WO2017169368A1 - Base station, terminals and communication method - Google Patents

Base station, terminals and communication method Download PDF

Info

Publication number
WO2017169368A1
WO2017169368A1 PCT/JP2017/006875 JP2017006875W WO2017169368A1 WO 2017169368 A1 WO2017169368 A1 WO 2017169368A1 JP 2017006875 W JP2017006875 W JP 2017006875W WO 2017169368 A1 WO2017169368 A1 WO 2017169368A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
terminal
downlink data
transmission
Prior art date
Application number
PCT/JP2017/006875
Other languages
French (fr)
Japanese (ja)
Inventor
貴司 吉本
中村 理
淳悟 後藤
良太 山田
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017169368A1 publication Critical patent/WO2017169368A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication method.
  • Non-Patent Document 1 Non-Orthogonal Multiple Access
  • Inter-user interference occurs, so the terminal apparatus removes or suppresses the inter-user interference.
  • Techniques for removing or suppressing interference between users include interference cancellers that eliminate interference signals and maximum likelihood detection (Maximum Likelihood Detection).
  • a base station device eNB (evolved Node B)
  • UE User Equipment
  • the transmission power of each modulation symbol is determined in consideration of reception power (reception quality) at the multiplexed terminal apparatus.
  • the terminal apparatus can extract only the modulation symbol addressed to itself by demodulating, decoding and canceling the signal addressed to another terminal apparatus among the multiplexed transmission signals.
  • a terminal device In downlink non-orthogonal multiple access, a terminal device needs control information such as power allocation information of a downlink transmission signal to other terminals multiplexed in order to remove or suppress inter-user interference.
  • control information such as power allocation information of a downlink transmission signal to other terminals multiplexed in order to remove or suppress inter-user interference.
  • adding power allocation information to a control signal leads to an increase in downlink control signals.
  • the number of bits required for the downlink control signal increases.
  • the terminal device detects an interference signal blindly, the number of power allocation patterns increases, so that the number of detection attempts increases and the load on the terminal device increases.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station apparatus, a terminal apparatus, and a base station apparatus capable of improving throughput by reducing interference while reducing the load of reception processing of the terminal apparatus. It is to provide a communication method.
  • the configurations of the base station apparatus, terminal apparatus, and communication method according to the present invention are as follows.
  • One aspect of the present invention is a base station apparatus that communicates with a first terminal apparatus and a second terminal apparatus, and includes information indicating that multiuser superimposed transmission is supported from the first terminal apparatus.
  • the reception unit when the reception unit has not received information indicating that semi-persistent scheduling is supported from the first terminal apparatus, the multi-user superimposed transmission is applied. , Downlink data is transmitted to the first terminal device and the second terminal device.
  • the transmission unit transmits the downlink data to the first terminal device by dynamic scheduling
  • multi-user superimposed transmission is applied to the first terminal device. Transmitting downlink data to the apparatus and the second terminal apparatus.
  • the transmission unit transmits downlink data to the second terminal apparatus using semi-per system scheduling
  • the multi-user superimposed transmission is applied,
  • the downlink data is transmitted to the first terminal device and the second terminal device.
  • the transmission unit transmits downlink data to the second terminal apparatus using semi-per system scheduling, and downlink data transmission of the first terminal apparatus is performed.
  • the semi-persistent scheduling interval for the first terminal device and the semi-persistent scheduling interval for downlink data transmission of the first terminal device are the same, multi-user superimposed transmission is applied, and the first terminal device and the second terminal device And transmitting downlink data to the terminal device.
  • the transmission unit transmits downlink data to the second terminal apparatus using semi-per system scheduling, and downlink data transmission of the first terminal apparatus is performed.
  • the semi-persistent scheduling interval for the first terminal apparatus is n times or 1 / n times the semi-persistent scheduling interval for downlink data transmission of the first terminal device (n is a natural number)
  • Applying downlink data is transmitted to the first terminal device and the second terminal device.
  • one aspect of the present invention is a communication method of a base station apparatus that communicates with a first terminal apparatus and a second terminal apparatus, and supports multi-user superimposed transmission from the first terminal apparatus.
  • a receiving step for receiving information indicating the above and a transmitting step for transmitting downlink data to the first terminal device and the second terminal device, and supporting semi-persistent scheduling from the first terminal device When transmitting the downlink with semi-persistent scheduling, transmitting downlink data to the first terminal device and the second terminal device using orthogonal multi-access, Features.
  • One aspect of the present invention is a terminal device that communicates with a base station device, wherein the base station device transmits information indicating that multi-user superimposed transmission is supported, and the base station device A receiving unit that receives downlink data, and when the transmitting unit transmits information indicating that semi-persistent scheduling is supported to the base station apparatus, the receiving unit uses a downlink that uses semi-persistent scheduling.
  • the data is assumed to be using orthogonal multi-access.
  • the reception unit when the reception unit receives downlink control information, the reception unit demodulates the downlink data on the assumption that orthogonal multi-access or multi-user superimposed transmission is used. It is characterized by this.
  • One aspect of the present invention is a communication method for a terminal apparatus that communicates with a base station apparatus, wherein the base station apparatus transmits information indicating that multiuser superimposed transmission is supported, and the base station A receiving step of receiving downlink data from a station apparatus, and transmitting information indicating that semi-persistent scheduling is supported to the base station apparatus, downlink data using semi-persistent scheduling is orthogonal It is assumed that access is used.
  • the present invention it is possible to reduce the interference signal while reducing the load of reception processing of the terminal device, and to improve the throughput and the communication opportunity of the terminal device.
  • the communication system in this embodiment includes a base station device (transmitting device, cell, serving cell, transmission point, transmission antenna group, transmission antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, reception point, reception terminal). , Receiving device, receiving antenna group, receiving antenna port group, UE).
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment.
  • the communication system according to the present embodiment includes a base station device 1A and terminal devices 2A and 2B.
  • the coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device.
  • the terminal devices 2A and 2B are also collectively referred to as the terminal device 2.
  • the following uplink physical channels are used in uplink wireless communication from the terminal apparatus 2 to the base station apparatus 1A.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • ⁇ Physical uplink control channel (PUCCH) Physical Uplink Shared Channel (PUSCH) ⁇ Physical Random Access Channel (PRACH)
  • the PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI).
  • UCI Uplink Control Information
  • a plurality of UCI formats are defined for transmission of uplink control information. That is, fields for uplink control information are defined in the UCI format and mapped to information bits.
  • the uplink control information includes ACK (a positive acknowledgment) or NACK (a negative acknowledgment) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback.
  • the uplink control information includes a scheduling request (SR: “Scheduling” Request).
  • the uplink control information includes channel state information for downlink (Channel State Information: CSI).
  • the uplink control information includes a scheduling request (Scheduling Request: SR) used for requesting resources of the uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI designating a suitable transmission rate. (Channel Quality Indicator).
  • the channel quality indicator CQI (hereinafter referred to as CQI value) can be a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and a coding rate in a predetermined band.
  • the CQI value can be an index (CQI Index) determined by the modulation scheme and coding rate.
  • the CQI value can be predetermined by the system.
  • the rank index and the precoding quality index can be determined in advance by the system.
  • the rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information.
  • the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
  • the PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
  • PUSCH is used to transmit an RRC message.
  • the RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer.
  • the PUSCH is used to transmit a MAC CE (Control Element).
  • the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
  • the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field is used to indicate the power headroom level.
  • PRACH is used to transmit a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal.
  • the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
  • DMRS is related to transmission of PUSCH or PUCCH.
  • the base station device 1A uses DMRS to perform channel correction when demodulating PUSCH or PUCCH.
  • SRS is not related to PUSCH or PUCCH transmission.
  • the base station apparatus 1A uses SRS to measure the uplink channel state.
  • the following downlink physical channels are used in downlink wireless communication from the base station apparatus 1A to the terminal apparatus 2.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical hybrid automatic repeat request indicator channel
  • PDCCH Physical downlink control channel
  • PDSCH Physical downlink shared channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices.
  • the PBCH includes information such as a system band, a system frame number (SFN: System Frame number), and the number of transmission antennas used by the eNB.
  • PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
  • PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2 notifies the received ACK / NACK to the higher layer.
  • ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2 notifies the upper layer of ACK.
  • PDCCH and EPDCCH are used to transmit downlink control information (DCI: “Downlink” Control “Information”).
  • DCI Downlink control information
  • a plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
  • a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
  • the DCI format for downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as TPC command for PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
  • the uplink DCI format includes uplink control information such as information on PUSCH resource allocation, information on MCS for PUSCH, and TPC command for PUSCH.
  • the DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
  • the DCI format for the uplink can be used to request downlink channel state information (CSI: Channel State Information, also referred to as reception quality information).
  • the channel state information includes a rank indicator (RI: Rank Indicator) that specifies a suitable spatial multiplexing number, a precoding matrix indicator (PMI: Precoding Matrix Indicator) that specifies a suitable precoder, and a channel quality index that specifies a suitable transmission rate.
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • PTI Precoding type Indicator
  • the DCI format for uplink can be used for setting indicating an uplink resource that maps a channel state information report (CSI feedback) report that a terminal apparatus feeds back to a base station apparatus.
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly.
  • the base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus.
  • Types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
  • the terminal apparatus When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
  • PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • PDSCH is used to transmit a system information block type 1 message.
  • the system information block type 1 message is cell specific (cell specific) information.
  • the PDSCH is used to transmit a system information message.
  • the system information message includes a system information block X other than the system information block type 1.
  • the system information message is cell specific (cell specific) information.
  • the PDSCH is used to transmit an RRC message.
  • the RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell. Further, the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • PDSCH is used to transmit MAC CE.
  • the RRC message and / or MAC CE is also referred to as higher layer signaling.
  • the PDSCH can be used to request downlink channel state information.
  • the PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • CSI feedback report a channel state information report
  • the channel state information report can be used for setting indicating an uplink resource for reporting periodic channel state information (Periodic CSI) / aperiodic channel state information (Aperiodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information regularly / irregularly.
  • the types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI).
  • the broadband CSI calculates one channel state information for the system band of the cell.
  • the narrowband CSI the system band is divided into predetermined units, and one channel state information is calculated for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Reference Signal: DL RS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
  • the synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel.
  • the downlink reference signal is used by the terminal device to calculate downlink channel state information.
  • the downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), DMRS related to EPDCCH. (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Chanel State Information Information Reference Signal).
  • the CRS is transmitted scattered over the entire band of the subframe and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH.
  • the URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH with which the URS is associated, and is used to demodulate the PDSCH with which the URS is associated.
  • CRS can also be used for measurement.
  • DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS.
  • DMRS is used to demodulate the EPDCCH with which DMRS is associated.
  • NZP CSI-RS resources are set by the base station apparatus 1A.
  • the terminal device 2 performs signal measurement (channel measurement) using NZP CSI-RS.
  • the resource of ZP CSI-RS is set by the base station apparatus 1A.
  • the base station apparatus 1A transmits ZP CSI-RS with zero output.
  • the terminal device 2 measures interference in a resource supported by NZP CSI-RS.
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • the MBSFN RS is used for PMCH demodulation.
  • PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in the MAC layer is referred to as a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
  • the base station apparatus can apply scheduling schemes such as dynamic scheduling (DS: Dynamic Scheduling) and semi-persistent scheduling (SPS: Semi-Persistent Scheduling) in uplink and downlink communication with the communication device.
  • the base station apparatus 1A schedules the terminal apparatuses 2A and 2B using DS.
  • Base station apparatus 1A schedules terminal apparatus 2A using DS, and schedules terminal apparatus 2B using SPS.
  • the base station apparatus 1A schedules the terminal apparatus 2A using SPS and schedules the terminal apparatus 2B using DS.
  • Base station apparatus 1A schedules terminal apparatuses 2A and 2B using SPS.
  • the base station apparatus 1A dynamically allocates frequency / time / space resources for data transmission to the terminal apparatus 2 according to the flow rate of the terminal apparatus 2 and the service quality (QoS: “Quality” of Service).
  • the base station apparatus 1A dynamically allocates resources to each terminal apparatus in resource block units configured with a predetermined frequency and a predetermined time. 1 A of base station apparatuses notify the resource for transmitting PDSCH / PUSCH etc., such as resource allocation, using PDCCH transmitted to each terminal device.
  • the base station apparatus 1A allocates frequency / time / space resources for data transmission to the terminal apparatus 2 at a constant cycle.
  • SPS is used to provide higher layer application services (eg, VoIP (Voice over Internet Protocol)) that generate data periodically.
  • the base station apparatus 1A uses the PDCCH transmitted to each terminal apparatus to notify the period for transmitting PDSCH / PUSCH, the resource allocation, and the like. Thereafter, the PDSCH / PUSCH is periodically transmitted based on the period or the like.
  • the base station device since resources are allocated to terminal devices at a constant period, the base station device is prevented from transmitting control information on the PDCCH, and system scheduling efficiency is improved.
  • the terminal apparatus since the SPS allocates resources to the terminal device at a fixed period, the terminal apparatus periodically transmits without monitoring the PDCCH, and ensures that each period transmission is a transmission of new data. be able to.
  • the base station apparatus can multiplex a plurality of terminal apparatuses without dividing resources in time, frequency and space (for example, antenna port, beam pattern, precoding pattern). Multiplexing multiple terminal devices without dividing resources in time / frequency / space is referred to as non-orthogonal multiple access (NOMA: Non Orthogonal Multiple Access), multi-user superimposed transmission (MUST: Multiuser Superposition Transmission), non- Also called orthogonal multiplexing.
  • NOMA Non Orthogonal Multiple Access
  • MUST Multiuser Superposition Transmission
  • orthogonal multiplexing non-orthogonal multiplexing
  • a case where two terminal apparatuses are non-orthogonal multiplexed will be described, but the present invention is not limited to this, and three or more terminal apparatuses can be non-orthogonal multiplexed.
  • the base station apparatus 1A of FIG. 1 performs non-orthogonal multiplexing of the terminal apparatus 2A and the terminal apparatus 2B will be described.
  • the terminal device 2A is also called a terminal device (near-UE) close to the base station device, and the terminal device 2B is also called a terminal device (Far-UE) far from the base station device.
  • the PDSCH for the terminal device 2A is also referred to as PDSCH1 (first PDSCH), and the PDSCH for the terminal device 2B is also referred to as PDSCH2 (second PDSCH).
  • the base station apparatus mainly explains the case where MUST is performed using PDSCH, but MUST can also be applied to other channels (for example, PMCH, PDCCH, EPDCCH).
  • MUST when performing MUST on a plurality of channels, MUST can be applied using a different superposition transmission method or MUST category (described later) for each channel.
  • MUST When MUST is applied in a plurality of channels, different reception schemes can be assumed for each channel. For example, a symbol level reception scheme may be used for PDSCH, and a codeword level reception scheme for PMCH.
  • the base station apparatus 1A transmits the terminal apparatuses 2A and 2B by non-orthogonal multiplexing
  • the base station apparatus 1A can superimpose and transmit to the terminal apparatuses 2A and 2B using QPSK / 16QAM / 64QAM / 256QAM mapping of the same constellation.
  • Such a superposition transmission method is also referred to as MUST category 1.
  • the constellation obtained by combining the terminal devices 2A and 2B is a non-Gray code constellation.
  • the base station apparatus 1A can allocate various ratios of power to the terminal apparatuses 2A and 2B. In this case, the terminal device 2A removes or suppresses the interference signal on the assumption that the mapping pattern of the terminal device 2B is the same as itself.
  • the base station apparatus 1A can superimpose and transmit to the terminal apparatuses 2A and 2B using different constellations so that the constellation obtained by combining the terminal apparatuses 2A and 2B becomes a gray code constellation.
  • a superposition transmission method is also referred to as MUST category 2.
  • the base station apparatus 1A can allocate various ratios of power to the terminal apparatuses 2A and 2B.
  • the terminal device 2A removes or suppresses the interference signal on the assumption that the mapping pattern of the terminal device 2B is different from itself.
  • the base station apparatus 1A can map and transmit the transmission bit string addressed to the terminal apparatuses 2A and 2B so as to be an existing QPSK / 16QAM / 64QAM / 256QAM constellation.
  • Such a superposition transmission method is also referred to as MUST category 3.
  • the base station apparatus 1A can allocate the power of the terminal apparatuses 2A and 2B according to the constellation to be mapped.
  • the terminal device 2A demodulates the existing mapping and sets a part of the obtained bits as a bit addressed to itself.
  • the base station apparatus 1A transmits the signals of the terminal apparatus 2A and the terminal apparatus 2B by non-orthogonal multiplexing
  • PDSCH1 and PDSCH2 interfere with each other.
  • the base station apparatus 1A allocates more power to the terminal apparatus 2B that is a Far-UE than the terminal apparatus 2A that is a near-UE.
  • at least the terminal device 2A receives a strong interference signal, and handles, removes, or suppresses the interference signal.
  • interference signals are referred to as multi-user interference, inter-user interference, interference due to multi-user transmission, co-channel interference, and the like.
  • an interference signal replica signal obtained from the demodulation or decoding result of the interference signal is subtracted from the received signal.
  • SLIC Symbol Level Interference Cancellation
  • CWIC Codeword Level Interference Cancellation
  • transmission signal candidate Likelihood detection (ML: maximum likelihood, R-ML: Reduced complexity maximumlikelihood), EMMSE-IRC (Enhanced Minimum Mean Square Error-Interference Rejection Combining) that suppresses interference signals by linear operation )and so on.
  • the base station apparatus can transmit a common terminal apparatus specific reference signal to a plurality of terminal apparatuses that perform non-orthogonal multiplexing. That is, the base station apparatus can transmit a reference signal to a plurality of terminal apparatuses using the same resource and the same reference signal sequence in time / frequency / space. Further, the base station apparatus can set the transmission mode for the terminal apparatus. The base station apparatus can perform transmission by MUST when setting a predetermined transmission mode. Further, the base station apparatus may not perform transmission by MUST when a transmission mode other than the predetermined transmission mode or MUST is not set. In other words, the terminal device can determine whether or not the transmission is based on MUST based on the set transmission mode and the presence / absence of MUST setting.
  • the base station apparatus can set the CRS-based transmission mode for the terminal apparatus 2A.
  • the base station apparatus can set the CRS / DMRS-based transmission mode for the terminal apparatus 2B.
  • the CRS-based transmission mode is a transmission mode that demodulates using CRS, and is, for example, one of transmission modes 1 to 6. However, it is not limited to any one of these transmission modes.
  • the DMRS-based transmission mode is a transmission mode that is demodulated using a terminal-specific reference signal, and is, for example, one of transmission modes 8 to 10. However, it is not limited to any one of these transmission modes.
  • Each of the terminal devices 2A and 2B may be set to the MUST transmission mode, may not be set to the MUST transmission mode, may be configured to have MUST transmission, or may not be configured to MUST transmission.
  • Signal detection by R-ML or SLIC is essential, and R-ML or SLIC may be omitted.
  • the terminal apparatuses 2A and 2B may be terminals capable of MUST and terminals not capable of MUST, may receive information related to interference signals using a control signal, and may not receive information related to interference signals using a control signal.
  • the terminal device 2A can detect a parameter necessary for removing or suppressing the interference signal from the base station device or by blind detection.
  • the terminal device 2B may or may not remove or suppress the interference signal.
  • the terminal device 2B can demodulate the signal addressed to itself without knowing the parameter regarding the interference signal.
  • the base station apparatus 1A performs non-orthogonal multiplexing of the terminal apparatuses 2A and 2B
  • the terminal apparatus 2A needs to have a function of removing or suppressing interference signals due to non-orthogonal multiplexing, but the terminal apparatus 2B performs interference removal or suppression. It may or may not have a function.
  • the base station apparatus 1A can non-orthogonally multiplex a terminal apparatus that supports non-orthogonal multiplexing and a terminal apparatus that does not support non-orthogonal multiplexing.
  • the base station device 1A can non-orthogonally multiplex terminal devices for which different transmission modes are set. Therefore, the communication opportunity of each terminal device can be improved.
  • the base station apparatus 1A transmits information (assist information, auxiliary information, control information, and setting information in MUST) regarding the terminal apparatus (terminal apparatus 2B in FIG. 1) that causes interference to the terminal apparatus 2A.
  • the base station apparatus 1A can transmit information (MUST assist information, MUST information) about the terminal apparatus that causes interference by using a higher layer signal or a physical layer signal (control signal, PDCCH, EPDCCH).
  • the MUST assist information includes information on PA, information on transmission mode (transmission method), information on transmission power of terminal-specific reference signal, power allocation information on PDSCH, information on PMI, PA of serving cell, terminal-specific reference signal of serving cell.
  • Information related to transmission power modulation scheme, MCS (Modulation and Coding Scheme), redundancy version, C (Cell) -RNTI (Radio Network Temporary Identifier), SPS (Semi-Persistent Scheduling) C-RNTI, MUST-RNTI, base station equipment Information indicating whether the terminal device is near (near-UE) or far terminal device (Far-UE), MUST category (method), codeword index, layer index, transport block index, part or all of physical channel information included.
  • PA is information based on a transmission power ratio (power offset) between PDSCH and CRS in an OFDM symbol in which CRS is not arranged.
  • the information regarding the transmission mode (transmission method) is such that the terminal device 2A knows the transmission mode of the interference signal, such as the transmission mode of the interference signal and the transmission mode candidates that the base station device 1A can set (possibly set). Assist information.
  • the transmission method includes transmission diversity, large delay CDD (Cyclic Delay Delay), Open-loop MIMO, Closed-loop MIMO, and the like.
  • the codeword / layer / transport block index is information indicating which codeword / layer / transport block the MUST is applied to when transmitted by a plurality of codewords / layers / transport blocks.
  • the physical channel information is information indicating which physical channel the MUST is applied to, and can indicate, for example, PDSCH or PMCH.
  • the terminal device close to the base station device and the distant terminal device may mean that the close terminal device performs interference removal or suppression by MUST, and the distant terminal device does not cancel or suppress interference by MUST.
  • a terminal device close to a base station device and a distant terminal device may mean that a near terminal device has a smaller allocated power than a distant terminal. Further, a terminal device close to a base station device and a distant terminal device may mean that a near terminal device has a power ratio smaller than 0.5 and a far terminal device has a power ratio of 0.5 or more. .
  • a terminal device close to a base station device and a distant terminal device may mean that a close terminal device has a lower modulation multi-level number or MCS than a distant terminal.
  • one value may be set for each of the parameters included in the above MUST assist information, or a plurality of values (candidates, list) may be set.
  • the terminal device detects (blind detection) a parameter set in the interference signal from the plurality of values.
  • Some or all of the parameters included in the MUST assist information are transmitted as higher layer signals.
  • Some or all of the parameters included in the MUST assist information may be transmitted as a physical layer signal.
  • the measurement includes RRM (Radio Resource Management) measurement and CSI (Channel State Information) measurement.
  • RRM Radio Resource Management
  • CSI Channel State Information
  • the base station device 1A When the terminal device 2A supports carrier aggregation (Carrier Aggregation: CA) for performing broadband transmission by combining a plurality of component carriers (CC: Component Carrier), the base station device 1A includes a primary cell (Primary Cell: PCell) and MUST assist information for a secondary cell (Secondary Cell: SCell) can be set. Moreover, 1 A of base station apparatuses can also set or transmit MUST assist information only to PCell.
  • PCell Primary Cell
  • SCell Secondary Cell
  • 1 A of base station apparatuses can also set or transmit MUST assist information only to PCell.
  • the base station apparatus transmits the terminal apparatus 2A / 2B to the terminal apparatus 2A / 2B from the adjacent cell.
  • the NAICS assist information used for removing the interference can be transmitted.
  • the NAICS assist information includes physical cell ID, number of CRS antenna ports, MBSFN subframe configuration, PA list, PB, transmission mode list, and part or all of resource allocation granularity.
  • PB represents a power ratio of PDSCH in an OFDM symbol in which CRS is not arranged and in an OFDM symbol in which CRS is not arranged.
  • the base station apparatus can not simultaneously set MUST assist information and NAICS assist information for the terminal apparatus.
  • NAICS assist information When NAICS assist information is set, MUST assist information is not set.
  • MUST assist information When MUST assist information is set, NAICS assist information is not set.
  • the terminal device can remove or suppress interference based on one of the assist information. For example, when the MUST assist information and the NAICS assist information are set at the same time, the terminal device can remove or suppress interference based only on the MUST assist information or the NAICS assist information.
  • the terminal device 2A receives the MUST assist information with the upper layer signal and / or the physical layer signal, detects (identifies) a parameter for removing or suppressing the interference signal based on the MUST assist information, and The interference signal is removed or suppressed using the parameter. Note that the terminal device 2A can detect parameters that are not included in the MUST information by blind detection that tries to detect parameter candidates in order.
  • a table or list is set in the upper layer or the physical layer, and the base station apparatus can indicate the power ratio to the terminal apparatus by signaling its index with a signal of the physical layer.
  • the terminal device can obtain the power ratio by referring to the table or list from the MUST setting and index received from the base station device.
  • FIG. 2 is a diagram illustrating an example of the power ratio of the non-orthogonal multiplexed terminal apparatus according to the present embodiment.
  • the power ratio of the own device can be obtained as 0.2
  • the power ratio of the pair may also be shown in a table.
  • the information indicating that MUST can be applied may indicate a predetermined power allocation. For example, when MUST is applied, the power ratio of the multiplexed terminal apparatuses is preset as 20:80. In this case, when information indicating that MUST can be applied is transmitted from the terminal device 2A to the base station device 1A or from the base station device 1A to the terminal device 2A, the terminal device 2A is connected to the terminal device 2A and the terminal device 2B. Is assumed to be 20:80.
  • the base station apparatus can change the content of the downlink control information according to the transmission mode. For example, in the case of the CRS-based transmission mode, the base station apparatus transmits power allocation information included in downlink control information. In the case of DMRS base, the base station apparatus replaces the bits used in the power allocation information in the case of the CRS base transmission mode with other information such as the antenna port and PMI of the interference signal. In other words, the terminal apparatus can obtain power allocation information from a certain field included in the downlink control information when configured in the CRS-based transmission mode, and an interference signal antenna in the DMRS-based transmission mode. Other information such as port and PMI can be obtained. Further, when the terminal device is in the DMRS-based transmission mode, the power allocation information can be obtained from the terminal device-specific reference signal of the terminal device that becomes the MUST pair with itself.
  • FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 1A according to the present embodiment.
  • the base station apparatus 1A includes an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, transmission units (transmission steps) 103-1, 103-2, a reception unit (reception step) 104, and a transmission antenna. 105-1 and 105-2, and a receiving antenna 106-1.
  • the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012.
  • the transmission unit 103-1 generates a transmission signal to the terminal device 2A.
  • the transmission unit 103-2 generates a transmission signal to the terminal device 2B.
  • the transmission units 103-1 and 103-2 are also collectively referred to as a transmission unit 103.
  • the transmission antennas 105-1 and 105-2 are also collectively referred to as a transmission antenna 105.
  • the transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, and a radio transmission unit (Wireless transmission step) 1035 is included.
  • the reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
  • the upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Processes higher layers than physical layer such as Resource (Control: RRC) layer.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Processes higher layers than physical layer such as Resource (Control: RRC) layer.
  • RRC Resource Control
  • the upper layer processing unit 101 receives information related to the terminal device such as the terminal device function (UE capability) from the terminal device 2 (via the receiving unit 104). In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal.
  • the information regarding the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device is introduced into the predetermined function and the test is completed. Whether or not to support a predetermined function includes whether or not the installation and test for the predetermined function have been completed.
  • the terminal device transmits information (parameters) indicating whether the predetermined function is supported.
  • the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
  • the information related to the terminal device includes information indicating that MUST is supported and information indicating that SPS is supported.
  • the terminal device can transmit information indicating whether to support each function.
  • Functions that support MUST include the ability to remove or suppress multi-user interference (PDSCH interference), the ability to support multiple tables indicating antenna ports, scrambling identities, and the number of layers, and a predetermined number of antenna ports , Capability corresponding to the number of CCs and resource blocks of carrier aggregation, capability corresponding to a predetermined transmission mode, capability corresponding to SPS (MUST corresponding to SPS Part or all of information indicating support and information indicating support of MUST that does not support SPS.
  • PDSCH interference multi-user interference
  • MUST Mobility Management Entity
  • the capability corresponding to the predetermined transmission mode is, for example, a combination of transmission modes applicable to MUST, whether the transmission mode can eliminate or suppress interference of MUST, and the like.
  • the terminal apparatus can transmit the supported MUST applicable channel to the base station apparatus.
  • the channels applicable to MUST are, for example, PDSCH and PDSCH superposition transmission, PMCH and PMCH superposition transmission, PDCCH and PDCCH superposition transmission, EPDCCH and EPDCCH superposition transmission, and the like.
