WO2017169438A1 - Polyacetal resin composition - Google Patents

Polyacetal resin composition Download PDF

Info

Publication number
WO2017169438A1
WO2017169438A1 PCT/JP2017/007480 JP2017007480W WO2017169438A1 WO 2017169438 A1 WO2017169438 A1 WO 2017169438A1 JP 2017007480 W JP2017007480 W JP 2017007480W WO 2017169438 A1 WO2017169438 A1 WO 2017169438A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polyacetal resin
glass
parts
inorganic filler
Prior art date
Application number
PCT/JP2017/007480
Other languages
French (fr)
Japanese (ja)
Inventor
原科 初彦
広和 勝地
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN201780011242.2A priority Critical patent/CN108603007B/en
Priority to JP2017547013A priority patent/JP6231728B1/en
Publication of WO2017169438A1 publication Critical patent/WO2017169438A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a polyacetal resin composition.
  • Polyacetal resin has excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, impact resistance, dimensional stability of molded products, etc. Widely used in automotive parts, precision machine parts, etc. It is known that a reinforcing material such as a glass-based inorganic filler is blended in order to improve the mechanical properties of the polyacetal resin, such as strength and rigidity.
  • polyacetal resin has poor activity
  • glass-based inorganic fillers also have poor activity. Therefore, simply blending glass-based inorganic filler with polyacetal resin and melt-kneading will result in insufficient adhesion between the two. In many cases, the mechanical properties cannot be improved as much as possible. Therefore, various methods for improving the mechanical properties by improving the adhesion between the polyacetal resin and the glass-based inorganic filler have been proposed.
  • the present invention has been made to solve the above-described problems, and its purpose is excellent in mechanical properties such as tensile strength, tensile elongation, bending strength, bending elastic modulus, impact resistance, and the like. Another object is to provide a polyacetal resin having excellent hot water resistance.
  • the present inventors have intensively studied.
  • the polyacetal resin has a high mechanical property by using a specific glass-based inorganic filler and a small amount of boric acid.
  • the inventors have found that the hot water resistance can be improved while maintaining the above, and have completed the present invention.
  • the present invention provides the following.
  • the present invention relates to (A) 100 parts by mass of a polyacetal resin, (B) at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, magnesium halide, and 1 to 100 parts by weight of a glass-based inorganic filler surface-treated with at least one halide selected from ammonium halides, and (C) 0.001 to 1.0 parts by weight of boric acid
  • a polyacetal resin composition containing:
  • this invention is a polyacetal resin composition as described in (1) which contains 0.002 mass part or more and 10 mass parts or less of the triazine derivative which has (D) nitrogen-containing functional group further.
  • the present invention also provides the polyacetal resin composition according to (1) to (2), wherein (C) boric acid is orthoboric acid.
  • the present invention provides the polyacetal resin composition according to any one of (1) to (3), wherein the glass-based inorganic filler (B) is a glass fiber.
  • a polyacetal resin that is excellent in mechanical properties such as tensile strength, tensile elongation, bending strength, flexural modulus, and impact resistance, and also excellent in hot water resistance.
  • the polyacetal resin composition of the present embodiment comprises (B) at least one isocyanate compound selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, and a halogen with respect to 100 parts by mass of (A) polyacetal resin. 1 to 100 parts by mass of a glass-based inorganic filler surface-treated with at least one halide selected from magnesium halide and ammonium halide, and (C) 0.001 to 1 part by mass of boric acid. 0 parts by mass or less.
  • each component will be described.
  • a polyacetal resin is a high molecular compound having an oxymethylene group (—CH 2 O—) as a main structural unit, a polyoxymethylene homopolymer, or an oxymethylene group as a main repeating unit.
  • the copolymer may be a copolymer, terpolymer or block polymer containing a small amount of a comonomer unit such as ethylene oxide, 1,3-dioxolane, 1,4-butanediol formal and the like.
  • the polyacetal resin may have a branched or crosslinked structure as well as a linear molecule, or may be a known modified polyoxymethylene having other organic groups introduced.
  • the polyacetal resin is not particularly limited with respect to the degree of polymerization, and has a melt molding processability (for example, a melt flow value (MFR) at 190 ° C. under a load of 2160 g is 1.0 g / 10 min or more and 100 g / min. 10 minutes or less).
  • MFR melt flow value
  • the glass-based inorganic filler comprises at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, and at least one halide selected from magnesium halide and ammonium halide. It is sufficient that the surface treatment is performed, and the timing of the surface treatment is not limited. That is, the glass-based inorganic filler may be surface-treated with a blocked isocyanate compound and then surface-treated with other components, or may be surface-treated with an aminosilane coupling agent and then other components. The surface treatment may be performed.
  • the surface treatment may be performed with other components after the surface treatment with a halide.
  • the glass-based inorganic filler may be a surface treated with at least one isocyanate compound selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, and a halide at the same time.
  • the glass-based inorganic filler is surface-treated with at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, and a halide is determined as polyacetal.
  • the glass-based inorganic filler can be extracted from the resin composition by solvent extraction and the components can be analyzed.
  • the surface treatment agent does not contain the isocyanate compound, aminosilane coupling agent and halide, the isocyanate compound, aminosilane cup Compared with the surface treatment with a ring agent and a halide, not only mechanical properties such as tensile strength are inferior, but also hot water resistance is inferior, which is not preferable.
  • Glass-based inorganic filler examples include fibrous (glass fiber), granular (glass bead), granular (milled glass fiber), plate (glass flake), and hollow filler. It is not limited. In terms of handling, chopped strands that are glass fibers and cut to about 2 to 8 mm are preferable. The diameter of the glass fiber is usually 5 to 15 ⁇ m, preferably 7 to 13 ⁇ m.
  • any polyfunctional isocyanate compound having two or more isocyanate groups in one molecule can be used without particular limitation.
  • aliphatic (including linear, branched, and alicyclic) and aromatic isocyanate compounds can be mentioned, and in particular, from the viewpoint of compatibility and compatibility with polyacetal resins, aliphatic isocyanate compounds are preferable.
  • bifunctional aliphatic or alicyclic diisocyanates, and polyisocyanates obtained by multiplying these diisocyanates are preferable.
  • linear or branched aliphatic diisocyanate those having 4 to 30 carbon atoms are preferable, and those having 5 to 10 carbon atoms are more preferable.
  • Specific examples include tetramethylene-1,4-diisocyanate, pentamethylene-1,5-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethyl-hexamethylene-1,6-diisocyanate, and lysine diisocyanate. Can do.
  • alicyclic diisocyanate those having 8 to 15 carbon atoms are preferable, and those having 10 to 18 carbon atoms are more preferable. Specific examples include isophorone diisocyanate, 1,3-bis (isocyanate methyl) -cyclohexane, 4,4′-dicyclohexylmethane diisocyanate, and the like.
  • aromatic diisocyanate examples include xylylene diisocyanate, tolylene diisocyanate, and diphenylmethane diisocyanate.
  • Polyisocyanates include compounds having at least two isocyanate groups per molecule, for example, various aromatic diisocyanates such as tolylene diisocyanate or diphenylmethane diisocyanate; m-xylylene diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ Various aralkyl diisocyanates such as' -tetramethyl-m-xylylene diisocyanate; addition reaction of aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate or isophorone diisocyanate with polyhydric alcohols Prepolymers having an isocyanurate ring, obtained by cyclization and trimerization of the above-mentioned various diisocyanates, such as the obtained isocyanate group-containing prepolymers And Ma acids, or the various diisocyanates, such as those obtained by reacting a water adduct having a bi
  • hexamethylene diisocyanate, hexamethylene diisocyanate biuret, or hexamethylene diisocyanate cyclic trimer is preferable from the viewpoint of impact resistance and durability of the resulting composition and industrial availability.
  • Two or more of the above compounds can be used in combination. Furthermore, it may be a mixture of two or more of the above compounds.
  • blocking agents include, for example, oxime blocking agents such as methyl ethyl ketoxime, acetoxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime; phenol blocking agents such as m-cresol, xylenol; methanol, ethanol, butanol Alcohol blocking agents such as 2-ethylhexanol, cyclohexanol and ethylene glycol monoethyl ether; lactam blocking agents such as ⁇ -caprolactam; diketone blocking agents such as diethyl malonate and acetoacetate; thiophenol Mercaptan blocking agents such as thiourea, urea blocking agents such as thiourea, imidazole blocking agents, pyrazo
  • the blocked isocyanate of the present invention is used in an amount of 0.01 to 5 parts by weight, preferably 0.3 to 3 parts by weight, based on 100 parts by weight of the glass-based inorganic filler. ⁇ Polyurethane resin ⁇
  • the polyurethane resin of the present embodiment those obtained from a polyisocyanate component mainly composed of xylylene diisocyanate and a polyol component mainly composed of polyester polyol are preferable from the viewpoint of sizing properties and the like.
  • examples of the xylylene diisocyanate include o-xylylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, and mixtures thereof. Among these, m-xylylene diisocyanate is preferable.
  • polyester polyol examples include a condensed polyester polyol obtained by dehydration condensation of a polyhydric alcohol and a polycarboxylic acid, a lactone polyester polyol obtained by ring-opening polymerization of a lactone based on a polyhydric alcohol, Examples thereof include ester-modified polyols obtained by ester-modifying the ends of ether polyols with lactones and copolymerized polyester polyols thereof.
  • Examples of the polyhydric alcohol used in the condensed polyester polyol include ethylene glycol, propylene glycol, 1,3-propanediol, butylene glycol, 1,4-butanediol, 1,5-pentanediol, hexylene glycol, Examples include glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, etc.
  • Examples of polyvalent carboxylic acids include succinic acid, adipic acid, and azelain.
  • Acid sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid, iso Tal acid, phthalic acid, 1,4-naphthalene dicarboxylic acid, biphenyl dicarboxylic acid, trimellitic acid and the like.
  • lactone polyester polyol examples include poly ( ⁇ -caprolactone) polyol. These polyester polyols preferably have a weight average molecular weight in the range of 500 or more and 4000 or less.
  • the weight average molecular weight of the resin in the present specification is a value measured by GPC method and converted to standard polystyrene.
  • the polyurethane resin can be produced, for example, by heating xylylene diisocyanate and polyester polyol at about 30 ° C. to 130 ° C. in the absence of a solvent or in the presence of a small amount of an organic solvent.
  • the organic solvent is not particularly limited as long as it does not react with isocyanate and is miscible with water.
  • acetone, methyl ethyl ketone, tetrahydrofuran, dimethyl Formamide or the like can be used.
  • the polyurethane resin of the present invention is used in an amount of 0.1 to 5 parts by weight, preferably 0.2 to 2 parts by weight, based on 100 parts by weight of the glass-based inorganic filler.
  • aminosilane coupling agent is used for the surface treatment of the glass-based inorganic filler of the present embodiment.
  • the aminosilane coupling agent means a compound containing a silicon atom having an alkoxy group bonded in one molecule and a functional group containing a nitrogen atom.
  • Specific aminosilane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane, N, N'-bis- [3- (trimethoxysilyl) propyl] ethylenediamine, N, N'- Bis- [3- (triethoxysilyl) propyl] ethylenediamine, N, N′-bis- [3- (methyldimethoxysilyl) propyl] ethylenediamine, N, N′-bis- [3- (trimethoxysilyl) propyl] Hexam
  • aminosilane coupling agents among them, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, N- ( ⁇ -aminoethyl) ) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane and N-phenyl- ⁇ -aminopropyltrimethoxysilane are preferred, and ⁇ -aminopropyltrimethoxysilane And ⁇ -aminopropyltriethoxysilane are more preferable.
  • aminosilane coupling agents According to these aminosilane coupling agents, a synergistic effect by the combination with the blocked isocyanate compound can be easily obtained, and the adhesion between the polyacetal resin and the glass-based inorganic filler can be improved.
  • the surface treatment with the aminosilane coupling agent of the present invention is performed at 0.01 to 3 parts by mass, preferably 0.03 to 1 part by mass, with respect to 100 parts by mass of the glass-based inorganic filler.
