WO2016129425A1 - Base station device, terminal device, and communication method - Google Patents

Base station device, terminal device, and communication method Download PDF

Info

Publication number
WO2016129425A1
WO2016129425A1 PCT/JP2016/052800 JP2016052800W WO2016129425A1 WO 2016129425 A1 WO2016129425 A1 WO 2016129425A1 JP 2016052800 W JP2016052800 W JP 2016052800W WO 2016129425 A1 WO2016129425 A1 WO 2016129425A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
information
terminal
signal
Prior art date
Application number
PCT/JP2016/052800
Other languages
French (fr)
Japanese (ja)
Inventor
良太 山田
宏道 留場
加藤 勝也
淳悟 後藤
中村 理
友樹 吉村
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016129425A1 publication Critical patent/WO2016129425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication method.
  • a base station device In a communication system such as LTE (Long Termination Evolution) or LTE-A (LTE-Advanced) by 3GPP (Third Generation Partnership Project), a base station device (base station, transmitting station, transmission point, downlink transmitting device, uplink)
  • the communication area is expanded by adopting a cellular configuration in which multiple areas covered by a receiving station, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) or transmitting station according to the base station apparatus are arranged in a cell shape. can do.
  • frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors.
  • Non-Patent Document 1 Codeword Level Interference ⁇ ⁇ Cancellation
  • the terminal device needs to know information about the interference signal, such as parameters for demodulating / decoding the interference signal.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a base station device, a terminal device, and a communication method capable of improving throughput and communication opportunities of each terminal device by reducing interference. There is to do.
  • the configurations of the base station apparatus, terminal apparatus, and communication method according to the present invention are as follows.
  • a terminal apparatus is a terminal apparatus that communicates with a base station apparatus, and includes a receiving unit that receives downlink control information from the base station apparatus, and in a predetermined transmission mode, predetermined downlink control information
  • the downlink control information is decoded based on the second RNTI for the format, and the downlink control information format other than the predetermined downlink control information format is controlled based on the first RNTI. Decrypt information.
  • the downlink control information in the case of the predetermined downlink control information format, is received in a common search region or a terminal device specific search region, and other than the predetermined downlink control information format In the case of the downlink control information format, the downlink control information is received in the terminal device specific search region.
  • the base station apparatus of the present invention is a base station apparatus that communicates with a terminal apparatus, and includes a transmission unit that transmits downlink control information to the terminal apparatus.
  • the downlink control information is masked based on the second RNTI with respect to the link control information format, and the downlink based on the first RNTI with respect to the downlink control information format other than the predetermined downlink control information format Mask link control information.
  • the downlink control information in the case of the predetermined downlink control information format, is transmitted in a common search area or a terminal apparatus specific search area, and other than the predetermined downlink control information format In the case of the downlink control information format, the downlink control information is transmitted in the terminal device specific search region.
  • the communication method according to the present invention is a communication method in a terminal device that communicates with a base station device, and includes a reception step of receiving downlink control information from the base station device, and in a predetermined transmission mode,
  • the downlink control information is decoded based on the second RNTI for a predetermined downlink control information format, and the first RNTI is used for downlink control information formats other than the predetermined downlink control information format. Based on this, the downlink control information is decoded.
  • the communication method according to the present invention is a communication method in a base station device that communicates with a terminal device, and includes a transmission step of transmitting downlink control information to the terminal device, and in a predetermined transmission mode.
  • the downlink control information is masked based on the second RNTI for a predetermined downlink control information format, and the first RNTI is set for a downlink control information format other than the predetermined downlink control information format. Based on this, the downlink control information is masked.
  • interference signals can be reduced, and throughput and communication opportunities of terminal devices can be improved.
  • the communication system in this embodiment includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving terminal).
  • a base station device transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB
  • terminal device terminal, mobile terminal, receiving point, receiving terminal, receiving terminal.
  • Device receiving antenna group, receiving antenna port group, UE).
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment.
  • the communication system according to the present embodiment includes a base station device 1A and terminal devices 2A and 2B.
  • the coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device.
  • the terminal devices 2A and 2B are also collectively referred to as the terminal device 2.
  • the following uplink physical channels are used in uplink radio communication from the terminal apparatus 2A to the base station apparatus 1A.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • -PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • the PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI).
  • UCI Uplink Control Information
  • the uplink control information includes ACK (a positive acknowledgement) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback.
  • the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Further, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of an uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI designating a suitable transmission rate. (Channel Quality Indicator).
  • the channel quality index CQI (hereinafter referred to as CQI value) is a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and coding rate in a predetermined band (details will be described later). It can.
  • the CQI value can be an index (CQI Index) determined by the change method and coding rate.
  • the CQI value can be predetermined by the system.
  • the rank index and the precoding quality index can be determined in advance by the system.
  • the rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information.
  • the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
  • the PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
  • PUSCH is used to transmit an RRC message.
  • the RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer.
  • the PUSCH is used to transmit a MAC CE (Control Element).
  • the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
  • the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the power headroom level.
  • PRACH is used to transmit a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal.
  • the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
  • DMRS is related to transmission of PUSCH or PUCCH.
  • base station apparatus 1A uses DMRS to perform propagation channel correction for PUSCH or PUCCH.
  • SRS is not related to PUSCH or PUCCH transmission.
  • the base station apparatus 1A uses SRS to measure the uplink channel state.
  • the following downlink physical channels are used in downlink radio communication from the base station apparatus 1A to the terminal apparatus 2A.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel: HARQ instruction channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices.
  • MIB Master Information Block
  • BCH Broadcast Channel
  • PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
  • PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2A notifies the received ACK / NACK to the upper layer.
  • ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of ACK.
  • DCI Downlink Control Information
  • a plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
  • a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
  • the DCI format for the downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
  • the DCI format for uplink includes information on PUSCH resource allocation, information on MCS for PUSCH, and uplink control information such as TPC command for PUSCH.
  • the DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
  • the DCI format for uplink can be used to request downlink channel state information (CSI: “Channel State Information”, also referred to as reception quality information).
  • the channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI (Designated a suitable transmission rate).
  • rank index RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Designated a suitable transmission rate
  • Channel Quality Indicator precoding type indicator PTI (Precoding type Indicator), and the like.
  • the DCI format for the uplink can be used for setting indicating an uplink resource for mapping a channel state information report (CSI feedback report) that the terminal apparatus feeds back to the base station apparatus.
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly.
  • the base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus.
  • Types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
  • the terminal apparatus When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
  • the PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used to transmit a system information block type 1 message.
  • the system information block type 1 message is cell specific (cell specific) information.
  • PDSCH is used to transmit a system information message.
  • the system information message includes a system information block X other than the system information block type 1.
  • the system information message is cell specific (cell specific) information.
  • PDSCH is used to transmit an RRC message.
  • the RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell.
  • the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • the PDSCH is used to transmit the MAC CE.
  • the RRC message and / or MAC CE is also referred to as higher layer signaling.
  • PDSCH can be used to request downlink channel state information.
  • the PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • CSI feedback report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI).
  • the broadband CSI calculates one channel state information for the system band of the cell.
  • the narrowband CSI the system band is divided into predetermined units, and one channel state information is calculated for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
  • the synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel.
  • the downlink reference signal is used by the terminal device to calculate downlink channel state information.
  • the downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), EPDCCH Related DMRS (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Channel Information State Information Reference Signal) are included.
  • CRS Cell-specific Reference Signal: Cell-specific reference signal
  • URS related to PDSCH UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal
  • EPDCCH Related DMRS Demodulation Reference Signal
  • NZP CSI-RS Non-Zero Power Chanel State Information Information Reference Signal
  • ZP CSI-RS Zero Power Channel Information State Information Reference Signal
  • CRS is transmitted in the entire band of the subframe, and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH.
  • the URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH associated with the URS, and is used to demodulate the PDSCH associated with the URS.
  • DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS.
  • DMRS is used to demodulate the EPDCCH with which DMRS is associated.
  • NZP CSI-RS resources are set by the base station apparatus 1A.
  • the terminal device 2A performs signal measurement (channel measurement) using NZP CSI-RS.
  • the resource of ZP CSI-RS is set by the base station apparatus 1A.
  • the base station apparatus 1A transmits ZP CSI-RS with zero output.
  • the terminal device 2A measures interference in a resource supported by NZP CSI-RS.
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • the MBSFN RS is used for PMCH demodulation.
  • PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in the MAC layer is referred to as a transport channel.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
  • the base station apparatus can multiplex a plurality of terminal apparatuses without dividing resources by time, frequency, and space (for example, antenna port, beam pattern, precoding pattern). Multiplexing a plurality of terminal devices without dividing resources in time, frequency, and space is hereinafter also referred to as non-orthogonal multiplexing.
  • non-orthogonal multiplexing a case where two terminal apparatuses are non-orthogonal multiplexed will be described, but the present invention is not limited to this, and three or more terminal apparatuses can be non-orthogonal multiplexed.
  • the base station apparatus can transmit a common terminal apparatus specific reference signal to a plurality of terminal apparatuses that perform non-orthogonal multiplexing. That is, the base station apparatus can transmit a reference signal to a plurality of terminal apparatuses using the same resource and the same reference signal sequence in time, frequency, and space.
  • the base station apparatus 1A of FIG. 1 performs non-orthogonal multiplexing of the terminal apparatus 2A and the terminal apparatus 2B will be described.
  • the base station apparatus 1A can transmit a transmission signal to the terminal apparatus 2A and a transmission signal to the terminal apparatus 2B by assigning different transmission powers.
  • the PDSCH transmission power for the terminal device 2B is larger than the PDSCH transmission power for the terminal device 2A.
  • the PDSCH of the terminal device 2A is also referred to as PDSCH1 (first PDSCH), and the PDSCH of the terminal device 2B is also referred to as PDSCH2 (second PDSCH).
  • the base station apparatus 1A transmits a common terminal apparatus specific reference signal to the terminal apparatus 2A and the terminal apparatus 2B.
  • the base station apparatus 1A can set the transmission power of the common terminal apparatus-specific reference signal to a transmission power suitable for the terminal apparatus 2B to demodulate the PDSCH2.
  • the base station apparatus 1A can allocate and transmit the same transmission power to the common terminal apparatus specific reference signal and PDSCH2.
  • the base station apparatus 1A can assign the total transmission power of the transmission power of PDSCH1 and the transmission power of PDSCH2 to the transmission power of the common terminal apparatus-specific reference signal.
  • the base station apparatus 1A can transmit PDSCH1 and / or PDSCH2, for example, as shown in FIG. FIG. 2 shows a case where the frequencies of PDSCH1 and PDSCH2 are completely overlapped.
  • the present invention is not limited to this, and any allocation of PDSCH1 and PDSCH2 partially overlaps is included in the present invention.
  • P1 represents the transmission power of PDSCH1
  • P2 represents the transmission power of PDSCH2. Since the base station apparatus transmits PDSCH1 and PDSCH2 by non-orthogonal multiplexing, the total transmission power is P1 + P2.