  • the radio resource control unit 1011 generates or acquires downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from the upper node.
  • the radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102.
  • the radio resource control unit 1011 manages various setting information of the terminal device 2. Note that some of the functions of the radio resource control unit may be performed in the MAC layer or the physical layer.
  • the radio resource control unit 1011 can set information related to carrier aggregation (for example, Scell addition / release, etc.).
  • the radio resource control unit 1011 can set information on MBSFN subframes (for example, subframe allocation for MBSFN).
  • the radio resource control unit 1011 sets information (for example, MUST assist information) regarding MUST settings for each terminal device.
  • the radio resource control unit 1011 sets a cell radio network temporary identifier (C-RNTI: “Cell” Radio “Network” Temporary “Identifier”) for each terminal apparatus.
  • C-RNTI is a terminal identifier in dynamic scheduling.
  • C-RNTI is used for encryption (scrambling) of PDCCH and PDSCH in dynamic scheduling.
  • the radio resource control unit 1011 sets a semi-persistent cell radio network temporary identifier (SPS C-RNTI: Semi-Persistent Scheduling Cell Radio Network Temporary Identifier) for each terminal device.
  • SPS C-RNTI is a terminal identifier in semi-persistent scheduling.
  • SPS C-RNTI is used for encryption (scrambling) of PDCCH and PDSCH in semi-persistent scheduling.
  • the radio resource control unit 1011 can set information related to SPS for each terminal device.
  • the SPS configuration can be included in individual radio resource configuration parameters (for example, RadioResourceConfigDedicated in LTE-A).
  • a parameter SPS-Config in LTE-A can be used.
  • the SPS configuration includes parameters indicating SPS C-RNTI configuration, downlink / uplink SPS setup, and release.
  • the SPS setting includes a parameter indicating a semi-persistent scheduling interval in the downlink / uplink.
  • the SPS setting includes a parameter indicating the number of HARQ processes in semi-persistent scheduling.
  • the radio resource control unit 1011 may be configured not to perform SPS setting when the MUST assist information is set.
  • the radio resource control unit 1011 may not be able to set MUST assist information when the SPS setting is performed.
  • the radio resource control unit 1011 performs control so that a terminal device for which carrier aggregation is set (for example, when Scell is set) / a terminal device for which carrier aggregation is activated cannot apply MUST. You can also.
  • the radio resource control unit 1011 can also perform control so that a terminal device that has activated carrier aggregation cannot apply MUST.
  • the radio resource control unit 1011 can also perform control so that the MUST cannot be applied to the terminal apparatus in which the MBSFN subframe / MBSFN subframe is set.
  • the scheduling unit 1012 determines a frequency and a time resource (subcarrier and subframe) to allocate a physical channel (PDSCH and PUSCH) to be transmitted to each terminal device.
  • the scheduling unit 1012 allocates frequency and time resources in consideration of whether each terminal apparatus supports MUST.
  • the scheduling unit 1012 allocates frequency and time resources in consideration of the scheduling method (DS / SPS) of each terminal device.
  • the scheduling unit 1012 allocates downlink data of both terminal devices to overlapping frequency and time resources (resource blocks). In this case, the scheduling unit 1012 preferably uses the same frequency and time resources for both terminal apparatuses.
  • Scheduling section 1012 allocates the downlink data of both terminal apparatuses to different frequency and time resources when MUST is not performed between terminal apparatus 2A and terminal apparatus 2B (when performing orthogonal multiple access (OMA: Orthogonal Multiple Access)).
  • the scheduling unit 1012 takes into account the setting regarding the MUST of the radio resource control unit 1011 (including the collaboration of the setting of the MUST and the setting of other functions) and the setting regarding the SPS, and uses the MUST or OMA to generate resources for the downlink data. Can also be assigned.
  • the scheduling unit 1012 determines the coding rate, modulation scheme (or MCS), transmission power, and the like of the physical channels (PDSCH and PUSCH). The scheduling unit 1012 outputs the determined information to the control unit 102. The scheduling unit 1012 generates information used for scheduling of physical channels (PDSCH and PUSCH) based on the scheduling result. The scheduling unit 1012 outputs the generated information to the control unit 102.
  • the control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101.
  • the control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103.
  • the downlink control information includes a PDSCH / PUSCH resource allocation field, a HARQ process number field, and a new data indicator (NDI: “New” Date “Indicator) field.
  • the control unit 102 can include information indicating that the MUST is applied to the channel transmitted in the PDSCH / PUSCH resource allocation field in the downlink control signal.
  • the control unit 102 can set activation / release of SPS using the downlink control information. For example, using a combination of TPC command field for uplink channel / cyclic shift field for demodulation reference signal / field for MCS / HARQ process number field / field for redundancy / fold for resource allocation, etc. SPS activation / cancellation can be set.
  • CRC Cyclic Redundancy Check
  • DS the generated CRC is encrypted (scrambling) by C-RNTI (Cell-RadioorNetwork Temporary Identifier).
  • C-RNTI Cell-RadioorNetwork Temporary Identifier
  • SPS the generated CRC is encrypted by SPS C-RNTI.
  • the encrypted CRC is added to the DCI format.
  • the signal generated as the DCI format is arranged on the PDCCH.
  • the terminal apparatus determines whether transmission corresponding to the allocated resource is new or retransmission based on the HARQ process ID and the NDI field included in the PDCCH. If the NDI value is different from the previous NDI value in the same HARQ process, it is judged as new, and if it is the same as the previous NDI value in the same HARQ process, it is judged as retransmission.
  • the definition of SDI NDI is different.
  • the value of NDI indicates the function of PDCCH signaling transmitted to the SPS C-RNTI. If the received NDI value is 0, the PDCCH signaling assigned to the SPS C-RNTI is for activation or modification of the SPS transmission resource. If the received NDI value is 1, the SPS C -PDCCH signaling allocated for RNTI allocates transmission resources to the terminal device for SPS retransmission.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102.
  • the transmitting unit 103 encodes and modulates the HARQ indicator, the downlink control information, and the downlink data input from the higher layer processing unit 101 for each terminal apparatus, and generates PHICH, PDCCH, EPDCCH, and PDSCH.
  • the transmission unit 103 multiplexes PHICH, PDCCH, EPDCCH, PDSCH, and a downlink reference signal, and transmits a signal to the terminal apparatus 2 via the transmission antenna 105.
  • the encoding unit 1031 is configured to block the HARQ indicator, the downlink control information, and the downlink data input from the higher layer processing unit 101 using a predetermined encoding method determined by the radio resource control unit 1011. Encoding, convolutional encoding, turbo encoding, etc. are performed.
  • the modulation unit 1032 converts the coded bits input from the coding unit 1031 into predetermined BPSK (Binary Phase Shift Keying), QPSK (quadrature Phase Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, etc. Modulation is performed by the modulation scheme determined by the radio resource control unit 1011.
  • the downlink reference signal generation unit 1033 generates a sequence known by the terminal device 2 as a downlink reference signal.
  • the known sequence is determined by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A.
  • PCI physical cell identifier
  • the multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
  • the radio transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed modulation symbols and the like.
  • the radio transmission unit 1035 generates a baseband digital signal by adding a cyclic prefix (CP) to the OFDM symbol.
  • the wireless transmission unit 1035 converts the digital signal into an analog signal, removes excess frequency components by filtering, up-converts the carrier signal to a carrier frequency, amplifies the power, and outputs to the transmission antenna 105 for transmission.
  • the receiving unit 104 separates, demodulates and decodes the received signal received from the terminal device 2 via the receiving antenna 106-1 according to the control signal input from the control unit 102, and sends the decoded information to the upper layer processing unit 101. Output.
  • the radio reception unit 1041 converts an uplink signal received via the reception antenna 106-1 into a baseband signal by down-conversion, removes unnecessary frequency components, and maintains the signal level appropriately.
  • the amplification level is controlled to perform quadrature demodulation based on the in-phase and quadrature components of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • Radio receiving section 1041 removes a portion corresponding to CP from the converted digital signal.
  • Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
  • FFT fast Fourier transform
  • the demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2. Demultiplexing section 1042 compensates for the propagation paths of PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
  • the demodulator 1043 obtains an inverse discrete Fourier transform (Inverse Fourier Transform: FTIDFT) modulation symbol from the PUSCH.
  • the demodulation unit 1043 is configured to determine in advance modulation schemes such as BPSK, QPSK, 16QAM, 64QAM, 256QAM, or the like that the own device has previously notified each of the terminal devices 2 with an uplink grant for each of the modulation symbols of PUCCH and PUSCH. Is used to demodulate the received signal.
  • the decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
  • FIG. 4 is a schematic block diagram showing the configuration of the terminal device 2 according to the present embodiment.
  • the terminal device 2 includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state information generation unit (channel state information). Generation step) 205, a transmission antenna 206, and a reception antenna 207.
  • the upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012.
  • the transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio transmission unit (Wireless transmission step) 2035 is included.
  • the reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
  • the upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203.
  • the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing.
  • Medium Access Control: MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource Control
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
  • the information indicating the function of the terminal device supported by the terminal device includes information indicating support of MUST, information indicating support of SPS, information indicating support of carrier aggregation, and the like.
  • the upper layer processing unit 201 can transmit information indicating whether to support each function.
  • the upper layer processing unit 201 can transmit information indicating whether to support each function.
  • the radio resource control unit 2011 manages various setting information of the own terminal device.
  • the radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203.
  • the radio resource control unit 2011 signals information indicating the function of the terminal device supported by the terminal device in the RRC layer.
  • the radio resource control unit 2011 acquires setting information related to CSI feedback transmitted from the base station apparatus and outputs the setting information to the control unit 202.
  • the radio resource control unit 2011 acquires SPS setting information from the reception unit 204.
  • the radio resource control unit 2011 acquires information (MUST assist information) about the terminal device that causes interference from the reception unit 204.
  • the radio resource control unit 2011 may acquire the MUST assist information when transmitting information indicating that MUST is supported to the base station apparatus 1A.
  • the radio resource control unit 2011 may acquire the MUST assist information when receiving information indicating that MUST is supported from the base station apparatus 1A.
  • the SPS setting information and MUST assist information are input to the control unit 202.
  • the scheduling information interpretation unit 2012 interprets downlink control information (DCI) received via the reception unit 204 and determines scheduling information.
  • the scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
  • DCI downlink control information
  • the control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201.
  • the control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
  • the control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
  • the control unit 202 generates uplink control information (UCI) based on the information input from the higher layer processing unit 201 and outputs the uplink control information (UCI) to the transmission unit 203.
  • UCI uplink control information
  • a format dedicated to a terminal device performing MUST may be defined.
  • the receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the receiving antenna 207 according to the control signal input from the control unit 202, and sends the decoded information to the higher layer processing unit 201. Output.
  • the receiving unit 204 performs signal detection in consideration of the MUST assist information. Furthermore, the receiving unit 204 can detect parameters necessary for removing or suppressing the interference signal by blind detection.
  • the radio reception unit 2041 converts a downlink signal received via the reception antenna 207 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal. Radio receiving section 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
  • the demultiplexing unit 2042 separates the extracted signals into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signals.
  • the demultiplexing unit 2042 performs channel compensation for PHICH, PDCCH, and EPDCCH based on channel estimation values obtained from channel measurement using the downlink reference signal, detects downlink control information, and controls the control unit 202. Output to.
  • Control unit 202 outputs the PDSCH and channel estimation value to signal detection unit 2043.
  • the signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201.
  • the terminal apparatus 2A that supports MUST has a function of removing or suppressing an interference signal in the signal detection unit 2043.
  • the signal detection unit 2043 of the terminal device 2A demodulates and decodes PDSCH1 after removing or suppressing PDSCH2 that causes interference.
  • the terminal device 2B demodulates and decodes PDSCH2.
  • the terminal device 2B that supports MUST may be provided with a function of removing or suppressing the interference signal in the signal detection unit 2043.
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202.
  • the transmission unit 203 encodes and modulates the uplink data (transport block) and the uplink control signal input from the higher layer processing unit 201 to generate PUCCH and PUSCH.
  • the PUSCH is encrypted (scrambled) using C-RNTI and SPS C-RNTI according to DS and SPS.
  • Transmitting section 203 multiplexes PUCCH, PUSCH and the generated uplink reference signal, and transmits them to base station apparatus 1A via transmitting antenna 206.
  • the encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201.
  • the encoding unit 2031 performs turbo encoding encoding of the PUSCH based on information used for scheduling.
  • the modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
  • the uplink reference signal generation unit 2033 has a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging an uplink reference signal, and an uplink grant.
  • a sequence determined by a predetermined rule is generated on the basis of the cyclic shift and the parameter value for generating the DMRS sequence notified in (1).
  • the multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT).
  • the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the uplink reference signal in the resource element for each transmission antenna port.
  • the radio transmission unit 2035 performs inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, and generates an SC-FDMA symbol.
  • the radio transmission unit 2035 adds a CP to the SC-FDMA symbol to generate a baseband digital signal. Further, the radio transmission unit 2035 converts the baseband digital signal into an analog signal, removes an extra frequency component, converts it into a carrier frequency by up-conversion, amplifies the power, and transmits a base station via the transmission antenna 206. Transmit to device 1A.
  • IFFT inverse fast Fourier transform
  • FIG. 5 is a diagram illustrating an example of a flowchart in which the base station apparatus according to the present embodiment performs multiuser superimposed transmission.
  • the base station device 1A receives the UE capability from the terminal devices 2A and 2B (S101). From the UE capability, the base station device 1A grasps whether the terminal devices 2A and 2B support MUST or SPS.
  • the UE capability can include a function corresponding to a plurality of MUSTs.
  • the base station apparatus 1A transmits various setting information related to radio resources to the terminal apparatuses 2A and 2B using RRC signaling or the like (S102).
  • the base station apparatus 1A notifies the C-RNTI assigned to each terminal apparatus as setting information.
  • 1 A of base station apparatuses notify MUST assist information with respect to the terminal device which supports MUST.
  • 1 A of base station apparatuses notify SPS setting information with respect to the terminal device which supports SPS.
  • the SPS setting information includes SPS C-RNTI.
  • the base station device 1A determines whether the terminal device 2A corresponding to the Near-UE supports SPS (S104). The determination is made based on the SPS support information received from the terminal device 2A. In S104, the base station apparatus 1A can also determine whether or not information related to SPS support has been received from the terminal apparatus 2A. In S104, the base station apparatus 1A may make a determination based on the SPS setup / release setting included in the SPS setting information addressed to the terminal apparatus 2A. The base station apparatus 1A may make a determination based on the setting of SPS activation / release indicated by the downlink control information addressed to the terminal apparatus 2A.
  • the base station device 1A transmits downlink data to the terminal devices 2A and 2B using orthogonal multiple access (OMA) (S105). ).
  • OMA orthogonal multiple access
  • the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B without using non-orthogonal multiple access (MUST).
  • MUST non-orthogonal multiple access
  • the base station apparatus 1A scrambles the downlink data to be transmitted to the terminal apparatus 2A / terminal apparatus 2B with SPS C-RNTI / C-RNTI according to the required quality (QoS, voice data, etc.) of the downlink data. To do.
  • the base station apparatus can also consider the information regarding MUST / information regarding SPS set in the radio
  • the terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
  • the terminal device 2A that supports SPS performs reception processing assuming that the received downlink data is transmitted by OMA (not multiplexed by MUST).
  • the terminal apparatus 2A that supports MUST may perform reception processing on the assumption that downlink data is transmitted using DS (a downlink is transmitted without using SPS).
  • the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using MUST or OMA (S106). ).
  • the downlink data transmitted to the terminal device 2A is scrambled by the C-RNTI assigned to the terminal device.
  • the downlink data transmitted to the terminal device 2B is scrambled by the C-RNTI / SPS C-RNTI assigned to the terminal device according to the required quality of the downlink data.
  • FIG. 6 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission.
  • S201 to S203 are the same processes as S101 to S103 in FIG.
  • the base station device 1A determines whether the terminal device 2A / terminal device 2B supports MUST (S204). In S204, the base station apparatus 1A may make a determination based on the setup / release setting included in the MUST setting information addressed to the terminal apparatus.
  • the base station device 1A transmits downlink data using DS to the terminal device supporting MUST (S205).
  • the base station apparatus 1A transmits downlink data to a terminal apparatus that supports MUST without using SPS.
  • the terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
  • the terminal device 2A that supports SPS performs reception processing assuming that the received downlink data is transmitted by OMA (not multiplexed by MUST).
  • the terminal apparatus 2A that supports MUST may perform reception processing on the assumption that downlink data is transmitted using DS (a downlink is transmitted without using SPS).
  • the base station device 1A uses the dynamic scheduling (DS) to determine the terminal device 2A / terminal. You may make it transmit downlink data to the apparatus 2B. In this case, the downlink data transmitted to the terminal device 2A and the terminal device 2B is scrambled by C-RNTI.
  • DS dynamic scheduling
  • the base station device 1A transmits downlink data to the terminal device 2A / terminal device 2B using DS or SPS without using MUST. (S206). For example, the base station apparatus 1A transmits downlink data by OMA using DS or SPS. Note that the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S204. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
  • FIG. 7 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission.
  • the base station device 1A receives the UE capability from the terminal devices 2A and 2B (S301). From the UE capability, the base station device 1A grasps whether the terminal devices 2A and 2B support MUST or SPS.
  • the UE capability can include a function corresponding to a plurality of MUSTs.
  • the base station apparatus 1A transmits various setting information to the terminal apparatuses 2A and 2B using RRC signaling or the like (S302).
  • the base station apparatus 1A notifies each terminal apparatus of C-RNTI as setting information.
  • 1 A of base station apparatuses notify MUST assist information with respect to the terminal device which supports MUST.
  • 1 A of base station apparatuses notify SPS setting information with respect to the terminal device which supports SPS.
  • the SPS setting information includes SPS C-RNTI.
  • the base station apparatus 1A will be described in the case where information indicating that MUST is supported is received from the terminal apparatus 2A.
  • the base station device 1A determines whether the terminal device 2A corresponding to the Near-UE transmits the downlink data using SPS. Is determined (S304). For example, when the downlink data addressed to the terminal device 2A is voice data, the base station device 1A determines to transmit the downlink data using SPS.
  • the base station device 1A transmits the downlink data to the terminal devices 2A and 2B using OMA (S305).
  • the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B without using MUST.
  • the base station apparatus 1A transmits downlink data scrambled by the SPS C-RNTI to the terminal apparatus 2A.
  • the base station apparatus 1A scrambles the downlink data to be transmitted to the terminal apparatus 2B using the SPS C-RNTI / C-RNTI according to the required quality of the downlink data.
  • the terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
  • downlink data interference removal or suppression, demodulation, decoding processing, etc.
  • SPS when descrambling by SPS C-RNTI
  • OMA not multiplexed by MUST
  • the terminal apparatus 2A performs reception processing on the assumption that the downlink data is transmitted using the DS (the downlink is transmitted without using the SPS). May be.
  • the base station device 1A receives the terminal devices 2A and 2B.
  • downlink data transmission using MUST can be selected (S306).
  • the base station apparatus 1A transmits downlink data using MUST, the base station apparatus 1A transmits downlink data scrambled by C-RNTI to the terminal apparatus 2A.
  • the base station apparatus 1A scrambles the downlink data to be transmitted to the terminal apparatus 2B using the SPS C-RNTI / C-RNTI according to the quality of the downlink data.
  • the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S304. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
  • FIG. 8 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission.
  • S401 to S403 are the same processes as S301 to S303 in FIG.
  • the base station apparatus 1A will be described in the case where information indicating that MUST is supported is received from the terminal apparatus 2A.
  • the base station device 1A determines whether to transmit the downlink data using MUST (S404).
  • the base station apparatus 1A transmits downlink data to the terminal apparatus 2A using DS (S405).
  • the base station apparatus 1A transmits downlink data scrambled by C-RNTI to the terminal apparatus 2A.
  • the base station apparatus 1A scrambles the downlink data to be transmitted to the terminal apparatus 2B using the SPS C-RNTI / C-RNTI according to the required quality of the downlink data.
  • the terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
  • downlink data interference removal or suppression, demodulation, decoding processing, etc.
  • the terminal device 2A assumes that the downlink data is transmitted with OMA (it is assumed that it has not been multiplexed with MUST, and reception processing)
  • OMA it is assumed that it has not been multiplexed with MUST, and reception processing
  • the terminal apparatus 2A receives the data by assuming that the downlink data is transmitted using the DS (the downlink is transmitted without using the SPS). Processing may be performed.
  • the base station apparatus 1A When transmitting downlink data without using MUST in S404, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using DS or SPS according to the request for the quality of the downlink data. (S406). Note that the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S404. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
  • the base station apparatus transmits downlink data based on a semi-persistent scheduling interval without transmitting a downlink assignment (for example, PDCCH).
  • the terminal apparatus receives downlink data without receiving a downlink assignment based on the semi-persistent scheduling interval.
  • the base station apparatus selects OMA and transmits downlink data (without using MUST, downlink data is transmitted). Send).
  • the communication system which has SPS which concerns on this embodiment can reduce the addition of the control signal accompanying MUST application, such as power allocation information.
  • the communication system according to the present embodiment does not include the presence or absence of application of MUST in blind decoding in SPS, it is possible to suppress an increase in the load on the terminal device due to application of MUST.
  • FIG. 9 is a diagram illustrating an example of a flowchart in which the base station apparatus according to the present embodiment performs multiuser superimposed transmission.
  • Each of the base station apparatus and the terminal apparatus according to the present embodiment has the same configuration as that shown in FIGS.
  • differences / additional points from the first embodiment will be mainly described.
  • the base station apparatus 1A receives the UE capability from the terminal apparatuses 2A and 2B (S501). From the UE capability, the base station device 1A grasps whether the terminal devices 2A and 2B support MUST or SPS.
  • the UE capability can include a function corresponding to a plurality of MUSTs.
  • the base station device 1A transmits various setting information to the terminal devices 2A and 2B using RRC signaling or the like (S502).
  • the base station apparatus 1A notifies the C-RNTI assigned to each terminal apparatus as setting information.
  • 1 A of base station apparatuses notify MUST assist information with respect to the terminal device which supports MUST.
  • 1 A of base station apparatuses notify SPS setting information with respect to the terminal device which supports SPS.
  • the SPS setting information includes SPS C-RNTI.
  • the base station device 1A determines whether the terminal device 2A corresponding to Near-UE is transmitting the downlink data using SPS. (S504). In S504, when it is determined that downlink data is transmitted without using SPS (for example, when downlink data is transmitted using DS), base station apparatus 1A uses MUST or OMA to make terminal apparatuses 2A and 2B. The downlink data is transmitted to (S507).
  • the terminal device 2B corresponding to the Far-UE determines whether or not downlink data is transmitted using SPS (S505). If it is determined in S505 that downlink data is transmitted using SPS, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using MUST or OMA (S507). The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
  • base station apparatus 1A uses OMA to transmit to terminal apparatuses 2A and 2B.
  • Link data is transmitted (S506).
  • the base station apparatus 1A uses the MUST to transmit downlink data when the Near-UE transmits using DS or when both the Near-UE and Far-UE transmit using SPS. Can be transmitted.
  • the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S504. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
  • FIG. 10 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission.
  • S601 to S603 are the same processes as S501 to S503 in FIG.
  • the base station device 1A transmits the downlink data using the SPS by the terminal device 2A corresponding to Near-UE. It is determined whether or not (S604). In S604, when it is determined that downlink data is transmitted without using SPS (for example, when downlink data is transmitted using DS), the base station apparatus 1A uses the MUST or OMA to transmit the terminal apparatuses 2A and 2B. The downlink data is transmitted to (S607).
  • the terminal apparatus 2B corresponding to the Far-UE determines whether or not downlink data is transmitted using SPS (S605). If it is determined in S605 that downlink data is to be transmitted without using SPS, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using OMA (S608). The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
  • the base station apparatus 1A determines whether or not the SPS interval settings of the Near-UE and the Far-UE are the same (S606). For example, the base station device 1A compares the settings of the semiPersistSchedIntervalDL between the terminal device 2A and the terminal device 2B. When the setting of the SPS interval is the same, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using MUST or OMA (S607). 1 A of base station apparatuses can also transmit the information which shows whether the said SPS interval is the same to a terminal device.
  • the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using OMA (S608).
  • the base station apparatus 1A transmits downlink data using MUST when Near-UE transmits using DS or when the SPS interval of both Near-UE and Far-UE is the same. It becomes possible.
  • the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S604. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
  • FIG. 11 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission.
  • S701 to S704 are the same processes as S701 to S704 in FIG.
  • the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using OMA (S708). If it is determined in S705 that downlink data is transmitted using SPS, the base station apparatus 1A determines whether the SPS interval setting between Near-UE and Far-UE is n times or 1 / n (n is a natural number). Is determined (S706).
  • the base station device 1A transmits downlink data to the terminal devices 2A and 2B using MUST or OMA (S707).
  • the base station apparatus 1A can also transmit information indicating whether the SPS interval is n times or 1 / n to the terminal apparatus.
  • 1 A of base station apparatuses can also transmit ratio of both SPS space
  • the terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
  • the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using OMA (S708).
  • OMA OMA
  • the base station apparatus 1A sets the SPS interval of both Near-UE and Far-UE to n times or 1 / n (n is a natural number) In this case, downlink data can be transmitted using MUST.
  • the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S704. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
  • the base station apparatus when both Near-UE and Far-UE transmit data using SPS, the base station apparatus can select MUST and transmit downlink data.
  • the communication system which has SPS which concerns on this embodiment can reduce the addition of the control signal accompanying MUST application, such as power allocation information.
  • the communication system according to the present embodiment does not include the presence or absence of application of MUST in blind decoding in SPS, it is possible to suppress an increase in the load on the terminal device due to application of MUST.
  • the base station apparatus 1A after determining that the Near-UE transmits data by SPS (S504 in FIG. 9, S604 in FIG. 10, S704 in FIG. 11), the base station apparatus 1A performs the SPS of the Near-UE. It may be determined whether or not is the first transmission. When the SPS of the Near-UE is the first transmission, the base station apparatus 1A transitions to the determination of whether or not the Far-UE transmits data by SPS (S505 in FIG. 9, S605 in FIG. 10, and FIG. S705). When the Near-UE SPS is retransmitted, the base station apparatus 1A transmits downlink data using OMA (S506 in FIG. 9, S608 in FIG. 10, and S708 in FIG. 11).
  • OMA OMA
  • the communication system which has SPS which concerns on this embodiment can reduce the addition of the control signal accompanying MUST application, such as power allocation information. Also, since the communication system according to the present embodiment does not include the presence or absence of application of MUST in blind decoding in SPS, it is possible to suppress an increase in the load on the terminal device due to application of MUST.
  • the base station apparatus 1A downloads to the Near-UE.
  • a determination as to whether to transmit a link control signal for example, PDCCH
  • PDCCH link control signal
  • SPS accompanying transmission of PDCCH there are cases where SPS settings are modified or retransmitted.
  • the base station apparatus 1A can also make a transition to the determination of whether or not the Far-UE transmits data in the SPS (S505 in FIG. 10 S605, FIG. 11 S705).
  • base station apparatus 1A transmits downlink data using OMA (S506 in FIG. 9, S608 in FIG. 10, and S708 in FIG. 11).
  • OMA S506 in FIG. 9, S608 in FIG. 10, and S708 in FIG. 11.
  • the communication system which has SPS which concerns on this embodiment can reduce the addition of the control signal accompanying MUST application, such as power allocation information.
  • the communication system according to the present embodiment does not include the presence or absence of application of MUST in blind decoding in SPS, it is possible to suppress an increase in the load on the terminal device due to application of MUST.
  • the base station apparatus can perform settings for applying different MUSTs in Pcell and Scell. For example, when the base station apparatus 1A sets MUST assist information in the terminal apparatus 1A in the Pcell, the base station apparatus 1A transmits downlink data using MUST / OMA in consideration of the settings related to SPS by the processes in FIGS. You can decide what to do. On the other hand, when the MUST assist information is set in the terminal device 1A in Scell, the base station device 1A can determine whether to transmit downlink data using MUST / OMA without considering the setting related to SPS. In this case, the MUST assist information in the PCell and the MUST assist information in the Scell may have different set parameters or different optional parameters. Depending on whether the MUST assist information is set in the PCell or the Scell, the interpretation of the field included in the DCI may be different.
  • the program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) or the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention.
  • the program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • volatile memory such as Random Access Memory (RAM) during processing
  • non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium.
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • Computer-readable recording medium means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured with a digital circuit or an analog circuit.
  • an integrated circuit based on the technology can be used.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a base station device, a terminal device, and a communication method.
  • Upper layer processing section 102 Control sections 103-1, 103-2 Transmitting section 104
  • Receiving sections 105-1, 105- 2 Transmitting antenna 106-1 Receiving antenna 1011
  • Radio resource control unit 1012 Scheduling unit 1031
  • Encoding unit 1032 Modulating unit 1033 Downlink reference signal generating unit 1034
  • Radio receiving unit 1042 Demultiplexing unit 1043 Demodulating unit 1044
  • radio resource control unit 2012 scheduling information interpretation unit 2031 encoding unit 2032 modulation unit 2033 uplink reference No. generator 2034 multiplexing section 2035 radio transmitting unit 2041 radio reception section 2042 demultiplexing unit 2043 signal detector

