JP2006070196A - Polyacetal resin composition - Google Patents

Polyacetal resin composition Download PDF

Info

Publication number
JP2006070196A
JP2006070196A JP2004256924A JP2004256924A JP2006070196A JP 2006070196 A JP2006070196 A JP 2006070196A JP 2004256924 A JP2004256924 A JP 2004256924A JP 2004256924 A JP2004256924 A JP 2004256924A JP 2006070196 A JP2006070196 A JP 2006070196A
Authority
JP
Japan
Prior art keywords
polyacetal resin
amount
glass
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004256924A
Other languages
Japanese (ja)
Other versions
JP4549784B2 (en
Inventor
Yukio Anada
幸雄 穴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2004256924A priority Critical patent/JP4549784B2/en
Priority to CNB2005800296974A priority patent/CN100567391C/en
Priority to TW094129460A priority patent/TWI366586B/en
Priority to PCT/JP2005/016164 priority patent/WO2006025547A1/en
Publication of JP2006070196A publication Critical patent/JP2006070196A/en
Application granted granted Critical
Publication of JP4549784B2 publication Critical patent/JP4549784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyacetal resin material having high heat stability especially strongly required in recent years, capable of being more decreased in an extremely minor component (for example, formaldehyde) emitted from a resin and a molded product than ever, and having mechanical characteristics at the same time. <P>SOLUTION: A polyacetal resin composition is obtained by adding (B) a glass-based filling material in an amount of 3-200 pts.wt., (C) a boric acid compound in an amount of 0.001-3.0 pts.wt., and (D) a triazine derivative having a nitrogen-containing functional group in an amount of two to ten times the amount of the component (C) to (A) a polyacetal resin in an amount of 100 pts.wt., wherein the polyacetal resin (A) has -OH end groups in an amount of ≤5 mmol/kg, the glass-based filling material (B) has a fibrous shape and is subjected to surface treatment with an aminoalkoxysilane, etc., the boric acid compound (C) comprises at least one kind selected from orthoboric acid, metaboric acid, tetraboric acid, and diboron trioxide, and the triazine derivative (D) comprises a melamine compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機械的特性の優れたポリアセタール樹脂組成物に関するものである。   The present invention relates to a polyacetal resin composition having excellent mechanical properties.

ポリアセタール樹脂の機械的強度を向上させるため、ガラス系充填材を配合することが従来から知られている。しかしながら、ポリアセタール樹脂は化学的な活性に乏しいため、単にポリアセタール樹脂にガラスビーズ等のガラス系充填材を配合し溶融混練しても十分な補強効果は現れず、むしろこれらの充填材を配合しない非強化のポリアセタール樹脂よりも機械的強度が低下する場合もある。   In order to improve the mechanical strength of polyacetal resin, it is conventionally known to add a glass-based filler. However, since polyacetal resin is poor in chemical activity, a sufficient reinforcing effect does not appear even if glass-based fillers such as glass beads are simply blended into polyacetal resin and melt-kneaded. Rather, these fillers are not blended. The mechanical strength may be lower than that of reinforced polyacetal resin.

この点を改良するために、ガラス系充填材をエポキシ系化合物、シラン系化合物、チタネート系化合物等で表面処理したものを使用したり、これらの化合物をガラス系充填材と併用して配合することが提案されている(特許文献1及び2)。   In order to improve this point, use a glass filler whose surface is treated with an epoxy compound, a silane compound, a titanate compound, or the like, or use these compounds in combination with a glass filler. Has been proposed (Patent Documents 1 and 2).

また、ポリアセタール樹脂にガラス系充填材とホウ酸化合物を添加することにより機械的強度を改善する方法が提案されている(特許文献3及び4)。
特開昭62−91551号公報 特開昭61−236851号公報 特開平9−151298号公報 特開平9−176443号公報
Moreover, the method of improving mechanical strength is proposed by adding a glass-type filler and a boric acid compound to a polyacetal resin (patent documents 3 and 4).
JP-A-62-91551 JP-A-61-236851 Japanese Patent Laid-Open No. 9-151298 JP-A-9-176443

しかしながら、エポキシ系化合物、シラン系化合物、チタネート系化合物等で表面処理したガラス系充填材をポリアセタール樹脂に配合する方法や、これらの化合物をガラス系充填材と併用してポリアセタール樹脂に配合する方法では、ポリアセタール樹脂の機械的強度を十分に向上させることはできず、未だ満足できるものではなかった。   However, in a method of blending a glass-based filler surface-treated with an epoxy compound, a silane compound, a titanate compound, or the like into a polyacetal resin, or a method of blending these compounds with a glass-based filler in a polyacetal resin However, the mechanical strength of the polyacetal resin could not be sufficiently improved, and it was not yet satisfactory.

これに対し、特許文献3及び4の如くポリアセタール樹脂にガラス系充填材とホウ酸化合物を添加する方法によれば、かなりの機械的強度の向上が可能であったが、近年、安定性の面からポリアセタール樹脂自身の品質向上が進むに伴い、この組成では十分な機械的強度の向上が得られない状況が生じてきた。その原因は必ずしも明確ではないが、概ね次のように推測される。即ち、近年はポリアセタール樹脂に対する高度の熱安定性や、樹脂及び成形品から放出される極めて微少量の成分(例えばホルムアルデヒド等)のさらなる低減が強く求められる傾向にある。これらの特性はポリアセタール樹脂が有する末端基の種類や不安定末端部の量と密接な関係があり、その改善は、ポリアセタール樹脂が僅かに有している活性末端基である水酸基を減少させることになり、ホウ酸の添加のみではガラス系無機充填材とポリアセタール樹脂の十分な密着性を得ることができず、その結果、機械的強度の向上が達成できなくなると推測される。   On the other hand, according to the method of adding a glass-based filler and a boric acid compound to a polyacetal resin as described in Patent Documents 3 and 4, a considerable improvement in mechanical strength was possible. As the quality of the polyacetal resin itself is improved, there has been a situation in which sufficient mechanical strength cannot be improved with this composition. The cause is not necessarily clear, but is generally estimated as follows. That is, in recent years, there has been a strong demand for high thermal stability with respect to polyacetal resins and further reduction of extremely small amounts of components (for example, formaldehyde and the like) released from the resins and molded articles. These characteristics are closely related to the types of terminal groups and the amount of unstable terminal parts of the polyacetal resin, and the improvement is to reduce the hydroxyl groups, which are the active terminal groups slightly possessed by the polyacetal resin. Therefore, it is presumed that sufficient adhesion between the glass-based inorganic filler and the polyacetal resin cannot be obtained only by adding boric acid, and as a result, improvement in mechanical strength cannot be achieved.

本発明は、かかる従来技術の課題を解決し、機械的特性が一段と優れたポリアセタール樹脂材料を提供すること、また、近年特に要求の強い諸安定性と機械的特性とを兼ね備えたポリアセタール樹脂材料を提供することを目的とする。   The present invention solves the problems of the prior art, provides a polyacetal resin material having further excellent mechanical properties, and also provides a polyacetal resin material having various stability and mechanical properties that have been particularly demanded in recent years. The purpose is to provide.