  • FIG. 2 shows the case where the transmission power of the terminal apparatus specific reference signal is P2, it may be P1 + P2 or between P2 and P1 + P2.
  • PDSCH1 and PDSCH2 interfere with each other.
  • the terminal device 2A since at least the terminal device 2A has a higher interference power than the signal power addressed to itself, it is necessary to handle, remove or suppress the interference signal.
  • Such interference signals are referred to as multi-user interference, inter-user interference, interference due to multi-user transmission, co-channel interference, and the like.
  • an interference signal replica signal obtained from the demodulation or decoding result of the interference signal is subtracted from the received signal.
  • SLIC Symbol Level Interference Cancellation
  • CWIC Codeword Level Interference Cancellation
  • transmission signal candidate There is a maximum likelihood detection (MLD: imMaximum Likelihood Detection) to search for the most appropriate ones.
  • the terminal device 2A can detect a parameter necessary for removing or suppressing the interference signal from the base station device or by blind detection.
  • the terminal device 2B does not necessarily need to remove or suppress the interference signal.
  • the terminal device 2B does not cancel the interference, the interference signal power is relatively small. Therefore, the terminal device 2B can demodulate the signal addressed to itself without knowing the parameters related to the interference signal. That is, when the base station apparatus 1A performs non-orthogonal multiplexing of the terminal apparatuses 2A and 2B, the terminal apparatus 2A needs to have a function of removing or suppressing an interference signal due to non-orthogonal multiplexing. It is not necessary to provide the function to suppress.
  • the base station apparatus 1A can non-orthogonally multiplex a terminal apparatus that supports non-orthogonal multiplexing and a terminal apparatus that does not support non-orthogonal multiplexing. In other words, the base station apparatus 1A can non-orthogonally multiplex terminal apparatuses for which different transmission modes are set. Therefore, the communication opportunity of each terminal device can be improved.
  • the base station device 1A transmits information (assist information, auxiliary information, control information, setting information) regarding the terminal device (in this example, the terminal device 2B) that causes interference to the terminal device 2A.
  • the base station apparatus 1A is an upper layer signal or a physical layer signal (control signal, PDCCH, EPDCCH), and information (NAICS (Network Assisted Interference Cancellation and Suppression) information, NAICS assist information, NAICS setting) related to a terminal device that causes interference Information, MU (Multiuser) -NAICS information, MU-NAICS assist information, MU-NAICS setting information, NOMA (Non Orthogonal Multiple Access) information, NOMA assist information, NOMA setting information).
  • NAICS Network Assisted Interference Cancellation and Suppression
  • the MU-NAICS assist information includes information on PA, transmission mode, information on transmission power of terminal-specific reference signal, information on transmission power of PDSCH of interference signal, PMI, information on PA of serving cell, terminal-specific reference signal of serving cell.
  • Information on transmission power, modulation scheme, MCS (Modulation and Coding Scheme), redundancy version, RNTI (Radio Network and Temporary Identifier), and part or all of information on transmission mode are included.
  • PA is a transmission power ratio (power offset) between PDSCH and CRS in an OFDM symbol in which CRS is not arranged.
  • the information regarding the transmission power of the terminal device specific reference signal indicates, for example, the power ratio (power offset) between the transmission power of the terminal device specific reference signal and the transmission power of the PDSCH.
  • the information regarding the transmission power of the PDSCH of the interference signal includes, for example, the transmission power of the PDSCH of the interference signal (P2 in the example of FIG. 2), and the power ratio between the interference signal and the transmission power of the PDSCH addressed to the own device (in the example of FIG. 2). P2 / P1 or P1 / P2, where / is used to mean division).
  • the terminal device uses the power ratio between the transmission power of the terminal device specific reference signal and the transmission power of the PDSCH to determine the power of the interference signal and the transmission power of the PDSCH addressed to the own device. A ratio can be obtained.
  • the information related to the transmission mode is such that the terminal device 2A knows (detects) the transmission mode of the interference signal, such as the transmission mode of the interference signal and the transmission mode candidates that can be set (possibly set) by the base station device 1A. Assist information.
  • one value (candidate) may be set for each of the parameters included in the MU-NAICS assist information, or a plurality of values (candidates) may be set.
  • the terminal device detects (blind detection) a parameter set in the interference signal from the plurality of values.
  • some or all of the parameters included in the MU-NAICS assist information are transmitted as upper layer signals.
  • Some or all of the parameters included in the MU-NAICS assist information are transmitted as physical layer signals.
  • the MU-NAICS assist information may be used when performing various measurements.
  • the measurement includes RRM (Radio Resource Management) measurement and CSI (Channel State Information) measurement.
  • the base station device 1A supports MU-NAICS for the primary cell (Primary Cell: PCell) and / or the secondary cell (Secondary Cell: SCell). Information can be set. Also, the base station apparatus 1A can set or transmit MU-NAICS assist information only to the PCell.
  • the base station device 1A can transmit at least information related to the transmission power of the terminal-specific reference signal among the parameters included in the MU-NAICS assist information in the downlink control information.
  • the downlink control information including at least information related to the transmission power of the terminal-specific reference signal is also referred to as first DCI
  • the downlink control information not including information related to the transmission power of the terminal-specific reference signal is referred to as the second DCI. It is also called DCI.
  • a DCI format corresponding to the first DCI is referred to as a first DCI format
  • a DCI format corresponding to the second DCI is referred to as a second DCI format.
  • the base station apparatus 1A can transmit the first DCI to the terminal apparatus 2A using the first DCI format when in a predetermined transmission mode. Further, when the terminal devices 2A and 2B are non-orthogonal multiplexed, the base station device 1A transmits the first DCI to the terminal device 2A that removes or suppresses the interference signal, and transmits the first DCI to the terminal device 2B. Two DCIs can be transmitted. The terminal device 2A can remove or suppress the interference signal on the assumption that the terminal device 2B is in a transmission mode other than its own transmission mode.
  • the terminal device 2A receives the MU-NAICS assist information with the upper layer signal and / or the physical layer signal, and detects (specifies the parameter for removing or suppressing the interference signal based on the MU-NAICS assist information.
  • the interference signal is removed or suppressed using the parameter.
  • the terminal device 2A can detect parameters that are not included in the MU-NAICS information by blind detection that tries to detect parameter candidates in order.
  • the base station apparatus implicitly encodes and transmits the RNTI in the CRC (Cyclic Redundancy Check) of the downlink control information carried by the PDCCH / EPDCCH.
  • the terminal apparatus performs blind decoding on the PDCCH / EPDCCH addressed to the terminal apparatus based on RNTI, and detects downlink control information. Also, the base station apparatus performs scrambling based on RNTI and transmits the PDSCH.
  • the terminal device needs descrambling based on RNTI when performing error correction decoding on the PDSCH.
  • the base station apparatus 1A can allocate two types of RNTI to the terminal apparatus 2A when transmitting MU-NAICS assist information or in a predetermined transmission mode.
  • the two types of RNTIs are referred to as a first RNTI (for example, Cell RNTI) and a second RNTI, respectively.
  • the base station apparatus 1A can include the second RNTI in the MU-NAICS assist information.
  • the base station apparatus 1A can transmit the second RNTI using an upper layer signal or a physical layer signal.
  • the base station apparatus 1A can mask the downlink control information with the first RNTI, and scramble and transmit the codeword carried on the PDSCH based on the second RNTI.
  • the base station apparatus 1A When the base station apparatus 1A performs non-orthogonal multiplexing of the terminal apparatuses 2A and 2B, the base station apparatus 1A scrambles the PDSCH1 signal (codeword) and the PDSCH2 signal (codeword) based on the second RNTI having the same ID. Can be sent.
  • the terminal device 2A When the predetermined transmission mode is set or when the MU-NAICS information is received, the terminal device 2A performs blind decoding of the downlink control information based on the first RNTI and the interference signal based on the second RNTI. Remove or suppress. Also, the terminal device 2A performs error correction decoding by performing descrambling on the PDSCH signal addressed to the terminal device 2A based on the second RNTI. For example, when the base station apparatus 1A sets the C-RNTI of the terminal apparatus 2B as the second RNTI of the terminal apparatus 2A, it is not necessary to transmit additional information to the terminal apparatus 2B, so that the control information increases. Can be suppresse
  • the base station apparatus 1A In a transmission mode other than the predetermined transmission mode, the base station apparatus 1A masks downlink control information with the first RNTI, and scrambles and transmits the codeword carried on the PDSCH based on the first RNTI. In a transmission mode other than the predetermined transmission mode, the terminal device 2A blind-decodes downlink control information based on the first RNTI and descrambles the PDSCH based on the first RNTI.
  • the PDCCH may be placed in various places (resources, resource elements).
  • the terminal device searches for all areas where the PDCCH may be arranged.
  • a region where the PDCCH may be arranged is called a search region.
  • the search areas include a common search area (CSS: Common Search Space) that is a search area common to all terminal devices and a terminal device specific search region (USS: UE specific Search Space) that is a search area unique to the terminal device.
  • CSS Common Search Space
  • USS UE specific Search Space
  • the base station apparatus 1A uses the first RNTI in the case of a predetermined transmission mode and / or when MU-NAICS assist information is set, and when transmitting downlink control information in the common search region, the terminal apparatus
  • the second RNTI can be used when transmitting downlink control information in the eigensearch area.
  • the terminal device 2A uses the first RNTI when blindly decoding downlink control information in the common search region, and blindly decodes downlink control information in the terminal device specific search region. If so, the second RNTI can be used.
  • the terminal apparatus 2A when the terminal apparatus 2A is in a predetermined transmission mode or receives MU-NAICS assist information, or receives downlink control information in the common search area, the terminal apparatus 2A does not remove or suppress the interference signal, and is specific to the terminal apparatus.
  • interference signals can be removed or suppressed.
  • the base station apparatus 1A When the base station apparatus 1A is in a transmission mode other than the predetermined transmission mode or transmits downlink control information in the common search region, the base station apparatus 1A masks the downlink control information based on the first RNTI, and the downlink control information Send. In the case of a transmission mode other than the predetermined transmission mode or when downlink control information is received in the common search region, the terminal device 2A can blind-decode the downlink control information based on the first RNTI.
  • the base station apparatus 1A masks the downlink control information in the first DCI format with the second RNTI, and the downlink control information in the second DCI format with the first RNTI. Can be masked.
  • the base station apparatus 1A can transmit the first DCI in the common search area and the terminal apparatus specific search area, and transmit the second DCI in the terminal apparatus specific search area. Can do.
  • the terminal apparatus 2A performs blind decoding based on the second RNTI for the first DCI format and blind decoding based on the first RNTI for the second DCI format. To do.
  • the terminal apparatus 2A can receive the first DCI in the common search area and the terminal apparatus specific search area, and can receive the second DCI in the terminal apparatus specific search area. it can.
  • the base station apparatus 1A masks the first DCI and the second DCI with the second RNTI having the same value. be able to.
  • the terminal device 2A can blind-decode the first DCI and the second DCI using the second RNTI set or transmitted by the base station device 1A.
