)で表される構成単位]
 nA1は、1~4の整数を表し、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは1又は2であり、より好ましくは2である。
[Structural Units Represented by Formula (XL-A1), Formula (XL-A2), Formula (XL-B1), and Formula (XL-B2))
n A1 represents an integer of 1 to 4, and is preferably 1 or 2 and more preferably 2 because the driving voltage of the light emitting device according to this embodiment becomes lower.
 nA2は、0又は1の整数を表し、第2の有機層の高分子化合物の製造が容易になり、且つ、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは0である。 n A2 represents an integer of 0 or 1, and the production of the polymer compound of the second organic layer is facilitated, and the driving voltage of the light-emitting device according to this embodiment is further reduced. is there.
 ArA3は、芳香族炭化水素基又は複素環基を表し、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。 Ar A3 represents an aromatic hydrocarbon group or a heterocyclic group, and since the driving voltage of the light emitting device according to this embodiment is lower, it is preferably an aromatic hydrocarbon group which may have a substituent. .
 ArA3で表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。 The number of carbon atoms of the aromatic hydrocarbon group represented by Ar A3 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
 ArA3で表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基で表される基であり、より好ましくは式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。 The arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar A3 is preferably a group represented by any of the formulas (A-1) to (A-20). More preferably, in the formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) A group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19). And these groups may have a substituent.
 ArA3で表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。 The number of carbon atoms of the heterocyclic group represented by Ar A3 is usually 2 to 60, preferably 3 to 30, and more preferably 4 to 18, excluding the number of carbon atoms of the substituent.
 ArA3で表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。 The divalent heterocyclic group moiety excluding n substituents of the heterocyclic group represented by Ar A3 is preferably a group represented by the formula (AA-1) to the formula (AA-34). is there.
 ArA3で表される芳香族炭化水素基及び複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が好ましい。 The aromatic hydrocarbon group and heterocyclic group represented by Ar A3 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group. Group, halogen atom, monovalent heterocyclic group and cyano group are preferred.
 ArA5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表す。ArA5は、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。 Ar A5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded. Ar A5 is preferably an aromatic hydrocarbon group which may have a substituent since the driving voltage of the light emitting device according to this embodiment is further reduced.
 ArA5で表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義及び例は、式(X)におけるArX2で表されるアリーレン基の定義及び例と同じである。 The definition and example of the arylene group part excluding m substituents of the aromatic hydrocarbon group represented by Ar A5 are the same as the definition and example of the arylene group represented by Ar X2 in formula (X). .
 ArA5で表される複素環基のm個の置換基を除いた2価の複素環基部分の定義及び例は、式(X)におけるArX2で表される2価の複素環基部分の定義及び例と同じである。 The definition and examples of the divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar A5 are the same as those of the divalent heterocyclic group part represented by Ar X2 in formula (X). Definitions and examples are the same.
 ArA5で表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義及び例は、式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義及び例と同じである。 The definition and example of a divalent group excluding m substituents of a group in which at least one aromatic hydrocarbon ring represented by Ar A5 and at least one heterocycle are directly bonded are represented by the formula (X) And the definition and examples of the divalent group in which at least one arylene group represented by Ar X2 and at least one divalent heterocyclic group are directly bonded.
 nB1は、1~4の整数を表し、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは1又は2であり、より好ましくは2である。 n B1 represents an integer of 1 to 4, and is preferably 1 or 2 and more preferably 2 because the driving voltage of the light emitting device according to this embodiment becomes lower.
 nB2は、0又は1の整数を表し、第2の有機層の高分子化合物の製造が容易になり、且つ、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは0である。 n B2 represents an integer of 0 or 1, and it is easy to produce the polymer compound of the second organic layer, and the driving voltage of the light emitting device according to this embodiment is lower, and therefore preferably 0. is there.
 ArB3は、芳香族炭化水素基又は複素環基を表し、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。 Ar B3 represents an aromatic hydrocarbon group or a heterocyclic group, and since the driving voltage of the light emitting device according to this embodiment is lower, it is preferably an aromatic hydrocarbon group which may have a substituent. .
 ArB3で表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。 The number of carbon atoms of the aromatic hydrocarbon group represented by Ar B3 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
 ArB3で表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基で表される基であり、より好ましくは式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)又は式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)又は式(A-19)で表される基であり、これらの基は置換基を有していてもよい。 The arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar B3 is preferably a group represented by any of the formulas (A-1) to (A-20). More preferably, in the formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) A group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19). And these groups may have a substituent.
 ArB3で表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。 The number of carbon atoms of the heterocyclic group represented by Ar B3 is usually 2 to 60, preferably 3 to 30, more preferably 4 to 18, excluding the number of carbon atoms of the substituent.
 ArB3で表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。 The divalent heterocyclic group portion excluding n substituents of the heterocyclic group represented by Ar B3 is preferably a group represented by the formula (AA-1) to the formula (AA-34). is there.
 ArB3で表される芳香族炭化水素基及び複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が好ましい。 The aromatic hydrocarbon group and heterocyclic group represented by Ar B3 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group. Group, halogen atom, monovalent heterocyclic group and cyano group are preferred.
 ArB5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表す。ArB5は、本実施形態に係る発光素子の駆動電圧がより低くなるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。 Ar B5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded. Ar B5 is preferably an aromatic hydrocarbon group which may have a substituent since the driving voltage of the light emitting device according to this embodiment is further lowered.
 ArB5で表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義及び例は、式(X)におけるArX2で表されるアリーレン基の定義及び例と同じである。 The definition and example of the arylene group part excluding m substituents of the aromatic hydrocarbon group represented by Ar B5 are the same as the definition and example of the arylene group represented by Ar X2 in formula (X). .
 ArB5で表される複素環基のm個の置換基を除いた2価の複素環基部分の定義及び例は、式(X)におけるArX2で表される2価の複素環基部分の定義及び例と同じである。 The definition and examples of the divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar B5 are the same as those of the divalent heterocyclic group part represented by Ar X2 in formula (X). Definitions and examples are the same.
 ArB5で表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義及び例は、式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義及び例と同じである。 The definition and example of a divalent group excluding m substituents of a group in which at least one aromatic hydrocarbon ring represented by Ar B5 and at least one heterocycle are directly bonded are represented by the formula (X) And the definition and examples of the divalent group in which at least one arylene group represented by Ar X2 and at least one divalent heterocyclic group are directly bonded.
 ArA4及びArA6は、それぞれ独立に、アリーレン基又は2価の複素環基を表す。 Ar A4 and Ar A6 each independently represent an arylene group or a divalent heterocyclic group.
 ArB4及びArB6は、それぞれ独立に、アリーレン基又は2価の複素環基を表す。 Ar B4 and Ar B6 each independently represent an arylene group or a divalent heterocyclic group.
 ArA4、ArA6、ArB4及びArB6で表されるアリーレン基の定義及び例は、式(X)におけるArX1及びArX3で表されるアリーレン基の定義及び例と同じである。 The definitions and examples of the arylene groups represented by Ar A4 , Ar A6 , Ar B4 and Ar B6 are the same as the definitions and examples of the arylene groups represented by Ar X1 and Ar X3 in Formula (X).
 ArA4、ArA6、ArB4及びArB6で表される2価の複素環基の定義及び例は、式(X)におけるArX1及びArX3で表される2価の複素環基の定義及び例と同じである。 The definition and examples of the divalent heterocyclic group represented by Ar A4 , Ar A6 , Ar B4 and Ar B6 are the definition of the divalent heterocyclic group represented by Ar X1 and Ar X3 in Formula (X) and Same as example.
 ArA4、ArA5、ArA6、ArB4、ArB5及びArB6で表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が好ましい。 The group represented by Ar A4 , Ar A5 , Ar A6 , Ar B4 , Ar B5 and Ar B6 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, and a cycloalkoxy Group, aryl group, aryloxy group, halogen atom, monovalent heterocyclic group and cyano group are preferred.
 式(XL-A1)で表される構成単位は、第2の有機層の高分子化合物の安定性及び架橋性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは3~70モル%であり、更に好ましくは5~50モル%である。 Since the structural unit represented by the formula (XL-A1) is excellent in the stability and crosslinkability of the polymer compound in the second organic layer, the total amount of the structural units contained in the polymer compound in the second organic layer Is preferably 0.5 to 90 mol%, more preferably 3 to 70 mol%, and still more preferably 5 to 50 mol%.
 式(XL-B1)で表される構成単位は、第2の有機層の高分子化合物の安定性及び架橋性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは3~70モル%であり、更に好ましくは5~50モル%である。 Since the structural unit represented by the formula (XL-B1) is excellent in the stability and crosslinkability of the polymer compound in the second organic layer, the total amount of the structural units contained in the polymer compound in the second organic layer Is preferably 0.5 to 90 mol%, more preferably 3 to 70 mol%, and still more preferably 5 to 50 mol%.
 式(XL-A2)で表される構成単位は、第2の有機層の高分子化合物の安定性が優れ、且つ、第2の有機層の高分子化合物の架橋性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは5~20モル%である。 The structural unit represented by the formula (XL-A2) has excellent stability of the polymer compound of the second organic layer and excellent crosslinkability of the polymer compound of the second organic layer. Preferably, it is 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 5 to 20 mol%, based on the total amount of structural units contained in the polymer compound of the organic layer. is there.
 式(XL-B2)で表される構成単位は、第2の有機層の高分子化合物の安定性が優れ、且つ、第2の有機層の高分子化合物の架橋性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは5~20モル%である。 The structural unit represented by the formula (XL-B2) has excellent stability of the polymer compound of the second organic layer and excellent crosslinkability of the polymer compound of the second organic layer. Preferably, it is 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 5 to 20 mol%, based on the total amount of structural units contained in the polymer compound of the organic layer. is there.
 式(XL-A1)、式(XL-B1)、式(XL-A2)、式(XL-B2)で表される構成単位は、それぞれ、第2の有機層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 The structural units represented by the formula (XL-A1), the formula (XL-B1), the formula (XL-A2), and the formula (XL-B2) each have 1 in the polymer compound of the second organic layer. Only the seed | species may be contained and 2 or more types may be contained.
[式(XL-A1)、式(XL-A2)、式(XL-B1)及び式(XL-B2)で表される構成単位の好ましい態様]
 式(XL-A1)及び式(XL-B1)で表される構成単位としては、例えば、式(2-1)~式(2-30)で表される構成単位が挙げられ、式(XL-A2)及び(XL-B2)で表される構成単位としては、例えば、式(2’-1)~式(2’-9)で表される構成単位が挙げられる。これらの中でも、第2の有機層の高分子化合物の架橋性が優れるので、好ましくは式(2-1)~式(2-30)で表される構成単位であり、より好ましくは式(2-1)~式(2-15)、式(2-19)、式(2-20)、式(2-23)、式(2-25)又は式(2-30)で表される構成単位であり、更に好ましくは式(2-1)~式(2-9)、式(2-20)、式(2-22)又は式(2-30)で表される構成単位である。
[Preferred Embodiment of Structural Unit Represented by Formula (XL-A1), Formula (XL-A2), Formula (XL-B1), and Formula (XL-B2))
Examples of the structural units represented by the formula (XL-A1) and the formula (XL-B1) include structural units represented by the formulas (2-1) to (2-30). Examples of the structural units represented by -A2) and (XL-B2) include structural units represented by the formulas (2′-1) to (2′-9). Among these, since the crosslinkability of the polymer compound of the second organic layer is excellent, it is preferably a structural unit represented by the formula (2-1) to the formula (2-30), more preferably the formula (2). -1) to formula (2-15), formula (2-19), formula (2-20), formula (2-23), formula (2-25) or formula (2-30) More preferably a structural unit represented by formula (2-1) to formula (2-9), formula (2-20), formula (2-22) or formula (2-30).