Abstract

Provided are a base station, terminals and a communication method with which throughput can be improved by reducing interference while reducing reception processing loads on the terminals. The base station communicates with a first terminal and a second terminal, and is provided with a receiving unit for receiving, from the first terminal, information indicating support for multiuser superposition transmission, and a transmitting unit for transmitting, to the first terminal and the second terminal, downlink data, wherein the receiving unit receives information indicating support for semi-persistent scheduling from the first terminal, and if the transmitting unit transmits the downlink by semi-persistent scheduling, the downlink data is transmitted to the first terminal and the second terminal using orthogonal multiple access.

Description

基地局装置、端末装置および通信方法Base station apparatus, terminal apparatus and communication method
 本発明は、基地局装置、端末装置および通信方法に関する。 The present invention relates to a base station device, a terminal device, and a communication method.
 3GPP(Third Generation Partnership Project)によるLTE(Long Term Evolution)、LTE-A(LTE-Advanced)のような通信システムにおいて、システム容量の増大や通信機会の向上のために、複数の端末装置を非直交多重して送信する技術や重畳符号化に基づくマルチユーザ伝送の検討が進められている(非特許文献1)。このような非直交多元接続(Non-Orthogonal Multiple Access)ではユーザ間干渉が生じるため、端末装置は、ユーザ間干渉を除去または抑圧する。ユーザ間干渉を除去または抑圧する技術は、干渉信号を干渉除去する干渉キャンセラや最尤検出(Maximum Likelihood Detection)などがある。例えば、下りリンク非直交多元接続において、基地局装置(eNB(evolved Node B))は異なる複数の端末装置(UE(User Equipment)、移動局装置)宛ての変調シンボルを多重して送信する。このとき、各変調シンボルの送信電力は、多重される端末装置での受信電力(受信品質)を考慮して決定される。端末装置は、多重された送信信号のうち、他の端末装置宛ての信号を復調や復号し、キャンセルすることで、自端末宛ての変調シンボルのみを抽出することができる。 In communication systems such as LTE (Long Term Evolution) and LTE-A (LTE-Advanced) by 3GPP (Third Generation Partnership Project), multiple terminal devices are non-orthogonal in order to increase system capacity and improve communication opportunities. Studies on multi-user transmission based on multiplexing transmission technology and superposition coding are underway (Non-Patent Document 1). In such non-orthogonal multiple access (Non-Orthogonal Multiple Access), inter-user interference occurs, so the terminal apparatus removes or suppresses the inter-user interference. Techniques for removing or suppressing interference between users include interference cancellers that eliminate interference signals and maximum likelihood detection (Maximum Likelihood Detection). For example, in downlink non-orthogonal multiple access, a base station device (eNB (evolved Node B)) multiplexes and transmits modulation symbols addressed to a plurality of different terminal devices (UE (User Equipment), mobile station device). At this time, the transmission power of each modulation symbol is determined in consideration of reception power (reception quality) at the multiplexed terminal apparatus. The terminal apparatus can extract only the modulation symbol addressed to itself by demodulating, decoding and canceling the signal addressed to another terminal apparatus among the multiplexed transmission signals.
 下りリンク非直交多元接続において、端末装置は、ユーザ間干渉を除去または抑圧するために、多重された他端末への下りリンク送信信号の電力割当て情報などの制御情報が必要となる。しかしながら、制御信号に電力割当て情報を追加することは、下りリンク制御信号の増加につながる。さらに、基地局装置が設定可能な電力割当てのパターンが多いと、下りリンク制御信号に必要なビット数が増加する。一方、端末装置が干渉信号をブラインド検出する場合、電力割当てのパターンが多いことにより、検出の試行回数が増加し、端末装置の負荷が大きくなる。 In downlink non-orthogonal multiple access, a terminal device needs control information such as power allocation information of a downlink transmission signal to other terminals multiplexed in order to remove or suppress inter-user interference. However, adding power allocation information to a control signal leads to an increase in downlink control signals. Furthermore, if there are many power allocation patterns that can be set by the base station apparatus, the number of bits required for the downlink control signal increases. On the other hand, when the terminal device detects an interference signal blindly, the number of power allocation patterns increases, so that the number of detection attempts increases and the load on the terminal device increases.
 本発明はこのような事情を鑑みてなされたものであり、その目的は、端末装置の受信処理の負荷を減らしつつ、干渉を軽減することによってスループットの向上が可能な基地局装置、端末装置および通信方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station apparatus, a terminal apparatus, and a base station apparatus capable of improving throughput by reducing interference while reducing the load of reception processing of the terminal apparatus. It is to provide a communication method.
 上述した課題を解決するために本発明に係る基地局装置、端末装置および通信方法の構成は、次の通りである。 In order to solve the above-described problems, the configurations of the base station apparatus, terminal apparatus, and communication method according to the present invention are as follows.
 (1)本発明の一態様は、第1の端末装置および第2の端末装置と通信する基地局装置であって、前記第1の端末装置からマルチユーザ重畳送信をサポートすることを示す情報を受信する受信部と、前記第1の端末装置および第2の端末装置に下りリンクデータを送信する送信部を備え、前記受信部が、前記第1の端末装置からセミパーシステントスケジューリングをサポートすることを示す情報を受信し、前記送信部がセミパーシステントスケジューリングで前記下りリンクを送信する場合、直交マルチアクセスを用いて前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする。 (1) One aspect of the present invention is a base station apparatus that communicates with a first terminal apparatus and a second terminal apparatus, and includes information indicating that multiuser superimposed transmission is supported from the first terminal apparatus. A receiving unit for receiving and a transmitting unit for transmitting downlink data to the first terminal device and the second terminal device, wherein the receiving unit supports semi-persistent scheduling from the first terminal device; When the transmitter transmits the downlink by semi-persistent scheduling, the downlink data is transmitted to the first terminal apparatus and the second terminal apparatus using orthogonal multi-access. It is characterized by.
 (2)また、本発明の一態様は、前記受信部は、前記第1の端末装置からセミパーシステントスケジューリングをサポートすることを示す情報を受信していない場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする。 (2) In addition, according to one aspect of the present invention, when the reception unit has not received information indicating that semi-persistent scheduling is supported from the first terminal apparatus, the multi-user superimposed transmission is applied. , Downlink data is transmitted to the first terminal device and the second terminal device.
 (3)また、本発明の一態様は、前記送信部は、前記第1の端末装置にダイナミックスケジューリングで前記下りリンクデータを送信する場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする。 (3) In addition, according to an aspect of the present invention, when the transmission unit transmits the downlink data to the first terminal device by dynamic scheduling, multi-user superimposed transmission is applied to the first terminal device. Transmitting downlink data to the apparatus and the second terminal apparatus.
 (4)また、本発明の一態様は、前記送信部は、前記第2の端末装置にセミパーシステムトスケジューリングを用いて下りリンクデータを送信する場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする。 (4) In addition, according to an aspect of the present invention, when the transmission unit transmits downlink data to the second terminal apparatus using semi-per system scheduling, the multi-user superimposed transmission is applied, The downlink data is transmitted to the first terminal device and the second terminal device.
 (5)また、本発明の一態様は、前記送信部は、前記第2の端末装置にセミパーシステムトスケジューリングを用いて下りリンクデータを送信し、前記第1の端末装置の下りリンクデータ送信のためのセミパーシステントスケジューリング間隔と前記第1の端末装置の下りリンクデータ送信のためのセミパーシステントスケジューリング間隔が同じ場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする。 (5) Moreover, according to one aspect of the present invention, the transmission unit transmits downlink data to the second terminal apparatus using semi-per system scheduling, and downlink data transmission of the first terminal apparatus is performed. When the semi-persistent scheduling interval for the first terminal device and the semi-persistent scheduling interval for downlink data transmission of the first terminal device are the same, multi-user superimposed transmission is applied, and the first terminal device and the second terminal device And transmitting downlink data to the terminal device.
 (6)また、本発明の一態様は、前記送信部は、前記第2の端末装置にセミパーシステムトスケジューリングを用いて下りリンクデータを送信し、前記第1の端末装置の下りリンクデータ送信のためのセミパーシステントスケジューリング間隔が前記第1の端末装置の下りリンクデータ送信のためのセミパーシステントスケジューリング間隔のn倍またはn分の1倍(nは自然数)の場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする。 (6) Further, according to one aspect of the present invention, the transmission unit transmits downlink data to the second terminal apparatus using semi-per system scheduling, and downlink data transmission of the first terminal apparatus is performed. When the semi-persistent scheduling interval for the first terminal apparatus is n times or 1 / n times the semi-persistent scheduling interval for downlink data transmission of the first terminal device (n is a natural number), Applying, downlink data is transmitted to the first terminal device and the second terminal device.
 (7)また、本発明の一態様は、第1の端末装置および第2の端末装置と通信する基地局装置の通信方法であって、前記第1の端末装置からマルチユーザ重畳送信をサポートすることを示す情報を受信する受信ステップと、前記第1の端末装置および第2の端末装置に下りリンクデータを送信する送信ステップを有し、前記第1の端末装置からセミパーシステントスケジューリングをサポートすることを示す情報を受信し、セミパーシステントスケジューリングで前記下りリンクを送信する場合、直交マルチアクセスを用いて、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする。 (7) Moreover, one aspect of the present invention is a communication method of a base station apparatus that communicates with a first terminal apparatus and a second terminal apparatus, and supports multi-user superimposed transmission from the first terminal apparatus. A receiving step for receiving information indicating the above and a transmitting step for transmitting downlink data to the first terminal device and the second terminal device, and supporting semi-persistent scheduling from the first terminal device When transmitting the downlink with semi-persistent scheduling, transmitting downlink data to the first terminal device and the second terminal device using orthogonal multi-access, Features.
 (8)本発明の一態様は、基地局装置と通信する端末装置であって、前記基地局装置にマルチユーザ重畳送信をサポートすることを示す情報を送信する送信部と、前記基地局装置から下りリンクデータを受信する受信部を備え、前記送信部が前記基地局装置にセミパーシステントスケジューリングをサポートすることを示す情報を送信した場合、前記受信部は、セミパーシステントスケジューリングを用いた下りリンクデータを、直交マルチアクセスを用いていると想定すること、を特徴とする。 (8) One aspect of the present invention is a terminal device that communicates with a base station device, wherein the base station device transmits information indicating that multi-user superimposed transmission is supported, and the base station device A receiving unit that receives downlink data, and when the transmitting unit transmits information indicating that semi-persistent scheduling is supported to the base station apparatus, the receiving unit uses a downlink that uses semi-persistent scheduling. The data is assumed to be using orthogonal multi-access.
 (9)また、本発明の一態様は、前記受信部は、下りリンク制御情報を受信した場合、直交マルチアクセスまたはマルチユーザ重畳送信を用いていると想定して、前記下りリンクデータを復調すること、を特徴とする。 (9) In addition, according to an aspect of the present invention, when the reception unit receives downlink control information, the reception unit demodulates the downlink data on the assumption that orthogonal multi-access or multi-user superimposed transmission is used. It is characterized by this.
 (10)また、本発明の一態様は、前記受信部は、マルチユーザ重畳送信を用いていると想定して前記下りリンクデータを復調する場合、干渉を除去または抑圧する処理を行なうこと、を特徴とする。 (10) In addition, according to one aspect of the present invention, when the receiving unit demodulates the downlink data on the assumption that multi-user superimposed transmission is used, a process of removing or suppressing interference is performed. Features.
 (11)本発明の一態様は、基地局装置と通信する端末装置の通信方法であって、前記基地局装置にマルチユーザ重畳送信をサポートすることを示す情報を送信する送信ステップと、前記基地局装置から下りリンクデータを受信する受信ステップを有し、前記基地局装置にセミパーシステントスケジューリングをサポートすることを示す情報を送信した場合、セミパーシステントスケジューリングを用いた下りリンクデータは、直交マルチアクセスを用いていると想定すること、を特徴とする。 (11) One aspect of the present invention is a communication method for a terminal apparatus that communicates with a base station apparatus, wherein the base station apparatus transmits information indicating that multiuser superimposed transmission is supported, and the base station A receiving step of receiving downlink data from a station apparatus, and transmitting information indicating that semi-persistent scheduling is supported to the base station apparatus, downlink data using semi-persistent scheduling is orthogonal It is assumed that access is used.
 本発明によれば、端末装置の受信処理の負荷を減らしつつ、干渉信号を軽減することができ、スループットや端末装置の通信機会を向上させることができる。 According to the present invention, it is possible to reduce the interference signal while reducing the load of reception processing of the terminal device, and to improve the throughput and the communication opportunity of the terminal device.
第1の実施形態に係る通信システムの例を示す図である。It is a figure which shows the example of the communication system which concerns on 1st Embodiment. 第1の実施形態に係る非直交多重されている端末装置の電力比の例を示す図である。It is a figure which shows the example of the power ratio of the terminal device by which the non-orthogonal multiplexing which concerns on 1st Embodiment is carried out. 第1の実施形態に係る基地局装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus which concerns on 1st Embodiment. 第1の実施形態に係る端末装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal device which concerns on 1st Embodiment. 第1の実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの例を示す図である。It is a figure which shows the example of the flowchart in which the base station apparatus which concerns on 1st Embodiment performs multiuser superimposed transmission. 第1の実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。It is a figure which shows another example of the flowchart in which the base station apparatus which concerns on 1st Embodiment performs multiuser superposition transmission. 第1の実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。It is a figure which shows another example of the flowchart in which the base station apparatus which concerns on 1st Embodiment performs multiuser superposition transmission. 第1の実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。It is a figure which shows another example of the flowchart in which the base station apparatus which concerns on 1st Embodiment performs multiuser superposition transmission. 第2の実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの例を示す図である。It is a figure which shows the example of the flowchart in which the base station apparatus which concerns on 2nd Embodiment performs multiuser superposition transmission. 第2の実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。It is a figure which shows another example of the flowchart in which the base station apparatus which concerns on 2nd Embodiment performs multiuser superposition transmission. 第2の実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。It is a figure which shows another example of the flowchart in which the base station apparatus which concerns on 2nd Embodiment performs multiuser superposition transmission.
 (第1の実施形態)
 本実施形態における通信システムは、基地局装置(送信装置、セル、サービングセル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE)を備える。
(First embodiment)
The communication system in this embodiment includes a base station device (transmitting device, cell, serving cell, transmission point, transmission antenna group, transmission antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, reception point, reception terminal). , Receiving device, receiving antenna group, receiving antenna port group, UE).
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。 In this embodiment, “X / Y” includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2A、2Bを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また、端末装置2A、2Bを総称して端末装置2とも称する。 FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment. As shown in FIG. 1, the communication system according to the present embodiment includes a base station device 1A and terminal devices 2A and 2B. The coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device. The terminal devices 2A and 2B are also collectively referred to as the terminal device 2.
 図1において、端末装置2から基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)
・物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)
・物理ランダムアクセスチャネル(PRACH: Physical Random Access Channel)
In FIG. 1, the following uplink physical channels are used in uplink wireless communication from the terminal apparatus 2 to the base station apparatus 1A. The uplink physical channel is used for transmitting information output from an upper layer.
・ Physical uplink control channel (PUCCH)
・ Physical Uplink Shared Channel (PUSCH)
・ Physical Random Access Channel (PRACH)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。上りリンク制御情報の送信に対して、複数のUCIフォーマットが定義される。すなわち、上りリンク制御情報に対するフィールドがUCIフォーマットに定義され、情報ビットへマップされる。 The PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI). A plurality of UCI formats are defined for transmission of uplink control information. That is, fields for uplink control information are defined in the UCI format and mapped to information bits.
 上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。上りリンク制御情報は、スケジューリングリクエスト(SR: Scheduling Request)を含む。 The uplink control information includes ACK (a positive acknowledgment) or NACK (a negative acknowledgment) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH). ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback. The uplink control information includes a scheduling request (SR: “Scheduling” Request).
 上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)などが該当する。 The uplink control information includes channel state information for downlink (Channel State Information: CSI). The uplink control information includes a scheduling request (Scheduling Request: SR) used for requesting resources of the uplink shared channel (Uplink-Shared Channel: UL-SCH). The channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI designating a suitable transmission rate. (Channel Quality Indicator).
 前記チャネル品質指標CQI(以下、CQI値)は、所定の帯域における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)とすることができる。CQI値は、前記変調方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものをすることができる。 The channel quality indicator CQI (hereinafter referred to as CQI value) can be a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and a coding rate in a predetermined band. The CQI value can be an index (CQI Index) determined by the modulation scheme and coding rate. The CQI value can be predetermined by the system.
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記ランク指標、前記プレコーディング行列指標、前記チャネル品質指標CQIの値をCSI値と総称する。 Note that the rank index and the precoding quality index can be determined in advance by the system. The rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information. Note that the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。 The PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。 Also, PUSCH is used to transmit an RRC message. The RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer. The PUSCH is used to transmit a MAC CE (Control Element). Here, the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられる。 For example, the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field is used to indicate the power headroom level.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。 PRACH is used to transmit a random access preamble.
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)が含まれる。 In uplink wireless communication, an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal. The uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer. The uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHを復調する際の伝搬路補正を行なうためにDMRSを使用する。SRSは、PUSCHまたはPUCCHの送信に関連しない。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。 DMRS is related to transmission of PUSCH or PUCCH. For example, the base station device 1A uses DMRS to perform channel correction when demodulating PUSCH or PUCCH. SRS is not related to PUSCH or PUCCH transmission. For example, the base station apparatus 1A uses SRS to measure the uplink channel state.
 図1において、基地局装置1Aから端末装置2への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理報知チャネル(PBCH: Physical Broadcast Channel)
・物理制御フォーマット指示チャネル(PCFICH: Physical Control Format Indicator Channel)
・物理ハイブリッド自動再送要求指示チャネル(PHICH: Physical Hybrid automatic repeat request Indicator Channel)
・物理下りリンク制御チャネル(PDCCH: Physical Downlink Control Channel)
・拡張物理下りリンク制御チャネル(EPDCCH: Enhanced Physical Downlink Control Channel)
・物理下りリンク共有チャネル(PDSCH: Physical Downlink Shared Channel)
In FIG. 1, the following downlink physical channels are used in downlink wireless communication from the base station apparatus 1A to the terminal apparatus 2. The downlink physical channel is used for transmitting information output from an upper layer.
・ Physical Broadcast Channel (PBCH)
・ Physical Control Format Indicator Channel (PCFICH)
-Physical hybrid automatic repeat request indicator channel (PHICH)
• Physical downlink control channel (PDCCH)
-Enhanced physical downlink control channel (EPDCCH)
・ Physical downlink shared channel (PDSCH)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。PBCHは、システム帯域、システムフレーム番号(SFN: System Frame number)、eNBによって使用される送信アンテナ数などの情報が含まれる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDMシンボルの数)を指示する情報を送信するために用いられる。 The PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices. The PBCH includes information such as a system band, a system frame number (SFN: System Frame number), and the number of transmission antennas used by the eNB. PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。ACK/NACKは、HARQ-ACKとも呼称する。端末装置2は、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2はACKを上位レイヤに通知する。 PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK. The terminal device 2 notifies the received ACK / NACK to the higher layer. ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2 notifies the upper layer of ACK.
 PDCCHおよびEPDCCHは、下りリンク制御情報(DCI: Downlink Control Information)を送信するために用いられる。下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。 PDCCH and EPDCCH are used to transmit downlink control information (DCI: “Downlink” Control “Information”). A plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。 For example, a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンドなどの下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。 For example, the DCI format for downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as TPC command for PUCCH. Here, the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
 例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。 For example, as the DCI format for uplink, DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンドなど上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。 For example, the uplink DCI format includes uplink control information such as information on PUSCH resource allocation, information on MCS for PUSCH, and TPC command for PUSCH. The DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
 上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI: Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。チャネル状態情報は、好適な空間多重数を指定するランク指標(RI: Rank Indicator)、好適なプリコーダを指定するプリコーディング行列指標(PMI: Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標(CQI: Channel Quality Indicator)、プリコーディングタイプ指標(PTI: Precoding type Indicator)などが該当する。 The DCI format for the uplink can be used to request downlink channel state information (CSI: Channel State Information, also referred to as reception quality information). The channel state information includes a rank indicator (RI: Rank Indicator) that specifies a suitable spatial multiplexing number, a precoding matrix indicator (PMI: Precoding Matrix Indicator) that specifies a suitable precoder, and a channel quality index that specifies a suitable transmission rate. (CQI: Channel Quality Indicator), precoding type indicator (PTI: Precoding type Indicator), etc.
 上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 The DCI format for uplink can be used for setting indicating an uplink resource that maps a channel state information report (CSI feedback) report that a terminal apparatus feeds back to a base station apparatus. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI). The channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。基地局装置は、前記定期的なチャネル状態情報報告または前記不定期的なチャネル状態情報報告のいずれかを設定することができる。また、基地局装置は、前記定期的なチャネル状態情報報告および前記不定期的なチャネル状態情報報告の両方を設定することもできる。 For example, the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI). The channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly. The base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
 上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えば、Wideband CQI)と狭帯域CSI(例えば、Subband CQI)などがある。 The DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus. Types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。 When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。 PDSCH is used to transmit downlink data (downlink transport block, DL-SCH). PDSCH is used to transmit a system information block type 1 message. The system information block type 1 message is cell specific (cell specific) information.
 PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。 PDSCH is used to transmit a system information message. The system information message includes a system information block X other than the system information block type 1. The system information message is cell specific (cell specific) information.
 PDSCHは、RRCメッセージを送信するために用いられる。基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2に対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。PDSCHは、MAC CEを送信するために用いられる。 PDSCH is used to transmit an RRC message. The RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell. Further, the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message. PDSCH is used to transmit MAC CE.
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。 Here, the RRC message and / or MAC CE is also referred to as higher layer signaling.
 PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的チャネル状態情報(Periodic CSI)/不定期的チャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的に/不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 PDSCH can be used to request downlink channel state information. The PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device. For example, the channel state information report can be used for setting indicating an uplink resource for reporting periodic channel state information (Periodic CSI) / aperiodic channel state information (Aperiodic CSI). The channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information regularly / irregularly.
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えば、Wideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。 The types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI). The broadband CSI calculates one channel state information for the system band of the cell. In the narrowband CSI, the system band is divided into predetermined units, and one channel state information is calculated for the division.
 下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。 In downlink radio communication, a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Reference Signal: DL RS) are used as downlink physical signals. The downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。 The synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain. Also, the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel. For example, the downlink reference signal is used by the terminal device to calculate downlink channel state information.
 下りリンク参照信号には、CRS(Cell-specific Reference Signal: セル固有参照信号)、PDSCHに関連するURS(UE-specific Reference Signal: 端末固有参照信号、端末装置固有参照信号)、EPDCCHに関連するDMRS(Demodulation Reference Signal)、NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)、ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)が含まれる。 The downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), DMRS related to EPDCCH. (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Chanel State Information Information Reference Signal).
 CRSは、サブフレームの帯域全体に散在して送信され、PBCH/PDCCH/PHICH/PCFICH/PDSCHを復調するために用いられる。PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信され、URSが関連するPDSCHを復調するために用いられる。CRSは、measurementのために用いることもできる。 The CRS is transmitted scattered over the entire band of the subframe and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH. The URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH with which the URS is associated, and is used to demodulate the PDSCH with which the URS is associated. CRS can also be used for measurement.
 EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。 DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS. DMRS is used to demodulate the EPDCCH with which DMRS is associated.
 NZP CSI-RSのリソースは、基地局装置1Aによって設定される。例えば、端末装置2は、NZP CSI-RSを用いて信号の測定(チャネルの測定)を行なう。ZP CSI-RSのリソースは、基地局装置1Aによって設定される。基地局装置1Aは、ZP CSI-RSをゼロ出力で送信する。例えば、端末装置2は、NZP CSI-RSが対応するリソースにおいて干渉の測定を行なう。 NZP CSI-RS resources are set by the base station apparatus 1A. For example, the terminal device 2 performs signal measurement (channel measurement) using NZP CSI-RS. The resource of ZP CSI-RS is set by the base station apparatus 1A. The base station apparatus 1A transmits ZP CSI-RS with zero output. For example, the terminal device 2 measures interference in a resource supported by NZP CSI-RS.
 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信に用いられるアンテナポートで送信される。 MBSFN (Multimedia Broadcast Multicast Service Single Frequency Network) RS is transmitted in the entire bandwidth of the subframe used for PMCH transmission. The MBSFN RS is used for PMCH demodulation. PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。 Here, the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal. Also, the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal. Also, the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel. Also, the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。 BCH, UL-SCH and DL-SCH are transport channels. A channel used in the MAC layer is referred to as a transport channel. A transport channel unit used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit). The transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
 基地局装置は、通信装置との上りリンクおよび下りリンク通信において、ダイナミックスケジューリング(DS: Dynamic Scheduling)とセミパーシステントスケジューリング(SPS: Semi-Persistent Scheduling)などのスケジューリング方式を適用できる。基地局装置1Aは、DSを用いて、端末装置2Aおよび2Bをスケジューリングする。基地局装置1Aは、DSを用いて端末装置2Aをスケジューリングし、SPSを用いて端末装置2Bをスケジューリングする。基地局装置1Aは、SPSを用いて端末装置2Aをスケジューリングし、DSを用いて端末装置2Bをスケジューリングする。基地局装置1Aは、SPSを用いて、端末装置2Aおよび2Bをスケジューリングする。 The base station apparatus can apply scheduling schemes such as dynamic scheduling (DS: Dynamic Scheduling) and semi-persistent scheduling (SPS: Semi-Persistent Scheduling) in uplink and downlink communication with the communication device. The base station apparatus 1A schedules the terminal apparatuses 2A and 2B using DS. Base station apparatus 1A schedules terminal apparatus 2A using DS, and schedules terminal apparatus 2B using SPS. The base station apparatus 1A schedules the terminal apparatus 2A using SPS and schedules the terminal apparatus 2B using DS. Base station apparatus 1A schedules terminal apparatuses 2A and 2B using SPS.
 DSにおいて、基地局装置1Aは、端末装置2の流量やサービス品質(QoS: Quality of Service)により、データ送信用の周波数/時間/空間リソースを端末装置2にダイナミックに割り当てる。DSにおいて、基地局装置1Aは、所定の周波数および所定の時間で構成されるリソースブロック単位で各端末装置にリソースをダイナミックに割り当てる。基地局装置1Aは、各端末装置宛てに送信するPDCCHを用いて、リソース割当てなどのPDSCH/PUSCHなどを送信するためのリソースを通知する。 In DS, the base station apparatus 1A dynamically allocates frequency / time / space resources for data transmission to the terminal apparatus 2 according to the flow rate of the terminal apparatus 2 and the service quality (QoS: “Quality” of Service). In the DS, the base station apparatus 1A dynamically allocates resources to each terminal apparatus in resource block units configured with a predetermined frequency and a predetermined time. 1 A of base station apparatuses notify the resource for transmitting PDSCH / PUSCH etc., such as resource allocation, using PDCCH transmitted to each terminal device.