本発明者らは、かかる課題を解決し優れた機械的物性を持つ強化ポリアセタール樹脂組成物を得るべく鋭意研究を重ねた結果、ポリアセタール樹脂にガラス系充填材と共に少量のホウ酸化合物及びアミノ基を複数個持つ有機化合物(含窒素官能基を有するトリアジン誘導体)を配合することによって、かかる課題が顕著に改善される事を見出し、本発明を完成するに至った。   As a result of intensive studies to solve such problems and to obtain a reinforced polyacetal resin composition having excellent mechanical properties, the present inventors have found that a small amount of boric acid compounds and amino groups are added to the polyacetal resin together with a glass-based filler. It has been found that such problems can be remarkably improved by blending a plurality of organic compounds (triazine derivatives having nitrogen-containing functional groups), and the present invention has been completed.

即ち、本発明は、
(A) ポリアセタール樹脂100重量部に対して
(B) ガラス系充填材3〜200重量部
(C) ホウ酸化合物0.001〜3.0重量部
(D) 含窒素官能基を有するトリアジン誘導体を(C) 成分に対して2倍〜10倍量
添加して成るポリアセタール樹脂組成物に関する。
That is, the present invention
(A) For 100 parts by weight of polyacetal resin
(B) 3 to 200 parts by weight of glass filler
(C) Boric acid compound 0.001 to 3.0 parts by weight
(D) It relates to a polyacetal resin composition comprising a triazine derivative having a nitrogen-containing functional group added in an amount 2 to 10 times the amount of component (C).

以下に本発明の構成について説明する。本発明に用いられるポリアセタール樹脂(A) はオキシメチレン基(−CH2O−)を主たる構成単位とする高分子化合物で、基本的にオキシメチレン基の繰り返し単位のみからなるポリオキシメチレンホモポリマー、オキシメチレン基以外に他の構成単位を少量含有するコポリマー(ブロックコポリマーを含む)、ターポリマーの何れにてもよく、又分子が線状のみならず分岐、架橋構造を有するものであってもよい。 The configuration of the present invention will be described below. The polyacetal resin (A) used in the present invention is a polymer compound having an oxymethylene group (—CH 2 O—) as a main structural unit, and is basically a polyoxymethylene homopolymer consisting of only a repeating unit of an oxymethylene group, Copolymers (including block copolymers) and terpolymers containing a small amount of other structural units in addition to the oxymethylene group may be used, and the molecule may have a branched or crosslinked structure as well as a linear shape. .

一般に、ホモポリマーは、無水ホルムアルデヒドの重合、もしくはホルムアルデヒドの環状三量体であるトリオキサンの重合により製造される。通常、末端キャップにより、熱分解に対して安定化されている。   In general, homopolymers are produced by polymerization of anhydrous formaldehyde or polymerization of trioxane, a cyclic trimer of formaldehyde. Usually stabilized against thermal degradation by end caps.

コポリマーは−CH2O−反復基約85〜99.9モル%に、一般式: Copolymers of about 85 to 99.9 mole% -CH 2 O-repeating group, the general formula:

Figure 2006070196
Figure 2006070196

(式中、R1およびR2はそれぞれ水素、低級アルキルおよびハロゲン置換低級アルキル基よりなる群から選ばれ、各R3はメチレン、オキシメチレン、低級アルキルおよびハロアルキル置換メチレン、ならびに低級アルキルおよびハロアルキル置換オキシメチレン基よりなる群から選ばれ、mは0〜3の整数であり、各低級アルキル基は炭素数の1〜2のものである)で示される基が残余割合で散在してなる、重量平均分子量が5000以上の高分子化合物であり、一般的には、ホルムアルデヒド又は一般式(CH2O)〔但し、nは3以上の整数〕で表されるホルムアルデヒドの環状オリゴマー、例えばトリオキサンと、環状エーテル及び/又は環状ホルマールとを共重合することによって製造され、通常、加水分解によって末端の不安定部分を除去して熱分解に対して安定化される。共重合のための環状エーテル又は環状ホルマールとしては、例えばエチレンオキサイド、1,3−ジオキソラン、ジエチレングリコールホルマール、1,4−ブタンジオールホルマール等が用いられる。 Wherein R 1 and R 2 are each selected from the group consisting of hydrogen, lower alkyl and halogen substituted lower alkyl groups, each R 3 is methylene, oxymethylene, lower alkyl and haloalkyl substituted methylene, and lower alkyl and haloalkyl substituted Selected from the group consisting of oxymethylene groups, m is an integer from 0 to 3, and each lower alkyl group is one having from 1 to 2 carbon atoms). A high molecular compound having an average molecular weight of 5000 or more, and generally a formaldehyde or a cyclic oligomer of formaldehyde represented by the general formula (CH 2 O) n (where n is an integer of 3 or more), for example, trioxane, Manufactured by copolymerizing with cyclic ether and / or cyclic formal, usually removing terminal unstable parts by hydrolysis It is stabilized against thermal decomposition Te. Examples of cyclic ether or cyclic formal for copolymerization include ethylene oxide, 1,3-dioxolane, diethylene glycol formal, 1,4-butanediol formal, and the like.

又、上記成分の他に分子量を調整する成分を併用することも可能である。分子量調整をする成分としては、不安定末端を形成することのない連鎖移動剤、即ち、メチラール、メトキシメチラール、ジメトキシメチラール、トリメトキシメチラール、オキシメチレンジ−n−ブチルエーテルの如きアルコキシ基を有する化合物の1種または2種以上が例示される。又、ターポリマーは上記共重合において、更にモノグリシジルエーテル化合物等の分岐鎖形成可能な単官能化合物或いはジグリシジルエーテル化合物等の多官能性化合物を加えて重合することにより製造される。   In addition to the above components, a component for adjusting the molecular weight can be used in combination. As a component for adjusting the molecular weight, a chain transfer agent that does not form an unstable terminal, that is, an alkoxy group such as methylal, methoxymethylal, dimethoxymethylal, trimethoxymethylal, and oxymethylene di-n-butyl ether. 1 type or 2 types or more of the compound which has is illustrated. Further, the terpolymer is produced by adding a monofunctional compound capable of forming a branched chain such as a monoglycidyl ether compound or a polyfunctional compound such as a diglycidyl ether compound in the copolymerization, and then polymerizing the terpolymer.

本発明に使用するポリアセタール樹脂に特に制約はないが、−OH末端基数が少ないものが好ましく、5mmol/kg以下であることが特に好ましい。−OH末端基数が多いポリアセタール樹脂を使用した場合、機械的物性の高いものが得られるという利点があるものの、末端基の不安定性に起因して成形時に金型付着物が多く発生することになり、また、成形品からのホルムアルデヒドの放出も増加することになる。こりに対し、−OH末端基数が少ないポリアセタール樹脂を使用することは機械的物性の観点からは不利に働く要因であるが、本発明の組成物においては、配合成分の選択的な組み合わせによって機械的物性を高い水準に維持することが可能であり、かつ−OH末端基数が少ないことにより、ポリアセタール樹脂及びその成形品から発生し放出されるホルムアルデヒドの量は大幅に減少したものとなり、両特性がバランスしたものとなる。   Although there is no restriction | limiting in particular in the polyacetal resin used for this invention, The thing with few -OH terminal groups is preferable and it is especially preferable that it is 5 mmol / kg or less. When polyacetal resin with a large number of --OH end groups is used, there is an advantage that high mechanical properties can be obtained, but due to instability of end groups, many mold deposits are generated during molding. Also, the emission of formaldehyde from the molded article will increase. In contrast, the use of a polyacetal resin having a small number of —OH end groups is a factor that is disadvantageous from the viewpoint of mechanical properties. However, in the composition of the present invention, the mechanical combination of the compounding components is not limited. Since the physical properties can be maintained at a high level and the number of —OH terminal groups is small, the amount of formaldehyde generated and released from the polyacetal resin and its molded product is greatly reduced, and both characteristics are balanced. Will be.