  • the terminal device 2A can distinguish between the first DCI and the second DCI based on, for example, the transmission mode of the interference signal or the DCI format. If the terminal device 2A can know the second DCI, the parameters included in the MU-NAICS assist information can be reduced. Therefore, overhead due to control information can be reduced, and throughput can be improved.
  • the base station apparatus 1A can transmit downlink control information common to a plurality of terminal apparatuses in the case of a predetermined transmission mode.
  • the downlink control information common to a plurality of terminal apparatuses is also referred to as third downlink control information (third DCI).
  • the base station apparatus 1A can transmit the third DCI while masking it with the second RNTI. Since a plurality of terminal devices search for the same downlink control information, the base station device 1A can transmit the third DCI in the common search region.
  • each terminal apparatus can blind-decode the third DCI based on the second RNTI in the common search area. If downlink control information is shared by a plurality of terminal devices, overhead due to control information can be reduced, and throughput can be improved.
  • the base station apparatus 1A can share the resource allocation information included in the first DCI and the second DCI in order to reduce the overhead due to the control information. That is, the base station apparatus 1A can non-orthogonally multiplex a plurality of terminal apparatuses with the same resource in the predetermined transmission mode.
  • the terminal device 2A assumes that signals (for example, PDSCH2) addressed to other devices are non-orthogonally multiplexed on all resource elements (resource blocks) allocated to PDSCH1 addressed to the own device, It is possible to demodulate PDSCH1 addressed to its own device.
  • the base station apparatus 1A can make the resource allocation information included in the first DCI and the second DCI different in the hope of obtaining frequency diversity gain. That is, the base station apparatus 1A can non-orthogonally multiplex a plurality of terminal apparatuses with some resources.
  • the terminal apparatus 2A assumes that a signal (for example, PDSCH2) destined for another apparatus is non-orthogonally multiplexed on a part of the resource element (resource block) allocated to PDSCH1 destined for the terminal apparatus 2A.
  • the PDSCH 1 addressed to its own device can be demodulated.
  • the terminal device 2A can detect a resource element (resource block) in which a signal addressed to another device is non-orthogonal-multiplexed, for example, by blind detection.
  • the terminal device 2A can perform blind detection by comparing the power of terminal-specific reference signals multiplexed for each resource block.
  • the base station apparatus 1A can include information indicating resource allocation of a signal (for example, PDSCH2) addressed to another apparatus that is non-orthogonally multiplexed on the PDSCH 1 in the first DCI.
  • the base station apparatus 1A can include resource allocation information for PDSCH2 in the first DCI, and can include information indicating whether the resource allocation information for PDSCH1 and the resource allocation information for PDSCH2 are common.
  • the base station apparatus 1A can include information on resources that are non-orthogonal-multiplexed in the first DCI.
  • the terminal device 2A removes or suppresses the interference signal for the non-orthogonal multiplexed resource based on the information related to the non-orthogonal multiplexed resource.
  • the base station apparatus 1A can include information indicating whether or not the power allocated to the PDSCH 1 is common in the resource elements (resource blocks) allocated to the PDSCH 1 in the first DCI. Based on this information, the terminal device 2A blindly detects whether a signal addressed to another device that is non-orthogonally multiplexed on the PDSCH 1 is non-orthogonal multiplexed or partially non-orthogonal multiplexed on the entire PDSCH 1 be able to.
  • FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 1A in the present embodiment.
  • the base station apparatus 1 ⁇ / b> A performs transmission / reception with an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmission unit (transmission step) 103, and a reception unit (reception step) 104.
  • An antenna 105 is included.
  • the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012.
  • the transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, a radio A transmission unit (wireless transmission step) 1035 is included.
  • the reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
  • the upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC radio resource control
  • upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
  • the upper layer processing unit 101 receives information related to the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal.
  • information on a terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced a predetermined function and has completed a test.
  • whether or not to support a predetermined function includes whether or not installation and testing for the predetermined function have been completed.
  • the terminal device transmits information (parameters) indicating whether the predetermined function is supported.
  • the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
  • the radio resource control unit 1011 generates or acquires downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from the upper node.
  • the radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102.
  • the radio resource control unit 1011 manages various setting information of the terminal device.
  • the scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), transmission power, and the like.
  • the scheduling unit 1012 outputs the determined information to the control unit 102.
  • the scheduling unit 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result.
  • the scheduling unit 1012 outputs the generated information to the control unit 102.
  • the control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101.
  • the control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Then, PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the terminal apparatus 2 via the transmission / reception antenna 105.
  • the encoding unit 1031 uses a predetermined encoding method such as block encoding, convolutional encoding, and turbo encoding for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Encoding is performed using the encoding method determined by the radio resource control unit 1011.
  • the modulation unit 1032 converts the encoded bits input from the encoding unit 1031 into BPSK (Binary Phase Shift Shift Keying), QPSK (quadrature Phase Shift Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, and the like. Or it modulates with the modulation system which the radio
  • the downlink reference signal generation unit 1033 refers to a sequence known by the terminal apparatus 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A. Generate as a signal.
  • PCI physical cell identifier
  • the multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
  • the radio transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmission / reception antenna 105 in accordance with the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. .
  • the radio reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained.
  • the level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal.
  • the wireless reception unit 1041 removes a portion corresponding to the CP from the converted digital signal.
  • Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
  • FFT fast Fourier transform
  • the demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2.
  • the demultiplexing unit 1042 compensates for the propagation paths of the PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
  • the demodulator 1043 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, acquires modulation symbols, and pre-modulates BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc. for each of the PUCCH and PUSCH modulation symbols.
  • IDFT inverse discrete Fourier transform
  • the received signal is demodulated by using a modulation method determined or notified in advance by the own device to each of the terminal devices 2 using an uplink grant.
  • the decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
  • FIG. 4 is a schematic block diagram showing the configuration of the terminal device 2 in the present embodiment.
  • the terminal device 2A includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state.
  • An information generation unit (channel state information generation step) 205 and a transmission / reception antenna 206 are included.
  • the upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012.
  • the transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio A transmission unit (wireless transmission step) 2035 is included.
  • the reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
  • the upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203. Further, the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. Process the (Radio Resource Control: RRC) layer.
  • Medium Access Control Medium Access Control: MAC
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
  • the radio resource control unit 2011 manages various setting information of the own terminal device. Also, the radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203.
  • the radio resource control unit 2011 acquires setting information regarding CSI feedback transmitted from the base station apparatus, and outputs the setting information to the control unit 202.
  • the scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines scheduling information.
  • the scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
  • the control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201.
  • the control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
  • the control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
  • the receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the transmission / reception antenna 206 according to the control signal input from the control unit 202, and sends the decoded information to the upper layer processing unit 201. Output.
  • the radio reception unit 2041 converts a downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
  • the wireless reception unit 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
  • the demultiplexing unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal. Further, the demultiplexing unit 2042 compensates for the PHICH, PDCCH, and EPDCCH channels based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and sends it to the control unit 202. Output. In addition, control unit 202 outputs PDSCH and the channel estimation value of the desired signal to signal detection unit 2043.
  • the signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201.
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 201, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 1A via the transmission / reception antenna 206.
  • the encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201. Also, the coding unit 2031 performs turbo coding based on information used for PUSCH scheduling.
  • the modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
  • the uplink reference signal generation unit 2033 has a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging an uplink reference signal, and an uplink grant.
  • a sequence determined by a predetermined rule is generated on the basis of the cyclic shift and the parameter value for generating the DMRS sequence notified in (1).
  • the multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT). Also, the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • DFT discrete Fourier transform
  • the radio transmission unit 2035 performs inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, generates an SC-FDMA symbol, and generates the generated SC-FDMA symbol.
  • IFFT inverse Fast Fourier Transform
  • CP is added to baseband digital signal, baseband digital signal is converted to analog signal, excess frequency component is removed, converted to carrier frequency by up-conversion, power amplification, transmission / reception antenna It outputs to 206 and transmits.
  • the program that operates in the base station apparatus and the terminal apparatus according to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments according to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the functions of the invention may be realized.
  • the program when distributing to the market, can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • LSI which is typically an integrated circuit.
  • Each functional block of the receiving apparatus may be individually chipped, or a part or all of them may be integrated into a chip. When each functional block is integrated, an integrated circuit controller for controlling them is added.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the terminal device of the present invention is not limited to application to a mobile station device, but is a stationary or non-movable electronic device installed indoors or outdoors, such as AV equipment, kitchen equipment, cleaning / washing equipment Needless to say, it can be applied to air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a base station device, a terminal device, and a communication method.
  • Base station apparatus 2A, 2B Terminal apparatus 101 Upper layer processing section 102 Control section 103 Transmission section 104 Reception section 105 Transmission / reception antenna 1011 Radio resource control section 1012 Scheduling section 1031 Encoding section 1032 Modulation section 1033 Downlink reference signal generation section 1034 Multiplexing Unit 1035 radio transmission unit 1041 radio reception unit 1042 demultiplexing unit 1043 demodulation unit 1044 decoding unit 201 upper layer processing unit 202 control unit 203 transmission unit 204 reception unit 205 channel state information generation unit 206 transmission / reception antenna 2011 radio resource control unit 2012 scheduling information Interpreter 2031 Encoder 2032 Modulator 2033 Uplink reference signal generator 2034 Multiplexer 2035 Radio transmitter 2041 Radio receiver 2042 Demultiplexer 2043 Signal detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

By reducing interference, the present invention improves throughput and communication opportunities for each terminal device. A base station device for communicating with a first terminal device and a second terminal device, the base station device being equipped with a transmission unit for transmitting a downlink shared channel for the first and second terminal devices, by using at least one identical resource from among a time resource, a frequency resource, and an antenna port, when a prescribed transmission mode is set in the first terminal device. A terminal device for communicating with a base station device, the terminal device being equipped with a receiving unit for receiving a downlink shared channel for the first and second terminal devices by using at least one identical resource from among the time resource, frequency resource and antenna port, when a prescribed transmission mode is set in the base station device.

Description

基地局装置、端末装置および通信方法Base station apparatus, terminal apparatus and communication method
 本発明は、基地局装置、端末装置および通信方法に関する。 The present invention relates to a base station device, a terminal device, and a communication method.
 3GPP(Third Generation Partnership Project)によるLTE(Long Term Evolution)、LTE-A(LTE-Advanced)のような通信システムでは、基地局装置(基地局、送信局、送信点、下りリンク送信装置、上りリンク受信装置、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)或いは基地局装置に準じる送信局がカバーするエリアをセル(Cell)状に複数配置するセルラ構成とすることにより、通信エリアを拡大することができる。このセルラ構成において、隣接するセルまたはセクタ間で同一周波数を利用することで、周波数利用効率を向上させることができる。 In a communication system such as LTE (Long Termination Evolution) or LTE-A (LTE-Advanced) by 3GPP (Third Generation Partnership Project), a base station device (base station, transmitting station, transmission point, downlink transmitting device, uplink) The communication area is expanded by adopting a cellular configuration in which multiple areas covered by a receiving station, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) or transmitting station according to the base station apparatus are arranged in a cell shape. can do. In this cellular configuration, frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors.
 近年では、システム容量の増大や通信機会の向上のために、複数の端末装置を同じ時間、周波数、空間リソースに割り当て、非直交多重して送信する技術の検討が進められている。基地局装置で複数の端末装置を非直交多重して送信するため、ユーザ間干渉が生じる。従って、端末装置はユーザ間干渉をキャンセルする必要がある。ユーザ間干渉をキャンセルする技術としては、例えば、干渉信号を復号した後に干渉除去するCWIC(Codeword Level Interference Cancellation)がある。上記のことは非特許文献1に記載されている。 In recent years, in order to increase system capacity and improve communication opportunities, studies are being made on techniques for allocating a plurality of terminal devices to the same time, frequency, and space resources and performing non-orthogonal multiplexing. Since the base station apparatus transmits a plurality of terminal apparatuses by non-orthogonal multiplexing, inter-user interference occurs. Therefore, the terminal device needs to cancel the interference between users. As a technique for canceling the interference between users, for example, there is CWIC (Codeword Level Interference す る Cancellation) that removes interference after decoding an interference signal. The above is described in Non-Patent Document 1.
 しかしながら、端末装置でCWICなどの干渉除去技術をするためには、端末装置は、干渉信号を復調/復号するためのパラメータ等、干渉信号に関する情報を知る必要がある。 However, in order to perform interference cancellation technology such as CWIC in the terminal device, the terminal device needs to know information about the interference signal, such as parameters for demodulating / decoding the interference signal.
 本発明はこのような事情を鑑みてなされたものであり、その目的は、干渉を軽減することによってスループットや各端末装置の通信機会の向上が可能な基地局装置、端末装置および通信方法を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a base station device, a terminal device, and a communication method capable of improving throughput and communication opportunities of each terminal device by reducing interference. There is to do.
 上述した課題を解決するために本発明に係る基地局装置、端末装置および通信方法の構成は、次の通りである。 In order to solve the above-described problems, the configurations of the base station apparatus, terminal apparatus, and communication method according to the present invention are as follows.
 本発明に係る端末装置は、基地局装置と通信する端末装置であって、前記基地局装置から下りリンク制御情報を受信する受信部を備え、所定の送信モードの場合、所定の下りリンク制御情報フォーマットに対して第2のRNTIに基づいて前記下りリンク制御情報を復号し、前記所定の下りリンク制御情報フォーマット以外の下りリンク制御情報フォーマットに対しては第1のRNTIに基づいて前記下りリンク制御情報を復号する。 A terminal apparatus according to the present invention is a terminal apparatus that communicates with a base station apparatus, and includes a receiving unit that receives downlink control information from the base station apparatus, and in a predetermined transmission mode, predetermined downlink control information The downlink control information is decoded based on the second RNTI for the format, and the downlink control information format other than the predetermined downlink control information format is controlled based on the first RNTI. Decrypt information.
 また、本発明の端末装置において、前記所定の下りリンク制御情報フォーマットの場合は、共通探索領域もしくは端末装置固有探索領域で前記下りリンク制御情報を受信し、前記所定の下りリンク制御情報フォーマット以外の下りリンク制御情報フォーマットの場合は、端末装置固有探索領域で前記下りリンク制御情報を受信する。 Further, in the terminal device of the present invention, in the case of the predetermined downlink control information format, the downlink control information is received in a common search region or a terminal device specific search region, and other than the predetermined downlink control information format In the case of the downlink control information format, the downlink control information is received in the terminal device specific search region.
 また、本発明の基地局装置において、端末装置と通信する基地局装置であって、前記端末装置に対して下りリンク制御情報を送信する送信部を備え、所定の送信モードの場合、所定の下りリンク制御情報フォーマットに対して第2のRNTIに基づいて前記下りリンク制御情報をマスクし、前記所定の下りリンク制御情報フォーマット以外の下りリンク制御情報フォーマットに対して第1のRNTIに基づいて前記下りリンク制御情報をマスクする。 The base station apparatus of the present invention is a base station apparatus that communicates with a terminal apparatus, and includes a transmission unit that transmits downlink control information to the terminal apparatus. The downlink control information is masked based on the second RNTI with respect to the link control information format, and the downlink based on the first RNTI with respect to the downlink control information format other than the predetermined downlink control information format Mask link control information.
 また、本発明の基地局装置において、前記所定の下りリンク制御情報フォーマットの場合は、共通探索領域もしくは端末装置固有探索領域で前記下りリンク制御情報を送信し、前記所定の下りリンク制御情報フォーマット以外の下りリンク制御情報フォーマットの場合は、端末装置固有探索領域で前記下りリンク制御情報を送信する。 Also, in the base station apparatus of the present invention, in the case of the predetermined downlink control information format, the downlink control information is transmitted in a common search area or a terminal apparatus specific search area, and other than the predetermined downlink control information format In the case of the downlink control information format, the downlink control information is transmitted in the terminal device specific search region.
 また、本発明に係る通信方法は、基地局装置と通信する端末装置における通信方法であって、前記基地局装置から下りリンク制御情報を受信する受信ステップを有し、所定の送信モードの場合、所定の下りリンク制御情報フォーマットに対して第2のRNTIに基づいて前記下りリンク制御情報を復号し、前記所定の下りリンク制御情報フォーマット以外の下りリンク制御情報フォーマットに対しては第1のRNTIに基づいて前記下りリンク制御情報を復号する。 The communication method according to the present invention is a communication method in a terminal device that communicates with a base station device, and includes a reception step of receiving downlink control information from the base station device, and in a predetermined transmission mode, The downlink control information is decoded based on the second RNTI for a predetermined downlink control information format, and the first RNTI is used for downlink control information formats other than the predetermined downlink control information format. Based on this, the downlink control information is decoded.
 また、本発明に係る通信方法は、端末装置と通信する基地局装置における通信方法であって、前記端末装置に対して下りリンク制御情報を送信する送信ステップを有し、所定の送信モードの場合、所定の下りリンク制御情報フォーマットに対して第2のRNTIに基づいて前記下りリンク制御情報をマスクし、前記所定の下りリンク制御情報フォーマット以外の下りリンク制御情報フォーマットに対して第1のRNTIに基づいて前記下りリンク制御情報をマスクする。 The communication method according to the present invention is a communication method in a base station device that communicates with a terminal device, and includes a transmission step of transmitting downlink control information to the terminal device, and in a predetermined transmission mode. The downlink control information is masked based on the second RNTI for a predetermined downlink control information format, and the first RNTI is set for a downlink control information format other than the predetermined downlink control information format. Based on this, the downlink control information is masked.
 本発明によれば、干渉信号を軽減することができ、スループットや端末装置の通信機会を向上させることができる。 According to the present invention, interference signals can be reduced, and throughput and communication opportunities of terminal devices can be improved.
本実施形態に係る通信システムの例を示す図である。It is a figure which shows the example of the communication system which concerns on this embodiment. 本実施形態に係る送信信号の電力割当ての例を示す図である。It is a figure which shows the example of the power allocation of the transmission signal which concerns on this embodiment. 本実施形態に係る基地局装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the base station apparatus which concerns on this embodiment. 本実施形態に係る端末装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the terminal device which concerns on this embodiment.
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE)を備える。 The communication system in this embodiment includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving terminal). Device, receiving antenna group, receiving antenna port group, UE).
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。 In this embodiment, “X / Y” includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2A、2Bを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また、端末装置2A、2Bを総称して端末装置2とも称する。 FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment. As shown in FIG. 1, the communication system according to the present embodiment includes a base station device 1A and terminal devices 2A and 2B. The coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device. The terminal devices 2A and 2B are also collectively referred to as the terminal device 2.
 図1において、端末装置2Aから基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
In FIG. 1, the following uplink physical channels are used in uplink radio communication from the terminal apparatus 2A to the base station apparatus 1A. The uplink physical channel is used for transmitting information output from an upper layer.
-PUCCH (Physical Uplink Control Channel)
・ PUSCH (Physical Uplink Shared Channel)
・ PRACH (Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。 The PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI). Here, the uplink control information includes ACK (a positive acknowledgement) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH). ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback.
 また、上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。また、上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)などが該当する。 Also, the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Further, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of an uplink shared channel (Uplink-Shared Channel: UL-SCH). The channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI designating a suitable transmission rate. (Channel Quality Indicator).
 前記チャネル品質指標CQIは(以下、CQI値)、所定の帯域(詳細は後述)における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)とすることができる。CQI値は、前記変更方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものをすることができる。 The channel quality index CQI (hereinafter referred to as CQI value) is a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and coding rate in a predetermined band (details will be described later). it can. The CQI value can be an index (CQI Index) determined by the change method and coding rate. The CQI value can be predetermined by the system.
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記ランク指標、前記プレコーディング行列指標、前記チャネル品質指標CQIの値をCSI値と総称する。 Note that the rank index and the precoding quality index can be determined in advance by the system. The rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information. Note that the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。 The PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。 Also, PUSCH is used to transmit an RRC message. The RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer. The PUSCH is used to transmit a MAC CE (Control Element). Here, the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられても良い。 For example, the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the power headroom level.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。 PRACH is used to transmit a random access preamble.
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。ここで、上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)が含まれる。 In uplink wireless communication, an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal. The uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer. Here, the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。SRSは、PUSCHまたはPUCCHの送信に関連しない。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。 DMRS is related to transmission of PUSCH or PUCCH. For example, base station apparatus 1A uses DMRS to perform propagation channel correction for PUSCH or PUCCH. SRS is not related to PUSCH or PUCCH transmission. For example, the base station apparatus 1A uses SRS to measure the uplink channel state.
 図1において、基地局装置1Aから端末装置2Aへの下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel: 報知チャネル)
・PCFICH(Physical Control Format Indicator Channel: 制御フォーマット指示チャネル)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel: HARQ指示チャネル)
・PDCCH(Physical Downlink Control Channel: 下りリンク制御チャネル)
・EPDCCH(Enhanced Physical Downlink Control Channel: 拡張下りリンク制御チャネル)
・PDSCH(Physical Downlink Shared Channel: 下りリンク共有チャネル)
In FIG. 1, the following downlink physical channels are used in downlink radio communication from the base station apparatus 1A to the terminal apparatus 2A. The downlink physical channel is used for transmitting information output from an upper layer.
・ PBCH (Physical Broadcast Channel)
・ PCFICH (Physical Control Format Indicator Channel)
・ PHICH (Physical Hybrid automatic repeat request Indicator Channel: HARQ instruction channel)
・ PDCCH (Physical Downlink Control Channel)
・ EPDCCH (Enhanced Physical Downlink Control Channel)
・ PDSCH (Physical Downlink Shared Channel)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB、Broadcast Channel: BCH)を報知するために用いられる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDMシンボルの数)を指示する情報を送信するために用いられる。 The PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices. PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。また、ACK/NACKは、HARQ-ACKとも呼称する。端末装置2Aは、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2AはACKを上位レイヤに通知する。 PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK. The terminal device 2A notifies the received ACK / NACK to the upper layer. ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of ACK.
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。 PDCCH and EPDCCH are used to transmit downlink control information (Downlink Control Information: DCI). Here, a plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。 For example, a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割り当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンドなどの下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。 For example, the DCI format for the downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH. Here, the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
 また、例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。 Also, for example, as a DCI format for uplink, DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割り当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンドなど上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。 For example, the DCI format for uplink includes information on PUSCH resource allocation, information on MCS for PUSCH, and uplink control information such as TPC command for PUSCH. The DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
 また、上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI: Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプリコーダを指定するプリコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)、プリコーディングタイプ指標PTI(Precoding type Indicator)などが該当する。 Also, the DCI format for uplink can be used to request downlink channel state information (CSI: “Channel State Information”, also referred to as reception quality information). The channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI (Designated a suitable transmission rate). Channel Quality Indicator), precoding type indicator PTI (Precoding type Indicator), and the like.
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 Also, the DCI format for the uplink can be used for setting indicating an uplink resource for mapping a channel state information report (CSI feedback report) that the terminal apparatus feeds back to the base station apparatus. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI). The channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。基地局装置は、前記定期的なチャネル状態情報報告または前記不定期的なチャネル状態情報報告のいずれかを設定することができる。また、基地局装置は、前記定期的なチャネル状態情報報告および前記不定期的なチャネル状態情報報告の両方を設定することもできる。 For example, the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI). The channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly. The base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えば、Wideband CQI)と狭帯域CSI(例えば、Subband CQI)などがある。 Also, the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus. Types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。 When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。また、PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。 PDSCH is used to transmit downlink data (downlink transport block, DL-SCH). The PDSCH is used to transmit a system information block type 1 message. The system information block type 1 message is cell specific (cell specific) information.
 また、PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。 Also, PDSCH is used to transmit a system information message. The system information message includes a system information block X other than the system information block type 1. The system information message is cell specific (cell specific) information.
 また、PDSCHは、RRCメッセージを送信するために用いられる。ここで、基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2に対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。また、PDSCHは、MAC CEを送信するために用いられる。 Also, PDSCH is used to transmit an RRC message. Here, the RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell. Further, the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message. The PDSCH is used to transmit the MAC CE.
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。 Here, the RRC message and / or MAC CE is also referred to as higher layer signaling.
 また、PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。また、PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 Also, PDSCH can be used to request downlink channel state information. The PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI). The channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えば、Wideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。 The types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI). The broadband CSI calculates one channel state information for the system band of the cell. In the narrowband CSI, the system band is divided into predetermined units, and one channel state information is calculated for the division.
 また、下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。 In downlink radio communication, a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals. The downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。 The synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain. Also, the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel. For example, the downlink reference signal is used by the terminal device to calculate downlink channel state information.
 ここで、下りリンク参照信号には、CRS(Cell-specific Reference Signal: セル固有参照信号)、PDSCHに関連するURS(UE-specific Reference Signal: 端末固有参照信号、端末装置固有参照信号)、EPDCCHに関連するDMRS(Demodulation Reference Signal)、NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)、ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)が含まれる。 Here, the downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), EPDCCH Related DMRS (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Channel Information State Information Reference Signal) are included.
 CRSは、サブフレームの全帯域で送信され、PBCH/PDCCH/PHICH/PCFICH/PDSCHの復調を行なうために用いられる。PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信され、URSが関連するPDSCHの復調を行なうために用いられる。 CRS is transmitted in the entire band of the subframe, and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH. The URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH associated with the URS, and is used to demodulate the PDSCH associated with the URS.
 EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。 DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS. DMRS is used to demodulate the EPDCCH with which DMRS is associated.
 NZP CSI-RSのリソースは、基地局装置1Aによって設定される。例えば、端末装置2Aは、NZP CSI-RSを用いて信号の測定(チャネルの測定)を行なう。ZP CSI-RSのリソースは、基地局装置1Aによって設定される。基地局装置1Aは、ZP CSI-RSをゼロ出力で送信する。例えば、端末装置2Aは、NZP CSI-RSが対応するリソースにおいて干渉の測定を行なう。 NZP CSI-RS resources are set by the base station apparatus 1A. For example, the terminal device 2A performs signal measurement (channel measurement) using NZP CSI-RS. The resource of ZP CSI-RS is set by the base station apparatus 1A. The base station apparatus 1A transmits ZP CSI-RS with zero output. For example, the terminal device 2A measures interference in a resource supported by NZP CSI-RS.
 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信に用いられるアンテナポートで送信される。 MBSFN (Multimedia Broadcast Multicast Service Single Frequency Network) RS is transmitted in the entire bandwidth of the subframe used for PMCH transmission. The MBSFN RS is used for PMCH demodulation. PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。 Here, the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal. Also, the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal. Also, the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel. Also, the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
 また、BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。また、MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。 Also, BCH, UL-SCH and DL-SCH are transport channels. A channel used in the MAC layer is referred to as a transport channel. The unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit). The transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
 基地局装置は、時間、周波数および空間(例えば、アンテナポート、ビームパターン、プリコーディングパターン)でリソースを分割することなく複数の端末装置を多重することができる。時間、周波数および空間でリソースを分割することなく複数の端末装置を多重することを、以下では非直交多重とも称する。以下では、2つの端末装置を非直交多重する場合を説明するが、本発明はこれに限らず、3つ以上の端末装置を非直交多重することも可能である。 The base station apparatus can multiplex a plurality of terminal apparatuses without dividing resources by time, frequency, and space (for example, antenna port, beam pattern, precoding pattern). Multiplexing a plurality of terminal devices without dividing resources in time, frequency, and space is hereinafter also referred to as non-orthogonal multiplexing. In the following, a case where two terminal apparatuses are non-orthogonal multiplexed will be described, but the present invention is not limited to this, and three or more terminal apparatuses can be non-orthogonal multiplexed.
 基地局装置は非直交多重する複数の端末装置に対して、共通の端末装置固有参照信号を送信することができる。つまり、基地局装置は、複数の端末装置に対して、時間、周波数および空間で同じリソース、同じ参照信号系列を用いて参照信号を送信することができる。 The base station apparatus can transmit a common terminal apparatus specific reference signal to a plurality of terminal apparatuses that perform non-orthogonal multiplexing. That is, the base station apparatus can transmit a reference signal to a plurality of terminal apparatuses using the same resource and the same reference signal sequence in time, frequency, and space.
 図1の基地局装置1Aが、端末装置2Aと端末装置2Bを非直交多重する場合を例に説明する。基地局装置1Aは、端末装置2Aへの送信信号と、端末装置2Bへの送信信号とを、異なる送信電力を割当てて送信することができる。例えば、以下の説明では、端末装置2Bに対するPDSCHの送信電力が、端末装置2Aに対するPDSCHの送信電力よりも大きい場合を説明する。端末装置2AのPDSCHをPDSCH1(第1のPDSCH)、端末装置2BのPDSCHをPDSCH2(第2のPDSCH)とも称する。また、基地局装置1Aは、端末装置2Aと端末装置2Bに対して、共通の端末装置固有参照信号を送信する。また、基地局装置1Aは、共通の端末装置固有参照信号の送信電力を、端末装置2BがPDSCH2を復調するために好適な送信電力とすることができる。例えば、基地局装置1Aは、共通の端末装置固有参照信号とPDSCH2に対して、同じ送信電力を割当てて送信することができる。もしくは、基地局装置1Aは、共通の端末装置固有参照信号の送信電力に、PDSCH1の送信電力とPDSCH2の送信電力のトータルの送信電力を割当てることができる。 An example in which the base station apparatus 1A of FIG. 1 performs non-orthogonal multiplexing of the terminal apparatus 2A and the terminal apparatus 2B will be described. The base station apparatus 1A can transmit a transmission signal to the terminal apparatus 2A and a transmission signal to the terminal apparatus 2B by assigning different transmission powers. For example, in the following description, a case will be described in which the PDSCH transmission power for the terminal device 2B is larger than the PDSCH transmission power for the terminal device 2A. The PDSCH of the terminal device 2A is also referred to as PDSCH1 (first PDSCH), and the PDSCH of the terminal device 2B is also referred to as PDSCH2 (second PDSCH). Further, the base station apparatus 1A transmits a common terminal apparatus specific reference signal to the terminal apparatus 2A and the terminal apparatus 2B. In addition, the base station apparatus 1A can set the transmission power of the common terminal apparatus-specific reference signal to a transmission power suitable for the terminal apparatus 2B to demodulate the PDSCH2. For example, the base station apparatus 1A can allocate and transmit the same transmission power to the common terminal apparatus specific reference signal and PDSCH2. Alternatively, the base station apparatus 1A can assign the total transmission power of the transmission power of PDSCH1 and the transmission power of PDSCH2 to the transmission power of the common terminal apparatus-specific reference signal.
 基地局装置1Aは、例えば、図2に示すように、PDSCH1および/またはPDSCH2を送信することができる。なお、図2では、PDSCH1とPDSCH2の周波数が完全に重なっている場合を示しているが、本発明はこれに限らず、PDSCH1とPDSCH2の割当てが一部でも重なっていれば本発明に含まれる。図2に記載しているP1はPDSCH1の送信電力、P2はPDSCH2の送信電力を表している。基地局装置は、PDSCH1とPDSCH2を非直交多重して送信するため、合計の送信電力はP1+P2となる。図2では、端末装置固有参照信号の送信電力がP2の場合を示しているが、P1+P2とすることもできるし、P2とP1+P2の間とすることもできる。 The base station apparatus 1A can transmit PDSCH1 and / or PDSCH2, for example, as shown in FIG. FIG. 2 shows a case where the frequencies of PDSCH1 and PDSCH2 are completely overlapped. However, the present invention is not limited to this, and any allocation of PDSCH1 and PDSCH2 partially overlaps is included in the present invention. . 2, P1 represents the transmission power of PDSCH1, and P2 represents the transmission power of PDSCH2. Since the base station apparatus transmits PDSCH1 and PDSCH2 by non-orthogonal multiplexing, the total transmission power is P1 + P2. Although FIG. 2 shows the case where the transmission power of the terminal apparatus specific reference signal is P2, it may be P1 + P2 or between P2 and P1 + P2.
 基地局装置が複数の端末装置宛の信号を非直交多重して送信した場合、PDSCH1とPDSCH2は互いに干渉となる。この場合、少なくとも端末装置2Aは、自装置宛の信号電力よりも干渉電力の方が大きいため、干渉信号のハンドリング、除去または抑圧をする必要がある。このような干渉信号をマルチユーザ干渉、ユーザ間干渉、マルチユーザ伝送による干渉、同一チャネル干渉などと言う。干渉信号を除去または抑圧するためには、例えば、干渉信号の復調または復号結果から求められる干渉信号レプリカ信号を受信信号から減算する。干渉信号を除去または抑圧するためには、干渉信号の復調結果によって干渉除去を行なうSLIC(Symbol Level Interference Cancellation)、干渉信号の復号結果によって干渉除去を行なうCWIC(Codeword Level Interference Cancellation)、送信信号候補の中から最もそれらしいものを探索する最尤検出(MLD: Maximum Likelihood Detection)などがある。 When the base station apparatus transmits signals addressed to a plurality of terminal apparatuses by non-orthogonal multiplexing, PDSCH1 and PDSCH2 interfere with each other. In this case, since at least the terminal device 2A has a higher interference power than the signal power addressed to itself, it is necessary to handle, remove or suppress the interference signal. Such interference signals are referred to as multi-user interference, inter-user interference, interference due to multi-user transmission, co-channel interference, and the like. In order to remove or suppress the interference signal, for example, an interference signal replica signal obtained from the demodulation or decoding result of the interference signal is subtracted from the received signal. In order to remove or suppress the interference signal, SLIC (Symbol Level Interference Cancellation) for canceling interference based on the demodulation result of the interference signal, CWIC (Codeword Level Interference Cancellation) for canceling interference based on the decoding result of the interference signal, transmission signal candidate There is a maximum likelihood detection (MLD: imMaximum Likelihood Detection) to search for the most appropriate ones.
 端末装置2Aは、干渉信号の除去または抑圧に必要なパラメータを、基地局装置から受信もしくはブラインド検出によって検出することができる。端末装置2Bは、必ずしも干渉信号の除去または抑圧は必要としない。端末装置2Bが干渉キャンセルしない場合、干渉信号電力は比較的小さいため、端末装置2Bは、干渉信号に関するパラメータを知らなくても、自装置宛の信号を復調することができる。つまり、基地局装置1Aが端末装置2Aおよび2Bを非直交多重する場合、端末装置2Aは、非直交多重による干渉信号を除去または抑圧する機能を備える必要があるが、端末装置2Bは干渉除去または抑圧する機能を備えなくても良い。言い換えると、基地局装置1Aは、非直交多重をサポートしている端末装置と非直交多重をサポートしていない端末装置を非直交多重することができる。また、別の言い方では、基地局装置1Aは、異なる送信モードが設定されている端末装置を非直交多重することができる。従って、各端末装置の通信機会を向上させることができる。 The terminal device 2A can detect a parameter necessary for removing or suppressing the interference signal from the base station device or by blind detection. The terminal device 2B does not necessarily need to remove or suppress the interference signal. When the terminal device 2B does not cancel the interference, the interference signal power is relatively small. Therefore, the terminal device 2B can demodulate the signal addressed to itself without knowing the parameters related to the interference signal. That is, when the base station apparatus 1A performs non-orthogonal multiplexing of the terminal apparatuses 2A and 2B, the terminal apparatus 2A needs to have a function of removing or suppressing an interference signal due to non-orthogonal multiplexing. It is not necessary to provide the function to suppress. In other words, the base station apparatus 1A can non-orthogonally multiplex a terminal apparatus that supports non-orthogonal multiplexing and a terminal apparatus that does not support non-orthogonal multiplexing. In other words, the base station apparatus 1A can non-orthogonally multiplex terminal apparatuses for which different transmission modes are set. Therefore, the communication opportunity of each terminal device can be improved.
 基地局装置1Aは、干渉となる端末装置(この例では端末装置2B)に関する情報(アシスト情報、補助情報、制御情報、設定情報)を、端末装置2Aに対して送信する。基地局装置1Aは、上位層の信号または物理層の信号(制御信号、PDCCH、EPDCCH)で、干渉となる端末装置に関する情報(NAICS(Network Assisted Interference Cancellation and Suppression)情報、NAICSアシスト情報、NAICS設定情報、MU(Multiuser)-NAICS情報、MU-NAICSアシスト情報、MU-NAICS設定情報、NOMA(Non Orthogonal Multiple Access)情報、NOMAアシスト情報、NOMA設定情報)を送信することができる。 The base station device 1A transmits information (assist information, auxiliary information, control information, setting information) regarding the terminal device (in this example, the terminal device 2B) that causes interference to the terminal device 2A. The base station apparatus 1A is an upper layer signal or a physical layer signal (control signal, PDCCH, EPDCCH), and information (NAICS (Network Assisted Interference Cancellation and Suppression) information, NAICS assist information, NAICS setting) related to a terminal device that causes interference Information, MU (Multiuser) -NAICS information, MU-NAICS assist information, MU-NAICS setting information, NOMA (Non Orthogonal Multiple Access) information, NOMA assist information, NOMA setting information).
 MU-NAICSアシスト情報には、PAに関する情報、送信モード、端末固有参照信号の送信電力に関する情報、干渉信号のPDSCHの送信電力に関する情報、PMI、サービングセルのPAに関する情報、サービングセルの端末固有参照信号の送信電力に関する情報、変調方式、MCS(Modulation and Coding Scheme)、リダンダンシーバージョン、RNTI(Radio Network Temporary Identifier)、送信モードに関する情報の一部または全部が含まれる。 The MU-NAICS assist information includes information on PA, transmission mode, information on transmission power of terminal-specific reference signal, information on transmission power of PDSCH of interference signal, PMI, information on PA of serving cell, terminal-specific reference signal of serving cell. Information on transmission power, modulation scheme, MCS (Modulation and Coding Scheme), redundancy version, RNTI (Radio Network and Temporary Identifier), and part or all of information on transmission mode are included.
 なお、PAは、CRSが配置されていないOFDMシンボルにおけるPDSCHとCRSの送信電力比(電力オフセット)である。端末装置固有参照信号の送信電力に関する情報は、例えば、端末装置固有参照信号の送信電力とPDSCHの送信電力との電力比(電力オフセット)を示す。干渉信号のPDSCHの送信電力に関する情報は、例えば、干渉信号のPDSCHの送信電力(図2の例ではP2)、干渉信号と自装置宛のPDSCHの送信電力との電力比(図2の例ではP2/P1またはP1/P2、なおここでは/を除算の意味で用いる)である。端末装置固有参照信号の送信電力がP2の場合、端末装置は、端末装置固有参照信号の送信電力とPDSCHの送信電力との電力比によって、干渉信号と自装置宛のPDSCHの送信電力との電力比を得ることができる。 Note that PA is a transmission power ratio (power offset) between PDSCH and CRS in an OFDM symbol in which CRS is not arranged. The information regarding the transmission power of the terminal device specific reference signal indicates, for example, the power ratio (power offset) between the transmission power of the terminal device specific reference signal and the transmission power of the PDSCH. The information regarding the transmission power of the PDSCH of the interference signal includes, for example, the transmission power of the PDSCH of the interference signal (P2 in the example of FIG. 2), and the power ratio between the interference signal and the transmission power of the PDSCH addressed to the own device (in the example of FIG. 2). P2 / P1 or P1 / P2, where / is used to mean division). When the transmission power of the terminal device specific reference signal is P2, the terminal device uses the power ratio between the transmission power of the terminal device specific reference signal and the transmission power of the PDSCH to determine the power of the interference signal and the transmission power of the PDSCH addressed to the own device. A ratio can be obtained.
 また、送信モードに関する情報は、干渉信号の送信モードや基地局装置1Aが設定できる(設定する可能性のある)送信モードの候補など、端末装置2Aが干渉信号の送信モードを知る(検出する)ためのアシスト情報である。 Also, the information related to the transmission mode is such that the terminal device 2A knows (detects) the transmission mode of the interference signal, such as the transmission mode of the interference signal and the transmission mode candidates that can be set (possibly set) by the base station device 1A. Assist information.
 また、上記のMU-NAICSアシスト情報に含まれるパラメータの各々は、1つの値(候補)が設定されても良いし、複数の値(候補)が設定されても良い。複数の値が設定された場合は、端末装置は、そのパラメータについては、複数の値から干渉信号に設定されているパラメータを検出(ブラインド検出)する。また、上記のMU-NAICSアシスト情報に含まれるパラメータの一部または全部は、上位層の信号で送信される。また、上記のMU-NAICSアシスト情報に含まれるパラメータの一部または全部は、物理層の信号で送信される。 Also, one value (candidate) may be set for each of the parameters included in the MU-NAICS assist information, or a plurality of values (candidates) may be set. When a plurality of values are set, the terminal device detects (blind detection) a parameter set in the interference signal from the plurality of values. In addition, some or all of the parameters included in the MU-NAICS assist information are transmitted as upper layer signals. Some or all of the parameters included in the MU-NAICS assist information are transmitted as physical layer signals.
 また、MU-NAICSアシスト情報は、様々な測定を行なうときに用いられても良い。測定は、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定を含む。 Also, the MU-NAICS assist information may be used when performing various measurements. The measurement includes RRM (Radio Resource Management) measurement and CSI (Channel State Information) measurement.
 また、端末装置2Aがキャリアアグリゲーション(Carrier Aggregation: CA)をサポートしている場合、基地局装置1Aはプライマリセル(Primary Cell: PCell)および/またはセカンダリセル(Secondary Cell: SCell)に対するMU-NAICSアシスト情報を設定することができる。また、基地局装置1Aは、MU-NAICSアシスト情報をPCellのみに対して設定または送信することもできる。 Further, when the terminal device 2A supports carrier aggregation (Carrier Aggregation: CA), the base station device 1A supports MU-NAICS for the primary cell (Primary Cell: PCell) and / or the secondary cell (Secondary Cell: SCell). Information can be set. Also, the base station apparatus 1A can set or transmit MU-NAICS assist information only to the PCell.
 基地局装置1Aは、上記MU-NAICSアシスト情報に含まれるパラメータのうち、少なくとも端末固有参照信号の送信電力に関する情報を下りリンク制御情報に含めて送信することができる。なお、ここでは、少なくとも端末固有参照信号の送信電力に関する情報を含んだ下りリンク制御情報を第1のDCIとも呼称し、端末固有参照信号の送信電力に関する情報を含まない下りリンク制御情報を第2のDCIとも呼称する。また、第1のDCIに対応するDCIフォーマットを第1のDCIフォーマットと呼称し、第2のDCIに対応するDCIフォーマットを第2のDCIフォーマットと呼称する。 The base station device 1A can transmit at least information related to the transmission power of the terminal-specific reference signal among the parameters included in the MU-NAICS assist information in the downlink control information. Here, the downlink control information including at least information related to the transmission power of the terminal-specific reference signal is also referred to as first DCI, and the downlink control information not including information related to the transmission power of the terminal-specific reference signal is referred to as the second DCI. It is also called DCI. A DCI format corresponding to the first DCI is referred to as a first DCI format, and a DCI format corresponding to the second DCI is referred to as a second DCI format.
 基地局装置1Aは、端末装置2Aに対して、所定の送信モードのときに第1のDCIフォーマットを用いて第1のDCIを送信することができる。また、基地局装置1Aは、端末装置2Aおよび2Bを非直交多重する場合、干渉信号の除去または抑圧を行なう端末装置2Aに対しては第1のDCIを送信し、端末装置2Bに対して第2のDCIを送信することができる。なお、端末装置2Aは、端末装置2Bが自身の送信モード以外の送信モードであると想定して、干渉信号を除去または抑圧することができる。 The base station apparatus 1A can transmit the first DCI to the terminal apparatus 2A using the first DCI format when in a predetermined transmission mode. Further, when the terminal devices 2A and 2B are non-orthogonal multiplexed, the base station device 1A transmits the first DCI to the terminal device 2A that removes or suppresses the interference signal, and transmits the first DCI to the terminal device 2B. Two DCIs can be transmitted. The terminal device 2A can remove or suppress the interference signal on the assumption that the terminal device 2B is in a transmission mode other than its own transmission mode.
 端末装置2Aは、上位層の信号および/または物理層の信号で、MU-NAICSアシスト情報を受信し、MU-NAICSアシスト情報に基づいて、干渉信号を除去または抑圧するためのパラメータを検出(特定)し、前記パラメータを用いて干渉信号を除去または抑圧する。なお、端末装置2Aは、MU-NAICS情報に含まれていないパラメータについて、パラメータの候補を順に検出を試みるブラインド検出によって、検出することができる。 The terminal device 2A receives the MU-NAICS assist information with the upper layer signal and / or the physical layer signal, and detects (specifies the parameter for removing or suppressing the interference signal based on the MU-NAICS assist information. The interference signal is removed or suppressed using the parameter. The terminal device 2A can detect parameters that are not included in the MU-NAICS information by blind detection that tries to detect parameter candidates in order.
 基地局装置は、PDCCH/EPDCCHで運ばれる下りリンク制御情報のCRC(巡回冗長検査: Cyclic Redundancy Check)に暗示的にRNTIを符号化して送信する。端末装置は、自装置宛のPDCCH/EPDCCHをRNTIに基づいたブラインド復号を行なって、下りリンク制御情報を検出する。また基地局装置は、PDSCHに対して、RNTIに基づいたスクランブリングを施して送信する。端末装置は、PDSCHを誤り訂正復号する際には、RNTIに基づいたデスクランブリングが必要となる。 The base station apparatus implicitly encodes and transmits the RNTI in the CRC (Cyclic Redundancy Check) of the downlink control information carried by the PDCCH / EPDCCH. The terminal apparatus performs blind decoding on the PDCCH / EPDCCH addressed to the terminal apparatus based on RNTI, and detects downlink control information. Also, the base station apparatus performs scrambling based on RNTI and transmits the PDSCH. The terminal device needs descrambling based on RNTI when performing error correction decoding on the PDSCH.
 基地局装置1Aは、MU-NAICSアシスト情報を送信する場合もしくは所定の送信モードの場合、端末装置2Aに対して、2種類のRNTIを割り当てることができる。2種類のRNTIをそれぞれ第1のRNTI(例えば、Cell RNTI)と第2のRNTIと呼ぶ。基地局装置1Aは、第2のRNTIはMU-NAICSアシスト情報に含めることができる。基地局装置1Aは、第2のRNTIを上位層の信号または物理層の信号で送信することができる。基地局装置1Aは、下りリンク制御情報を第1のRNTIでマスクし、PDSCHで運ばれるコードワードは第2のRNTIに基づいてスクランブリングして送信することができる。また、基地局装置1Aは、端末装置2Aおよび2Bを非直交多重する場合、PDSCH1の信号(コードワード)およびPDSCH2の信号(コードワード)を同じIDの第2のRNTIに基づいてスクランブリングして送信することができる。端末装置2Aは、所定の送信モードが設定された場合もしくはMU-NAICS情報を受信した場合、第1のRNTIに基づいて下りリンク制御情報をブラインド復号し、第2のRNTIに基づいて干渉信号の除去または抑圧を行なう。また端末装置2Aは、自装置宛のPDSCHの信号に対して、第2のRNTIに基づいてデスクランブリングを行なって誤り訂正復号を行なう。例えば、基地局装置1Aが、端末装置2Aの第2のRNTIとして端末装置2BのC-RNTIを設定した場合、端末装置2Bには追加の情報を送信する必要はないため、制御情報の増加を抑えることができる。 The base station apparatus 1A can allocate two types of RNTI to the terminal apparatus 2A when transmitting MU-NAICS assist information or in a predetermined transmission mode. The two types of RNTIs are referred to as a first RNTI (for example, Cell RNTI) and a second RNTI, respectively. The base station apparatus 1A can include the second RNTI in the MU-NAICS assist information. The base station apparatus 1A can transmit the second RNTI using an upper layer signal or a physical layer signal. The base station apparatus 1A can mask the downlink control information with the first RNTI, and scramble and transmit the codeword carried on the PDSCH based on the second RNTI. When the base station apparatus 1A performs non-orthogonal multiplexing of the terminal apparatuses 2A and 2B, the base station apparatus 1A scrambles the PDSCH1 signal (codeword) and the PDSCH2 signal (codeword) based on the second RNTI having the same ID. Can be sent. When the predetermined transmission mode is set or when the MU-NAICS information is received, the terminal device 2A performs blind decoding of the downlink control information based on the first RNTI and the interference signal based on the second RNTI. Remove or suppress. Also, the terminal device 2A performs error correction decoding by performing descrambling on the PDSCH signal addressed to the terminal device 2A based on the second RNTI. For example, when the base station apparatus 1A sets the C-RNTI of the terminal apparatus 2B as the second RNTI of the terminal apparatus 2A, it is not necessary to transmit additional information to the terminal apparatus 2B, so that the control information increases. Can be suppressed.
 基地局装置1Aは、所定の送信モード以外の送信モードの場合、下りリンク制御情報を第1のRNTIでマスクし、PDSCHで運ばれるコードワードは第1のRNTIに基づいてスクランブルし、送信する。端末装置2Aは、所定の送信モード以外の送信モードの場合、第1のRNTIに基づいて下りリンク制御情報をブラインド復号し、第1のRNTIに基づいてPDSCHに対してデスクランブルする。 In a transmission mode other than the predetermined transmission mode, the base station apparatus 1A masks downlink control information with the first RNTI, and scrambles and transmits the codeword carried on the PDSCH based on the first RNTI. In a transmission mode other than the predetermined transmission mode, the terminal device 2A blind-decodes downlink control information based on the first RNTI and descrambles the PDSCH based on the first RNTI.
 PDCCHは、様々な場所(リソース、リソースエレメント)に配置される可能性がある。端末装置は、PDCCHが配置される可能性のある全ての領域を探索する。PDCCHが配置される可能性のある領域は、探索領域と呼ばれる。探索領域には、全端末装置で共通の探索領域である共通探索領域(CSS: Common Search Space)と端末装置固有の探索領域である端末装置固有探索領域(USS: UE specific Search Space)がある。 PDCCH may be placed in various places (resources, resource elements). The terminal device searches for all areas where the PDCCH may be arranged. A region where the PDCCH may be arranged is called a search region. The search areas include a common search area (CSS: Common Search Space) that is a search area common to all terminal devices and a terminal device specific search region (USS: UE specific Search Space) that is a search area unique to the terminal device.
 基地局装置1Aは、所定の送信モードの場合および/またはMU-NAICSアシスト情報が設定されている場合、共通探索領域で下りリンク制御情報を送信する場合には第1のRNTIを用い、端末装置固有探索領域で下りリンク制御情報を送信する場合には第2のRNTIを用いることができる。端末装置2Aは、所定の送信モードが設定されている場合、共通探索領域で下りリンク制御情報をブラインド復号する場合は第1のRNTIを用い、端末装置固有探索領域で下りリンク制御情報をブラインド復号する場合は第2のRNTIを用いることができる。つまり、端末装置2Aは、所定の送信モードの場合もしくはMU-NAICSアシスト情報を受信した場合、共通探索領域で下りリンク制御情報を受信した場合は干渉信号の除去または抑圧は行なわず、端末装置固有探索領域で下りリンク制御情報を受信した場合は干渉信号の除去または抑圧を行なうことができる。 The base station apparatus 1A uses the first RNTI in the case of a predetermined transmission mode and / or when MU-NAICS assist information is set, and when transmitting downlink control information in the common search region, the terminal apparatus The second RNTI can be used when transmitting downlink control information in the eigensearch area. When a predetermined transmission mode is set, the terminal device 2A uses the first RNTI when blindly decoding downlink control information in the common search region, and blindly decodes downlink control information in the terminal device specific search region. If so, the second RNTI can be used. That is, when the terminal apparatus 2A is in a predetermined transmission mode or receives MU-NAICS assist information, or receives downlink control information in the common search area, the terminal apparatus 2A does not remove or suppress the interference signal, and is specific to the terminal apparatus. When downlink control information is received in the search area, interference signals can be removed or suppressed.
 基地局装置1Aは、所定の送信モード以外の送信モードの場合もしくは共通探索領域で下りリンク制御情報を送信する場合、第1のRNTIに基づいて下りリンク制御情報をマスクして、下りリンク制御情報を送信する。端末装置2Aは、所定の送信モード以外の送信モードの場合もしくは共通探索領域で下りリンク制御情報を受信した場合、第1のRNTIに基づいて下りリンク制御情報をブラインド復号することができる。 When the base station apparatus 1A is in a transmission mode other than the predetermined transmission mode or transmits downlink control information in the common search region, the base station apparatus 1A masks the downlink control information based on the first RNTI, and the downlink control information Send. In the case of a transmission mode other than the predetermined transmission mode or when downlink control information is received in the common search region, the terminal device 2A can blind-decode the downlink control information based on the first RNTI.
 また、基地局装置1Aは、所定の送信モードの場合、第1のDCIフォーマットの下りリンク制御情報は第2のRNTIでマスクし、第2のDCIフォーマットの下りリンク制御情報は第1のRNTIでマスクすることができる。また、基地局装置1Aは、所定の送信モードの場合、第1のDCIは共通探索領域および端末装置固有探索領域で送信することができ、第2のDCIは端末装置固有探索領域で送信することができる。端末装置2Aは、所定の送信モードの場合、第1のDCIフォーマットに対しては第2のRNTIに基づいてブラインド復号し、第2のDCIフォーマットに対しては第1のRNTIに基づいてブラインド復号する。また、端末装置2Aは、所定の送信モードの場合、第1のDCIは共通探索領域および端末装置固有探索領域で受信することができ、第2のDCIは端末装置固有探索領域で受信することができる。 Also, in the case of a predetermined transmission mode, the base station apparatus 1A masks the downlink control information in the first DCI format with the second RNTI, and the downlink control information in the second DCI format with the first RNTI. Can be masked. In addition, in the case of a predetermined transmission mode, the base station apparatus 1A can transmit the first DCI in the common search area and the terminal apparatus specific search area, and transmit the second DCI in the terminal apparatus specific search area. Can do. In a predetermined transmission mode, the terminal apparatus 2A performs blind decoding based on the second RNTI for the first DCI format and blind decoding based on the first RNTI for the second DCI format. To do. Further, in the case of the predetermined transmission mode, the terminal apparatus 2A can receive the first DCI in the common search area and the terminal apparatus specific search area, and can receive the second DCI in the terminal apparatus specific search area. it can.