 SPSにおいて、基地局装置1Aは、端末装置2に、一定の周期でデータ送信用の周波数/時間/空間リソースを割り当てる。例えば、SPSは、データを周期的に生成する上位層アプリケーションサービス(例えば、VoIP(ボイス・オーバー・インターネット・プロトコル))を提供するために用いられる。SPSにおいて、基地局装置1Aは、各端末装置宛てに送信するPDCCHを用いて、PDSCH/PUSCHなどを送信する周期、リソース割当てなどを通知する。その後、PDSCH/PUSCHは、前記周期などに基づいて、周期的に送信される。SPSでは、一定の周期で、端末装置にリソースが割り当てられるため、基地局装置がPDCCHで制御情報を送信するのを抑制し、システムスケジューリング効率が向上する。言い換えれば、SPSは一定の周期でリソースを端末装置に割り当てるため、端末装置がPDCCHをモニターせずとも周期的に伝送を行なうこと、そして各周期の伝送が新規データの伝送であることを確保することができる。 In SPS, the base station apparatus 1A allocates frequency / time / space resources for data transmission to the terminal apparatus 2 at a constant cycle. For example, SPS is used to provide higher layer application services (eg, VoIP (Voice over Internet Protocol)) that generate data periodically. In the SPS, the base station apparatus 1A uses the PDCCH transmitted to each terminal apparatus to notify the period for transmitting PDSCH / PUSCH, the resource allocation, and the like. Thereafter, the PDSCH / PUSCH is periodically transmitted based on the period or the like. In SPS, since resources are allocated to terminal devices at a constant period, the base station device is prevented from transmitting control information on the PDCCH, and system scheduling efficiency is improved. In other words, since the SPS allocates resources to the terminal device at a fixed period, the terminal apparatus periodically transmits without monitoring the PDCCH, and ensures that each period transmission is a transmission of new data. be able to.
 本実施形態に係る基地局装置は、時間、周波数および空間(例えば、アンテナポート、ビームパターン、プリコーディングパターン)においてリソースを分割することなく複数の端末装置を多重することができる。時間/周波数/空間においてリソースを分割することなく複数の端末装置を多重することを、以下では非直交多元接続(NOMA: Non Orthogonal Multiple Access)、マルチユーザ重畳送信(MUST: Multiuser Superposition Transmission)、非直交多重とも称する。以下では、2つの端末装置を非直交多重する場合を説明するが、本発明はこれに限らず、3つ以上の端末装置を非直交多重することも可能である。 The base station apparatus according to the present embodiment can multiplex a plurality of terminal apparatuses without dividing resources in time, frequency and space (for example, antenna port, beam pattern, precoding pattern). Multiplexing multiple terminal devices without dividing resources in time / frequency / space is referred to as non-orthogonal multiple access (NOMA: Non Orthogonal Multiple Access), multi-user superimposed transmission (MUST: Multiuser Superposition Transmission), non- Also called orthogonal multiplexing. In the following, a case where two terminal apparatuses are non-orthogonal multiplexed will be described, but the present invention is not limited to this, and three or more terminal apparatuses can be non-orthogonal multiplexed.
 図1の基地局装置1Aが、端末装置2Aと端末装置2Bを非直交多重する場合を例に説明する。特に断りがない限り、端末装置2Aの方が端末装置2Bと比べて、基地局装置1Aに近いまたは受信品質が良いとする。端末装置2Aのことを基地局装置に近い端末装置(near-UE)、端末装置2Bのことを基地局装置から遠い端末装置(Far-UE)とも呼称する。また、以下の説明では、端末装置2Aに対するPDSCHをPDSCH1(第1のPDSCH)、端末装置2Bに対するPDSCHをPDSCH2(第2のPDSCH)とも称する。以下の説明では、基地局装置はPDSCHでMUSTする場合を主に説明するが、その他のチャネル(例えば、PMCH、PDCCH、EPDCCH)でもMUSTを適用することができる。また、複数のチャネルでMUSTする場合、各チャネルで異なる重畳送信方式やMUSTカテゴリ(後述)を用いてMUSTを適用することができる。複数のチャネルでMUSTを適用する場合、各チャネルで異なる受信方式を想定することができる。例えば、PDSCHではシンボルレベルの受信方式、PMCHではコードワードレベルの受信方式とすることができる。 An example in which the base station apparatus 1A of FIG. 1 performs non-orthogonal multiplexing of the terminal apparatus 2A and the terminal apparatus 2B will be described. Unless otherwise noted, it is assumed that the terminal device 2A is closer to the base station device 1A or has better reception quality than the terminal device 2B. The terminal device 2A is also called a terminal device (near-UE) close to the base station device, and the terminal device 2B is also called a terminal device (Far-UE) far from the base station device. In the following description, the PDSCH for the terminal device 2A is also referred to as PDSCH1 (first PDSCH), and the PDSCH for the terminal device 2B is also referred to as PDSCH2 (second PDSCH). In the following description, the base station apparatus mainly explains the case where MUST is performed using PDSCH, but MUST can also be applied to other channels (for example, PMCH, PDCCH, EPDCCH). In addition, when performing MUST on a plurality of channels, MUST can be applied using a different superposition transmission method or MUST category (described later) for each channel. When MUST is applied in a plurality of channels, different reception schemes can be assumed for each channel. For example, a symbol level reception scheme may be used for PDSCH, and a codeword level reception scheme for PMCH.
 基地局装置1Aが端末装置2A、2Bを非直交多重して送信する場合、いくつか送信方法がある。例えば、基地局装置1Aは、端末装置2A、2Bに対して、同じコンスタレーションのQPSK/16QAM/64QAM/256QAMのマッピングを用いて重畳送信することができる。このような重畳送信方式をMUSTカテゴリ1とも称する。この場合、端末装置2A、2Bを合成したコンスタレーションは非グレイ符号のコンスタレーションとなる。さらに、基地局装置1Aは端末装置2A、2Bに対して様々な比率の電力を割り当てることができる。この場合、端末装置2Aは、端末装置2Bのマッピングパターンは自身と同じと想定して干渉信号を除去または抑圧する。 When the base station apparatus 1A transmits the terminal apparatuses 2A and 2B by non-orthogonal multiplexing, there are several transmission methods. For example, the base station apparatus 1A can superimpose and transmit to the terminal apparatuses 2A and 2B using QPSK / 16QAM / 64QAM / 256QAM mapping of the same constellation. Such a superposition transmission method is also referred to as MUST category 1. In this case, the constellation obtained by combining the terminal devices 2A and 2B is a non-Gray code constellation. Furthermore, the base station apparatus 1A can allocate various ratios of power to the terminal apparatuses 2A and 2B. In this case, the terminal device 2A removes or suppresses the interference signal on the assumption that the mapping pattern of the terminal device 2B is the same as itself.
 例えば、基地局装置1Aは、端末装置2A、2Bを合成したコンスタレーションがグレイ符号のコンスタレーションになるように、端末装置2A、2Bに対して異なるコンスタレーションを用いて重畳送信することができる。このような重畳送信方式をMUSTカテゴリ2とも称する。この場合、基地局装置1Aは端末装置2A、2Bに対して様々な比率の電力を割り当てることができる。この場合、端末装置2Aは、端末装置2Bのマッピングパターンは自身とは異なると想定して干渉信号を除去または抑圧する。 For example, the base station apparatus 1A can superimpose and transmit to the terminal apparatuses 2A and 2B using different constellations so that the constellation obtained by combining the terminal apparatuses 2A and 2B becomes a gray code constellation. Such a superposition transmission method is also referred to as MUST category 2. In this case, the base station apparatus 1A can allocate various ratios of power to the terminal apparatuses 2A and 2B. In this case, the terminal device 2A removes or suppresses the interference signal on the assumption that the mapping pattern of the terminal device 2B is different from itself.
 例えば、基地局装置1Aは、端末装置2A、2B宛ての送信ビット列を既存のQPSK/16QAM/64QAM/256QAMのコンスタレーションとなるようにマッピングして重畳送信することができる。このような重畳送信方式をMUSTカテゴリ3とも称する。この場合、基地局装置1Aはマッピングするコンスタレーションに従って端末装置2A、2Bの電力を割り当てることができる。この場合、端末装置2Aは、既存マッピングの復調を行ない、得られたビットの一部を自身宛てのビットとする。 For example, the base station apparatus 1A can map and transmit the transmission bit string addressed to the terminal apparatuses 2A and 2B so as to be an existing QPSK / 16QAM / 64QAM / 256QAM constellation. Such a superposition transmission method is also referred to as MUST category 3. In this case, the base station apparatus 1A can allocate the power of the terminal apparatuses 2A and 2B according to the constellation to be mapped. In this case, the terminal device 2A demodulates the existing mapping and sets a part of the obtained bits as a bit addressed to itself.
 基地局装置1Aが端末装置2Aおよび端末装置2Bの信号を非直交多重して送信した場合、PDSCH1とPDSCH2は互いに干渉となる。例えば、基地局装置1Aは、Far-UEである端末装置2Bに、near-UEである端末装置2Aより大きい電力を割り当てる。この場合、少なくとも端末装置2Aは、強い干渉信号を受信するため、干渉信号のハンドリング、除去または抑圧をする。このような干渉信号をマルチユーザ干渉、ユーザ間干渉、マルチユーザ伝送による干渉、同一チャネル干渉などという。干渉信号を除去または抑圧するためには、例えば、干渉信号の復調または復号結果から求められる干渉信号レプリカ信号を受信信号から減算する。干渉信号を除去または抑圧するためには、干渉信号の復調結果によって干渉除去を行なうSLIC(Symbol Level Interference Cancellation)、干渉信号の復号結果によって干渉除去を行なうCWIC(Codeword Level Interference Cancellation)、送信信号候補の中から最もそれらしいものを探索する最尤検出(ML: maximum likelihood、R-ML: Reduced complexity maximum likelihood)、干渉信号を線形演算によって抑圧するEMMSE-IRC(Enhanced Minimum Mean Square Error-Interference Rejection Combining)などがある。 When the base station apparatus 1A transmits the signals of the terminal apparatus 2A and the terminal apparatus 2B by non-orthogonal multiplexing, PDSCH1 and PDSCH2 interfere with each other. For example, the base station apparatus 1A allocates more power to the terminal apparatus 2B that is a Far-UE than the terminal apparatus 2A that is a near-UE. In this case, at least the terminal device 2A receives a strong interference signal, and handles, removes, or suppresses the interference signal. Such interference signals are referred to as multi-user interference, inter-user interference, interference due to multi-user transmission, co-channel interference, and the like. In order to remove or suppress the interference signal, for example, an interference signal replica signal obtained from the demodulation or decoding result of the interference signal is subtracted from the received signal. In order to remove or suppress the interference signal, SLIC (Symbol Level Interference Cancellation) for canceling interference based on the demodulation result of the interference signal, CWIC (Codeword Level Interference Cancellation) for canceling interference based on the decoding result of the interference signal, transmission signal candidate Likelihood detection (ML: maximum likelihood, R-ML: Reduced complexity maximumlikelihood), EMMSE-IRC (Enhanced Minimum Mean Square Error-Interference Rejection Combining) that suppresses interference signals by linear operation )and so on.
 基地局装置は非直交多重する複数の端末装置に対して、共通の端末装置固有参照信号を送信することができる。つまり、基地局装置は、複数の端末装置に対して、時間/周波数/空間で同じリソース、同じ参照信号系列を用いて参照信号を送信することができる。また、基地局装置は端末装置に対し送信モードを設定することができる。基地局装置は、所定の送信モードを設定する場合に、MUSTによる送信をすることができる。また、基地局装置は、所定の送信モード以外の送信モードまたはMUSTが設定されていない場合に、MUSTによる送信をしないとすることができる。言い換えると、端末装置は、設定された送信モードやMUST設定の有無によって、MUSTによる送信か否かを判断することができる。 The base station apparatus can transmit a common terminal apparatus specific reference signal to a plurality of terminal apparatuses that perform non-orthogonal multiplexing. That is, the base station apparatus can transmit a reference signal to a plurality of terminal apparatuses using the same resource and the same reference signal sequence in time / frequency / space. Further, the base station apparatus can set the transmission mode for the terminal apparatus. The base station apparatus can perform transmission by MUST when setting a predetermined transmission mode. Further, the base station apparatus may not perform transmission by MUST when a transmission mode other than the predetermined transmission mode or MUST is not set. In other words, the terminal device can determine whether or not the transmission is based on MUST based on the set transmission mode and the presence / absence of MUST setting.
 基地局装置は、端末装置2Aに対しCRSベースの送信モードを設定した場合、端末装置2Bに対してCRSベースの送信モードを設定することができる。基地局装置は、端末装置2Aに対しDMRSベースの送信モードを設定した場合、端末装置2Bに対してCRS/DMRSベースの送信モードを設定することができる。CRSベースの送信モードは、CRSを用いて復調する送信モードであり、例えば、送信モード1~6のいずれかである。ただし、このいずれかの送信モードに限るものではない。DMRSベースの送信モードは、端末固有参照信号を用いて復調する送信モードであり、例えば送信モード8~10のいずれかである。ただし、このいずれかの送信モードに限るものではない。 When the base station apparatus sets the CRS-based transmission mode for the terminal apparatus 2A, the base station apparatus can set the CRS-based transmission mode for the terminal apparatus 2B. When the base station apparatus sets the DMRS-based transmission mode for the terminal apparatus 2A, the base station apparatus can set the CRS / DMRS-based transmission mode for the terminal apparatus 2B. The CRS-based transmission mode is a transmission mode that demodulates using CRS, and is, for example, one of transmission modes 1 to 6. However, it is not limited to any one of these transmission modes. The DMRS-based transmission mode is a transmission mode that is demodulated using a terminal-specific reference signal, and is, for example, one of transmission modes 8 to 10. However, it is not limited to any one of these transmission modes.
 端末装置2Aと2BはそれぞれMUSTの送信モードに設定されている、MUSTの送信モードに設定されていないとしても良いし、MUST送信が構成されている、MUST送信が構成されていないとしても良いし、R-MLもしくはSLICによる信号検出が必須、R-MLもしくはSLICをしなくても良い、として良い。また、端末装置2Aと2BはそれぞれMUSTが可能な端末、MUSTが可能でない端末としても良いし、干渉信号に関する情報を制御信号で受信する、干渉信号に関する情報を制御信号で受信しないとしても良い。 Each of the terminal devices 2A and 2B may be set to the MUST transmission mode, may not be set to the MUST transmission mode, may be configured to have MUST transmission, or may not be configured to MUST transmission. , Signal detection by R-ML or SLIC is essential, and R-ML or SLIC may be omitted. Further, the terminal apparatuses 2A and 2B may be terminals capable of MUST and terminals not capable of MUST, may receive information related to interference signals using a control signal, and may not receive information related to interference signals using a control signal.
 端末装置2Aは、干渉信号の除去または抑圧に必要なパラメータを、基地局装置から受信もしくはブラインド検出によって検出することができる。端末装置2Bは、干渉信号の除去または抑圧をしても良いし、しなくても良い。端末装置2Bが干渉信号を除去または抑圧しない場合、干渉信号電力は比較的小さいため、端末装置2Bは、干渉信号に関するパラメータを知らなくても、自装置宛ての信号を復調することができる。基地局装置1Aが端末装置2Aおよび2Bを非直交多重する場合、端末装置2Aは、非直交多重による干渉信号を除去または抑圧する機能を備える必要があるが、端末装置2Bは干渉除去または抑圧する機能を備えても、備えなくても良い。言い換えると、基地局装置1Aは、非直交多重をサポートしている端末装置と非直交多重をサポートしていない端末装置を非直交多重することができる。別の言い方では、基地局装置1Aは、異なる送信モードが設定されている端末装置を非直交多重することができる。従って、各端末装置の通信機会を向上させることができる。 The terminal device 2A can detect a parameter necessary for removing or suppressing the interference signal from the base station device or by blind detection. The terminal device 2B may or may not remove or suppress the interference signal. When the terminal device 2B does not remove or suppress the interference signal, since the interference signal power is relatively small, the terminal device 2B can demodulate the signal addressed to itself without knowing the parameter regarding the interference signal. When the base station apparatus 1A performs non-orthogonal multiplexing of the terminal apparatuses 2A and 2B, the terminal apparatus 2A needs to have a function of removing or suppressing interference signals due to non-orthogonal multiplexing, but the terminal apparatus 2B performs interference removal or suppression. It may or may not have a function. In other words, the base station apparatus 1A can non-orthogonally multiplex a terminal apparatus that supports non-orthogonal multiplexing and a terminal apparatus that does not support non-orthogonal multiplexing. In other words, the base station device 1A can non-orthogonally multiplex terminal devices for which different transmission modes are set. Therefore, the communication opportunity of each terminal device can be improved.
 基地局装置1Aは、干渉となる端末装置(図1における端末装置2B)に関する情報(MUSTにおけるアシスト情報、補助情報、制御情報、設定情報)を、端末装置2Aに送信する。基地局装置1Aは、上位層の信号または物理層の信号(制御信号、PDCCH、EPDCCH)で、干渉となる端末装置に関する情報(MUSTアシスト情報、MUST情報)を送信することができる。 The base station apparatus 1A transmits information (assist information, auxiliary information, control information, and setting information in MUST) regarding the terminal apparatus (terminal apparatus 2B in FIG. 1) that causes interference to the terminal apparatus 2A. The base station apparatus 1A can transmit information (MUST assist information, MUST information) about the terminal apparatus that causes interference by using a higher layer signal or a physical layer signal (control signal, PDCCH, EPDCCH).
 MUSTアシスト情報には、PAに関する情報、送信モード(送信方式)に関する情報、端末固有参照信号の送信電力に関する情報、PDSCHに関する電力割当て情報、PMI、サービングセルのPAに関する情報、サービングセルの端末固有参照信号の送信電力に関する情報、変調方式、MCS(Modulation and Coding Scheme)、リダンダンシーバージョン、C(Cell)-RNTI(Radio Network Temporary Identifier)、SPS(Semi-Persistent Scheduling) C-RNTI、MUST-RNTI、基地局装置に近い端末装置(near-UE)か遠い端末装置(Far-UE)かを示す情報、MUSTカテゴリ(方式)、コードワードインデックス、レイヤインデックス、トランスポートブロックインデックス、物理チャネル情報の一部または全部が含まれる。 The MUST assist information includes information on PA, information on transmission mode (transmission method), information on transmission power of terminal-specific reference signal, power allocation information on PDSCH, information on PMI, PA of serving cell, terminal-specific reference signal of serving cell. Information related to transmission power, modulation scheme, MCS (Modulation and Coding Scheme), redundancy version, C (Cell) -RNTI (Radio Network Temporary Identifier), SPS (Semi-Persistent Scheduling) C-RNTI, MUST-RNTI, base station equipment Information indicating whether the terminal device is near (near-UE) or far terminal device (Far-UE), MUST category (method), codeword index, layer index, transport block index, part or all of physical channel information included.
 PAは、CRSが配置されていないOFDMシンボルにおけるPDSCHとCRSの送信電力比(電力オフセット)に基づく情報である。送信モード(送信方式)に関する情報は、干渉信号の送信モードや基地局装置1Aが設定できる(設定する可能性のある)送信モードの候補など、端末装置2Aが干渉信号の送信モードを知る(検出する)ためのアシスト情報である。送信方式は、送信ダイバーシチ、Large Delay CDD(Cyclic Delay Diversity)、Open-loop MIMO、Closed-loop MIMOなどである。またコードワード/レイヤ/トランスポートブロックインデックスは、複数のコードワード/レイヤ/トランスポートブロックで送信された場合にどのコードワード/レイヤ/トランスポートブロックでMUSTが適用されたかを示す情報である。物理チャネル情報は、どの物理チャネルでMUSTが適用されたかを示す情報であり、例えば、PDSCHやPMCHを示すことができる。 PA is information based on a transmission power ratio (power offset) between PDSCH and CRS in an OFDM symbol in which CRS is not arranged. The information regarding the transmission mode (transmission method) is such that the terminal device 2A knows the transmission mode of the interference signal, such as the transmission mode of the interference signal and the transmission mode candidates that the base station device 1A can set (possibly set). Assist information. The transmission method includes transmission diversity, large delay CDD (Cyclic Delay Delay), Open-loop MIMO, Closed-loop MIMO, and the like. The codeword / layer / transport block index is information indicating which codeword / layer / transport block the MUST is applied to when transmitted by a plurality of codewords / layers / transport blocks. The physical channel information is information indicating which physical channel the MUST is applied to, and can indicate, for example, PDSCH or PMCH.
 基地局装置に近い端末装置および遠い端末装置は、近い端末装置はMUSTによる干渉除去または抑圧をする、遠い端末装置はMUSTによる干渉除去または抑圧しない、を意味しても良い。基地局装置に近い端末装置および遠い端末装置は、近い端末装置は遠い端末よりも割当て電力が小さいこと、を意味しても良い。また、基地局装置に近い端末装置および遠い端末装置は、近い端末装置は電力比が0.5よりも小さく、遠い端末装置は電力比が0.5以上であること、を意味しても良い。基地局装置に近い端末装置および遠い端末装置は、近い端末装置は遠い端末よりも変調多値数またはMCSが低いことを意味しても良い。 The terminal device close to the base station device and the distant terminal device may mean that the close terminal device performs interference removal or suppression by MUST, and the distant terminal device does not cancel or suppress interference by MUST. A terminal device close to a base station device and a distant terminal device may mean that a near terminal device has a smaller allocated power than a distant terminal. Further, a terminal device close to a base station device and a distant terminal device may mean that a near terminal device has a power ratio smaller than 0.5 and a far terminal device has a power ratio of 0.5 or more. . A terminal device close to a base station device and a distant terminal device may mean that a close terminal device has a lower modulation multi-level number or MCS than a distant terminal.
 また、上記のMUSTアシスト情報に含まれるパラメータの各々は、1つの値(候補、リスト)が設定されても良いし、複数の値(候補、リスト)が設定されても良い。複数の値が設定された場合は、端末装置は、そのパラメータについては、複数の値から干渉信号に設定されているパラメータを検出(ブラインド検出)する。上記のMUSTアシスト情報に含まれるパラメータの一部または全部は、上位層の信号で送信される。上記のMUSTアシスト情報に含まれるパラメータの一部または全部は、物理層の信号で送信することもできる。 Also, one value (candidate, list) may be set for each of the parameters included in the above MUST assist information, or a plurality of values (candidates, list) may be set. When a plurality of values are set, the terminal device detects (blind detection) a parameter set in the interference signal from the plurality of values. Some or all of the parameters included in the MUST assist information are transmitted as higher layer signals. Some or all of the parameters included in the MUST assist information may be transmitted as a physical layer signal.
 MUSTアシスト情報は、様々な測定を行なうときに用いられても良い。測定は、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定を含む。 MUST assist information may be used when performing various measurements. The measurement includes RRM (Radio Resource Management) measurement and CSI (Channel State Information) measurement.
 端末装置2Aが複数のコンポーネントキャリア(CC: Component Carrier)を合わせて広帯域伝送を行なうキャリアアグリゲーション(Carrier Aggregation: CA)をサポートしている場合、基地局装置1Aはプライマリセル(Primary Cell: PCell)および/またはセカンダリセル(Secondary Cell: SCell)に対するMUSTアシスト情報を設定することができる。また、基地局装置1Aは、MUSTアシスト情報をPCellのみに対して設定または送信することもできる。 When the terminal device 2A supports carrier aggregation (Carrier Aggregation: CA) for performing broadband transmission by combining a plurality of component carriers (CC: Component Carrier), the base station device 1A includes a primary cell (Primary Cell: PCell) and MUST assist information for a secondary cell (Secondary Cell: SCell) can be set. Moreover, 1 A of base station apparatuses can also set or transmit MUST assist information only to PCell.
 端末装置2A/2Bが隣接セルからのCRS/PDSCH干渉を除去または抑圧するNAICS(Network Assisted Interference Cancellation and Suppression)をサポートしている場合、基地局装置は、端末装置2A/2Bに、隣接セルからの干渉を除去するために使われるNAICSアシスト情報を送信することができる。NAICSアシスト情報は、物理セルID、CRSアンテナポート数、MBSFNサブフレーム構成、PAのリスト、PB、送信モードのリスト、リソース割当て粒度の一部または全部を含む。なお、PBはCRSが配置されているOFDMシンボルにおけるPDSCHとCRSが配置されていないOFDMシンボルにおけるPDSCHの電力比を表す。 When the terminal apparatus 2A / 2B supports NAICS (Network Assisted Interference Cancellation Suppression) that removes or suppresses CRS / PDSCH interference from the adjacent cell, the base station apparatus transmits the terminal apparatus 2A / 2B to the terminal apparatus 2A / 2B from the adjacent cell. The NAICS assist information used for removing the interference can be transmitted. The NAICS assist information includes physical cell ID, number of CRS antenna ports, MBSFN subframe configuration, PA list, PB, transmission mode list, and part or all of resource allocation granularity. Note that PB represents a power ratio of PDSCH in an OFDM symbol in which CRS is not arranged and in an OFDM symbol in which CRS is not arranged.
 なお、基地局装置は、端末装置に対して、MUSTアシスト情報とNAICSアシスト情報を同時に設定しないことができる。NAICSアシスト情報が設定されている場合、MUSTアシスト情報は設定されない。MUSTアシスト情報が設定されている場合、NAICSアシスト情報は設定されない。端末装置は、MUSTアシスト情報とNAICSアシスト情報が同時に設定された場合、どちらか一方のアシスト情報に基づいて干渉を除去または抑圧することができる。例えば、端末装置は、MUSTアシスト情報とNAICSアシスト情報が同時に設定された場合、MUSTアシスト情報またはNAICSアシスト情報のみに基づいて干渉を除去または抑圧することができる。 Note that the base station apparatus can not simultaneously set MUST assist information and NAICS assist information for the terminal apparatus. When NAICS assist information is set, MUST assist information is not set. When MUST assist information is set, NAICS assist information is not set. When the MUST assist information and the NAICS assist information are set at the same time, the terminal device can remove or suppress interference based on one of the assist information. For example, when the MUST assist information and the NAICS assist information are set at the same time, the terminal device can remove or suppress interference based only on the MUST assist information or the NAICS assist information.
 端末装置2Aは、上位層の信号および/または物理層の信号で、MUSTアシスト情報を受信し、MUSTアシスト情報に基づいて、干渉信号を除去または抑圧するためのパラメータを検出(特定)し、前記パラメータを用いて干渉信号を除去または抑圧する。なお、端末装置2Aは、MUST情報に含まれていないパラメータについて、パラメータの候補を順に検出を試みるブラインド検出によって、検出することができる。 The terminal device 2A receives the MUST assist information with the upper layer signal and / or the physical layer signal, detects (identifies) a parameter for removing or suppressing the interference signal based on the MUST assist information, and The interference signal is removed or suppressed using the parameter. Note that the terminal device 2A can detect parameters that are not included in the MUST information by blind detection that tries to detect parameter candidates in order.
 電力割当て情報は、上位層または物理層でテーブルやリストが設定され、基地局装置が物理層の信号でそのインデックスをシグナリングすることで端末装置に電力比を指示することができる。端末装置は、基地局装置から受信したMUST設定およびインデックスから、テーブルやリストを参照して電力比を得ることができる。 In the power allocation information, a table or list is set in the upper layer or the physical layer, and the base station apparatus can indicate the power ratio to the terminal apparatus by signaling its index with a signal of the physical layer. The terminal device can obtain the power ratio by referring to the table or list from the MUST setting and index received from the base station device.
 図2は、本実施形態に係る非直交多重されている端末装置の電力比の例を示す図である。例えば、テーブルの値が1の場合、自装置の電力比を0.2、MUSTのペアとなる端末装置の電力比は1-0.2=0.8と求めることができる。なお、このペアとなる電力比もテーブルで示されても良い。また、テーブルは、電力比=0を含むように生成されても良い。この場合。ペアとなる端末装置の電力比は0となるため、干渉信号がないことも示すことができる。 FIG. 2 is a diagram illustrating an example of the power ratio of the non-orthogonal multiplexed terminal apparatus according to the present embodiment. For example, when the value of the table is 1, the power ratio of the own device can be obtained as 0.2, and the power ratio of the terminal device that is a MUST pair can be obtained as 1−0.2 = 0.8. Note that the power ratio of the pair may also be shown in a table. The table may be generated so as to include power ratio = 0. in this case. Since the power ratio of the paired terminal devices is 0, it can be shown that there is no interference signal.
 MUSTの適用が可能であることを示す情報が所定の電力割当てを示すようにしても良い。例えば、MUSTが適用される場合、多重される端末装置の電力比が、20:80と予め設定されている。この場合、MUSTの適用が可能であることを示す情報が端末装置2Aから基地局装置1Aまたは基地局装置1Aから端末装置2Aへ送信された場合、端末装置2Aは、端末装置2Aと端末装置2Bの電力比が、20:80であることを想定する。 The information indicating that MUST can be applied may indicate a predetermined power allocation. For example, when MUST is applied, the power ratio of the multiplexed terminal apparatuses is preset as 20:80. In this case, when information indicating that MUST can be applied is transmitted from the terminal device 2A to the base station device 1A or from the base station device 1A to the terminal device 2A, the terminal device 2A is connected to the terminal device 2A and the terminal device 2B. Is assumed to be 20:80.
 基地局装置は、送信モードによって、下りリンク制御情報の内容を変更することができる。例えば、CRSベースの送信モードの場合、基地局装置は、電力割当て情報を下りリンク制御情報に含めて送信する。DMRSベースの場合、基地局装置は、CRSベースの送信モードの場合に電力割当て情報に用いたビットを、例えば、干渉信号のアンテナポートやPMIなど、別の情報に置き換える。言い換えると、端末装置は、下りリンク制御情報に含まれるあるフィールドから、CRSベースの送信モードで設定された場合は電力割当て情報を得ることができ、DMRSベースの送信モードの場合は干渉信号のアンテナポートやPMIなどの別の情報を得ることができる。また、端末装置は、DMRSベースの送信モードの場合、電力割当て情報は、自身およびMUSTペアとなる端末装置の端末装置固有参照信号から得ることができる。 The base station apparatus can change the content of the downlink control information according to the transmission mode. For example, in the case of the CRS-based transmission mode, the base station apparatus transmits power allocation information included in downlink control information. In the case of DMRS base, the base station apparatus replaces the bits used in the power allocation information in the case of the CRS base transmission mode with other information such as the antenna port and PMI of the interference signal. In other words, the terminal apparatus can obtain power allocation information from a certain field included in the downlink control information when configured in the CRS-based transmission mode, and an interference signal antenna in the DMRS-based transmission mode. Other information such as port and PMI can be obtained. Further, when the terminal device is in the DMRS-based transmission mode, the power allocation information can be obtained from the terminal device-specific reference signal of the terminal device that becomes the MUST pair with itself.
 図3は、本実施形態に係る基地局装置1Aの構成を示す概略ブロック図である。基地局装置1Aは、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103-1、103-2、受信部(受信ステップ)104と送信アンテナ105-1、105-2、受信アンテナ106-1を含んで構成される。上位層処理部101は、無線リソース制御部(無線リソース制御ステップ)1011、スケジューリング部(スケジューリングステップ)1012を含んで構成される。送信部103-1は、端末装置2Aへの送信信号を生成する。送信部103-2は、端末装置2Bへの送信信号を生成する。送信部103-1、103-2を総称して、送信部103とも称する。送信アンテナ105-1、105-2を総称して、送信アンテナ105とも称する。 FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 1A according to the present embodiment. The base station apparatus 1A includes an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, transmission units (transmission steps) 103-1, 103-2, a reception unit (reception step) 104, and a transmission antenna. 105-1 and 105-2, and a receiving antenna 106-1. The upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012. The transmission unit 103-1 generates a transmission signal to the terminal device 2A. The transmission unit 103-2 generates a transmission signal to the terminal device 2B. The transmission units 103-1 and 103-2 are also collectively referred to as a transmission unit 103. The transmission antennas 105-1 and 105-2 are also collectively referred to as a transmission antenna 105.
 送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、無線送信部(無線送信ステップ)1035を含んで構成される。また、受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、復調部(復調ステップ)1043、復号部(復号ステップ)1044を含んで構成される。 The transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, and a radio transmission unit (Wireless transmission step) 1035 is included. The reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの物理層より上位層の処理を行なう。上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。 The upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Processes higher layers than physical layer such as Resource (Control: RRC) layer. Upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置2(受信部104を介して)から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。 The upper layer processing unit 101 receives information related to the terminal device such as the terminal device function (UE capability) from the terminal device 2 (via the receiving unit 104). In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal. The information regarding the terminal device includes information indicating whether or not the terminal device supports a predetermined function, or information indicating that the terminal device is introduced into the predetermined function and the test is completed. Whether or not to support a predetermined function includes whether or not the installation and test for the predetermined function have been completed.
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知しても良い。 For example, when a terminal device supports a predetermined function, the terminal device transmits information (parameters) indicating whether the predetermined function is supported. When the terminal device does not support the predetermined function, the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
 前記端末装置に関する情報は、MUSTをサポートすることを示す情報、SPSをサポートすることを示す情報が含まれる。MUSTに対応する機能が複数ある場合、端末装置は、機能毎にサポートするかどうかを示す情報を送信することができる。MUSTに対応する機能とは、マルチユーザ干渉(PDSCHの干渉)を除去または抑圧できる能力、アンテナポート、スクランブリングアイデンティティおよびレイヤ数を示す複数のテーブルに対応している能力、所定数のアンテナポート数に対応している能力、キャリアアグリゲーションのCC数やリソースブロック数に対応している能力、所定の送信モードに対応している能力、SPSに対応している能力(SPSに対応しているMUSTをサポートすることを示す情報、SPSに対応していないMUSTをサポートすることを示す情報)の一部または全部である。所定の送信モードに対応している能力とは、例えば、MUST適用可能な送信モードの組合せやMUSTの干渉を除去または抑圧できる送信モードに対応可能かどうか、などである。端末装置は、サポートしているMUST適用可能なチャネルを基地局装置に送信することができる。MUST適用可能なチャネルは、例えば、PDSCHとPDSCHの重畳送信や、PMCHとPMCHの重畳送信、PDCCHとPDCCHの重畳送信、EPDCCHとEPDCCHの重畳送信などである。 The information related to the terminal device includes information indicating that MUST is supported and information indicating that SPS is supported. When there are a plurality of functions corresponding to MUST, the terminal device can transmit information indicating whether to support each function. Functions that support MUST include the ability to remove or suppress multi-user interference (PDSCH interference), the ability to support multiple tables indicating antenna ports, scrambling identities, and the number of layers, and a predetermined number of antenna ports , Capability corresponding to the number of CCs and resource blocks of carrier aggregation, capability corresponding to a predetermined transmission mode, capability corresponding to SPS (MUST corresponding to SPS Part or all of information indicating support and information indicating support of MUST that does not support SPS. The capability corresponding to the predetermined transmission mode is, for example, a combination of transmission modes applicable to MUST, whether the transmission mode can eliminate or suppress interference of MUST, and the like. The terminal apparatus can transmit the supported MUST applicable channel to the base station apparatus. The channels applicable to MUST are, for example, PDSCH and PDSCH superposition transmission, PMCH and PMCH superposition transmission, PDCCH and PDCCH superposition transmission, EPDCCH and EPDCCH superposition transmission, and the like.
 無線リソース制御部1011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CEなどを生成、または上位ノードから取得する。無線リソース制御部1011は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。無線リソース制御部1011は、端末装置2の各種設定情報の管理をする。なお、無線リソース制御部の機能の一部は、MACレイヤや物理レイヤで行なわれても良い。 The radio resource control unit 1011 generates or acquires downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from the upper node. The radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102. The radio resource control unit 1011 manages various setting information of the terminal device 2. Note that some of the functions of the radio resource control unit may be performed in the MAC layer or the physical layer.
