WO2017169550A1 - Tilt control device and hydraulic rotation device including same - Google Patents

Tilt control device and hydraulic rotation device including same Download PDF

Info

Publication number
WO2017169550A1
WO2017169550A1 PCT/JP2017/008895 JP2017008895W WO2017169550A1 WO 2017169550 A1 WO2017169550 A1 WO 2017169550A1 JP 2017008895 W JP2017008895 W JP 2017008895W WO 2017169550 A1 WO2017169550 A1 WO 2017169550A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
axial direction
spool
movable member
tilt
Prior art date
Application number
PCT/JP2017/008895
Other languages
French (fr)
Japanese (ja)
Inventor
啓 森田
直紀 菅野
智史 前川
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017169550A1 publication Critical patent/WO2017169550A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/06Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/06Control
    • F04B1/07Control by varying the relative eccentricity between two members, e.g. a cam and a drive shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/10Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary
    • F04B1/113Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement the cylinders being movable, e.g. rotary with actuating or actuated elements at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control

Definitions

  • the present invention relates to a tilt control device and a hydraulic rotation device including the tilt control device.
  • variable displacement hydraulic rotating machines that can be used as hydraulic pumps or hydraulic motors are known.
  • a hydraulic rotating machine includes a housing, a rotating shaft, a cylinder block, and a plurality of pistons.
  • the rotating shaft is rotatably supported by the housing.
  • the cylinder block includes a plurality of cylinders formed along the circumferential direction of the rotation shaft, and rotates together with the rotation shaft.
  • the pistons are respectively accommodated in a plurality of cylinders of the cylinder block and reciprocate as the cylinder block rotates.
  • the rotating shaft is rotated by the output of a predetermined driving unit, so that the cylinder block rotates together with the rotating shaft, and each piston reciprocates.
  • the hydraulic oil flows into the cylinder of the cylinder block from the predetermined low pressure port, is pressurized by the piston, and is discharged from the predetermined high pressure port.
  • the hydraulic rotating machine when used as a hydraulic motor, the high-pressure hydraulic oil flows into the cylinder of the cylinder block from the high-pressure port, so that the hydraulic fluid that has flowed in acts on the piston. After the reciprocating motion of the piston rotates the rotating shaft together with the cylinder block, the hydraulic oil is discharged from the low pressure port.
  • Patent Documents 1, 2, and 3 disclose techniques in which the extrusion capacity of a hydraulic pump is changed according to the axial movement of a servo cylinder.
  • Patent Document 1 when the servo valve spool is stroked according to the secondary pressure of the proportional valve, the servo cylinder connected to the sleeve of the servo valve via the spring moves in the axial direction.
  • patent document 2 with respect to the eccentric ring that functions as a cylinder block, a servo cylinder and a servo valve and a regulator that regulates the position of the eccentric ring are arranged at different positions.
  • Patent Document 3 when the spool of the servo valve is stroked by the secondary pressure of the proportional valve, the servo piston connected to the servo valve sleeve moves in the axial direction. The movement of the servo piston swings the swash plate of the hydraulic pump via the link mechanism.
  • An object of the present invention is to provide a tilt control device capable of accurately transmitting the movement of the spool of the control valve to the drive cylinder and realizing highly accurate tilt control, and a hydraulic rotation device including the tilt control device. There is to do.
  • a tilt control device is a tilt control device that controls the tilt of a variable displacement hydraulic rotating machine including a tilt adjusting unit, and one end side in the axial direction is open to the outside.
  • a housing provided with the cylinder portion, a connecting portion connected to the tilt adjusting portion of the hydraulic rotating machine, a cylindrical sleeve portion continuously provided to the connecting portion, and an inner peripheral surface of the cylinder portion And a first outer peripheral portion forming a hydraulic chamber into which hydraulic oil flows, and the cylinder is movable along the axial direction according to the hydraulic pressure of the hydraulic oil flowing into the hydraulic chamber And a movable member that constitutes a drive cylinder that moves the tilt adjusting portion together with the housing, and is accommodated inside the sleeve portion so as to be movable along the axial direction.
  • An oil passage for guiding the hydraulic oil is formed so as to constitute a control valve.
  • a hydraulic rotation device includes the above-described tilt control device, a rotating body including a plurality of cylinders, and a plurality of cylinders, which are respectively housed and reciprocated,
  • the hydraulic rotating machine includes a plurality of pistons that perform suction and discharge, and the tilt adjustment unit that adjusts the reciprocation of the plurality of pistons.
  • FIG. 5 is a hydraulic circuit diagram of a hydraulic rotation device according to a modified embodiment of the present invention. It is sectional drawing of the tilt control apparatus of the hydraulic-pressure rotating apparatus which concerns on the deformation
  • FIG. 1 is a cross-sectional view of a hydraulic rotating device 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the tilt adjustment mechanism 1B of the hydraulic rotating device 1 according to the embodiment of the present invention.
  • FIG. 3 is a hydraulic circuit diagram when the hydraulic rotating device 1 according to one embodiment of the present invention is used as a hydraulic pump.
  • directions of “up”, “down”, “front” and “rear” are shown, and these directions indicate the tilt control device and the hydraulic rotation according to the present embodiment. It is shown for convenience in order to describe the structure of the apparatus, and does not limit the usage mode of the tilt control apparatus and the hydraulic rotation apparatus according to the present invention.
  • the hydraulic rotation device 1 functions as a hydraulic pump that discharges hydraulic oil by being connected to a drive source 100 (FIG. 3) such as an engine.
  • the hydraulic rotating device 1 includes a rotating machine 1A (hydraulic rotating machine) and a tilt control device 1B.
  • Rotating machine 1A functions as a variable displacement radial piston type hydraulic rotating machine.
  • the rotating machine 1A includes a casing 10, a rotating shaft 11, a cylinder block 12 (rotating body), a plurality of pistons 13, a retainer ring 14, an eccentric ring 15 (tilt adjusting unit), and a plurality of shoes 16.
  • a pair of guide rails 17 and a timing plate 18 are provided.
  • the casing 10 functions as a housing that supports each member of the rotating machine 1A.
  • the casing 10 has a cylindrical shape extending in the front-rear direction (direction orthogonal to the paper surface of FIG. 1), and has an internal space in which the rotating shaft 11, the cylinder block 12, the eccentric ring 15, and the like are accommodated.
  • a shaft hole (not shown) that supports the rotating shaft 11 is provided at both ends of the casing 10 in the front-rear direction.
  • the rotating shaft 11 is disposed at a substantially central portion of the casing 10 and extends long in a direction (front-rear direction) orthogonal to the paper surface of FIG.
  • the rotary shaft 11 is rotationally driven by a drive source 100 (FIG. 3).
  • the cylinder block 12 is a ring-shaped unit arranged around the rotating shaft 11.
  • the cylinder block 12 is coupled to the rotating shaft 11 by a spline (not shown). For this reason, the cylinder block 12 rotates integrally with the rotating shaft 11.
  • the plurality of pistons 13 are accommodated in the plurality of cylinders of the cylinder block 12, respectively.
  • the piston 13 reciprocates in the cylinder as the cylinder block 12 rotates, thereby sucking and discharging hydraulic oil.
  • a spherical body (not shown) is provided at the tip of the piston 13.
  • the plurality of shoes 16 are fitted to the spherical body portion of the piston 13 to form a spherical bearing portion.
  • the plurality of shoes 16 are supported by a ring-shaped retainer ring 14.
  • a reference numeral is assigned to each of the plurality of pistons 13 and the plurality of shoes 16.
  • the eccentric ring 15 is a ring member disposed around the retainer ring 14 and formed concentrically with the rotary shaft 11.
  • the inner surface of the eccentric ring 15 is a smooth curved surface on which the shoe 6 slides.
  • the eccentric ring 15 is slidable left and right along a pair of guide rails 17 provided at the upper and lower ends of the casing 10. As a result, the eccentric ring 15 can be arranged eccentrically with respect to the rotating shaft 11.
  • the sliding movement of the eccentric ring 15 is controlled by the tilt control device 1B.
  • the radially outer sliding surface of the shoe 16 has the same curvature shape as the inner surface of the eccentric ring 7.
  • a movable member engaging portion 15S to which the movable member 20 of the tilt control device 1B is connected is formed at the right end portion of the eccentric ring 15.
  • the eccentric ring 15 functions as a tilt adjustment unit that adjusts the amount of reciprocation of the plurality of pistons 13.
  • the timing plate 18 is disposed between the rotary shaft 11 and the cylinder block 12.
  • the timing plate 18 has a ring shape, and has a hydraulic oil discharge path and a suction path formed therein. A hole is formed in the timing plate 18 so that the suction and discharge of the hydraulic oil can be switched with the cylinder block 12, and the hydraulic oil is sucked and discharged as the cylinder block 12 rotates. .
  • a narrow oil passage is provided inside the shoe 6 and communicates with an oil passage that penetrates the inside of the piston 13.
  • the tilt control device 1B (FIGS. 1 and 2) has a function of controlling the tilt of the variable capacity rotating machine 1A.
  • the tilt control device 1 ⁇ / b> B is mechanically directly connected to the eccentric ring 15 via the movable member 20. Then, the tilt control device 1B causes the eccentric ring 15 to be eccentric with respect to the rotating shaft 11 as the movable member 20 expands and contracts (moves in the axial direction) (left-right direction in FIG. 1). As a result, the eccentric ring 15 changes the stroke amount of the piston 13, whereby the pump discharge amount of the rotating machine 1A is controlled. Note that the rotating machine 1A of FIG. 1 is in a zero tilt state (neutral position).
  • the tilt control device 1B includes a housing 1H, a movable member 20, a spool 222, and a first position adjustment mechanism 2 (movement mechanism).
  • the housing 1H functions as a housing that supports each member of the tilt control device 1B.
  • a cylinder portion 1HS is formed in the housing 1H.
  • the cylinder portion 1HS is a cylindrical space portion whose left end side (one end side in the axial direction) is open to the outside.
  • the movable member 20 is accommodated in the cylinder part 1HS.
  • the movable member 20 has a servo mechanism that follows the stroke of the spool 222 described later.
  • the movable member 20 includes a connection portion 21 and a sleeve portion 22.
  • the connection part 21 and the sleeve part 22 are comprised integrally (FIG. 2).
  • the connection part 21 is connected to the eccentric ring 15 (FIG. 1) of the rotating machine 1A.
  • the sleeve portion 22 is a cylindrical member that is connected to the connection portion 21.
  • the sleeve portion 22 includes a first piston portion 22P and outer peripheral portions 20P and 20Q (both are first outer peripheral portions).
  • the first piston portion 22P is a part of the outer peripheral portion of the sleeve portion 22, and has a shape protruding outward in the radial direction from the outer peripheral portion 20P and the outer peripheral portion 20Q.
  • the first piston portion 22P is disposed on the sleeve portion 22 so as to be adjacent to the outer peripheral portion 20P and the outer peripheral portion 20Q between the outer peripheral portion 20P and the outer peripheral portion 20Q in the left-right direction (axial direction). It slides along the left and right direction on the peripheral surface.
  • the outer peripheral portions 20P and 20Q are a part of the outer peripheral portion of the first piston portion 22P, and the first hydraulic chamber 211 and the second hydraulic chamber 212 into which hydraulic oil flows between the inner peripheral surface of the cylinder portion 1HS. Forming.
  • the cross-sectional shapes of the first piston part 22P, the outer peripheral part 20P, and the outer peripheral part 20Q are all circular, and the outer diameter of the first piston part 22P is larger than the outer diameters of the outer peripheral part 20P and the outer peripheral part 20Q.
  • the movable member 20 communicates a later-described supply oil passage 33 with the right oil passage 31 or the left oil passage 32 in accordance with the relative position with respect to the spool 222, and pressurizes the first hydraulic chamber 211 or the second hydraulic chamber 212. It has a function to supply and discharge oil.
  • the movable member 20 is accommodated in the cylinder portion 1HS so as to be movable along the left-right direction (axial direction) according to the hydraulic pressure of the hydraulic oil flowing into the first hydraulic chamber 211 and the second hydraulic chamber 212.
  • the drive cylinder 1G for moving the eccentric ring 15 (FIG. 1) is configured together with the housing 1H.
  • the spool 222 is a shaft-like member that is accommodated in the cylindrical interior 221 of the sleeve portion 22 so as to be movable along the left-right direction. Note that an oil passage extending in the axial direction is formed inside the spool 222 (see the broken line arrow in FIG. 4).
  • the spool 222 includes a second piston portion 222A, an outer peripheral portion 222B, and an outer peripheral portion 222C (both are second outer peripheral portions).
  • the second piston portion 222A is a part of the outer peripheral portion of the spool 222, and has a shape protruding outward in the radial direction from the outer peripheral portion 222B and the outer peripheral portion 222C.
  • the second piston portion 222A is slidable along the left-right direction on the inner peripheral surface of the sleeve portion 22 of the movable member 20, and has a function of sealing a central oil passage 20R described later at a predetermined position in the left-right direction. ing.
  • the outer peripheral portion 222B and the outer peripheral portion 222C are part of the outer peripheral portion of the spool 222, and are disposed adjacent to the second piston portion 222A so as to sandwich the second piston portion 222A in the left-right direction.
  • the outer peripheral portion 222B and the outer peripheral portion 222C are located between the central oil passage 20R and the right side between the inner peripheral surface of the sleeve portion 22 when the second piston portion 222A moves in the left-right direction from the position where the central oil passage 20R is sealed.
  • a communication path that communicates with the oil path 31 or the left oil path 32 is formed.
  • the cross-sectional shapes of the second piston part 222A, the outer peripheral part 222B, and the outer peripheral part 222C are all circular, and the outer diameter of the second piston part 222A is larger than the outer diameters of the outer peripheral part 222B and the outer peripheral part 222C.
  • a third hydraulic chamber 213 (FIG. 2) is formed between the tip end portion of the spool 222 and the left end portion inside the cylinder of the sleeve portion 22.
  • the spool 222 is a three-position spool valve that can switch the connection destination of the first hydraulic source 102 and the second oil tank 28 described later between the right oil passage 31 and the left oil passage 32.
  • the housing 1H and the movable member 20 are provided with a control valve for controlling the inflow of hydraulic oil into the first hydraulic chamber 211 or the second hydraulic chamber 212 by the movement of the spool 222 in the left-right direction.
  • oil passages (20R, 31, 32, 33) for guiding hydraulic oil are formed.
  • the movable member 20 includes a central oil passage 20R (first oil passage), a right oil passage 31 (second oil passage), and a left oil passage 32 (second oil passage). Further, as described above, there are two hydraulic chambers (first hydraulic chamber 211 and second hydraulic chamber 212) formed of a ring-shaped space between the outer peripheral portion of the sleeve portion 22 and the inner peripheral portion of the cylinder portion 1HS. Is formed.
  • the central oil passage 20R is formed in the first piston portion 22P of the sleeve portion 22 along the radial direction.
  • the central oil passage 20R allows the supply oil passage 33 and the cylindrical interior of the sleeve portion 22 to communicate with each other when the movable member 20 is disposed at a predetermined position in the left-right direction in the cylinder portion 1HS.
  • the right oil passage 31 is inclined from the outer peripheral portion 20Q toward the inside of the sleeve portion 22, and communicates the second hydraulic chamber 212 with the cylindrical inside of the sleeve portion 22.
  • the left oil passage 32 is provided to be inclined from the outer peripheral portion 20 ⁇ / b> P toward the inside of the sleeve portion 22, and communicates the first hydraulic chamber 211 and the cylindrical inside of the sleeve portion 22.