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 第2の有機層の高分子化合物に含まれる、式(XL-A)で表される基を有する構成単位及び式(XL-B)で表される基を有する構成単位の合計量は、第2の有機層の高分子化合物の安定性及び架橋性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは3~75モル%であり、更に好ましくは5~60モル%である。 The total amount of the structural unit having the group represented by the formula (XL-A) and the structural unit having the group represented by the formula (XL-B) contained in the polymer compound of the second organic layer is Since the polymer compound of the second organic layer is excellent in stability and crosslinkability, it is preferably 0.5 to 90 mol% with respect to the total amount of structural units contained in the polymer compound of the second organic layer. More preferably, it is 3 to 75 mol%, and still more preferably 5 to 60 mol%.
 式(XL-A)で表される基を有する構成単位及び式(XL-B)で表される基を有する構成単位は、それぞれ、第2の有機層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。 The structural unit having a group represented by the formula (XL-A) and the structural unit having a group represented by the formula (XL-B) are each only one kind in the polymer compound of the second organic layer. It may be included and two or more types may be included.
[その他の構成単位]
 第2の有機層の高分子化合物は、正孔輸送性が優れるので、更に、式(X)で表される構成単位を含むことが好ましい。また、第2の有機層の高分子化合物は、本実施形態に係る発光素子の駆動電圧がより低くなるので、更に、式(Y)で表される構成単位を含むことが好ましい。
[Other structural units]
Since the polymer compound of the second organic layer has excellent hole transport properties, it is preferable that the second organic layer further includes a structural unit represented by the formula (X). Moreover, since the high molecular compound of a 2nd organic layer becomes lower in the drive voltage of the light emitting element which concerns on this embodiment, it is preferable that the structural unit represented by Formula (Y) is further included.
 第2の有機層の高分子化合物は、正孔輸送性が優れ、且つ、本実施形態に係る発光素子の駆動電圧がより低くなるので、更に、式(X)で表される構成単位及び式(Y)で表される構成単位を含むことが好ましい。 Since the polymer compound of the second organic layer has excellent hole transportability and the driving voltage of the light emitting device according to this embodiment is lower, the structural unit and the formula represented by the formula (X) are further reduced. It is preferable that the structural unit represented by (Y) is included.
 第2の有機層の高分子化合物が含んでいてもよい式(X)で表される構成単位及び式(Y)で表される構成単位の定義、例及び好ましい範囲は、それぞれ、前述の高分子ホストが含んでいてもよい式(X)で表される構成単位及び式(Y)で表される構成単位の定義、例及び好ましい範囲と同じである。 The definitions, examples and preferred ranges of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y) that may be contained in the polymer compound of the second organic layer are the above-mentioned high The definition, examples, and preferred ranges of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y) that may be contained in the molecular host are the same.
 第2の有機層の高分子化合物において、式(X)で表される構成単位及び式(Y)で表される構成単位は、それぞれ、1種のみ含まれていても、2種以上含まれていてもよい。 In the polymer compound of the second organic layer, each of the structural unit represented by the formula (X) and the structural unit represented by the formula (Y) may be included alone or in combination of two or more. It may be.
 式(X)で表される構成単位は、正孔輸送性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.1~90モル%であり、より好ましくは1~70モル%であり、更に好ましくは10~50モル%である。 Since the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 90 mol% with respect to the total amount of the structural units contained in the polymer compound of the second organic layer. More preferably, it is 1 to 70 mol%, and further preferably 10 to 50 mol%.
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、本実施形態に係る発光素子の発光効率がより優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。 The structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is more excellent in the light emitting efficiency of the light emitting device according to this embodiment. The amount is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%, based on the total amount of the constituent units contained.
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、第2の有機層の高分子化合物の電荷輸送性が優れるので、第2の有機層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましくは3~30モル%である。 A structural unit represented by formula (Y), wherein Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group directly bonded to each other. The structural unit that is a group of the organic group is preferably excellent in charge transporting property of the polymer compound of the second organic layer, and is preferably 0. 0 relative to the total amount of the structural units contained in the polymer compound of the second organic layer. It is 5 to 40 mol%, and more preferably 3 to 30 mol%.
 第2の有機層の高分子化合物としては、例えば、表2に示す高分子化合物(P-7)~(P-37)が挙げられる。ここで、「その他の構成単位」とは、式(XL-A1)、式(XL-A2)、式(XL-B1)、式(XL-B2)、式(X)及び式(Y)で表される構成単位以外の構成単位を意味する。 Examples of the polymer compound in the second organic layer include polymer compounds (P-7) to (P-37) shown in Table 2. Here, the “other structural unit” refers to the formula (XL-A1), the formula (XL-A2), the formula (XL-B1), the formula (XL-B2), the formula (X), and the formula (Y). Means a structural unit other than the structural unit represented.
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000086
 表2中、p’、p’’、q’、q’’、r’、s’及びt’は、各構成単位のモル比率を表す。p’+p’’+q’+q’’+r’+s’+t’=100であり、且つ、70≦p’+p’’+q’+q’’+r’+s’≦100である。 In Table 2, p ′, p ″, q ′, q ″, r ′, s ′, and t ′ represent the molar ratio of each structural unit. p ′ + p ″ + q ′ + q ″ + r ′ + s ′ + t ′ = 100 and 70 ≦ p ′ + p ″ + q ′ + q ″ + r ′ + s ′ ≦ 100.
 高分子化合物(P-7)~(P-37)における、式(XL-A1)、式(XL-A2)、式(XL-B1)、式(XL-B2)、式(X)及び式(Y)で表される構成単位の例及び好ましい範囲は、上述のとおりである。 In the polymer compounds (P-7) to (P-37), the formula (XL-A1), the formula (XL-A2), the formula (XL-B1), the formula (XL-B2), the formula (X), and the formula Examples and preferred ranges of the structural unit represented by (Y) are as described above.
 第2の有機層の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。 The polymer compound of the second organic layer may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes. A copolymer obtained by copolymerizing seed raw material monomers is preferable.
 第2の有機層の高分子化合物のポリスチレン換算の数平均分子量は、好ましくは5×10~1×10であり、より好ましくは1×10~5×10であり、更に好ましくは1.5×10~1×10である。 The number average molecular weight in terms of polystyrene of the polymer compound of the second organic layer is preferably 5 × 10 3 to 1 × 10 6 , more preferably 1 × 10 4 to 5 × 10 5 , and still more preferably. 1.5 × 10 4 to 1 × 10 5 .
[第2の有機層の高分子化合物の製造方法]
 第2の有機層の高分子化合物は、前述の高分子ホストの製造方法と同様の方法で製造することができる。
[Method for producing polymer compound of second organic layer]
The polymer compound of the second organic layer can be produced by the same method as the polymer host production method described above.
[第2の組成物]
 第2の有機層は、第2の有機層の高分子化合物の架橋体と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、酸化防止剤、及び、発光材料からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「第2の組成物」ともいう。)を含有する層であってもよい。
[Second composition]
The second organic layer is a group consisting of a crosslinked polymer of the second organic layer, a hole transport material, a hole injection material, an electron transport material, an electron injection material, an antioxidant, and a light emitting material. It may be a layer containing a composition containing at least one material selected from (hereinafter also referred to as “second composition”).
 第2の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲は、第1の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の例及び好ましい範囲と同じである。
第2の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料及び発光材料の配合量は、各々、第2の有機層の高分子化合物の架橋体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
Examples and preferred ranges of the hole transport material, electron transport material, hole injection material, electron injection material and light-emitting material contained in the second composition are the hole transport material contained in the first composition, The examples and preferred ranges of the electron transport material, hole injection material, electron injection material, and light emitting material are the same.
In the second composition, the compounding amounts of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light emitting material are each 100 parts by mass of the crosslinked polymer of the second organic layer. In general, it is 1 to 400 parts by mass, preferably 5 to 150 parts by mass.
 第2の組成物に含有される酸化防止剤の例及び好ましい範囲は、第1の組成物に含有される酸化防止剤の例及び好ましい範囲と同じである。第2の組成物において、酸化防止剤の配合量は、第2の有機層の高分子化合物の架橋体を100質量部とした場合、通常、0.001~10質量部である。 Examples and preferred ranges of the antioxidant contained in the second composition are the same as examples and preferred ranges of the antioxidant contained in the first composition. In the second composition, the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the crosslinked polymer of the polymer compound of the second organic layer is 100 parts by mass.
[第2のインク]
 第2の有機層を形成するための第2のインクとして、第2の有機層の高分子化合物と、溶媒とを含有する組成物を用いることができる。第2のインクは、第1のインクの項で説明した湿式法に好適に使用することができる。第2のインクの粘度の好ましい範囲は、第1のインクの粘度の好ましい範囲と同じである。第2のインクに含有される溶媒の例及び好ましい範囲は、第1のインクに含有される溶媒の例及び好ましい範囲と同じである。
[Second ink]
As the second ink for forming the second organic layer, a composition containing the polymer compound of the second organic layer and a solvent can be used. The second ink can be suitably used in the wet method described in the first ink section. The preferable range of the viscosity of the second ink is the same as the preferable range of the viscosity of the first ink. Examples and preferred ranges of the solvent contained in the second ink are the same as examples and preferred ranges of the solvent contained in the first ink.
 第2のインクにおいて、溶媒の配合量は、第2の有機層の高分子化合物を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。 In the second ink, the blending amount of the solvent is usually 1000 to 100,000 parts by mass, preferably 2000 to 20000 parts by mass, when the polymer compound of the second organic layer is 100 parts by mass.
<発光素子の層構成>
 本実施形態に係る発光素子は、陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有する。本実施形態に係る発光素子は、陽極、陰極、第1の有機層及び第2の有機層以外の層を有していてもよい。
<Layer structure of light emitting element>
The light emitting device according to this embodiment includes an anode, a cathode, and a first organic layer and a second organic layer provided between the anode and the cathode. The light emitting device according to this embodiment may have a layer other than the anode, the cathode, the first organic layer, and the second organic layer.
 本実施形態に係る発光素子において、第1の有機層は、通常、発光層(以下、「第1の発光層」ともいう。)である。 In the light emitting device according to this embodiment, the first organic layer is usually a light emitting layer (hereinafter, also referred to as “first light emitting layer”).
 本実施形態に係る発光素子において、第2の有機層は、通常、正孔輸送層、発光層(以下、「第2の発光層」ともいう。)又は電子輸送層であり、好ましくは正孔輸送層又は第2の発光層であり、より好ましくは正孔輸送層である。 In the light emitting device according to this embodiment, the second organic layer is usually a hole transport layer, a light emitting layer (hereinafter also referred to as “second light emitting layer”) or an electron transport layer, preferably a hole. It is a transport layer or a second light emitting layer, more preferably a hole transport layer.
 本実施形態に係る発光素子において、第1の有機層と第2の有機層とは、発光素子の駆動電圧がより低くなるので、隣接していることが好ましい。本実施形態に係る発光素子において、第2の有機層は、発光素子の駆動電圧がより低くなるので、陽極及び第1の有機層の間に設けられた層であることが好ましく、陽極及び第1の有機層の間に設けられた正孔輸送層又は第2の発光層であることがより好ましく、陽極及び第1の有機層の間に設けられた正孔輸送層であることが更に好ましい。 In the light emitting device according to this embodiment, the first organic layer and the second organic layer are preferably adjacent to each other because the driving voltage of the light emitting device becomes lower. In the light emitting device according to this embodiment, the second organic layer is preferably a layer provided between the anode and the first organic layer because the driving voltage of the light emitting device is lower. More preferably, it is a hole transport layer or a second light emitting layer provided between one organic layer, and more preferably a hole transport layer provided between an anode and a first organic layer. .