 無線リソース制御部1011は、キャリアアグリゲーションに関する情報(例えば、Scellの追加/解除、など)を設定することができる。無線リソース制御部1011は、MBSFNサブフレームに関する情報(例えば、MBSFNのためのサブフレーム割当て、など)を設定することができる。 The radio resource control unit 1011 can set information related to carrier aggregation (for example, Scell addition / release, etc.). The radio resource control unit 1011 can set information on MBSFN subframes (for example, subframe allocation for MBSFN).
 無線リソース制御部1011は、各端末装置のためのMUSTの設定に関する情報(例えば、MUSTアシスト情報)を設定する。無線リソース制御部1011は、各端末装置のためのセル無線ネットワーク一時的識別子(C-RNTI: Cell Radio Network Temporary Identifier)を設定する。例えば、C-RNTIは、ダイナミックスケジューリングにおける端末識別子である。C-RNTIは、ダイナミックスケジューリングにおけるPDCCH、PDSCHの暗号化(スクランブリング)に用いられる。無線リソース制御部1011は、各端末装置のためのセミパーシステントセル無線ネットワーク一時的識別子(SPS C-RNTI: Semi-Persistent Scheduling Cell Radio Network Temporary Identifier)を設定する。SPS C-RNTIは、セミパーシステントスケジューリングにおける端末識別子である。SPS C-RNTIは、セミパーシステントスケジューリングにおけるPDCCH、PDSCHの暗号化(スクランブリング)に用いられる。 The radio resource control unit 1011 sets information (for example, MUST assist information) regarding MUST settings for each terminal device. The radio resource control unit 1011 sets a cell radio network temporary identifier (C-RNTI: “Cell” Radio “Network” Temporary “Identifier”) for each terminal apparatus. For example, C-RNTI is a terminal identifier in dynamic scheduling. C-RNTI is used for encryption (scrambling) of PDCCH and PDSCH in dynamic scheduling. The radio resource control unit 1011 sets a semi-persistent cell radio network temporary identifier (SPS C-RNTI: Semi-Persistent Scheduling Cell Radio Network Temporary Identifier) for each terminal device. SPS C-RNTI is a terminal identifier in semi-persistent scheduling. SPS C-RNTI is used for encryption (scrambling) of PDCCH and PDSCH in semi-persistent scheduling.
 無線リソース制御部1011は、各端末装置のためのSPSに関する情報を設定することができる。SPS設定は、個別的な無線リソース設定パラメータ内(例えば、LTE-AにおけるRadioResourceConfigDedicated)に含めることができる。SPS設定は、LTE-AにおけるパラメータSPS-Configを用いることができる。SPS設定は、SPS C-RNTIの設定、下りリンク/上りリンクにおけるSPSのセットアップ、リリースを示すパラメータを含む。SPS設定は、下りリンク/上りリンクにおけるセミパーシステントスケジューリング間隔を示すパラメータを含む。SPS設定は、セミパーシステントスケジューリングにおけるHARQプロセス数を示すパラメータを含む。無線リソース制御部1011は、前記MUSTアシスト情報が設定された場合、SPS設定をできないようにしても良い。無線リソース制御部1011は、前記SPS設定がされる場合、MUSTアシスト情報を設定できないようにしても良い。無線リソース制御部1011は、キャリアアグリゲーション設定している端末装置(例えば、Scellが設定されている場合)/キャリアアグリゲーションを活性化(activation)している端末装置はMUSTを適用できないように制御することもできる。無線リソース制御部1011は、キャリアアグリゲーションを活性化(activation)している端末装置はMUSTを適用できないように制御することもできる。無線リソース制御部1011は、MBSFNを設定しているサブフレーム/MBSFNサブフレームを設定している端末装置は、MUSTを適用できないように制御することもできる。 The radio resource control unit 1011 can set information related to SPS for each terminal device. The SPS configuration can be included in individual radio resource configuration parameters (for example, RadioResourceConfigDedicated in LTE-A). For the SPS setting, a parameter SPS-Config in LTE-A can be used. The SPS configuration includes parameters indicating SPS C-RNTI configuration, downlink / uplink SPS setup, and release. The SPS setting includes a parameter indicating a semi-persistent scheduling interval in the downlink / uplink. The SPS setting includes a parameter indicating the number of HARQ processes in semi-persistent scheduling. The radio resource control unit 1011 may be configured not to perform SPS setting when the MUST assist information is set. The radio resource control unit 1011 may not be able to set MUST assist information when the SPS setting is performed. The radio resource control unit 1011 performs control so that a terminal device for which carrier aggregation is set (for example, when Scell is set) / a terminal device for which carrier aggregation is activated cannot apply MUST. You can also. The radio resource control unit 1011 can also perform control so that a terminal device that has activated carrier aggregation cannot apply MUST. The radio resource control unit 1011 can also perform control so that the MUST cannot be applied to the terminal apparatus in which the MBSFN subframe / MBSFN subframe is set.
 スケジューリング部1012は、各端末装置に送信する物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数および時間リソース(サブキャリアおよびサブフレーム)を決定する。スケジューリング部1012は、各端末装置がMUSTをサポートしているか否かを考慮して、周波数および時間リソースを割り当てる。スケジューリング部1012は、各端末装置のスケジューリング方式(DS/SPS)を考慮して、周波数および時間リソースを割り当てる。スケジューリング部1012は、端末装置2Aと端末装置2BをMUSTする場合、両端末装置の下りリンクデータを、重複する周波数および時間リソース(リソースブロック)に割り当てる。この場合、スケジューリング部1012は、両端末装置の周波数および時間リソースを同じにすることが好ましい。スケジューリング部1012は、端末装置2Aと端末装置2BをMUSTしない場合(直交多元接続(OMA: Orthogonal Multiple Access)を行なう場合)、両端末装置の下りリンクデータを、異なる周波数および時間リソースに割り当てる。スケジューリング部1012は、前記無線リソース制御部1011のMUSTに関する設定(MUSTの設定と他機能の設定のコラボレーションも含む)、SPSに関する設定を考慮して、MUSTまたはOMAを用いて、下りリンクデータにリソースを割り当てることもできる。 The scheduling unit 1012 determines a frequency and a time resource (subcarrier and subframe) to allocate a physical channel (PDSCH and PUSCH) to be transmitted to each terminal device. The scheduling unit 1012 allocates frequency and time resources in consideration of whether each terminal apparatus supports MUST. The scheduling unit 1012 allocates frequency and time resources in consideration of the scheduling method (DS / SPS) of each terminal device. When MUST is performed between the terminal device 2A and the terminal device 2B, the scheduling unit 1012 allocates downlink data of both terminal devices to overlapping frequency and time resources (resource blocks). In this case, the scheduling unit 1012 preferably uses the same frequency and time resources for both terminal apparatuses. Scheduling section 1012 allocates the downlink data of both terminal apparatuses to different frequency and time resources when MUST is not performed between terminal apparatus 2A and terminal apparatus 2B (when performing orthogonal multiple access (OMA: Orthogonal Multiple Access)). The scheduling unit 1012 takes into account the setting regarding the MUST of the radio resource control unit 1011 (including the collaboration of the setting of the MUST and the setting of other functions) and the setting regarding the SPS, and uses the MUST or OMA to generate resources for the downlink data. Can also be assigned.
 スケジューリング部1012は、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式(あるいはMCS)および送信電力などを決定する。スケジューリング部1012は、決定した情報を制御部102に出力する。スケジューリング部1012は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部1012は、生成した情報を制御部102に出力する。 The scheduling unit 1012 determines the coding rate, modulation scheme (or MCS), transmission power, and the like of the physical channels (PDSCH and PUSCH). The scheduling unit 1012 outputs the determined information to the control unit 102. The scheduling unit 1012 generates information used for scheduling of physical channels (PDSCH and PUSCH) based on the scheduling result. The scheduling unit 1012 outputs the generated information to the control unit 102.
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。下りリンク制御情報は、PDSCH/PUSCHのリソース割当てフィールド、HARQプロセス番号フィールド、新規データ指標(NDI: New Date Indicator)フィールドを含む。制御部102は、下りリンク制御信号に、前記PDSCH/PUSCHのリソース割当てフィールドで送信されるチャネルは、該MUSTが適用されていることを示す情報を含めることができる。 The control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101. The control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103. The downlink control information includes a PDSCH / PUSCH resource allocation field, a HARQ process number field, and a new data indicator (NDI: “New” Date “Indicator) field. The control unit 102 can include information indicating that the MUST is applied to the channel transmitted in the PDSCH / PUSCH resource allocation field in the downlink control signal.
 制御部102は、下りリンク制御情報を用いて、SPSの活性化/解除(activation/Release)を設定することができる。例えば、上りリンクチャネルのためのTPCコマンドフィールド/復調用参照信号のためのサイクリックシフトフィールド/MCSに関するフィールド/HARQプロセス番号フィールド/冗長性に関するフィールド/リソース割当てに関するフォールド、などのコンビネーションを用いて、SPSの活性化/解除を設定することができる。 The control unit 102 can set activation / release of SPS using the downlink control information. For example, using a combination of TPC command field for uplink channel / cyclic shift field for demodulation reference signal / field for MCS / HARQ process number field / field for redundancy / fold for resource allocation, etc. SPS activation / cancellation can be set.
 生成されたDCIフォーマットのデータ系列に対してCRC(Cyclic Redundancy Check)が生成される。DSの場合は、生成されたCRCに対してC-RNTI(Cell-Radio Network Temporary Identifier)による暗号化(スクランブリング)が行なわれる。SPSの場合は、生成されたCRCに対してSPS C-RNTIによる暗号化が行なわれる。暗号化が行なわれたCRCがDCIフォーマットに付加される。DCIフォーマットとして生成された信号はPDCCHに配置される。 CRC (Cyclic Redundancy Check) is generated for the generated DCI format data series. In the case of DS, the generated CRC is encrypted (scrambling) by C-RNTI (Cell-RadioorNetwork Temporary Identifier). In the case of SPS, the generated CRC is encrypted by SPS C-RNTI. The encrypted CRC is added to the DCI format. The signal generated as the DCI format is arranged on the PDCCH.
 DSにおいて、端末装置はPDCCHに含まれるHARQプロセスIDとNDIフィールドに基づいて、割り当てられたリソースに対応する送信が新規か、再送かを判断する。NDIの値が、同じHARQプロセスにおいて前のNDIの値と異なれば新規と判断し、同じHARQプロセスにおいて前のNDIの値と同じであれば再送と判断する。 In DS, the terminal apparatus determines whether transmission corresponding to the allocated resource is new or retransmission based on the HARQ process ID and the NDI field included in the PDCCH. If the NDI value is different from the previous NDI value in the same HARQ process, it is judged as new, and if it is the same as the previous NDI value in the same HARQ process, it is judged as retransmission.
 SPSのNDIは定義が異なる。NDIの値は、SPS C-RNTIに対して送信されるPDCCHシグナリングの機能を示す。受信したNDIの値が0であれば、SPS C-RNTIに対して割り当てられるPDCCHシグナリングはSPSの送信リソースの起動または修正用のものであり、受信したNDIの値が1であれば、SPS C-RNTIに対して割り当てられるPDCCHシグナリングは、SPS再送のために送信リソースを端末装置に割り当てられる。 * The definition of SDI NDI is different. The value of NDI indicates the function of PDCCH signaling transmitted to the SPS C-RNTI. If the received NDI value is 0, the PDCCH signaling assigned to the SPS C-RNTI is for activation or modification of the SPS transmission resource. If the received NDI value is 1, the SPS C -PDCCH signaling allocated for RNTI allocates transmission resources to the terminal device for SPS retransmission.
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成する。送信部103は、各端末装置のために、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報および下りリンクデータを符号化および変調し、PHICH、PDCCH、EPDCCH、PDSCHを生成する。送信部103は、PHICH、PDCCH、EPDCCH、PDSCHおよび下りリンク参照信号を多重して、送信アンテナ105を介して端末装置2に信号を送信する。 The transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102. The transmitting unit 103 encodes and modulates the HARQ indicator, the downlink control information, and the downlink data input from the higher layer processing unit 101 for each terminal apparatus, and generates PHICH, PDCCH, EPDCCH, and PDSCH. The transmission unit 103 multiplexes PHICH, PDCCH, EPDCCH, PDSCH, and a downlink reference signal, and transmits a signal to the terminal apparatus 2 via the transmission antenna 105.
 符号化部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報および下りリンクデータを、予め定められた/無線リソース制御部1011が決定した符号化方式を用いて、ブロック符号化、畳み込み符号化、ターボ符号化などの符号化を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた/無線リソース制御部1011が決定した変調方式で変調する。 The encoding unit 1031 is configured to block the HARQ indicator, the downlink control information, and the downlink data input from the higher layer processing unit 101 using a predetermined encoding method determined by the radio resource control unit 1011. Encoding, convolutional encoding, turbo encoding, etc. are performed. The modulation unit 1032 converts the coded bits input from the coding unit 1031 into predetermined BPSK (Binary Phase Shift Keying), QPSK (quadrature Phase Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, etc. Modulation is performed by the modulation scheme determined by the radio resource control unit 1011.
 下りリンク参照信号生成部1033は、端末装置2が既知の系列を下りリンク参照信号として生成する。前記既知の系列は、基地局装置1Aを識別するための物理セル識別子(PCI、セルID)などを基に予め定められた規則で求まる。 The downlink reference signal generation unit 1033 generates a sequence known by the terminal device 2 as a downlink reference signal. The known sequence is determined by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A.
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。 The multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
 無線送信部1035は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成する。無線送信部1035は、前記OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成する。さらに、無線送信部1035は、前記ディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送信アンテナ105に出力して送信する。 The radio transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed modulation symbols and the like. The radio transmission unit 1035 generates a baseband digital signal by adding a cyclic prefix (CP) to the OFDM symbol. Further, the wireless transmission unit 1035 converts the digital signal into an analog signal, removes excess frequency components by filtering, up-converts the carrier signal to a carrier frequency, amplifies the power, and outputs to the transmission antenna 105 for transmission.
 受信部104は、制御部102から入力された制御信号に従って、受信アンテナ106-1を介して端末装置2から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。 The receiving unit 104 separates, demodulates and decodes the received signal received from the terminal device 2 via the receiving antenna 106-1 according to the control signal input from the control unit 102, and sends the decoded information to the upper layer processing unit 101. Output.
 無線受信部1041は、受信アンテナ106-1を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出し多重分離部1042に出力する。 The radio reception unit 1041 converts an uplink signal received via the reception antenna 106-1 into a baseband signal by down-conversion, removes unnecessary frequency components, and maintains the signal level appropriately. The amplification level is controlled to perform quadrature demodulation based on the in-phase and quadrature components of the received signal, and the quadrature demodulated analog signal is converted into a digital signal. Radio receiving section 1041 removes a portion corresponding to CP from the converted digital signal. Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
 多重分離部1042は、無線受信部1041から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。なお、この分離は、予め基地局装置1Aが無線リソース制御部1011で決定し、各端末装置2に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。多重分離部1042は、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1042は、上りリンク参照信号を分離する。 The demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2. Demultiplexing section 1042 compensates for the propagation paths of PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
 復調部1043は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)変調シンボルを取得する。復調部1043は、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置2各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。 The demodulator 1043 obtains an inverse discrete Fourier transform (Inverse Fourier Transform: FTIDFT) modulation symbol from the PUSCH. The demodulation unit 1043 is configured to determine in advance modulation schemes such as BPSK, QPSK, 16QAM, 64QAM, 256QAM, or the like that the own device has previously notified each of the terminal devices 2 with an uplink grant for each of the modulation symbols of PUCCH and PUSCH. Is used to demodulate the received signal.
 復号部1044は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、または自装置が端末装置2に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号部1044は、上位層処理部101から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。 The decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
 図4は、本実施形態に係る端末装置2の構成を示す概略ブロック図である。端末装置2は、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204、チャネル状態情報生成部(チャネル状態情報生成ステップ)205、送信アンテナ206および受信アンテナ207を含んで構成される。上位層処理部201は、無線リソース制御部(無線リソース制御ステップ)2011、スケジューリング情報解釈部(スケジューリング情報解釈ステップ)2012を含んで構成される。送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035を含んで構成される。受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、信号検出部(信号検出ステップ)2043を含んで構成される。 FIG. 4 is a schematic block diagram showing the configuration of the terminal device 2 according to the present embodiment. The terminal device 2 includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state information generation unit (channel state information). Generation step) 205, a transmission antenna 206, and a reception antenna 207. The upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012. The transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio transmission unit (Wireless transmission step) 2035 is included. The reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。 The upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203. The upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing.
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。例えば、自端末装置がサポートしている端末装置の機能を示す情報は、MUSTをサポートすることを示す情報、SPSをサポートすることを示す情報、キャリアアグリゲーションをサポートすることを示す情報などがある。上位層処理部201は、MUSTに対応する機能が複数ある場合、機能毎にサポートするかどうかを示す情報を送信することができる。上位層処理部201は、SPSに対応する機能が複数ある場合、機能毎にサポートするかどうかを示す情報を送信することができる。 The upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203. For example, the information indicating the function of the terminal device supported by the terminal device includes information indicating support of MUST, information indicating support of SPS, information indicating support of carrier aggregation, and the like. When there are a plurality of functions corresponding to MUST, the upper layer processing unit 201 can transmit information indicating whether to support each function. When there are a plurality of functions corresponding to the SPS, the upper layer processing unit 201 can transmit information indicating whether to support each function.
 無線リソース制御部2011は、自端末装置の各種設定情報の管理をする。無線リソース制御部2011は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。例えば、無線リソース制御部2011は、前記自端末装置がサポートしている端末装置の機能を示す情報をRRC層でシグナリングする。無線リソース制御部2011は、基地局装置から送信されたCSIフィードバックに関する設定情報を取得し、制御部202に出力する。 The radio resource control unit 2011 manages various setting information of the own terminal device. The radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203. For example, the radio resource control unit 2011 signals information indicating the function of the terminal device supported by the terminal device in the RRC layer. The radio resource control unit 2011 acquires setting information related to CSI feedback transmitted from the base station apparatus and outputs the setting information to the control unit 202.
 無線リソース制御部2011は、受信部204からSPS設定情報を取得する。無線リソース制御部2011は、受信部204から干渉となる端末装置に関する情報(MUSTアシスト情報)を取得する。無線リソース制御部2011は、MUSTをサポートすることを示す情報を基地局装置1Aに送信したとき、前記MUSTアシスト情報を取得するようにしても良い。無線リソース制御部2011は、MUSTをサポートすることを示す情報を基地局装置1Aから受信したとき、前記MUSTアシスト情報を取得するようにしても良い。前記SPS設定情報、MUSTアシスト情報は、制御部202に入力される。 The radio resource control unit 2011 acquires SPS setting information from the reception unit 204. The radio resource control unit 2011 acquires information (MUST assist information) about the terminal device that causes interference from the reception unit 204. The radio resource control unit 2011 may acquire the MUST assist information when transmitting information indicating that MUST is supported to the base station apparatus 1A. The radio resource control unit 2011 may acquire the MUST assist information when receiving information indicating that MUST is supported from the base station apparatus 1A. The SPS setting information and MUST assist information are input to the control unit 202.
 スケジューリング情報解釈部2012は、受信部204を介して受信した下りリンク制御情報(DCI)を解釈し、スケジューリング情報を判定する。スケジューリング情報解釈部2012は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。 The scheduling information interpretation unit 2012 interprets downlink control information (DCI) received via the reception unit 204 and determines scheduling information. The scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204、チャネル状態情報生成部205および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、チャネル状態情報生成部205および送信部203に出力して受信部204、および送信部203の制御を行なう。 The control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201. The control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
 制御部202は、チャネル状態情報生成部205が生成したCSIを基地局装置に送信するように送信部203を制御する。制御部202は、上位層処理部201から入力された情報に基づいて、上りリンク制御情報(UCI)を生成し、送信部203に出力する。前記UCIフォーマットには、MUSTを行なっている端末装置専用フォーマットを定義しても良い。 The control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus. The control unit 202 generates uplink control information (UCI) based on the information input from the higher layer processing unit 201 and outputs the uplink control information (UCI) to the transmission unit 203. In the UCI format, a format dedicated to a terminal device performing MUST may be defined.
 受信部204は、制御部202から入力された制御信号に従って、受信アンテナ207を介して基地局装置1Aから受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。受信部204は、前記MUSTアシスト情報を考慮して、信号検出を行なう。さらに、受信部204は、干渉信号の除去または抑圧に必要なパラメータを、ブラインド検出によって検出することができる。 The receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the receiving antenna 207 according to the control signal input from the control unit 202, and sends the decoded information to the higher layer processing unit 201. Output. The receiving unit 204 performs signal detection in consideration of the MUST assist information. Furthermore, the receiving unit 204 can detect parameters necessary for removing or suppressing the interference signal by blind detection.
 無線受信部2041は、受信アンテナ207を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行ない、周波数領域の信号を抽出する。 The radio reception unit 2041 converts a downlink signal received via the reception antenna 207 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal. Radio receiving section 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
 多重分離部2042は、前記抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。多重分離部2042は、下りリンク参照信号を用いたチャネル測定から得られたチャネル推定値に基づいて、PHICH、PDCCH、およびEPDCCHのチャネルの補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。制御部202は、PDSCHおよびチャネル推定値を信号検出部2043に出力する。 The demultiplexing unit 2042 separates the extracted signals into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signals. The demultiplexing unit 2042 performs channel compensation for PHICH, PDCCH, and EPDCCH based on channel estimation values obtained from channel measurement using the downlink reference signal, detects downlink control information, and controls the control unit 202. Output to. Control unit 202 outputs the PDSCH and channel estimation value to signal detection unit 2043.
 信号検出部2043は、PDSCHおよびチャネル推定値を用いて、信号検出し、上位層処理部201に出力する。MUSTをサポートする端末装置2Aは、信号検出部2043に、干渉信号を除去または抑圧する機能を有する。端末装置2Aの信号検出部2043は、干渉となるPDSCH2を除去または抑圧後、PDSCH1を復調および復号を行なう。端末装置2Bは、PDSCH2を復調および復号を行なう。MUSTをサポートする端末装置2Bは、信号検出部2043に、干渉信号を除去または抑圧する機能を備えても良い。 The signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201. The terminal apparatus 2A that supports MUST has a function of removing or suppressing an interference signal in the signal detection unit 2043. The signal detection unit 2043 of the terminal device 2A demodulates and decodes PDSCH1 after removing or suppressing PDSCH2 that causes interference. The terminal device 2B demodulates and decodes PDSCH2. The terminal device 2B that supports MUST may be provided with a function of removing or suppressing the interference signal in the signal detection unit 2043.
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成する。送信部203は、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)や上りリンク制御信号を符号化および変調して、PUCCHおよびPUSCHを生成する。前記PUSCHは、DS、SPSに応じて、C-RNTI、SPS C-RNTIを用いて暗号化(スクランブリング)される。送信部203は、PUCCH、PUSCHおよび生成した上りリンク参照信号を多重し、送信アンテナ206を介して基地局装置1Aに送信する。 The transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202. The transmission unit 203 encodes and modulates the uplink data (transport block) and the uplink control signal input from the higher layer processing unit 201 to generate PUCCH and PUSCH. The PUSCH is encrypted (scrambled) using C-RNTI and SPS C-RNTI according to DS and SPS. Transmitting section 203 multiplexes PUCCH, PUSCH and the generated uplink reference signal, and transmits them to base station apparatus 1A via transmitting antenna 206.
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報を畳み込み符号化、ブロック符号化等の符号化を行なう。符号化部2031は、スケジューリングに用いられる情報に基づき、PUSCHをターボ符号化の符号化を行なう。 The encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201. The encoding unit 2031 performs turbo encoding encoding of the PUSCH based on information used for scheduling.
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。 The modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
 上りリンク参照信号生成部2033は、基地局装置1Aを識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。 The uplink reference signal generation unit 2033 has a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging an uplink reference signal, and an uplink grant. A sequence determined by a predetermined rule (formula) is generated on the basis of the cyclic shift and the parameter value for generating the DMRS sequence notified in (1).
 多重部2034は、制御部202から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)する。多重部2034は、PUCCHとPUSCHの信号と上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、PUCCHとPUSCHの信号と上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。 The multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT). The multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the uplink reference signal in the resource element for each transmission antenna port.
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行ない、SC-FDMAシンボルを生成する。無線送信部2035は、前記SC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成する。さらに、無線送信部2035は、前記ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送信アンテナ206を介して基地局装置1Aに送信する。 The radio transmission unit 2035 performs inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, and generates an SC-FDMA symbol. The radio transmission unit 2035 adds a CP to the SC-FDMA symbol to generate a baseband digital signal. Further, the radio transmission unit 2035 converts the baseband digital signal into an analog signal, removes an extra frequency component, converts it into a carrier frequency by up-conversion, amplifies the power, and transmits a base station via the transmission antenna 206. Transmit to device 1A.
 図5は、本実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの例を示す図である。基地局装置1Aは、端末装置2A、2BからUE Capabilityを受信する(S101)。基地局装置1Aは、前記UE Capabilityから、端末装置2A、2BがMUSTをサポートするか、SPSをサポートするか、を把握する。前記UE Capabilityは、複数のMUSTに対応する機能を含めることができる。基地局装置1Aは、RRCシグナリング等を用いて、端末装置2A、2Bに無線リソースに関する各種設定情報を送信する(S102)。基地局装置1Aは、設定情報として、各端末装置に割り当てたC-RNTIを通知する。基地局装置1Aは、MUSTをサポートする端末装置に対して、MUSTアシスト情報を通知する。基地局装置1Aは、SPSをサポートしている端末装置に対して、SPS設定情報を通知する。前記SPS設定情報は、SPS C-RNTIが含まれる。 FIG. 5 is a diagram illustrating an example of a flowchart in which the base station apparatus according to the present embodiment performs multiuser superimposed transmission. The base station device 1A receives the UE capability from the terminal devices 2A and 2B (S101). From the UE capability, the base station device 1A grasps whether the terminal devices 2A and 2B support MUST or SPS. The UE capability can include a function corresponding to a plurality of MUSTs. The base station apparatus 1A transmits various setting information related to radio resources to the terminal apparatuses 2A and 2B using RRC signaling or the like (S102). The base station apparatus 1A notifies the C-RNTI assigned to each terminal apparatus as setting information. 1 A of base station apparatuses notify MUST assist information with respect to the terminal device which supports MUST. 1 A of base station apparatuses notify SPS setting information with respect to the terminal device which supports SPS. The SPS setting information includes SPS C-RNTI.
 基地局装置1Aは、端末装置2Aおよび2B宛てに送信する下りリンクデータが発生した場合(S103)、Near-UEに該当する端末装置2AがSPSをサポートするか否かを判断する(S104)。端末装置2Aから受信したSPSのサポートに関する情報に基づいて判断する。S104において、基地局装置1Aは、端末装置2AからSPSのサポートに関する情報を受信したか否かで判断することもできる。S104において、基地局装置1Aは、端末装置2A宛てのSPS設定情報に含まれるSPSのセットアップ/リリースの設定に基づいて、判断しても良い。基地局装置1Aは、端末装置2A宛ての下りリンク制御情報によって示されるSPSの活性化/解除の設定に基づいて、判断しても良い。 When the downlink data to be transmitted to the terminal devices 2A and 2B is generated (S103), the base station device 1A determines whether the terminal device 2A corresponding to the Near-UE supports SPS (S104). The determination is made based on the SPS support information received from the terminal device 2A. In S104, the base station apparatus 1A can also determine whether or not information related to SPS support has been received from the terminal apparatus 2A. In S104, the base station apparatus 1A may make a determination based on the SPS setup / release setting included in the SPS setting information addressed to the terminal apparatus 2A. The base station apparatus 1A may make a determination based on the setting of SPS activation / release indicated by the downlink control information addressed to the terminal apparatus 2A.
 端末装置2AがSPSをサポートしていると判断した場合(S104のYES)、基地局装置1Aは、直交多元接続(OMA)を用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S105)。この場合、基地局装置1Aは、非直交多元接続(MUST)を用いず、端末装置2Aおよび2Bに下りリンクデータを送信する。基地局装置1Aは、下りリンクデータの要求品質(QoS、音声データ、など)に応じて、端末装置2A/端末装置2Bへ送信する下りリンクデータを、SPS C-RNTI/C-RNTIでスクランブリングする。なお、基地局装置は、S104において、前記無線リソース部1011で設定されたMUSTに関する情報/SPSに関する情報を考慮することもできる。例えば、基地局装置は、端末装置からSPSに対応しているMUSTをサポートすることを示す情報を受信している場合、該端末装置にMUSTを用いて下りリンクデータを送信することを選択することもできる。 When it is determined that the terminal device 2A supports SPS (YES in S104), the base station device 1A transmits downlink data to the terminal devices 2A and 2B using orthogonal multiple access (OMA) (S105). ). In this case, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B without using non-orthogonal multiple access (MUST). The base station apparatus 1A scrambles the downlink data to be transmitted to the terminal apparatus 2A / terminal apparatus 2B with SPS C-RNTI / C-RNTI according to the required quality (QoS, voice data, etc.) of the downlink data. To do. In addition, the base station apparatus can also consider the information regarding MUST / information regarding SPS set in the radio | wireless resource part 1011 in S104. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
 端末装置2は、基地局装置1Aから受信した無線リソースに関する情報、下りリンク制御情報に基づいて、下りリンクデータを受信する(干渉除去または抑圧、復調、復号処理など)。SPSをサポートする端末装置2Aは、受信した下りリンクデータはOMAにより送信されている(MUSTにより多重されていない)と想定し、受信処理を行なう。MUSTをサポートする端末装置2Aは、DSを用いて下りリンクデータが送信されている(SPSを用いず、下りリンクが送信される)と想定し、受信処理を行なっても良い。 The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information. The terminal device 2A that supports SPS performs reception processing assuming that the received downlink data is transmitted by OMA (not multiplexed by MUST). The terminal apparatus 2A that supports MUST may perform reception processing on the assumption that downlink data is transmitted using DS (a downlink is transmitted without using SPS).
 S104において、端末装置2AがSPSをサポートしていないと判断した場合(S104のNO)、基地局装置1Aは、MUSTまたはOMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S106)。端末装置2Aへ送信する下りリンクデータは、該端末装置に割当てられたC-RNTIでスクランブリングされる。端末装置2Bへ送信する下りリンクデータは、該下りリンクデータの要求品質に応じて、該端末装置に割当てられたC-RNTI/SPS C-RNTIでスクランブリングされる。 If it is determined in S104 that the terminal apparatus 2A does not support SPS (NO in S104), the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using MUST or OMA (S106). ). The downlink data transmitted to the terminal device 2A is scrambled by the C-RNTI assigned to the terminal device. The downlink data transmitted to the terminal device 2B is scrambled by the C-RNTI / SPS C-RNTI assigned to the terminal device according to the required quality of the downlink data.
 図6は、本実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。S201~S203は、図5のS101~S103と同様の処理である。基地局装置1Aは、端末装置2Aおよび2B宛てに送信する下りリンクデータが発生した場合(S203)、端末装置2A/端末装置2BがMUSTをサポートするか否かを判断する(S204)。S204において、基地局装置1Aは、端末装置宛てのMUST設定情報に含まれるセットアップ/リリースの設定に基づいて、判断しても良い。 FIG. 6 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission. S201 to S203 are the same processes as S101 to S103 in FIG. When downlink data to be transmitted to the terminal devices 2A and 2B is generated (S203), the base station device 1A determines whether the terminal device 2A / terminal device 2B supports MUST (S204). In S204, the base station apparatus 1A may make a determination based on the setup / release setting included in the MUST setting information addressed to the terminal apparatus.
 S204において、MUSTをサポートする端末装置がある場合、基地局装置1Aは、MUSTをサポートする端末装置に対して、DSを用いて下りリンクデータを送信する(S205)。基地局装置1Aは、MUSTをサポートする端末装置に対して、SPSを用いずに、下りリンクデータを送信する。 In S204, when there is a terminal device supporting MUST, the base station device 1A transmits downlink data using DS to the terminal device supporting MUST (S205). The base station apparatus 1A transmits downlink data to a terminal apparatus that supports MUST without using SPS.