  • the right oil passage 31 and the left oil passage 32 are inclined so as to approach the central oil passage 20 ⁇ / b> R as they proceed toward the radially inner side of the sleeve portion 22. For this reason, the communication path formed by the outer peripheral portions 222B and 222C of the spool 222 is set to be short, and the stroke amount of the lateral movement of the spool 222 can be reduced.
  • the housing 1 ⁇ / b> H includes a supply oil passage 33 and a discharge oil passage 34.
  • the supply oil passage 33 is provided so as to communicate with the cylinder portion 1HS, and supplies hydraulic oil to the cylinder portion 1HS.
  • the upstream side of the supply oil passage 33 is connected to the first hydraulic source 102 (FIG. 3).
  • the discharge oil passage 34 has a function of discharging hydraulic oil flowing out from the inside of the sleeve portion 22 and the spool 222 to the second oil tank 28 (FIG. 3).
  • the first position adjustment mechanism 2 is connected to the spool 222 and moves the spool 222 along the left-right direction. Specifically, the first position adjusting mechanism 2 moves the sleeve portion 22 in a state where the second piston portion 222A seals the central oil passage 20R along the left and right directions, thereby supplying the central oil passage from the supply oil passage 33. The hydraulic oil that has flowed into 20R is caused to flow into the second hydraulic chamber 212 or the first hydraulic chamber 211 from the right oil passage 31 or the left oil passage 32 through the communication passage. As a result, the first position adjusting mechanism 2 moves the movable member 20 connected to the eccentric ring 15 (FIG. 1) along the left-right direction.
  • the first position adjustment mechanism 2 includes both rod cylinders 23 (rod cylinders), a spring 24, a zero point adjustment unit 25 (position adjustment unit), and a hydraulic unit 1S (sub-movement mechanism).
  • Both rod cylinders 23 are arranged so as to extend along the axial direction inside the housing 1H.
  • both rod cylinders 23 are arranged on the same axis as the spool 222.
  • the left end portion (one end portion in the axial direction) of both rod cylinders 23 is connected to the spool 222.
  • Both rod cylinders 23 include a third piston portion 23A and outer peripheral portions 23P and 23Q (both are third outer peripheral portions).
  • a fourth hydraulic chamber 231 sub hydraulic chamber
  • a fifth hydraulic chamber 232 sub hydraulic chamber formed of ring-shaped spaces. Is formed.
  • the fourth hydraulic chamber 231 and the fifth hydraulic chamber 232 are partitioned on the left and right by a third piston portion 23 ⁇ / b> A projecting radially from both rod cylinders 23.
  • the third piston portion 23A slides along the left-right direction with respect to the inner wall portion of the housing 1H so that the volumes of the fourth hydraulic chamber 231 and the fifth hydraulic chamber 232 change.
  • Both rod cylinders 23 move to the left and right by the supply and discharge of pressure oil from the sub supply oil passage 35 (FIG. 2) or the sub supply oil passage 36 (FIG. 2) of the hydraulic unit 1S. As a result, both rod cylinders 23 cause the spool 222 to stroke left and right.
  • the spring 24 urges the rod cylinders 23 toward the left (movable member 20 side) with a spring seat 24H provided in the housing 1H as a fulcrum.
  • the urging force of the spring 24 causes the rod cylinders 23 to be in the neutral position (zero tilt position). Retained.
  • the biasing force (elastic force) of the spring 24 is set to be zero.
  • the zero point adjusting portion 25 is disposed so as to be interposed between the right end portion (the other end portion opposite to the one end portion) of both the rod cylinders 23 and the housing 1H.
  • the zero point adjustment unit 25 has a function of adjusting the reference position in the axial direction of both rod cylinders 23 by adjusting the position of the spring seat 24H.
  • the zero point adjusting unit 25 rotates when the eccentric ring 15 (FIG. 1) is arranged at the neutral position.
  • a zero point adjustment function for adjusting the reference position of both rod cylinders 23 to the zero point position is provided so that the discharge capacity of the machine 1A becomes zero.
  • the hydraulic unit 1S moves both rod cylinders 23 and the spool 222 integrally in the left-right direction by flowing hydraulic oil into the fourth hydraulic chamber 231 or the fifth hydraulic chamber 232.
  • the hydraulic unit 1S includes a first hydraulic source 102, a first proportional valve 26, a second proportional valve 27, and a third oil tank 29 (FIG. 3). Further, in the housing 1H and the hydraulic unit 1S, there are a sub supply oil passage 35 (FIGS. 2 and 3), a sub supply oil passage 36 (FIGS. 2 and 3), a first unit oil passage 37, and a second unit oil passage 37. A unit oil passage 38 (see FIG. 3 for both) is formed.
  • the first hydraulic source 102 supplies hydraulic oil to the first hydraulic chamber 211, the second hydraulic chamber 212, and the fourth hydraulic chamber 231 and the fifth hydraulic chamber 232 formed by the rod cylinders 23 formed in the cylinder portion 1HS. To do.
  • the first proportional valve 26 and the second proportional valve 27 switch the supply path and supply amount of the hydraulic oil supplied from the first hydraulic pressure source 102.
  • the first proportional valve 26 and the second proportional valve 27 are electromagnetic valves that can be converted into a secondary pressure by an electrical signal transmitted from a control unit (not shown).
  • the third oil tank 29 collects the hydraulic oil discharged from the fourth hydraulic chamber 231 or the fifth hydraulic chamber 232.
  • the tilt control device 1B functions as a displacement control mechanism (so-called regulator) of the rotating machine 1A (variable displacement radial piston pump). That is, when the tilt control device 1B controls the stroke of the spool 222, the eccentric amount of the eccentric ring 15 connected to the movable member 20 is controlled. As a result, the pump tilt (discharge amount) in the rotating machine 1A can be controlled.
  • the tilt adjustment function of the rotating machine 1A by the tilt control device 1B will be described in detail.
  • 4 and 5 are cross-sectional views showing a state in which the movable member 20 is moved to the left side in the tilt control device 1B of the hydraulic rotating device 1 according to the present embodiment.
  • the movable member 20 and the spool 222 are disposed at the zero tilt position (neutral position).
  • a control unit (not shown) switches the first proportional valve 26 so that the supply oil passage 33, the first unit oil passage 37, and the sub supply oil passage. 36 is communicated, and pressure oil is supplied to the fifth hydraulic chamber 232 side of both rod cylinders 23 (see solid arrows in FIG. 4).
  • the second proportional valve 27 connects the auxiliary supply oil passage 35 and the second unit oil passage 38 to discharge the pressure oil on the fourth hydraulic chamber 231 side of both rod cylinders 23 to the third oil tank 29 ( (See dashed arrow in FIG. 4).
  • both rod cylinders 23 stroke in the left direction.
  • the amount of pressure oil supplied to the fifth hydraulic chamber 232 by the first proportional valve 26 is adjusted, whereby the stroke amount of both rod cylinders 23 is controlled.
  • the relative position between the sleeve portion 22 of the movable member 20 and the spool 222 corresponds to the neutral position, and the port position of the servo valve is the B position in FIG. Accordingly, the pressure oil is not supplied to or discharged from the movable member 20, and the tilt (zero tilt) in the state of FIG. 2 is maintained.
  • the stroke amount of both rod cylinders 23 can be controlled so that the movable member 20 is disposed at an arbitrary position.
  • the stroke amount of the movable member 20 can be controlled via the first proportional valve 26 and the second proportional valve 27 connected to the rod cylinders 23, and the pushing capacity of the rotating machine 1A as a hydraulic pump can be controlled. It is possible to control.
  • FIGS. 6 and 7 are cross-sectional views showing how the movable member 20 is moved to the right side in the tilt control device 1B of the hydraulic rotating device 1 according to the present embodiment.
  • the movable member 20 is moved in the right direction, an operation opposite to the procedure in the left direction is performed.
  • the first proportional valve 26 is controlled by a control unit (not shown) and the auxiliary supply oil passage 36 (FIG. 3) and the second unit oil passage 38 (FIG. 3) communicate with each other
  • the fifth hydraulic chamber 232 is provided. Is discharged to the third oil tank 29.
  • the second proportional valve 27 is controlled, and the auxiliary supply oil passage 35 and the supply oil passage 33 are communicated (FIGS. 2 and 3).
  • the eccentric ring 15 of the rotating machine 1A is moved rightward along the guide rail 17, and the tilt of the pump of the rotating machine 1A is set small. Further, when the moving amount of the eccentric ring 15 is greatly changed in the right direction, the tilt of the rotating machine 1A is changed to the reverse tilt side. As a result, the rotating machine 1A can function as a piston motor. Thus, in this embodiment, both tilt control of the rotating machine 1A becomes possible by the tilt control device 1B. Therefore, the tilt control device 1B can function not only as a tilt control of the hydraulic pump or hydraulic motor but also as a tilt control device of the hydraulic pump motor.
  • the housing 1H and the movable member 20 constitute a drive cylinder that moves the eccentric ring 15 of the rotating machine 1A.
  • the movable member 20 and the spool 222 constitute a control valve (servo valve) that moves the movable member 20.
  • the radial size of the tilt control device 1B can be reduced and tilt control can be performed.
  • the number of parts of the device 1B can be reduced.
  • an oil passage connecting the radially outer side and the inner side of the sleeve portion 22 is formed, so that the first hydraulic chamber 211 and the second hydraulic chamber 212 are moved according to the movement of the spool 222. It becomes possible to let hydraulic oil flow in.
  • the connecting portion 21 and the sleeve portion 22 of the movable member 20 are integrally formed, the movement of the spool 222 can be transmitted to the eccentric ring 15 with higher accuracy.
  • the movable member 20 can smoothly follow the left and right movement of the spool 222.
  • the eccentric ring 15 of the rotating machine 1A is at a predetermined neutral position and on the left side (one axial end side) of the neutral position. Between the first position where the rotating machine 1A functions as a hydraulic pump and the second position which is on the right side (the other end side in the axial direction) from the neutral position and which functions the rotating machine 1A as a hydraulic motor.
  • the movable member 20 is moved leftward (first direction) and rightward (second direction opposite to the first direction) along the left-right direction (axial direction) so that the position can be changed. For this reason, both tilt control and zero tilt control of the rotating machine 1A can be realized with high accuracy.
  • highly accurate zero tilt control can be realized.
  • the tilt control device 1B includes the zero point adjustment unit 25 (position adjustment unit). Therefore, even if there is a deviation in the position control of the movable member 20 due to a manufacturing shape error or the like, the position of the movable member 20 can be adjusted by the zero point adjustment unit 25. For this reason, it can suppress that a shift
  • both rod cylinders 23 A positional shift may occur in the first proportional valve 26, the second proportional valve 27, and the movable member 20.
  • the zero point position that is the reference point of the movable member 20 can be finely adjusted by using the zero point adjustment unit 25 so that it becomes a preset target position. For this reason, the zero point position of the tilt adjustment unit can be adjusted stably. As a result, it is possible to reduce positional deviation due to individual differences between the rotating machine 1A and the tilt control device 1B, and to perform tilt control with high accuracy.
  • the first proportional valve 26 and the second proportional valve 27 switch the supply path and supply amount of hydraulic oil supplied from the first hydraulic source 102.
  • the second proportional valve 27 and the first proportional valve 26 are independently connected to the fourth hydraulic chamber 231 and the fifth hydraulic chamber 232 of both rod cylinders 23, respectively. For this reason, the left and right movements of both rod cylinders 23 are possible. As a result, the rotating machine 1A can be used for both tilting of the hydraulic pump or the hydraulic motor.
  • the hydraulic unit 1S can move the movable member 20 connected to the eccentric ring 15 by moving the spool 222 and the rod cylinders 23 integrally.
  • the tilt of the rotating machine 1A can be accurately controlled by the axial movement of the shaft-like members arranged on the same axis.
  • FIG. 8 is a hydraulic circuit diagram of a hydraulic rotation device according to a modified embodiment of the present invention, and the tilt control of the rotating machine 1A is performed by the tilt control device 1C instead of the tilt control device 1B of the above embodiment. Is done.
  • a second hydraulic pressure source 103 is arranged separately from the first hydraulic pressure source 102 that supplies pressure oil to the cylinder portion 1HS (FIG. 2).
  • the second hydraulic source 103 is a lower pressure hydraulic source than the first hydraulic source 102.
  • the second hydraulic source 103 supplies pressure oil to the fourth hydraulic chamber 231 or the fifth hydraulic chamber 232 of both rod cylinders 23 via the first proportional valve 26 or the second proportional valve 27. Supply.
  • low-pressure specification equipment can be used, and the tilt control device 1C can be reduced in size and cost.
  • the tilt control devices 1B and 1C and the hydraulic rotating device 1 including the tilt control devices 1B and 1C according to the embodiments of the present invention have been described above. According to the hydraulic rotating device 1 described above, it is possible to accurately transmit the movement of the spool 222 of the tilt control devices 1B and 1C to the movable member 20 and to realize highly accurate tilt control of the rotating machine 1A. Become.
  • the present invention is not limited to these forms. As the tilt control device and the hydraulic rotation device according to the present invention, the following modified embodiments are further possible.
  • FIG. 9 is a cross-sectional view of a tilt control device 1D (tilt control device) of a hydraulic rotating device according to a modified embodiment of the present invention.
  • the tilt control device 1D instead of the first position adjustment mechanism 2 of the tilt control device 1B according to the previous embodiment, the tilt control device 1D includes a second position adjustment mechanism 6 (movement mechanism).
  • the second position adjusting mechanism 6 is connected to the spool 222 and causes the hydraulic oil to flow into the first hydraulic chamber 211 or the second hydraulic chamber 212 by moving the spool 222 along the left-right direction (axial direction). As a result, the second position adjusting mechanism 6 moves the movable member 20 connected to the eccentric ring 15 along the axial direction.
  • the second position adjusting mechanism 6 includes an electric motor 60 and a ball screw 61.
  • the ball screw 61 is disposed so as to extend in the left-right direction, and the left end portion thereof is connected to the spool 222.
  • the ball screw 61 includes a screw shaft that is rotated around an axis extending in the left-right direction. Further, the electric motor 60 rotates the screw shaft of the ball screw 61 around the axis, thereby moving the screw shaft and the spool 222 integrally along the left-right direction.
  • the rotational force of the electric motor 60 is converted into a propulsive force through the ball screw 61, and the spool 222 mechanically directly connected to the ball screw 61 is provided. It can be moved in the left-right direction.
  • the movable member 20 moves following the spool 222, and the tilt of the rotating machine 1A (FIG. 1) can be controlled.
  • the tilt of the rotating machine 1A can be controlled with high accuracy by the axial movement of the shaft-like members arranged on the same axis.
  • the second position adjustment mechanism 6 does not include a proportional valve as compared to the previous embodiment.
  • the stroke control of the movable member 20 is all controlled by the position control of the electric motor. For this reason, it becomes possible to perform the stroke control of the movable member 20 and the tilt control of the rotating machine 1A with high accuracy without providing the zero adjustment function.
  • the rotating machine 1A of the hydraulic rotating device 1 has been described as being a radial piston type hydraulic rotating machine, but the present invention is not limited to this.
  • the tilt switching device according to the present invention can be applied not only to a radial type pump but also to a radial type motor. Further, by using the stroke of the movable member 20, a known axial type pump and motor tilt switching can be used. It can also be applied to control.
  • connection part 21 demonstrated in the aspect which consists of a cylindrical part with which the front-end
  • the connection portion 21 may be formed of another shape that can move the eccentric ring 15 (tilt adjustment portion) of the rotating machine 1A.