このようなポリアセタール樹脂の−OH末端基数は、次のようにして調整することができる。   The number of —OH terminal groups of such a polyacetal resin can be adjusted as follows.

重合によって得られるポリアセタール樹脂の−OH末端基数に対しては、重合中の水分量及び触媒量が大きく寄与すること、また、重合中の水分量が多くなるにつれて触媒量が寄与する割合は相対的に小さいものとなり、重合中の水分量が支配的に作用することが知られている。特にコポリマーの製造においては、主モノマーであるトリオキサン等に含有される水分量が大きく影響する。即ち、水分含有量の多い原料モノマーを使用することにより−OH末端基数の多いポリアセタール樹脂を得ることができる。一方、モノマー中に含有される水分量が減少するに伴って、−OH末端基の生成に対する触媒量の寄与する割合は徐々に増大する。触媒量を減少させることにより−OH末端基数の更に少ないポリアセタール樹脂を得ることができる。   The amount of water and the amount of catalyst during the polymerization greatly contribute to the number of —OH terminal groups of the polyacetal resin obtained by polymerization, and the proportion of the amount of catalyst contributed as the amount of water during the polymerization increases It is known that the amount of water during polymerization acts dominantly. In particular, in the production of the copolymer, the amount of water contained in the main monomer such as trioxane is greatly affected. That is, a polyacetal resin having a large number of —OH terminal groups can be obtained by using a raw material monomer having a high water content. On the other hand, as the amount of water contained in the monomer decreases, the proportion of the catalyst amount that contributes to the formation of —OH end groups gradually increases. By reducing the amount of the catalyst, a polyacetal resin having a smaller number of —OH end groups can be obtained.

次に、本発明で用いられるガラス系充填材(B) としては、繊維状、粒状、粉状、板状、中空状等、その形状に特に制約はなく、その代表例としては各々ガラス繊維、ガラスビーズ、ミルドガラスファイバー、ガラスフレーク、ガラスバルーンが例示されるが、ガラス繊維が特に好ましい。本発明においてこれらのガラス系充填材は、目的に応じて単独又は2種以上を混合して使用することができる。本発明において、ガラス系充填材(B) の配合量は、ポリアセタール樹脂(A) 100重量部に対して3〜200重量部であり、好ましくは5〜150重量部、特に好ましくは10〜100重量部である。3重量部未満では機械的物性の改善が不十分であり、200重量部を越えると成形加工が困難になる。   Next, as the glass-based filler (B) used in the present invention, there are no particular restrictions on the shape, such as fiber shape, granular shape, powder shape, plate shape, hollow shape, and representative examples thereof are glass fiber, Glass beads, milled glass fibers, glass flakes, and glass balloons are exemplified, and glass fibers are particularly preferable. In the present invention, these glass fillers can be used alone or in admixture of two or more depending on the purpose. In the present invention, the amount of the glass-based filler (B) is 3 to 200 parts by weight, preferably 5 to 150 parts by weight, particularly preferably 10 to 100 parts by weight, based on 100 parts by weight of the polyacetal resin (A). Part. If the amount is less than 3 parts by weight, the mechanical properties are not sufficiently improved. If the amount exceeds 200 parts by weight, the molding process becomes difficult.

本発明において、これらのガラス系無機充填材は未処理のものも使用できるが、シラン系或いはチタネート系のカップリング剤等で表面処理されたものを使用する方が好ましい。   In the present invention, these glass-based inorganic fillers may be untreated, but it is preferable to use those which have been surface-treated with a silane-based or titanate-based coupling agent or the like.

シラン系カップリング剤としては、例えばビニルアルコキシシラン、エポキシアルコキシシラン、アミノアルコキシシラン、メルカプトアルコキシシラン、アリルアルコキシシラン等が挙げられ、特にアミノアルコキシシランが好ましい。   Examples of the silane coupling agent include vinyl alkoxy silane, epoxy alkoxy silane, amino alkoxy silane, mercapto alkoxy silane, allyl alkoxy silane, and the like, and amino alkoxy silane is particularly preferable.

ビニルアルコキシシランとしては、例えばビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン等が挙げられる。   Examples of the vinylalkoxysilane include vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, and the like.

エポキシアルコキシシランとしては、例えばγ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等が挙げられる。   Examples of the epoxyalkoxysilane include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and the like.

アミノアルコキシシランとしては、例えば、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が挙げられる。   Examples of the aminoalkoxysilane include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, and N-phenyl-γ-aminopropyltrimethoxy. Silane etc. are mentioned.

メルカプトアルコキシシランとしては、例えば、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン等が挙げられる。   Examples of mercaptoalkoxysilanes include γ-mercaptopropyltrimethoxysilane and γ-mercaptopropyltriethoxysilane.

アリルアルコキシシランとしては、例えばγ−ジアリルアミノプロピルトリメトキシシラン、γ−アリルアミノプロピルトリメトキシシラン、γ−アリルチオプロピルトリメトキシシラン等が挙げられる。   Examples of allylalkoxysilane include γ-diallylaminopropyltrimethoxysilane, γ-allylaminopropyltrimethoxysilane, γ-allylthiopropyltrimethoxysilane, and the like.

また、チタネート系表面処理剤としては、例えば、チタニウム−i−プロポキシオクチレングリコレート、テトラ−n−ブトキシチタン、テトラキス(2−エチルヘキソキシ)チタン等が挙げられる。何れの表面処理剤を用いても本発明所期の効果を得る事ができるが、本発明の目的の為には、アミノアルコキシシランが特に好ましい表面処理剤である。   Examples of titanate-based surface treatment agents include titanium-i-propoxyoctylene glycolate, tetra-n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, and the like. Although any desired surface treatment agent can be used, the desired effect of the present invention can be obtained. For the purpose of the present invention, aminoalkoxysilane is a particularly preferred surface treatment agent.

表面処理剤の使用量は、ガラス系充填材100重量部に対して0.01〜20重量部、好ましくは0.05〜10重量部、特に好ましくは0.05〜5重量部である。   The amount of the surface treatment agent used is 0.01 to 20 parts by weight, preferably 0.05 to 10 parts by weight, particularly preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the glass filler.

又、ガラス繊維においては、更にサイズ剤として、ポリマーバインダー、接着促進剤、他の助剤などを使用しているものが好適に使用される。ポリマーバインダーとして、一般に有機系の材料、例えば水分散性/水溶性の酢酸ポリビニル、ポリエステル、エポキシド、ポリウレタン、ポリアクリレートまたはポリオレフィン樹脂、それらの混合物など、従来公知のものが好適に使用される。   Moreover, in glass fiber, what uses a polymer binder, an adhesion promoter, another adjuvant, etc. as a sizing agent is used suitably. As the polymer binder, generally known materials such as organic materials such as water-dispersible / water-soluble polyvinyl acetate, polyester, epoxide, polyurethane, polyacrylate or polyolefin resin, and mixtures thereof are preferably used.