 端末装置2は、基地局装置1Aから受信した無線リソースに関する情報、下りリンク制御情報に基づいて、下りリンクデータを受信する(干渉除去または抑圧、復調、復号処理など)。SPSをサポートする端末装置2Aは、受信した下りリンクデータはOMAにより送信されている(MUSTにより多重されていない)と想定し、受信処理を行なう。MUSTをサポートする端末装置2Aは、DSを用いて下りリンクデータが送信されている(SPSを用いず、下りリンクが送信される)と想定し、受信処理を行なっても良い。 The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information. The terminal device 2A that supports SPS performs reception processing assuming that the received downlink data is transmitted by OMA (not multiplexed by MUST). The terminal apparatus 2A that supports MUST may perform reception processing on the assumption that downlink data is transmitted using DS (a downlink is transmitted without using SPS).
 S204において、基地局装置1Aは、端末装置2Aおよび端末装置2Bのうち、すくなくとも1つがMUSTをサポートしている場合、基地局装置1Aは、ダイナミックスケジューリング(DS)を用いて、端末装置2A/端末装置2Bに下りリンクデータを送信するようにしても良い。この場合、端末装置2Aおよび端末装置2Bへ送信される下りリンクデータは、C-RNTIでスクランブルされる。 In S204, if at least one of the terminal device 2A and the terminal device 2B supports MUST, the base station device 1A uses the dynamic scheduling (DS) to determine the terminal device 2A / terminal. You may make it transmit downlink data to the apparatus 2B. In this case, the downlink data transmitted to the terminal device 2A and the terminal device 2B is scrambled by C-RNTI.
 S204において、端末装置がMUSTをサポートしていないと判断した場合、基地局装置1Aは、DSまたはSPSを用いて、端末装置2A/端末装置2BにMUSTを用いずに、下りリンクデータを送信する(S206)。例えば、基地局装置1Aは、DSまたはSPSを用いて、OMAで下りリンクデータを送信する。なお、基地局装置は、S204において、前記無線リソース部1011で設定されたMUSTに関する情報/SPSに関する情報を考慮することもできる。例えば、基地局装置は、端末装置からSPSに対応しているMUSTをサポートすることを示す情報を受信している場合、該端末装置にMUSTを用いて下りリンクデータを送信することを選択することもできる。 If it is determined in S204 that the terminal device does not support MUST, the base station device 1A transmits downlink data to the terminal device 2A / terminal device 2B using DS or SPS without using MUST. (S206). For example, the base station apparatus 1A transmits downlink data by OMA using DS or SPS. Note that the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S204. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
 図7は、本実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。基地局装置1Aは、端末装置2A、2BからUE Capabilityを受信する(S301)。基地局装置1Aは、前記UE Capabilityから、端末装置2A、2BがMUSTをサポートするか、SPSをサポートするか、を把握する。前記UE Capabilityは、複数のMUSTに対応する機能を含めることができる。基地局装置1Aは、RRCシグナリング等を用いて、端末装置2A、2Bに各種設定情報を送信する(S302)。基地局装置1Aは、設定情報として、各端末装置に対して、C-RNTIを通知する。基地局装置1Aは、MUSTをサポートする端末装置に対して、MUSTアシスト情報を通知する。基地局装置1Aは、SPSをサポートしている端末装置に対して、SPS設定情報を通知する。前記SPS設定情報は、SPS C-RNTIが含まれる。 FIG. 7 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission. The base station device 1A receives the UE capability from the terminal devices 2A and 2B (S301). From the UE capability, the base station device 1A grasps whether the terminal devices 2A and 2B support MUST or SPS. The UE capability can include a function corresponding to a plurality of MUSTs. The base station apparatus 1A transmits various setting information to the terminal apparatuses 2A and 2B using RRC signaling or the like (S302). The base station apparatus 1A notifies each terminal apparatus of C-RNTI as setting information. 1 A of base station apparatuses notify MUST assist information with respect to the terminal device which supports MUST. 1 A of base station apparatuses notify SPS setting information with respect to the terminal device which supports SPS. The SPS setting information includes SPS C-RNTI.
 基地局装置1Aは、端末装置2Aから、MUSTをサポートすることを示す情報を受信した場合で説明する。基地局装置1Aは、端末装置2Aおよび2B宛てに送信する下りリンクデータが発生した場合(S303)、Near-UEに該当する端末装置2AがSPSを用いて、該下りリンクデータを送信するか否かを判断する(S304)。例えば、基地局装置1Aは、端末装置2A宛ての下りリンクデータが音声データの場合、SPSを用いて該下りリンクデータを送信すると判断する。 The base station apparatus 1A will be described in the case where information indicating that MUST is supported is received from the terminal apparatus 2A. When downlink data to be transmitted to the terminal devices 2A and 2B is generated (S303), the base station device 1A determines whether the terminal device 2A corresponding to the Near-UE transmits the downlink data using SPS. Is determined (S304). For example, when the downlink data addressed to the terminal device 2A is voice data, the base station device 1A determines to transmit the downlink data using SPS.
 端末装置2AにSPSを用いて下りリンクデータを送信すると判断した場合、基地局装置1Aは、OMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S305)。基地局装置1Aは、MUSTを用いず、端末装置2Aおよび2Bに下りリンクデータを送信する。基地局装置1Aは、SPS C-RNTIでスクランブリングした下りリンクデータを端末装置2Aへ送信する。基地局装置1Aは、下りリンクデータの要求品質に応じて、端末装置2Bへ送信する下りリンクデータを、SPS C-RNTI/C-RNTIでスクランブリングする。 When it is determined that the downlink data is transmitted to the terminal device 2A using SPS, the base station device 1A transmits the downlink data to the terminal devices 2A and 2B using OMA (S305). The base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B without using MUST. The base station apparatus 1A transmits downlink data scrambled by the SPS C-RNTI to the terminal apparatus 2A. The base station apparatus 1A scrambles the downlink data to be transmitted to the terminal apparatus 2B using the SPS C-RNTI / C-RNTI according to the required quality of the downlink data.
 端末装置2は、基地局装置1Aから受信した無線リソースに関する情報、下りリンク制御情報に基づいて、下りリンクデータを受信する(干渉除去または抑圧、復調、復号処理など)。端末装置2Aは、SPSで下りリンクデータを受信した場合(SPS C-RNTIでデスクランブルした場合)、該下りリンクデータがOMAにより送信されている(MUSTにより多重されていない)と想定し、受信処理を行なう。MUSTで下りリンクデータを受信した場合、端末装置2Aは、DSを用いて、該下りリンクデータが送信されている(SPSを用いず、下りリンクが送信される)と想定し、受信処理を行なっても良い。 The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information. When receiving downlink data by SPS (when descrambling by SPS C-RNTI), the terminal device 2A assumes that the downlink data is transmitted by OMA (not multiplexed by MUST), and is received. Perform processing. When the downlink data is received by MUST, the terminal apparatus 2A performs reception processing on the assumption that the downlink data is transmitted using the DS (the downlink is transmitted without using the SPS). May be.
 S304において、端末装置2AにSPSを用いずに下りリンクデータを送信すると判断した場合(例えば、DSを用いて下りリンクデータを送信すると判断した場合)、基地局装置1Aは、端末装置2Aおよび2Bに、MUSTを用いた下りリンクデータ送信を選択できる(S306)。基地局装置1Aが、MUSTを用いて下りリンクデータを送信する場合、基地局装置1Aは、C-RNTIでスクランブリングした下りリンクデータを端末装置2Aへ送信する。基地局装置1Aは、下りリンクデータの品質に応じて、端末装置2Bへ送信する下りリンクデータを、SPS C-RNTI/C-RNTIでスクランブリングする。なお、基地局装置は、S304において、前記無線リソース部1011で設定されたMUSTに関する情報/SPSに関する情報を考慮することもできる。例えば、基地局装置は、端末装置からSPSに対応しているMUSTをサポートすることを示す情報を受信している場合、該端末装置にMUSTを用いて下りリンクデータを送信することを選択することもできる。 In S304, when it is determined that downlink data is transmitted to the terminal device 2A without using SPS (for example, when it is determined that downlink data is transmitted using DS), the base station device 1A receives the terminal devices 2A and 2B. In addition, downlink data transmission using MUST can be selected (S306). When the base station apparatus 1A transmits downlink data using MUST, the base station apparatus 1A transmits downlink data scrambled by C-RNTI to the terminal apparatus 2A. The base station apparatus 1A scrambles the downlink data to be transmitted to the terminal apparatus 2B using the SPS C-RNTI / C-RNTI according to the quality of the downlink data. Note that the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S304. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
 図8は、本実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。S401~S403は、図7のS301~S303と同様の処理である。 FIG. 8 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission. S401 to S403 are the same processes as S301 to S303 in FIG.
 基地局装置1Aは、端末装置2Aから、MUSTをサポートすることを示す情報を受信した場合で説明する。基地局装置1Aは、端末装置2Aおよび2B宛てに送信する下りリンクデータが発生した場合(S403)、MUSTを用いて該下りリンクデータを送信するか否か判断する(S404)。MUSTを用いて端末装置2Aおよび2Bの下りリンクデータを送信する場合、基地局装置1Aは、DSを用いて、端末装置2Aへ下りリンクデータを送信する(S405)。基地局装置1Aは、C-RNTIでスクランブリングした下りリンクデータを端末装置2Aへ送信する。基地局装置1Aは、下りリンクデータの要求品質に応じて、端末装置2Bへ送信する下りリンクデータを、SPS C-RNTI/C-RNTIでスクランブリングする。 The base station apparatus 1A will be described in the case where information indicating that MUST is supported is received from the terminal apparatus 2A. When downlink data to be transmitted to the terminal devices 2A and 2B is generated (S403), the base station device 1A determines whether to transmit the downlink data using MUST (S404). When transmitting downlink data of the terminal apparatuses 2A and 2B using MUST, the base station apparatus 1A transmits downlink data to the terminal apparatus 2A using DS (S405). The base station apparatus 1A transmits downlink data scrambled by C-RNTI to the terminal apparatus 2A. The base station apparatus 1A scrambles the downlink data to be transmitted to the terminal apparatus 2B using the SPS C-RNTI / C-RNTI according to the required quality of the downlink data.
 端末装置2は、基地局装置1Aから受信した無線リソースに関する情報、下りリンク制御情報に基づいて、下りリンクデータを受信する(干渉除去または抑圧、復調、復号処理など)。端末装置2Aは、SPSで下りリンクデータを受信した場合(SPS C-RNTIでデスクランブルした場合)、該下りリンクデータがOMAにより送信されている(MUSTにより多重されていないと想定し、受信処理を行なう。MUSTで下りリンクデータを受信した場合、端末装置2Aは、DSを用いて、該下りリンクデータが送信されている(SPSを用いず、下りリンクが送信される)と想定し、受信処理を行なっても良い。 The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information. When receiving downlink data with SPS (when descrambled with SPS C-RNTI), the terminal device 2A assumes that the downlink data is transmitted with OMA (it is assumed that it has not been multiplexed with MUST, and reception processing) When the downlink data is received by MUST, the terminal apparatus 2A receives the data by assuming that the downlink data is transmitted using the DS (the downlink is transmitted without using the SPS). Processing may be performed.
 S404において、MUSTを用いずに下りリンクデータを送信する場合、基地局装置1Aは、下りリンクデータの品質に要求応じて、DSまたはSPSを用いて、端末装置2Aおよび2Bへ下りリンクデータを送信する(S406)。なお、基地局装置は、S404において、前記無線リソース部1011で設定されたMUSTに関する情報/SPSに関する情報を考慮することもできる。例えば、基地局装置は、端末装置からSPSに対応しているMUSTをサポートすることを示す情報を受信している場合、該端末装置にMUSTを用いて下りリンクデータを送信することを選択することもできる。 When transmitting downlink data without using MUST in S404, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using DS or SPS according to the request for the quality of the downlink data. (S406). Note that the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S404. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
 SPSにおいて、基地局装置は、下りリンクアサインメント(例えば、PDCCH)を送信することなく、セミパーシステントスケジューリング間隔に基づいて、下りリンクデータを送信する。端末装置は、該セミパーシステントスケジューリング間隔に基づいて、下りリンクアサインメントを受信することなく、下りリンクデータを受信する。本実施形態では、少なくともNear-UEに対して、SPSを用いてデータを送信する場合、基地局装置は、OMAを選択して、下りリンクデータを送信する(MUSTを用いず、下りリンクデータを送信する)。これにより、本実施形態に係るSPSを有する通信システムは、電力割当て情報などのMUST適用に伴う制御信号の追加を減らすことができる。また、本実施形態に係る通信システムは、SPSにおいて、ブラインドデコーディングにMUSTの適用有無を含まないため、MUSTを適用による端末装置の負荷の増加を抑えることができる。 In SPS, the base station apparatus transmits downlink data based on a semi-persistent scheduling interval without transmitting a downlink assignment (for example, PDCCH). The terminal apparatus receives downlink data without receiving a downlink assignment based on the semi-persistent scheduling interval. In this embodiment, when transmitting data using SPS to at least Near-UE, the base station apparatus selects OMA and transmits downlink data (without using MUST, downlink data is transmitted). Send). Thereby, the communication system which has SPS which concerns on this embodiment can reduce the addition of the control signal accompanying MUST application, such as power allocation information. Also, since the communication system according to the present embodiment does not include the presence or absence of application of MUST in blind decoding in SPS, it is possible to suppress an increase in the load on the terminal device due to application of MUST.
 (第2の実施形態)
 図9は、本実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの例を示す図である。本実施形態に係る基地局装置、端末装置は各々、図2、図3と同様の構成を有する。以下、主として、第1の実施形態からの相違点/追加点を説明する。
(Second Embodiment)
FIG. 9 is a diagram illustrating an example of a flowchart in which the base station apparatus according to the present embodiment performs multiuser superimposed transmission. Each of the base station apparatus and the terminal apparatus according to the present embodiment has the same configuration as that shown in FIGS. Hereinafter, differences / additional points from the first embodiment will be mainly described.
 図9において、基地局装置1Aは、基地局装置1Aは、端末装置2A、2BからUE Capabilityを受信する(S501)。基地局装置1Aは、前記UE Capabilityから、端末装置2A、2BがMUSTをサポートするか、SPSをサポートするか、を把握する。前記UE Capabilityは、複数のMUSTに対応する機能を含めることができる。基地局装置1Aは、RRCシグナリング等を用いて、端末装置2A、2Bに各種設定情報を送信する(S502)。基地局装置1Aは、設定情報として、各端末装置に割り当てたC-RNTIを通知する。基地局装置1Aは、MUSTをサポートする端末装置に対して、MUSTアシスト情報を通知する。基地局装置1Aは、SPSをサポートしている端末装置に対して、SPS設定情報を通知する。前記SPS設定情報は、SPS C-RNTIが含まれる。 In FIG. 9, the base station apparatus 1A receives the UE capability from the terminal apparatuses 2A and 2B (S501). From the UE capability, the base station device 1A grasps whether the terminal devices 2A and 2B support MUST or SPS. The UE capability can include a function corresponding to a plurality of MUSTs. The base station device 1A transmits various setting information to the terminal devices 2A and 2B using RRC signaling or the like (S502). The base station apparatus 1A notifies the C-RNTI assigned to each terminal apparatus as setting information. 1 A of base station apparatuses notify MUST assist information with respect to the terminal device which supports MUST. 1 A of base station apparatuses notify SPS setting information with respect to the terminal device which supports SPS. The SPS setting information includes SPS C-RNTI.
 端末装置2Aおよび2B宛てに送信する下りリンクデータが発生した場合(S503)、基地局装置1Aは、Near-UEに該当する端末装置2AがSPSを用いた該下りリンクデータの送信か否か判断する(S504)。S504において、SPSを用いず下りリンクデータを送信すると判断した場合(例えば、DSを用いて下りリンクデータを送信する場合)、基地局装置1Aは、MUSTまたはOMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S507)。 When downlink data to be transmitted to the terminal devices 2A and 2B is generated (S503), the base station device 1A determines whether the terminal device 2A corresponding to Near-UE is transmitting the downlink data using SPS. (S504). In S504, when it is determined that downlink data is transmitted without using SPS (for example, when downlink data is transmitted using DS), base station apparatus 1A uses MUST or OMA to make terminal apparatuses 2A and 2B. The downlink data is transmitted to (S507).
 S504において、SPSを用いて下りリンクデータを送信すると判断した場合、Far-UEに該当する端末装置2BがSPSを用いた下りリンクデータの送信か否か判断する(S505)。S505において、SPSを用いて下りリンクデータを送信すると判断した場合、基地局装置1Aは、MUSTまたはOMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S507)。端末装置2は、基地局装置1Aから受信した無線リソースに関する情報、下りリンク制御情報に基づいて、下りリンクデータを受信する(干渉除去または抑圧、復調、復号処理など)。 When it is determined in S504 that downlink data is transmitted using SPS, the terminal device 2B corresponding to the Far-UE determines whether or not downlink data is transmitted using SPS (S505). If it is determined in S505 that downlink data is transmitted using SPS, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using MUST or OMA (S507). The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
 S505において、SPSを用いず下りリンクデータを送信すると判断した場合(例えば、DSを用いて下りリンクデータを送信する場合)、基地局装置1Aは、OMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S506)。図9の処理により、基地局装置1Aは、Near-UEがDSを用いて送信する場合またはNear-UEおよびFar-UEの両方がSPSを用いて送信する場合に、MUSTを用いて下りリンクデータを送信することが可能となる。なお、基地局装置は、S504において、前記無線リソース部1011で設定されたMUSTに関する情報/SPSに関する情報を考慮することもできる。例えば、基地局装置は、端末装置からSPSに対応しているMUSTをサポートすることを示す情報を受信している場合、該端末装置にMUSTを用いて下りリンクデータを送信することを選択することもできる。 In S505, when it is determined that downlink data is transmitted without using SPS (for example, when downlink data is transmitted using DS), base station apparatus 1A uses OMA to transmit to terminal apparatuses 2A and 2B. Link data is transmitted (S506). By the processing of FIG. 9, the base station apparatus 1A uses the MUST to transmit downlink data when the Near-UE transmits using DS or when both the Near-UE and Far-UE transmit using SPS. Can be transmitted. Note that the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S504. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
 図10は、本実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。S601~S603は、図7のS501~S503と同様の処理である。 FIG. 10 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission. S601 to S603 are the same processes as S501 to S503 in FIG.
 図10において、端末装置2Aおよび2B宛てに送信する下りリンクデータが発生した場合(S603)、基地局装置1Aは、Near-UEに該当する端末装置2AがSPSを用いた該下りリンクデータの送信か否か判断する(S604)。S604において、SPSを用いず下りリンクデータを送信すると判断した場合(例えば、DSを用いて下りリンクデータを送信する場合)、基地局装置1Aは、MUSTまたはOMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S607)。 In FIG. 10, when downlink data to be transmitted to the terminal devices 2A and 2B is generated (S603), the base station device 1A transmits the downlink data using the SPS by the terminal device 2A corresponding to Near-UE. It is determined whether or not (S604). In S604, when it is determined that downlink data is transmitted without using SPS (for example, when downlink data is transmitted using DS), the base station apparatus 1A uses the MUST or OMA to transmit the terminal apparatuses 2A and 2B. The downlink data is transmitted to (S607).
 S604において、SPSを用いて下りリンクデータを送信すると判断した場合、Far-UEに該当する端末装置2BがSPSを用いた下りリンクデータの送信か否か、を判断する(S605)。S605において、SPSを用いず下りリンクデータを送信すると判断した場合、基地局装置1Aは、OMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S608)。端末装置2は、基地局装置1Aから受信した無線リソースに関する情報、下りリンク制御情報に基づいて、下りリンクデータを受信する(干渉除去または抑圧、復調、復号処理など)。 When it is determined in S604 that downlink data is transmitted using SPS, the terminal apparatus 2B corresponding to the Far-UE determines whether or not downlink data is transmitted using SPS (S605). If it is determined in S605 that downlink data is to be transmitted without using SPS, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using OMA (S608). The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
 S605において、SPSを用いて下りリンクデータを送信すると判断した場合、基地局装置1Aは、Near-UEとFar-UEのSPS間隔の設定が同じか否か、を判断する(S606)。例えば、基地局装置1Aは、端末装置2Aと端末装置2BのsemiPersistSchedIntervalDLの設定を比較する。SPS間隔の設定が同じである場合、基地局装置1Aは、MUSTまたはOMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S607)。基地局装置1Aは、前記SPS間隔が同じか否かを示す情報を端末装置に送信することもできる。一方、SPS間隔が異なる場合、基地局装置1Aは、OMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S608)。図10の処理により、基地局装置1Aは、Near-UEがDSを用いて送信する場合またはNear-UEおよびFar-UE両方のSPS間隔が同じ場合に、MUSTを用いて下りリンクデータを送信することが可能となる。なお、基地局装置は、S604において、前記無線リソース部1011で設定されたMUSTに関する情報/SPSに関する情報を考慮することもできる。例えば、基地局装置は、端末装置からSPSに対応しているMUSTをサポートすることを示す情報を受信している場合、該端末装置にMUSTを用いて下りリンクデータを送信することを選択することもできる。 When it is determined in S605 that downlink data is transmitted using SPS, the base station apparatus 1A determines whether or not the SPS interval settings of the Near-UE and the Far-UE are the same (S606). For example, the base station device 1A compares the settings of the semiPersistSchedIntervalDL between the terminal device 2A and the terminal device 2B. When the setting of the SPS interval is the same, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using MUST or OMA (S607). 1 A of base station apparatuses can also transmit the information which shows whether the said SPS interval is the same to a terminal device. On the other hand, when the SPS intervals are different, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using OMA (S608). By the processing of FIG. 10, the base station apparatus 1A transmits downlink data using MUST when Near-UE transmits using DS or when the SPS interval of both Near-UE and Far-UE is the same. It becomes possible. Note that the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S604. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
 図11は、本実施形態に係る基地局装置がマルチユーザ重畳送信を行なうフローチャートの別例を示す図である。S701~S704は、図7のS701~S704と同様の処理である。 FIG. 11 is a diagram illustrating another example of a flowchart in which the base station apparatus according to the present embodiment performs multi-user superimposed transmission. S701 to S704 are the same processes as S701 to S704 in FIG.
 S705において、SPSを用いず下りリンクデータを送信すると判断した場合、基地局装置1Aは、OMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S708)。S705において、SPSを用いて下りリンクデータを送信すると判断した場合、基地局装置1Aは、Near-UEとFar-UEのSPS間隔の設定がn倍またはn分の1(nは自然数)か否か、を判断する(S706)。SPS間隔の設定がn倍またはn分の1(nは自然数)である場合(例えば、基地局装置1Aは、端末装置2AのSPS間隔が10サブフレーム、端末装置2BのSPS間隔が20サブフレームの場合)、基地局装置1Aは、MUSTまたはOMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S707)。基地局装置1Aは、前記SPS間隔がn倍またはn分の1か否かを示す情報を端末装置に送信することもできる。基地局装置1Aは、両者のSPS間隔の比を端末装置に送信することもできる。端末装置2は、基地局装置1Aから受信した無線リソースに関する情報、下りリンク制御情報に基づいて、下りリンクデータを受信する(干渉除去または抑圧、復調、復号処理など)。 In S705, when it is determined that downlink data is transmitted without using SPS, the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using OMA (S708). If it is determined in S705 that downlink data is transmitted using SPS, the base station apparatus 1A determines whether the SPS interval setting between Near-UE and Far-UE is n times or 1 / n (n is a natural number). Is determined (S706). When the setting of the SPS interval is n times or 1 / n (n is a natural number) (for example, in the base station device 1A, the SPS interval of the terminal device 2A is 10 subframes, and the SPS interval of the terminal device 2B is 20 subframes) ), The base station device 1A transmits downlink data to the terminal devices 2A and 2B using MUST or OMA (S707). The base station apparatus 1A can also transmit information indicating whether the SPS interval is n times or 1 / n to the terminal apparatus. 1 A of base station apparatuses can also transmit ratio of both SPS space | interval to a terminal device. The terminal device 2 receives downlink data (interference removal or suppression, demodulation, decoding processing, etc.) based on the radio resource information received from the base station device 1A and the downlink control information.
 一方、SPS間隔の設定がn倍およびn分の1(nは自然数)でない場合(例えば、基地局装置1Aは、端末装置2AのSPS間隔が10サブフレーム、端末装置2BのSPS間隔が32サブフレームの場合)、基地局装置1Aは、OMAを用いて、端末装置2Aおよび2Bに下りリンクデータを送信する(S708)。図11の処理により、基地局装置1Aは、Near-UEがDSを用いて送信する場合またはNear-UEおよびFar-UE両方のSPS間隔の設定がn倍またはn分の1(nは自然数)である場合に、MUSTを用いて下りリンクデータを送信することが可能となる。なお、基地局装置は、S704において、前記無線リソース部1011で設定されたMUSTに関する情報/SPSに関する情報を考慮することもできる。例えば、基地局装置は、端末装置からSPSに対応しているMUSTをサポートすることを示す情報を受信している場合、該端末装置にMUSTを用いて下りリンクデータを送信することを選択することもできる。 On the other hand, when the setting of the SPS interval is not n times or 1 / n (n is a natural number) (for example, in the base station apparatus 1A, the SPS interval of the terminal apparatus 2A is 10 subframes, and the SPS interval of the terminal apparatus 2B is 32 subframes) In the case of a frame), the base station apparatus 1A transmits downlink data to the terminal apparatuses 2A and 2B using OMA (S708). With the processing in FIG. 11, when the Near-UE transmits using DS, the base station apparatus 1A sets the SPS interval of both Near-UE and Far-UE to n times or 1 / n (n is a natural number) In this case, downlink data can be transmitted using MUST. Note that the base station apparatus can also consider the information on MUST / information on SPS set in the radio resource unit 1011 in S704. For example, when the base station apparatus receives information indicating that MUST supporting SPS is supported from the terminal apparatus, the base station apparatus selects to transmit downlink data to the terminal apparatus using MUST. You can also.
 本実施形態では、Near-UEおよびFar-UEが共にSPSを用いてデータを送信する場合、基地局装置は、MUSTを選択して、下りリンクデータを送信することができる。これにより、本実施形態に係るSPSを有する通信システムは、電力割当て情報などのMUST適用に伴う制御信号の追加を減らすことができる。また、本実施形態に係る通信システムは、SPSにおいて、ブラインドデコーディングにMUSTの適用有無を含まないため、MUSTを適用による端末装置の負荷の増加を抑えることができる。 In this embodiment, when both Near-UE and Far-UE transmit data using SPS, the base station apparatus can select MUST and transmit downlink data. Thereby, the communication system which has SPS which concerns on this embodiment can reduce the addition of the control signal accompanying MUST application, such as power allocation information. Also, since the communication system according to the present embodiment does not include the presence or absence of application of MUST in blind decoding in SPS, it is possible to suppress an increase in the load on the terminal device due to application of MUST.
 本実施形態に係る通信システムにおいて、Near-UEがSPSでデータを送信すると判断(図9のS504、図10のS604、図11のS704)の後、基地局装置1Aは、Near-UEのSPSが初送か否かの判断を加えても良い。Near-UEのSPSが初送の場合、基地局装置1Aは、Far-UEがSPSでデータを送信するか否か、の判断に遷移する(図9のS505、図10のS605、図11のS705)。Near-UEのSPSが再送の場合、基地局装置1Aは、OMAを用いて、下りリンクデータを送信する(図9のS506、図10のS608、図11のS708)。これにより、本実施形態に係るSPSを有する通信システムは、電力割当て情報などのMUST適用に伴う制御信号の追加を減らすことができる。また、本実施形態に係る通信システムは、SPSにおいて、ブラインドデコーディングにMUSTの適用有無を含まないため、MUSTを適用による端末装置の負荷の増加を抑えることができる。 In the communication system according to the present embodiment, after determining that the Near-UE transmits data by SPS (S504 in FIG. 9, S604 in FIG. 10, S704 in FIG. 11), the base station apparatus 1A performs the SPS of the Near-UE. It may be determined whether or not is the first transmission. When the SPS of the Near-UE is the first transmission, the base station apparatus 1A transitions to the determination of whether or not the Far-UE transmits data by SPS (S505 in FIG. 9, S605 in FIG. 10, and FIG. S705). When the Near-UE SPS is retransmitted, the base station apparatus 1A transmits downlink data using OMA (S506 in FIG. 9, S608 in FIG. 10, and S708 in FIG. 11). Thereby, the communication system which has SPS which concerns on this embodiment can reduce the addition of the control signal accompanying MUST application, such as power allocation information. Also, since the communication system according to the present embodiment does not include the presence or absence of application of MUST in blind decoding in SPS, it is possible to suppress an increase in the load on the terminal device due to application of MUST.
 本実施形態に係る通信システムにおいて、Near-UEがSPSでデータを送信すると判断(図9のS504、図10のS604、図11のS704)の後、基地局装置1Aは、Near-UEに下りリンク制御信号(例えば、PDCCH)を送信するか否かの判断を加えても良い。SPSにおいてPDCCHの送信を伴う場合として、SPS設定を修正する場合や再送する場合がある。基地局装置1Aは、SPSにおいてPDCCHの送信を伴う場合、基地局装置1Aは、Far-UEがSPSでデータを送信するか否か、の判断に遷移することもできる(図9のS505、図10のS605、図11のS705)。SPSにおいてPDCCHの送信を伴わない場合、基地局装置1Aは、OMAを用いて、下りリンクデータを送信する(図9のS506、図10のS608、図11のS708)。これにより、本実施形態に係るSPSを有する通信システムは、電力割当て情報などのMUST適用に伴う制御信号の追加を減らすことができる。また、本実施形態に係る通信システムは、SPSにおいて、ブラインドデコーディングにMUSTの適用有無を含まないため、MUSTを適用による端末装置の負荷の増加を抑えることができる。 In the communication system according to the present embodiment, after determining that the Near-UE transmits data by SPS (S504 in FIG. 9, S604 in FIG. 10, S704 in FIG. 11), the base station apparatus 1A downloads to the Near-UE. A determination as to whether to transmit a link control signal (for example, PDCCH) may be added. As SPS accompanying transmission of PDCCH, there are cases where SPS settings are modified or retransmitted. When the base station apparatus 1A is accompanied by transmission of PDCCH in the SPS, the base station apparatus 1A can also make a transition to the determination of whether or not the Far-UE transmits data in the SPS (S505 in FIG. 10 S605, FIG. 11 S705). When PDCCH transmission is not performed in SPS, base station apparatus 1A transmits downlink data using OMA (S506 in FIG. 9, S608 in FIG. 10, and S708 in FIG. 11). Thereby, the communication system which has SPS which concerns on this embodiment can reduce the addition of the control signal accompanying MUST application, such as power allocation information. Also, since the communication system according to the present embodiment does not include the presence or absence of application of MUST in blind decoding in SPS, it is possible to suppress an increase in the load on the terminal device due to application of MUST.
 基地局装置は、PcellとScellで異なるMUSTの適用のための設定を行なうことができる。例えば、基地局装置1Aは、Pcellにおいて端末装置1AにMUSTアシスト情報を設定した場合、図5~図11の処理により、SPSに関する設定を考慮して、MUST/OMAを用いて下りリンクデータを送信するか判断することができる。一方、基地局装置1Aは、Scellにおいて端末装置1AにMUSTアシスト情報を設定した場合、SPSに関する設定を考慮せずに、MUST/OMAを用いて下りリンクデータを送信するか判断することができる。この場合、PCellにおけるMUSTアシスト情報とScellにおけるMUSTアシスト情報では、設定されるパラメータが異なっても良いし、オプションとなるパラメータが異なっても良い。MUSTアシスト情報が、PCellで設定されているか、Scellで設定されているかで、DCIに含まれるフィールドの解釈が異なっても良い。 The base station apparatus can perform settings for applying different MUSTs in Pcell and Scell. For example, when the base station apparatus 1A sets MUST assist information in the terminal apparatus 1A in the Pcell, the base station apparatus 1A transmits downlink data using MUST / OMA in consideration of the settings related to SPS by the processes in FIGS. You can decide what to do. On the other hand, when the MUST assist information is set in the terminal device 1A in Scell, the base station device 1A can determine whether to transmit downlink data using MUST / OMA without considering the setting related to SPS. In this case, the MUST assist information in the PCell and the MUST assist information in the Scell may have different set parameters or different optional parameters. Depending on whether the MUST assist information is set in the PCell or the Scell, the interpretation of the field included in the DCI may be different.
 本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) or the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention. The program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD). In response, the CPU reads and corrects / writes.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。 In addition, you may make it implement | achieve a part of apparatus in embodiment mentioned above with a computer. In that case, a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium. You may implement | achieve by making a computer system read the program recorded on this recording medium, and executing it. The “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices. The “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 “Computer-readable recording medium” means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、ディジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んで良い。汎用用途プロセッサは、マイクロプロセッサであっても良いし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていても良いし、アナログ回路で構成されていても良い。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits. Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof. A general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine. The electric circuit described above may be configured with a digital circuit or an analog circuit. In addition, when an integrated circuit technology appears to replace the current integrated circuit due to the advancement of semiconductor technology, an integrated circuit based on the technology can be used.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 Note that the present invention is not limited to the above-described embodiment. In the embodiment, an example of the apparatus has been described. However, the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention. The present invention can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. It is. Moreover, it is the element described in each said embodiment, and the structure which substituted the element which has the same effect is also contained.
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。 The present invention is suitable for use in a base station device, a terminal device, and a communication method.
 なお、本国際出願は、2016年3月31日に出願した日本国特許出願第2016-070494号に基づく優先権を主張するものであり、日本国特許出願第2016-070494号の全内容を本国際出願に援用する。 Note that this international application claims priority based on Japanese Patent Application No. 2016-070494 filed on March 31, 2016, and the entire contents of Japanese Patent Application No. 2016-070494 are incorporated herein by reference. Included in international applications.
1A 基地局装置
2A、2B 端末装置
1-1 基地局装置1Aが端末装置と接続可能な範囲
101 上位層処理部
102 制御部
103-1、103-2 送信部
104 受信部
105-1、105-2 送信アンテナ
106-1 受信アンテナ
1011 無線リソース制御部
1012 スケジューリング部
1031 符号化部
1032 変調部
1033 下りリンク参照信号生成部
1034 多重部
1035 無線送信部
1041 無線受信部
1042 多重分離部
1043 復調部
1044 復号部
201 上位層処理部
202 制御部
203 送信部
204 受信部
205 チャネル状態情報生成部
206 送信アンテナ
207 受信アンテナ
2011 無線リソース制御部
2012 スケジューリング情報解釈部
2031 符号化部
2032 変調部
2033 上りリンク参照信号生成部
2034 多重部
2035 無線送信部
2041 無線受信部
2042 多重分離部
2043 信号検出部
1A Base station apparatus 2A, 2B Terminal apparatus 1-1 Range in which base station apparatus 1A can be connected to the terminal apparatus 101 Upper layer processing section 102 Control sections 103-1, 103-2 Transmitting section 104 Receiving sections 105-1, 105- 2 Transmitting antenna 106-1 Receiving antenna 1011 Radio resource control unit 1012 Scheduling unit 1031 Encoding unit 1032 Modulating unit 1033 Downlink reference signal generating unit 1034 Multiplexing unit 1035 Radio transmitting unit 1041 Radio receiving unit 1042 Demultiplexing unit 1043 Demodulating unit 1044 Decoding Unit 201 upper layer processing unit 202 control unit 203 transmission unit 204 reception unit 205 channel state information generation unit 206 transmission antenna 207 reception antenna 2011 radio resource control unit 2012 scheduling information interpretation unit 2031 encoding unit 2032 modulation unit 2033 uplink reference No. generator 2034 multiplexing section 2035 radio transmitting unit 2041 radio reception section 2042 demultiplexing unit 2043 signal detector