Abstract

Provided are a tilt control device that precisely transmits the movement of a spool of a control valve to a driving cylinder and achieves highly precise tilt control and a hydraulic rotation device including same. A tilt control device 1B controls the tilt of a variable displacement type rotation machine. The tilt control device 1B is provided with a housing 1H, a movable member 20, a spool 222, and a first position adjusting mechanism 2. The movable member 20 is connected to the eccentric ring of the rotation machine and allowed to move in the axial direction. The movable member 20 is provided with a connection part 21 and a tubular sleeve part 22. The spool 222 moves in the tubular inside of the sleeve part 22 in the axial direction. The first position adjusting mechanism 2 moves the spool 222 in the axial direction. The movable member 20 and the housing 1H form a driving cylinder that moves the eccentric ring, and the movable member 20 and the spool 222 form a control valve.

Description

傾転制御装置、およびこれを備えた液圧回転装置Tilt control device and hydraulic rotation device provided with the same
 本発明は、傾転制御装置、およびこれを備えた液圧回転装置に関する。 The present invention relates to a tilt control device and a hydraulic rotation device including the tilt control device.
 従来、油圧ポンプまたは油圧モーターとして利用可能な、可変容量型の液圧回転機が知られている。このような液圧回転機は、ハウジングと、回転軸と、シリンダブロックと、複数のピストンと、を備える。回転軸は、ハウジングに回転可能に軸支されている。シリンダブロックは、回転軸の周方向に沿って形成された複数のシリンダを含み、回転軸とともに回転する。ピストンは、シリンダブロックの複数のシリンダにそれぞれ収容され、シリンダブロックの回転に伴って往復運動する。 Conventionally, variable displacement hydraulic rotating machines that can be used as hydraulic pumps or hydraulic motors are known. Such a hydraulic rotating machine includes a housing, a rotating shaft, a cylinder block, and a plurality of pistons. The rotating shaft is rotatably supported by the housing. The cylinder block includes a plurality of cylinders formed along the circumferential direction of the rotation shaft, and rotates together with the rotation shaft. The pistons are respectively accommodated in a plurality of cylinders of the cylinder block and reciprocate as the cylinder block rotates.
 液圧回転機が油圧ポンプとして使用される場合には、所定の駆動部の出力によって回転軸が回転されることによって、シリンダブロックが回転軸とともに回転し、各ピストンが往復運動する。このとき、作動油が所定の低圧ポートからシリンダブロックのシリンダ内に流入し、ピストンによって加圧されて所定の高圧ポートから吐出される。 When the hydraulic rotating machine is used as a hydraulic pump, the rotating shaft is rotated by the output of a predetermined driving unit, so that the cylinder block rotates together with the rotating shaft, and each piston reciprocates. At this time, the hydraulic oil flows into the cylinder of the cylinder block from the predetermined low pressure port, is pressurized by the piston, and is discharged from the predetermined high pressure port.
 一方、液圧回転機が油圧モーターとして使用される場合には、高圧の作動油が高圧ポートからシリンダブロックのシリンダ内に流入されることによって、流入した作動油がピストンに作用する。ピストンの往復運動がシリンダブロックとともに回転軸を回転させた後、作動油は低圧ポートから排出される。 On the other hand, when the hydraulic rotating machine is used as a hydraulic motor, the high-pressure hydraulic oil flows into the cylinder of the cylinder block from the high-pressure port, so that the hydraulic fluid that has flowed in acts on the piston. After the reciprocating motion of the piston rotates the rotating shaft together with the cylinder block, the hydraulic oil is discharged from the low pressure port.
 特許文献1、2および3には、サーボシリンダの軸方向運動に応じて油圧ポンプの押出し容量が変化される技術が開示されている。特許文献1では、比例弁の二次圧に応じてサーボ弁のスプールがストロークされると、ばねを介してサーボ弁のスリーブに接続されたサーボシリンダが軸方向に移動する。また、特許文献2では、シリンダブロックとして機能する偏芯リングに対して、サーボシリンダおよびサーボ弁と、偏芯リングの位置を規制するレギュレータとが、異なる位置に配置されている。更に、特許文献3では、比例弁の二次圧によってサーボ弁のスプールがストロークされると、サーボ弁のスリーブに接続されたサーボピストンが軸方向に移動する。サーボピストンの移動はリンク機構を介して油圧ポンプの斜板を揺動する。 Patent Documents 1, 2, and 3 disclose techniques in which the extrusion capacity of a hydraulic pump is changed according to the axial movement of a servo cylinder. In Patent Document 1, when the servo valve spool is stroked according to the secondary pressure of the proportional valve, the servo cylinder connected to the sleeve of the servo valve via the spring moves in the axial direction. Moreover, in patent document 2, with respect to the eccentric ring that functions as a cylinder block, a servo cylinder and a servo valve and a regulator that regulates the position of the eccentric ring are arranged at different positions. Further, in Patent Document 3, when the spool of the servo valve is stroked by the secondary pressure of the proportional valve, the servo piston connected to the servo valve sleeve moves in the axial direction. The movement of the servo piston swings the swash plate of the hydraulic pump via the link mechanism.
特開平8-49264号公報JP-A-8-49264 特開2004-68796号公報Japanese Patent Laid-Open No. 2004-68796 特許第4033849号明細書Japanese Patent No. 4033849
 特許文献1および2に記載された油圧ポンプでは、サーボ弁とサーボシリンダとの間にばねが配置されている。このため、油圧によるサーボ弁のストロークとばねの付勢力とのバランスによってサーボシリンダの移動量が決定される。この結果、サーボピストンのストローク制御の精度が低下するという問題があった。また、特許文献3に記載された油圧ポンプでは、サーボ弁とサーボピストンとの間にリンク機構が配置されている。このため、リンク機構によって、油圧ポンプの構造が複雑化するとともにサーボピストンのストローク制御が安定しにくいという問題があった。 In the hydraulic pumps described in Patent Documents 1 and 2, a spring is disposed between the servo valve and the servo cylinder. For this reason, the amount of movement of the servo cylinder is determined by the balance between the servo valve stroke and the urging force of the spring. As a result, there is a problem that the accuracy of the stroke control of the servo piston is lowered. In the hydraulic pump described in Patent Document 3, a link mechanism is disposed between the servo valve and the servo piston. For this reason, the structure of the hydraulic pump is complicated by the link mechanism, and the stroke control of the servo piston is difficult to stabilize.
 本発明の目的は、制御弁のスプールの移動を駆動シリンダに精度良く伝達し、高精度な傾転制御を実現することが可能な傾転制御装置、およびこれを備えた液圧回転装置を提供することにある。 An object of the present invention is to provide a tilt control device capable of accurately transmitting the movement of the spool of the control valve to the drive cylinder and realizing highly accurate tilt control, and a hydraulic rotation device including the tilt control device. There is to do.
 本発明の一の局面に係る傾転制御装置は、傾転調整部を含む可変容量型の液圧回転機の傾転を制御する傾転制御装置であって、軸方向の一端側が外部に開放されたシリンダ部を備えるハウジングと、前記液圧回転機の前記傾転調整部に接続される接続部と、前記接続部に連設された筒状のスリーブ部と、前記シリンダ部の内周面との間で作動油が流入する油圧室を形成する第1外周部と、を備え、前記油圧室に流入する前記作動油の油圧に応じて前記軸方向に沿って移動可能なように前記シリンダ部に収容されることにより、前記傾転調整部を移動させる駆動シリンダを前記ハウジングとともに構成する可動部材と、前記軸方向に沿って移動可能なように前記スリーブ部の筒状内部に収容されたスプールと、前記スプールを前記軸方向に沿って移動させる移動機構と、を有し、前記ハウジングおよび前記可動部材には、前記スプールの前記軸方向の移動によって、前記可動部材および前記スプールが前記油圧室への前記作動油の流入を制御する制御弁を構成するように、前記作動油を導く油路が形成されている。 A tilt control device according to one aspect of the present invention is a tilt control device that controls the tilt of a variable displacement hydraulic rotating machine including a tilt adjusting unit, and one end side in the axial direction is open to the outside. A housing provided with the cylinder portion, a connecting portion connected to the tilt adjusting portion of the hydraulic rotating machine, a cylindrical sleeve portion continuously provided to the connecting portion, and an inner peripheral surface of the cylinder portion And a first outer peripheral portion forming a hydraulic chamber into which hydraulic oil flows, and the cylinder is movable along the axial direction according to the hydraulic pressure of the hydraulic oil flowing into the hydraulic chamber And a movable member that constitutes a drive cylinder that moves the tilt adjusting portion together with the housing, and is accommodated inside the sleeve portion so as to be movable along the axial direction. A spool and the spool along the axial direction. And the movable member and the spool control the inflow of the hydraulic oil into the hydraulic chamber by the movement of the spool in the axial direction. An oil passage for guiding the hydraulic oil is formed so as to constitute a control valve.
 本発明の他の局面に係る液圧回転装置は、上記に記載の傾転制御装置と、複数のシリンダを備えた回転体と、前記複数のシリンダにそれぞれ収容され、往復移動され、作動油の吸入および吐出を行う複数のピストンと、前記複数のピストンの往復移動量を調整する前記傾転調整部と、を備えた前記液圧回転機と、を有する。 A hydraulic rotation device according to another aspect of the present invention includes the above-described tilt control device, a rotating body including a plurality of cylinders, and a plurality of cylinders, which are respectively housed and reciprocated, The hydraulic rotating machine includes a plurality of pistons that perform suction and discharge, and the tilt adjustment unit that adjusts the reciprocation of the plurality of pistons.
本発明の一実施形態に係る液圧回転装置の断面図である。It is sectional drawing of the hydraulic-pressure rotating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液圧回転装置の傾転制御装置の断面図である。It is sectional drawing of the tilt control apparatus of the hydraulic rotation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液圧回転装置が油圧ポンプとして使用される場合の油圧回路図である。It is a hydraulic circuit diagram in case the hydraulic rotation apparatus which concerns on one Embodiment of this invention is used as a hydraulic pump. 本発明の一実施形態に係る液圧回転装置の傾転制御装置において、可動部材が移動される様子を示す断面図である。It is sectional drawing which shows a mode that a movable member is moved in the tilt control apparatus of the hydraulic-pressure rotating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液圧回転装置の傾転制御装置において、可動部材が移動される様子を示す断面図である。It is sectional drawing which shows a mode that a movable member is moved in the tilt control apparatus of the hydraulic-pressure rotating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液圧回転装置の傾転制御装置において、可動部材が移動される様子を示す断面図である。It is sectional drawing which shows a mode that a movable member is moved in the tilt control apparatus of the hydraulic-pressure rotating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る液圧回転装置の傾転制御装置において、可動部材が移動される様子を示す断面図である。It is sectional drawing which shows a mode that a movable member is moved in the tilt control apparatus of the hydraulic-pressure rotating apparatus which concerns on one Embodiment of this invention. 本発明の変形実施形態に係る液圧回転装置の油圧回路図である。FIG. 5 is a hydraulic circuit diagram of a hydraulic rotation device according to a modified embodiment of the present invention. 本発明の変形実施形態に係る液圧回転装置の傾転制御装置の断面図である。It is sectional drawing of the tilt control apparatus of the hydraulic-pressure rotating apparatus which concerns on the deformation | transformation embodiment of this invention.
 以下、図面を参照しつつ、本発明の各実施形態について説明する。図1は、本発明の一実施形態に係る液圧回転装置1の断面図である。図2は、本発明の一実施形態に係る液圧回転装置1の傾転調整機構1Bの断面図である。図3は、本発明の一実施形態に係る液圧回転装置1が油圧ポンプとして使用される場合の油圧回路図である。なお、以後、各図には、「上」、「下」、「前」および「後」の方向が示されているが、当該方向は、本実施形態に係る傾転制御装置および液圧回転装置の構造を説明するために便宜上示すものであり、本発明に係る傾転制御装置および液圧回転装置の使用態様などを限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a hydraulic rotating device 1 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the tilt adjustment mechanism 1B of the hydraulic rotating device 1 according to the embodiment of the present invention. FIG. 3 is a hydraulic circuit diagram when the hydraulic rotating device 1 according to one embodiment of the present invention is used as a hydraulic pump. In the following, in each figure, directions of “up”, “down”, “front” and “rear” are shown, and these directions indicate the tilt control device and the hydraulic rotation according to the present embodiment. It is shown for convenience in order to describe the structure of the apparatus, and does not limit the usage mode of the tilt control apparatus and the hydraulic rotation apparatus according to the present invention.
 本実施形態に係る液圧回転装置1は、エンジンなどの駆動源100(図3)に接続されることで、作動油を吐出する油圧ポンプとして機能する。液圧回転装置1は、回転機1A(液圧回転機)と、傾転制御装置1Bと、を備える。 The hydraulic rotation device 1 according to the present embodiment functions as a hydraulic pump that discharges hydraulic oil by being connected to a drive source 100 (FIG. 3) such as an engine. The hydraulic rotating device 1 includes a rotating machine 1A (hydraulic rotating machine) and a tilt control device 1B.
 回転機1Aは、可変容量式のラジアルピストン型液圧回転機として機能する。回転機1Aは、ケーシング10と、回転軸11と、シリンダブロック12(回転体)と、複数のピストン13と、リテーナリング14と、偏心リング15(傾転調整部)と、複数のシュー16と、一対のガイドレール17と、タイミングプレート18と、を備える。 Rotating machine 1A functions as a variable displacement radial piston type hydraulic rotating machine. The rotating machine 1A includes a casing 10, a rotating shaft 11, a cylinder block 12 (rotating body), a plurality of pistons 13, a retainer ring 14, an eccentric ring 15 (tilt adjusting unit), and a plurality of shoes 16. A pair of guide rails 17 and a timing plate 18 are provided.
 ケーシング10は、回転機1Aの各部材を支持する筐体として機能する。ケーシング10は、前後方向(図1の紙面と直交する方向)に延びる筒形状を備え、回転軸11、シリンダブロック12、偏心リング15等が収容される内部空間を有している。なお、ケーシング10の前後方向の両端部には、回転軸11を支持する不図示の軸穴が設けられている。 The casing 10 functions as a housing that supports each member of the rotating machine 1A. The casing 10 has a cylindrical shape extending in the front-rear direction (direction orthogonal to the paper surface of FIG. 1), and has an internal space in which the rotating shaft 11, the cylinder block 12, the eccentric ring 15, and the like are accommodated. A shaft hole (not shown) that supports the rotating shaft 11 is provided at both ends of the casing 10 in the front-rear direction.
 回転軸11は、ケーシング10の略中央部に配置されており、図1の紙面と直交する方向(前後方向)に長く延びている。回転軸11は、駆動源100(図3)によって回転駆動される。 The rotating shaft 11 is disposed at a substantially central portion of the casing 10 and extends long in a direction (front-rear direction) orthogonal to the paper surface of FIG. The rotary shaft 11 is rotationally driven by a drive source 100 (FIG. 3).
 シリンダブロック12は、回転軸11の周囲に配置されたリング状のユニットである。シリンダブロック12は、不図示のスプラインにより回転軸11に結合されている。このため、シリンダブロック12は回転軸11と一体的に回転する。シリンダブロック12の内部には、回転軸11を中心に放射線状に配置された複数の筒状のシリンダが備えられている。 The cylinder block 12 is a ring-shaped unit arranged around the rotating shaft 11. The cylinder block 12 is coupled to the rotating shaft 11 by a spline (not shown). For this reason, the cylinder block 12 rotates integrally with the rotating shaft 11. Inside the cylinder block 12, there are provided a plurality of cylindrical cylinders arranged radially around the rotation shaft 11.
 複数のピストン13は、シリンダブロック12の複数のシリンダにそれぞれ収容されている。ピストン13は、シリンダブロック12の回転に伴ってシリンダ内を往復運動することで、作動油の吸入および吐出を行う。ピストン13の先端部には、不図示の球体部が備えられている。複数のシュー16は、当該ピストン13の球体部に嵌合され、球面軸受部を形成している。また、複数のシュー16は、リング状のリテーナリング14によって支持されている。なお、図1では、複数のピストン13および複数のシュー16のうちのそれぞれ一つずつに符号を付している。 The plurality of pistons 13 are accommodated in the plurality of cylinders of the cylinder block 12, respectively. The piston 13 reciprocates in the cylinder as the cylinder block 12 rotates, thereby sucking and discharging hydraulic oil. A spherical body (not shown) is provided at the tip of the piston 13. The plurality of shoes 16 are fitted to the spherical body portion of the piston 13 to form a spherical bearing portion. The plurality of shoes 16 are supported by a ring-shaped retainer ring 14. In FIG. 1, a reference numeral is assigned to each of the plurality of pistons 13 and the plurality of shoes 16.
 偏心リング15は、リテーナリング14の周囲に配置され、回転軸11と同心状に形成されたリング部材である。偏心リング15の内側面は、シュー6が摺動する滑らかな曲面からなる。偏心リング15は、ケーシング10の上下端部に設けられた一対のガイドレール17に沿って左右にスライド移動可能とされている。この結果、偏心リング15は、回転軸11に対して偏心配置が可能とされる。偏心リング15のスライド移動は、傾転制御装置1Bによって制御される。なお、前述のシュー16の径方向外側の摺動面は、偏心リング7の内側面と同じ曲率形状を有する。また、偏心リング15の右端部には、傾転制御装置1Bの可動部材20が接続される可動部材係合部15Sが形成されている。偏心リング15は、本発明において、複数のピストン13の往復移動量を調整する傾転調整部として機能する。 The eccentric ring 15 is a ring member disposed around the retainer ring 14 and formed concentrically with the rotary shaft 11. The inner surface of the eccentric ring 15 is a smooth curved surface on which the shoe 6 slides. The eccentric ring 15 is slidable left and right along a pair of guide rails 17 provided at the upper and lower ends of the casing 10. As a result, the eccentric ring 15 can be arranged eccentrically with respect to the rotating shaft 11. The sliding movement of the eccentric ring 15 is controlled by the tilt control device 1B. Note that the radially outer sliding surface of the shoe 16 has the same curvature shape as the inner surface of the eccentric ring 7. Further, a movable member engaging portion 15S to which the movable member 20 of the tilt control device 1B is connected is formed at the right end portion of the eccentric ring 15. In the present invention, the eccentric ring 15 functions as a tilt adjustment unit that adjusts the amount of reciprocation of the plurality of pistons 13.
 また、タイミングプレート18は、回転軸11とシリンダブロック12との間に配置されている。タイミングプレート18は、リング形状からなり、内部に作動油の吐出路および吸入路が形成されている。タイミングプレート18には、シリンダブロック12との間で、作動油の吸入、吐出を切り替えられるように穴が開けられており、シリンダブロック12の回転に伴って、作動油の吸入、吐出が行われる。 The timing plate 18 is disposed between the rotary shaft 11 and the cylinder block 12. The timing plate 18 has a ring shape, and has a hydraulic oil discharge path and a suction path formed therein. A hole is formed in the timing plate 18 so that the suction and discharge of the hydraulic oil can be switched with the cylinder block 12, and the hydraulic oil is sucked and discharged as the cylinder block 12 rotates. .
 また、シュー6の内部には細い油路が設けられており、ピストン13の内部を貫通する油路と連通している。この結果、シリンダブロック12のシリンダ内の作動油の一部が、ピストン1とシュー16との球面ジョイント部、およびシュー16と偏心リング15との摺動面に供給され、各摺動部を潤滑する。 Further, a narrow oil passage is provided inside the shoe 6 and communicates with an oil passage that penetrates the inside of the piston 13. As a result, a part of the hydraulic oil in the cylinder of the cylinder block 12 is supplied to the spherical joint portion between the piston 1 and the shoe 16 and the sliding surface between the shoe 16 and the eccentric ring 15 to lubricate each sliding portion. To do.
 駆動源100によって回転軸11が回転されると、シリンダブロック12、ピストン13、リテーナリング14およびシュー16が回転軸11と一体的に回転する。この際、シリンダブロック12からピストン13に伝達された回転軸11の中心軸回りの回転力は、シュー16に伝達される。偏心リング15の内側面に沿ってシュー16が摺動回転することで、ピストン13がシリンダ内で往復運動(伸縮)する。そして、ピストン13が径方向に沿って変位することで、タイミングプレート10を介して所定のタイミングで油の吸入、吐出が行われ、回転機1Aの回転エネルギが油圧エネルギに変換される。なお、作動油の吸排を行うために、回転機1Aには第1油タンク101(図3)が接続されている。 When the rotating shaft 11 is rotated by the drive source 100, the cylinder block 12, the piston 13, the retainer ring 14, and the shoe 16 rotate integrally with the rotating shaft 11. At this time, the rotational force around the central axis of the rotary shaft 11 transmitted from the cylinder block 12 to the piston 13 is transmitted to the shoe 16. As the shoe 16 slides and rotates along the inner surface of the eccentric ring 15, the piston 13 reciprocates (extends and contracts) within the cylinder. Then, when the piston 13 is displaced along the radial direction, oil is sucked and discharged through the timing plate 10 at a predetermined timing, and the rotational energy of the rotating machine 1A is converted into hydraulic energy. Note that a first oil tank 101 (FIG. 3) is connected to the rotating machine 1A in order to suck and discharge the hydraulic oil.
 傾転制御装置1B(図1、図2)は、可変容量型の回転機1Aの傾転を制御する機能を備えている。傾転制御装置1Bは、可動部材20を介して偏心リング15と機械的に直結されている。そして、傾転制御装置1Bは、可動部材20の伸縮(軸方向移動)に伴って、偏心リング15を回転軸11に対して偏心させる(図1の左右方向)。この結果、偏心リング15がピストン13のストローク量を変化させることで、回転機1Aのポンプ吐出量の制御が行われる。なお、図1の回転機1Aは、ゼロ傾転状態(中立位置)とされている。 The tilt control device 1B (FIGS. 1 and 2) has a function of controlling the tilt of the variable capacity rotating machine 1A. The tilt control device 1 </ b> B is mechanically directly connected to the eccentric ring 15 via the movable member 20. Then, the tilt control device 1B causes the eccentric ring 15 to be eccentric with respect to the rotating shaft 11 as the movable member 20 expands and contracts (moves in the axial direction) (left-right direction in FIG. 1). As a result, the eccentric ring 15 changes the stroke amount of the piston 13, whereby the pump discharge amount of the rotating machine 1A is controlled. Note that the rotating machine 1A of FIG. 1 is in a zero tilt state (neutral position).
 図2を参照して、傾転制御装置1Bは、ハウジング1Hと、可動部材20と、スプール222と、第1位置調整機構2(移動機構)と、を備える。ハウジング1Hは、傾転制御装置1Bの各部材を支持する筐体として機能する。ハウジング1Hには、シリンダ部1HSが形成されている。シリンダ部1HSは、左端側(軸方向の一端側)が外部に開放された円筒状の空間部である。シリンダ部1HSの内部に、可動部材20が収容される。 2, the tilt control device 1B includes a housing 1H, a movable member 20, a spool 222, and a first position adjustment mechanism 2 (movement mechanism). The housing 1H functions as a housing that supports each member of the tilt control device 1B. A cylinder portion 1HS is formed in the housing 1H. The cylinder portion 1HS is a cylindrical space portion whose left end side (one end side in the axial direction) is open to the outside. The movable member 20 is accommodated in the cylinder part 1HS.
 可動部材20は、後記のスプール222のストロークに追従するサーボ機構を有している。可動部材20は、接続部21と、スリーブ部22と、を備える。本実施形態では、接続部21とスリーブ部22とは一体的に構成されている(図2)。接続部21は、回転機1Aの偏心リング15(図1)に接続されている。スリーブ部22は、接続部21に連設された筒状の部材である。スリーブ部22は、第1ピストン部22Pと、外周部20P、20Q(いずれも第1外周部)と、を備える。第1ピストン部22Pは、スリーブ部22の外周部の一部であって、外周部20Pおよび外周部20Qよりも径方向外側に突出した形状を備えている。第1ピストン部22Pは、左右方向(軸方向)において外周部20Pと外周部20Qとの間で、外周部20Pおよび外周部20Qに隣接するようにスリーブ部22に配置され、シリンダ部1HSの内周面に左右方向に沿って摺動する。外周部20P、20Qは、第1ピストン部22Pの外周部の一部であって、シリンダ部1HSの内周面との間に作動油が流入する第1油圧室211、第2油圧室212を形成している。なお、第1ピストン部22P、外周部20Pおよび外周部20Qの断面形状はいずれも円形であり、第1ピストン部22Pの外径は、外周部20Pおよび外周部20Qの外径よりも大きい。 The movable member 20 has a servo mechanism that follows the stroke of the spool 222 described later. The movable member 20 includes a connection portion 21 and a sleeve portion 22. In this embodiment, the connection part 21 and the sleeve part 22 are comprised integrally (FIG. 2). The connection part 21 is connected to the eccentric ring 15 (FIG. 1) of the rotating machine 1A. The sleeve portion 22 is a cylindrical member that is connected to the connection portion 21. The sleeve portion 22 includes a first piston portion 22P and outer peripheral portions 20P and 20Q (both are first outer peripheral portions). The first piston portion 22P is a part of the outer peripheral portion of the sleeve portion 22, and has a shape protruding outward in the radial direction from the outer peripheral portion 20P and the outer peripheral portion 20Q. The first piston portion 22P is disposed on the sleeve portion 22 so as to be adjacent to the outer peripheral portion 20P and the outer peripheral portion 20Q between the outer peripheral portion 20P and the outer peripheral portion 20Q in the left-right direction (axial direction). It slides along the left and right direction on the peripheral surface. The outer peripheral portions 20P and 20Q are a part of the outer peripheral portion of the first piston portion 22P, and the first hydraulic chamber 211 and the second hydraulic chamber 212 into which hydraulic oil flows between the inner peripheral surface of the cylinder portion 1HS. Forming. The cross-sectional shapes of the first piston part 22P, the outer peripheral part 20P, and the outer peripheral part 20Q are all circular, and the outer diameter of the first piston part 22P is larger than the outer diameters of the outer peripheral part 20P and the outer peripheral part 20Q.
 可動部材20は、スプール222との相対位置に応じて、後記の供給用油路33と右側油路31または左側油路32とを連通し、第1油圧室211または第2油圧室212に圧油の給排を行う機能を備えている。換言すれば、可動部材20は、第1油圧室211、第2油圧室212に流入する作動油の油圧に応じて左右方向(軸方向)に沿って移動可能なようにシリンダ部1HSに収容されることにより、偏心リング15(図1)を移動させる駆動シリンダ1Gをハウジング1Hとともに構成している。 The movable member 20 communicates a later-described supply oil passage 33 with the right oil passage 31 or the left oil passage 32 in accordance with the relative position with respect to the spool 222, and pressurizes the first hydraulic chamber 211 or the second hydraulic chamber 212. It has a function to supply and discharge oil. In other words, the movable member 20 is accommodated in the cylinder portion 1HS so as to be movable along the left-right direction (axial direction) according to the hydraulic pressure of the hydraulic oil flowing into the first hydraulic chamber 211 and the second hydraulic chamber 212. Thus, the drive cylinder 1G for moving the eccentric ring 15 (FIG. 1) is configured together with the housing 1H.