次に、本発明で用いられる(C) 成分のホウ酸化合物としては、オルトホウ酸、メタホウ酸、四ホウ酸及び三酸化二ホウ素が挙げられ、市販品を使用する事ができる。本発明におけるホウ酸化合物(C) の配合量は、ポリアセタール樹脂(A) 100重量部に対し0.001〜3重量部であり、好ましくは0.005〜1重量部、特に好ましくは、0.01〜0.5重量部である。0.001重量部未満では所望の効果が得られず、3重量部を越えると熱安定性が問題となる。   Next, examples of the boric acid compound (C) used in the present invention include orthoboric acid, metaboric acid, tetraboric acid, and diboron trioxide, and commercially available products can be used. The compounding amount of the boric acid compound (C) in the present invention is 0.001 to 3 parts by weight, preferably 0.005 to 1 part by weight, particularly preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the polyacetal resin (A). is there. If it is less than 0.001 part by weight, the desired effect cannot be obtained, and if it exceeds 3 parts by weight, thermal stability becomes a problem.

また、本発明に用いられる(D) 成分の含窒素官能基を有するトリアジン誘導体としては、グアナミン、メラミン、N−ブチルメラミン、N−フェニルメラミン、N,N−ジフェニルメラミン、N,N−ジアリルメラミン、N,N’,N−トリフェニルメラミン、ベンゾグアナミン、アセトグアナミン、2,4−ジアミノ6−ブチル−sym−トリアジン、アメリン、2,4−ジアミノ6−ベンジルオキシ−sym−トリアジン、2,4−ジアミノ6−ブトキシ−sym−トリアジン、2,4−ジアミノ6−シクロヘキシル−sym−トリアジン、2,4−ジアミノ6−クロロ−sym−トリアジン、2,4−ジアミノ6−メルカプト−sym−トリアジン、2,4−ジオキシ−6−アミノsym−トリアジン、2−オキシ−4,6−ジアミノsym−トリアジン、1,1−ビス−(3,5−ジアミノ2,4,6−トリアジニル)メタン、1,2−ビス−(3,5−ジアミノ2,4,6−トリアジニル)エタン〔別称(サクシノグアナミン)〕、1,3−ビス−(3,5)−ジアミノ2,4,6−トリアジニル)プロパン、1,4−ビス−(3,5−ジアミノ2,4,6−トリアジニル)ブタン、メチレン化メラミン、エチレンジメラミン、トリグアナミン、メラミンシアヌレート、エチレンジメラミンシアヌレート、トリグアナミンシアヌレート等である。これらのトリアジン誘導体は1種類で用いてもよいし、2種類以上を組み合わせて用いてもよい。好ましくはグアナミン、メラミンであり、中でもメラミンが特に好ましい。   Examples of the triazine derivative having a nitrogen-containing functional group (D) used in the present invention include guanamine, melamine, N-butylmelamine, N-phenylmelamine, N, N-diphenylmelamine, N, N-diallylmelamine. N, N ′, N-triphenylmelamine, benzoguanamine, acetoguanamine, 2,4-diamino-6-butyl-sym-triazine, ameline, 2,4-diamino-6-benzyloxy-sym-triazine, 2,4- Diamino 6-butoxy-sym-triazine, 2,4-diamino 6-cyclohexyl-sym-triazine, 2,4-diamino 6-chloro-sym-triazine, 2,4-diamino 6-mercapto-sym-triazine, 2, 4-dioxy-6-amino sym-triazine, 2-oxy-4,6-diamino s ym-triazine, 1,1-bis- (3,5-diamino2,4,6-triazinyl) methane, 1,2-bis- (3,5-diamino-2,4,6-triazinyl) ethane [other names ( Succinoguanamine)], 1,3-bis- (3,5) -diamino 2,4,6-triazinyl) propane, 1,4-bis- (3,5-diamino 2,4,6-triazinyl) butane Methyleneated melamine, ethylene dimelamine, triguanamine, melamine cyanurate, ethylene dimelamine cyanurate, triguanamine cyanurate and the like. These triazine derivatives may be used alone or in combination of two or more. Preferred are guanamine and melamine, with melamine being particularly preferred.

(D) 成分としての含窒素官能基を有するトリアジン誘導体の配合量は、(C) 成分のホウ酸化合物添加量に対して2倍〜10倍量(重量比)であり、好ましくは、3倍〜8倍、特に好ましくは、4倍〜6倍である。2倍未満であると、所望の効果が得られにくくなり、10倍より大きくなると、添加剤の染み出し、物性の低下等が起こり好ましくない。   The blending amount of the triazine derivative having a nitrogen-containing functional group as the component (D) is 2 to 10 times (weight ratio), preferably 3 times the amount of the boric acid compound added to the component (C). -8 times, particularly preferably 4 times to 6 times. If it is less than 2 times, it is difficult to obtain the desired effect, and if it is more than 10 times, the additive may ooze out and the physical properties may be lowered.

本発明のポリアセタール樹脂組成物には、更に公知の各種安定剤・添加剤を配合し得る。安定剤としては、ヒンダートフェノール系化合物、アルカリ或いはアルカリ土類金属の水酸化物、無機塩、カルボン酸塩等のいずれか1種または2種以上を挙げることができる。又、本発明で用いられる添加剤としては、熱可塑性樹脂に対する一般的な添加剤、例えば染料、顔料等の着色剤、滑剤、核剤、離型剤、帯電防止剤、界面活性剤のいずれか1種または2種以上を挙げることができる。   The polyacetal resin composition of the present invention may further contain various known stabilizers / additives. Examples of the stabilizer include any one or more of hindered phenol compounds, alkali or alkaline earth metal hydroxides, inorganic salts, carboxylates, and the like. The additive used in the present invention is a general additive for thermoplastic resins, for example, any of coloring agents such as dyes and pigments, lubricants, nucleating agents, release agents, antistatic agents, and surfactants. 1 type or 2 or more types can be mentioned.

又、本発明の目的とする成形品の性能を大幅に低下させないような範囲であるならば、ガラス系充填材以外の公知の無機、有機、及び金属等の繊維状、板状、粉粒状等の充填剤を1種又は2種以上複合させて配合することも可能である。このような充填剤の例としては、タルク、マイカ、ウォラストナイト、炭素繊維等が挙げられるが、何らこれらに限定されるものではない。   In addition, if it is in a range that does not significantly reduce the performance of the molded product that is the object of the present invention, known inorganic, organic, and metallic fibers other than glass-based fillers, plates, powders, etc. It is also possible to add one or two or more of these fillers in combination. Examples of such fillers include talc, mica, wollastonite, carbon fiber and the like, but are not limited thereto.

本発明の組成物の調製法は特に制限がなく、従来の樹脂組成物調製法として一般に用いられている公知の設備と方法により容易に調製される。例えば、i)各成分を混合した後、押出機により練込押出してペレットを調製し、しかる後に成形する方法、ii)いったん組成の異なるペレットを調製し、そのペレットを所定量混合して成形に供し、成形後に目的組成の成形品を得る方法、iii)成形機に各成分の1又は2種以上を直接仕込む方法等、何れも使用できる。また、樹脂成分の一部を細かい粉体としてこれ以外の成分と混合し添加することは、これらの成分の均一配合を行う上で好ましい方法である。   The method for preparing the composition of the present invention is not particularly limited, and it can be easily prepared by a known facility and method generally used as a conventional resin composition preparation method. For example, i) a method in which each component is mixed and then kneaded and extruded by an extruder to prepare pellets, and thereafter molded, ii) pellets having different compositions are once prepared, and a predetermined amount of the pellets are mixed to form. Any method can be used, such as a method of obtaining a molded product having a desired composition after molding, or a method of directly charging one or more of each component into a molding machine. Further, mixing a part of the resin component as a fine powder with other components and adding it is a preferable method for uniformly blending these components.