Claims (11)

  1.  第1の端末装置および第2の端末装置と通信する基地局装置であって、
     前記第1の端末装置からマルチユーザ重畳送信をサポートすることを示す情報を受信する受信部と、
     前記第1の端末装置および第2の端末装置に下りリンクデータを送信する送信部を備え、
     前記受信部が、前記第1の端末装置からセミパーシステントスケジューリングをサポートすることを示す情報を受信し、
     前記送信部がセミパーシステントスケジューリングで前記下りリンクを送信する場合、直交マルチアクセスを用いて前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする基地局装置。
    A base station apparatus that communicates with a first terminal apparatus and a second terminal apparatus,
    A receiving unit that receives information indicating that multi-user superimposed transmission is supported from the first terminal device;
    A transmission unit for transmitting downlink data to the first terminal device and the second terminal device;
    The receiving unit receives information indicating that semi-persistent scheduling is supported from the first terminal device;
    When the transmission unit transmits the downlink by semi-persistent scheduling, the base station transmits downlink data to the first terminal device and the second terminal device using orthogonal multi-access. apparatus.
  2.  前記受信部は、前記第1の端末装置からセミパーシステントスケジューリングをサポートすることを示す情報を受信していない場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする請求項1に記載の基地局装置。 When the receiving unit has not received information indicating that semi-persistent scheduling is supported from the first terminal device, the receiving unit applies multi-user superimposed transmission, and the first terminal device and the second terminal The base station apparatus according to claim 1, wherein downlink data is transmitted to the apparatus.
  3.  前記送信部は、前記第1の端末装置にダイナミックスケジューリングで前記下りリンクデータを送信する場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする請求項1に記載の基地局装置。 When transmitting the downlink data to the first terminal device by dynamic scheduling, the transmission unit applies multiuser superposition transmission to transmit downlink data to the first terminal device and the second terminal device. The base station apparatus according to claim 1, wherein transmission is performed.
  4.  前記送信部は、
     前記第2の端末装置にセミパーシステムトスケジューリングを用いて下りリンクデータを送信する場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする請求項3に記載の基地局装置。
    The transmitter is
    When transmitting downlink data to the second terminal apparatus using semi-per system scheduling, multi-user superimposed transmission is applied to transmit downlink data to the first terminal apparatus and the second terminal apparatus. The base station apparatus according to claim 3, wherein:
  5.  前記送信部は、
     前記第2の端末装置にセミパーシステムトスケジューリングを用いて下りリンクデータを送信し、前記第1の端末装置の下りリンクデータ送信のためのセミパーシステントスケジューリング間隔と前記第1の端末装置の下りリンクデータ送信のためのセミパーシステントスケジューリング間隔が同じ場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする請求項3に記載の基地局装置。
    The transmitter is
    Transmitting downlink data to the second terminal device using semi-persistent scheduling, the semi-persistent scheduling interval for downlink data transmission of the first terminal device and the downlink of the first terminal device When the semi-persistent scheduling interval for link data transmission is the same, multi-user superimposed transmission is applied to transmit downlink data to the first terminal apparatus and the second terminal apparatus. Item 4. The base station apparatus according to Item 3.
  6.  前記送信部は、
     前記第2の端末装置にセミパーシステムトスケジューリングを用いて下りリンクデータを送信し、前記第1の端末装置の下りリンクデータ送信のためのセミパーシステントスケジューリング間隔が前記第1の端末装置の下りリンクデータ送信のためのセミパーシステントスケジューリング間隔のn倍またはn分の1倍(nは自然数)の場合、マルチユーザ重畳送信を適用して、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする請求項3に記載の基地局装置。
    The transmitter is
    Transmitting downlink data to the second terminal device using semi-persistent scheduling, and the semi-persistent scheduling interval for downlink data transmission of the first terminal device is the downlink of the first terminal device. When the semi-persistent scheduling interval for link data transmission is n times or 1 / n times (n is a natural number), multi-user superimposed transmission is applied to the first terminal device and the second terminal device. The base station apparatus according to claim 3, wherein downlink data is transmitted.
  7.  第1の端末装置および第2の端末装置と通信する基地局装置の通信方法であって、
     前記第1の端末装置からマルチユーザ重畳送信をサポートすることを示す情報を受信する受信ステップと、
     前記第1の端末装置および第2の端末装置に下りリンクデータを送信する送信ステップを有し、
     前記第1の端末装置からセミパーシステントスケジューリングをサポートすることを示す情報を受信し、セミパーシステントスケジューリングで前記下りリンクを送信する場合、直交マルチアクセスを用いて、前記第1の端末装置および第2の端末装置に下りリンクデータを送信すること、を特徴とする基地局装置。
    A communication method of a base station apparatus that communicates with a first terminal apparatus and a second terminal apparatus,
    A receiving step of receiving information indicating that multi-user superimposed transmission is supported from the first terminal device;
    A transmission step of transmitting downlink data to the first terminal device and the second terminal device;
    When information indicating that semi-persistent scheduling is supported is received from the first terminal apparatus and the downlink is transmitted by semi-persistent scheduling, the first terminal apparatus and the second terminal apparatus are connected using orthogonal multi-access. A base station apparatus, wherein downlink data is transmitted to two terminal apparatuses.
  8.  基地局装置と通信する端末装置であって、
     前記基地局装置にマルチユーザ重畳送信をサポートすることを示す情報を送信する送信部と、
     前記基地局装置から下りリンクデータを受信する受信部を備え、
     前記送信部が前記基地局装置にセミパーシステントスケジューリングをサポートすることを示す情報を送信した場合、セミパーシステントスケジューリングを用いた下りリンクデータは、直交マルチアクセスを用いていると想定すること、を特徴とする端末装置。
    A terminal device that communicates with a base station device,
    A transmitter that transmits information indicating that multi-base superimposed transmission is supported to the base station device;
    A receiving unit for receiving downlink data from the base station device;
    When the transmission unit transmits information indicating that semi-persistent scheduling is supported to the base station apparatus, it is assumed that downlink data using semi-persistent scheduling uses orthogonal multi-access. Characteristic terminal device.
  9.  前記受信部は、下りリンク制御情報を受信した場合、直交マルチアクセスまたはマルチユーザ重畳送信を用いていると想定して、前記下りリンクデータを復調すること、を特徴とする請求項8に記載の端末装置。 The said receiving part demodulates the said downlink data on the assumption that it uses orthogonal multi-access or multi-user superimposition transmission, when downlink control information is received. Terminal device.
  10.  前記受信部は、マルチユーザ重畳送信を用いていると想定して前記下りリンクデータを復調する場合、干渉を除去または抑圧する処理を行なうこと、を特徴とする請求項9に記載の端末装置。 The terminal apparatus according to claim 9, wherein the receiving section performs processing to remove or suppress interference when demodulating the downlink data on the assumption that multi-user superimposed transmission is used.
  11.  基地局装置と通信する端末装置の通信方法であって、
     前記基地局装置にマルチユーザ重畳送信をサポートすることを示す情報を送信する送信ステップと、
     前記基地局装置から下りリンクデータを受信する受信ステップを有し、
     前記基地局装置にセミパーシステントスケジューリングをサポートすることを示す情報を送信した場合、セミパーシステントスケジューリングを用いた下りリンクデータは、直交マルチアクセスを用いていると想定すること、を特徴とする通信方法。
    A communication method of a terminal device that communicates with a base station device,
    A transmission step of transmitting information indicating that multi-user superimposed transmission is supported to the base station device;
    Receiving a downlink data from the base station apparatus,
    A communication characterized in that, when information indicating that semi-persistent scheduling is supported is transmitted to the base station apparatus, it is assumed that downlink data using semi-persistent scheduling uses orthogonal multi-access. Method.
PCT/JP2017/006875 2016-03-31 2017-02-23 Base station, terminals and communication method WO2017169368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070494 2016-03-31
JP2016070494A JP2019091963A (en) 2016-03-31 2016-03-31 Base station device, terminal device, and communication method