  • halide selected from magnesium halide and ammonium halide is used for the surface treatment of the glass-based inorganic filler of the present embodiment.
  • the halide of the present invention is magnesium halide or ammonium halide, and bromine and chlorine are preferable as the halogen element.
  • one selected from magnesium chloride, magnesium bromide, ammonium chloride and ammonium bromide is preferable.
  • the halide includes an anhydrous salt or a hydrated salt (dihydrate, tetrahydrate, hexahydrate, octahydrate, dodecahydrate, etc.).
  • the halide of the present invention is 0.00001 parts by mass or more and 0.5 parts by mass or less, and preferably 0.0001 parts by mass or more and 0.05 parts by mass or less with respect to 100 parts by mass of the glass-based inorganic filler. Since the halide of the present invention has water solubility, the halide may be used in a state of being dissolved in water in the surface treatment of the glass-based inorganic filler of the present embodiment.
  • the halide used for the surface treatment of the glass-based inorganic filler of this embodiment greatly contributes to the improvement of the tensile strength, bending strength, bending elastic modulus, impact resistance and hot water resistance of the polyacetal resin. It is done.
  • the glass-based inorganic filler of this embodiment is more preferably a glass-based inorganic filler surface-treated with a blocked isocyanate compound, a polyurethane resin, an aminosilane coupling agent, and a halide.
  • the glass-based inorganic filler only needs to be surface-treated with an isocyanate compound, an aminosilane coupling agent, and a halide, and the timing of the surface treatment does not matter. That is, when surface-treating the glass-based inorganic filler, a plurality of surface treatment agents may be used sequentially, or a plurality of surface treatment agents may be used simultaneously.
  • At least one isocyanate compound selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, and a halide are contained in an organic solvent. It is preferable to dissolve or disperse in water, or disperse in water.
  • a method for producing an aqueous emulsion containing a polyurethane resin there are a self-emulsification method and a method using an emulsifier, but these may be combined appropriately.
  • Hydrophilicity by introducing an ionic group (sulfonic acid group, amino group, carboxyl group, etc.) or nonionic hydrophilic group (polyethylene glycol, polyoxyalkylene glycol, etc.) into the side chain or terminal of the polyurethane resin. And then dispersing or dissolving in water by self-emulsification.
  • an ionic group sulfonic acid group, amino group, carboxyl group, etc.
  • nonionic hydrophilic group polyethylene glycol, polyoxyalkylene glycol, etc.
  • a polyurethane resin emulsion having a higher molecular weight can be produced by adding a chain extender to a polyurethane resin having an isocyanate group at the time of emulsification or after emulsification.
  • a chain extender known ones such as ethylene glycol, diethylene glycol, propylene glycol, hydrazine, N, N-dimethylhydrazine can be used.
  • the compounding quantity of a glass-type inorganic filler is 1 to 100 mass parts with respect to 100 mass parts of polyacetal resin, Preferably it is 5 to 55 mass parts, Most preferably, it is 10 mass. Part to 40 parts by weight.
  • the content of the glass-based inorganic filler is less than 1 part by mass, the mechanical properties and hot water resistance of the molded product are insufficiently improved, and when the content exceeds 100 parts by mass, the molding process becomes difficult. .
  • the kind of boric acid is not specifically limited, Any of orthoboric acid, metaboric acid, tetraboric acid, etc. may be sufficient. Of these, orthoboric acid is preferred.
  • the blending amount of boric acid is 0.001 part by mass or more and 1.0 part by mass or less, preferably 0.003 part by mass or more and 0.5 part by mass or less with respect to 100 parts by mass of the polyacetal resin. If it is less than 0.001 part by mass, the mechanical effect and hot water resistance are poor and the desired effect cannot be obtained, and if it exceeds 1.0 part by mass, the mechanical effect and hot water resistance are similarly poor and the desired effect cannot be obtained.
  • the effect of the present invention cannot be obtained if the acid is a general inorganic acid or organic acid. Even if hydrochloric acid or phosphoric acid is used as the inorganic acid and formic acid or acetic acid is used as the organic acid, the mechanical properties and hot water resistance do not reach the level of the effect of boric acid.
  • This embodiment has improved both the mechanical properties and hot water resistance of the polyacetal resin by using (B) a glass-based inorganic filler subjected to a specific surface treatment and (C) boric acid in combination. It is characterized by. (B) Although the cause of the improvement of the mechanical properties and hot water resistance of the polyacetal resin by the glass-based inorganic filler subjected to a specific surface treatment and (C) boric acid is unknown, It is thought to be due to a synergistic effect due to interaction.
  • a polyacetal resin (C When no boric acid is contained or (C) an acid other than boric acid is contained, the polyacetal resin cannot have sufficient mechanical properties and hot water resistance.
  • the polyacetal resin composition of the present embodiment may further contain a glass-based inorganic filler surface-treated with a known coupling agent other than an aminosilane coupling agent.
  • the coupling agent is used to improve the wettability and adhesiveness of the glass-based inorganic filler with the polyacetal resin.
  • silane coupling agent examples include vinyl alkoxy silane, epoxy alkoxy silane, mercapto alkoxy silane, and allyl alkoxy silane.
  • vinylalkoxysilane examples include vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, and the like.
  • Examples of the epoxyalkoxysilane include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ -glycidoxypropyltriethoxysilane.
  • Examples of mercaptoalkoxysilanes include ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane.
  • allylalkoxysilanes include ⁇ -diallylaminopropyltrimethoxysilane, ⁇ -allylaminopropyltrimethoxysilane, and ⁇ -allylthiopropyltrimethoxysilane.
  • titanate-based surface treatment agent examples include titanium-i-propoxyoctylene glycolate, tetra-n-butoxytitanium, tetrakis (2-ethylhexoxy) titanium, and the like. These coupling agents may be used alone or in combination of two or more.
  • the polyacetal resin composition of the present embodiment may further contain various known stabilizers / additives.
  • the stabilizer include one or more of hindered phenol compounds, nitrogen-containing basic compounds, alkali or alkaline earth metal hydroxides, inorganic salts, carboxylates, and the like.
  • general additives for thermoplastic resins for example, coloring agents such as dyes and pigments, lubricants, nucleating agents, mold release agents, antistatic agents, and surfactants are used alone or in combination. Can be mentioned.
  • the nitrogen-containing basic compound is used for enhancing the heat resistance stability of the polyacetal resin composition.
  • the kind of nitrogen-containing basic compound is not particularly limited, an example is (D) a triazine derivative having a nitrogen-containing functional group.
  • Triazine derivative having nitrogen-containing functional group It is particularly preferable to blend a triazine derivative having a nitrogen-containing functional group from the viewpoint of further improving mechanical properties.
  • Specific examples of the triazine derivative (D) having a nitrogen-containing functional group used in this embodiment include guanamine, melamine, N-butylmelamine, N-phenylmelamine, N, N′-diphenylmelamine, N, N '-Diallylmelamine, N, N', N ''-triphenylmelamine, benzoguanamine, acetoguanamine, 2,4-diamino-6-butyl-sym-triazine, ammeline, 2,4-diamino-6-benzyloxy- sym-triazine, 2,4-diamino-6-butoxy-sym-triazine, 2,4-diamino-6-cyclohexyl-sym-triazine
  • triazine derivatives may be used alone or in combination of two or more.
  • Preferred are guanamine and melamine, with melamine being particularly preferred.
  • the blending amount is preferably 0.002 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polyacetal resin. Preferably they are 0.01 mass part or more and 2 mass parts or less, Most preferably, they are 0.03 mass part or more and 1 mass part or less.
  • the content of the triazine derivative (D) is 0.002 parts by mass or more, the thermal stability of the polyacetal resin can be improved, and if it is 10 parts by mass or less, problems such as bleeding from the polyacetal resin. This is preferable.
  • inorganic, organic, and metallic fibers other than glass-based inorganic fillers, plates, powders, etc. It is also possible to mix one type or two or more types of fillers such as granules. Examples of such fillers include talc, mica, wollastonite, carbon fiber, etc., but are not limited to these.
  • the polyacetal resin composition of this embodiment is easily prepared by a known method generally used as a conventional resin composition preparation method. For example, after mixing each component, kneading and extruding with a single or twin screw extruder to prepare pellets, then forming, pellets with different compositions (master batch) once prepared, the pellets Any of a method of mixing (diluting) a predetermined amount for use in molding and obtaining a molded product of the desired composition after molding can be used. Further, in the preparation of the acetal composition, it is preferable to extrude after part or all of the polyacetal resin as a substrate is mixed and mixed with other components to improve the dispersibility of the additive. Is the method.
  • (B4) Hexamethylene diisocyanate blocked with methyl ethyl ketoxime 1.0 mass% blocked isocyanate, 0.02 mass% aminosilane coupling agent ( ⁇ -aminopropyltriethoxysilane), 0.001 mass% magnesium chloride surface Treated chopped strand with a diameter of 10 ⁇ m.
  • (B5) A chopped strand having a diameter of 10 ⁇ m and surface-treated with 1.2% by mass of a polyurethane resin, 0.02% by mass of an aminosilane coupling agent ( ⁇ -aminopropyltriethoxysilane) and 0.001% by mass of magnesium chloride.
  • a glass-based inorganic filler, boric acid and a triazine derivative having a nitrogen-containing functional group are blended in 100 parts by mass of a polyacetal resin in the amounts shown in Tables 1 to 4, and melt-kneaded with an extruder having a cylinder temperature of 200 ° C.
  • Pellet-shaped polyacetal resin compositions according to examples and comparative examples were prepared.
  • Test pieces were molded from the pellet-shaped compositions according to the examples and comparative examples using an injection molding machine. Then, the tensile strength / tensile elongation according to ISO527-1 and 2, the bending strength / flexural modulus according to ISO178, and the Charpy impact strength (notched, 23 ° C.) according to ISO179 / 1eA were measured. . The results are shown in Tables 1 to 4.
  • Example 1 containing the glass fiber (B1) of this embodiment surface-treated with a blocked isocyanate compound, polyurethane resin, aminosilane coupling agent and magnesium chloride, blocked isocyanate compound, aminosilane coupling agent and chloride
  • Example 4 containing the glass-based inorganic filler (B4) of this embodiment surface-treated with magnesium, or the glass-based inorganic filler of this embodiment surface-treated with a polyurethane resin, an aminosilane coupling agent and magnesium chloride
  • Example 5 containing the material (B5)
  • Example 1 is most excellent in terms of impact strength.
  • a glass-based inorganic filler surface-treated with a blocked isocyanate compound, an aminosilane coupling agent, a polyurethane resin, and magnesium chloride is more preferable in terms of improving the impact strength of the polyacetal resin composition. It was.
  • the polyacetal resin composition molded article of Example 7 containing the glass-based inorganic filler (B3) and the triazine derivative according to this embodiment is different only in that it does not contain a triazine derivative. Since it shows mechanical properties such as higher impact strength than the molded product, it was confirmed that the triazine derivative enhances the effect of the glass-based inorganic filler subjected to the surface treatment of the present invention.
  • Comparative Examples 1 to 5 and 7 to 9 containing no boric acid are inferior in mechanical properties such as initial tensile strength and impact resistance. Further, Comparative Examples 6, 10 and 11 using the glass inorganic filler not subjected to the surface treatment of the present invention are also inferior in mechanical properties such as initial tensile strength and impact resistance.
  • Comparative Examples 7 and 8 containing an acid that is not boric acid are greatly inferior to the examples of the present invention in mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a polyacetal resin which exhibits excellent mechanical properties and resistance to hot water. This polyacetal resin composition contains: (A) 100 parts by mass of a polyacetal resin; (B) 1 to 100 parts by mass, inclusive, of an inorganic glass filler material subjected to a surface treatment using at least one type of isocyanate compound selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, and at least one type of halide selected from magnesium halide and ammonium halide; and (C) 0.001 to 1.0 parts by mass, inclusive, of boric acid. In addition, it is preferable for the (C) component to be orthoboric acid. Furthermore, it is preferable for the polyacetal resin composition to also contain (D) 0.002 to 10 parts by mass, inclusive, of a triazine derivative that has a nitrogen-containing functional group.

Description

ポリアセタール樹脂組成物Polyacetal resin composition
 本発明は、ポリアセタール樹脂組成物に関する。 The present invention relates to a polyacetal resin composition.
 ポリアセタール樹脂は機械的特性、熱的特性、電気的特性、摺動性、成形性、耐衝撃性、成形品の寸法安定性等において優れた特性を持っており、構造材料や機構部品として電気機器、自動車部品、精密機械部品等に広く使用されている。そして、ポリアセタール樹脂の機械的特性、例えば強度や剛性を向上させるために、ガラス系無機充填材等の強化材を配合することが知られている。 Polyacetal resin has excellent properties in mechanical properties, thermal properties, electrical properties, slidability, moldability, impact resistance, dimensional stability of molded products, etc. Widely used in automotive parts, precision machine parts, etc. It is known that a reinforcing material such as a glass-based inorganic filler is blended in order to improve the mechanical properties of the polyacetal resin, such as strength and rigidity.
 しかしながら、ポリアセタール樹脂は活性に乏しく、またガラス系無機充填材も活性に乏しいため、単にポリアセタール樹脂にガラス系無機充填材を配合し溶融混練しただけでは両者の密着性は不十分なものとなり、期待するほどの機械的特性の向上が得られない場合が多い。そこで、ポリアセタール樹脂とガラス系無機充填材との密着性を向上させて機械的特性を改良するための各種の方法が提案されている。 However, polyacetal resin has poor activity, and glass-based inorganic fillers also have poor activity. Therefore, simply blending glass-based inorganic filler with polyacetal resin and melt-kneading will result in insufficient adhesion between the two. In many cases, the mechanical properties cannot be improved as much as possible. Therefore, various methods for improving the mechanical properties by improving the adhesion between the polyacetal resin and the glass-based inorganic filler have been proposed.
 例えば、ポリアセタール樹脂にガラス系無機充填材とホウ酸化合物とを添加すること、さらに該ガラス系無機充填材を特定のシラン化合物で表面処理すること(特許文献1参照)、ポリアセタール樹脂にポリウレタン系樹脂で表面処理されたガラス繊維を添加すること、さらに亜リン酸を用いてpHを調整すること(特許文献2参照)等が知られている。 For example, adding a glass-based inorganic filler and a boric acid compound to a polyacetal resin, further surface-treating the glass-based inorganic filler with a specific silane compound (see Patent Document 1), and a polyurethane-based resin as a polyacetal resin It is known to add the glass fiber surface-treated in (1) and adjust the pH using phosphorous acid (see Patent Document 2).
特開平09-151298号公報Japanese Patent Laid-Open No. 09-151298 特開2000-335942号公報JP 2000-335942 A 特公平6-27204号公報Japanese Patent Publication No. 6-27204
 しかしながら、これらの手法は、いずれも、ガラス系無機充填材の化学的活性を高め、引張強さ、引張伸び、曲げ強度、曲げ弾性率等の機械的特性を得るものである。近年、これらの機械的特性に加え、耐衝撃性や、耐久性、とりわけ耐熱水性を発揮するポリアセタール樹脂の提供が求められており、従来のポリアセタール樹脂では、耐衝撃性や耐久性の向上の点において、さらなる改良の余地がある。 However, all of these methods increase the chemical activity of the glass-based inorganic filler and obtain mechanical properties such as tensile strength, tensile elongation, bending strength, and flexural modulus. In recent years, in addition to these mechanical properties, there has been a demand for provision of a polyacetal resin that exhibits impact resistance and durability, especially hot water resistance, and conventional polyacetal resins have improved impact resistance and durability. There is room for further improvement.
 本発明は、以上のような課題を解決するためになされたものであり、その目的は、引張強さ、引張伸び、曲げ強度、曲げ弾性率、耐衝撃性等の機械的特性に優れ、かつ、耐熱水性にも優れたポリアセタール樹脂を提供することである。 The present invention has been made to solve the above-described problems, and its purpose is excellent in mechanical properties such as tensile strength, tensile elongation, bending strength, bending elastic modulus, impact resistance, and the like. Another object is to provide a polyacetal resin having excellent hot water resistance.
 本発明者らは、上記課題を解決すべく、鋭意研究を重ねた、その結果、ポリアセタール樹脂に対して、特定のガラス系無機充填材と少量のホウ酸とを用いることで、高い機械的特性を維持しつつ、耐熱水性を向上できることを見出し、本発明を完成するに至った。具体的に、本発明は以下のものを提供する。 In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, the polyacetal resin has a high mechanical property by using a specific glass-based inorganic filler and a small amount of boric acid. The inventors have found that the hot water resistance can be improved while maintaining the above, and have completed the present invention. Specifically, the present invention provides the following.
 (1)本発明は、(A)ポリアセタール樹脂100質量部に対して、(B)ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化マグネシウム及びハロゲン化アンモニウムから選ばれる少なくとも1種のハロゲン化物、とで表面処理されたガラス系無機充填材1質量部以上100質量部以下と、(C)ホウ酸0.001質量部以上1.0質量部以下とを含有するポリアセタール樹脂組成物である。 (1) The present invention relates to (A) 100 parts by mass of a polyacetal resin, (B) at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, magnesium halide, and 1 to 100 parts by weight of a glass-based inorganic filler surface-treated with at least one halide selected from ammonium halides, and (C) 0.001 to 1.0 parts by weight of boric acid A polyacetal resin composition containing:
 (2)また、本発明は、さらに、(D)含窒素官能基を有するトリアジン誘導体0.002質量部以上10質量部以下を含有する(1)に記載のポリアセタール樹脂組成物である。 (2) Moreover, this invention is a polyacetal resin composition as described in (1) which contains 0.002 mass part or more and 10 mass parts or less of the triazine derivative which has (D) nitrogen-containing functional group further.
 (3)また、本発明は、前記(C)ホウ酸がオルトホウ酸である、(1)~(2)に記載のポリアセタール樹脂組成物である。
 (4)また、本発明は、前記(B)ガラス系無機充填材がガラス繊維である、(1)~(3)に記載のポリアセタール樹脂組成物である。
(3) The present invention also provides the polyacetal resin composition according to (1) to (2), wherein (C) boric acid is orthoboric acid.
(4) Further, the present invention provides the polyacetal resin composition according to any one of (1) to (3), wherein the glass-based inorganic filler (B) is a glass fiber.
 本発明によれば、引張強さ、引張伸び、曲げ強度、曲げ弾性率、耐衝撃性等の機械的特性に優れ、かつ、耐熱水性にも優れたポリアセタール樹脂を提供できる。 According to the present invention, it is possible to provide a polyacetal resin that is excellent in mechanical properties such as tensile strength, tensile elongation, bending strength, flexural modulus, and impact resistance, and also excellent in hot water resistance.
 以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. can do.
<ポリアセタール樹脂組成物>
 本実施形態のポリアセタール樹脂組成物は、(A)ポリアセタール樹脂100質量部に対して、(B)ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化マグネシウム及びハロゲン化アンモニウムから選ばれる少なくとも1種のハロゲン化物、とで表面処理されたガラス系無機充填材1質量部以上100質量部以下と、(C)ホウ酸0.001質量部以上1.0質量部以下とを含有する。以下、各々の成分について説明する。
<Polyacetal resin composition>
The polyacetal resin composition of the present embodiment comprises (B) at least one isocyanate compound selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, and a halogen with respect to 100 parts by mass of (A) polyacetal resin. 1 to 100 parts by mass of a glass-based inorganic filler surface-treated with at least one halide selected from magnesium halide and ammonium halide, and (C) 0.001 to 1 part by mass of boric acid. 0 parts by mass or less. Hereinafter, each component will be described.
<(A)ポリアセタール樹脂>
 (A)ポリアセタール樹脂は、オキシメチレン基(-CHO-)を主たる構成単位とする高分子化合物で、ポリオキシメチレンホモポリマー、又はオキシメチレン基を主たる繰り返し単位とし、これ以外に他の構成単位、例えばエチレンオキサイド、1,3-ジオキソラン、1,4-ブタンジオールホルマール等のコモノマー単位を少量含有するコポリマー、ターポリマー、ブロックポリマーのいずれにてもよい。
<(A) polyacetal resin>
(A) A polyacetal resin is a high molecular compound having an oxymethylene group (—CH 2 O—) as a main structural unit, a polyoxymethylene homopolymer, or an oxymethylene group as a main repeating unit. The copolymer may be a copolymer, terpolymer or block polymer containing a small amount of a comonomer unit such as ethylene oxide, 1,3-dioxolane, 1,4-butanediol formal and the like.
 また、ポリアセタール樹脂は、分子が線状のみならず分岐、架橋構造を有するものであってもよく、他の有機基を導入した公知の変性ポリオキシメチレンであってもよい。また、ポリアセタール樹脂は、その重合度に関しても特に制限はなく、溶融成形加工性を有するもの(例えば、190℃、2160g荷重下でのメルトフロー値(MFR)が1.0g/10分以上100g/10分以下)であればよい。 In addition, the polyacetal resin may have a branched or crosslinked structure as well as a linear molecule, or may be a known modified polyoxymethylene having other organic groups introduced. The polyacetal resin is not particularly limited with respect to the degree of polymerization, and has a melt molding processability (for example, a melt flow value (MFR) at 190 ° C. under a load of 2160 g is 1.0 g / 10 min or more and 100 g / min. 10 minutes or less).
<(B)ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化マグネシウム及びハロゲン化アンモニウムから選ばれる少なくとも1種のハロゲン化物、とで表面処理されたガラス系無機充填材>
 (B)ガラス系無機充填材は、ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化マグネシウム及びハロゲン化アンモニウムから選ばれる少なくとも1種のハロゲン化物、とで表面処理されたものであることを要する。
<(B) Surface treatment with at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, and at least one halide selected from magnesium halide and ammonium halide. Glass-based inorganic filler>
(B) The glass-based inorganic filler is at least one halide selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, magnesium halide and ammonium halide. It is necessary that the surface treatment is performed.
 ガラス系無機充填材は、ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化マグネシウム及びハロゲン化アンモニウムから選ばれる少なくとも1種のハロゲン化物、とで表面処理されていれば足り、表面処理するタイミングの先後は問わない。
 すなわち、ガラス系無機充填材は、ブロック化イソシアネート化合物で表面処理された後に、その他の成分で表面処理されたものであってもよいし、アミノシランカップリング剤で表面処理された後、その他の成分で表面処理されたものであってもよい。
The glass-based inorganic filler comprises at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, and at least one halide selected from magnesium halide and ammonium halide. It is sufficient that the surface treatment is performed, and the timing of the surface treatment is not limited.
That is, the glass-based inorganic filler may be surface-treated with a blocked isocyanate compound and then surface-treated with other components, or may be surface-treated with an aminosilane coupling agent and then other components. The surface treatment may be performed.
 あるいは、ハロゲン化物で表面処理された後に、その他の成分で表面処理されたものであってもよい。また、ガラス系無機充填材は、ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化物とで同時に表面処理されたものであってもよい。 Alternatively, the surface treatment may be performed with other components after the surface treatment with a halide. Further, the glass-based inorganic filler may be a surface treated with at least one isocyanate compound selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, and a halide at the same time.
 また、ガラス系無機充填材が、ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化物とで表面処理されたものであるか否かは、ポリアセタール樹脂組成物からガラス系無機充填材を溶剤抽出し、成分を分析することで区別可能である。 Whether or not the glass-based inorganic filler is surface-treated with at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, and a halide is determined as polyacetal. The glass-based inorganic filler can be extracted from the resin composition by solvent extraction and the components can be analyzed.
 ポリアセタール樹脂組成物の構成成分として表面処理されたガラス系無機充填材を用いたとしても、表面処理剤が前記イソシアネート化合物、アミノシランカップリング剤及びハロゲン化物とを含まないと、前記イソシアネート化合物、アミノシランカップリング剤及びハロゲン化物とで表面処理した場合に比べ、引張強さ等の機械的特性が劣るだけでなく、耐熱水性も劣るため、好ましくない。 Even if a surface-treated glass-based inorganic filler is used as a constituent component of the polyacetal resin composition, if the surface treatment agent does not contain the isocyanate compound, aminosilane coupling agent and halide, the isocyanate compound, aminosilane cup Compared with the surface treatment with a ring agent and a halide, not only mechanical properties such as tensile strength are inferior, but also hot water resistance is inferior, which is not preferable.
 ≪ガラス系無機充填材≫
 本実施形態に用いられるガラス系無機充填材は、繊維状(ガラス繊維)、粒状(ガラスビーズ)、粒状(ミルドガラスファイバー)、板状(ガラスフレーク)及び中空状の充填材が挙げられ、特に限定されるものではない。取り扱い上、ガラス繊維であって、2~8mm程度にカットされたチョップドストランドが好適である。また、ガラス繊維の直径としては、通常は5~15μm、好ましくは7~13μmのものが好適に用いられる。
≪Glass inorganic filler≫
Examples of the glass-based inorganic filler used in the present embodiment include fibrous (glass fiber), granular (glass bead), granular (milled glass fiber), plate (glass flake), and hollow filler. It is not limited. In terms of handling, chopped strands that are glass fibers and cut to about 2 to 8 mm are preferable. The diameter of the glass fiber is usually 5 to 15 μm, preferably 7 to 13 μm.
 ≪ブロック化イソシアネート≫
 本実施形態のブロック化イソシアネート化合物の原料であるイソシアネート化合物としては、一分子中に2つ以上のイソシアネート基を有する多官能のイソシアネート化合物であれば特に制限なく使用できる。例えば、脂肪族(直鎖、分岐、脂環式を含む)及び芳香族のイソシアネート化合物を挙げることができるが、特に、ポリアセタール樹脂との相溶性や適合性の面から、脂肪族イソシアネート化合物が好ましい。特に、2官能性の脂肪族又は脂環式ジイソシアネート、これらのジイソシアネートを多量化したポリイソシアネートであることが好ましい。
≪Blocked isocyanate≫
As an isocyanate compound which is a raw material of the blocked isocyanate compound of the present embodiment, any polyfunctional isocyanate compound having two or more isocyanate groups in one molecule can be used without particular limitation. For example, aliphatic (including linear, branched, and alicyclic) and aromatic isocyanate compounds can be mentioned, and in particular, from the viewpoint of compatibility and compatibility with polyacetal resins, aliphatic isocyanate compounds are preferable. . In particular, bifunctional aliphatic or alicyclic diisocyanates, and polyisocyanates obtained by multiplying these diisocyanates are preferable.
 直鎖、分岐の脂肪族ジイソシアネートとしては、炭素数4以上30以下のものが好ましく、炭素数5以上10以下のものがより好ましい。具体的には、テトラメチレン-1,4-ジイソシアネート、ペンタメチレン-1,5-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチル-ヘキサメチレン-1,6-ジイソシアネート、リジンジイソシアネート等を挙げることができる。 As the linear or branched aliphatic diisocyanate, those having 4 to 30 carbon atoms are preferable, and those having 5 to 10 carbon atoms are more preferable. Specific examples include tetramethylene-1,4-diisocyanate, pentamethylene-1,5-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethyl-hexamethylene-1,6-diisocyanate, and lysine diisocyanate. Can do.
 脂環式ジイソシアネートとしては、炭素数8以上15以下のものが好ましく、炭素数10以上18以下のものがより好ましい。具体的には、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)-シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート等を挙げることができる。
 芳香族ジイソシアネートとしては、キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート等が挙げられる。
As the alicyclic diisocyanate, those having 8 to 15 carbon atoms are preferable, and those having 10 to 18 carbon atoms are more preferable. Specific examples include isophorone diisocyanate, 1,3-bis (isocyanate methyl) -cyclohexane, 4,4′-dicyclohexylmethane diisocyanate, and the like.
Examples of the aromatic diisocyanate include xylylene diisocyanate, tolylene diisocyanate, and diphenylmethane diisocyanate.
 ポリイソシアネートとしては、一分子当たり少なくとも2個のイソシアネート基を有する化合物、例えば、トリレンジイソシアネートもしくはジフェニルメタンジイソシアネートの如き、各種の芳香族ジイソシアネート類;m-キシリレンジイソシアネート、α,α,α’,α’-テトラメチル-m-キシリレンジイソシアネートの如き、各種のアラルキルジイソシアネート類;ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネートもしくはイソホロンジイシシアネートの如き、脂肪族ジイソシアネート類と、多価アルコール類とを付加反応せしめて得られるような、イソシアネート基含有プレポリマー類、前記の各種のジイソシアネート類を環化三量化せしめて得られるような、イソシアヌレート環を有するプレポリマー類、あるいは前記の各種のジイソシアネート類と、水とを反応せしめて得られるような、ビウレット構造を有するアダクト、ポリイソシアネート等が挙げられる。 Polyisocyanates include compounds having at least two isocyanate groups per molecule, for example, various aromatic diisocyanates such as tolylene diisocyanate or diphenylmethane diisocyanate; m-xylylene diisocyanate, α, α, α ′, α Various aralkyl diisocyanates such as' -tetramethyl-m-xylylene diisocyanate; addition reaction of aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate or isophorone diisocyanate with polyhydric alcohols Prepolymers having an isocyanurate ring, obtained by cyclization and trimerization of the above-mentioned various diisocyanates, such as the obtained isocyanate group-containing prepolymers And Ma acids, or the various diisocyanates, such as those obtained by reacting a water adduct having a biuret structure, polyisocyanates, and the like.
 なかでも、得られる組成物の耐衝撃性や耐久性、工業的入手の容易さの点から、ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートのビウレット、又はヘキサメチレンジイソシアネートの環状三量体が好ましい。なお、上記化合物を2種以上併用することもできる。さらに、上記化合物の2種以上の混合物であっても良い。 Among these, hexamethylene diisocyanate, hexamethylene diisocyanate biuret, or hexamethylene diisocyanate cyclic trimer is preferable from the viewpoint of impact resistance and durability of the resulting composition and industrial availability. Two or more of the above compounds can be used in combination. Furthermore, it may be a mixture of two or more of the above compounds.
 また、本実施形態のブロック化イソシアネート化合物としては、上記イソシアネート化合物の反応基を、周知のブロック化剤で定法によりブロックしたものを、特に限定されることなく使用できる。
 具体的なブロック化剤としては、例えば、メチルエチルケトオキシム、アセトキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム等のオキシム系ブロック化剤;m-クレゾール、キシレノール等のフェノール系ブロック化剤;メタノール、エタノール、ブタノール、2-エチルヘキサノール、シクロヘキサノール、エチレングリコールモノエチルエーテル等のアルコール系ブロック化剤;ε-カプロラクタム等のラクタム系ブロック化剤;マロン酸ジエチル、アセト酢酸エステル等のジケトン系ブロック化剤;チオフェノール等のメルカプタン系ブロック化剤;チオ尿素等の尿素系ブロック化剤;イミダゾール系ブロック化剤;ピラゾール系ブロック化剤;カルバミン酸系ブロック化剤;重亜硫酸塩等を挙げることができるが、これらに特に限定されない。なかでも、ラクタム系ブロック化剤、オキシム系ブロック化剤、ジケトン系ブロック化剤の使用が好ましい。
 本発明のブロック化イソシアネートは、ガラス系無機充填材100質量部に対して0.01質量部以上5質量部以下使用され、好ましくは0.3質量部以上3質量部以下である。
 ≪ポリウレタン樹脂≫
Moreover, as the blocked isocyanate compound of the present embodiment, those obtained by blocking the reactive group of the isocyanate compound by a known method with a known blocking agent can be used without any particular limitation.
Specific blocking agents include, for example, oxime blocking agents such as methyl ethyl ketoxime, acetoxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime; phenol blocking agents such as m-cresol, xylenol; methanol, ethanol, butanol Alcohol blocking agents such as 2-ethylhexanol, cyclohexanol and ethylene glycol monoethyl ether; lactam blocking agents such as ε-caprolactam; diketone blocking agents such as diethyl malonate and acetoacetate; thiophenol Mercaptan blocking agents such as thiourea, urea blocking agents such as thiourea, imidazole blocking agents, pyrazole blocking agents, carbamic acid blocking agents, bisulfite, etc. It can gel, but not particularly limited thereto. Of these, the use of lactam blocking agents, oxime blocking agents, and diketone blocking agents is preferred.
The blocked isocyanate of the present invention is used in an amount of 0.01 to 5 parts by weight, preferably 0.3 to 3 parts by weight, based on 100 parts by weight of the glass-based inorganic filler.
≪Polyurethane resin≫
 他方、本実施形態のポリウレタン樹脂としては、集束性等の点から、特にキシリレンジイソシアネートを主とするポリイソシアネート成分とポリエステルポリオールを主とするポリオール成分から得られたものが好適である。
 ここで、キシリレンジイソシアネートとしては、o-キシリレンジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート及びこれらの混合物が挙げられるが、これらの中でm-キシリレンジイソシアネートが好ましい。
On the other hand, as the polyurethane resin of the present embodiment, those obtained from a polyisocyanate component mainly composed of xylylene diisocyanate and a polyol component mainly composed of polyester polyol are preferable from the viewpoint of sizing properties and the like.
Here, examples of the xylylene diisocyanate include o-xylylene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, and mixtures thereof. Among these, m-xylylene diisocyanate is preferable.
 一方、ポリエステルポリオールとしては、例えば多価アルコールと多価カルボン酸との脱水縮合により得られた縮合系ポリエステルポリオール、多価アルコールをベースとしてラクトンの開環重合により得られたラクトン系ポリエステルポリオール、ポリエーテルポリオールの末端をラクトンでエステル変性したエステル変性ポリオール及びこれらの共重合ポリエステルポリオール等が挙げられる。 On the other hand, examples of the polyester polyol include a condensed polyester polyol obtained by dehydration condensation of a polyhydric alcohol and a polycarboxylic acid, a lactone polyester polyol obtained by ring-opening polymerization of a lactone based on a polyhydric alcohol, Examples thereof include ester-modified polyols obtained by ester-modifying the ends of ether polyols with lactones and copolymerized polyester polyols thereof.
 上記縮合系ポリエステルポリオールにおいて用いられる多価アルコールの例としては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、ブチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、ヘキシレングリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール等が挙げられ、多価カルボン酸の例としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、無水マレイン酸、フマル酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、ビフェニルジカルボン酸、トリメリット酸等が挙げられる。 Examples of the polyhydric alcohol used in the condensed polyester polyol include ethylene glycol, propylene glycol, 1,3-propanediol, butylene glycol, 1,4-butanediol, 1,5-pentanediol, hexylene glycol, Examples include glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, etc. Examples of polyvalent carboxylic acids include succinic acid, adipic acid, and azelain. Acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, terephthalic acid, iso Tal acid, phthalic acid, 1,4-naphthalene dicarboxylic acid, biphenyl dicarboxylic acid, trimellitic acid and the like.
 また、ラクトン系ポリエステルポリオールとしては、例えばポリ(ε-カプロラクトン)ポリオール等がある。これらのポリエステルポリオールは、重量平均分子量が500以上4000以下の範囲にあるものが好適である。なお、本明細書における樹脂の重量平均分子量は、GPC法によって測定し、かつ、標準ポリスチレン換算された値である。 Examples of the lactone polyester polyol include poly (ε-caprolactone) polyol. These polyester polyols preferably have a weight average molecular weight in the range of 500 or more and 4000 or less. In addition, the weight average molecular weight of the resin in the present specification is a value measured by GPC method and converted to standard polystyrene.
 前記ポリウレタン樹脂を製造するには、例えば、キシリレンジイソシアネートとポリエステルポリオールとを、30℃以上130℃以下程度で無溶媒下又は少量の有機溶媒存在下に加熱することにより行うことができる。
 なお、加熱反応を行う際には、前記ポリエステルポリオールの説明で例示した多価アルコールを、鎖延長剤として適宜共存させてもよい。また、有機溶媒を使用する場合には、この有機溶媒としては、イソシアネートと反応せず、かつ水と混和性のあるものであればよく、特に制限はないが、例えばアセトン、メチルエチルケトン、テトラヒドロフラン、ジメチルホルムアミド等を用いることができる。
 本発明のポリウレタン樹脂は、ガラス系無機充填材100質量部に対して0.1質量部以上5質量部以下使用され、好ましくは0.2質量部以上2質量部以下である。
The polyurethane resin can be produced, for example, by heating xylylene diisocyanate and polyester polyol at about 30 ° C. to 130 ° C. in the absence of a solvent or in the presence of a small amount of an organic solvent.
In addition, when performing a heating reaction, you may coexist suitably the polyhydric alcohol illustrated by description of the said polyester polyol as a chain extender. When an organic solvent is used, the organic solvent is not particularly limited as long as it does not react with isocyanate and is miscible with water. For example, acetone, methyl ethyl ketone, tetrahydrofuran, dimethyl Formamide or the like can be used.
The polyurethane resin of the present invention is used in an amount of 0.1 to 5 parts by weight, preferably 0.2 to 2 parts by weight, based on 100 parts by weight of the glass-based inorganic filler.
 ≪アミノシランカップリング剤≫
 さらに、本実施形態のガラス系無機充填材の表面処理には、アミノシランカップリング剤が用いられる。アミノシランカップリング剤とは、一分子中にアルコキシ基が結合した珪素原子と、窒素原子を含有する官能基とを含有している化合物を意味する。
≪Aminosilane coupling agent≫
Furthermore, an aminosilane coupling agent is used for the surface treatment of the glass-based inorganic filler of the present embodiment. The aminosilane coupling agent means a compound containing a silicon atom having an alkoxy group bonded in one molecule and a functional group containing a nitrogen atom.
 具体的なアミノシランカップリング剤として、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、N,N’-ビス-〔3-(トリメトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(トリエトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(メチルジメトキシシリル)プロピル〕エチレンジアミン、N,N’-ビス-〔3-(トリメトキシシリル)プロピル〕ヘキサメチレンジアミン、N,N’-ビス-〔3-(トリエトキシシリル)プロピル〕ヘキサメチレンジアミン等が挙げられる。また、これらのアミノシランカップリング剤は、単独で用いられても二種以上が併用されてもよい。 Specific aminosilane coupling agents include γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl) -Γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, N, N'-bis- [3- (trimethoxysilyl) propyl] ethylenediamine, N, N'- Bis- [3- (triethoxysilyl) propyl] ethylenediamine, N, N′-bis- [3- (methyldimethoxysilyl) propyl] ethylenediamine, N, N′-bis- [3- (trimethoxysilyl) propyl] Hexamethylenediamine, N, N'-bis- [3- (triethoxysilyl ) Propyl] hexamethylenediamine and the like. Moreover, these aminosilane coupling agents may be used independently or 2 or more types may be used together.
 上記アミノシランカップリング剤として、なかでも、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン及びN-フェニル-γ-アミノプロピルトリメトキシシランが好ましく挙げられ、γ-アミノプロピルトリメトキシシラン及びγ-アミノプロピルトリエトキシシランがより好ましく挙げられる。 Among the aminosilane coupling agents, among them, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl) ) -Γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane and N-phenyl-γ-aminopropyltrimethoxysilane are preferred, and γ-aminopropyltrimethoxysilane And γ-aminopropyltriethoxysilane are more preferable.
 これらのアミノシランカップリング剤によれば、ブロック化イソシアネート化合物との組み合わせによる相乗効果が得られ易く、ポリアセタール樹脂とガラス系無機充填材との接着性を向上させることができる。
 本発明のアミノシランカップリング剤による表面処理は、ガラス系無機充填材100質量に対し0.01~3質量部、好ましくは0.03~1質量部でなされる。
According to these aminosilane coupling agents, a synergistic effect by the combination with the blocked isocyanate compound can be easily obtained, and the adhesion between the polyacetal resin and the glass-based inorganic filler can be improved.
The surface treatment with the aminosilane coupling agent of the present invention is performed at 0.01 to 3 parts by mass, preferably 0.03 to 1 part by mass, with respect to 100 parts by mass of the glass-based inorganic filler.
 ≪ハロゲン化物≫
 さらに、本実施形態のガラス系無機充填材の表面処理には、ハロゲン化マグネシウム及びハロゲン化アンモニウムから選ばれる少なくとも1種のハロゲン化物が用いられる。
 本発明のハロゲン化物は、ハロゲン化マグネシウム、ハロゲン化アンモニウムであり、ハロゲン元素としては、臭素、塩素が好ましい。特に塩化マグネシウム、臭化マグネシウム、塩化アンモニウム及び臭化アンモニウムから選択された一種であることが好ましい。
<< Halides >>
Furthermore, at least one halide selected from magnesium halide and ammonium halide is used for the surface treatment of the glass-based inorganic filler of the present embodiment.
The halide of the present invention is magnesium halide or ammonium halide, and bromine and chlorine are preferable as the halogen element. In particular, one selected from magnesium chloride, magnesium bromide, ammonium chloride and ammonium bromide is preferable.
 本発明において、ハロゲン化物には、無水塩又は含水塩(二水塩、四水塩、六水塩、八水塩、十二水塩等)が含まれる。
 本発明のハロゲン化物は、ガラス系無機充填材100質量部に対し0.00001質量部以上0.5質量部以下であり、0.0001質量部以上0.05質量部以下であることが好ましい。
 本発明のハロゲン化物は水溶性を有するため、本実施形態のガラス系無機充填材の表面処理において、ハロゲン化物は水に溶解した状態で使用してもよい。
In the present invention, the halide includes an anhydrous salt or a hydrated salt (dihydrate, tetrahydrate, hexahydrate, octahydrate, dodecahydrate, etc.).
The halide of the present invention is 0.00001 parts by mass or more and 0.5 parts by mass or less, and preferably 0.0001 parts by mass or more and 0.05 parts by mass or less with respect to 100 parts by mass of the glass-based inorganic filler.
Since the halide of the present invention has water solubility, the halide may be used in a state of being dissolved in water in the surface treatment of the glass-based inorganic filler of the present embodiment.
 本実施形態のガラス系無機充填材の表面処理に用いられるハロゲン化物は、ポリアセタール樹脂の引張り強さ、曲げ強度、曲げ弾性率、耐衝撃性及び耐熱水性の向上に大きく寄与しているものと考えられる。 It is considered that the halide used for the surface treatment of the glass-based inorganic filler of this embodiment greatly contributes to the improvement of the tensile strength, bending strength, bending elastic modulus, impact resistance and hot water resistance of the polyacetal resin. It is done.
 本実施形態のガラス系無機充填材は、ブロック化イソシアネート化合物とポリウレタン樹脂とアミノシランカップリング剤とハロゲン化物、とで表面処理されたガラス系無機充填材であることがより好ましい。ガラス系無機充填材は、イソシアネート化合物とアミノシランカップリング剤とハロゲン化物とで表面処理されていれば足り、表面処理するタイミングの先後は問わない。すなわち、ガラス系無機充填材を表面処理する際、複数の表面処理剤を逐次に使用してもよいし、複数の表面処理剤を同時に使用してもよい。 The glass-based inorganic filler of this embodiment is more preferably a glass-based inorganic filler surface-treated with a blocked isocyanate compound, a polyurethane resin, an aminosilane coupling agent, and a halide. The glass-based inorganic filler only needs to be surface-treated with an isocyanate compound, an aminosilane coupling agent, and a halide, and the timing of the surface treatment does not matter. That is, when surface-treating the glass-based inorganic filler, a plurality of surface treatment agents may be used sequentially, or a plurality of surface treatment agents may be used simultaneously.
 ガラス系無機充填材に表面処理を行う際には、後述するようにブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化物とを、有機溶剤中に溶解又は分散、或いは、水中に分散させ使用することが好ましい。特に、ポリウレタン樹脂を含む水性エマルジョンを製造する方法としては、自己乳化法、乳化剤を使用する方法があるが、これらを適当に組み合わせてもよい。 When the surface treatment is performed on the glass-based inorganic filler, as described later, at least one isocyanate compound selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, and a halide are contained in an organic solvent. It is preferable to dissolve or disperse in water, or disperse in water. In particular, as a method for producing an aqueous emulsion containing a polyurethane resin, there are a self-emulsification method and a method using an emulsifier, but these may be combined appropriately.
(1)ポリウレタン樹脂の側鎖又は末端にイオン性基(スルホン酸基、アミノ基、カルボキシル基等)又は非イオン性親水性基(ポリエチレングリコール、ポリオキシアルキレングリコール等)を導入することにより親水性を付与した後、自己乳化により水中に分散又は溶解する方法。 (1) Hydrophilicity by introducing an ionic group (sulfonic acid group, amino group, carboxyl group, etc.) or nonionic hydrophilic group (polyethylene glycol, polyoxyalkylene glycol, etc.) into the side chain or terminal of the polyurethane resin. And then dispersing or dissolving in water by self-emulsification.
(2)ポリウレタン樹脂を製造する際、モノマーとして、ポリエステルポリオール成分及びキシリレンジイソシアネート成分以外に、ポリエチレングリコール又はモノアルコキシポリエチレングリコールのような水溶性ポリオールを共存させて行い、水に比較的親和性のあるポリウレタン系樹脂として水中に分散又は溶解させて自己乳化する方法。 (2) When producing a polyurethane resin, in addition to the polyester polyol component and the xylylene diisocyanate component, a monomer is used in the presence of a water-soluble polyol such as polyethylene glycol or monoalkoxy polyethylene glycol, which is relatively compatible with water. A method of self-emulsifying by dispersing or dissolving in water as a polyurethane resin.
(3)ポリウレタン樹脂に存在するイソシアネート基をブロック剤(アルコール、オキシム、カプロラクタム等)でブロックしたポリマーを乳化剤と機械的剪断力を用いて強制的に分散する方法。 (3) A method in which a polymer in which an isocyanate group present in a polyurethane resin is blocked with a blocking agent (alcohol, oxime, caprolactam, etc.) is forcibly dispersed using an emulsifier and mechanical shearing force.
(4)ポリウレタン樹脂を特にブロック剤を使用せずに乳化剤と機械的剪断力により強制的に水中で分散させる方法。 (4) A method in which a polyurethane resin is forcibly dispersed in water by using an emulsifier and a mechanical shear force without using a blocking agent.
 また、乳化させる際或いは乳化させた後、イソシアネート基を有するポリウレタン系樹脂に鎖延長剤を加えることにより、さらに分子量の高いポリウレタン系樹脂エマルジョンを製造することもできる。その際の鎖延長剤としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヒドラジン、N,N-ジメチルヒドラジン等の公知のものを使用することができる。 Further, a polyurethane resin emulsion having a higher molecular weight can be produced by adding a chain extender to a polyurethane resin having an isocyanate group at the time of emulsification or after emulsification. As the chain extender at that time, known ones such as ethylene glycol, diethylene glycol, propylene glycol, hydrazine, N, N-dimethylhydrazine can be used.
 (B)ガラス系無機充填材の配合量は、ポリアセタール樹脂100質量部に対して1質量部以上100質量部以下であり、好ましくは5質量部以上55質量部以下であり、特に好ましくは10質量部以上40質量部以下である。ガラス系無機充填材の含有量が1質量部未満であると、成形品の機械的特性及び耐熱水性の改善が不十分であり、その含有量が100質量部を超えると成形加工が困難になる。 (B) The compounding quantity of a glass-type inorganic filler is 1 to 100 mass parts with respect to 100 mass parts of polyacetal resin, Preferably it is 5 to 55 mass parts, Most preferably, it is 10 mass. Part to 40 parts by weight. When the content of the glass-based inorganic filler is less than 1 part by mass, the mechanical properties and hot water resistance of the molded product are insufficiently improved, and when the content exceeds 100 parts by mass, the molding process becomes difficult. .
<(C)ホウ酸>
 (C)ホウ酸の種類は特に限定されるものでなく、オルトホウ酸、メタホウ酸、四ホウ酸等のいずれであってもよい。中でもオルトホウ酸が好ましい。ホウ酸の配合量はポリアセタール樹脂100質量部に対し、0.001質量部以上1.0質量部以下であり、好ましくは0.003質量部以上0.5質量部以下である。0.001質量部未満では、機械的特性及び耐熱水性に劣り所望の効果が得られず、1.0質量部を越えると、同じく機械的特性及び耐熱水性に劣り所望の効果が得られない。
<(C) Boric acid>
(C) The kind of boric acid is not specifically limited, Any of orthoboric acid, metaboric acid, tetraboric acid, etc. may be sufficient. Of these, orthoboric acid is preferred. The blending amount of boric acid is 0.001 part by mass or more and 1.0 part by mass or less, preferably 0.003 part by mass or more and 0.5 part by mass or less with respect to 100 parts by mass of the polyacetal resin. If it is less than 0.001 part by mass, the mechanical effect and hot water resistance are poor and the desired effect cannot be obtained, and if it exceeds 1.0 part by mass, the mechanical effect and hot water resistance are similarly poor and the desired effect cannot be obtained.
 ポリアセタール樹脂組成物が酸を含有するとしても、酸が、一般の無機酸、有機酸では本発明の効果は得られない。無機酸として塩酸、リン酸、有機酸としてギ酸、酢酸などを用いても、機械的特性及び耐熱水性は、ホウ酸による効果のレベルに達しない。 Even if the polyacetal resin composition contains an acid, the effect of the present invention cannot be obtained if the acid is a general inorganic acid or organic acid. Even if hydrochloric acid or phosphoric acid is used as the inorganic acid and formic acid or acetic acid is used as the organic acid, the mechanical properties and hot water resistance do not reach the level of the effect of boric acid.
 本実施形態は、(B)特定の表面処理を行ったガラス系無機充填材と(C)ホウ酸とを併用したことで、ポリアセタール樹脂の機械的特性と耐熱水性との両方を向上させたことを特徴とする。(B)特定の表面処理を行ったガラス系無機充填材と(C)ホウ酸とによる、ポリアセタール樹脂の機械的特性及び耐熱水性向上の原因は不明であるが、特定の表面処理用化合物との相互作用による相乗効果によるものと考えられる。 This embodiment has improved both the mechanical properties and hot water resistance of the polyacetal resin by using (B) a glass-based inorganic filler subjected to a specific surface treatment and (C) boric acid in combination. It is characterized by. (B) Although the cause of the improvement of the mechanical properties and hot water resistance of the polyacetal resin by the glass-based inorganic filler subjected to a specific surface treatment and (C) boric acid is unknown, It is thought to be due to a synergistic effect due to interaction.
 そのため、ガラス系無機充填材の表面処理にブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化物とが用いられない場合や、ポリアセタール樹脂に(C)ホウ酸が含まれないか、(C)ホウ酸以外の酸が含まれる場合には、ポリアセタール樹脂は充分な機械的特性及び耐熱水性を有し得ない。 Therefore, in the case where at least one isocyanate compound selected from a blocked isocyanate compound and a polyurethane resin, an aminosilane coupling agent, and a halide are not used for the surface treatment of the glass-based inorganic filler, a polyacetal resin (C When no boric acid is contained or (C) an acid other than boric acid is contained, the polyacetal resin cannot have sufficient mechanical properties and hot water resistance.
 ≪その他≫
(他のガラス系無機充填材)
 本実施形態のポリアセタール樹脂組成物には、さらにアミノシランカップリング剤以外の公知のカップリング剤で表面処理されたガラス系無機充填材を含有してもよい。カップリング剤は、ガラス系無機充填材を、ポリアセタール樹脂との濡れ性や接着性等を良好なものとするために用いられるものであって、例えばシラン系、チタネート系、アルミニウム系、クロム系、ジルコニウム系、ボラン系カップリング剤等があるが、これらの中で、特にシラン系カップリング剤が好適である。
≪Others≫
(Other glass-based inorganic fillers)
The polyacetal resin composition of the present embodiment may further contain a glass-based inorganic filler surface-treated with a known coupling agent other than an aminosilane coupling agent. The coupling agent is used to improve the wettability and adhesiveness of the glass-based inorganic filler with the polyacetal resin. For example, the silane-based, titanate-based, aluminum-based, chromium-based, There are zirconium-based and borane-based coupling agents, among which silane-based coupling agents are particularly suitable.
 シラン系カップリング剤としては、例えばビニルアルコキシシラン、エポキシアルコキシシラン、メルカプトアルコキシシラン、アリルアルコキシシラン等が挙げられる。ビニルアルコキシシランとしては、例えばビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン等が挙げられる。 Examples of the silane coupling agent include vinyl alkoxy silane, epoxy alkoxy silane, mercapto alkoxy silane, and allyl alkoxy silane. Examples of the vinylalkoxysilane include vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, and the like.
 エポキシアルコキシシランとしては、例えばγ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等が挙げられる。メルカプトアルコキシシランとしては、例えばγ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン等が挙げられる。 Examples of the epoxyalkoxysilane include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-glycidoxypropyltriethoxysilane. Examples of mercaptoalkoxysilanes include γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane.
 アリルアルコキシシランとしては、例えばγ-ジアリルアミノプロピルトリメトキシシラン、γ-アリルアミノプロピルトリメトキシシラン、γ-アリルチオプロピルトリメトキシシラン等が挙げられる。 Examples of allylalkoxysilanes include γ-diallylaminopropyltrimethoxysilane, γ-allylaminopropyltrimethoxysilane, and γ-allylthiopropyltrimethoxysilane.
 チタネート系表面処理剤としては、例えばチタニウム-i-プロポキシオクチレングリコレート、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン等が挙げられる。これらカップリング剤は1種用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the titanate-based surface treatment agent include titanium-i-propoxyoctylene glycolate, tetra-n-butoxytitanium, tetrakis (2-ethylhexoxy) titanium, and the like. These coupling agents may be used alone or in combination of two or more.
(各種安定剤・添加剤)
 本実施形態のポリアセタール樹脂組成物には、さらに公知の各種安定剤・添加剤を配合し得る。安定剤としては、ヒンダードフェノール系化合物、含窒素塩基性化合物、アルカリ或いはアルカリ土類金属の水酸化物、無機塩、カルボン酸塩等のいずれか1種又は2種以上を挙げることができる。
 添加剤としては、熱可塑性樹脂に対する一般的な添加剤、例えば染料、顔料等の着色剤、滑剤、核剤、離型剤、帯電防止剤、界面活性剤のいずれか1種又は2種以上を挙げることができる。
(Various stabilizers and additives)
The polyacetal resin composition of the present embodiment may further contain various known stabilizers / additives. Examples of the stabilizer include one or more of hindered phenol compounds, nitrogen-containing basic compounds, alkali or alkaline earth metal hydroxides, inorganic salts, carboxylates, and the like.
As an additive, general additives for thermoplastic resins, for example, coloring agents such as dyes and pigments, lubricants, nucleating agents, mold release agents, antistatic agents, and surfactants are used alone or in combination. Can be mentioned.
 ≪含窒素塩基性化合物≫
 含窒素塩基性化合物は、ポリアセタール樹脂組成物の耐熱安定性を高めるために用いられる。含窒素塩基性化合物の種類は、特に限定されるものではないが、一例として、(D)含窒素官能基を有するトリアジン誘導体が挙げられる。
≪Nitrogen-containing basic compound≫
The nitrogen-containing basic compound is used for enhancing the heat resistance stability of the polyacetal resin composition. Although the kind of nitrogen-containing basic compound is not particularly limited, an example is (D) a triazine derivative having a nitrogen-containing functional group.
<(D)含窒素官能基を有するトリアジン誘導体>
 (D)含窒素官能基を有するトリアジン誘導体を配合することが、機械的特性のさらなる向上の観点から、特に好ましい。本実施形態に用いられる含窒素官能基を有するトリアジン誘導体(D)としては、具体的には、グアナミン、メラミン、N-ブチルメラミン、N-フェニルメラミン、N,N’-ジフェニルメラミン、N,N’-ジアリルメラミン、N,N’,N’’-トリフェニルメラミン、ベンゾグアナミン、アセトグアナミン、2,4-ジアミノ-6-ブチル-sym-トリアジン、アンメリン、2,4-ジアミノ-6-ベンジルオキシ-sym-トリアジン、2,4-ジアミノ-6-ブトキシ-sym-トリアジン、2,4-ジアミノ-6-シクロヘキシル-sym-トリアジン、2,4-ジアミノ-6-クロロ-sym-トリアジン、2,4-ジアミノ-6-メルカプト-sym-トリアジン、6-アミノ-2,4-ジヒドロキシ-sym-トリアジン〔別称(アンメリド)〕、1,1-ビス(3,5-ジアミノ-2,4,6-トリアジニル)メタン、1,2-ビス-(3,5-ジアミノ2,4,6-トリアジニル)エタン〔別称(サクシノグアナミン)〕、1,3-ビス(3,5-ジアミノ-2,4,6-トリアジニル)プロパン、1,4-ビス(3,5-ジアミノ-2,4,6-トリアジニル)ブタン、メチレン化メラミン、エチレンジメラミン、トリグアナミン、メラミンシアヌレート、エチレンジメラミンシアヌレート、トリグアナミンシアヌレート等である。
<(D) Triazine derivative having nitrogen-containing functional group>
(D) It is particularly preferable to blend a triazine derivative having a nitrogen-containing functional group from the viewpoint of further improving mechanical properties. Specific examples of the triazine derivative (D) having a nitrogen-containing functional group used in this embodiment include guanamine, melamine, N-butylmelamine, N-phenylmelamine, N, N′-diphenylmelamine, N, N '-Diallylmelamine, N, N', N ''-triphenylmelamine, benzoguanamine, acetoguanamine, 2,4-diamino-6-butyl-sym-triazine, ammeline, 2,4-diamino-6-benzyloxy- sym-triazine, 2,4-diamino-6-butoxy-sym-triazine, 2,4-diamino-6-cyclohexyl-sym-triazine, 2,4-diamino-6-chloro-sym-triazine, 2,4- Diamino-6-mercapto-sym-triazine, 6-amino-2,4-dihydroxy-sym-triazine [ (Ammelide)], 1,1-bis (3,5-diamino-2,4,6-triazinyl) methane, 1,2-bis- (3,5-diamino-2,4,6-triazinyl) ethane [ Also known as (succinoguanamine)], 1,3-bis (3,5-diamino-2,4,6-triazinyl) propane, 1,4-bis (3,5-diamino-2,4,6-triazinyl) Butane, methylene melamine, ethylene dimelamine, triguanamine, melamine cyanurate, ethylene dimelamine cyanurate, triguanamine cyanurate and the like.
 これらのトリアジン誘導体は1種類で用いてもよいし、2種類以上を組み合わせて用いてもよい。好ましくはグアナミン、メラミンであり、中でもメラミンが特に好ましい。 These triazine derivatives may be used alone or in combination of two or more. Preferred are guanamine and melamine, with melamine being particularly preferred.
 本実施形態においてかかる含窒素官能基を有するトリアジン誘導体(D)を配合する場合、その配合量はポリアセタール樹脂100質量部に対して0.002質量部以上10質量部以下とするのが好ましく、より好ましくは0.01質量部以上2質量部以下、特に好ましくは0.03質量部以上1質量部以下である。 In the present embodiment, when the triazine derivative (D) having such a nitrogen-containing functional group is blended, the blending amount is preferably 0.002 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the polyacetal resin. Preferably they are 0.01 mass part or more and 2 mass parts or less, Most preferably, they are 0.03 mass part or more and 1 mass part or less.
 上記トリアジン誘導体(D)の含有量が0.002質量部以上であれば、ポリアセタール樹脂の熱安定性を向上することができ、10質量部以下であれば、ポリアセタール樹脂からの滲み出し等の問題がなく好ましい。 If the content of the triazine derivative (D) is 0.002 parts by mass or more, the thermal stability of the polyacetal resin can be improved, and if it is 10 parts by mass or less, problems such as bleeding from the polyacetal resin. This is preferable.
 また、本実施形態の目的とする成形品の性能を大幅に低下させないような範囲であるならば、ガラス系無機充填材以外の公知の無機、有機、及び金属等の繊維状、板状、粉粒状等の充填材を1種又は2種以上複合させて配合することも可能である。このような充填材の例としては、タルク、マイカ、ウォラストナイト、炭素繊維等が挙げられるが、何らこれらに限定されるものではない。 Moreover, if it is the range which does not reduce the performance of the target molded object of this embodiment significantly, well-known inorganic, organic, and metallic fibers other than glass-based inorganic fillers, plates, powders, etc. It is also possible to mix one type or two or more types of fillers such as granules. Examples of such fillers include talc, mica, wollastonite, carbon fiber, etc., but are not limited to these.
 本実施形態のポリアセタール樹脂組成物の調製は、従来の樹脂組成物調製法として一般に用いられる公知の方法により容易に調製される。例えば各成分を混合した後、1軸又は2軸の押出機により練込み押出しして、ペレットを調製し、しかる後、成形する方法、一旦組成の異なるペレット(マスターバッチ)を調製し、そのペレットを所定量混合(稀釈)して成形に供し、成形後に目的組成の成形品を得る方法等、いずれも使用できる。
 また、アセタール組成物の調製において、基体であるポリアセタール樹脂の一部又は全部を粉砕し、これとその他の成分を混合した後、押出等を行うことは添加物の分散性を良くする上で好ましい方法である。
The polyacetal resin composition of this embodiment is easily prepared by a known method generally used as a conventional resin composition preparation method. For example, after mixing each component, kneading and extruding with a single or twin screw extruder to prepare pellets, then forming, pellets with different compositions (master batch) once prepared, the pellets Any of a method of mixing (diluting) a predetermined amount for use in molding and obtaining a molded product of the desired composition after molding can be used.
Further, in the preparation of the acetal composition, it is preferable to extrude after part or all of the polyacetal resin as a substrate is mixed and mixed with other components to improve the dispersibility of the additive. Is the method.
 以下、実施例を示して、本発明を更に具体的に説明するが、本発明は、以下の実施例に何ら限定されるものではない。なお、評価、測定は特に断りのない限り、23℃55%RHの環境下で行った。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. Evaluation and measurement were performed in an environment of 23 ° C. and 55% RH unless otherwise specified.
<ポリアセタール樹脂組成物の調製>
 表1において、各種材料は次のとおりである。
〔(A)ポリアセタール樹脂〕
 (A1)ポリアセタール樹脂(トリオキサン96.7質量%と1,3-ジオキソラン3.3質量%とを共重合させてなるポリアセタール共重合体(メルトインデックス(190℃,荷重2160gで測定):45g/10min)
 (A2)ポリアセタール樹脂(トリオキサン96.7質量%と1,3-ジオキソラン3.3質量%とを共重合させてなるポリアセタール共重合体(メルトインデックス(190℃,荷重2160gで測定):9g/10min)
<Preparation of polyacetal resin composition>
In Table 1, various materials are as follows.
[(A) polyacetal resin]
(A1) Polyacetal resin (polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane (melt index (measured at 190 ° C. under a load of 2160 g)): 45 g / 10 min )
(A2) Polyacetal resin (polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane (melt index (measured at 190 ° C. under a load of 2160 g)): 9 g / 10 min )
〔(B)表面処理されたガラス系無機充填材(特定のガラス繊維)〕
 (B1)日本国特許特公平6-27204号公報の実施例1記載のメチルエチルケトオキシムでブロックされたブロック化イソシアネート1.0質量%、ポリウレタン樹脂0.3質量%、アミノシランカップリング剤0.02質量%に加えて、塩化マグネシウム0.0005質量%で表面処理された直径10μmのチョップドストランド。
[(B) Surface-treated glass-based inorganic filler (specific glass fiber)]
(B1) 1.0 mass% of blocked isocyanate blocked with methyl ethyl ketoxime described in Example 1 of Japanese Patent Publication No. 6-27204, 0.3 mass% of polyurethane resin, 0.02 mass of aminosilane coupling agent 10 μm diameter chopped strands surface treated with 0.0005% by weight magnesium chloride.
 (B2)メチルエチルケトオキシムでブロックされたヘキサメチレンジイソシアネート環状三量体のブロック化イソシアネート1.0質量%、ポリウレタン樹脂0.3質量%、アミノシランカップリング剤0.02質量%に加えて、塩化マグネシウム0.001質量%で表面処理された直径10μmのチョップドストランド。
 (B3)メチルエチルケトオキシムでブロックされたヘキサメチレンジイソシアネート環状三量体のブロック化イソシアネート0.8質量%、ポリウレタン樹脂0.3質量%、アミノシランカップリング剤(γ-アミノプロピルトリエトキシシラン)0.02質量%、塩化マグネシウム0.0005質量%で表面処理された直径10μmのチョップドストランド。
(B2) Hexamethylene diisocyanate cyclic trimer blocked with methyl ethyl ketoxime 1.0% by weight of blocked isocyanate, 0.3% by weight of polyurethane resin, 0.02% by weight of aminosilane coupling agent, magnesium chloride 0 A chopped strand having a diameter of 10 μm and surface-treated with 001% by mass.
(B3) Hexamethylene diisocyanate cyclic trimer blocked with methyl ethyl ketoxime 0.8% by weight of blocked isocyanate, 0.3% by weight of polyurethane resin, aminosilane coupling agent (γ-aminopropyltriethoxysilane) 0.02 A chopped strand having a diameter of 10 μm and surface-treated with 0.005% by mass of magnesium chloride.
 (B4)メチルエチルケトオキシムでブロックされたヘキサメチレンジイソシアネートのブロック化イソシアネート1.0質量%、アミノシランカップリング剤(γ-アミノプロピルトリエトキシシラン)0.02質量%、塩化マグネシウム0.001質量%で表面処理された直径10μmのチョップドストランド。
 (B5)ポリウレタン樹脂1.2質量%、アミノシランカップリング剤(γ-アミノプロピルトリエトキシシラン)0.02質量%、塩化マグネシウム0.001質量%で表面処理された直径10μmチョップドストランド。
(B4) Hexamethylene diisocyanate blocked with methyl ethyl ketoxime 1.0 mass% blocked isocyanate, 0.02 mass% aminosilane coupling agent (γ-aminopropyltriethoxysilane), 0.001 mass% magnesium chloride surface Treated chopped strand with a diameter of 10 μm.
(B5) A chopped strand having a diameter of 10 μm and surface-treated with 1.2% by mass of a polyurethane resin, 0.02% by mass of an aminosilane coupling agent (γ-aminopropyltriethoxysilane) and 0.001% by mass of magnesium chloride.
 (B6)メチルエチルケトオキシムでブロックされたヘキサメチレンジイソシアネート環状三量体のブロック化イソシアネート1.0質量%、ポリウレタン樹脂0.3質量%、アミノシランカップリング剤0.02質量%に加えて、臭化アンモニウム0.001質量%で表面処理された直径10μmのチョップドストランド。
 (B7)メチルエチルケトオキシムでブロックされたヘキサメチレンジイソシアネート環状三量体のブロック化イソシアネート1.0質量%、ポリウレタン樹脂0.3質量%、アミノシランカップリング剤0.02質量%に加えて、臭化マグネシウム0.001質量%で表面処理された直径10μmのチョップドストランド。
(B6) Hexamethylene diisocyanate cyclic trimer blocked with methyl ethyl ketoxime 1.0% by weight of blocked isocyanate, 0.3% by weight of polyurethane resin, 0.02% by weight of aminosilane coupling agent, ammonium bromide A chopped strand having a diameter of 10 μm and surface-treated at 0.001% by mass.
(B7) Magnesium bromide in addition to 1.0 mass% of blocked isocyanate of hexamethylene diisocyanate cyclic trimer blocked with methylethylketoxime, 0.3 mass% of polyurethane resin, 0.02 mass% of aminosilane coupling agent A chopped strand having a diameter of 10 μm and surface-treated at 0.001% by mass.
 (B8)ε-カプロラクタムでブロックされたヘキサメチレンジイソシアネートのブロック化イソシアネート1.0質量%、ポリウレタン樹脂0.3質量%、アミノシランカップリング剤0.02質量%に加えて、塩化マグネシウム0.001質量%で表面処理された直径10μmのチョップドストランド。
 (B9)ε-カプロラクタムでブロックされたヘキサメチレンジイソシアネート環状三量体のブロック化イソシアネート1.0質量%、ポリウレタン樹脂0.3質量%、アミノシランカップリング剤0.02質量%に加えて、塩化アンモニウム0.001質量%で表面処理された直径10μmのチョップドストランド。
(B8) In addition to 1.0 mass% of blocked isocyanate of hexamethylene diisocyanate blocked with ε-caprolactam, 0.3 mass% of polyurethane resin, 0.02 mass% of aminosilane coupling agent, 0.001 mass of magnesium chloride A chopped strand having a diameter of 10 μm and surface-treated with%.
(B9) Hexamethylene diisocyanate cyclic trimer blocked with ε-caprolactam: 1.0% by mass of blocked isocyanate, 0.3% by mass of polyurethane resin, 0.02% by mass of aminosilane coupling agent, ammonium chloride A chopped strand having a diameter of 10 μm and surface-treated at 0.001% by mass.
〔(B’)他のガラス繊維〕
 (B’1)他の表面処理剤で表面処理されたガラス系無機充填材
 ポリ酢酸ビニルで表面処理されたガラス系無機充填材(単繊維直径:10μm)
 (B’2)日本国特許特公平6-27204号公報の実施例1記載のメチルエチルケトオキシムでブロックされたブロック化イソシアネート1.0質量%、ポリウレタン樹脂0.3質量%、アミノシランカップリング剤0.02質量%とで表面処理された10μmのチョップドストランド。
[(B ') Other glass fibers]
(B′1) Glass-based inorganic filler surface-treated with other surface treatment agent Glass-based inorganic filler surface-treated with polyvinyl acetate (single fiber diameter: 10 μm)
(B′2) 1.0 mass% of blocked isocyanate blocked with methyl ethyl ketoxime described in Example 1 of Japanese Patent Publication No. 6-27204, 0.3 mass% of polyurethane resin, aminosilane coupling agent 10 μm chopped strand surface-treated with 02% by mass.
〔(C)ホウ酸〕
 (C1)オルトホウ酸
〔(C’)他の酸〕
 (C’1)リン酸
 (C’2)酢酸
〔(D)含窒素官能基を有するトリアジン誘導体〕
 (D1)メラミン
[(C) Boric acid]
(C1) Orthoboric acid [(C ′) other acids]
(C′1) phosphoric acid (C′2) acetic acid [(D) a triazine derivative having a nitrogen-containing functional group]
(D1) Melamine
 ポリアセタール樹脂100質量部に、ガラス系無機充填材、ホウ酸及び含窒素官能基を有するトリアジン誘導体を表1~表4に示す量で配合し、シリンダー温度200℃の押出機で溶融混練し、実施例及び比較例に係るペレット状のポリアセタール樹脂組成物を調製した。 A glass-based inorganic filler, boric acid and a triazine derivative having a nitrogen-containing functional group are blended in 100 parts by mass of a polyacetal resin in the amounts shown in Tables 1 to 4, and melt-kneaded with an extruder having a cylinder temperature of 200 ° C. Pellet-shaped polyacetal resin compositions according to examples and comparative examples were prepared.
Figure JPOXMLDOC01-appb-T000001
               (組成における単位は、質量部である。)
Figure JPOXMLDOC01-appb-T000001
(The unit in the composition is part by mass.)
Figure JPOXMLDOC01-appb-T000002
               (組成における単位は、質量部である。)
Figure JPOXMLDOC01-appb-T000002
(The unit in the composition is part by mass.)
Figure JPOXMLDOC01-appb-T000003
               (組成における単位は、質量部である。)
Figure JPOXMLDOC01-appb-T000003
(The unit in the composition is part by mass.)
Figure JPOXMLDOC01-appb-T000004
               (組成における単位は、質量部である。)
Figure JPOXMLDOC01-appb-T000004
(The unit in the composition is part by mass.)
<物性評価>
 実施例及び比較例に係るペレット状の組成物から射出成形機を用い、試験片を成形した。そして、ISO527-1,2に準拠した引張強さ・引張伸び、ISO178に準拠した曲げ強度・曲げ弾性率、ISO179・1eAに準拠したシャルピー衝撃強さ(ノッチ付、23℃)の測定を実施した。結果を表1~表4に示す。
<Physical property evaluation>
Test pieces were molded from the pellet-shaped compositions according to the examples and comparative examples using an injection molding machine. Then, the tensile strength / tensile elongation according to ISO527-1 and 2, the bending strength / flexural modulus according to ISO178, and the Charpy impact strength (notched, 23 ° C.) according to ISO179 / 1eA were measured. . The results are shown in Tables 1 to 4.
<耐熱水性評価>
 ISO3167に準拠した引張試験片を用い、120℃の熱水の入ったオートクレーブに4日間浸漬させた後取り出し、上記の引張強さ・伸びの条件で引張強さを測定した。引張強保持率は、浸漬前に測定した引張強さの値を100%として計算した。結果を表1~表4に示す。
<Heat resistant water evaluation>
Using a tensile test piece conforming to ISO 3167, the specimen was taken out after being immersed in an autoclave containing 120 ° C. hot water for 4 days, and the tensile strength was measured under the above-described conditions of tensile strength and elongation. The tensile strength retention was calculated with the tensile strength value measured before immersion as 100%. The results are shown in Tables 1 to 4.
 表1~4の結果から、(A)ポリアセタール樹脂100質量部と、(B)ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、特定のハロゲン化物とで表面処理されたガラス系無機充填材1質量部以上100質量部以下と、(C)ホウ酸0.001質量部以上1.0質量部以下とが配合されたポリアセタール樹脂組成物の成形品は、いずれも引張強さ、引張伸び及び衝撃強度・曲げ弾性率の機械的特性に優れ、耐熱水性にも優れていることが確認された(実施例1~25)。 From the results of Tables 1 to 4, (A) 100 parts by mass of polyacetal resin, (B) at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, a specific halide, A molded product of a polyacetal resin composition in which 1 to 100 parts by mass of the glass-based inorganic filler surface-treated with (C) 0.001 to 1.0 parts by mass of boric acid is blended. These were confirmed to be excellent in mechanical properties such as tensile strength, tensile elongation, impact strength and flexural modulus, and excellent in hot water resistance (Examples 1 to 25).
 中でも、ブロック化イソシアネート化合物、ポリウレタン樹脂、アミノシランカップリング剤及び塩化マグネシウムで表面処理された本実施形態のガラス繊維(B1)を含有する実施例1と、ブロック化イソシアネート化合物、アミノシランカップリング剤及び塩化マグネシウムで表面処理された本実施形態のガラス系無機充填材(B4)を含有する実施例4、または、ポリウレタン樹脂、アミノシランカップリング剤及び塩化マグネシウムで表面処理された本実施形態のガラス系無機充填材(B5)を含有する実施例5とを比較した場合、衝撃強さの点で、実施例1が最も優れている。 Among them, Example 1 containing the glass fiber (B1) of this embodiment surface-treated with a blocked isocyanate compound, polyurethane resin, aminosilane coupling agent and magnesium chloride, blocked isocyanate compound, aminosilane coupling agent and chloride Example 4 containing the glass-based inorganic filler (B4) of this embodiment surface-treated with magnesium, or the glass-based inorganic filler of this embodiment surface-treated with a polyurethane resin, an aminosilane coupling agent and magnesium chloride When compared with Example 5 containing the material (B5), Example 1 is most excellent in terms of impact strength.
 すなわち、ブロック化イソシアネート化合物とアミノシランカップリング剤とポリウレタン樹脂と塩化マグネシウムとで表面処理されたガラス系無機充填材であることが、ポリアセタール樹脂組成物の衝撃強度向上の点でより好ましいことが確認された。 That is, it was confirmed that a glass-based inorganic filler surface-treated with a blocked isocyanate compound, an aminosilane coupling agent, a polyurethane resin, and magnesium chloride is more preferable in terms of improving the impact strength of the polyacetal resin composition. It was.
 また、本実施形態のガラス系無機充填材(B3)とトリアジン誘導体とを含有させた実施例7のポリアセタール樹脂組成物成形品は、トリアジン誘導体を含有しないことのみ異なる実施例3のポリアセタール樹脂組成物成形品より、さらに高い衝撃強度等の機械的特性を示すことから、トリアジン誘導体が本願発明の表面処理を行ったガラス系無機充填材の効果を増強することが確認された。 Moreover, the polyacetal resin composition molded article of Example 7 containing the glass-based inorganic filler (B3) and the triazine derivative according to this embodiment is different only in that it does not contain a triazine derivative. Since it shows mechanical properties such as higher impact strength than the molded product, it was confirmed that the triazine derivative enhances the effect of the glass-based inorganic filler subjected to the surface treatment of the present invention.
 これに対し、表4から明らかなように、ホウ酸が配合されていない比較例1~5、7~9では、初期の引張強さ、耐衝撃性等の機械的特性において劣る。また、本発明の表面処理が行われていないガラス系無機充填材を用いた比較例6、10および11についても、初期の引張強さ、耐衝撃性等の機械的特性において劣る。 On the other hand, as is clear from Table 4, Comparative Examples 1 to 5 and 7 to 9 containing no boric acid are inferior in mechanical properties such as initial tensile strength and impact resistance. Further, Comparative Examples 6, 10 and 11 using the glass inorganic filler not subjected to the surface treatment of the present invention are also inferior in mechanical properties such as initial tensile strength and impact resistance.
 これらは、いずれも、熱水処理によって引張強さの低下が大きく、所望の耐熱水性が得られなかった。特に、本発明の処理剤でない処理剤で表面処理されたガラス系無機充填材を用いたガラス系無機充填材を含有する比較例6、10および11や、本発明のガラス系無機充填材を含有するが、ホウ酸でない酸を含有する比較例7及び8は、その機械的特性が本発明の実施例に大きく劣る。 All of these had a large decrease in tensile strength due to the hot water treatment, and the desired hot water resistance could not be obtained. In particular, Comparative Examples 6, 10 and 11 containing a glass-based inorganic filler using a glass-based inorganic filler surface-treated with a treatment agent that is not the treatment agent of the present invention, and the glass-based inorganic filler of the present invention However, Comparative Examples 7 and 8 containing an acid that is not boric acid are greatly inferior to the examples of the present invention in mechanical properties.
 これらの結果から、(A)ポリアセタール樹脂と、(B)本発明の処理剤で表面処理されたガラス系無機充填材及び(C)ホウ酸とを組み合わせることにより、相乗的にポリアセタール樹脂組成物の機械的特性が向上することは明らかである。
 
From these results, by combining (A) polyacetal resin, (B) glass-based inorganic filler surface-treated with the treatment agent of the present invention, and (C) boric acid, the polyacetal resin composition is synergistically combined. It is clear that the mechanical properties are improved.

Claims (4)

  1.  (A)ポリアセタール樹脂100質量部に対して、
     (B)ブロック化イソシアネート化合物及びポリウレタン樹脂から選ばれる少なくとも1種のイソシアネート化合物と、アミノシランカップリング剤と、ハロゲン化マグネシウム及びハロゲン化アンモニウムから選ばれる少なくとも1種のハロゲン化物、とで表面処理されたガラス系無機充填材1質量部以上100質量部以下と、
     (C)ホウ酸0.001質量部以上1.0質量部以下、とを含有するポリアセタール樹脂組成物。
    (A) For 100 parts by mass of polyacetal resin,
    (B) Surface-treated with at least one isocyanate compound selected from blocked isocyanate compounds and polyurethane resins, an aminosilane coupling agent, and at least one halide selected from magnesium halide and ammonium halide. 1 to 100 parts by weight of a glass-based inorganic filler,
    (C) A polyacetal resin composition containing 0.001 part by mass or more and 1.0 part by mass or less of boric acid.
  2.  さらに、(D)含窒素官能基を有するトリアジン誘導体0.002質量部以上10質量部以下を含有する請求項1に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to claim 1, further comprising (D) 0.002 to 10 parts by mass of a triazine derivative having a nitrogen-containing functional group.
  3.  前記(C)ホウ酸がオルトホウ酸である、請求項1又は2に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to claim 1 or 2, wherein the (C) boric acid is orthoboric acid.
  4.  前記(B)ガラス系無機充填材がガラス繊維である、請求項1~3のいずれかに記載のポリアセタール樹脂組成物。
     
    The polyacetal resin composition according to any one of claims 1 to 3, wherein the (B) glass-based inorganic filler is a glass fiber.
PCT/JP2017/007480 2016-03-31 2017-02-27 Polyacetal resin composition WO2017169438A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780011242.2A CN108603007B (en) 2016-03-31 2017-02-27 Polyacetal resin composition
JP2017547013A JP6231728B1 (en) 2016-03-31 2017-02-27 Polyacetal resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-072362 2016-03-31
JP2016072362 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169438A1 true WO2017169438A1 (en) 2017-10-05

Family

ID=59963976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007480 WO2017169438A1 (en) 2016-03-31 2017-02-27 Polyacetal resin composition

Country Status (3)

Country Link
JP (1) JP6231728B1 (en)
CN (1) CN108603007B (en)
WO (1) WO2017169438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036017A (en) * 2019-08-30 2021-03-04 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151298A (en) * 1995-09-29 1997-06-10 Polyplastics Co Polyacetal resin composition
JP2003112952A (en) * 2001-10-03 2003-04-18 Nitto Boseki Co Ltd Sizing agent for glass fiber containing magnesium chloride
JP2006037267A (en) * 2004-07-26 2006-02-09 Asahi Fiber Glass Co Ltd Chopped strand and fiber-reinforced polyacetal resin molding material
JP2006070196A (en) * 2004-09-03 2006-03-16 Polyplastics Co Polyacetal resin composition
JP2008044995A (en) * 2006-08-11 2008-02-28 Polyplastics Co Polyacetal resin composition
JP2009167426A (en) * 2002-03-05 2009-07-30 Ticona Gmbh Polyoxymethylene molding compound and molded body produced therefrom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044543A (en) * 1983-08-22 1985-03-09 Mitsubishi Gas Chem Co Inc Acetal resin composition
JPH0627204B2 (en) * 1989-08-22 1994-04-13 旭ファイバーグラス株式会社 Polyoxymethylene reinforcing fiber
JP5013497B2 (en) * 2005-05-10 2012-08-29 三菱エンジニアリングプラスチックス株式会社 Fiber reinforced polyacetal resin composition and resin molded product containing the same
WO2010035351A1 (en) * 2008-09-29 2010-04-01 ポリプラスチックス株式会社 Polyacetal resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151298A (en) * 1995-09-29 1997-06-10 Polyplastics Co Polyacetal resin composition
JP2003112952A (en) * 2001-10-03 2003-04-18 Nitto Boseki Co Ltd Sizing agent for glass fiber containing magnesium chloride
JP2009167426A (en) * 2002-03-05 2009-07-30 Ticona Gmbh Polyoxymethylene molding compound and molded body produced therefrom
JP2006037267A (en) * 2004-07-26 2006-02-09 Asahi Fiber Glass Co Ltd Chopped strand and fiber-reinforced polyacetal resin molding material
JP2006070196A (en) * 2004-09-03 2006-03-16 Polyplastics Co Polyacetal resin composition
JP2008044995A (en) * 2006-08-11 2008-02-28 Polyplastics Co Polyacetal resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036017A (en) * 2019-08-30 2021-03-04 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing the same
JP7339812B2 (en) 2019-08-30 2023-09-06 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing the same

Also Published As

Publication number Publication date
CN108603007A (en) 2018-09-28
JP6231728B1 (en) 2017-11-15
JPWO2017169438A1 (en) 2018-04-05
CN108603007B (en) 2020-04-07

Similar Documents

Publication Publication Date Title
JP5612262B2 (en) Polyacetal resin composition
US11142637B2 (en) Polyacetal resin composition
JP3285480B2 (en) Polyacetal resin composition
JP6231728B1 (en) Polyacetal resin composition
JP4549784B2 (en) Polyacetal resin composition
JP5530891B2 (en) Polyacetal resin composition and molded article comprising the same
JP6835650B2 (en) Polyacetal resin composition
JP6864023B2 (en) Polyacetal resin composition
CN108219356B (en) Method for producing polyacetal resin composition
JP6968597B2 (en) Polyacetal resin composition
JP6998122B2 (en) Polyacetal resin composition
US11015031B2 (en) Reinforced polyoxymethylene composition with low emissions
JP7240468B1 (en) Polyacetal resin composition
JP7240469B1 (en) Polyacetal resin composition
WO2017056565A1 (en) Polyacetal resin composition
JP2013213146A (en) Polyacetal resin composition and molded product formed of the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017547013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773983

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773983

Country of ref document: EP

Kind code of ref document: A1