また、本発明に係る樹脂組成物は、押出成形、射出成形、圧縮成形、真空成形、吹込成形、発泡成形の何れによっても成形可能である。   The resin composition according to the present invention can be molded by any of extrusion molding, injection molding, compression molding, vacuum molding, blow molding, and foam molding.

以下の実施例により、本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。尚、評価は以下の方法で行った。
<引張強度及び伸び>
ISO3167に準じた引張り試験片を温度23℃、湿度50%の条件下に48時間放置し、ISO527に準じて測定した。
<ポリアセタール樹脂の末端−OH基数>
ポリアセタール樹脂をHFIP(ヘキサフルオロイソプロパノール)に溶解し、シリル化したものについて、NMRを用いて、末端−OH基数を測定した。
<金型付着物の量>
試料ポリオキシメチレン組成物を、射出成形機を用いて下記条件で24時間連続成形した後、金型付着物の量を目視観察し、A(極僅か)−B−C−D−E(多い(全面に付着物あり))の順の5段階で評価した。
(金型)
直径20mm、厚さ2mmの円盤状成形品(1点ゲート)
(成形条件)
射出成形機;東芝IS30EPN(東芝機械(株)製)
シリンダー温度;210 ℃
射出圧力;750kg/cm2
射出時間;4sec
冷却時間;3sec
金型温度;30℃
(金型付着物の評価法)
金型付着物の量を定量的に測定することは極めて困難なため、金型キャビティに付着した付着物の範囲と、付着物の状態(付着物が薄い層を形成している時は虹色に見え、付着物の堆積と共に白色を呈する)などを総合し、相対的に評価した。即ち、付着物範囲を仮基準とし、これに付着物の状態などを加味して調整し最終評価とした。
A:付着物の範囲は金型キャビティ内の概ね10%未満
B:付着物の範囲は金型キャビティ内の概ね10〜30%程度
C:付着物の範囲は金型キャビティ内のほぼ半分程度(30〜60%程度)
D:付着物の範囲は金型キャビティ内の60〜80%程度
E:付着物の範囲は金型キャビティ内のほぼ全面(80〜100%程度)
[使用したポリアセタール樹脂]
・ポリアセタール樹脂(a−1)の調製
外側に熱(冷)媒用ジャケットを有する2軸重合機を用い、ジャケット温度を80℃に調整し、回転軸をそれぞれ異方向に50rpmで回転させながら、トリオキサン及び1,3−ジオキソランを連続的に供給し、触媒として三フッ化ホウ素を連続的に添加し、更に分子量調節剤としてメチラールを添加して重合を行った。トリオキサンと1,3−ジオキソランの供給割合は重量比で97:3、触媒添加量は全モノマーに対し30ppm、メチラールの添加量は1000 ppmに調整した。重合反応機内における平均滞留時間は8分であった。また、ここで使用したトリオキサンの水分含有量は10ppm、1,3−ジオキソランの水分含有量は20ppmであった。
The following examples further illustrate the present invention, but the present invention is not limited thereto. The evaluation was performed by the following method.
<Tensile strength and elongation>
A tensile test piece according to ISO 3167 was left for 48 hours under conditions of a temperature of 23 ° C. and a humidity of 50%, and the measurement was performed according to ISO 527.
<Terminal-OH group number of polyacetal resin>
A polyacetal resin dissolved in HFIP (hexafluoroisopropanol) and silylated was subjected to NMR to measure the number of terminal —OH groups.
<Amount of mold deposit>
The sample polyoxymethylene composition was continuously molded for 24 hours under the following conditions using an injection molding machine, and then the amount of the deposit on the mold was visually observed, and A (very small) -B-C-D-E (many Evaluation was made in five stages in the order of (there were deposits on the entire surface).
(Mold)
Disk-shaped molded product with a diameter of 20 mm and a thickness of 2 mm (one-point gate)
(Molding condition)
Injection molding machine; Toshiba IS30EPN (manufactured by Toshiba Machine Co., Ltd.)
Cylinder temperature: 210 ℃
Injection pressure: 750kg / cm 2
Injection time: 4 sec
Cooling time: 3 sec
Mold temperature: 30 ℃
(Evaluation method for mold deposits)
Since it is extremely difficult to quantitatively measure the amount of mold deposits, the range of deposits attached to the mold cavity and the state of the deposits (rainbow color when the deposits form a thin layer) And a white color along with the deposits of deposits) were comprehensively evaluated. That is, the adhering substance range was used as a temporary reference, and the final evaluation was made by adjusting the adhering substance state in consideration of the adhering condition.
A: The range of deposits is less than about 10% in the mold cavity. B: The range of deposits is about 10 to 30% in the mold cavity. C: The range of deposits is about half of the mold cavity ( 30-60%)
D: The range of the deposit is about 60 to 80% in the mold cavity E: The range of the deposit is almost the entire surface in the mold cavity (about 80 to 100%)
[Polyacetal resin used]
-Preparation of polyacetal resin (a-1) Using a biaxial polymerization machine having a jacket for a heat (cold) medium on the outside, adjusting the jacket temperature to 80 ° C and rotating the rotating shafts in different directions at 50 rpm, Polymerization was carried out by continuously supplying trioxane and 1,3-dioxolane, continuously adding boron trifluoride as a catalyst, and further adding methylal as a molecular weight regulator. The feed ratio of trioxane and 1,3-dioxolane was adjusted to 97: 3 by weight, the amount of catalyst added was adjusted to 30 ppm with respect to the total monomers, and the amount of methylal added was adjusted to 1000 ppm. The average residence time in the polymerization reactor was 8 minutes. Further, the water content of trioxane used here was 10 ppm, and the water content of 1,3-dioxolane was 20 ppm.

重合機から排出された反応生成物は速やかに破砕機に通しながら、トリエチルアミンを0.05重量%含有する60℃の水溶液に加えて触媒の失活を行い、さらに、分離、洗浄、乾燥後、粗ポリアセタール樹脂を得た。   The reaction product discharged from the polymerization machine is quickly passed through a crusher to deactivate the catalyst in addition to an aqueous solution at 60 ° C. containing 0.05% by weight of triethylamine, and after separation, washing and drying, crude polyacetal A resin was obtained.

得られたポリマーをヘキサフルオロイソプロパノールに溶解し、ポリマーの−OH末端基をシリル化してNMR測定することにより、−OH末端基数が4..8mmol/kgであることを確認した。また、メルトインデックス(190℃、荷重2160gで測定)は9.2g/minであった。
・ポリアセタール樹脂(a−2)の調製
触媒添加量を15ppmに減じた以外は、ポリアセタール樹脂(a−1)の調製と同様にしてポリアセタール樹脂(a−2)の調製を行った。
The obtained polymer was dissolved in hexafluoroisopropanol, and the —OH end group of the polymer was silylated and subjected to NMR measurement to confirm that the number of —OH end groups was 4..8 mmol / kg. The melt index (measured at 190 ° C. and a load of 2160 g) was 9.2 g / min.
-Preparation of polyacetal resin (a-2) Polyacetal resin (a-2) was prepared in the same manner as the preparation of polyacetal resin (a-1) except that the amount of catalyst added was reduced to 15 ppm.

得られたポリマーは、−OH末端基数が3.1mmol/kg、メルトインデックスは9.9g/minであった。
・ポリアセタール樹脂(a−3)〜(a−5)の調製
ポリアセタール樹脂(a−1)の調製に用いたトリオキサンに水分を添加することにより水分含有量を変化させたトリオキサンを用い、且つトリオキサンの水分含有量が変化してもなお得られるポリマーの分子量(代用特性としてのメルトインデックス)をほぼ同一に調整するために分子量調節剤の添加量を変化させた以外は、ポリアセタール樹脂(a−1)の調製と同様にしてポリアセタール樹脂(a−3)〜(a−5)の調製を行った。
The obtained polymer had a —OH terminal group number of 3.1 mmol / kg and a melt index of 9.9 g / min.
-Preparation of polyacetal resin (a-3)-(a-5) Using trioxane which changed water content by adding water to trioxane used for preparation of polyacetal resin (a-1), and of trioxane The polyacetal resin (a-1) except that the amount of the molecular weight modifier added is changed in order to adjust the molecular weight (melt index as a substitute property) of the polymer to be almost the same even when the water content is changed. The polyacetal resins (a-3) to (a-5) were prepared in the same manner as in the above.

ポリアセタール樹脂(a−3)〜(a−5)の調製に用いたトリオキサンの水分含有量、分子量調節剤(メチラール)の添加量、得られたポリマーの−OH末端基数、メルトインデックスを表1に示す。   Table 1 shows the water content of trioxane used for the preparation of the polyacetal resins (a-3) to (a-5), the addition amount of the molecular weight regulator (methylal), the number of —OH terminal groups of the obtained polymer, and the melt index. Show.

Figure 2006070196
Figure 2006070196

実施例1〜13、比較例1〜12
ポリアセタール樹脂(a−1)に以下に示す各種のガラスファイバー(B1〜B3)、ホウ酸化合物(C1〜C3)及び含窒素官能基を有するトリアジン誘導体(D1〜D3)を、表2に示す割合で配合し、シリンダー温度200℃の押出機で溶融混練してペレット状の組成物を調製した。次いで、このペレット状の組成物から射出成形機を用いて試験片を成形し、物性評価を行った。結果を表2に示す。
Examples 1-13, Comparative Examples 1-12
The ratio shown in Table 2 for various glass fibers (B1 to B3), boric acid compounds (C1 to C3) and triazine derivatives (D1 to D3) having a nitrogen-containing functional group shown below in the polyacetal resin (a-1) The mixture was melted and kneaded with an extruder having a cylinder temperature of 200 ° C. to prepare a pellet-shaped composition. Next, a test piece was molded from the pellet-shaped composition using an injection molding machine, and physical properties were evaluated. The results are shown in Table 2.

一方、比較のため、(C) ホウ酸化合物を添加しない場合、(D) 含窒素官能基を有するトリアジン誘導体を添加しない場合、(D) 成分の配合量が本発明規定外の場合、及び(C) 、(D) 両方共に添加しない場合についても同様にしてペレット状の組成物を調製し、物性評価を行った。結果を表2に併せて示す。
<使用したガラス系充填材>
B1:γ−アミノプロピルトリエトキシシランで表面処理したガラスファイバー
B2:チタニウム−i−プロポキシオクチレングリコレートで表面処理したガラスファイバー
B3:B1に更にエポキシドをポリマーバインダーとして処理したガラスファイバー
<使用したホウ酸化合物>
C1:オルトホウ酸
C2:メタホウ酸
C3:四ホウ酸
<使用した含窒素官能基を有するトリアジン誘導体>
D1:メラミン
D2:グアナミン
D3:トリグアナミン
On the other hand, for comparison, (C) when no boric acid compound is added, (D) when a triazine derivative having a nitrogen-containing functional group is not added, (D) when the amount of component is outside the scope of the present invention, and ( In the case where neither C) nor (D) was added, a pellet-like composition was prepared in the same manner, and physical properties were evaluated. The results are also shown in Table 2.
<Used glass filler>
B1: Glass fiber surface-treated with γ-aminopropyltriethoxysilane
B2: Glass fiber surface-treated with titanium-i-propoxyoctylene glycolate
B3: Glass fiber obtained by further treating epoxide with B1 as polymer binder <Boric acid compound used>
C1: Orthoboric acid
C2: Metaboric acid
C3: Tetraboric acid <Triazine derivative having nitrogen-containing functional group used>
D1: Melamine
D2: Guanamin
D3: Triguanamine

Figure 2006070196
Figure 2006070196

実施例14〜23
異なった末端−OH基数のポリアセタール樹脂(a−1)〜(a−5)にガラスファイバー(B1〜B3)、ホウ酸化合物(C1〜C3)及び含窒素官能基を有するトリアジン誘導体(D1〜D3)を、表3に示す割合で配合し、シリンダー温度200℃の押出機で溶融混練してペレット状の組成物を調製した。次いで、このペレット状の組成物から射出成形機を用いて試験片を成形し、物性評価を行った。結果を表3に示す。
Examples 14-23
Triazine derivatives (D1 to D3) having glass fibers (B1 to B3), boric acid compounds (C1 to C3) and nitrogen-containing functional groups on polyacetal resins (a-1) to (a-5) having different numbers of terminal-OH groups ) Were blended in the proportions shown in Table 3, and melt-kneaded with an extruder having a cylinder temperature of 200 ° C. to prepare a pellet-shaped composition. Next, a test piece was molded from the pellet-shaped composition using an injection molding machine, and physical properties were evaluated. The results are shown in Table 3.

Figure 2006070196
Figure 2006070196

実施例24〜31、比較例13〜25
ポリアセタール樹脂(a−1)に以下に示す各種のガラスビーズ(B4〜B7)、ホウ酸化合物(C1〜C3)及び含窒素官能基を有するトリアジン誘導体(D1〜D3)を、表4に示す割合で配合し、シリンダー温度200℃の押出機で溶融混練してペレット状の組成物を調製した。次いで、このペレット状の組成物から射出成形機を用いて試験片を成形し、物性評価を行った。結果を表4に示す。
Examples 24-31, Comparative Examples 13-25
The ratio shown in Table 4 for various glass beads (B4 to B7), boric acid compounds (C1 to C3) and triazine derivatives (D1 to D3) having nitrogen-containing functional groups shown below in the polyacetal resin (a-1) The mixture was melted and kneaded with an extruder having a cylinder temperature of 200 ° C. to prepare a pellet-shaped composition. Next, a test piece was molded from the pellet-shaped composition using an injection molding machine, and physical properties were evaluated. The results are shown in Table 4.

一方、比較のため、(C) ホウ酸化合物を添加しない場合、(D) 含窒素官能基を有するトリアジン誘導体を添加しない場合、及び(C) 、(D) 両方共に添加しない場合についても同様にしてペレット状の組成物を調製し、物性評価を行った。結果を表4に併せて示す。
<使用したガラス系充填材>
B4:表面処理剤無使用のガラスビーズ
B5:γ−アミノプロピルトリエトキシシランで表面処理したガラスビーズ
B6:ビニルトリエトキシシランで表面処理したガラスビーズ
B7:γ−グリシドキシプロピルトリエトキシシランで表面処理したガラスビーズ
On the other hand, for comparison, the same applies when (C) a boric acid compound is not added, (D) a triazine derivative having a nitrogen-containing functional group is not added, and both (C) and (D) are not added. A pellet-shaped composition was prepared, and physical properties were evaluated. The results are also shown in Table 4.
<Used glass filler>
B4: Glass beads without surface treatment agent
B5: Glass beads surface-treated with γ-aminopropyltriethoxysilane
B6: Glass beads surface-treated with vinyltriethoxysilane
B7: Glass beads surface-treated with γ-glycidoxypropyltriethoxysilane

Figure 2006070196
Figure 2006070196

実施例32〜41、比較例26〜37
ポリアセタール樹脂(a−1)に以下に示す各種のミルドガラスファイバー(B8〜B9)、ホウ酸化合物(C1〜C3)及び含窒素官能基を有するトリアジン誘導体(D1〜D3)を、表5に示す割合で配合し、シリンダー温度200℃の押出機で溶融混練してペレット状の組成物を調製した。次いで、このペレット状の組成物から射出成形機を用いて試験片を成形し、物性評価を行った。結果を表5に示す。
Examples 32-41, Comparative Examples 26-37
Table 5 shows the various milled glass fibers (B8 to B9), boric acid compounds (C1 to C3), and triazine derivatives (D1 to D3) having nitrogen-containing functional groups shown below in the polyacetal resin (a-1). The mixture was blended at a ratio and melt-kneaded with an extruder having a cylinder temperature of 200 ° C. to prepare a pellet-shaped composition. Next, a test piece was molded from the pellet-shaped composition using an injection molding machine, and physical properties were evaluated. The results are shown in Table 5.

一方、比較のため、(C) ホウ酸化合物を添加しない場合、(D) 含窒素官能基を有するトリアジン誘導体を添加しない場合についても同様にしてペレット状の組成物を調製し、物性評価を行った。結果を表5に併せて示す。
<使用したガラス系無機充填材>
B8:表面処理剤無使用のミルドガラスファイバー
B9:γ−アミノプロピルトリエトキシシランで表面処理したミルドガラスファイバー
On the other hand, for comparison, a pellet-like composition was prepared in the same manner and evaluated for physical properties when (C) a boric acid compound was not added and (D) a triazine derivative having a nitrogen-containing functional group was not added. It was. The results are also shown in Table 5.
<Used glass-based inorganic filler>
B8: Milled glass fiber without surface treatment agent
B9: Milled glass fiber surface-treated with γ-aminopropyltriethoxysilane

Figure 2006070196
Figure 2006070196

実施例42〜46、比較例38〜43
ポリアセタール樹脂(a−1)に以下に示すガラスフレーク(B10)、ホウ酸化合物(C1〜C3)及び含窒素官能基を有するトリアジン誘導体(D1〜D3)を、表6に示す割合で配合し、シリンダー温度200℃の押出機で溶融混練してペレット状の組成物を調製した。次いで、このペレット状の組成物から射出成形機を用いて試験片を成形し、以下に示す物性評価を行った。結果を表6に示す。
Examples 42 to 46, Comparative Examples 38 to 43
The glass flakes (B10), boric acid compounds (C1 to C3) and triazine derivatives having nitrogen-containing functional groups (D1 to D3) shown below are blended in the ratio shown in Table 6 to the polyacetal resin (a-1). A pellet-shaped composition was prepared by melt-kneading with an extruder having a cylinder temperature of 200 ° C. Next, a test piece was molded from the pellet-like composition using an injection molding machine, and the physical properties shown below were evaluated. The results are shown in Table 6.

一方、比較のため、(C) ホウ酸化合物を添加しない場合、(D) 含窒素官能基を有するトリアジン誘導体を添加しない場合についても同様にしてペレット状の組成物を調製し、物性評価を行った。結果を表6に併せて示す。
<使用したガラス系充填材>
B10:γ−アミノプロピルトリエトキシシランで表面処理したガラスフレーク
On the other hand, for comparison, a pellet-like composition was prepared in the same manner and evaluated for physical properties when (C) a boric acid compound was not added and (D) a triazine derivative having a nitrogen-containing functional group was not added. It was. The results are also shown in Table 6.
<Used glass filler>
B10: Glass flakes surface-treated with γ-aminopropyltriethoxysilane

Figure 2006070196
Figure 2006070196

Claims (7)

(A) ポリアセタール樹脂100重量部に対して
(B) ガラス系充填材3〜200重量部
(C) ホウ酸化合物0.001〜3.0重量部
(D) 含窒素官能基を有するトリアジン誘導体を(C) 成分に対して2倍〜10倍量
添加して成るポリアセタール樹脂組成物。
(A) For 100 parts by weight of polyacetal resin
(B) 3 to 200 parts by weight of glass filler
(C) Boric acid compound 0.001 to 3.0 parts by weight
(D) A polyacetal resin composition comprising a triazine derivative having a nitrogen-containing functional group added in an amount 2 to 10 times the amount of component (C).
(B) ガラス系充填材がガラス繊維である請求項1記載のポリアセタール樹脂組成物。   (B) The polyacetal resin composition according to claim 1, wherein the glass-based filler is glass fiber. (B) ガラス系充填材が、ガラスビーズ、ミルドファイバー及びガラスフレークから選ばれたものである請求項1記載のポリアセタール樹脂組成物。   (B) The polyacetal resin composition according to claim 1, wherein the glass-based filler is selected from glass beads, milled fibers, and glass flakes. (B) ガラス系充填材が、アミノアルコキシシランで表面処理されたものである請求項1〜3の何れか1項記載のポリアセタール樹脂組成物。   (B) The polyacetal resin composition according to any one of claims 1 to 3, wherein the glass-based filler is surface-treated with aminoalkoxysilane. (C) ホウ酸化合物が、オルトホウ酸、メタホウ酸、四ホウ酸及び三酸化二ホウ素の中から選ばれる少なくとも1種である請求項1〜4の何れか1項記載のポリアセタール樹脂組成物。   (C) The polyacetal resin composition according to any one of claims 1 to 4, wherein the boric acid compound is at least one selected from orthoboric acid, metaboric acid, tetraboric acid and diboron trioxide. (D) 含窒素官能基を有するトリアジン誘導体がメラミン化合物である請求項1〜5の何れか1項記載のポリアセタール樹脂組成物。   (D) The polyacetal resin composition according to any one of claims 1 to 5, wherein the triazine derivative having a nitrogen-containing functional group is a melamine compound. (A) ポリアセタール樹脂の−OH末端基数が5mmol/kg以下である請求項1〜6の何れか1項記載のポリアセタール樹脂組成物。   The polyacetal resin composition according to any one of claims 1 to 6, wherein (A) the number of -OH terminal groups of the polyacetal resin is 5 mmol / kg or less.
JP2004256924A 2004-09-03 2004-09-03 Polyacetal resin composition Expired - Lifetime JP4549784B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004256924A JP4549784B2 (en) 2004-09-03 2004-09-03 Polyacetal resin composition
CNB2005800296974A CN100567391C (en) 2004-09-03 2005-08-29 Polyacetal resin composite
TW094129460A TWI366586B (en) 2004-09-03 2005-08-29 Polyacetal resin composition
PCT/JP2005/016164 WO2006025547A1 (en) 2004-09-03 2005-08-29 Polyacetal resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256924A JP4549784B2 (en) 2004-09-03 2004-09-03 Polyacetal resin composition

Publications (2)

Publication Number Publication Date
JP2006070196A true JP2006070196A (en) 2006-03-16
JP4549784B2 JP4549784B2 (en) 2010-09-22

Family

ID=36000191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256924A Expired - Lifetime JP4549784B2 (en) 2004-09-03 2004-09-03 Polyacetal resin composition

Country Status (4)

Country Link
JP (1) JP4549784B2 (en)
CN (1) CN100567391C (en)
TW (1) TWI366586B (en)
WO (1) WO2006025547A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044995A (en) * 2006-08-11 2008-02-28 Polyplastics Co Polyacetal resin composition
JP2017061647A (en) * 2015-09-25 2017-03-30 旭化成株式会社 Polyacetal resin composition and molding thereof
WO2017056565A1 (en) * 2015-09-30 2017-04-06 ポリプラスチックス株式会社 Polyacetal resin composition
WO2017169438A1 (en) * 2016-03-31 2017-10-05 ポリプラスチックス株式会社 Polyacetal resin composition
JP2017179265A (en) * 2016-03-31 2017-10-05 ポリプラスチックス株式会社 Polyacetal resin composition
JP2018100355A (en) * 2016-12-21 2018-06-28 ポリプラスチックス株式会社 Method for producing polyacetal resin composition
JP2018168319A (en) * 2017-03-30 2018-11-01 ポリプラスチックス株式会社 Polyacetal resin composition
WO2023058402A1 (en) * 2021-10-04 2023-04-13 ポリプラスチックス株式会社 Polyacetal resin composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677301B1 (en) * 2008-03-11 2016-11-17 미츠비시 가스 가가쿠 가부시키가이샤 Polyacetal resin composition
JP5661437B2 (en) * 2010-11-29 2015-01-28 ポリプラスチックス株式会社 Polyacetal resin composition
JP7057113B2 (en) * 2017-12-08 2022-04-19 旭化成株式会社 Resin composition and resin molded product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044543A (en) * 1983-08-22 1985-03-09 Mitsubishi Gas Chem Co Inc Acetal resin composition
JPS62119260A (en) * 1985-10-16 1987-05-30 ヘキスト セラニーズ コーポレーシヨン Glass fiber reinforced oxymethylene polymer molding composition increased in mechanical properties by aminoformaldehyde resin binder
JPH0711101A (en) * 1993-06-22 1995-01-13 Polyplastics Co Polyacetal resin composition
JPH101593A (en) * 1996-06-19 1998-01-06 Polyplastics Co Polyacetal resin composition
JPH1036630A (en) * 1996-07-30 1998-02-10 Polyplastics Co Polyoxymethylene composition
JP2000007884A (en) * 1998-06-24 2000-01-11 Mitsubishi Gas Chem Co Inc Polyoxymethylene resin composition
JP2002371168A (en) * 2001-06-15 2002-12-26 Polyplastics Co Polyacetal resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966447A (en) * 1982-10-08 1984-04-14 Mitsubishi Gas Chem Co Inc Acetal resin composition
JPS59159846A (en) * 1983-03-03 1984-09-10 Mitsubishi Gas Chem Co Inc Acetal resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044543A (en) * 1983-08-22 1985-03-09 Mitsubishi Gas Chem Co Inc Acetal resin composition
JPS62119260A (en) * 1985-10-16 1987-05-30 ヘキスト セラニーズ コーポレーシヨン Glass fiber reinforced oxymethylene polymer molding composition increased in mechanical properties by aminoformaldehyde resin binder
JPH0711101A (en) * 1993-06-22 1995-01-13 Polyplastics Co Polyacetal resin composition
JPH101593A (en) * 1996-06-19 1998-01-06 Polyplastics Co Polyacetal resin composition
JPH1036630A (en) * 1996-07-30 1998-02-10 Polyplastics Co Polyoxymethylene composition
JP2000007884A (en) * 1998-06-24 2000-01-11 Mitsubishi Gas Chem Co Inc Polyoxymethylene resin composition
JP2002371168A (en) * 2001-06-15 2002-12-26 Polyplastics Co Polyacetal resin composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044995A (en) * 2006-08-11 2008-02-28 Polyplastics Co Polyacetal resin composition
JP2017061647A (en) * 2015-09-25 2017-03-30 旭化成株式会社 Polyacetal resin composition and molding thereof
WO2017056565A1 (en) * 2015-09-30 2017-04-06 ポリプラスチックス株式会社 Polyacetal resin composition
WO2017169438A1 (en) * 2016-03-31 2017-10-05 ポリプラスチックス株式会社 Polyacetal resin composition
JP2017179265A (en) * 2016-03-31 2017-10-05 ポリプラスチックス株式会社 Polyacetal resin composition
WO2017169120A1 (en) * 2016-03-31 2017-10-05 ポリプラスチックス株式会社 Polyacetal resin composition
JP6231728B1 (en) * 2016-03-31 2017-11-15 ポリプラスチックス株式会社 Polyacetal resin composition
US11142637B2 (en) 2016-03-31 2021-10-12 Polyplastics Co., Ltd. Polyacetal resin composition
JP2018100355A (en) * 2016-12-21 2018-06-28 ポリプラスチックス株式会社 Method for producing polyacetal resin composition
JP2018168319A (en) * 2017-03-30 2018-11-01 ポリプラスチックス株式会社 Polyacetal resin composition
WO2023058402A1 (en) * 2021-10-04 2023-04-13 ポリプラスチックス株式会社 Polyacetal resin composition
JP2023054455A (en) * 2021-10-04 2023-04-14 ポリプラスチックス株式会社 Polyacetal resin composition

Also Published As

Publication number Publication date
JP4549784B2 (en) 2010-09-22
WO2006025547A1 (en) 2006-03-09
TW200617095A (en) 2006-06-01
TWI366586B (en) 2012-06-21
CN100567391C (en) 2009-12-09
CN101010380A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2006025547A1 (en) Polyacetal resin composition
JP2008044995A (en) Polyacetal resin composition
JP5005159B2 (en) Polyacetal resin composition
WO2010035351A1 (en) Polyacetal resin composition
CN109679275B (en) Polyacetal resin composition
CN108026352B (en) Polyacetal resin composition and molded article thereof
KR100196682B1 (en) Polyacetal resin composition
JP2005029714A (en) Polyacetal resin composition
JP6105305B2 (en) Polyacetal resin composition and method for producing the same
CN108699318B (en) Polyacetal resin composition
JP5336710B2 (en) Polyacetal resin composition
CN111534040B (en) Polyacetal resin composition
CN110387106B (en) Polyoxymethylene resin composition and molded article
JP5530891B2 (en) Polyacetal resin composition and molded article comprising the same
CN108603007B (en) Polyacetal resin composition
JP2003105048A (en) Branched polyoxymethylene copolymer and resin composition thereof
JP5143163B2 (en) Polyacetal resin composition and method for producing the same
JP2005232404A (en) Polyacetal resin composition
JP4903748B2 (en) Lamp molded body of hard disk
JP6364223B2 (en) POLYACETAL RESIN COMPOSITION AND MOLDED ARTICLE
CN108219356B (en) Method for producing polyacetal resin composition
JP5616102B2 (en) Automotive interior / mechanical parts
KR20240044169A (en) Polyoxymethylene resin composition with improved heat resistance and molded article prepared therefrom
JP2024118440A (en) Polyacetal resin composition
JP2005344027A (en) Polyoxymethylene resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Ref document number: 4549784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250