 本実施形態に係る発光素子において、第2の有機層が陽極及び第1の有機層の間に設けられた正孔輸送層である場合、発光素子の駆動電圧がより低くなるので、陽極と第2の有機層との間に、正孔注入層を更に有することが好ましい。また、第2の有機層が陽極及び第1の有機層の間に設けられた正孔輸送層である場合、発光素子の駆動電圧がより低くなるので、陰極と第1の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。 In the light emitting device according to this embodiment, when the second organic layer is a hole transport layer provided between the anode and the first organic layer, the driving voltage of the light emitting device is lower, so the anode and the first It is preferable to further have a hole injection layer between the two organic layers. Further, when the second organic layer is a hole transport layer provided between the anode and the first organic layer, the driving voltage of the light emitting element becomes lower, so that the gap between the cathode and the first organic layer is low. In addition, it is preferable to further include at least one of an electron injection layer and an electron transport layer.
 本実施形態に係る発光素子において、第2の有機層が陽極及び第1の有機層の間に設けられた第2の発光層である場合、発光素子の駆動電圧がより低くなるので、陽極と第2の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。また、第2の有機層が陽極及び第1の有機層の間に設けられた第2の発光層である場合、発光素子の駆動電圧がより低くなるので、陰極と第1の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。 In the light emitting device according to the present embodiment, when the second organic layer is a second light emitting layer provided between the anode and the first organic layer, the driving voltage of the light emitting device is lower, It is preferable to further include at least one of a hole injection layer and a hole transport layer between the second organic layer. In addition, when the second organic layer is a second light emitting layer provided between the anode and the first organic layer, the driving voltage of the light emitting element becomes lower, so that the cathode and the first organic layer It is preferable to further have at least one of an electron injection layer and an electron transport layer in between.
 本実施形態に係る発光素子において、第2の有機層が陰極及び第1の有機層の間に設けられた第2の発光層である場合、発光素子の駆動電圧がより低くなるので、陽極と第1の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。また、第2の有機層が陰極及び第1の有機層の間に設けられた第2の発光層である場合、発光素子の駆動電圧がより低くなるので、陰極と第2の有機層との間に、電子注入層及び電子輸送層のうちの少なくとも1つの層を更に有することが好ましい。 In the light emitting device according to this embodiment, when the second organic layer is a second light emitting layer provided between the cathode and the first organic layer, the driving voltage of the light emitting device is lower, It is preferable to further have at least one of a hole injection layer and a hole transport layer between the first organic layer. In addition, when the second organic layer is a second light emitting layer provided between the cathode and the first organic layer, the driving voltage of the light emitting element becomes lower, so that the cathode and the second organic layer It is preferable to further have at least one of an electron injection layer and an electron transport layer in between.
 本実施形態に係る発光素子において、第2の有機層が陰極及び第1の有機層の間に設けられた電子輸送層である場合、発光素子の駆動電圧がより低くなるので、陽極と第1の有機層との間に、正孔注入層及び正孔輸送層のうちの少なくとも1つの層を更に有することが好ましい。また、第2の有機層が陰極及び第1の有機層の間に設けられた電子輸送層である場合、発光素子の駆動電圧がより低くなるので、陰極と第2の有機層との間に、電子注入層を更に有することが好ましい。 In the light emitting device according to this embodiment, when the second organic layer is an electron transport layer provided between the cathode and the first organic layer, the driving voltage of the light emitting device is lower, so the anode and the first It is preferable to further have at least one layer of a hole injection layer and a hole transport layer between the organic layer. In addition, when the second organic layer is an electron transport layer provided between the cathode and the first organic layer, the driving voltage of the light emitting element is lower, so that the gap between the cathode and the second organic layer is low. It is preferable to further have an electron injection layer.
 本実施形態に係る発光素子の具体的な層構成としては、例えば、下記の(D1)~(D15)で表される層構成が挙げられる。発光素子は、通常、基板を有するが、基板上に陽極から積層されていてもよく、基板上に陰極から積層されていてもよい。 Specific examples of the layer configuration of the light emitting device according to this embodiment include the layer configurations represented by the following (D1) to (D15). The light-emitting element usually has a substrate, but may be laminated from the anode on the substrate, or may be laminated from the cathode on the substrate.
(D1)陽極/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D2)陽極/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D3)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D4)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/陰極
(D5)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子注入層/陰極
(D6)陽極/正孔注入層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D7)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/陰極
(D8)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/陰極
(D9)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子注入層/陰極
(D10)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D11)陽極/正孔注入層/正孔輸送層/第2の発光層(第2の有機層)/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D12)陽極/正孔注入層/正孔輸送層(第2の有機層)/第1の発光層(第1の有機層)/第2の発光層/電子輸送層/電子注入層/陰極
(D13)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の有機層)/第2の発光層(第2の有機層)/電子輸送層/電子注入層/陰極
(D14)陽極/正孔注入層/正孔輸送層/第1の発光層(第1の有機層)/電子輸送層(第2の有機層)/電子注入層/陰極
(D15)陽極/正孔注入層/正孔輸送層(第2の有機層)/第2の発光層/第1の発光層(第1の有機層)/電子輸送層/電子注入層/陰極
(D1) Anode / second light emitting layer (second organic layer) / first light emitting layer (first organic layer) / cathode (D2) anode / hole transporting layer (second organic layer) / first 1 light emitting layer (first organic layer) / cathode (D3) anode / hole injection layer / second light emitting layer (second organic layer) / first light emitting layer (first organic layer) / cathode (D4) Anode / hole injection layer / second light emitting layer (second organic layer) / first light emitting layer (first organic layer) / electron transport layer / cathode (D5) anode / hole injection layer / Second light emitting layer (second organic layer) / first light emitting layer (first organic layer) / electron injection layer / cathode (D6) anode / hole injection layer / second light emitting layer (second Organic layer) / first light emitting layer (first organic layer) / electron transport layer / electron injection layer / cathode (D7) anode / hole injection layer / hole transport layer (second organic layer) / first 1 light emitting layer (first organic layer) / cathode (D8) anode / positive Injection layer / hole transport layer (second organic layer) / first light emitting layer (first organic layer) / electron transport layer / cathode (D9) anode / hole injection layer / hole transport layer (second Organic layer) / first light emitting layer (first organic layer) / electron injection layer / cathode (D10) anode / hole injection layer / hole transport layer (second organic layer) / first light emitting layer (First organic layer) / electron transport layer / electron injection layer / cathode (D11) anode / hole injection layer / hole transport layer / second light emitting layer (second organic layer) / first light emitting layer (First organic layer) / electron transport layer / electron injection layer / cathode (D12) anode / hole injection layer / hole transport layer (second organic layer) / first light emitting layer (first organic layer) ) / Second light emitting layer / electron transport layer / electron injection layer / cathode (D13) anode / hole injection layer / hole transport layer / first light emitting layer (first organic layer) / second light emitting layer (Second organic layer) / Electron transport layer / Child injection layer / cathode (D14) anode / hole injection layer / hole transport layer / first light emitting layer (first organic layer) / electron transport layer (second organic layer) / electron injection layer / cathode ( D15) Anode / hole injection layer / hole transport layer (second organic layer) / second light emitting layer / first light emitting layer (first organic layer) / electron transport layer / electron injection layer / cathode
 上記の(D1)~(D15)中、「/」は、その前後の層が隣接して積層していることを意味する。具体的には、「第2の発光層(第2の有機層)/第1の発光層(第1の有機層)」とは、第2の発光層(第2の有機層)と第1の発光層(第1の有機層)とが隣接して積層していることを意味する。 In the above (D1) to (D15), “/” means that the layers before and after are stacked adjacent to each other. Specifically, “second light emitting layer (second organic layer) / first light emitting layer (first organic layer)” means the second light emitting layer (second organic layer) and the first light emitting layer (second organic layer). The light emitting layer (first organic layer) is adjacently laminated.
 本実施形態に係る発光素子の駆動電圧がより低くなるので、(D3)~(D12)で表される層構成が好ましく、(D7)~(D10)で表される層構成がより好ましい。 Since the driving voltage of the light emitting device according to this embodiment is lower, the layer configuration represented by (D3) to (D12) is preferable, and the layer configuration represented by (D7) to (D10) is more preferable.
 本実施形態に係る発光素子において、陽極、正孔注入層、正孔輸送層、第2の発光層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよい。 In the light emitting device according to this embodiment, the anode, the hole injection layer, the hole transport layer, the second light emitting layer, the electron transport layer, the electron injection layer, and the cathode are each provided in two or more layers as necessary. It may be.
 陽極、正孔注入層、正孔輸送層、第2の発光層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。 When there are a plurality of anodes, hole injection layers, hole transport layers, second light emitting layers, electron transport layers, electron injection layers, and cathodes, they may be the same or different.
 陽極、正孔注入層、正孔輸送層、第1の発光層、第2の発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。 The thickness of the anode, hole injection layer, hole transport layer, first light emitting layer, second light emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 μm, preferably 2 nm to It is 500 nm, more preferably 5 nm to 150 nm.
 本実施形態に係る発光素子において、積層する層の順番、数及び厚さは、発光素子の発光効率及び素子寿命を勘案して調整すればよい。 In the light-emitting element according to this embodiment, the order, number, and thickness of the layers to be stacked may be adjusted in consideration of the light-emitting efficiency and element lifetime of the light-emitting element.
[第2の発光層]
 第2の発光層は、通常、第2の有機層又は発光材料を含有する層である。第2の発光層が発光材料を含有する層である場合、第2の発光層に含有される発光材料としては、例えば、前述の第1の組成物が含有していてもよい発光材料が挙げられる。第2の発光層に含有される発光材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[Second light emitting layer]
The second light emitting layer is usually a layer containing a second organic layer or a light emitting material. When the second light emitting layer is a layer containing a light emitting material, examples of the light emitting material contained in the second light emitting layer include the light emitting material that may be contained in the first composition. It is done. The light emitting material contained in the second light emitting layer may be contained singly or in combination of two or more.
 本実施形態に係る発光素子が第2の発光層を有し、且つ、後述の正孔輸送層及び後述の電子輸送層が第2の有機層ではない場合、第2の発光層は第2の有機層であることが好ましい。 When the light-emitting element according to the present embodiment has the second light-emitting layer, and the hole transport layer and the electron transport layer to be described later are not the second organic layer, the second light-emitting layer is the second light-emitting layer. An organic layer is preferred.
[正孔輸送層]
 正孔輸送層は、通常、第2の有機層又は正孔輸送材料を含有する層である。正孔輸送層が正孔輸送材料を含有する層である場合、正孔輸送材料としては、例えば、前述の第1の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送層に含有される正孔輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[Hole transport layer]
The hole transport layer is usually a layer containing a second organic layer or a hole transport material. When the hole transport layer is a layer containing a hole transport material, examples of the hole transport material include a hole transport material that may be contained in the first composition described above. The hole transport material contained in the hole transport layer may be contained singly or in combination of two or more.
 本実施形態に係る発光素子が正孔輸送層を有し、且つ、前述の第2の発光層及び後述の電子輸送層が第2の有機層ではない場合、正孔輸送層は第2の有機層であることが好ましい。 When the light-emitting element according to the present embodiment has a hole transport layer, and the above-described second light-emitting layer and an electron transport layer described later are not the second organic layer, the hole-transport layer is the second organic layer. A layer is preferred.
[電子輸送層]
 電子輸送層は、通常、第2の有機層であるか、又は、電子輸送材料を含有する層であり、好ましくは、電子輸送材料を含有する層である。電子輸送層が電子輸送材料を含有する層である場合、電子輸送層に含有される電子輸送材料としては、例えば、前述の第1の組成物が含有していてもよい電子輸送材料が挙げられる。電子輸送層に含有される電子輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[Electron transport layer]
The electron transport layer is usually the second organic layer or a layer containing an electron transport material, and preferably a layer containing an electron transport material. When the electron transport layer is a layer containing an electron transport material, examples of the electron transport material contained in the electron transport layer include the electron transport material that may be contained in the first composition described above. . The electron transport material contained in the electron transport layer may be contained singly or in combination of two or more.
[正孔注入層及び電子注入層]
 正孔注入層は、正孔注入材料を含有する層である。正孔注入層に含有される正孔注入材料としては、例えば、前述の第1の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入層に含有される正孔注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[Hole injection layer and electron injection layer]
The hole injection layer is a layer containing a hole injection material. As a hole injection material contained in a hole injection layer, the hole injection material which the above-mentioned 1st composition may contain is mentioned, for example. The hole injection material contained in the hole injection layer may be contained singly or in combination of two or more.
 電子注入層は、電子注入材料を含有する層である。電子注入層に含有される電子注入材料としては、例えば、前述の第1の組成物が含有していてもよい電子注入材料が挙げられる。電子注入層に含有される電子注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。 The electron injection layer is a layer containing an electron injection material. As an electron injection material contained in an electron injection layer, the electron injection material which the above-mentioned 1st composition may contain is mentioned, for example. The electron injection material contained in the electron injection layer may be contained singly or in combination of two or more.
[基板/電極]
 発光素子における基板は、電極を形成することができ、且つ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板を使用する場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
[Substrate / Electrode]
The substrate in the light-emitting element may be any substrate that can form electrodes and does not change chemically when the organic layer is formed. For example, the substrate is made of a material such as glass, plastic, or silicon. When an opaque substrate is used, it is preferable that the electrode farthest from the substrate is transparent or translucent.
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。 Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc. A composite of silver, palladium and copper (APC); NESA, gold, platinum, silver and copper.
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。 Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds. Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
 本実施形態に係る発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。 In the light emitting device according to this embodiment, at least one of the anode and the cathode is usually transparent or translucent, but the anode is preferably transparent or translucent.
 陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。 Examples of the method for forming the anode and the cathode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a laminating method.
[発光素子の製造方法]
 本実施形態に係る発光素子において、第1の発光層、第2の発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
[Method for Manufacturing Light-Emitting Element]
In the light emitting device according to the present embodiment, as a method for forming each layer such as the first light emitting layer, the second light emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, the electron injection layer, etc. In the case of using, for example, a vacuum deposition method from a powder, a method by film formation from a solution or a molten state, and when using a polymer compound, for example, a method by film formation from a solution or a molten state can be mentioned.
 第1の発光層、第2の発光層、正孔輸送層、電子輸送層、正孔注入層及び電子注入層は、第1のインク、第2のインク、並びに、上述した発光材料、正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料をそれぞれ含有するインクを用いて、スピンコート法、インクジェット印刷法等の湿式法により形成することができる。 The first light-emitting layer, the second light-emitting layer, the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection layer are the first ink, the second ink, and the above-described light-emitting material and hole. It can be formed by a wet method such as a spin coating method or an ink jet printing method using inks each containing a transport material, an electron transport material, a hole injection material, and an electron injection material.
[発光素子の用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
[Uses of light-emitting elements]
In order to obtain planar light emission using the light emitting element, the planar anode and the cathode may be arranged so as to overlap each other. In order to obtain pattern-like light emission, a method in which a mask having a pattern-like window is provided on the surface of a planar light-emitting element, a layer that is desired to be a non-light-emitting portion is formed extremely thick and substantially non-light-emitting. There is a method, a method of forming an anode or a cathode, or both electrodes in a pattern. By forming a pattern by any one of these methods and arranging several electrodes so that they can be turned on and off independently, a segment type display device capable of displaying numbers, characters, and the like can be obtained. In order to obtain a dot matrix display device, both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter. The dot matrix display device can be driven passively or can be driven actively in combination with TFTs. These display devices can be used for displays of computers, televisions, portable terminals and the like. The planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source and display device.
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、サイズエクスクルージョンクロマトグラフィー(SEC)(島津製作所製、商品名:LC-10Avp)により求めた。なお、SECの測定条件は、次のとおりである。
[測定条件]
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフラン(THF)に溶解させ、SECに10μL注入した。SECの移動相としてTHFを用い、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
In the Examples, the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by size exclusion chromatography (SEC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp). Determined by The SEC measurement conditions are as follows.
[Measurement condition]
The polymer compound to be measured was dissolved in tetrahydrofuran (THF) at a concentration of about 0.05% by mass, and 10 μL was injected into SEC. THF was used as the mobile phase of SEC, and flowed at a flow rate of 2.0 mL / min. As the column, PLgel MIXED-B (manufactured by Polymer Laboratories) was used. A UV-VIS detector (manufactured by Shimadzu Corporation, trade name: SPD-10Avp) was used as the detector.
 本実施例において、化合物の発光スペクトルの最大ピーク波長は、分光光度計(日本分光株式会社製、商品名:FP-6500)により室温にて測定した。化合物をキシレンに、約0.8×10-4質量%の濃度で溶解させたトルエン溶液を試料として用いた。励起光としては、波長325nmのUV光を用いた。 In this example, the maximum peak wavelength of the emission spectrum of the compound was measured at room temperature with a spectrophotometer (trade name: FP-6500, manufactured by JASCO Corporation). A toluene solution in which the compound was dissolved in xylene at a concentration of about 0.8 × 10 −4 mass% was used as a sample. As excitation light, UV light having a wavelength of 325 nm was used.
<化合物HM-1~HM-6>
 化合物HM-1は、特開2011-174059号公報に記載の方法に準じて合成した。
 化合物HM-2は、AK Scientific社より購入した。
 化合物HM-3は、国際公開第2011/137922号に記載の方法に準じて合成した。
 化合物HM-4及び化合物HM-5は、特開2011-100942号公報及び国際公開第2011/137922号に記載の方法に準じて合成した。
 化合物HM-6は、国際公開第2011/098030号に記載の方法に従って合成した。
<Compounds HM-1 to HM-6>
Compound HM-1 was synthesized according to the method described in JP2011-174059A.
Compound HM-2 was purchased from AK Scientific.
Compound HM-3 was synthesized according to the method described in International Publication No. 2011/137922.
Compound HM-4 and Compound HM-5 were synthesized according to the methods described in JP2011-10000942 and International Publication No. 2011-137922.
Compound HM-6 was synthesized according to the method described in International Publication No. 2011/098030.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 化合物HM-1の発光スペクトルの最大ピーク波長は、426nmであった。
 化合物HM-2の発光スペクトルの最大ピーク波長は、425nmであった。
 化合物HM-3の発光スペクトルの最大ピーク波長は、430nmであった。
 化合物HM-4の発光スペクトルの最大ピーク波長は、430nmであった。
 化合物HM-5の発光スペクトルの最大ピーク波長は、415nmであった。
 化合物HM-6の発光スペクトルの最大ピーク波長は、431nmであった。
The maximum peak wavelength of the emission spectrum of Compound HM-1 was 426 nm.
The maximum peak wavelength of the emission spectrum of Compound HM-2 was 425 nm.
The maximum peak wavelength of the emission spectrum of compound HM-3 was 430 nm.
The maximum peak wavelength of the emission spectrum of Compound HM-4 was 430 nm.
The maximum peak wavelength of the emission spectrum of Compound HM-5 was 415 nm.
The maximum peak wavelength of the emission spectrum of compound HM-6 was 431 nm.
<化合物EM-1~EM-8、EM-10及びEM-11>
 化合物EM-1は、特開2011-176304号公報に記載の方法に従って合成した。
 化合物EM-2は、国際公開第2008/059713号に記載の方法に準じて合成した。
 化合物EM-3は、特開2009-290091号公報及び特開2011-176304号公報に記載の方法に準じて合成した。
 化合物EM-4及び化合物EM-10は、東京化成工業株式会社より購入した。
 化合物EM-5は、特開2006-176491号公報に記載の方法に準じて合成した。
 化合物EM-6は、国際公開第2010/013006号に記載の方法に準じて合成した。
 化合物EM-7は、国際公開第2005/033051号に記載の方法に準じて合成した。
 化合物EM-8は、特開2007-142171号公報に記載の方法に準じて合成した。
 化合物EM-11は、Aldrich社より購入した。
<Compounds EM-1 to EM-8, EM-10 and EM-11>
Compound EM-1 was synthesized according to the method described in JP2011-176304A.
Compound EM-2 was synthesized according to the method described in International Publication No. 2008/059713.
Compound EM-3 was synthesized according to the methods described in JP2009-290091A and JP2011-176304A.
Compound EM-4 and Compound EM-10 were purchased from Tokyo Chemical Industry Co., Ltd.
Compound EM-5 was synthesized according to the method described in JP-A-2006-176491.
Compound EM-6 was synthesized according to the method described in International Publication No. 2010/013006.
Compound EM-7 was synthesized according to the method described in International Publication No. 2005/033051.
Compound EM-8 was synthesized according to the method described in JP-A-2007-142171.
Compound EM-11 was purchased from Aldrich.
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
<合成例EM-9>化合物EM-9の合成
 反応容器内を窒素ガス雰囲気とした後、国際公開第2009/075203号に記載の方法に準じて合成した化合物EM-9a(3.50g)、特開2015-110751号公報に記載の方法に従って合成した化合物EM-9b(9.00g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.294g)、20重量%テトラブチルアンモニウムヒドロキシド水溶液(18.9g)及びトルエン(52mL)を加え、80℃で6時間撹拌した。得られた反応混合物を室温まで冷却した後、ヘキサンを加え、析出した固体をろ取した。得られた固体をトルエンに溶解させ、イオン交換水で洗浄した後、水層を除去した。得られた有機層を、シリカゲルを敷いたろ過器でろ過し、得られたろ液を減圧濃縮した。得られた濃縮物を、トルエン及びアセトニトリルの混合溶媒を用いて晶析を行い、減圧乾燥させることにより、化合物EM-9(3.5g)を得た。化合物EM-9のHPLC面積百分率値は99.5%以上であった。
<Synthesis Example EM-9> Synthesis of Compound EM-9 Compound EM-9a (3.50 g) synthesized in accordance with the method described in International Publication No. 2009/075203 after the inside of the reaction vessel was filled with a nitrogen gas atmosphere, Compound EM-9b (9.00 g), tetrakis (triphenylphosphine) palladium (0) (0.294 g) synthesized according to the method described in JP-A-2015-110551, 20 wt% tetrabutylammonium hydroxide aqueous solution ( 18.9 g) and toluene (52 mL) were added, and the mixture was stirred at 80 ° C. for 6 hours. The resulting reaction mixture was cooled to room temperature, hexane was added, and the precipitated solid was collected by filtration. The obtained solid was dissolved in toluene and washed with ion exchange water, and then the aqueous layer was removed. The obtained organic layer was filtered with a filter coated with silica gel, and the obtained filtrate was concentrated under reduced pressure. The obtained concentrate was crystallized using a mixed solvent of toluene and acetonitrile, and dried under reduced pressure to obtain Compound EM-9 (3.5 g). Compound EM-9 had an HPLC area percentage value of 99.5% or more.