 スプール222は、左右方向に沿って移動可能なようにスリーブ部22の筒状内部221に収容されている軸状部材である。なお、スプール222の内部には軸方向に延びる油路が形成されている(図4の破線矢印参照)。スプール222は、第2ピストン部222Aと、外周部222B、外周部222C(いずれも第2外周部)とを備える。第2ピストン部222Aは、スプール222の外周部の一部であって、外周部222Bおよび外周部222Cよりも径方向外側に突出した形状を備えている。第2ピストン部222Aは、可動部材20のスリーブ部22の内周面に左右方向に沿って摺動可能とされ、左右方向の所定の位置において後記の中央油路20Rを封止する機能を備えている。外周部222Bおよび外周部222Cは、スプール222の外周部の一部であって、左右方向において第2ピストン部222Aを挟むように第2ピストン部222Aに隣接して配置されている。外周部222Bおよび外周部222Cは、第2ピストン部222Aが中央油路20Rを封止する位置から左右方向に移動した場合に、スリーブ部22の内周面との間で中央油路20Rと右側油路31または左側油路32とを連通させる連通路を形成する。なお、第2ピストン部222A、外周部222Bおよび外周部222Cの断面形状はいずれも円形であり、第2ピストン部222Aの外径は、外周部222Bおよび外周部222Cの外径よりも大きい。 The spool 222 is a shaft-like member that is accommodated in the cylindrical interior 221 of the sleeve portion 22 so as to be movable along the left-right direction. Note that an oil passage extending in the axial direction is formed inside the spool 222 (see the broken line arrow in FIG. 4). The spool 222 includes a second piston portion 222A, an outer peripheral portion 222B, and an outer peripheral portion 222C (both are second outer peripheral portions). The second piston portion 222A is a part of the outer peripheral portion of the spool 222, and has a shape protruding outward in the radial direction from the outer peripheral portion 222B and the outer peripheral portion 222C. The second piston portion 222A is slidable along the left-right direction on the inner peripheral surface of the sleeve portion 22 of the movable member 20, and has a function of sealing a central oil passage 20R described later at a predetermined position in the left-right direction. ing. The outer peripheral portion 222B and the outer peripheral portion 222C are part of the outer peripheral portion of the spool 222, and are disposed adjacent to the second piston portion 222A so as to sandwich the second piston portion 222A in the left-right direction. The outer peripheral portion 222B and the outer peripheral portion 222C are located between the central oil passage 20R and the right side between the inner peripheral surface of the sleeve portion 22 when the second piston portion 222A moves in the left-right direction from the position where the central oil passage 20R is sealed. A communication path that communicates with the oil path 31 or the left oil path 32 is formed. The cross-sectional shapes of the second piston part 222A, the outer peripheral part 222B, and the outer peripheral part 222C are all circular, and the outer diameter of the second piston part 222A is larger than the outer diameters of the outer peripheral part 222B and the outer peripheral part 222C.
 また、スプール222の先端部とスリーブ部22の円筒内部の左端部との間には、第3油圧室213(図2)が形成されている。更に、スプール222は、後記の第1油圧源102および第2油タンク28の接続先を、右側油路31と左側油路32との間で切り替えることができる3ポジションスプール弁である。 Further, a third hydraulic chamber 213 (FIG. 2) is formed between the tip end portion of the spool 222 and the left end portion inside the cylinder of the sleeve portion 22. Further, the spool 222 is a three-position spool valve that can switch the connection destination of the first hydraulic source 102 and the second oil tank 28 described later between the right oil passage 31 and the left oil passage 32.
 また、ハウジング1Hおよび可動部材20には、スプール222の左右方向の移動によって、可動部材20およびスプール222が第1油圧室211または第2油圧室212への作動油の流入を制御する制御弁を構成するように、作動油を導く油路(20R、31、32、33)が形成されている。 The housing 1H and the movable member 20 are provided with a control valve for controlling the inflow of hydraulic oil into the first hydraulic chamber 211 or the second hydraulic chamber 212 by the movement of the spool 222 in the left-right direction. As configured, oil passages (20R, 31, 32, 33) for guiding hydraulic oil are formed.
 可動部材20は、中央油路20R(第1油路)と、右側油路31(第2油路)と、左側油路32(第2油路)と、を備える。更に、前述のように、スリーブ部22の外周部とシリンダ部1HSの内周部との間には、リング状の空間からなる2つの油圧室(第1油圧室211、第2油圧室212)が形成されている。中央油路20Rは、スリーブ部22の第1ピストン部22Pに径方向に沿って形成されている。中央油路20Rは、可動部材20がシリンダ部1HSにおいて左右方向の所定の位置に配置された場合に、供給用油路33とスリーブ部22の筒状内部とを連通させる。 The movable member 20 includes a central oil passage 20R (first oil passage), a right oil passage 31 (second oil passage), and a left oil passage 32 (second oil passage). Further, as described above, there are two hydraulic chambers (first hydraulic chamber 211 and second hydraulic chamber 212) formed of a ring-shaped space between the outer peripheral portion of the sleeve portion 22 and the inner peripheral portion of the cylinder portion 1HS. Is formed. The central oil passage 20R is formed in the first piston portion 22P of the sleeve portion 22 along the radial direction. The central oil passage 20R allows the supply oil passage 33 and the cylindrical interior of the sleeve portion 22 to communicate with each other when the movable member 20 is disposed at a predetermined position in the left-right direction in the cylinder portion 1HS.
 右側油路31は、外周部20Qからスリーブ部22の内部に向かって傾斜して設けられ、第2油圧室212とスリーブ部22の筒状内部とを連通させる。同様に、左側油路32は、外周部20Pからスリーブ部22の内部に向かって傾斜して設けられ、第1油圧室211とスリーブ部22の筒状内部とを連通させる。なお、右側油路31および左側油路32は、それぞれスリーブ部22の径方向内側に向かって進むにつれて、中央油路20Rに近づくように傾斜している。このため、スプール222の外周部222B、222Cによって形成される連通路が短く設定され、スプール222の左右移動のストローク量を縮小することができる。 The right oil passage 31 is inclined from the outer peripheral portion 20Q toward the inside of the sleeve portion 22, and communicates the second hydraulic chamber 212 with the cylindrical inside of the sleeve portion 22. Similarly, the left oil passage 32 is provided to be inclined from the outer peripheral portion 20 </ b> P toward the inside of the sleeve portion 22, and communicates the first hydraulic chamber 211 and the cylindrical inside of the sleeve portion 22. The right oil passage 31 and the left oil passage 32 are inclined so as to approach the central oil passage 20 </ b> R as they proceed toward the radially inner side of the sleeve portion 22. For this reason, the communication path formed by the outer peripheral portions 222B and 222C of the spool 222 is set to be short, and the stroke amount of the lateral movement of the spool 222 can be reduced.
 ハウジング1Hは、供給用油路33と、排出用油路34と、を備えている。供給用油路33は、シリンダ部1HSに連通するように設けられており、シリンダ部1HSに作動油を供給する。なお、供給用油路33の上流側は、第1油圧源102に接続されている(図3)。排出用油路34は、スリーブ部22およびスプール222の内部から流出した作動油を第2油タンク28(図3)に排出する機能を備えている。 The housing 1 </ b> H includes a supply oil passage 33 and a discharge oil passage 34. The supply oil passage 33 is provided so as to communicate with the cylinder portion 1HS, and supplies hydraulic oil to the cylinder portion 1HS. The upstream side of the supply oil passage 33 is connected to the first hydraulic source 102 (FIG. 3). The discharge oil passage 34 has a function of discharging hydraulic oil flowing out from the inside of the sleeve portion 22 and the spool 222 to the second oil tank 28 (FIG. 3).
 第1位置調整機構2は、スプール222に接続され、スプール222を左右方向に沿って移動させる。詳しくは、第1位置調整機構2は、第2ピストン部222Aが中央油路20Rを封止した状態のスリーブ部22を左右方向に沿って移動させることで、供給用油路33から中央油路20Rに流入した作動油を、前記連通路を介して、右側油路31または左側油路32から第2油圧室212または第1油圧室211に流入させる。この結果、第1位置調整機構2は、偏心リング15(図1)に接続された可動部材20を左右方向に沿って移動させる。 The first position adjustment mechanism 2 is connected to the spool 222 and moves the spool 222 along the left-right direction. Specifically, the first position adjusting mechanism 2 moves the sleeve portion 22 in a state where the second piston portion 222A seals the central oil passage 20R along the left and right directions, thereby supplying the central oil passage from the supply oil passage 33. The hydraulic oil that has flowed into 20R is caused to flow into the second hydraulic chamber 212 or the first hydraulic chamber 211 from the right oil passage 31 or the left oil passage 32 through the communication passage. As a result, the first position adjusting mechanism 2 moves the movable member 20 connected to the eccentric ring 15 (FIG. 1) along the left-right direction.
 第1位置調整機構2は、両ロッドシリンダ23(ロッドシリンダ)と、スプリング24と、零点調整部25(位置調整部)と、油圧ユニット1S(副移動機構)と、を備える。 The first position adjustment mechanism 2 includes both rod cylinders 23 (rod cylinders), a spring 24, a zero point adjustment unit 25 (position adjustment unit), and a hydraulic unit 1S (sub-movement mechanism).
 両ロッドシリンダ23は、ハウジング1Hの内部において軸方向に沿って延びるように配置されている。本実施形態では、図2に示すように、両ロッドシリンダ23はスプール222と同じ軸線上に配置されている。そして、両ロッドシリンダ23の左端部(軸方向の一端部)がスプール222に接続されている。両ロッドシリンダ23は、第3ピストン部23Aと、外周部23P、23Q(いずれも第3外周部)と、を備える。ハウジング1Hと両ロッドシリンダ23の外周部23P、外周部23Qとの間には、リング状の空間部からなる第4油圧室231(副油圧室)および第5油圧室232(副油圧室)が形成されている。第4油圧室231および第5油圧室232は、両ロッドシリンダ23から径方向に突設された第3ピストン部23Aによって左右に仕切られている。第3ピストン部23Aは、第4油圧室231および第5油圧室232の容積が変化するように、ハウジング1Hの内壁部に対して左右方向に沿って摺動する。 Both rod cylinders 23 are arranged so as to extend along the axial direction inside the housing 1H. In the present embodiment, as shown in FIG. 2, both rod cylinders 23 are arranged on the same axis as the spool 222. The left end portion (one end portion in the axial direction) of both rod cylinders 23 is connected to the spool 222. Both rod cylinders 23 include a third piston portion 23A and outer peripheral portions 23P and 23Q (both are third outer peripheral portions). Between the housing 1H and the outer peripheral portion 23P and the outer peripheral portion 23Q of both rod cylinders 23, there are a fourth hydraulic chamber 231 (sub hydraulic chamber) and a fifth hydraulic chamber 232 (sub hydraulic chamber) formed of ring-shaped spaces. Is formed. The fourth hydraulic chamber 231 and the fifth hydraulic chamber 232 are partitioned on the left and right by a third piston portion 23 </ b> A projecting radially from both rod cylinders 23. The third piston portion 23A slides along the left-right direction with respect to the inner wall portion of the housing 1H so that the volumes of the fourth hydraulic chamber 231 and the fifth hydraulic chamber 232 change.
 両ロッドシリンダ23は、油圧ユニット1Sの副供給用油路35(図2)または副供給用油路36(図2)からの圧油の給排によって左右に移動する。この結果、両ロッドシリンダ23はスプール222を左右にストロークさせる。 Both rod cylinders 23 move to the left and right by the supply and discharge of pressure oil from the sub supply oil passage 35 (FIG. 2) or the sub supply oil passage 36 (FIG. 2) of the hydraulic unit 1S. As a result, both rod cylinders 23 cause the spool 222 to stroke left and right.
 スプリング24は、ハウジング1Hに設けられたばね座24Hを支点として、両ロッドシリンダ23を左方向(可動部材20側)に向かって付勢している。両ロッドシリンダ23に対して副供給用油路35または副供給用油路36から圧油の供給が無い場合、スプリング24の付勢力により、両ロッドシリンダ23が中立位置(零傾転位置)に保持される。換言すれば、両ロッドシリンダ23が中立位置に配置されると、スプリング24の付勢力(弾性力)がゼロになるよう設定されている。 The spring 24 urges the rod cylinders 23 toward the left (movable member 20 side) with a spring seat 24H provided in the housing 1H as a fulcrum. When no pressure oil is supplied from the auxiliary supply oil passage 35 or the auxiliary supply oil passage 36 to the rod cylinders 23, the urging force of the spring 24 causes the rod cylinders 23 to be in the neutral position (zero tilt position). Retained. In other words, when both rod cylinders 23 are arranged at the neutral position, the biasing force (elastic force) of the spring 24 is set to be zero.
 また、零点調整部25は、両ロッドシリンダ23の右端部(一端部とは反対側の他端部)とハウジング1Hとの間に介在するように配置されている。零点調整部25は、ばね座24Hの位置を調整することで、両ロッドシリンダ23の軸方向における基準位置を調整する機能を備えている。特に、回転機1Aの両傾転を調整可能な本実施形態に係る傾転制御装置1Bでは、零点調整部25は、偏心リング15(図1)が上記の中立位置に配置された場合に回転機1Aの吐出容量がゼロとなるように、両ロッドシリンダ23の基準位置をゼロ点位置に調整する零点調整機能を備えている。 Further, the zero point adjusting portion 25 is disposed so as to be interposed between the right end portion (the other end portion opposite to the one end portion) of both the rod cylinders 23 and the housing 1H. The zero point adjustment unit 25 has a function of adjusting the reference position in the axial direction of both rod cylinders 23 by adjusting the position of the spring seat 24H. In particular, in the tilt control device 1B according to this embodiment capable of adjusting both tilts of the rotating machine 1A, the zero point adjusting unit 25 rotates when the eccentric ring 15 (FIG. 1) is arranged at the neutral position. A zero point adjustment function for adjusting the reference position of both rod cylinders 23 to the zero point position is provided so that the discharge capacity of the machine 1A becomes zero.
 油圧ユニット1Sは、第4油圧室231または第5油圧室232に作動油を流入させることで両ロッドシリンダ23およびスプール222を左右方向に沿って一体的に移動させる。油圧ユニット1Sは、第1油圧源102と、第1比例弁26と、第2比例弁27と、第3油タンク29と、を備える(図3)。また、ハウジング1Hおよび油圧ユニット1Sの内部には、副供給用油路35(図2、図3)、副供給用油路36(図2、図3)、第1ユニット油路37および第2ユニット油路38(いずれも図3参照)が形成されている。 The hydraulic unit 1S moves both rod cylinders 23 and the spool 222 integrally in the left-right direction by flowing hydraulic oil into the fourth hydraulic chamber 231 or the fifth hydraulic chamber 232. The hydraulic unit 1S includes a first hydraulic source 102, a first proportional valve 26, a second proportional valve 27, and a third oil tank 29 (FIG. 3). Further, in the housing 1H and the hydraulic unit 1S, there are a sub supply oil passage 35 (FIGS. 2 and 3), a sub supply oil passage 36 (FIGS. 2 and 3), a first unit oil passage 37, and a second unit oil passage 37. A unit oil passage 38 (see FIG. 3 for both) is formed.
 第1油圧源102は、シリンダ部1HSに形成された第1油圧室211、第2油圧室212、両ロッドシリンダ23によって形成された第4油圧室231、第5油圧室232に作動油を供給する。第1比例弁26および第2比例弁27は、第1油圧源102から供給される作動油の供給経路、供給量を切り替える。第1比例弁26および第2比例弁27は、不図示の制御部から送信される電気信号により、2次圧に変換することが可能な電磁弁である。第3油タンク29は、第4油圧室231または第5油圧室232から排出された作動油を回収する。 The first hydraulic source 102 supplies hydraulic oil to the first hydraulic chamber 211, the second hydraulic chamber 212, and the fourth hydraulic chamber 231 and the fifth hydraulic chamber 232 formed by the rod cylinders 23 formed in the cylinder portion 1HS. To do. The first proportional valve 26 and the second proportional valve 27 switch the supply path and supply amount of the hydraulic oil supplied from the first hydraulic pressure source 102. The first proportional valve 26 and the second proportional valve 27 are electromagnetic valves that can be converted into a secondary pressure by an electrical signal transmitted from a control unit (not shown). The third oil tank 29 collects the hydraulic oil discharged from the fourth hydraulic chamber 231 or the fifth hydraulic chamber 232.
 本実施形態では、傾転制御装置1Bが、回転機1A(可変容量型ラジアルピストンポンプ)の容量制御機構(いわゆるレギュレータ)として機能する。すなわち、傾転制御装置1Bがスプール222のストロークを制御することで、可動部材20と連結された偏心リング15の偏心量が制御される。この結果、回転機1Aにおけるポンプ傾転(吐出量)を制御することができる。次に、傾転制御装置1Bによる回転機1Aの傾転調整機能について詳しく説明する。図4および図5は、本実施形態に係る液圧回転装置1の傾転制御装置1Bにおいて、可動部材20が左側に移動される様子を示す断面図である。 In the present embodiment, the tilt control device 1B functions as a displacement control mechanism (so-called regulator) of the rotating machine 1A (variable displacement radial piston pump). That is, when the tilt control device 1B controls the stroke of the spool 222, the eccentric amount of the eccentric ring 15 connected to the movable member 20 is controlled. As a result, the pump tilt (discharge amount) in the rotating machine 1A can be controlled. Next, the tilt adjustment function of the rotating machine 1A by the tilt control device 1B will be described in detail. 4 and 5 are cross-sectional views showing a state in which the movable member 20 is moved to the left side in the tilt control device 1B of the hydraulic rotating device 1 according to the present embodiment.
 図2では、可動部材20およびスプール222が零傾転位置(中立位置)に配置されている。図2の状態から、可動部材20を左方向にストロークさせる場合、不図示の制御部が第1比例弁26を切り替えることで供給用油路33、第1ユニット油路37と副供給用油路36とを連通させ、両ロッドシリンダ23の第5油圧室232側に圧油を供給する(図4の実線矢印参照)。一方、第2比例弁27は副供給用油路35と第2ユニット油路38とを連通させ、両ロッドシリンダ23の第4油圧室231側の圧油を第3油タンク29に排出する(図4の破線矢印参照)。この結果、両ロッドシリンダ23が左方向にストロークする。この際、第1比例弁26による第5油圧室232への圧油供給量が調整されることで、両ロッドシリンダ23のストローク量が制御される。 In FIG. 2, the movable member 20 and the spool 222 are disposed at the zero tilt position (neutral position). When the movable member 20 is caused to stroke leftward from the state of FIG. 2, a control unit (not shown) switches the first proportional valve 26 so that the supply oil passage 33, the first unit oil passage 37, and the sub supply oil passage. 36 is communicated, and pressure oil is supplied to the fifth hydraulic chamber 232 side of both rod cylinders 23 (see solid arrows in FIG. 4). On the other hand, the second proportional valve 27 connects the auxiliary supply oil passage 35 and the second unit oil passage 38 to discharge the pressure oil on the fourth hydraulic chamber 231 side of both rod cylinders 23 to the third oil tank 29 ( (See dashed arrow in FIG. 4). As a result, both rod cylinders 23 stroke in the left direction. At this time, the amount of pressure oil supplied to the fifth hydraulic chamber 232 by the first proportional valve 26 is adjusted, whereby the stroke amount of both rod cylinders 23 is controlled.
 なお、図2の初期状態では、可動部材20のスリーブ部22とスプール222との相対的な位置が中立位置に相当し、サーボ弁のポート位置は図3のBポジションとなっている。したがって、可動部材20への圧油の給排は行われず、図2の状態における傾転(零傾転)が保持される。 In the initial state of FIG. 2, the relative position between the sleeve portion 22 of the movable member 20 and the spool 222 corresponds to the neutral position, and the port position of the servo valve is the B position in FIG. Accordingly, the pressure oil is not supplied to or discharged from the movable member 20, and the tilt (zero tilt) in the state of FIG. 2 is maintained.
 当該初期状態から上記のように両ロッドシリンダ23が左方向にストロークすると、両ロッドシリンダ23に機械的に直結されたスプール222も左方向に移動する。そして、スプール222が左方向に移動すると、スプール222とスリーブ部22との相対的な位置関係がBポジションからCポジション(図3参照)に変化する。この結果、供給用油路33と右側油路31とが連通し、排出用油路34と左側油路32とが連通する。この切替えによって、第1油圧源102から供給された圧油が第2油圧室212に供給されるとともに、第1油圧室211が第2油タンク28に連通し、第1油圧室211から圧油が排出される(図4の矢印参照)。この結果、可動部材20は偏心リング15(図2)とともに左方向にストロークし(図5の矢印D51)、回転機1Aの傾転を大きくなる方向に変化させる。 When the rod cylinders 23 stroke in the left direction as described above from the initial state, the spool 222 mechanically coupled directly to the rod cylinders 23 also moves in the left direction. When the spool 222 moves in the left direction, the relative positional relationship between the spool 222 and the sleeve portion 22 changes from the B position to the C position (see FIG. 3). As a result, the supply oil passage 33 and the right oil passage 31 communicate with each other, and the discharge oil passage 34 and the left oil passage 32 communicate with each other. By this switching, the pressure oil supplied from the first hydraulic source 102 is supplied to the second hydraulic chamber 212, and the first hydraulic chamber 211 communicates with the second oil tank 28, and the pressure oil is supplied from the first hydraulic chamber 211. Is discharged (see arrow in FIG. 4). As a result, the movable member 20 strokes leftward together with the eccentric ring 15 (FIG. 2) (arrow D51 in FIG. 5), and changes the tilt of the rotating machine 1A in a larger direction.
 なお、本実施形態では、第5油圧室232の断面積を第2油圧室212の断面積よりも大きく設定することで、可動部材20に対してより大きな推力を得ることができる。このため、上記の断面積比を調整することで、より小さい駆動力で回転機1Aの押し出し容量を変化させることが可能となる。 In this embodiment, by setting the cross-sectional area of the fifth hydraulic chamber 232 to be larger than the cross-sectional area of the second hydraulic chamber 212, a larger thrust can be obtained with respect to the movable member 20. For this reason, it becomes possible to change the extrusion capacity of the rotating machine 1A with a smaller driving force by adjusting the cross-sectional area ratio.
 可動部材20が左方向にストロークし、やがて、スプール222とスリーブ部22との相対的な位置関係が前述の初期状態と同じになるまでスリーブ部22が移動すると(図2のBポジション)、第1油圧室211および第2油圧室212への圧油の給排が遮断されるため、可動部材20のストロークが停止する。この結果、回転機1Aの押し出し容量(傾転)が固定される。 When the movable member 20 strokes to the left and eventually the sleeve portion 22 moves until the relative positional relationship between the spool 222 and the sleeve portion 22 becomes the same as the initial state described above (position B in FIG. 2), Since the supply and discharge of the pressure oil to the first hydraulic chamber 211 and the second hydraulic chamber 212 are interrupted, the stroke of the movable member 20 stops. As a result, the extrusion capacity (tilt) of the rotating machine 1A is fixed.
 このように、本実施形態では、可動部材20が任意の位置に配置されるように、両ロッドシリンダ23のストローク量が制御可能とされる。そして、両ロッドシリンダ23に接続された第1比例弁26および第2比例弁27を介して、可動部材20のストローク量を制御することが可能となり、油圧ポンプとしての回転機1Aの押し出し容量を制御することが可能とされる。 Thus, in this embodiment, the stroke amount of both rod cylinders 23 can be controlled so that the movable member 20 is disposed at an arbitrary position. The stroke amount of the movable member 20 can be controlled via the first proportional valve 26 and the second proportional valve 27 connected to the rod cylinders 23, and the pushing capacity of the rotating machine 1A as a hydraulic pump can be controlled. It is possible to control.
 一方、図6および図7は、本実施形態に係る液圧回転装置1の傾転制御装置1Bにおいて、可動部材20が右側に移動される様子を示す断面図である。可動部材20が右方向に移動される場合には、上記の左方向の場合の手順と反対の動作が行われる。まず、不図示の制御部によって第1比例弁26が制御され、副供給用油路36(図3)と第2ユニット油路38(図3)とが連通されると、第5油圧室232の圧油が第3油タンク29に排出される。また、第2比例弁27が制御され、副供給用油路35と供給用油路33とが連通される(図2、図3)。この結果、第1油圧源102から第4油圧室231に圧油が供給される。これにより、両ロッドシリンダ23が右方向にストロークするとともに、スプール222も右方向に同じストローク量だけ移動する。そして、スリーブ部22とスプール222との相対的な位置関係が図3のAポジションとなり、供給用油路33と左側油路32とが連通し、排出用油路34と右側油路31とが連通する。そして、第1油圧室211に圧油が供給されるとともに、第2油圧室212の圧油が排出用油路34を介して第2油タンク28に排出され(図6の矢印参照)、可動部材20が右方向にストロークする(図7の矢印D71)。この結果、回転機1Aの偏心リング15がガイドレール17に沿って右方向に移動され、回転機1Aのポンプの傾転が小さく設定される。更に、偏心リング15の移動量が右方向に大きく変化されると、回転機1Aの傾転が逆傾転側に変化される。この結果、回転機1Aがピストンモーターとして機能することができる。このように、本実施形態では、傾転制御装置1Bによって回転機1Aの両傾転制御が可能となる。このため、傾転制御装置1Bが、油圧ポンプまたは油圧モーターの傾転制御だけではなく、油圧ポンプモータの傾転制御装置として機能することができる。 On the other hand, FIGS. 6 and 7 are cross-sectional views showing how the movable member 20 is moved to the right side in the tilt control device 1B of the hydraulic rotating device 1 according to the present embodiment. When the movable member 20 is moved in the right direction, an operation opposite to the procedure in the left direction is performed. First, when the first proportional valve 26 is controlled by a control unit (not shown) and the auxiliary supply oil passage 36 (FIG. 3) and the second unit oil passage 38 (FIG. 3) communicate with each other, the fifth hydraulic chamber 232 is provided. Is discharged to the third oil tank 29. Further, the second proportional valve 27 is controlled, and the auxiliary supply oil passage 35 and the supply oil passage 33 are communicated (FIGS. 2 and 3). As a result, pressure oil is supplied from the first hydraulic source 102 to the fourth hydraulic chamber 231. As a result, both rod cylinders 23 stroke in the right direction, and the spool 222 also moves in the right direction by the same stroke amount. The relative positional relationship between the sleeve portion 22 and the spool 222 is the A position in FIG. 3, the supply oil passage 33 and the left oil passage 32 communicate with each other, and the discharge oil passage 34 and the right oil passage 31 are connected. Communicate. Then, the pressure oil is supplied to the first hydraulic chamber 211, and the pressure oil in the second hydraulic chamber 212 is discharged to the second oil tank 28 through the discharge oil passage 34 (see the arrow in FIG. 6). The member 20 strokes in the right direction (arrow D71 in FIG. 7). As a result, the eccentric ring 15 of the rotating machine 1A is moved rightward along the guide rail 17, and the tilt of the pump of the rotating machine 1A is set small. Further, when the moving amount of the eccentric ring 15 is greatly changed in the right direction, the tilt of the rotating machine 1A is changed to the reverse tilt side. As a result, the rotating machine 1A can function as a piston motor. Thus, in this embodiment, both tilt control of the rotating machine 1A becomes possible by the tilt control device 1B. Therefore, the tilt control device 1B can function not only as a tilt control of the hydraulic pump or hydraulic motor but also as a tilt control device of the hydraulic pump motor.
 以上のように、本実施形態では、ハウジング1Hおよび可動部材20によって、回転機1Aの偏心リング15を移動させる駆動シリンダが構成される。また、可動部材20およびスプール222によって、可動部材20を移動させる制御弁(サーボ弁)が構成される。このため、駆動シリンダのピストン機能を備える部材と制御弁のスリーブ機能を備える部材とが別部材から構成される場合と比較して、スプール222の移動を偏心リング15に精度良く伝達することが可能となる。この結果、高精度な傾転制御を実現することが可能となり、回転機1Aのポンプ傾転特性が安定して得られる。また、可動部材20のスリーブ部22が、駆動シリンダのピストン機能と制御弁のスリーブ機能とを兼ね備えているため、傾転制御装置1Bの径方向のサイズを縮小することができるとともに、傾転制御装置1Bの部品点数を縮小することができる。更に、図2に示すように、スリーブ部22の径方向外側と内側とを結ぶ油路が形成されていることで、スプール222の移動に応じて第1油圧室211、第2油圧室212に作動油を流入させることが可能となる。 As described above, in the present embodiment, the housing 1H and the movable member 20 constitute a drive cylinder that moves the eccentric ring 15 of the rotating machine 1A. Further, the movable member 20 and the spool 222 constitute a control valve (servo valve) that moves the movable member 20. For this reason, it is possible to transmit the movement of the spool 222 to the eccentric ring 15 with higher accuracy than in the case where the member having the piston function of the drive cylinder and the member having the sleeve function of the control valve are configured as separate members. It becomes. As a result, highly accurate tilt control can be realized, and the pump tilt characteristics of the rotating machine 1A can be stably obtained. Further, since the sleeve portion 22 of the movable member 20 has both the piston function of the drive cylinder and the sleeve function of the control valve, the radial size of the tilt control device 1B can be reduced and tilt control can be performed. The number of parts of the device 1B can be reduced. Further, as shown in FIG. 2, an oil passage connecting the radially outer side and the inner side of the sleeve portion 22 is formed, so that the first hydraulic chamber 211 and the second hydraulic chamber 212 are moved according to the movement of the spool 222. It becomes possible to let hydraulic oil flow in.
 また、本実施形態では、可動部材20の接続部21およびスリーブ部22が一体的に構成されているため、スプール222の移動を偏心リング15に更に精度良く伝達することができる。 In this embodiment, since the connecting portion 21 and the sleeve portion 22 of the movable member 20 are integrally formed, the movement of the spool 222 can be transmitted to the eccentric ring 15 with higher accuracy.
 更に、本実施形態では、液圧回転装置1の回転機1Aにおいて両傾転制御が行われる場合であっても、可動部材20がスプール222の左右移動にスムーズに追従することができる。この際、傾転制御装置1Bの第1位置調整機構2(図2)は、回転機1Aの偏心リング15が、所定の中立位置と、前記中立位置よりも左側(軸方向の一端側)であって回転機1Aを油圧ポンプとして機能させる第1の位置と、前記中立位置よりも右側(軸方向の他端側)であって回転機1Aを油圧モーターとして機能させる第2の位置との間で位置変更可能なように、可動部材20を左右方向(軸方向)に沿って左向き(第1の向き)および右向き(第1の向きとは反対の第2の向き)に移動させる。このため、回転機1Aの両傾転制御、ゼロ傾転制御を高精度に実現することが可能となる。特に、サーボ弁の両端ポートに圧油を流入し圧力バランスの成り行きによってゼロ傾転制御を行う公知の制御機構と比較して、高精度なゼロ傾転制御が実現可能とされる。 Furthermore, in this embodiment, even when the bi-tilt control is performed in the rotating machine 1A of the hydraulic rotating device 1, the movable member 20 can smoothly follow the left and right movement of the spool 222. At this time, in the first position adjusting mechanism 2 (FIG. 2) of the tilt control device 1B, the eccentric ring 15 of the rotating machine 1A is at a predetermined neutral position and on the left side (one axial end side) of the neutral position. Between the first position where the rotating machine 1A functions as a hydraulic pump and the second position which is on the right side (the other end side in the axial direction) from the neutral position and which functions the rotating machine 1A as a hydraulic motor. The movable member 20 is moved leftward (first direction) and rightward (second direction opposite to the first direction) along the left-right direction (axial direction) so that the position can be changed. For this reason, both tilt control and zero tilt control of the rotating machine 1A can be realized with high accuracy. In particular, compared to a known control mechanism in which pressure oil flows into both end ports of the servo valve and zero tilt control is performed according to the pressure balance, highly accurate zero tilt control can be realized.
 また、本実施形態では、傾転制御装置1Bが零点調整部25(位置調整部)を備えている。したがって、製造上の形状誤差などによって可動部材20の位置制御にずれが生じている場合であっても、零点調整部25によって可動部材20の位置を調整することができる。このため、傾転制御装置1Bの各部材の部品公差に伴って回転機1Aの目標傾転にずれが生じることを抑止することができる。換言すれば、傾転制御装置1Bの各部材に製造時の加工誤差が生じている場合や、スプリング24(図2)のバネ性能に誤差が生じている場合には、両ロッドシリンダ23、第1比例弁26、第2比例弁27および可動部材20に位置ずれが発生することがある。本実施形態では、可動部材20の基準点である零点位置が予め設定された目標位置となるように、零点調整部25を用いて微調整することができる。このため、傾転調整部の零点位置を安定して調整することができる。この結果、回転機1Aおよび傾転制御装置1Bの個体差による位置ずれを低減し、高精度な傾転制御が可能となる。 Further, in the present embodiment, the tilt control device 1B includes the zero point adjustment unit 25 (position adjustment unit). Therefore, even if there is a deviation in the position control of the movable member 20 due to a manufacturing shape error or the like, the position of the movable member 20 can be adjusted by the zero point adjustment unit 25. For this reason, it can suppress that a shift | offset | difference arises in the target inclination of 1 A of rotary machines with the component tolerance of each member of the inclination control apparatus 1B. In other words, when a manufacturing error has occurred in each member of the tilt control device 1B, or when an error has occurred in the spring performance of the spring 24 (FIG. 2), both rod cylinders 23, A positional shift may occur in the first proportional valve 26, the second proportional valve 27, and the movable member 20. In the present embodiment, the zero point position that is the reference point of the movable member 20 can be finely adjusted by using the zero point adjustment unit 25 so that it becomes a preset target position. For this reason, the zero point position of the tilt adjustment unit can be adjusted stably. As a result, it is possible to reduce positional deviation due to individual differences between the rotating machine 1A and the tilt control device 1B, and to perform tilt control with high accuracy.
 更に、本実施形態では、第1比例弁26および第2比例弁27が、第1油圧源102から供給される作動油の供給経路、供給量を切り替える。特に、両ロッドシリンダ23の第4油圧室231および第5油圧室232に、それぞれ第2比例弁27および第1比例弁26が独立して接続されている。このため、両ロッドシリンダ23の左右方向の移動が可能となる。この結果、回転機1Aを油圧ポンプまたは油圧モーターの両傾転の用途に用いることが可能となる。 Furthermore, in the present embodiment, the first proportional valve 26 and the second proportional valve 27 switch the supply path and supply amount of hydraulic oil supplied from the first hydraulic source 102. In particular, the second proportional valve 27 and the first proportional valve 26 are independently connected to the fourth hydraulic chamber 231 and the fifth hydraulic chamber 232 of both rod cylinders 23, respectively. For this reason, the left and right movements of both rod cylinders 23 are possible. As a result, the rotating machine 1A can be used for both tilting of the hydraulic pump or the hydraulic motor.
 また、本実施形態では、油圧ユニット1Sが、スプール222および両ロッドシリンダ23を一体的に移動させることで、偏心リング15に接続された可動部材20を移動させることが可能となる。この結果、同じ軸線上に配置された軸状部材の軸方向の移動によって、回転機1Aの傾転を精度良く制御することができる。 Further, in the present embodiment, the hydraulic unit 1S can move the movable member 20 connected to the eccentric ring 15 by moving the spool 222 and the rod cylinders 23 integrally. As a result, the tilt of the rotating machine 1A can be accurately controlled by the axial movement of the shaft-like members arranged on the same axis.
 また、本実施形態では、第5油圧室232の断面積>第2油圧室212の断面積、第4油圧室231の断面積>第1油圧室211の断面積の関係が満たされるように予め各部材の形状が設定されることが望ましい。この場合、可動部材20を駆動するための駆動力を小さくすることが可能となり、低圧の圧力源を使用することも可能となる。図8は、本発明の変形実施形態に係る液圧回転装置の油圧回路図であり、上記の実施形態の傾転制御装置1Bの代わりに、傾転制御装置1Cによって回転機1Aの傾転制御が行われる。傾転制御装置1Cでは、シリンダ部1HS(図2)に圧油を供給する第1油圧源102とは別に第2油圧源103が配置される。第2油圧源103は、第1油圧源102よりも低圧の油圧源である。そして、傾転制御装置1Cでは、第2油圧源103が第1比例弁26または第2比例弁27を介して、両ロッドシリンダ23の第4油圧室231または第5油圧室232に圧油を供給する。この結果、傾転制御装置1Bと比較して、低圧仕様機器が使用可能とされ、傾転制御装置1Cの小型化やコスト低減が実現される。 Further, in the present embodiment, the relationship between the cross-sectional area of the fifth hydraulic chamber 232> the cross-sectional area of the second hydraulic chamber 212 and the cross-sectional area of the fourth hydraulic chamber 231> the cross-sectional area of the first hydraulic chamber 211 is satisfied in advance. It is desirable that the shape of each member is set. In this case, it becomes possible to reduce the driving force for driving the movable member 20, and it is also possible to use a low pressure source. FIG. 8 is a hydraulic circuit diagram of a hydraulic rotation device according to a modified embodiment of the present invention, and the tilt control of the rotating machine 1A is performed by the tilt control device 1C instead of the tilt control device 1B of the above embodiment. Is done. In the tilt control device 1C, a second hydraulic pressure source 103 is arranged separately from the first hydraulic pressure source 102 that supplies pressure oil to the cylinder portion 1HS (FIG. 2). The second hydraulic source 103 is a lower pressure hydraulic source than the first hydraulic source 102. In the tilt control device 1 </ b> C, the second hydraulic source 103 supplies pressure oil to the fourth hydraulic chamber 231 or the fifth hydraulic chamber 232 of both rod cylinders 23 via the first proportional valve 26 or the second proportional valve 27. Supply. As a result, compared to the tilt control device 1B, low-pressure specification equipment can be used, and the tilt control device 1C can be reduced in size and cost.
 以上、本発明の各実施形態に係る傾転制御装置1B、1Cおよびこれを備えた液圧回転装置1について説明した。上記の液圧回転装置1によれば、傾転制御装置1B、1Cのスプール222の移動を可動部材20に精度良く伝達し、回転機1Aの高精度な傾転制御を実現することが可能となる。なお、本発明はこれらの形態に限定されるものではない。本発明に係る傾転制御装置、液圧回転装置として、以下のような変形実施形態が更に可能である。 The tilt control devices 1B and 1C and the hydraulic rotating device 1 including the tilt control devices 1B and 1C according to the embodiments of the present invention have been described above. According to the hydraulic rotating device 1 described above, it is possible to accurately transmit the movement of the spool 222 of the tilt control devices 1B and 1C to the movable member 20 and to realize highly accurate tilt control of the rotating machine 1A. Become. The present invention is not limited to these forms. As the tilt control device and the hydraulic rotation device according to the present invention, the following modified embodiments are further possible.
 (1)上記の実施形態では、本発明の移動機構として、傾転制御装置1B、1Cが第1位置調整機構2を備える態様にて説明したが、本発明はこれに限定されるものではない。図9は、本発明の変形実施形態に係る液圧回転装置の傾転制御装置1D(傾転制御装置)の断面図である。本変形実施形態では、先の実施形態に係る傾転制御装置1Bの第1位置調整機構2の代わりに、傾転制御装置1Dが第2位置調整機構6(移動機構)を備えている。第2位置調整機構6は、スプール222に接続され、スプール222を左右方向(軸方向)に沿って移動させることで第1油圧室211または第2油圧室212に作動油を流入させる。この結果、第2位置調整機構6は、偏心リング15に接続された可動部材20を軸方向に沿って移動させる。 (1) In the above embodiment, the tilt control devices 1B and 1C have been described as having the first position adjustment mechanism 2 as the movement mechanism of the present invention, but the present invention is not limited to this. . FIG. 9 is a cross-sectional view of a tilt control device 1D (tilt control device) of a hydraulic rotating device according to a modified embodiment of the present invention. In the present modified embodiment, instead of the first position adjustment mechanism 2 of the tilt control device 1B according to the previous embodiment, the tilt control device 1D includes a second position adjustment mechanism 6 (movement mechanism). The second position adjusting mechanism 6 is connected to the spool 222 and causes the hydraulic oil to flow into the first hydraulic chamber 211 or the second hydraulic chamber 212 by moving the spool 222 along the left-right direction (axial direction). As a result, the second position adjusting mechanism 6 moves the movable member 20 connected to the eccentric ring 15 along the axial direction.
 第2位置調整機構6は、電動機60と、ボールねじ61と、を備えている。ボールねじ61は、左右方向に沿って延びるように配置され、その左端部がスプール222に接続されている。ボールねじ61は、左右方向に延びる軸線回りに回転されるねじ軸を含む。また、電動機60は、ボールねじ61のねじ軸を前記軸線回りに回転させることで、ねじ軸およびスプール222を左右方向に沿って一体的に移動させる。すなわち、本変形実施形態では、電動機60およびボールねじ61を用いることで、電動機60の回転力をボールねじ61を介して推進力に変換し、ボールねじ61と機械的に直結されたスプール222を左右方向に移動させることができる。スプール222を移動させることで、スプール222に追従して可動部材20が移動し、回転機1A(図1)の傾転を制御することができる。このような構成によれば、同じ軸線上に配置された軸状部材の軸方向の移動によって、回転機1Aの傾転を精度良く制御することができる。また、本変形実施形態では、先の実施形態と比較して、第2位置調整機構6が比例弁を備えていない。このため、比例弁の動作ばらつきによるポンプ傾転特性へ影響を低減することが可能となる。更に、本変形実施形態では、可動部材20のストローク制御がすべて電動機の位置制御によって制御される。このため、零点調整機能が備えることなく、高精度に可動部材20のストローク制御および回転機1Aの傾転制御を行うことが可能となる。 The second position adjusting mechanism 6 includes an electric motor 60 and a ball screw 61. The ball screw 61 is disposed so as to extend in the left-right direction, and the left end portion thereof is connected to the spool 222. The ball screw 61 includes a screw shaft that is rotated around an axis extending in the left-right direction. Further, the electric motor 60 rotates the screw shaft of the ball screw 61 around the axis, thereby moving the screw shaft and the spool 222 integrally along the left-right direction. That is, in this modified embodiment, by using the electric motor 60 and the ball screw 61, the rotational force of the electric motor 60 is converted into a propulsive force through the ball screw 61, and the spool 222 mechanically directly connected to the ball screw 61 is provided. It can be moved in the left-right direction. By moving the spool 222, the movable member 20 moves following the spool 222, and the tilt of the rotating machine 1A (FIG. 1) can be controlled. According to such a configuration, the tilt of the rotating machine 1A can be controlled with high accuracy by the axial movement of the shaft-like members arranged on the same axis. In the present modified embodiment, the second position adjustment mechanism 6 does not include a proportional valve as compared to the previous embodiment. For this reason, it becomes possible to reduce the influence on the pump tilt characteristic due to the operation variation of the proportional valve. Further, in this modified embodiment, the stroke control of the movable member 20 is all controlled by the position control of the electric motor. For this reason, it becomes possible to perform the stroke control of the movable member 20 and the tilt control of the rotating machine 1A with high accuracy without providing the zero adjustment function.
 (2)また、上記の実施形態では、液圧回転装置1の回転機1Aがラジアルピストン型液圧回転機からなる態様にて説明したが、本発明はこれに限定されるものではない。本発明に係る傾転切替装置は、ラジアル型ポンプのみではなくラジアル型モーターにも適用可能であり、更に、可動部材20のストロークを利用することで公知のアキシャル型のポンプおよびモーターの傾転切替制御にも適用することが可能である。 (2) In the above embodiment, the rotating machine 1A of the hydraulic rotating device 1 has been described as being a radial piston type hydraulic rotating machine, but the present invention is not limited to this. The tilt switching device according to the present invention can be applied not only to a radial type pump but also to a radial type motor. Further, by using the stroke of the movable member 20, a known axial type pump and motor tilt switching can be used. It can also be applied to control.
 (3)また、上記の実施形態では、接続部21がスリーブ部22の先端部に備えられた円柱部からなる態様にて説明したが、本発明はこれに限定されるものではない。接続部21は、回転機1Aの偏心リング15(傾転調整部)を移動可能な他の形状からなるものでもよい。
 
(3) Moreover, in said embodiment, although the connection part 21 demonstrated in the aspect which consists of a cylindrical part with which the front-end | tip part of the sleeve part 22 was equipped, this invention is not limited to this. The connection portion 21 may be formed of another shape that can move the eccentric ring 15 (tilt adjustment portion) of the rotating machine 1A.

Claims (9)

  1.  傾転調整部を含む可変容量型の液圧回転機の傾転を制御する傾転制御装置であって、
     軸方向の一端側が外部に開放されたシリンダ部を備えるハウジングと、
     前記液圧回転機の前記傾転調整部に接続される接続部と、前記接続部に連設された筒状のスリーブ部と、前記シリンダ部の内周面との間で作動油が流入する油圧室を形成する第1外周部と、を備え、前記油圧室に流入する前記作動油の油圧に応じて前記軸方向に沿って移動可能なように前記シリンダ部に収容されることにより、前記傾転調整部を移動させる駆動シリンダを前記ハウジングとともに構成する可動部材と、
     前記軸方向に沿って移動可能なように前記スリーブ部の筒状内部に収容されたスプールと、
     前記スプールを前記軸方向に沿って移動させる移動機構と、
    を有し、
     前記ハウジングおよび前記可動部材には、前記スプールの前記軸方向の移動によって、前記可動部材および前記スプールが前記油圧室への前記作動油の流入を制御する制御弁を構成するように、前記作動油を導く油路が形成されている傾転制御装置。
    A tilt control device for controlling the tilt of a variable capacity hydraulic rotating machine including a tilt adjusting unit,
    A housing including a cylinder portion having one end side in the axial direction opened to the outside;
    The hydraulic oil flows between a connecting portion connected to the tilt adjusting portion of the hydraulic rotating machine, a cylindrical sleeve portion connected to the connecting portion, and an inner peripheral surface of the cylinder portion. A first outer peripheral portion forming a hydraulic chamber, and being housed in the cylinder portion so as to be movable along the axial direction according to the hydraulic pressure of the hydraulic oil flowing into the hydraulic chamber, A movable member that, together with the housing, constitutes a drive cylinder that moves the tilt adjustment portion;
    A spool accommodated inside the sleeve portion so as to be movable along the axial direction;
    A moving mechanism for moving the spool along the axial direction;
    Have
    In the housing and the movable member, the hydraulic oil is configured such that the movable member and the spool constitute a control valve that controls the inflow of the hydraulic oil into the hydraulic chamber by the movement of the spool in the axial direction. The tilt control device is formed with an oil passage that guides.
  2.  前記ハウジングは、前記シリンダ部に連通するように設けられ前記シリンダ部に前記作動油を供給する供給用油路を備え、
     前記可動部材は、
      前記軸方向において前記第1外周部に隣接するように前記スリーブ部に配置され、前記シリンダ部の内周面に前記軸方向に沿って摺動する第1ピストン部と、
      前記第1ピストン部に形成され、前記可動部材が前記シリンダ部において前記軸方向の所定の位置に配置された場合に前記供給用油路と前記スリーブ部の筒状内部とを連通させる第1油路と、
      前記第1外周部から前記スリーブ部の内部に向かって設けられ、前記油圧室と前記スリーブ部の筒状内部とを連通させる第2油路と、
    を備え、
     前記スプールは、
      前記可動部材の前記スリーブ部の内周面に前記軸方向に沿って摺動可能とされ、前記軸方向の所定の位置において前記第1油路を封止する第2ピストン部と、
      前記軸方向において前記第2ピストン部に隣接して配置され、前記第2ピストン部が前記第1油路を封止する位置から前記軸方向に移動した場合に、前記スリーブ部の内周面との間で前記第1油路と前記第2油路とを連通させる連通路を形成する第2外周部と、
     を備え、
     前記移動機構は、前記第2ピストン部が前記第1油路を封止した状態の前記スプールを前記軸方向に沿って移動させることで、前記供給用油路から前記第1油路に流入した作動油を、前記連通路および前記第2油路から前記油圧室に流入させ、前記傾転調整部に接続された前記可動部材を前記軸方向に沿って移動させる請求項1に記載の傾転制御装置。
    The housing includes a supply oil passage that is provided to communicate with the cylinder portion and supplies the hydraulic oil to the cylinder portion;
    The movable member is
    A first piston portion disposed in the sleeve portion so as to be adjacent to the first outer peripheral portion in the axial direction, and sliding along the axial direction on an inner peripheral surface of the cylinder portion;
    A first oil that is formed in the first piston portion and communicates between the supply oil passage and the cylindrical interior of the sleeve portion when the movable member is disposed at a predetermined position in the axial direction in the cylinder portion. Road,
    A second oil passage that is provided from the first outer peripheral portion toward the inside of the sleeve portion and communicates the hydraulic chamber and the cylindrical inside of the sleeve portion;
    With
    The spool is
    A second piston portion that is slidable along the axial direction on the inner peripheral surface of the sleeve portion of the movable member, and seals the first oil passage at a predetermined position in the axial direction;
    An inner circumferential surface of the sleeve portion when the second piston portion is disposed adjacent to the second piston portion in the axial direction and moved in the axial direction from a position where the second piston portion seals the first oil passage; A second outer peripheral portion that forms a communication passage that communicates the first oil passage and the second oil passage between,
    With
    The moving mechanism flows into the first oil passage from the supply oil passage by moving the spool in a state where the second piston portion seals the first oil passage along the axial direction. 2. The tilt according to claim 1, wherein hydraulic oil is allowed to flow into the hydraulic chamber from the communication path and the second oil passage, and the movable member connected to the tilt adjustment unit is moved along the axial direction. Control device.
  3.  前記可動部材の前記接続部および前記スリーブ部が一体的に構成されている請求項1または2に記載の傾転制御装置。 The tilt control device according to claim 1 or 2, wherein the connecting portion and the sleeve portion of the movable member are integrally configured.
  4.  前記移動機構は、
      前記スプールと同じ軸線上において前記軸方向に沿って延びるように配置され、前記軸方向の一端部が前記スプールに接続され、更に、前記ハウジングとの間で副油圧室を形成する第3外周部を備えたロッドシリンダと、
      前記副油圧室に作動油を流入させることで前記ロッドシリンダおよび前記スプールを前記軸方向に沿って一体的に移動させる副移動機構と、
     を有する請求項2に記載の傾転制御装置。
    The moving mechanism is
    A third outer peripheral portion that is disposed so as to extend along the axial direction on the same axis as the spool, has one end in the axial direction connected to the spool, and further forms a sub hydraulic chamber with the housing A rod cylinder with
    A sub-movement mechanism that moves the rod cylinder and the spool integrally along the axial direction by flowing hydraulic oil into the sub-hydraulic chamber;
    The tilt control device according to claim 2, comprising:
  5.  前記ロッドシリンダの前記一端部とは反対側の他端部と、前記ハウジングとの間に配置され、前記ロッドシリンダの前記軸方向における基準位置を調整する位置調整部を更に有する請求項4に記載の傾転制御装置。 The position adjustment part which is arrange | positioned between the other end part on the opposite side to the said one end part of the said rod cylinder, and the said housing, and adjusts the reference | standard position in the said axial direction of the said rod cylinder is further provided. Tilt control device.
  6.  前記移動機構は、
      前記スプールと同じ軸線上において前記軸方向に沿って延びるように配置され、前記軸方向の一端部が前記スプールに接続され、前記軸方向に延びる軸線回りに回転されるねじ軸を含むボールねじと、
      前記ねじ軸を前記軸線回りに回転させることで、前記ねじ軸および前記スプールを前記軸方向に沿って一体的に移動させる電動機と、
     を有する請求項2に記載の傾転制御装置。
    The moving mechanism is
    A ball screw including a screw shaft that is disposed so as to extend along the axial direction on the same axis as the spool, and that is connected to the spool at one end in the axial direction and rotated about an axis extending in the axial direction; ,
    An electric motor that integrally moves the screw shaft and the spool along the axial direction by rotating the screw shaft around the axis;
    The tilt control device according to claim 2, comprising:
  7.  前記移動機構は、前記液圧回転機の前記傾転調整部が、所定の中立位置と、前記中立位置よりも前記軸方向の一端側であって前記液圧回転機を油圧ポンプとして機能させる第1の位置と、前記中立位置よりも前記軸方向の他端側であって前記液圧回転機を油圧モーターとして機能させる第2の位置との間で位置変更可能なように、前記可動部材を前記軸方向に沿って第1の向きおよび前記第1の向きとは反対の第2の向きに移動させる請求項1に記載の傾転制御装置。 In the moving mechanism, the tilt adjusting unit of the hydraulic rotating machine has a predetermined neutral position and one end side in the axial direction from the neutral position, and causes the hydraulic rotating machine to function as a hydraulic pump. The movable member is movable so that the position of the movable member can be changed between the position of 1 and the second position on the other end side in the axial direction from the neutral position and causing the hydraulic rotating machine to function as a hydraulic motor. 2. The tilt control device according to claim 1, wherein the tilt control device is moved in a first direction and a second direction opposite to the first direction along the axial direction.
  8.  前記移動機構は、前記液圧回転機の前記傾転調整部が、所定の中立位置と、前記中立位置よりも前記軸方向の一端側であって前記液圧回転機を油圧ポンプとして機能させる第1の位置と、前記中立位置よりも前記軸方向の他端側であって前記液圧回転機を油圧モーターとして機能させる第2の位置との間で位置変更可能なように、前記可動部材を前記軸方向に沿って第1の向きおよび前記第1の向きとは反対の第2の向きに移動させ、
     前記位置調整部は、前記傾転調整部が前記中立位置に配置された場合に前記液圧回転機の吐出容量がゼロとなるように前記ロッドシリンダの前記基準位置を調整する零点調整機能を備えている請求項5に記載の傾転制御装置。
    In the moving mechanism, the tilt adjusting unit of the hydraulic rotating machine has a predetermined neutral position and one end side in the axial direction from the neutral position, and causes the hydraulic rotating machine to function as a hydraulic pump. The movable member is movable so that the position of the movable member can be changed between the position of 1 and the second position on the other end side in the axial direction from the neutral position and causing the hydraulic rotating machine to function as a hydraulic motor. Moving along the axial direction in a first direction and a second direction opposite to the first direction;
    The position adjustment unit has a zero point adjustment function for adjusting the reference position of the rod cylinder so that the discharge capacity of the hydraulic rotating machine becomes zero when the tilt adjustment unit is disposed at the neutral position. The tilt control device according to claim 5.
  9.  請求項1に記載の傾転制御装置と、
     複数のシリンダを備えた回転体と、前記複数のシリンダにそれぞれ収容され、往復移動され、作動油の吸入および吐出を行う複数のピストンと、前記複数のピストンの往復移動量を調整する前記傾転調整部と、を備えた前記液圧回転機と、
    を有する液圧回転装置。
     
    A tilt control device according to claim 1;
    A rotating body having a plurality of cylinders, a plurality of pistons that are respectively housed in the plurality of cylinders and reciprocated to suck and discharge hydraulic oil, and the tilt that adjusts a reciprocating amount of the plurality of pistons An adjustment unit, and the hydraulic rotating machine comprising:
    A hydraulic rotating device.
PCT/JP2017/008895 2016-03-28 2017-03-07 Tilt control device and hydraulic rotation device including same WO2017169550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016063907A JP2017180125A (en) 2016-03-28 2016-03-28 Tilt control device and liquid pressure rotation device having the same
JP2016-063907 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017169550A1 true WO2017169550A1 (en) 2017-10-05

Family

ID=59963014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008895 WO2017169550A1 (en) 2016-03-28 2017-03-07 Tilt control device and hydraulic rotation device including same

Country Status (2)

Country Link
JP (1) JP2017180125A (en)
WO (1) WO2017169550A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107701418A (en) * 2017-10-26 2018-02-16 佛山市科达液压机械有限公司 A kind of machine liquid proportional controls servo oil pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187779A (en) * 1984-03-07 1985-09-25 Nippon Denso Co Ltd Variable displacement pump
JP2000186664A (en) * 1998-12-21 2000-07-04 Nagatomo Ryutai Kikai Kenkyusho:Kk Radial type hydraulic pump
JP2004068796A (en) * 2002-08-02 2004-03-04 Nagatomo Ryutai Kikai Kenkyusho:Kk Control mechanism of radial piston pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187779A (en) * 1984-03-07 1985-09-25 Nippon Denso Co Ltd Variable displacement pump
JP2000186664A (en) * 1998-12-21 2000-07-04 Nagatomo Ryutai Kikai Kenkyusho:Kk Radial type hydraulic pump
JP2004068796A (en) * 2002-08-02 2004-03-04 Nagatomo Ryutai Kikai Kenkyusho:Kk Control mechanism of radial piston pump

Also Published As

Publication number Publication date
JP2017180125A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US9726158B2 (en) Swash plate pump having control pins in series
JP4997163B2 (en) Servo regulator
KR102298471B1 (en) Hydraulic pump
CN110325734B (en) Servo regulator
US8074558B2 (en) Axial piston device having rotary displacement control
US20150240636A1 (en) Opposed swash plate type fluid pressure rotating machine
KR20140012685A (en) Adjusting device of a hydrostatic module
JP4997162B2 (en) Servo regulator
JP2017036713A (en) Variable displacement fluid-pressure rotary machine regulator
WO2017169550A1 (en) Tilt control device and hydraulic rotation device including same
CN108884815B (en) Hydraulic rotary machine
EP2832994B1 (en) Servo regulator
JP5204531B2 (en) Servo regulator
JP6577502B2 (en) Servo regulator
CN109416031B (en) Swash plate type plunger pump
JP2005351140A (en) Variable displacement type swash plate system hydraulic rotating machine
JP2012255375A (en) Variable displacement swash plate hydraulic pump
JP2009243409A (en) Servo regulator
US8302525B2 (en) Hydraulic stepless transmission
WO2018168883A1 (en) Servo regulator
JP6688980B2 (en) Variable displacement piston pump
JP2022045200A (en) Liquid pressure rotating machine
JP2022045201A (en) Liquid pressure rotating machine
JP5060213B2 (en) Servo regulator
JP2009243663A (en) Servo regulator

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774095

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774095

Country of ref document: EP

Kind code of ref document: A1