Publications (1)

Publication Number Publication Date
WO2017169368A1 true WO2017169368A1 (en) 2017-10-05

Family

ID=59963150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006875 WO2017169368A1 (en) 2016-03-31 2017-02-23 Base station, terminals and communication method

Country Status (2)

Country Link
JP (1) JP2019091963A (en)
WO (1) WO2017169368A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041941A (en) * 2013-08-23 2015-03-02 株式会社Nttドコモ Wireless base station, relay station and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041941A (en) * 2013-08-23 2015-03-02 株式会社Nttドコモ Wireless base station, relay station and wireless communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on Control Signaling for MUST Schemes", 3GPP TSG-RAN WG1#82B RL-155158, October 2015 (2015-10-01), XP051002137, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82b/Docs/R1-155158.zip> *
INTERDIGITAL COMMUNICATIONS: "Discussion on multiple access for New Radio systems", 3GPP TSG-RAN WG1#84B RL-162922, 1 April 2016 (2016-04-01), XP051079857, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/Rl-162922.zip> *
ZTE: "Impact analysis on the RRC specification for CPC 1.28Mcsp TDD", 3GPP TSG-RAN WG2#64BIS R2-090581, January 2009 (2009-01-01), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_64bis/Docs/R2-090581.zip> *

Also Published As

Publication number Publication date
JP2019091963A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6529087B2 (en) Base station apparatus, terminal apparatus and integrated circuit
EP3386243B1 (en) Base station device, terminal device, and communication method
US11026251B2 (en) Base station apparatus, terminal apparatus, and communication method therefor
EP3316615B1 (en) Terminal device, base station, communication method, and integrated circuit
JP6478229B2 (en) Terminal device, base station device, and integrated circuit
US11026184B2 (en) Terminal apparatus, base station apparatus, and communication method for transmitting resource information and transmission power control information to the terminal device with a grant-free access resource allocation or a scheduled access resource allocation
US11044040B2 (en) Base station apparatus, terminal apparatus, and communication method for the same
JP6899326B2 (en) Base station equipment, terminal equipment and communication methods
WO2016021713A1 (en) Base station device, terminal device, and method
WO2019065595A1 (en) Terminal device and base station device
WO2019065213A1 (en) Communication device
JP6811714B2 (en) Base station equipment, terminal equipment and communication methods
JPWO2015166865A1 (en) Terminal device and integrated circuit
JP6698350B2 (en) Terminal device, base station device, and integrated circuit
JP2019091956A (en) Base station device, terminal device, and communication method
WO2016129424A1 (en) Base station device, terminal device, and communication method
WO2015137112A1 (en) Terminal device, base station device, and integrated circuit
JPWO2015166861A1 (en) Terminal device and integrated circuit
WO2017169368A1 (en) Base station, terminals and communication method
WO2016129425A1 (en) Base station device, terminal device, and communication method
WO2016129429A1 (en) Base station device, terminal device, and communication method
JP2018064127A (en) Base station device, terminal device, and communication method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773913

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP