WO2017169522A1 - Hybrid saddled vehicle - Google Patents

Hybrid saddled vehicle Download PDF

Info

Publication number
WO2017169522A1
WO2017169522A1 PCT/JP2017/008611 JP2017008611W WO2017169522A1 WO 2017169522 A1 WO2017169522 A1 WO 2017169522A1 JP 2017008611 W JP2017008611 W JP 2017008611W WO 2017169522 A1 WO2017169522 A1 WO 2017169522A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
type vehicle
power
hybrid saddle
internal combustion
Prior art date
Application number
PCT/JP2017/008611
Other languages
French (fr)
Japanese (ja)
Inventor
少覚功
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2018508858A priority Critical patent/JP6550188B2/en
Publication of WO2017169522A1 publication Critical patent/WO2017169522A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M23/00Transmissions characterised by use of other elements; Other transmissions
    • B62M23/02Transmissions characterised by use of other elements; Other transmissions characterised by the use of two or more dissimilar sources of power, e.g. transmissions for hybrid motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/16Arrangements of batteries for propulsion on motorcycles or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/30Arrangements of batteries for providing power to equipment other than for propulsion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a hybrid saddle riding type vehicle including an engine that generates power for transmitting to drive wheels and a motor that assists by adding power to the power generated by the engine in a superimposed manner.
  • Japanese Patent Laid-Open No. 2003-165361 discloses that when a downshift is performed during deceleration, a decrease in engine braking force accompanying release of a clutch is compensated by a regenerative braking force of a motor generator to suppress a change in vehicle deceleration. It is disclosed. In addition, when the engine power is cut off, if the clutch with the low vehicle speed and the engine speed Ne near the idling speed is kept open, the regenerative braking torque of the motor generator is limited according to the vehicle speed. And performing attenuation correction.
  • Japanese Patent Laid-Open No. 2003-165361 does not disclose a specific solution for the idling feeling when the clutch is released.
  • the present invention has been made in consideration of such problems, and an object of the present invention is to provide a hybrid saddle-ride type vehicle that can suppress a feeling of idling caused by a power transmission mechanism connecting and disconnecting power. To do.
  • the present invention has the following features.
  • a hybrid saddle-ride type vehicle includes an internal combustion engine, an electric motor that applies a drive torque and a regenerative torque to a drive shaft of the internal combustion engine, and the power of the internal combustion engine and the electric motor to wheels.
  • a power connection / disconnection determination unit that determines that the power transmission mechanism connects / disconnects power (disconnection / connection) of the internal combustion engine, and regenerative torque of the motor
  • the power transmission mechanism is a centrifugal clutch, and includes a rotation speed detection unit that detects the rotation speed of the internal combustion engine, and the power connection / disconnection determination unit determines a detection value from the rotation speed detection unit. Based on this, the connection / disconnection of the power of the internal combustion engine by the power transmission mechanism is determined.
  • the braking force applied to the hybrid saddle riding type vehicle is a deceleration stage of the hybrid saddle riding type vehicle and the braking force change is performed.
  • a braking force regression unit for returning to the braking force before being changed by the unit is provided.
  • the braking force applied to the hybrid saddle-ride type vehicle by the braking force changing unit decreases stepwise as the rotational speed of the internal combustion engine approaches the rotational speed when the power of the internal combustion engine is cut off. .
  • the change of the braking force by the braking force changing unit is made on the condition that the throttle operated by the occupant is fully closed.
  • the magnitude of the fluctuation of the braking force when the braking force to the hybrid saddle-ride type vehicle is changed by the braking force changing unit is the braking force returned by the braking force returning unit. Less than the magnitude of the fluctuation.
  • the braking force applied to the vehicle is reduced, so that it is possible to suppress the feeling of idling caused by the power transmission mechanism cutting the power.
  • the second feature it is possible to easily determine the power connection / disconnection of the internal combustion engine based on the rotational speed of the internal combustion engine.
  • the braking force regression unit since the braking force when the vehicle is decelerated is larger than the braking force when the power is cut off, the braking force regression unit returns the braking force to the vehicle to the braking force when the vehicle is decelerated. After the disconnection, the regenerative torque at the time of deceleration of the vehicle, which has a greater braking force on the vehicle, can be used for power generation.
  • the driver's operability is uncomfortable by decreasing the braking force of the motor stepwise as the rotational speed of the internal combustion engine approaches the rotational speed when the power of the internal combustion engine is cut off.
  • the braking force of the motor can be changed at the time of power connection / disconnection without giving the power.
  • the braking force changing unit since the braking force changing unit is required to fully close the throttle, the changing of the braking force can be applied only when the vehicle is decelerated.
  • the change in the braking force before the power is cut is changed more gently than after the power is cut, so that a sudden change in the braking force is suppressed, and after the power is cut off, Since the fluctuation of the braking force does not affect the operability of the driver, the braking force can be quickly returned to be used for charging the power generation amount.
  • FIG. 1 is a side view showing a hybrid saddle riding type vehicle according to the present embodiment.
  • FIG. 2 is a configuration diagram showing a hybrid saddle-ride type vehicle.
  • FIG. 3 is a block diagram showing a hybrid saddle-ride type vehicle.
  • FIG. 4A is a characteristic diagram showing a change in regenerative torque with respect to a conventional engine speed.
  • FIG. 4B is a characteristic diagram showing a change in regenerative torque with respect to the engine speed of the present embodiment.
  • FIG. 5 is a flowchart showing the processing operation of the hybrid saddle riding type vehicle.
  • FIG. 6A is a characteristic diagram showing changes in engine speed and vehicle speed with respect to conventional elapsed time.
  • FIG. 6B is a characteristic diagram showing changes in the engine speed and the vehicle speed with respect to the elapsed time of the present embodiment.
  • FIG. 7 is a side view showing another example of the vehicle.
  • FIG. 8 is a configuration diagram illustrating another example of the vehicle.
  • a hybrid saddle riding type vehicle (hereinafter referred to as a vehicle 10) according to the present embodiment is, for example, a scooter type motorcycle as shown in FIG. 1, and includes a front fork 12 that supports a front wheel WF in front of the vehicle body.
  • the front fork 12 is steered by operating the handle 16 via the head pipe 14.
  • the right grip portion of the handle 16 is a turnable accelerator.
  • a down pipe 18 is attached to the head pipe 14 rearward and downward, and an intermediate frame 20 extends substantially horizontally at the lower end of the down pipe 18.
  • a rear frame 22 is provided at the rear end of the intermediate frame 20 rearward and upward.
  • a part of a power unit 24 including a power source is connected to a rear end portion of the intermediate frame 20, and the power unit 24 is rotatably attached to a rear wheel WR as a driving wheel on the rear end side thereof.
  • the suspension is suspended by a rear suspension attached to the rear frame 22.
  • the outer peripheries of the down pipe 18, the intermediate frame 20, and the rear frame 22 are covered with a vehicle body cover 26, and a seat 28 on which a passenger is seated is fixed to the rear upper part of the vehicle body cover 26.
  • a step floor 30 on which a passenger puts his / her foot is provided on the upper part of the intermediate frame 20 between the seat 28 and the down pipe 18.
  • the vehicle 10 is provided on an engine 32 and a drive motor 34 that generate travel driving force, a starter motor 36 that starts the engine 32, and a crankshaft 38 of the engine 32.
  • a CVT (Continuously Variable Transmission, Transmission) 44 that continuously shifts the rotation of the crankshaft 38 to the drive shaft 40 via the centrifugal clutch 42.
  • a one-way clutch 46 that transmits power supplied to the drive shaft 40 only in one direction (rotation direction during forward movement), and a speed reducer 48 that decelerates the rotation and transmits it to the rear wheels WR.
  • the starter motor 36 is not limited to the use for starting the engine 32 but may also be used for assisting driving.
  • An intake pipe 50 communicating with the combustion chamber of the engine 32 includes a throttle valve 52 for adjusting the intake air amount, a negative pressure sensor 54 for detecting a pressure downstream of the throttle valve 52, and a combustion chamber of the engine 32.
  • An injector 56 for injecting fuel is provided.
  • a first rotor sensor 58a is provided in the vicinity of the crankshaft 38, and the engine rotation, which is the rotational speed on the input side, is detected by non-contact detection of the gear teeth as the detected body provided on the crankshaft 38.
  • the number Ne is detected.
  • the diameter around which a V-belt (not shown) is wound is continuously changed by the action of centrifugal force according to the engine speed Ne, and the gear ratio is automatically and steplessly changed.
  • a second rotor sensor 58b is provided in the vicinity of the one-way clutch 46, and an output from the one-way clutch 46 is detected by detecting a plurality of detected objects arranged in an annular manner on the outer periphery of the outer clutch (not shown) in a non-contact manner. Detect the rotation speed.
  • the output rotation speed detected by the second rotor sensor 58b changes in proportion to the vehicle speed V of the vehicle 10 based on the speed ratio of the reduction gear 48 and the diameter of the rear wheel WR. That is, the second rotor sensor 58b also serves as a vehicle speed sensor.
  • the vehicle 10 adjusts the rotation angle of the throttle valve 52, the accelerator sensor 60 for detecting the accelerator operation amount Acc, the first inverter 62a and the second inverter 62b for controlling the starter motor 36 and the drive motor 34.
  • DBW Drive By Wire
  • ECU Electronic Control Unit
  • the ECU 66 has a CPU (Central Processing Unit) as a main control unit, a RAM (Random Access Memory) and a ROM (Read Only Memory) as a storage unit, a driver, and the like. Is realized by reading a program and executing software processing in cooperation with a storage unit or the like.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the first inverter 62a and the second inverter 62b perform drive control and regenerative control of the starter motor 36 and the drive motor 34 under the action of the ECU 66, and supply and charge power to the battery 68 when performing regenerative control. Can do.
  • the battery 68 detects the remaining power SOC with a predetermined sensor and supplies it to the ECU 66.
  • the DBW 64 adjusts the rotation angle of the throttle valve 52 under the action of the ECU 66 and controls the intake air amount to the engine 32.
  • the ECU 66 is in a traveling state determined from the remaining power SOC, the vehicle speed V (detected value of the second rotor sensor 58b), the accelerator operation amount Acc (detected value of the accelerator sensor 60), and the like.
  • the mode control unit 100 that determines the travel mode accordingly is provided.
  • the mode control unit 100 performs the following processing, for example.
  • the start timing of the engine 32 is determined based on the running mode and the like, and a start instruction for the starter motor 36 is given to the first inverter 62a.
  • the drive torque of the drive motor 34 is obtained based on the vehicle speed V (detected value of the second rotor sensor 58b) and the accelerator operation amount Acc (detected value of the accelerator sensor 60), and the second inverter 62b is controlled.
  • the fuel ejection amount and fuel ejection timing by the injector 56 are set based on the engine speed Ne (detected value of the first rotor sensor 58a).
  • the throttle opening degree Th is obtained based on the accelerator operation amount Acc and the detected value (negative pressure Pb) of the negative pressure sensor 54.
  • the travel mode selected by the mode control unit 100 includes an EV travel mode (or an electric travel mode) that travels only with the driving force of the drive motor 34, an engine travel mode that travels only with the drive force of the engine 32, the drive motor 34, and the engine.
  • a hybrid travel mode in which both the vehicle 32 and the vehicle travel are driven.
  • the EV travel mode is selected when the remaining power SOC is large and the travel load is small
  • the engine travel mode is selected when the remaining power SOC is small or the travel load is large.
  • the hybrid driving mode is selected when the remaining power SOC is large and it is necessary to assist the engine 32 with the drive motor 34 at a high load, or when the output of the engine 32 is reduced to reduce fuel consumption. Is done.
  • the mode control unit 100 controls the drive motor 34, the starter motor 36, the injector 56, and the like according to the selected travel mode.
  • the ECU 66 has a power connection / disconnection determination unit 102, a braking force change unit 104, and a braking force regression unit 106.
  • the power connection / disconnection determination unit 102 determines that the centrifugal clutch 42 is connected (transmitted) to the drive shaft 40 or disconnected from the drive shaft 40. This determination can be made based on, for example, the engine speed Ne on the condition that the throttle operated by the passenger is fully closed. Whether or not the throttle opening is fully closed is determined based on the throttle opening Th from the mode control unit 100.
  • the centrifugal clutch 42 is separated from the drive shaft 40 and the power transmission of the rotational force of the crankshaft 38 to the drive shaft 40 is performed. Blocked. That is, the power connection / disconnection determination unit 102 determines that the centrifugal clutch 42 is cutting the power of the engine 32 when the engine speed Ne is equal to or less than the threshold value Nth.
  • the centrifugal clutch 42 contacts the drive shaft 40 and the rotational force of the crankshaft 38 is transmitted to the drive shaft 40. That is, the power connection / disconnection determination unit 102 determines that the centrifugal clutch 42 is transmitting (connecting) the power of the engine 32 when the engine speed Ne exceeds the threshold value Nth. Of course, it may be determined that the centrifugal clutch 42 is connected (transmitted) to the drive shaft 40 or disconnected from the drive shaft 40 by other methods.
  • the power connection / disconnection determination unit 102 outputs a disconnection state signal Sa indicating that the power is disconnected. Output.
  • the braking force changing unit 104 operates, for example, when the throttle opening Th is fully closed, and changes the braking force to the vehicle 10 by changing the regenerative torque of the drive motor 34. That is, the braking force applied to the vehicle 10 when the centrifugal clutch 42 cuts off the power of the engine 32 is the deceleration stage of the vehicle 10 and before the centrifugal clutch 42 cuts off the power of the engine 32. It is made smaller than the braking force to the vehicle 10.
  • the braking force changing unit 104 refers to, for example, the regenerative torque reduction map 108A, and outputs a command value read from the regenerative torque reduction map 108A to the second inverter 62b, so that the braking force necessary for the vehicle 10 is obtained. Give power.
  • command values (regenerative torque) corresponding to the engine speed Ne are arranged, and as shown by the solid line L1 in FIG. 4B, the regenerative torque gradually increases as the engine speed Ne decreases. Is an array of command values that approaches 0. Then, the braking force changing unit 104 reads out a command value corresponding to the engine speed Ne from the regenerative torque reduction map 108A and outputs it to the second inverter 62b.
  • the braking force regression unit 106 operates based on the input of the disconnection state signal Sa from the power connection / disconnection determination unit 102, and applies the braking force to the vehicle 10 at the deceleration stage of the vehicle 10 and the braking force.
  • the braking force before changing is returned to the changing unit 104.
  • the braking force regression unit 106 refers to, for example, the regenerative torque regression map 108B, and outputs a command value read from the regenerative torque regression map 108B to the second inverter 62b, so that the braking force necessary for the vehicle 10 is obtained. give.
  • command values (regenerative torque) corresponding to the engine speed Ne are arranged. As shown by the solid line L2 in FIG. 4B, the engine speed As Ne decreases, the command value is arranged so that the command value (regenerative torque) gradually approaches the regenerative torque before being changed by the braking force changing unit 104. Then, the braking force regression unit 106 reads a command value corresponding to the engine speed Ne from the regenerative torque regression map 108B and outputs it to the second inverter 62b.
  • step S1 of FIG. 5 the power connection / disconnection determination unit 102 determines whether or not the throttle opening Th is fully closed based on the throttle opening Th from the mode control unit 100, and makes it fully closed. Wait for it to become. In the processing from step S1 to step S5, the power connection / disconnection determination unit 102 determines that the power of the crankshaft 38 is connected to the drive shaft 40, and does not output the disconnection state signal Sa.
  • step S2 processing in the braking force changing unit 104 is performed. That is, in step S2, the braking force changing unit 104 acquires the current engine speed Ne. Thereafter, in step S3, a command value corresponding to the current engine speed Ne is read from the regenerative torque reduction map 108A, and in step S4, the read command value is output to the second inverter 62b.
  • step S5 the power connection / disconnection determination unit 102 determines whether or not the centrifugal clutch 42 is cutting power from the crankshaft 38. This determination is made based on whether or not the current engine speed Ne is equal to or less than the threshold value Nth.
  • step S2 If the engine speed Ne is greater than the threshold value Nth, the processes in and after step S2 are repeated. As a result, as indicated by the solid line L1 in FIG. 4B, as the engine speed Ne decreases, the regenerative torque decreases stepwise and approaches zero.
  • step S5 if it is determined in step S5 that the current engine speed Ne is equal to or less than the threshold value Nth, that is, if it is determined that the centrifugal clutch 42 is cutting the power of the crankshaft 38, the power The cutting state signal Sa from the connection / disconnection determination unit 102 is supplied to the braking force regression unit 106, and the braking force regression unit 106 is activated.
  • step S6 the braking force regression unit 106 acquires the current engine speed Ne.
  • step S7 the braking force regression unit 106 reads out a command value corresponding to the current engine speed Ne from the regenerative torque regression map 108B, and outputs the command value to the second inverter 62b in step S8.
  • step S9 the power connection / disconnection determination unit 102 determines whether or not the processing is completed. This determination is made based on whether or not the command value is equal to or less than a preset end command value. As the end command value, a value near the command value when the throttle opening degree Th is fully closed is selected. For example, one command value that is equal to or less than the command value at the time when the throttle opening Th is fully closed and is within a range of ⁇ 1 or more of the command value is selected.
  • FIG. 4B shows an example in which ⁇ 1N ⁇ m, which is one command value included in a range of ⁇ 1.5 N ⁇ m or less and ⁇ 2.5 N ⁇ m or more, is selected.
  • step S6 If the current command value is larger than the end command value, the processes after step S6 are repeated. As a result, as indicated by the solid line L2 in FIG. 4B, as the engine speed Ne decreases, the regenerative torque returns stepwise and the command value (end command value) when the throttle opening Th is fully closed. Will approach.
  • step S9 when the command value becomes equal to or less than the end command value, the processing in the power connection / disconnection determination unit 102, the braking force change unit 104, and the braking force regression unit 106 ends.
  • the braking force changing unit 104 operates from the time when the throttle opening degree Th is fully closed, and gradually regenerates as the engine speed Ne decreases.
  • the torque is changed toward 0 N ⁇ m. That is, the braking force applied to the vehicle 10 gradually decreases as the engine speed Ne approaches a preset value (the engine speed at which the centrifugal clutch 42 cuts power).
  • the regenerative torque is set to around 0, for example, from ⁇ 0.5 N ⁇ m to 0 N ⁇ m.
  • the braking force regression unit 106 operates, and the regenerative torque is returned to the same value (eg, ⁇ 2 N ⁇ m) as that before the braking force change unit 104 operates.
  • the braking force that returns the braking force to the vehicle 10 to the braking force at the deceleration stage of the vehicle 10 and before being changed by the braking force changing unit 104 is provided. Since the braking force when the vehicle 10 is decelerated after the centrifugal clutch 42 is disengaged is larger than the braking force when the centrifugal clutch 42 is disengaged, the braking force regression unit 106 causes the large regenerative torque after the disengagement of the centrifugal clutch 42, that is, The regenerative torque that is greater than the braking force applied to the vehicle 10 when the vehicle 10 is decelerated can be applied to power generation.
  • centrifugal clutch 42 is disconnected according to the engine speed Ne, it is possible to easily detect the power connection / disconnection of the engine 32, and to simplify the circuit configuration of the power connection / disconnection determination unit 102.
  • the braking force regression unit 106 can be activated stably.
  • the braking force applied to the vehicle 10 by the braking force changing unit 104 is gradually reduced as the engine speed Ne approaches the engine speed Ne when the centrifugal clutch 42 is disconnected.
  • the regenerative torque is made to approach 0 stepwise. Therefore, as the engine speed Ne approaches the engine speed Ne when the centrifugal clutch 42 is disengaged, the braking force to the vehicle 10 decreases stepwise, and the operability of the occupant is not felt uncomfortable.
  • the braking force to the vehicle 10 can be changed at the time of cutting.
  • the change in the braking force by the braking force changing unit 104 is made on the condition that the throttle opening Th operated by the occupant is fully closed, the braking force is changed only when the vehicle 10 is decelerated. Can be applied.
  • the magnitude of fluctuation of the braking force when the braking force to the vehicle 10 is changed by the braking force changing unit 104 is returned by the braking force returning unit 106 after the centrifugal clutch 42 is disconnected.
  • the magnitude of the fluctuation of the braking force to be made is smaller.
  • the change (inclination) per unit engine speed of the regenerative torque (absolute value) by the braking force changing unit 104 is represented by a braking force regression as shown by a solid line L2.
  • the regenerative torque (absolute value) by the unit 106 is made smaller than the change (inclination) per unit engine speed.
  • the regenerative torque can also be corrected according to the following conditions after setting a reference value based on changes in engine friction due to the presence or absence of fuel injection.
  • the present invention is not limited to the above-described embodiment, and it is naturally possible to adopt various configurations without departing from the gist of the present invention.
  • a rear frame 114 that supports a seat cowl 112 and a seat 28 is coupled to a rear end portion of the intermediate frame 20.
  • the fuel tank 116 is disposed inside the span portion 117 so as to cover the intermediate frame 20 from above.
  • a unit swing type power unit 24 on which a rear wheel WR is rotatably supported is attached to the rear of the fuel tank 116.
  • a transmission case 118 in which a belt-type continuously variable transmission is installed is integrally provided at the rear portion of the power unit 24, and an air cleaner box 120 is attached to an upper portion of the transmission case 118.
  • the power unit 24 is pivotally supported on the front side of the rear frame 114 and supported so as to be suspended from the rear shock 121 on the rear side of the rear frame 114.
  • the power unit 24 of the vehicle 10a includes an ACG starter motor 110 in which a starter motor (cell motor) that starts an engine as a drive source and a generator that generates electric power with the rotational driving force of the engine are integrated.
  • the first inverter 62a and the ECU 66 are integrated, and the DBW 64, the second inverter 62b, and the drive motor 34 (see FIG. 2) do not exist.
  • the second rotor sensor 58b detects the rotational speed of the final gear of the speed reducer 48.

Abstract

The present invention pertains to a hybrid saddled vehicle. This hybrid saddled vehicle is equipped with: a power connection/disconnection determination unit (102) that determines whether the power of an engine (32) is connected or disconnected by a centrifugal clutch (42); and a braking force change unit (104) that changes the braking force to be applied to the vehicle (10) by changing the regenerative torque of a drive motor (34). The braking force applied to the vehicle (10) during disconnection of power from the engine (32) is smaller than that at the deceleration stage of the vehicle (10) before disconnection of power from the engine (32).

Description

ハイブリッド鞍乗り型車両Hybrid saddle-ride type vehicle
 本発明は、駆動輪に伝達するための動力を発生するエンジンと、該エンジンの発生する動力に重畳的に動力を付加してアシストするモータとを備えるハイブリッド鞍乗り型車両に関する。 The present invention relates to a hybrid saddle riding type vehicle including an engine that generates power for transmitting to drive wheels and a motor that assists by adding power to the power generated by the engine in a superimposed manner.
 特開2003-165361号公報には、減速時にダウンシフトする場合に、クラッチの開放に伴うエンジンブレーキ力の低下を、モータジェネレータの回生制動力により補い、車両の減速度の変化を抑制することが開示されている。また、エンジンの動力の切断時に、低車速、且つ、エンジン回転数Neがアイドリング回転数付近であるクラッチが開放された状態に継続される場合は、車速に応じてモータジェネレータの回生制動トルクの制限と、減衰補正を行うことが開示されている。 Japanese Patent Laid-Open No. 2003-165361 discloses that when a downshift is performed during deceleration, a decrease in engine braking force accompanying release of a clutch is compensated by a regenerative braking force of a motor generator to suppress a change in vehicle deceleration. It is disclosed. In addition, when the engine power is cut off, if the clutch with the low vehicle speed and the engine speed Ne near the idling speed is kept open, the regenerative braking torque of the motor generator is limited according to the vehicle speed. And performing attenuation correction.
 ところで、遠心クラッチを備える鞍乗り型車両においては、減速時に遠心クラッチが離れることによる空走感(free-running feeling)が発生するがこのクラッチ開放時における空走感を低減することが望まれる。 By the way, in a saddle-ride type vehicle equipped with a centrifugal clutch, a free-running feeling is generated due to the separation of the centrifugal clutch during deceleration. However, it is desired to reduce the feeling of idling when the clutch is released.
 しかしながら、特開2003-165361号公報には、クラッチ開放時における空走感についての具体的な解決策は開示されていない。 However, Japanese Patent Laid-Open No. 2003-165361 does not disclose a specific solution for the idling feeling when the clutch is released.
 本発明は、このような課題を考慮してなされたものであり、動力伝達機構が動力を断接することによって生じる空走感を抑制することができるハイブリッド鞍乗り型車両を提供することを目的とする。 The present invention has been made in consideration of such problems, and an object of the present invention is to provide a hybrid saddle-ride type vehicle that can suppress a feeling of idling caused by a power transmission mechanism connecting and disconnecting power. To do.
 本発明は以下の特徴を有する。 The present invention has the following features.
 第1の特徴;本発明に係るハイブリッド鞍乗り型車両は、内燃機関と、前記内燃機関の駆動軸へ駆動トルク及び回生トルクを付与する電動機と、前記内燃機関と前記電動機の動力を車輪に伝達する動力伝達機構と、を備えるハイブリッド鞍乗り型車両において、前記動力伝達機構が前記内燃機関の動力を断接(切断と接続)することを判断する動力断接判定部と、前記電動機の回生トルクを変更することにより、当該ハイブリッド鞍乗り型車両への制動力を変化させる制動力変更部とを備え、前記内燃機関の動力を切断する際の当該ハイブリッド鞍乗り型車両への制動力は、当該ハイブリッド鞍乗り型車両の減速段階であって、且つ、前記内燃機関の動力を切断する前の当該ハイブリッド鞍乗り型車両への制動力より小さいことを特徴とする。 First feature: A hybrid saddle-ride type vehicle according to the present invention includes an internal combustion engine, an electric motor that applies a drive torque and a regenerative torque to a drive shaft of the internal combustion engine, and the power of the internal combustion engine and the electric motor to wheels. In a hybrid saddle-ride type vehicle having a power transmission mechanism that performs power transmission / reception, a power connection / disconnection determination unit that determines that the power transmission mechanism connects / disconnects power (disconnection / connection) of the internal combustion engine, and regenerative torque of the motor By changing the braking force to the hybrid saddle riding type vehicle, and the braking force to the hybrid saddle riding type vehicle when the power of the internal combustion engine is cut off is It is a deceleration stage of the hybrid saddle riding type vehicle and is smaller than the braking force to the hybrid saddle riding type vehicle before the power of the internal combustion engine is cut off. .
 第2の特徴:前記動力伝達機構は、遠心クラッチであり、前記内燃機関の回転数を検出する回転数検出部を備え、前記動力断接判定部は、前記回転数検出部からの検出値に基づいて、前記動力伝達機構による前記内燃機関の動力の断接を判定する。 Second feature: The power transmission mechanism is a centrifugal clutch, and includes a rotation speed detection unit that detects the rotation speed of the internal combustion engine, and the power connection / disconnection determination unit determines a detection value from the rotation speed detection unit. Based on this, the connection / disconnection of the power of the internal combustion engine by the power transmission mechanism is determined.
 第3の特徴:前記動力伝達機構による前記内燃機関の動力の切断後に、当該ハイブリッド鞍乗り型車両への制動力を、当該ハイブリッド鞍乗り型車両の減速段階であって、且つ、前記制動力変更部によって変更する前の制動力に戻す制動力回帰部を備える。 Third feature: After the power of the internal combustion engine is cut off by the power transmission mechanism, the braking force applied to the hybrid saddle riding type vehicle is a deceleration stage of the hybrid saddle riding type vehicle and the braking force change is performed. A braking force regression unit for returning to the braking force before being changed by the unit is provided.
 第4の特徴:前記制動力変更部による当該ハイブリッド鞍乗り型車両への制動力は、前記内燃機関の回転数が前記内燃機関の動力の切断時の回転数に近づくにつれ、段階的に小さくなる。 Fourth feature: The braking force applied to the hybrid saddle-ride type vehicle by the braking force changing unit decreases stepwise as the rotational speed of the internal combustion engine approaches the rotational speed when the power of the internal combustion engine is cut off. .
 第5の特徴:前記制動力変更部による前記制動力の変化は、乗員が操作するスロットルが全閉の時を条件とする。 Fifth feature: The change of the braking force by the braking force changing unit is made on the condition that the throttle operated by the occupant is fully closed.
 第6の特徴:前記制動力変更部によって、当該ハイブリッド鞍乗り型車両への制動力が変更される際の前記制動力の変動の大きさは、前記制動力回帰部によって回帰される制動力の変動の大きさよりも小さい。 Sixth feature: The magnitude of the fluctuation of the braking force when the braking force to the hybrid saddle-ride type vehicle is changed by the braking force changing unit is the braking force returned by the braking force returning unit. Less than the magnitude of the fluctuation.
 第1の特徴によれば、動力伝達機構が動力を切断する際に、車両への制動力を低減させることによって、動力伝達機構が動力を切断することによって生じる空走感を抑制することができる。 According to the first feature, when the power transmission mechanism cuts the power, the braking force applied to the vehicle is reduced, so that it is possible to suppress the feeling of idling caused by the power transmission mechanism cutting the power. .
 第2の特徴によれば、内燃機関の回転数によって、容易に内燃機関の動力の断接を判別することができる。 According to the second feature, it is possible to easily determine the power connection / disconnection of the internal combustion engine based on the rotational speed of the internal combustion engine.
 第3の特徴によれば、車両の減速時の制動力は、動力の切断時の制動力より大きいため、車両への制動力を車両の減速時の制動力に戻す制動力回帰部によって、動力の切断後に、車両への制動力がより大きい、車両の減速時の回生トルクを発電に充てることができる。 According to the third feature, since the braking force when the vehicle is decelerated is larger than the braking force when the power is cut off, the braking force regression unit returns the braking force to the vehicle to the braking force when the vehicle is decelerated. After the disconnection, the regenerative torque at the time of deceleration of the vehicle, which has a greater braking force on the vehicle, can be used for power generation.
 第4の特徴によれば、前記内燃機関の回転数が前記内燃機関の動力の切断時の回転数に近づくにつれて、電動機の制動力を段階的に小さくすることによって、運転手の操作性に違和感を与えることなく、動力断接時に電動機の制動力を変化させることができる。 According to the fourth feature, the driver's operability is uncomfortable by decreasing the braking force of the motor stepwise as the rotational speed of the internal combustion engine approaches the rotational speed when the power of the internal combustion engine is cut off. The braking force of the motor can be changed at the time of power connection / disconnection without giving the power.
 第5の特徴によれば、制動力変更部は、スロットルが全閉されることが条件となるため、車両の減速時のみに制動力の変更を適用することができる。 According to the fifth feature, since the braking force changing unit is required to fully close the throttle, the changing of the braking force can be applied only when the vehicle is decelerated.
 第6の特徴によれば、動力の切断前の制動力の変化を、動力の切断後よりも緩やかに変更することで、急激に制動力が変化することを抑制すると共に、動力の切断後では、制動力の変動が運転者の操作性に影響しないため、速やかに制動力を回帰し、発電量の充電に充てることができる。 According to the sixth feature, the change in the braking force before the power is cut is changed more gently than after the power is cut, so that a sudden change in the braking force is suppressed, and after the power is cut off, Since the fluctuation of the braking force does not affect the operability of the driver, the braking force can be quickly returned to be used for charging the power generation amount.
図1は、本実施の形態に係るハイブリッド鞍乗り型車両を示す側面図である。FIG. 1 is a side view showing a hybrid saddle riding type vehicle according to the present embodiment. 図2は、ハイブリッド鞍乗り型車両を示す構成図である。FIG. 2 is a configuration diagram showing a hybrid saddle-ride type vehicle. 図3は、ハイブリッド鞍乗り型車両を示すブロック図である。FIG. 3 is a block diagram showing a hybrid saddle-ride type vehicle. 図4Aは、従来のエンジン回転数に対する回生トルクの変化を示す特性図である。図4Bは、本実施の形態のエンジン回転数に対する回生トルクの変化を示す特性図である。FIG. 4A is a characteristic diagram showing a change in regenerative torque with respect to a conventional engine speed. FIG. 4B is a characteristic diagram showing a change in regenerative torque with respect to the engine speed of the present embodiment. 図5は、ハイブリッド鞍乗り型車両の処理動作を示すフローチャートである。FIG. 5 is a flowchart showing the processing operation of the hybrid saddle riding type vehicle. 図6Aは、従来の経過時間に対するエンジン回転数と車速の変化を示す特性図である。図6Bは、本実施の形態の経過時間に対するエンジン回転数と車速の変化を示す特性図である。FIG. 6A is a characteristic diagram showing changes in engine speed and vehicle speed with respect to conventional elapsed time. FIG. 6B is a characteristic diagram showing changes in the engine speed and the vehicle speed with respect to the elapsed time of the present embodiment. 図7は、車両の他の例を示す側面図である。FIG. 7 is a side view showing another example of the vehicle. 図8は、車両の他の例を示す構成図である。FIG. 8 is a configuration diagram illustrating another example of the vehicle.
 以下、本発明に係るハイブリッド鞍乗り型車両の実施の形態例を図1~図8を参照しながら説明する。 Hereinafter, embodiments of the hybrid saddle riding type vehicle according to the present invention will be described with reference to FIGS.
 本実施の形態に係るハイブリッド鞍乗り型車両(以下、車両10と記す)は、図1に示すように、例えばスクータ式の自動二輪車であって、車体前方に前輪WFを軸支するフロントフォーク12を有し、該フロントフォーク12はヘッドパイプ14を介してハンドル16の操作によって操舵される。ハンドル16における右グリップ部は回動可能なアクセルとなっている。 A hybrid saddle riding type vehicle (hereinafter referred to as a vehicle 10) according to the present embodiment is, for example, a scooter type motorcycle as shown in FIG. 1, and includes a front fork 12 that supports a front wheel WF in front of the vehicle body. The front fork 12 is steered by operating the handle 16 via the head pipe 14. The right grip portion of the handle 16 is a turnable accelerator.
 ヘッドパイプ14には、後方且つ下方に向けてダウンパイプ18が取り付けられており、該ダウンパイプ18の下端には中間フレーム20が略水平に延設されている。中間フレーム20の後端には後方且つ上方に向けて後部フレーム22が設けられている。 A down pipe 18 is attached to the head pipe 14 rearward and downward, and an intermediate frame 20 extends substantially horizontally at the lower end of the down pipe 18. A rear frame 22 is provided at the rear end of the intermediate frame 20 rearward and upward.
 中間フレーム20の後端部には動力源を含むパワーユニット24の一部が接続されており、該パワーユニット24は、その後方の端部側に駆動輪である後輪WRが回転可能に取り付けられると共に、後部フレーム22に取り付けられたリアサスペンションにより吊り下げられている。 A part of a power unit 24 including a power source is connected to a rear end portion of the intermediate frame 20, and the power unit 24 is rotatably attached to a rear wheel WR as a driving wheel on the rear end side thereof. The suspension is suspended by a rear suspension attached to the rear frame 22.
 ダウンパイプ18、中間フレーム20及び後部フレーム22の外周は、車体カバー26で覆われており、該車体カバー26の後方上部には、搭乗者が着座するシート28が固定されている。該シート28とダウンパイプ18との間における中間フレーム20の上部には、搭乗者が足を置くステップフロア30が設けられている。 The outer peripheries of the down pipe 18, the intermediate frame 20, and the rear frame 22 are covered with a vehicle body cover 26, and a seat 28 on which a passenger is seated is fixed to the rear upper part of the vehicle body cover 26. On the upper part of the intermediate frame 20 between the seat 28 and the down pipe 18, a step floor 30 on which a passenger puts his / her foot is provided.
 次に、車両10の主要な構成について図2を参照しながら説明する。 Next, the main configuration of the vehicle 10 will be described with reference to FIG.
 図2に示すように、車両10は、走行駆動力を発生するエンジン32及び駆動モータ34と、エンジン32を始動させるスタータモータ36と、エンジン32のクランク軸38に設けられ、クランク軸38の動力を駆動軸40に断接(切断と接続)する遠心クラッチ42と、該遠心クラッチ42を介してクランク軸38の回転を駆動軸40に無段階に変速するCVT(Continuously Variable Transmission、変速機)44と、駆動軸40に供給された動力を一方向(前進時の回転方向)にのみ伝達するワンウェイクラッチ46と、回転を減速して後輪WRに伝達する減速機48とを有する。スタータモータ36はエンジン32の始動の用途に限らず、走行駆動の補助用に兼用としてもよい。 As shown in FIG. 2, the vehicle 10 is provided on an engine 32 and a drive motor 34 that generate travel driving force, a starter motor 36 that starts the engine 32, and a crankshaft 38 of the engine 32. And a CVT (Continuously Variable Transmission, Transmission) 44 that continuously shifts the rotation of the crankshaft 38 to the drive shaft 40 via the centrifugal clutch 42. And a one-way clutch 46 that transmits power supplied to the drive shaft 40 only in one direction (rotation direction during forward movement), and a speed reducer 48 that decelerates the rotation and transmits it to the rear wheels WR. The starter motor 36 is not limited to the use for starting the engine 32 but may also be used for assisting driving.
 エンジン32の燃焼室に連通する吸気管路50には、吸気量を調整するためのスロットルバルブ52と、該スロットルバルブ52の下流側の圧力を検出する負圧センサ54と、エンジン32の燃焼室に燃料を噴射するインジェクタ56が設けられている。 An intake pipe 50 communicating with the combustion chamber of the engine 32 includes a throttle valve 52 for adjusting the intake air amount, a negative pressure sensor 54 for detecting a pressure downstream of the throttle valve 52, and a combustion chamber of the engine 32. An injector 56 for injecting fuel is provided.
 クランク軸38の近傍には第1ロータセンサ58aが設けられており、クランク軸38に設けられた被検知体としてのギアの歯を非接触で検知することにより入力側の回転数であるエンジン回転数Neを検出する。CVT44では、エンジン回転数Neに応じた遠心力の作用によって図示しないVベルトの巻き掛ける径が連続的に変化し、変速比が自動的、且つ、無段階に変化する。 A first rotor sensor 58a is provided in the vicinity of the crankshaft 38, and the engine rotation, which is the rotational speed on the input side, is detected by non-contact detection of the gear teeth as the detected body provided on the crankshaft 38. The number Ne is detected. In the CVT 44, the diameter around which a V-belt (not shown) is wound is continuously changed by the action of centrifugal force according to the engine speed Ne, and the gear ratio is automatically and steplessly changed.
 ワンウェイクラッチ46の近傍部には、第2ロータセンサ58bが設けられており、図示しないアウタクラッチの外周部に環状配置された複数の被検知体を非接触で検知することによりワンウェイクラッチ46における出力回転速度を検出する。第2ロータセンサ58bが検出する出力回転速度は、車両10の車速Vに対して減速機48の変速比及び後輪WRの径に基づく比例的な変化をする。つまり、第2ロータセンサ58bは車速センサを兼ねている。 A second rotor sensor 58b is provided in the vicinity of the one-way clutch 46, and an output from the one-way clutch 46 is detected by detecting a plurality of detected objects arranged in an annular manner on the outer periphery of the outer clutch (not shown) in a non-contact manner. Detect the rotation speed. The output rotation speed detected by the second rotor sensor 58b changes in proportion to the vehicle speed V of the vehicle 10 based on the speed ratio of the reduction gear 48 and the diameter of the rear wheel WR. That is, the second rotor sensor 58b also serves as a vehicle speed sensor.
 さらに、この車両10は、アクセル操作量Accを検出するアクセルセンサ60と、スタータモータ36及び駆動モータ34の制御を行う第1インバータ62a及び第2インバータ62bと、スロットルバルブ52の回動角を調整するDBW(Drive By Wire)64と、車両10の統合的な制御を行うECU(Electric Control Unit)66とを有する。 Further, the vehicle 10 adjusts the rotation angle of the throttle valve 52, the accelerator sensor 60 for detecting the accelerator operation amount Acc, the first inverter 62a and the second inverter 62b for controlling the starter motor 36 and the drive motor 34. DBW (Drive By Wire) 64 and an ECU (Electric Control Unit) 66 that performs integrated control of the vehicle 10.
 ECU66は、主たる制御部としてのCPU(Central Processing Unit)と、記憶部としてのRAM(Random Access Memory)及びROM(Read Only Memory)及びドライバ等を有しており、上記の各機能部は、CPUがプログラムを読み込み、記憶部等と協動しながらソフトウェア処理を実行することにより実現される。 The ECU 66 has a CPU (Central Processing Unit) as a main control unit, a RAM (Random Access Memory) and a ROM (Read Only Memory) as a storage unit, a driver, and the like. Is realized by reading a program and executing software processing in cooperation with a storage unit or the like.
 第1インバータ62a及び第2インバータ62bはECU66の作用下にスタータモータ36及び駆動モータ34の駆動制御及び回生制御を行い、回生制御を行う際にはバッテリ68に対して電力を供給、充電させることができる。バッテリ68は、所定のセンサにより電力残量SOCを検出してECU66へ供給する。DBW64は、ECU66の作用下にスロットルバルブ52の回動角を調整しエンジン32に対する吸気量を制御する。 The first inverter 62a and the second inverter 62b perform drive control and regenerative control of the starter motor 36 and the drive motor 34 under the action of the ECU 66, and supply and charge power to the battery 68 when performing regenerative control. Can do. The battery 68 detects the remaining power SOC with a predetermined sensor and supplies it to the ECU 66. The DBW 64 adjusts the rotation angle of the throttle valve 52 under the action of the ECU 66 and controls the intake air amount to the engine 32.
 さらに、図3に示すように、ECU66は、電力残量SOC、車速V(第2ロータセンサ58bの検出値)及びアクセル操作量Acc(アクセルセンサ60の検出値)等から判断される走行状況に応じて走行モードを判断するモード制御部100を有する。 Further, as shown in FIG. 3, the ECU 66 is in a traveling state determined from the remaining power SOC, the vehicle speed V (detected value of the second rotor sensor 58b), the accelerator operation amount Acc (detected value of the accelerator sensor 60), and the like. The mode control unit 100 that determines the travel mode accordingly is provided.
 このモード制御部100は、例えば以下の示す処理を行う。 The mode control unit 100 performs the following processing, for example.
 (A) 走行モード等に基づいてエンジン32の始動タイミングを判断して第1インバータ62aに対してスタータモータ36の始動指示を与える。 (A) The start timing of the engine 32 is determined based on the running mode and the like, and a start instruction for the starter motor 36 is given to the first inverter 62a.
 (B) 車速V(第2ロータセンサ58bの検出値)及びアクセル操作量Acc(アクセルセンサ60の検出値)に基づいて駆動モータ34の駆動トルクを求め、第2インバータ62bを制御する。 (B) The drive torque of the drive motor 34 is obtained based on the vehicle speed V (detected value of the second rotor sensor 58b) and the accelerator operation amount Acc (detected value of the accelerator sensor 60), and the second inverter 62b is controlled.
 (C) エンジン回転数Ne(第1ロータセンサ58aの検出値)に基づいてインジェクタ56による燃料噴出量及び燃料噴出タイミングを設定する。 (C) The fuel ejection amount and fuel ejection timing by the injector 56 are set based on the engine speed Ne (detected value of the first rotor sensor 58a).
 (D) アクセル操作量Accと負圧センサ54の検出値(負圧Pb)に基づいてスロットル開度Thを求める。 (D) The throttle opening degree Th is obtained based on the accelerator operation amount Acc and the detected value (negative pressure Pb) of the negative pressure sensor 54.
 モード制御部100により選択される走行モードは、駆動モータ34の駆動力のみで走行するEV走行モード(又は電動走行モード)、エンジン32の駆動力のみで走行するエンジン走行モード、駆動モータ34及びエンジン32の両方を駆動させて走行するハイブリッド走行モード等が挙げられる。このうち、EV走行モードは、電力残量SOCが大きく、且つ、走行負荷が小さいときに選択され、エンジン走行モードは、電力残量SOCが小さく、又は走行負荷が大きいときに選択される。ハイブリッド走行モードは、電力残量SOCが大きく、且つ高負荷でエンジン32を駆動モータ34でアシストする必要がある場合、又は燃料消費量を抑制するためにエンジン32の出力を低下させる場合等に選択される。モード制御部100は選択した走行モードに応じて駆動モータ34、スタータモータ36、インジェクタ56等を制御する。 The travel mode selected by the mode control unit 100 includes an EV travel mode (or an electric travel mode) that travels only with the driving force of the drive motor 34, an engine travel mode that travels only with the drive force of the engine 32, the drive motor 34, and the engine. A hybrid travel mode in which both the vehicle 32 and the vehicle travel are driven. Among these, the EV travel mode is selected when the remaining power SOC is large and the travel load is small, and the engine travel mode is selected when the remaining power SOC is small or the travel load is large. The hybrid driving mode is selected when the remaining power SOC is large and it is necessary to assist the engine 32 with the drive motor 34 at a high load, or when the output of the engine 32 is reduced to reduce fuel consumption. Is done. The mode control unit 100 controls the drive motor 34, the starter motor 36, the injector 56, and the like according to the selected travel mode.
 さらに、ECU66は、動力断接判定部102と、制動力変更部104と、制動力回帰部106とを有する。 Furthermore, the ECU 66 has a power connection / disconnection determination unit 102, a braking force change unit 104, and a braking force regression unit 106.
 動力断接判定部102は、遠心クラッチ42がエンジン32の動力を駆動軸40に接続(伝達)している、又は駆動軸40から切断していることを判断する。この判断は、乗員が操作するスロットルが全閉であることを条件に、例えばエンジン回転数Neに基づいて行うことができる。スロットル開度が全閉であるかどうかは、モード制御部100からのスロットル開度Thに基づいて判定する。 The power connection / disconnection determination unit 102 determines that the centrifugal clutch 42 is connected (transmitted) to the drive shaft 40 or disconnected from the drive shaft 40. This determination can be made based on, for example, the engine speed Ne on the condition that the throttle operated by the passenger is fully closed. Whether or not the throttle opening is fully closed is determined based on the throttle opening Th from the mode control unit 100.
 また、遠心クラッチ42は、エンジン回転数Neが所定値(しきい値Nth)以下の場合には遠心クラッチ42が駆動軸40から離れ、クランク軸38の回転力の駆動軸40への動力伝達が遮断される。すなわち、動力断接判定部102は、エンジン回転数Neがしきい値Nth以下の場合には、遠心クラッチ42がエンジン32の動力を切断していると判断する。 Further, when the engine speed Ne is equal to or less than a predetermined value (threshold value Nth), the centrifugal clutch 42 is separated from the drive shaft 40 and the power transmission of the rotational force of the crankshaft 38 to the drive shaft 40 is performed. Blocked. That is, the power connection / disconnection determination unit 102 determines that the centrifugal clutch 42 is cutting the power of the engine 32 when the engine speed Ne is equal to or less than the threshold value Nth.
 一方、エンジン回転数Neが上昇してしきい値Nthを超えると、遠心クラッチ42が駆動軸40に接触し、クランク軸38の回転力が駆動軸40に伝達される。すなわち、動力断接判定部102は、エンジン回転数Neがしきい値Nthを超えた場合には、遠心クラッチ42がエンジン32の動力を伝達(接続)していると判断する。もちろん、他の手法にて、遠心クラッチ42がエンジン32の動力を駆動軸40に接続(伝達)している、又は駆動軸40から切断していることを判断してもよい。 On the other hand, when the engine speed Ne increases and exceeds the threshold value Nth, the centrifugal clutch 42 contacts the drive shaft 40 and the rotational force of the crankshaft 38 is transmitted to the drive shaft 40. That is, the power connection / disconnection determination unit 102 determines that the centrifugal clutch 42 is transmitting (connecting) the power of the engine 32 when the engine speed Ne exceeds the threshold value Nth. Of course, it may be determined that the centrifugal clutch 42 is connected (transmitted) to the drive shaft 40 or disconnected from the drive shaft 40 by other methods.
 そして、動力断接判定部102は、エンジン回転数Neがしきい値Nth(遠心クラッチ42が切断するエンジン回転数Ne)以下の場合に、動力が切断していることを示す切断状態信号Saを出力する。 Then, when the engine speed Ne is equal to or lower than the threshold value Nth (the engine speed Ne at which the centrifugal clutch 42 is disconnected), the power connection / disconnection determination unit 102 outputs a disconnection state signal Sa indicating that the power is disconnected. Output.
 制動力変更部104は、例えばスロットル開度Thが全閉となった段階で動作し、駆動モータ34の回生トルクを変更することにより、当該車両10への制動力を変化させる。すなわち、遠心クラッチ42がエンジン32の動力を切断する際の当該車両10への制動力を、当該車両10の減速段階であって、且つ、遠心クラッチ42がエンジン32の動力を切断する前の当該車両10への制動力より小さくする。 The braking force changing unit 104 operates, for example, when the throttle opening Th is fully closed, and changes the braking force to the vehicle 10 by changing the regenerative torque of the drive motor 34. That is, the braking force applied to the vehicle 10 when the centrifugal clutch 42 cuts off the power of the engine 32 is the deceleration stage of the vehicle 10 and before the centrifugal clutch 42 cuts off the power of the engine 32. It is made smaller than the braking force to the vehicle 10.
 具体的には、制動力変更部104は、例えば回生トルク低減マップ108Aを参照して、回生トルク低減マップ108Aから読み出した指令値を第2インバータ62bに出力することによって、車両10に必要な制動力を与える。 Specifically, the braking force changing unit 104 refers to, for example, the regenerative torque reduction map 108A, and outputs a command value read from the regenerative torque reduction map 108A to the second inverter 62b, so that the braking force necessary for the vehicle 10 is obtained. Give power.
 回生トルク低減マップ108Aは、例えばエンジン回転数Neに対応した指令値(回生トルク)が配列されており、図4Bの実線L1に示すように、エンジン回転数Neが低下するにつれて、徐々に回生トルクが0に近づくような指令値の配列になっている。そして、制動力変更部104は、エンジン回転数Neに対応した指令値を回生トルク低減マップ108Aから読み出して第2インバータ62bに出力する。 In the regenerative torque reduction map 108A, for example, command values (regenerative torque) corresponding to the engine speed Ne are arranged, and as shown by the solid line L1 in FIG. 4B, the regenerative torque gradually increases as the engine speed Ne decreases. Is an array of command values that approaches 0. Then, the braking force changing unit 104 reads out a command value corresponding to the engine speed Ne from the regenerative torque reduction map 108A and outputs it to the second inverter 62b.
 制動力回帰部106は、動力断接判定部102からの切断状態信号Saの入力に基づいて動作し、当該車両10への制動力を、当該車両10の減速段階であって、且つ、制動力変更部104によって変更する前の制動力に戻す。 The braking force regression unit 106 operates based on the input of the disconnection state signal Sa from the power connection / disconnection determination unit 102, and applies the braking force to the vehicle 10 at the deceleration stage of the vehicle 10 and the braking force. The braking force before changing is returned to the changing unit 104.
 具体的には、制動力回帰部106は、例えば回生トルク回帰マップ108Bを参照し、回生トルク回帰マップ108Bから読み出した指令値を第2インバータ62bに出力することによって、車両10に必要な制動力を与える。 Specifically, the braking force regression unit 106 refers to, for example, the regenerative torque regression map 108B, and outputs a command value read from the regenerative torque regression map 108B to the second inverter 62b, so that the braking force necessary for the vehicle 10 is obtained. give.
 回生トルク回帰マップ108Bは、上述した回生トルク低減マップ108Aと同様に、エンジン回転数Neに対応した指令値(回生トルク)が配列されており、図4Bの実線L2に示すように、エンジン回転数Neが低下するにつれて、徐々に指令値(回生トルク)が制動力変更部104によって変更する前の回生トルクに近づくような指令値の配列になっている。そして、制動力回帰部106は、エンジン回転数Neに対応した指令値を回生トルク回帰マップ108Bから読み出して第2インバータ62bに出力する。 In the regenerative torque regression map 108B, similarly to the regenerative torque reduction map 108A described above, command values (regenerative torque) corresponding to the engine speed Ne are arranged. As shown by the solid line L2 in FIG. 4B, the engine speed As Ne decreases, the command value is arranged so that the command value (regenerative torque) gradually approaches the regenerative torque before being changed by the braking force changing unit 104. Then, the braking force regression unit 106 reads a command value corresponding to the engine speed Ne from the regenerative torque regression map 108B and outputs it to the second inverter 62b.
 次に、本実施の形態に係る車両10の処理動作、特に、動力断接判定処理、制動力変更処理及び制動力回帰処理について図5のフローチャートを参照しながら説明する。これらの処理は、例えばECU66での他の処理とマルチタスク方式で行われる。 Next, processing operations of the vehicle 10 according to the present embodiment, in particular, power connection / disconnection determination processing, braking force change processing, and braking force regression processing will be described with reference to the flowchart of FIG. These processes are performed in a multitasking manner with other processes in the ECU 66, for example.
 先ず、図5のステップS1において、動力断接判定部102は、モード制御部100からのスロットル開度Thに基づいて、スロットル開度Thが全閉であるか否かを判別し、全閉になるのを待つ。このステップS1からステップS5の処理においては、動力断接判定部102は、クランク軸38の動力が駆動軸40に接続していると判定し、切断状態信号Saを出力しない。 First, in step S1 of FIG. 5, the power connection / disconnection determination unit 102 determines whether or not the throttle opening Th is fully closed based on the throttle opening Th from the mode control unit 100, and makes it fully closed. Wait for it to become. In the processing from step S1 to step S5, the power connection / disconnection determination unit 102 determines that the power of the crankshaft 38 is connected to the drive shaft 40, and does not output the disconnection state signal Sa.
 スロットル開度Thが全閉になった段階で、先ず、制動力変更部104での処理が行われる。すなわち、ステップS2において、制動力変更部104は、現在のエンジン回転数Neを取得する。その後、ステップS3において、回生トルク低減マップ108Aから現在のエンジン回転数Neに対応する指令値を読み出し、ステップS4において、読み出した指令値を第2インバータ62bに出力する。 At the stage where the throttle opening Th is fully closed, first, processing in the braking force changing unit 104 is performed. That is, in step S2, the braking force changing unit 104 acquires the current engine speed Ne. Thereafter, in step S3, a command value corresponding to the current engine speed Ne is read from the regenerative torque reduction map 108A, and in step S4, the read command value is output to the second inverter 62b.
 その後、ステップS5において、動力断接判定部102は、遠心クラッチ42がクランク軸38からの動力を切断しているか否かを判別する。この判別は、現在のエンジン回転数Neがしきい値Nth以下であるかどうかで行われる。 Thereafter, in step S5, the power connection / disconnection determination unit 102 determines whether or not the centrifugal clutch 42 is cutting power from the crankshaft 38. This determination is made based on whether or not the current engine speed Ne is equal to or less than the threshold value Nth.
 エンジン回転数Neがしきい値Nthより大きければ、ステップS2以降の処理を繰り返す。これによって、図4Bの実線L1に示すように、エンジン回転数Neが低下するにつれて、回生トルクが段階的に低減して0に近づくこととなる。 If the engine speed Ne is greater than the threshold value Nth, the processes in and after step S2 are repeated. As a result, as indicated by the solid line L1 in FIG. 4B, as the engine speed Ne decreases, the regenerative torque decreases stepwise and approaches zero.
 一方、ステップS5において、現在のエンジン回転数Neがしきい値Nth以下であると判別された場合、すなわち、遠心クラッチ42がクランク軸38の動力を切断していると判別された場合は、動力断接判定部102からの切断状態信号Saが制動力回帰部106に供給され、該制動力回帰部106が起動する。 On the other hand, if it is determined in step S5 that the current engine speed Ne is equal to or less than the threshold value Nth, that is, if it is determined that the centrifugal clutch 42 is cutting the power of the crankshaft 38, the power The cutting state signal Sa from the connection / disconnection determination unit 102 is supplied to the braking force regression unit 106, and the braking force regression unit 106 is activated.
 その後、ステップS6において、制動力回帰部106は、現在のエンジン回転数Neを取得する。次いで、ステップS7において、制動力回帰部106は、回生トルク回帰マップ108Bから現在のエンジン回転数Neに対応する指令値を読み出し、ステップS8において、指令値を第2インバータ62bに出力する。 Thereafter, in step S6, the braking force regression unit 106 acquires the current engine speed Ne. Next, in step S7, the braking force regression unit 106 reads out a command value corresponding to the current engine speed Ne from the regenerative torque regression map 108B, and outputs the command value to the second inverter 62b in step S8.
 その後、ステップS9において、動力断接判定部102は、処理終了であるか否かを判別する。この判定は、指令値が、予め設定された終了指令値以下となったかどうかで行われる。終了指令値は、スロットル開度Thが全閉となった時点の指令値付近の値が選択される。例えばスロットル開度Thが全閉となった時点の指令値以下で、且つ、該指令値の-1以上の範囲に含まれる1つの指令値が選択される。図4Bでは、-1.5N・m以下で-2.5N・m以上の範囲に含まれる1つの指令値である-2N・mが選択された例を示している。 Thereafter, in step S9, the power connection / disconnection determination unit 102 determines whether or not the processing is completed. This determination is made based on whether or not the command value is equal to or less than a preset end command value. As the end command value, a value near the command value when the throttle opening degree Th is fully closed is selected. For example, one command value that is equal to or less than the command value at the time when the throttle opening Th is fully closed and is within a range of −1 or more of the command value is selected. FIG. 4B shows an example in which −1N · m, which is one command value included in a range of −1.5 N · m or less and −2.5 N · m or more, is selected.
 現在の指令値が終了指令値よりも大きければ、ステップS6以降の処理を繰り返す。これによって、図4Bの実線L2に示すように、エンジン回転数Neが低下するにつれて、回生トルクが段階的に回帰してスロットル開度Thが全閉となった時点の指令値(終了指令値)に近づくこととなる。 If the current command value is larger than the end command value, the processes after step S6 are repeated. As a result, as indicated by the solid line L2 in FIG. 4B, as the engine speed Ne decreases, the regenerative torque returns stepwise and the command value (end command value) when the throttle opening Th is fully closed. Will approach.
 そして、ステップS9において、指令値が終了指令値以下となった段階で、この動力断接判定部102、制動力変更部104及び制動力回帰部106での処理が終了する。 In step S9, when the command value becomes equal to or less than the end command value, the processing in the power connection / disconnection determination unit 102, the braking force change unit 104, and the braking force regression unit 106 ends.
 ここで、従来による動作と、本実施の形態による動作の違いについて、図4A、図4B、図6A及び図6Bも参照しながら説明する。 Here, the difference between the conventional operation and the operation according to the present embodiment will be described with reference to FIGS. 4A, 4B, 6A, and 6B.
 従来は、図4Aに示すように、スロットル開度Thが全閉となった段階から、回生トルクをほぼ一定に制御し、エンジン回転数Neが1000rpmにおいて例えば-2N・mとなるようにしている。そのため、図6Aに示すように、エンジン回転数Neと車速Vとの関係を見た場合、遠心クラッチ42が動力を切断した時点の直前における車速Vの変化(車速Vの傾き(=車速V/時間))と、遠心クラッチ42が動力を切断した時点の直後における車速Vの変化との差が大きい。そのため、減速時に遠心クラッチ42が離れることによる空走感(free-running feeling)が発生する。 Conventionally, as shown in FIG. 4A, when the throttle opening degree Th is fully closed, the regenerative torque is controlled to be substantially constant so that the engine speed Ne is, for example, −2 N · m at 1000 rpm. . Therefore, as shown in FIG. 6A, when looking at the relationship between the engine speed Ne and the vehicle speed V, the change in the vehicle speed V immediately before the centrifugal clutch 42 cuts the power (the slope of the vehicle speed V (= the vehicle speed V / The difference between the time)) and the change in the vehicle speed V immediately after the time when the centrifugal clutch 42 cuts the power is large. For this reason, a free-running feeling due to the centrifugal clutch 42 being released during deceleration occurs.
 一方、本実施の形態では、図4Bに示すように、スロットル開度Thが全閉となった時点から、制動力変更部104が動作し、エンジン回転数Neの低下に合わせて、徐々に回生トルクを0N・mに向けて変化させる。すなわち、車両10への制動力は、エンジン回転数Neが予め設定した規定値(遠心クラッチ42が動力を切断するエンジン回転数)に近づくにつれ、段階的に小さくなる。そして、エンジン回転数Neが規定値となる直前に、回生トルクを0付近、例えば-0.5N・m以上0N・m以下にする。その後、エンジン回転数Neが規定値となった段階で、制動力回帰部106が動作し、回生トルクを、制動力変更部104が動作する前と同じ値(例えば-2N・m)に戻す。 On the other hand, in the present embodiment, as shown in FIG. 4B, the braking force changing unit 104 operates from the time when the throttle opening degree Th is fully closed, and gradually regenerates as the engine speed Ne decreases. The torque is changed toward 0 N · m. That is, the braking force applied to the vehicle 10 gradually decreases as the engine speed Ne approaches a preset value (the engine speed at which the centrifugal clutch 42 cuts power). Immediately before the engine speed Ne reaches the specified value, the regenerative torque is set to around 0, for example, from −0.5 N · m to 0 N · m. Thereafter, when the engine speed Ne reaches a specified value, the braking force regression unit 106 operates, and the regenerative torque is returned to the same value (eg, −2 N · m) as that before the braking force change unit 104 operates.
 これにより、図6Bに示すように、エンジン回転数Neと車速Vとの関係を見た場合、スロットル開度Thが全閉となった時点から、エンジン回転数Neの低下に合わせて、徐々に回生トルクが0N・mに向けて変化、又はモータアシストすることから、車両10の減速が弱められ、遠心クラッチ42が切断した時点の直前における車速Vの変化(車速Vの傾き(=車速V/時間))と、遠心クラッチ42が切断した時点の直後における車速Vの変化との差が小さくなる。その結果、減速時に遠心クラッチ42が離れることによる空走感の発生を抑制することができる。 As a result, as shown in FIG. 6B, when the relationship between the engine speed Ne and the vehicle speed V is seen, the throttle opening Th is gradually closed from the time when the throttle opening degree Th is fully closed in accordance with the decrease in the engine speed Ne. Since the regenerative torque changes toward 0 N · m or the motor assists, the deceleration of the vehicle 10 is weakened, and the change in the vehicle speed V immediately before the centrifugal clutch 42 is disconnected (the inclination of the vehicle speed V (= the vehicle speed V / The difference between the time)) and the change in the vehicle speed V immediately after the centrifugal clutch 42 is disconnected is reduced. As a result, it is possible to suppress the occurrence of an idling feeling due to the centrifugal clutch 42 being separated during deceleration.
 本実施の形態では、遠心クラッチ42の切断後に、当該車両10への制動力を、当該車両10の減速段階であって、且つ、制動力変更部104によって変更する前の制動力に戻す制動力回帰部106を設けるようにしている。遠心クラッチ42の切断後の車両10の減速時の制動力は、遠心クラッチ42の切断時の制動力より大きいため、制動力回帰部106によって、遠心クラッチ42の切断後に、大きい回生トルク、すなわち、車両10への制動力が車両10の減速時より大きい回生トルクを発電に充てることができる。 In the present embodiment, after the centrifugal clutch 42 is disengaged, the braking force that returns the braking force to the vehicle 10 to the braking force at the deceleration stage of the vehicle 10 and before being changed by the braking force changing unit 104. A regression unit 106 is provided. Since the braking force when the vehicle 10 is decelerated after the centrifugal clutch 42 is disengaged is larger than the braking force when the centrifugal clutch 42 is disengaged, the braking force regression unit 106 causes the large regenerative torque after the disengagement of the centrifugal clutch 42, that is, The regenerative torque that is greater than the braking force applied to the vehicle 10 when the vehicle 10 is decelerated can be applied to power generation.
 また、エンジン回転数Neによって、遠心クラッチ42を切断するようにしたので、エンジン32の動力の断接を容易に検知することが可能となり、動力断接判定部102の回路構成を簡単にすることができ、また、制動力回帰部106の起動を安定に行うことができる。 Further, since the centrifugal clutch 42 is disconnected according to the engine speed Ne, it is possible to easily detect the power connection / disconnection of the engine 32, and to simplify the circuit configuration of the power connection / disconnection determination unit 102. In addition, the braking force regression unit 106 can be activated stably.
 また、本実施の形態では、制動力変更部104による当該車両10への制動力を、エンジン回転数Neが遠心クラッチ42の切断時のエンジン回転数Neに近づくにつれ、段階的に小さくしている。この例では、回生トルクを段階的に0に近づけるようにしている。そのため、エンジン回転数Neが遠心クラッチ42の切断時のエンジン回転数Neに近づくにつれて、車両10への制動力が段階的に小さくなり、乗員の操作性に違和感を与えることなく、遠心クラッチ42の切断時に車両10への制動力を変化させることができる。 In the present embodiment, the braking force applied to the vehicle 10 by the braking force changing unit 104 is gradually reduced as the engine speed Ne approaches the engine speed Ne when the centrifugal clutch 42 is disconnected. . In this example, the regenerative torque is made to approach 0 stepwise. Therefore, as the engine speed Ne approaches the engine speed Ne when the centrifugal clutch 42 is disengaged, the braking force to the vehicle 10 decreases stepwise, and the operability of the occupant is not felt uncomfortable. The braking force to the vehicle 10 can be changed at the time of cutting.
 さらに、本実施の形態では、制動力変更部104による制動力の変化を、乗員が操作するスロットル開度Thが全閉の時を条件としたので、車両10の減速時のみに制動力の変更を適用することができる。 Further, in the present embodiment, since the change in the braking force by the braking force changing unit 104 is made on the condition that the throttle opening Th operated by the occupant is fully closed, the braking force is changed only when the vehicle 10 is decelerated. Can be applied.
 特に、本実施の形態では、制動力変更部104によって、車両10への制動力が変更される際の制動力の変動の大きさを、遠心クラッチ42が切断した後に制動力回帰部106によって回帰される制動力の変動の大きさよりも小さくしている。 In particular, in the present embodiment, the magnitude of fluctuation of the braking force when the braking force to the vehicle 10 is changed by the braking force changing unit 104 is returned by the braking force returning unit 106 after the centrifugal clutch 42 is disconnected. The magnitude of the fluctuation of the braking force to be made is smaller.
 具体的には、図4Bの実線L1に示すように、制動力変更部104による回生トルク(絶対値)の単位エンジン回転数当たりの変化(傾き)を、実線L2に示すように、制動力回帰部106による回生トルク(絶対値)の単位エンジン回転数当たりの変化(傾き)よりも小さくしている。 Specifically, as shown by a solid line L1 in FIG. 4B, the change (inclination) per unit engine speed of the regenerative torque (absolute value) by the braking force changing unit 104 is represented by a braking force regression as shown by a solid line L2. The regenerative torque (absolute value) by the unit 106 is made smaller than the change (inclination) per unit engine speed.
 これにより、遠心クラッチ42の切断前の制動力の変化を、遠心クラッチ42の切断後よりも緩やかに変更することで、急激に制動力が変化することを抑制することができる。しかも、遠心クラッチ42の切断後では、制動力の変動が運転者の操作性に影響しないため、速やかに制動力を遠心クラッチ42の切断前の制動力に回帰させることができ、発電量の充電に充てることができる。 Thereby, it is possible to suppress a sudden change in the braking force by changing the braking force before the centrifugal clutch 42 is disengaged more gently than after the centrifugal clutch 42 is disengaged. In addition, after the centrifugal clutch 42 is disengaged, fluctuations in the braking force do not affect the operability of the driver. Therefore, the braking force can be quickly returned to the braking force before the centrifugal clutch 42 is disengaged, and the amount of power generated can be charged. Can be devoted to
 なお、回生トルクの設定は、燃料噴射の有無によるエンジンフリクションの変化から基準値を設定した上で、下記のような条件に応じて補正を行うことも可能である。 The regenerative torque can also be corrected according to the following conditions after setting a reference value based on changes in engine friction due to the presence or absence of fuel injection.
 [補正項目]
  (a) 水温・油温
  (b) エンジン回転数Neの減速度
  (c) エンジン回転数Neと車速の比率(ベルコンレシオ)
[Correction items]
(A) Water temperature / oil temperature (b) Deceleration of engine speed Ne (c) Ratio of engine speed Ne to vehicle speed (Belcon ratio)
 本発明は上記した実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは当然可能である。 The present invention is not limited to the above-described embodiment, and it is naturally possible to adopt various configurations without departing from the gist of the present invention.
 すなわち、上述の例では、スタータモータ36と駆動モータ34とをそれぞれ別個に設置した車両10に適用した例を示したが、その他、図7に示すように、ACG機能とスターター機能とを融合したACGスタータモータ110を有する車両10aに適用してもよい。 That is, in the above-described example, an example is shown in which the starter motor 36 and the drive motor 34 are applied to the vehicle 10 separately installed. However, as shown in FIG. 7, the ACG function and the starter function are integrated. You may apply to the vehicle 10a which has the ACG starter motor 110. FIG.
 この車両10aは、中間フレーム20の後端部に、シートカウル112及びシート28を支持するリヤフレーム114が結合されている。燃料タンク116は、またぎ部117の内部で中間フレーム20を上方から覆うように配設されている。燃料タンク116の後方には、後輪WRが回転自在に軸支されたユニットスイング式のパワーユニット24が取り付けられている。パワーユニット24の後部には、ベルト式の無段変速機が内設された伝動ケース118が一体に設けられており、この伝動ケース118の上部にエアクリーナボックス120が取り付けられている。パワーユニット24は、リヤフレーム114の前方側で揺動自在に軸支されると共に、リヤフレーム114の後方側でリヤショック121に吊り下げられるように支持されている。 In the vehicle 10a, a rear frame 114 that supports a seat cowl 112 and a seat 28 is coupled to a rear end portion of the intermediate frame 20. The fuel tank 116 is disposed inside the span portion 117 so as to cover the intermediate frame 20 from above. A unit swing type power unit 24 on which a rear wheel WR is rotatably supported is attached to the rear of the fuel tank 116. A transmission case 118 in which a belt-type continuously variable transmission is installed is integrally provided at the rear portion of the power unit 24, and an air cleaner box 120 is attached to an upper portion of the transmission case 118. The power unit 24 is pivotally supported on the front side of the rear frame 114 and supported so as to be suspended from the rear shock 121 on the rear side of the rear frame 114.
 そして、車両10aのパワーユニット24は、駆動源としてのエンジンを始動するスタータモータ(セルモータ)及びエンジンの回転駆動力で発電する発電機とを一体にしたACGスタータモータ110を備えている。 The power unit 24 of the vehicle 10a includes an ACG starter motor 110 in which a starter motor (cell motor) that starts an engine as a drive source and a generator that generates electric power with the rotational driving force of the engine are integrated.
 また、図8に示すように、第1インバータ62aとECU66とが一体化され、DBW64、第2インバータ62b、駆動モータ34(図2参照)は存在しない。また、第2ロータセンサ58bは、減速機48のファイナルギアの回転数を検知する。 Further, as shown in FIG. 8, the first inverter 62a and the ECU 66 are integrated, and the DBW 64, the second inverter 62b, and the drive motor 34 (see FIG. 2) do not exist. The second rotor sensor 58b detects the rotational speed of the final gear of the speed reducer 48.
 このような車両10aにおいても、上述した車両10と同様の効果を奏するほか、ACGスタータモータ110を用いることで、部品点数を大幅に削減することができる。 In such a vehicle 10a, the same effect as that of the vehicle 10 described above can be obtained, and the number of parts can be significantly reduced by using the ACG starter motor 110.

Claims (6)

  1.  内燃機関(32)と、前記内燃機関(32)の駆動軸(40)へ駆動トルク及び回生トルクを付与する電動機(34)と、前記内燃機関(32)と前記電動機(34)の動力を車輪(WR)に伝達する動力伝達機構(42)と、を備えるハイブリッド鞍乗り型車両(10)において、
     前記動力伝達機構(42)が前記内燃機関(32)の動力を断接(切断と接続)することを判断する動力断接判定部(102)と、
     前記電動機(34)の回生トルクを変更することにより、当該ハイブリッド鞍乗り型車両(10)への制動力を変化させる制動力変更部(104)とを備え、
     前記内燃機関(32)の動力を切断する際の当該ハイブリッド鞍乗り型車両(10)への制動力は、当該ハイブリッド鞍乗り型車両(10)の減速段階であって、且つ、前記内燃機関(32)の動力を切断する前の当該ハイブリッド鞍乗り型車両(10)への制動力より小さいことを特徴とするハイブリッド鞍乗り型車両。
    An internal combustion engine (32), an electric motor (34) for applying a drive torque and a regenerative torque to a drive shaft (40) of the internal combustion engine (32), and wheels of the internal combustion engine (32) and the electric motor (34). A hybrid saddle riding type vehicle (10) comprising a power transmission mechanism (42) for transmitting to (WR),
    A power connection / disconnection determination unit (102) for determining that the power transmission mechanism (42) connects / disconnects (connects / disconnects) the power of the internal combustion engine (32);
    A braking force changing unit (104) for changing the braking force to the hybrid saddle riding type vehicle (10) by changing the regenerative torque of the electric motor (34);
    The braking force applied to the hybrid saddle-ride type vehicle (10) when the power of the internal combustion engine (32) is cut off is a deceleration stage of the hybrid saddle-ride type vehicle (10), and the internal combustion engine ( 32) A hybrid saddle riding type vehicle having a braking force smaller than that applied to the hybrid saddle riding type vehicle (10) before the power of 32) is cut off.
  2.  請求項1記載のハイブリッド鞍乗り型車両において、
     前記動力伝達機構(42)は、遠心クラッチであり、
     前記内燃機関(32)の回転数を検出する回転数検出部(58a)を備え、
     前記動力断接判定部(102)は、前記回転数検出部(58a)からの検出値に基づいて、前記動力伝達機構(42)による前記内燃機関(32)の動力の断接を判定することを特徴とするハイブリッド鞍乗り型車両。
    The hybrid saddle riding type vehicle according to claim 1,
    The power transmission mechanism (42) is a centrifugal clutch,
    A rotation speed detector (58a) for detecting the rotation speed of the internal combustion engine (32);
    The power connection / disconnection determination unit (102) determines connection / disconnection of power of the internal combustion engine (32) by the power transmission mechanism (42) based on a detection value from the rotation speed detection unit (58a). A hybrid saddle-ride type vehicle characterized by
  3.  請求項1又は2記載のハイブリッド鞍乗り型車両において、
     前記動力伝達機構(42)による前記内燃機関(32)の動力の切断後に、当該ハイブリッド鞍乗り型車両(10)への制動力を、当該ハイブリッド鞍乗り型車両(10)の減速段階であって、且つ、前記制動力変更部(104)によって変更する前の制動力に戻す制動力回帰部(106)を備えることを特徴とするハイブリッド鞍乗り型車両。
    The hybrid saddle riding type vehicle according to claim 1 or 2,
    After the power of the internal combustion engine (32) is cut off by the power transmission mechanism (42), the braking force applied to the hybrid saddle-ride type vehicle (10) is reduced in the deceleration stage of the hybrid saddle-ride type vehicle (10). The hybrid saddle riding type vehicle further includes a braking force regression unit (106) for returning to the braking force before being changed by the braking force changing unit (104).
  4.  請求項1~3のいずれか1項に記載のハイブリッド鞍乗り型車両において、
     前記制動力変更部(104)による当該ハイブリッド鞍乗り型車両(10)への制動力は、前記内燃機関(32)の回転数が前記内燃機関(32)の動力の切断時の回転数に近づくにつれ、段階的に小さくなることを特徴とするハイブリッド鞍乗り型車両。
    The hybrid saddle riding type vehicle according to any one of claims 1 to 3,
    The braking force applied to the hybrid saddle riding type vehicle (10) by the braking force changing unit (104) is such that the rotational speed of the internal combustion engine (32) approaches the rotational speed when the power of the internal combustion engine (32) is cut off. The hybrid saddle-ride type vehicle is characterized in that it gradually decreases in size.
  5.  請求項1~4のいずれか1項に記載のハイブリッド鞍乗り型車両において、
     前記制動力変更部(104)による前記制動力の変化は、乗員が操作するスロットルが全閉の時を条件とすることを特徴とするハイブリッド鞍乗り型車両。
    The hybrid saddle riding type vehicle according to any one of claims 1 to 4,
    The hybrid saddle riding type vehicle characterized in that the change of the braking force by the braking force changing unit (104) is made on condition that a throttle operated by an occupant is fully closed.
  6.  請求項3~5のいずれか1項に記載のハイブリッド鞍乗り型車両において、
     前記制動力変更部(104)によって、当該ハイブリッド鞍乗り型車両(10)への制動力が変更される際の前記制動力の変動の大きさは、前記制動力回帰部(106)によって回帰される制動力の変動の大きさよりも小さいことを特徴とするハイブリッド鞍乗り型車両。
    The hybrid saddle riding type vehicle according to any one of claims 3 to 5,
    The magnitude of the fluctuation of the braking force when the braking force to the hybrid saddle riding type vehicle (10) is changed by the braking force changing unit (104) is regressed by the braking force returning unit (106). A hybrid saddle-ride type vehicle characterized by being less than the magnitude of fluctuations in braking force.
PCT/JP2017/008611 2016-03-31 2017-03-03 Hybrid saddled vehicle WO2017169522A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508858A JP6550188B2 (en) 2016-03-31 2017-03-03 Hybrid saddle-ride type vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-072780 2016-03-31
JP2016072780 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169522A1 true WO2017169522A1 (en) 2017-10-05

Family

ID=59964041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008611 WO2017169522A1 (en) 2016-03-31 2017-03-03 Hybrid saddled vehicle

Country Status (2)

Country Link
JP (1) JP6550188B2 (en)
WO (1) WO2017169522A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190068051A (en) * 2017-12-08 2019-06-18 현대자동차주식회사 Hybrid vehicle having centrifugal clutch and controlling method for the same
CN110027590A (en) * 2018-01-12 2019-07-19 株洲中车时代电气股份有限公司 A kind of train braking process of extinction traction braking matches combination control method and system
DE102018102776A1 (en) * 2018-02-08 2019-08-08 Schaeffler Technologies AG & Co. KG Powertrain for a scooter
DE102018106851A1 (en) * 2018-03-22 2019-09-26 Schaeffler Technologies AG & Co. KG Powertrain for a motorcycle
JPWO2021002308A1 (en) * 2019-07-02 2021-01-07
WO2022004313A1 (en) * 2020-06-30 2022-01-06 株式会社デンソー Vehicle control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054940A (en) * 2004-08-10 2006-02-23 Honda Motor Co Ltd Driving controller for power module and hybrid vehicle
JP2012136191A (en) * 2010-12-27 2012-07-19 Toyota Motor Corp Vehicle control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418033B2 (en) * 2009-07-16 2014-02-19 いすゞ自動車株式会社 Control device for hybrid vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054940A (en) * 2004-08-10 2006-02-23 Honda Motor Co Ltd Driving controller for power module and hybrid vehicle
JP2012136191A (en) * 2010-12-27 2012-07-19 Toyota Motor Corp Vehicle control system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190068051A (en) * 2017-12-08 2019-06-18 현대자동차주식회사 Hybrid vehicle having centrifugal clutch and controlling method for the same
KR102444665B1 (en) * 2017-12-08 2022-09-19 현대자동차주식회사 Hybrid vehicle having centrifugal clutch and controlling method for the same
CN110027590A (en) * 2018-01-12 2019-07-19 株洲中车时代电气股份有限公司 A kind of train braking process of extinction traction braking matches combination control method and system
CN110027590B (en) * 2018-01-12 2020-05-26 株洲中车时代电气股份有限公司 Traction brake coordination control method and system in process of brake fade of train
DE102018102776A1 (en) * 2018-02-08 2019-08-08 Schaeffler Technologies AG & Co. KG Powertrain for a scooter
DE102018102776B4 (en) * 2018-02-08 2020-09-10 Schaeffler Technologies AG & Co. KG Drive train for a motor scooter and motor scooter with such a drive train
DE102018106851B4 (en) 2018-03-22 2022-01-13 Schaeffler Technologies AG & Co. KG Motorcycle with a power train
DE102018106851A1 (en) * 2018-03-22 2019-09-26 Schaeffler Technologies AG & Co. KG Powertrain for a motorcycle
WO2021002308A1 (en) * 2019-07-02 2021-01-07 ヤマハ発動機株式会社 Straddled vehicle
JPWO2021002308A1 (en) * 2019-07-02 2021-01-07
JP7019871B2 (en) 2019-07-02 2022-02-15 ヤマハ発動機株式会社 Straddle vehicle
WO2022004313A1 (en) * 2020-06-30 2022-01-06 株式会社デンソー Vehicle control device
JP7459686B2 (en) 2020-06-30 2024-04-02 株式会社デンソー Vehicle control device, program

Also Published As

Publication number Publication date
JPWO2017169522A1 (en) 2018-10-04
JP6550188B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
WO2017169522A1 (en) Hybrid saddled vehicle
US10035431B2 (en) Electric vehicle
KR100735650B1 (en) Power control unit
JP5949899B2 (en) Drive control apparatus and drive control method for hybrid drive electric vehicle
JP4008437B2 (en) Power module drive control device and hybrid vehicle
JP3536838B2 (en) Vehicle driving force control device
JP5904271B2 (en) Engine start control device and start control method for hybrid drive electric vehicle
US20060030449A1 (en) Control method and apparatus for a continuously variable transmission
JP5041974B2 (en) Control system and vehicle
JP4327055B2 (en) Vehicle engine output limiting device
EP3800381B1 (en) Quickshifter-equipped vehicle control unit and quickshifter-equipped motorcycle
JP2008144756A (en) Control system and vehicle having same
JP2006054938A (en) Power generation controller for vehicle and vehicle carrying controller
JP4182068B2 (en) Torque assist control device
US11279341B2 (en) Control apparatus of hybrid leaning vehicle
JP5023844B2 (en) Idle stop car drive
WO2013118431A1 (en) Vehicle and intake air amount control device
WO2018221464A1 (en) Hybrid vehicle control apparatus
JP2009150513A (en) Control device of power transmission apparatus
JP4250600B2 (en) Power switching control device
US11415988B2 (en) Control apparatus of hybrid leaning vehicle
JP4180559B2 (en) Automatic engine stop device for vehicle
CN104350261B (en) The control device of internal combustion engine
JP2004116440A (en) Engine control system of irregular ground travel vehicle
JP2021142776A (en) Vehicle with electric supercharger

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774067

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774067

Country of ref document: EP

Kind code of ref document: A1