 LC-MS(ESI,positive):m/z=2043[M]+ LC-MS (ESI, positive): m / z = 2043 [M] +
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 化合物EM-1の発光スペクトルの最大ピーク波長は、439nmであった。
 化合物EM-2の発光スペクトルの最大ピーク波長は、441nmであった。
 化合物EM-3の発光スペクトルの最大ピーク波長は、460nmであった。
 化合物EM-4の発光スペクトルの最大ピーク波長は、446nmであった。
 化合物EM-5の発光スペクトルの最大ピーク波長は、446nmであった。
 化合物EM-6の発光スペクトルの最大ピーク波長は、453nmであった。
 化合物EM-7の発光スペクトルの最大ピーク波長は、453nmであった。
 化合物EM-8の発光スペクトルの最大ピーク波長は、502nmであった。
 化合物EM-9の発光スペクトルの最大ピーク波長は、440nmであった。
 化合物EM-10の発光スペクトルの最大ピーク波長は、404nmであった。
 化合物EM-11の発光スペクトルの最大ピーク波長は、448nmであった。
The maximum peak wavelength of the emission spectrum of Compound EM-1 was 439 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-2 was 441 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-3 was 460 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-4 was 446 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-5 was 446 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-6 was 453 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-7 was 453 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-8 was 502 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-9 was 440 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-10 was 404 nm.
The maximum peak wavelength of the emission spectrum of Compound EM-11 was 448 nm.
<化合物M1~M8>
 化合物M1は、特開2011-174062号公報に記載の方法に従って合成した。
 化合物M2は、特開2008-106241号公報に記載の方法に従って合成した。
 化合物M3は、国際公開第2015/145871号に記載の方法に従って合成した。
 化合物M4は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物M5は、国際公開第2005/049546号に記載の方法に従って合成した。
 化合物M6は、特開2010-215886号公報に記載の方法に従って合成した。
 化合物M7は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物M8は、特開2010-189630号公報に記載の方法に従って合成した。
<Compounds M1 to M8>
Compound M1 was synthesized according to the method described in JP2011-174062.
Compound M2 was synthesized according to the method described in JP-A-2008-106241.
Compound M3 was synthesized according to the method described in International Publication No. 2015/145871.
Compound M4 was synthesized according to the method described in International Publication No. 2013/146806.
Compound M5 was synthesized according to the method described in WO2005 / 049546.
Compound M6 was synthesized according to the method described in JP 2010-215886 A.
Compound M7 was synthesized according to the method described in International Publication No. 2013/146806.
Compound M8 was synthesized according to the method described in JP 2010-189630 A.
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
<合成例HTL1>高分子化合物HTL-1の合成
 高分子化合物HTL-1は、化合物M1、化合物M5及び化合物M2を用いて、特開2013-47315号公報に記載の方法に従って合成した。高分子化合物HTL-1のMnは5.6×10であり、Mwは2.4×10であった。
<Synthesis Example HTL1> Synthesis of Polymer Compound HTL-1 Polymer compound HTL-1 was synthesized according to the method described in JP 2013-47315 A using compound M1, compound M5 and compound M2. The polymer compound HTL-1 had an Mn of 5.6 × 10 4 and an Mw of 2.4 × 10 5 .
 高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M5から誘導される構成単位と、化合物M2から誘導される構成単位とが、50:42.5:7.5のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for polymer compound HTL-1 is that the structural unit derived from compound M1, the structural unit derived from compound M5, and the structural unit derived from compound M2 are: It is a copolymer composed of a molar ratio of 50: 42.5: 7.5.
<合成例HTL2>高分子化合物HTL-2の合成
 高分子化合物HTL-2は、化合物M5及び化合物M8を用いて、国際公開第2015/194448号に記載の方法に従って合成した。
<Synthesis Example HTL2> Synthesis of Polymer Compound HTL-2 Polymer compound HTL-2 was synthesized according to the method described in International Publication No. 2015/194448 using Compound M5 and Compound M8.
 高分子化合物HTL-2のMnは4.5×10であり、Mwは1.5×10であった。 The polymer compound HTL-2 had an Mn of 4.5 × 10 4 and an Mw of 1.5 × 10 5 .
 高分子化合物HTL-2は、仕込み原料の量から求めた理論値では、化合物M5から誘導される構成単位と、化合物M8から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。 The high molecular compound HTL-2 has a theoretical value obtained from the amount of the charged raw materials, wherein the structural unit derived from the compound M5 and the structural unit derived from the compound M8 are formed in a molar ratio of 50:50. It is a copolymer.
<合成例HTL3>高分子化合物HTL-3の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物M1(1.09g)、化合物M5(0.917g)、化合物M2(0.0669g)、化合物M6(0.0578g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)及びトルエン(35mL)を加え、105℃に加熱した。
(工程2)反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(22mL)を滴下し、5時間還流させた。
(工程3)反応後、そこに、フェニルボロン酸(61mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.1mg)を加え、18時間還流させた。
(工程4)反応液を冷却後、水で2回、3質量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-3を1.31g得た。
<Synthesis Example HTL3> Synthesis of Polymer Compound HTL-3 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound M1 (1.09 g), Compound M5 (0.917 g), Compound M2 (0. 0669 g), Compound M6 (0.0578 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) and toluene (35 mL) were added, and the mixture was heated to 105 ° C.
(Step 2) A 20% by mass aqueous tetraethylammonium hydroxide solution (22 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 5 hours.
(Step 3) After the reaction, phenylboronic acid (61 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.1 mg) were added thereto and refluxed for 18 hours.
(Step 4) After cooling the reaction solution, it was washed twice with water, twice with a 3% by mass acetic acid aqueous solution and twice with water, and when the resulting solution was added dropwise to methanol, precipitation occurred. The precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.31 g of a polymer compound HTL-3.
 高分子化合物HTL-3のMnは4.6×10であり、Mwは1.5×10であった。 The polymer compound HTL-3 had an Mn of 4.6 × 10 4 and an Mw of 1.5 × 10 5 .
 高分子化合物HTL-3は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M5から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M6から誘導される構成単位とが、50:40:5:5のモル比で構成されてなる共重合体である。 The high molecular compound HTL-3 has a structural value derived from the compound M1, a structural unit derived from the compound M5, a structural unit derived from the compound M2, and the The structural unit derived from M6 is a copolymer composed of a molar ratio of 50: 40: 5: 5.
<合成例HTL4>高分子化合物HTL-4の合成
 高分子化合物HTL-4は、化合物M3、化合物M4及び化合物M5を用いて、国際公開第2015/145871号に記載の方法に従って合成した。
<Synthesis Example HTL4> Synthesis of Polymer Compound HTL-4 Polymer compound HTL-4 was synthesized using Compound M3, Compound M4 and Compound M5 according to the method described in International Publication No. 2015/145871.
 高分子化合物HTL-4のMnは2.3×10であり、Mwは1.2×10であった。 The polymer compound HTL-4 had an Mn of 2.3 × 10 4 and an Mw of 1.2 × 10 5 .
 高分子化合物HTL-4は、仕込み原料の量から求めた理論値では、化合物M3から誘導される構成単位と、化合物M4から誘導される構成単位と、化合物M5から誘導される構成単位とが、45:5:50のモル比で構成されてなる共重合体である。 The theoretical value obtained from the amount of the raw material used for polymer compound HTL-4 is that the structural unit derived from compound M3, the structural unit derived from compound M4, and the structural unit derived from compound M5 are: It is a copolymer formed by a molar ratio of 45: 5: 50.
<合成例HTL5>高分子化合物HTL-5の合成
 高分子化合物HTL-5は、化合物M8、化合物M7、化合物M2及び化合物M6を用いて、国際公開第2013/146806号に記載の方法に従って合成した。
<Synthesis Example HTL5> Synthesis of Polymer Compound HTL-5 Polymer Compound HTL-5 was synthesized using Compound M8, Compound M7, Compound M2 and Compound M6 according to the method described in International Publication No. 2013/146806. .
 高分子化合物HTL-5のMnは4.3×10であり、Mwは3.6×10であった。 The polymer compound HTL-5 had an Mn of 4.3 × 10 4 and an Mw of 3.6 × 10 5 .
 高分子化合物HTL-5は、仕込み原料の量から求めた理論値では、化合物M8から誘導される構成単位と、化合物M7から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M6から誘導される構成単位とが、50:40:5:5のモル比で構成されてなる共重合体である。 The polymer compound HTL-5 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound M8, a structural unit derived from the compound M7, a structural unit derived from the compound M2, and a compound. The structural unit derived from M6 is a copolymer composed of a molar ratio of 50: 40: 5: 5.
<実施例D1>発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。大気雰囲気下において、50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
<Example D1> Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering. On the anode, a hole injection material ND-3202 (manufactured by Nissan Chemical Industries) was formed into a film with a thickness of 35 nm by spin coating. In an air atmosphere, the hole injection layer was formed by heating at 50 ° C. for 3 minutes and further heating at 230 ° C. for 15 minutes.
(第2の有機層の形成)
 キシレンに、高分子化合物HTL-4を0.6質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱することにより第2の有機層を形成した。この加熱により、高分子化合物HTL-4は、架橋体となった。
(Formation of second organic layer)
The polymer compound HTL-4 was dissolved in xylene at a concentration of 0.6% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by spin coating, and heated in a nitrogen gas atmosphere on a hot plate at 180 ° C. for 60 minutes to form a second film. An organic layer of was formed. By this heating, the polymer compound HTL-4 became a crosslinked product.
(第1の有機層の形成)
 トルエンに、化合物HM-2及び化合物EM-2(化合物HM-2/化合物EM-2=91.5質量%/8.5質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の有機層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱することにより第1の有機層を形成した。
(Formation of first organic layer)
Compound HM-2 and Compound EM-2 (Compound HM-2 / Compound EM-2 = 91.5 mass% / 8.5 mass%) were dissolved in toluene at a concentration of 2 mass%. Using the obtained toluene solution, a film having a thickness of 60 nm was formed on the second organic layer by spin coating, and heated on a hot plate at 150 ° C. for 10 minutes in a nitrogen gas atmosphere. 1 organic layer was formed.
(陰極の形成)
 第1の有機層を形成した基板を蒸着機内において、1×10-4Pa以下にまで減圧した後、陰極として、第1の有機層の上に、フッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上に、アルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(Formation of cathode)
The substrate on which the first organic layer is formed is depressurized to 1 × 10 −4 Pa or less in a vapor deposition machine, and then, as a cathode, sodium fluoride is about 4 nm on the first organic layer, and then fluorinated. About 80 nm of aluminum was deposited on the sodium layer. After vapor deposition, the light emitting element D1 was produced by sealing using a glass substrate.
(発光素子の評価)
 発光素子D1に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.4Vであり、CIE色度座標(x,y)は(0.16,0.19)であった。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D1. The drive voltage at 400 cd / m 2 was 5.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.19).
<実施例D2>発光素子D2の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-1を用いたこと以外は、実施例D1と同様にして、発光素子D2を作製した。
<Example D2> Production and evaluation of light-emitting device D2 A light-emitting device D2 was produced in the same manner as in Example D1, except that Compound EM-1 was used instead of Compound EM-2 in Example D1.
 発光素子D2に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.6Vであり、CIE色度座標(x,y)は(0.16,0.21)であった。 EL light emission was observed by applying a voltage to the light emitting element D2. The driving voltage at 400 cd / m 2 was 5.6 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
<実施例D3>発光素子D3の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-3を用いたこと以外は、実施例D1と同様にして、発光素子D3を作製した。
<Example D3> Production and evaluation of light-emitting device D3 A light-emitting device D3 was produced in the same manner as in Example D1, except that Compound EM-3 was used instead of Compound EM-2 in Example D1.
 発光素子D3に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は6.0Vであり、CIE色度座標(x,y)は(0.16,0.17)であった。 EL light emission was observed by applying a voltage to the light emitting element D3. The driving voltage at 400 cd / m 2 was 6.0 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
<実施例D4>発光素子D4の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-4を用いたこと以外は、実施例D1と同様にして、発光素子D4を作製した。
<Example D4> Production and evaluation of light-emitting device D4 A light-emitting device D4 was produced in the same manner as in Example D1, except that Compound EM-4 was used instead of Compound EM-2 in Example D1.
 発光素子D4に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は6.0Vであり、CIE色度座標(x,y)は(0.16,0.21)であった。 EL light emission was observed by applying a voltage to the light emitting element D4. The driving voltage at 400 cd / m 2 was 6.0 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
<実施例D5>発光素子D5の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-5を用いたこと以外は、実施例D1と同様にして、発光素子D5を作製した。
<Example D5> Production and evaluation of light-emitting device D5 A light-emitting device D5 was produced in the same manner as in Example D1, except that Compound EM-5 was used instead of Compound EM-2 in Example D1.
 発光素子D5に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.6Vであり、CIE色度座標(x,y)は(0.16,0.19)であった。 EL light emission was observed by applying a voltage to the light emitting element D5. The driving voltage at 400 cd / m 2 was 5.6 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.19).
<実施例D6>発光素子D6の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-6を用いたこと以外は、実施例D1と同様にして、発光素子D6を作製した。
<Example D6> Production and evaluation of light-emitting device D6 A light-emitting device D6 was produced in the same manner as in Example D1, except that Compound EM-6 was used instead of Compound EM-2 in Example D1.
 発光素子D6に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.8Vであり、CIE色度座標(x,y)は(0.15,0.18)であった。 EL light emission was observed by applying a voltage to the light emitting element D6. The driving voltage at 400 cd / m 2 was 5.8 V, and the CIE chromaticity coordinates (x, y) were (0.15, 0.18).
<実施例D7>発光素子D7の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-7を用いたこと以外は、実施例D1と同様にして、発光素子D7を作製した。
<Example D7> Production and evaluation of light-emitting device D7 A light-emitting device D7 was produced in the same manner as in Example D1, except that Compound EM-7 was used instead of Compound EM-2 in Example D1.
 発光素子D7に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は6.5Vであり、CIE色度座標(x,y)は(0.17,0.24)であった。 EL light emission was observed by applying a voltage to the light emitting element D7. The driving voltage at 400 cd / m 2 was 6.5 V, and the CIE chromaticity coordinates (x, y) were (0.17, 0.24).
<実施例D8>発光素子D8の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-8を用いたこと以外は、実施例D1と同様にして、発光素子D8を作製した。
<Example D8> Production and evaluation of light-emitting device D8 A light-emitting device D8 was produced in the same manner as in Example D1, except that Compound EM-8 was used instead of Compound EM-2 in Example D1.
 発光素子D8に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.5Vであり、CIE色度座標(x,y)は(0.25,0.50)であった。 EL light emission was observed by applying a voltage to the light emitting element D8. The driving voltage at 400 cd / m 2 was 5.5 V, and the CIE chromaticity coordinates (x, y) were (0.25, 0.50).
<実施例D9>発光素子D9の作製と評価
 実施例D1における化合物HM-2に代えて、化合物HM-3を用いたこと以外は、実施例D1と同様にして、発光素子D9を作製した。
<Example D9> Production and evaluation of light-emitting device D9 A light-emitting device D9 was produced in the same manner as in Example D1, except that compound HM-3 was used instead of compound HM-2 in Example D1.
 発光素子D9に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.8Vであり、CIE色度座標(x,y)は(0.15,0.17)であった。 EL light emission was observed by applying a voltage to the light emitting element D9. The driving voltage at 400 cd / m 2 was 5.8 V, and the CIE chromaticity coordinates (x, y) were (0.15, 0.17).
<実施例D10>発光素子D10の作製と評価
 実施例D1における化合物HM-2に代えて、化合物HM-4を用いたこと以外は、実施例D1と同様にして、発光素子D10を作製した。
<Example D10> Production and evaluation of light-emitting device D10 A light-emitting device D10 was produced in the same manner as in Example D1, except that compound HM-4 was used instead of compound HM-2 in Example D1.
 発光素子D10に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.8Vであり、CIE色度座標(x,y)は(0.16,0.20)であった。 EL light emission was observed by applying a voltage to the light emitting element D10. The drive voltage at 400 cd / m 2 was 5.8 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.20).
<実施例D11>発光素子D11の作製と評価
 実施例D1における化合物HM-2に代えて、化合物HM-5を用いたこと以外は、実施例D1と同様にして、発光素子D11を作製した。
<Example D11> Production and evaluation of light-emitting device D11 A light-emitting device D11 was produced in the same manner as in Example D1, except that compound HM-5 was used instead of compound HM-2 in Example D1.
 発光素子D11に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.2Vであり、CIE色度座標(x,y)は(0.16,0.17)であった。 EL light emission was observed by applying a voltage to the light emitting element D11. The driving voltage at 400 cd / m 2 was 5.2 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
<実施例D12>発光素子D12の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-9を用いたこと以外は、実施例D1と同様にして、発光素子D12を作製した。
<Example D12> Production and evaluation of light-emitting device D12 A light-emitting device D12 was produced in the same manner as in Example D1, except that Compound EM-9 was used instead of Compound EM-2 in Example D1.
 発光素子D12に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.3Vであり、CIE色度座標(x,y)は(0.16,0.17)であった。 EL light emission was observed by applying a voltage to the light emitting element D12. The drive voltage at 400 cd / m 2 was 5.3 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
<実施例D13>発光素子D13の作製と評価
 実施例D1における化合物HM-2に代えて、化合物HM-6を用いたこと以外は、実施例D1と同様にして、発光素子D13を作製した。
<Example D13> Production and evaluation of light-emitting device D13 A light-emitting device D13 was produced in the same manner as in Example D1, except that Compound HM-6 was used instead of Compound HM-2 in Example D1.
 発光素子D13に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は6.5Vであり、CIE色度座標(x,y)は(0.17,0.18)であった。 EL light emission was observed by applying a voltage to the light emitting element D13. The driving voltage at 400 cd / m 2 was 6.5 V, and the CIE chromaticity coordinates (x, y) were (0.17, 0.18).
<実施例D14>発光素子D14の作製と評価
 実施例D13における化合物EM-2に代えて、化合物EM-8を用いたこと以外は、実施例D13と同様にして、発光素子D14を作製した。
<Example D14> Production and evaluation of light-emitting device D14 A light-emitting device D14 was produced in the same manner as in Example D13, except that Compound EM-8 was used instead of Compound EM-2 in Example D13.
 発光素子D14に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は6.6Vであり、CIE色度座標(x,y)は(0.25,0.46)であった。 EL light emission was observed by applying a voltage to the light emitting element D14. The driving voltage at 400 cd / m 2 was 6.6 V, and the CIE chromaticity coordinates (x, y) were (0.25, 0.46).
<実施例D15>発光素子D15の作製と評価
 実施例D1における高分子化合物HTL-4に代えて、高分子化合物HTL-5を用いたこと以外は、実施例D1と同様にして、発光素子D15を作製した。
<Example D15> Production and evaluation of light-emitting device D15 Light-emitting device D15 was prepared in the same manner as in Example D1, except that polymer compound HTL-5 was used instead of polymer compound HTL-4 in Example D1. Was made.
 発光素子D15に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は4.4Vであり、CIE色度座標(x,y)は(0.16,0.20)であった。 EL light emission was observed by applying a voltage to the light emitting element D15. The drive voltage at 400 cd / m 2 was 4.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.20).
<実施例D16>発光素子D16の作製と評価
 実施例D1における高分子化合物HTL-4に代えて、高分子化合物HTL-3を用いたこと以外は、実施例D1と同様にして、発光素子D16を作製した。
<Example D16> Fabrication and evaluation of light-emitting device D16 Light-emitting device D16 was prepared in the same manner as in Example D1, except that polymer compound HTL-3 was used instead of polymer compound HTL-4 in Example D1. Was made.
 発光素子D16に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は5.4Vであり、CIE色度座標(x,y)は(0.16,0.22)であった。 EL light emission was observed by applying a voltage to the light emitting element D16. The driving voltage at 400 cd / m 2 was 5.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.22).
<比較例CD1>発光素子CD1の作製と評価
 実施例D1における高分子化合物HTL-4に代えて、高分子化合物HTL-2を用いたこと以外は、実施例D1と同様にして、発光素子CD1を作製した。
<Comparative Example CD1> Production and Evaluation of Light-Emitting Element CD1 Light-emitting element CD1 was prepared in the same manner as Example D1, except that polymer compound HTL-2 was used instead of polymer compound HTL-4 in Example D1. Was made.
 発光素子CD1に電圧を印加することによりEL発光が観測された。400cd/mにおける駆動電圧は7.4Vであり、CIE色度座標(x,y)は(0.16,0.19)であった。 EL light emission was observed by applying a voltage to the light emitting device CD1. The drive voltage at 400 cd / m 2 was 7.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.19).
 実施例及び比較例の結果を表3に示す。 Table 3 shows the results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
<実施例D17>発光素子D17の作製と評価
 実施例D1の(第1の有機層の形成)における、「化合物HM-2及び化合物EM-2(化合物HM-2/化合物EM-2=91.5質量%/8.5質量%)」に代えて、「化合物HM-1及び化合物EM-1(化合物HM-1/化合物EM-1=91.5質量%/8.5質量%)」を用い、更に、実施例D1の(第2の有機層の形成)における高分子化合物HTL-4に代えて、高分子化合物HTL-3を用いたこと以外は、実施例D1と同様にして、発光素子D17を作製した。
Example D17 Fabrication and Evaluation of Light-Emitting Element D17 “Compound HM-2 and Compound EM-2 (Compound HM-2 / Compound EM-2 = 91. In the formation of the first organic layer) of Example D1. “Compound HM-1 and Compound EM-1 (Compound HM-1 / Compound EM-1 = 91.5 wt% / 8.5 wt%)” instead of “5 wt% / 8.5 wt%)” In addition, light emission was performed in the same manner as in Example D1, except that the polymer compound HTL-3 was used instead of the polymer compound HTL-4 in (Formation of second organic layer) in Example D1. Element D17 was produced.
 発光素子D17に電圧を印加することによりEL発光が観測された。100cd/mにおける駆動電圧は10.0Vであった。 EL light emission was observed by applying a voltage to the light emitting element D17. The driving voltage at 100 cd / m 2 was 10.0V.
<実施例D18>発光素子D18の作製と評価
 実施例D1の(第1の有機層の形成)における、「化合物HM-2及び化合物EM-2(化合物HM-2/化合物EM-2=91.5質量%/8.5質量%)」に代えて、「化合物HM-1及び化合物EM-1(化合物HM-1/化合物EM-1=91.5質量%/8.5質量%)」を用いたこと以外は、実施例D1と同様にして、発光素子D18を作製した。
Example D18 Fabrication and Evaluation of Light-Emitting Element D18 “Compound HM-2 and Compound EM-2 (Compound HM-2 / Compound EM-2 = 91. In the formation of the first organic layer) of Example D1. “Compound HM-1 and Compound EM-1 (Compound HM-1 / Compound EM-1 = 91.5 wt% / 8.5 wt%)” instead of “5 wt% / 8.5 wt%)” A light emitting device D18 was produced in the same manner as in Example D1 except that it was used.
 発光素子D18に電圧を印加することによりEL発光が観測された。100cd/mにおける駆動電圧は9.2Vであった。 EL light emission was observed by applying a voltage to the light emitting element D18. The driving voltage at 100 cd / m 2 was 9.2V.
<比較例CD2>発光素子CD2の作製と評価
 実施例D1の(第1の有機層の形成)における、「化合物HM-2及び化合物EM-2(化合物HM-2/化合物EM-2=91.5質量%/8.5質量%)」に代えて、「化合物HM-1及び化合物EM-1(化合物HM-1/化合物EM-1=91.5質量%/8.5質量%)」を用い、更に、実施例D1の(第2の有機層の形成)における高分子化合物HTL-4に代えて、高分子化合物HTL-1を用いたこと以外は、実施例D1と同様にして、発光素子CD2を作製した。
<Comparative Example CD2> Production and Evaluation of Light-Emitting Element CD2 “Compound HM-2 and Compound EM-2 (Compound HM-2 / Compound EM-2 = 91. In the formation of the first organic layer) of Example D1. “Compound HM-1 and Compound EM-1 (Compound HM-1 / Compound EM-1 = 91.5 wt% / 8.5 wt%)” instead of “5 wt% / 8.5 wt%)” Further, light emission was conducted in the same manner as in Example D1, except that the polymer compound HTL-1 was used instead of the polymer compound HTL-4 in (Formation of second organic layer) in Example D1. Element CD2 was produced.
 発光素子CD2に電圧を印加することによりEL発光が観測された。100cd/mにおける駆動電圧は11.7Vであった。 EL light emission was observed by applying a voltage to the light emitting device CD2. The driving voltage at 100 cd / m 2 was 11.7V.
 実施例及び比較例の結果を表4に示す。 Table 4 shows the results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000098
<実施例D19>発光素子D19の作製と評価
 実施例D16と同様にして、発光素子D19を作製した。
<Example D19> Production and evaluation of light-emitting device D19 A light-emitting device D19 was produced in the same manner as in Example D16.
 発光素子D19に電圧を印加することによりEL発光が観測された。100cd/mにおける駆動電圧は4.4Vであり、CIE色度座標(x,y)は(0.16,0.21)であった。 EL light emission was observed by applying a voltage to the light emitting element D19. The driving voltage at 100 cd / m 2 was 4.4 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
<比較例CD3>発光素子CD3の作製と評価
 実施例D19の(第2の有機層の形成)における高分子化合物HTL-3に代えて、高分子化合物HTL-1を用いたこと以外は、実施例D19と同様にして、発光素子CD3を作製した。
<Comparative Example CD3> Fabrication and Evaluation of Light-Emitting Element CD3 Implementation was performed except that polymer compound HTL-1 was used instead of polymer compound HTL-3 in (Formation of second organic layer) in Example D19. A light emitting device CD3 was produced in the same manner as in Example D19.
 発光素子CD3に電圧を印加することによりEL発光が観測された。100cd/mにおける駆動電圧は6.6Vであり、CIE色度座標(x,y)は(0.16,0.20)であった。 EL light emission was observed by applying a voltage to the light emitting device CD3. The driving voltage at 100 cd / m 2 was 6.6 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.20).
 実施例及び比較例の結果を表5に示す。 Table 5 shows the results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
<実施例D20>発光素子D20の作製と評価
 実施例D1と同様にして、発光素子D20を作製した。
<Example D20> Fabrication and evaluation of light-emitting element D20 A light-emitting element D20 was fabricated in the same manner as in Example D1.
 発光素子D20に電圧を印加することによりEL発光が観測された。5000cd/mにおける駆動電圧は9.1Vであり、CIE色度座標(x,y)は(0.16,0.21)であった。 EL light emission was observed by applying a voltage to the light emitting element D20. The drive voltage at 5000 cd / m 2 was 9.1 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
<実施例D21>発光素子D21の作製と評価
 実施例D2と同様にして、発光素子D21を作製した。
<Example D21> Fabrication and evaluation of light-emitting element D21 A light-emitting element D21 was fabricated in the same manner as in Example D2.
 発光素子D21に電圧を印加することによりEL発光が観測された。5000cd/mにおける駆動電圧は9.5Vであり、CIE色度座標(x,y)は(0.16,0.20)であった。 EL light emission was observed by applying a voltage to the light emitting element D21. The drive voltage at 5000 cd / m 2 was 9.5 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.20).
<実施例D22>発光素子D22の作製と評価
 実施例D12と同様にして、発光素子D22を作製した。
<Example D22> Production and evaluation of light-emitting element D22 A light-emitting element D22 was produced in the same manner as in Example D12.
 発光素子D22に電圧を印加することによりEL発光が観測された。5000cd/mにおける駆動電圧は9.5Vであり、CIE色度座標(x,y)は(0.16,0.17)であった。 EL light emission was observed by applying a voltage to the light emitting element D22. The drive voltage at 5000 cd / m 2 was 9.5 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
<実施例D23>発光素子D23の作製と評価
 実施例D5と同様にして、発光素子D23を作製した。
<Example D23> Production and evaluation of light-emitting element D23 A light-emitting element D23 was produced in the same manner as in Example D5.
 発光素子D23に電圧を印加することによりEL発光が観測された。5000cd/mにおける駆動電圧は9.5Vであり、CIE色度座標(x,y)は(0.16,0.17)であった。 EL light emission was observed by applying a voltage to the light emitting element D23. The drive voltage at 5000 cd / m 2 was 9.5 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.17).
<実施例D24>発光素子D24の作製と評価
 実施例D8と同様にして、発光素子D24を作製した。
<Example D24> Production and evaluation of light-emitting element D24 A light-emitting element D24 was produced in the same manner as in Example D8.
 発光素子D24に電圧を印加することによりEL発光が観測された。5000cd/mにおける駆動電圧は8.8Vであり、CIE色度座標(x,y)は(0.24,0.49)であった。 EL light emission was observed by applying a voltage to the light emitting element D24. The drive voltage at 5000 cd / m 2 was 8.8 V, and the CIE chromaticity coordinates (x, y) were (0.24, 0.49).
<実施例D25>発光素子D25の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-10を用いたこと以外は、実施例D1と同様にして、発光素子D25を作製した。
<Example D25> Production and evaluation of light-emitting device D25 A light-emitting device D25 was produced in the same manner as in Example D1, except that Compound EM-10 was used instead of Compound EM-2 in Example D1.
 発光素子D25に電圧を印加することによりEL発光が観測された。5000cd/mにおける駆動電圧は11.0Vであり、CIE色度座標(x,y)は(0.16,0.21)であった。 EL light emission was observed by applying a voltage to the light emitting element D25. The drive voltage at 5000 cd / m 2 was 11.0 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.21).
<比較例CD4>発光素子CD4の作製と評価
 実施例D25における高分子化合物HTL-4に代えて、高分子化合物HTL-2を用いたこと以外は、実施例D25と同様にして、発光素子CD4を作製した。
<Comparative Example CD4> Fabrication and Evaluation of Light-Emitting Element CD4 Light-emitting element CD4 was prepared in the same manner as Example D25, except that polymer compound HTL-2 was used instead of polymer compound HTL-4 in Example D25. Was made.
 発光素子CD4に電圧を印加することによりEL発光が観測された。5000cd/mにおける駆動電圧は11.7Vであり、CIE色度座標(x,y)は(0.17,0.23)であった。 EL light emission was observed by applying a voltage to the light emitting device CD4. The drive voltage at 5000 cd / m 2 was 11.7 V, and the CIE chromaticity coordinates (x, y) were (0.17, 0.23).
<比較例CD5>発光素子CD5の作製と評価
 比較例CD1と同様にして、発光素子CD5を作製した。
<Comparative Example CD5> Production and Evaluation of Light-Emitting Element CD5 A light-emitting element CD5 was produced in the same manner as Comparative Example CD1.
 発光素子CD5に電圧を印加することによりEL発光が観測された。12Vまで電圧を印加したが、5000cd/mには至らなかった。 EL light emission was observed by applying a voltage to the light emitting device CD5. Although voltage was applied to 12V, it did not reach 5000 cd / m 2 .
 実施例及び比較例の結果を表6に示す。 Table 6 shows the results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000100
<実施例D26>発光素子D26の作製と評価
 実施例D6と同様にして、発光素子D26を作製した。
<Example D26> Production and evaluation of light-emitting element D26 A light-emitting element D26 was produced in the same manner as in Example D6.
(発光素子の評価)
 発光素子D26に電圧を印加することによりEL発光が観測された。7500cd/mにおける駆動電圧は11.2Vであり、CIE色度座標(x,y)は(0.14,0.17)であった。
(Evaluation of light emitting element)
EL light emission was observed by applying a voltage to the light emitting element D26. The drive voltage at 7500 cd / m 2 was 11.2 V, and the CIE chromaticity coordinates (x, y) were (0.14, 0.17).
<実施例D27>発光素子D27の作製と評価
 実施例D1における化合物EM-2に代えて、化合物EM-11を用いたこと以外は、実施例D1と同様にして、発光素子D27を作製した。
<Example D27> Production and evaluation of light-emitting device D27 A light-emitting device D27 was produced in the same manner as in Example D1, except that Compound EM-11 was used instead of Compound EM-2 in Example D1.
 発光素子D27に電圧を印加することによりEL発光が観測された。7500cd/mにおける駆動電圧は11.8Vであり、CIE色度座標(x,y)は(0.16,0.18)であった。 EL light emission was observed by applying a voltage to the light emitting element D27. The drive voltage at 7500 cd / m 2 was 11.8 V, and the CIE chromaticity coordinates (x, y) were (0.16, 0.18).
 本発明によれば、駆動電圧が低い発光素子を提供することができる。 According to the present invention, a light emitting element with a low driving voltage can be provided.

Claims (15)

  1.  陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の有機層及び第2の有機層と、を有する発光素子であって、
     前記第1の有機層が、式(B)で表される発光材料を含有する層であり、
     前記式(B)で表される発光材料の発光スペクトルの最大ピーク波長が380nm以上750nm以下であり、
     前記第2の有機層が、式(XL-A)で表される基を有する構成単位と式(XL-B)で表される基を有する構成単位とを含む高分子化合物の架橋体を含有する層であり、
     前記式(XL-A)で表される基と前記式(XL-B)で表される基とが、互いに異なる基である、発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     n1Bは、0~15の整数を表す。
     Ar1Bは、芳香族炭化水素基又は芳香族複素環基を表す。
     R1Bは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表し、これらの基は置換基を有していてもよい。R1Bが複数存在する場合、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     nA及びnBは、それぞれ独立に、0~5の整数を表す。
     L及びLは、それぞれ独立に、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。L及びLが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     X及びXは、それぞれ独立に、架橋基を表す。]
    A light-emitting element having an anode, a cathode, and a first organic layer and a second organic layer provided between the anode and the cathode,
    The first organic layer is a layer containing a light emitting material represented by the formula (B),
    The maximum peak wavelength of the emission spectrum of the luminescent material represented by the formula (B) is 380 nm or more and 750 nm or less,
    The second organic layer contains a crosslinked product of a polymer compound containing a structural unit having a group represented by the formula (XL-A) and a structural unit having a group represented by the formula (XL-B) Layer to
    A light-emitting element in which the group represented by the formula (XL-A) and the group represented by the formula (XL-B) are different from each other.
    Figure JPOXMLDOC01-appb-C000001
    [Where:
    n 1B represents an integer of 0 to 15.
    Ar 1B represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
    R 1B is a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, alkenyl group, cycloalkenyl group, alkynyl group or cycloalkynyl. Represents a group, and these groups may have a substituent. When there are a plurality of R 1B s , they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
    Figure JPOXMLDOC01-appb-C000002
    [Where:
    nA and nB each independently represents an integer of 0 to 5.
    L A and L B each independently represent an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR′—, an oxygen atom or a sulfur atom, It may have a substituent. R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. When there are a plurality of L A and L B , they may be the same or different from each other.
    X A and X B each independently represent a crosslinking group. ]
  2.  前記X又は前記Xが、架橋基A群から選ばれる少なくとも1種の架橋基である、請求項1に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000003
    [式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
    2. The light emitting device according to claim 1, wherein X A or X B is at least one crosslinking group selected from the crosslinking group A group.
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. When a plurality of R XL are present, they may be the same or different, and when a plurality of n XL are present, they may be the same or different. * 1 represents a binding position. These crosslinking groups may have a substituent. ]
  3.  前記式(XL-A)で表される基を有する架橋構成単位が、式(XL-A1)で表される構成単位又は式(XL-A2)で表される構成単位である、請求項1又は2に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     nA1は、1~4の整数を表す。nA1が複数存在する場合、それらは同一でも異なっていてもよい。
     nA2は、0又は1の整数を表す。
     XLAは、前記式(XL-A)で表される架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。XLAが複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのXLAは、前記式(XL-A)で表される架橋基である。
     ArA3は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
     ArA5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     ArA4及びArA6は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
     ArA4、ArA5及びArA6はそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。]
    The crosslinked structural unit having a group represented by the formula (XL-A) is a structural unit represented by the formula (XL-A1) or a structural unit represented by the formula (XL-A2). Or the light emitting element of 2.
    Figure JPOXMLDOC01-appb-C000004
    [Where:
    n A1 represents an integer of 1 to 4. When a plurality of n A1 are present, they may be the same or different.
    n A2 represents an integer of 0 or 1.
    XLA represents a bridging group represented by the formula (XL-A), a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups have a substituent. May be. When a plurality of XLA are present, they may be the same or different. However, at least one XLA is a crosslinking group represented by the formula (XL-A).
    Ar A3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
    Ar A5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
    Ar A4 and Ar A6 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
    Ar A4 , Ar A5 and Ar A6 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or a sulfur atom to form a ring. It may be. ]
  4.  前記式(XL-B)で表される基を有する架橋構成単位が、式(XL-B1)で表される構成単位又は式(XL-B2)で表される構成単位である、請求項1又は2に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     nB1は、1~4の整数を表す。nB1が複数存在する場合、それらは同一でも異なっていてもよい。
     nB2は、0又は1の整数を表す。
     XLBは、前記式(XL-B)で表される架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。XLBが複数存在する場合、それらは同一でも異なっていてもよい。但し、少なくとも1つのXLBは、前記式(XL-B)で表される架橋基である。
     ArB3は、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
     ArB5は、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     ArB4及びArB6は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
     ArB4、ArB5及びArB6はそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。]
    The crosslinked structural unit having a group represented by the formula (XL-B) is a structural unit represented by the formula (XL-B1) or a structural unit represented by the formula (XL-B2). Or the light emitting element of 2.
    Figure JPOXMLDOC01-appb-C000005
    [Where:
    n B1 represents an integer of 1 to 4. When a plurality of n B1 are present, they may be the same or different.
    n B2 represents an integer of 0 or 1.
    X LB represents a bridging group represented by the above formula (XL-B), a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups have a substituent. May be. When a plurality of X LB are present, they may be the same or different. However, at least one X LB is a bridging group represented by the formula (XL-B).
    Ar B3 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
    Ar B5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
    Ar B4 and Ar B6 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
    Ar B4 , Ar B5, and Ar B6 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or a sulfur atom to form a ring. It may be. ]
  5.  前記Xが、前記架橋基A群から選ばれる式(XL-3)、式(XL-4)、式(XL-13)又は式(XL-17)で表される架橋基である、請求項2~4のいずれか一項に記載の発光素子。 Wherein X A is the formula selected from the bridging group A (XL-3), formula (XL-4), a bridging group of the formula (XL-13) or formula (XL-17), wherein Item 5. The light emitting device according to any one of Items 2 to 4.
  6.  前記Xが、前記架橋基A群から選ばれる式(XL-1)、式(XL-2)、式(XL-5)、式(XL-6)、式(XL-7)、式(XL-8)、式(XL-14)、式(XL-15)又は式(XL-16)で表される架橋基である、請求項2~5のいずれか一項に記載の発光素子。 X B is selected from Formula (XL-1), Formula (XL-2), Formula (XL-5), Formula (XL-6), Formula (XL-7), Formula (X) selected from Group A The light emitting device according to any one of claims 2 to 5, which is a crosslinking group represented by XL-8), formula (XL-14), formula (XL-15), or formula (XL-16).
  7.  前記Ar1Bが、芳香族炭化水素基である、請求項1~6のいずれか一項に記載の発光素子。 The light emitting device according to any one of claims 1 to 6, wherein Ar 1B is an aromatic hydrocarbon group.
  8.  前記Ar1Bが、ベンゼン環、ビフェニル環、ナフタレン環、アントラセン環、フェナントレン環、ジヒドロフェナントレン環、トリフェニレン環、ナフタセン環、フルオレン環、スピロビフルオレン環、ピレン環、ペリレン環、クリセン環、インデン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基である、請求項7に記載の発光素子。 Ar 1B is a benzene ring, biphenyl ring, naphthalene ring, anthracene ring, phenanthrene ring, dihydrophenanthrene ring, triphenylene ring, naphthacene ring, fluorene ring, spirobifluorene ring, pyrene ring, perylene ring, chrysene ring, indene ring, The light emitting device according to claim 7, wherein the light emitting device is a group formed by removing one or more hydrogen atoms directly bonded to carbon atoms constituting the ring from a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring.
  9.  前記Ar1Bが、ビフェニル環、フルオレン環、ピレン環、フルオランテン環、ベンゾフルオランテン環又はアセナフトフルオランテン環から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基である、請求項8に記載の発光素子。 The Ar 1B is formed by removing one or more hydrogen atoms directly bonded to carbon atoms constituting the ring from a biphenyl ring, a fluorene ring, a pyrene ring, a fluoranthene ring, a benzofluoranthene ring or an acenaphthofluoranthene ring. The light emitting device according to claim 8, which is a group.
  10.  前記n1Bが、1~8の整数である、請求項1~9のいずれか一項に記載の発光素子。 The light emitting device according to any one of claims 1 to 9, wherein the n 1B is an integer of 1 to 8.
  11.  前記R1Bが、アルキル基、シクロアルキル基、アリール基、アルケニル基又はシクロアルケニル基(これらの基は置換基を有していてもよい)である、請求項1~10のいずれか一項に記載の発光素子。 The R 1B is an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, or a cycloalkenyl group (these groups may have a substituent), according to any one of claims 1 to 10. The light emitting element of description.
  12.  前記第1の有機層が、前記式(B)で表される発光材料とホスト材料とを含有する層であり、
     前記ホスト材料が式(FH-1)で表される化合物又は式(Y)で表される構成単位を含む高分子化合物である、請求項1~11のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。
     nH1は、0~15の整数を表す。
     LH1は、アリーレン基、2価の複素環基、又は、-[C(RH11]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1~10の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000007
    [式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
    The first organic layer is a layer containing a light emitting material represented by the formula (B) and a host material,
    The light-emitting element according to any one of claims 1 to 11, wherein the host material is a compound represented by the formula (FH-1) or a polymer compound including a structural unit represented by the formula (Y).
    Figure JPOXMLDOC01-appb-C000006
    [Where:
    Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups optionally have a substituent.
    n H1 represents an integer of 0 to 15.
    L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent. When a plurality of L H1 are present, they may be the same or different. n H11 represents an integer of 1 to 10. R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. A plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
    Figure JPOXMLDOC01-appb-C000007
    [In the formula, Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent. ]
  13.  前記式(B)で表される発光材料の発光スペクトルの最大ピーク波長が380nm以上570nm以下である、請求項1~12のいずれか一項に記載の発光素子。 The light emitting device according to any one of claims 1 to 12, wherein a maximum peak wavelength of an emission spectrum of the light emitting material represented by the formula (B) is 380 nm or more and 570 nm or less.
  14.  前記第1の有機層と、前記第2の有機層とが、隣接している、請求項1~13のいずれか一項に記載の発光素子。 The light-emitting element according to any one of claims 1 to 13, wherein the first organic layer and the second organic layer are adjacent to each other.
  15.  前記第2の有機層が、前記陽極及び前記第1の有機層との間に設けられた層である、請求項1~14のいずれか一項に記載の発光素子。 The light-emitting element according to any one of claims 1 to 14, wherein the second organic layer is a layer provided between the anode and the first organic layer.
PCT/JP2017/012226 2016-03-29 2017-03-27 Light-emitting element WO2017170314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509296A JP6979400B2 (en) 2016-03-29 2017-03-27 Light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016065574 2016-03-29
JP2016-065574 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017170314A1 true WO2017170314A1 (en) 2017-10-05

Family

ID=59965553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012226 WO2017170314A1 (en) 2016-03-29 2017-03-27 Light-emitting element

Country Status (2)

Country Link
JP (1) JP6979400B2 (en)
WO (1) WO2017170314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202279A1 (en) 2019-03-29 2020-10-08 住友化学株式会社 Light emitting element and method for producing same, and composition for light emitting elements and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102027A1 (en) * 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation Conjugated polymer, insolubilized polymer, organic electroluminescent device material, composition for organic electroluminescent device, method for producing polymer, organic electroluminescent device, organic el display, and organic el illuminator
WO2010013723A1 (en) * 2008-07-29 2010-02-04 住友化学株式会社 Polymer compound and light-emitting element using same
JP2010183010A (en) * 2009-02-09 2010-08-19 Mitsubishi Chemicals Corp Composition for organic electroluminescent element, organic thin film, the organic electroluminescent element, organic el display, and organic el illumination
JP2010185008A (en) * 2009-02-12 2010-08-26 Mitsubishi Chemicals Corp Composition for organic electroluminescent element, organic thin film, organic electroluminescent element, organic el display device, and organic el illumination
JP2011108792A (en) * 2009-11-16 2011-06-02 Mitsubishi Chemicals Corp Production method for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el illumination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102027A1 (en) * 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation Conjugated polymer, insolubilized polymer, organic electroluminescent device material, composition for organic electroluminescent device, method for producing polymer, organic electroluminescent device, organic el display, and organic el illuminator
WO2010013723A1 (en) * 2008-07-29 2010-02-04 住友化学株式会社 Polymer compound and light-emitting element using same
JP2010183010A (en) * 2009-02-09 2010-08-19 Mitsubishi Chemicals Corp Composition for organic electroluminescent element, organic thin film, the organic electroluminescent element, organic el display, and organic el illumination
JP2010185008A (en) * 2009-02-12 2010-08-26 Mitsubishi Chemicals Corp Composition for organic electroluminescent element, organic thin film, organic electroluminescent element, organic el display device, and organic el illumination
JP2011108792A (en) * 2009-11-16 2011-06-02 Mitsubishi Chemicals Corp Production method for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el illumination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202279A1 (en) 2019-03-29 2020-10-08 住友化学株式会社 Light emitting element and method for producing same, and composition for light emitting elements and method for producing same

Also Published As

Publication number Publication date
JP6979400B2 (en) 2021-12-15
JPWO2017170314A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6913079B2 (en) Light emitting element
KR102468541B1 (en) light emitting element
WO2018062278A1 (en) Light-emitting element, and composition useful for manufacturing light-emitting element
JP2018061028A (en) Light-emitting element
JP2018061030A (en) Light-emitting element
CN111052430B (en) Light emitting element
JP7346015B2 (en) light emitting element
JP7020420B2 (en) Light emitting element
JP6826930B2 (en) Light emitting element
JP2018061029A (en) Light-emitting element
JP6573041B2 (en) Light emitting element
JP2019195057A (en) Light-emitting device
JP6979400B2 (en) Light emitting element
JP6943241B2 (en) Light emitting element
JP7033397B2 (en) Light emitting element
JP6707909B2 (en) Polymer compound and light-emitting device using the same
JP6982566B2 (en) Light emitting element
JP6399248B2 (en) Light emitting element
JP2022027028A (en) Metal complex, composition, membrane, and light emitter
JP2019186576A (en) Light emitting element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774851

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774851

Country of ref document: EP

Kind code of ref document: A1