 また、基地局装置1Aは、所定の送信モードの場合かつ端末固有探索領域にて下りリンク制御情報を送信する場合、第1のDCIおよび第2のDCIを同じ値の第2のRNTIでマスクすることができる。言い換えると、端末装置2Aは、基地局装置1Aが設定または送信した第2のRNTIを用いて第1のDCIおよび第2のDCIをブラインド復号することができる。端末装置2Aは、例えば、干渉信号の送信モードもしくはDCIフォーマットによって、第1のDCIと第2のDCIを区別することができる。端末装置2Aが第2のDCIを知ることができれば、MU-NAICSアシスト情報に含めるパラメータを少なくすることができる。従って、制御情報によるオーバヘッドを低減できるため、スループットを向上させることができる。 Further, in the case of a predetermined transmission mode and when transmitting downlink control information in the terminal-specific search region, the base station apparatus 1A masks the first DCI and the second DCI with the second RNTI having the same value. be able to. In other words, the terminal device 2A can blind-decode the first DCI and the second DCI using the second RNTI set or transmitted by the base station device 1A. The terminal device 2A can distinguish between the first DCI and the second DCI based on, for example, the transmission mode of the interference signal or the DCI format. If the terminal device 2A can know the second DCI, the parameters included in the MU-NAICS assist information can be reduced. Therefore, overhead due to control information can be reduced, and throughput can be improved.
 また、基地局装置1Aは、所定の送信モードの場合、複数の端末装置で共通の下りリンク制御情報を送信することができる。複数の端末装置で共通の下りリンク制御情報は第3の下りリンク制御情報(第3のDCI)とも呼称する。例えば、基地局装置1Aは、第3のDCIを第2のRNTIでマスクして送信することができる。複数の端末装置が同じ下りリンク制御情報を探索するため、基地局装置1Aは、第3のDCIは共通探索領域で送信することができる。所定の送信モードの場合、各端末装置は、共通探索領域で第2のRNTIに基づいて第3のDCIをブラインド復号することができる。複数の端末装置で下りリンク制御情報を共有すれば、制御情報によるオーバヘッドを低減することができ、スループットを向上させることができる。 Moreover, the base station apparatus 1A can transmit downlink control information common to a plurality of terminal apparatuses in the case of a predetermined transmission mode. The downlink control information common to a plurality of terminal apparatuses is also referred to as third downlink control information (third DCI). For example, the base station apparatus 1A can transmit the third DCI while masking it with the second RNTI. Since a plurality of terminal devices search for the same downlink control information, the base station device 1A can transmit the third DCI in the common search region. In the case of the predetermined transmission mode, each terminal apparatus can blind-decode the third DCI based on the second RNTI in the common search area. If downlink control information is shared by a plurality of terminal devices, overhead due to control information can be reduced, and throughput can be improved.
 また、基地局装置1Aは、制御情報によるオーバヘッドを低減するために、第1のDCIおよび第2のDCIに含まれるリソース割り当て情報を共通とすることができる。つまり、基地局装置1Aは、所定の送信モードの場合、複数の端末装置を同じリソースで非直交多重するができる。この場合、端末装置2Aは、自装置宛のPDSCH1に割り当てられたすべてのリソースエレメント(リソースブロック)に、他装置宛の信号(例えば、PDSCH2)が非直交多重されていることを想定して、自装置宛のPDSCH1を復調することができる。 Also, the base station apparatus 1A can share the resource allocation information included in the first DCI and the second DCI in order to reduce the overhead due to the control information. That is, the base station apparatus 1A can non-orthogonally multiplex a plurality of terminal apparatuses with the same resource in the predetermined transmission mode. In this case, the terminal device 2A assumes that signals (for example, PDSCH2) addressed to other devices are non-orthogonally multiplexed on all resource elements (resource blocks) allocated to PDSCH1 addressed to the own device, It is possible to demodulate PDSCH1 addressed to its own device.
 また、基地局装置1Aは、周波数ダイバーシチ利得の獲得を期待して、第1のDCIと第2のDCIに含まれるリソース割り当て情報を異なるものとすることができる。つまり、基地局装置1Aは、複数の端末装置を一部のリソースで非直交多重することができる。この場合、端末装置2Aは、自装置宛のPDSCH1に割り当てられたリソースエレメント(リソースブロック)の一部に、他装置宛の信号(例えば、PDSCH2)が非直交多重されていることを想定して、自装置宛のPDSCH1を復調することができる。端末装置2Aは、例えば、ブラインド検出によって、他装置宛の信号が非直交多重されているリソースエレメント(リソースブロック)を検出することができる。例えば、端末装置2Aはリソースブロック毎に多重される端末固有参照信号の電力を比較することでブラインド検出できる。 In addition, the base station apparatus 1A can make the resource allocation information included in the first DCI and the second DCI different in the hope of obtaining frequency diversity gain. That is, the base station apparatus 1A can non-orthogonally multiplex a plurality of terminal apparatuses with some resources. In this case, the terminal apparatus 2A assumes that a signal (for example, PDSCH2) destined for another apparatus is non-orthogonally multiplexed on a part of the resource element (resource block) allocated to PDSCH1 destined for the terminal apparatus 2A. The PDSCH 1 addressed to its own device can be demodulated. The terminal device 2A can detect a resource element (resource block) in which a signal addressed to another device is non-orthogonal-multiplexed, for example, by blind detection. For example, the terminal device 2A can perform blind detection by comparing the power of terminal-specific reference signals multiplexed for each resource block.
 また、基地局装置1Aは、第1のDCIに、PDSCH1に非直交多重されている他装置宛の信号(例えば、PDSCH2)のリソース割り当てを示す情報を含めることができる。基地局装置1Aは、第1のDCIに、PDSCH2に対するリソース割り当て情報を含めることができるし、PDSCH1に対するリソース割り当て情報と、PDSCH2に対するリソース割り当て情報が共通か否かを示す情報を含めることができる。また、基地局装置1Aは第1のDCIに非直交多重されているリソースに関する情報を含めることができる。端末装置2Aは、非直交多重されているリソースに関する情報に基づいて、非直交多重されているリソースについて、干渉信号を除去または抑圧する。 Also, the base station apparatus 1A can include information indicating resource allocation of a signal (for example, PDSCH2) addressed to another apparatus that is non-orthogonally multiplexed on the PDSCH 1 in the first DCI. The base station apparatus 1A can include resource allocation information for PDSCH2 in the first DCI, and can include information indicating whether the resource allocation information for PDSCH1 and the resource allocation information for PDSCH2 are common. Also, the base station apparatus 1A can include information on resources that are non-orthogonal-multiplexed in the first DCI. The terminal device 2A removes or suppresses the interference signal for the non-orthogonal multiplexed resource based on the information related to the non-orthogonal multiplexed resource.
 また、基地局装置1Aは、第1のDCIに、PDSCH1に割り当てた電力が、PDSCH1に割り当てたリソースエレメント(リソースブロック)内で共通か否かを示す情報を含めることができる。端末装置2Aは、該情報に基づいて、PDSCH1に非直交多重されている他装置宛の信号が、PDSCH1全体に非直交多重されているのか、部分的に非直交多重されているのかブラインド検出することができる。 Also, the base station apparatus 1A can include information indicating whether or not the power allocated to the PDSCH 1 is common in the resource elements (resource blocks) allocated to the PDSCH 1 in the first DCI. Based on this information, the terminal device 2A blindly detects whether a signal addressed to another device that is non-orthogonally multiplexed on the PDSCH 1 is non-orthogonal multiplexed or partially non-orthogonal multiplexed on the entire PDSCH 1 be able to.
 図3は、本実施形態における基地局装置1Aの構成を示す概略ブロック図である。図3に示すように、基地局装置1Aは、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103、受信部(受信ステップ)104と送受信アンテナ105を含んで構成される。また、上位層処理部101は、無線リソース制御部(無線リソース制御ステップ)1011、スケジューリング部(スケジューリングステップ)1012を含んで構成される。また、送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、無線送信部(無線送信ステップ)1035を含んで構成される。また、受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、復調部(復調ステップ)1043、復号部(復号ステップ)1044を含んで構成される。 FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 1A in the present embodiment. As illustrated in FIG. 3, the base station apparatus 1 </ b> A performs transmission / reception with an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmission unit (transmission step) 103, and a reception unit (reception step) 104. An antenna 105 is included. The upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012. The transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, a radio A transmission unit (wireless transmission step) 1035 is included. The reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。 The upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing. In addition, upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。 The upper layer processing unit 101 receives information related to the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal.
 なお、以下の説明において、端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。なお、以下の説明において、所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。 In the following description, information on a terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced a predetermined function and has completed a test. In the following description, whether or not to support a predetermined function includes whether or not installation and testing for the predetermined function have been completed.
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知しても良い。 For example, when a terminal device supports a predetermined function, the terminal device transmits information (parameters) indicating whether the predetermined function is supported. When the terminal device does not support the predetermined function, the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
 無線リソース制御部1011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CEなどを生成、または上位ノードから取得する。無線リソース制御部1011は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。また、無線リソース制御部1011は、端末装置の各種設定情報の管理をする。 The radio resource control unit 1011 generates or acquires downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from the upper node. The radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102. The radio resource control unit 1011 manages various setting information of the terminal device.
 スケジューリング部1012は、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式(あるいはMCS)および送信電力などを決定する。スケジューリング部1012は、決定した情報を制御部102に出力する。 The scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), transmission power, and the like. The scheduling unit 1012 outputs the determined information to the control unit 102.
 スケジューリング部1012は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部1012は、生成した情報を制御部102に出力する。 The scheduling unit 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result. The scheduling unit 1012 outputs the generated information to the control unit 102.
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。 The control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101. The control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103.
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および、下りリンクデータを、符号化および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ105を介して端末装置2に信号を送信する。 The transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Then, PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the terminal apparatus 2 via the transmission / reception antenna 105.
 符号化部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部1011が決定した符号化方式を用いて符号化を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた、または無線リソース制御部1011が決定した変調方式で変調する。 The encoding unit 1031 uses a predetermined encoding method such as block encoding, convolutional encoding, and turbo encoding for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Encoding is performed using the encoding method determined by the radio resource control unit 1011. The modulation unit 1032 converts the encoded bits input from the encoding unit 1031 into BPSK (Binary Phase Shift Shift Keying), QPSK (quadrature Phase Shift Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, and the like. Or it modulates with the modulation system which the radio | wireless resource control part 1011 determined.
 下りリンク参照信号生成部1033は、基地局装置1Aを識別するための物理セル識別子(PCI、セルID)などを基に予め定められた規則で求まる、端末装置2Aが既知の系列を下りリンク参照信号として生成する。 The downlink reference signal generation unit 1033 refers to a sequence known by the terminal apparatus 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A. Generate as a signal.
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。 The multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
 無線送信部1035は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成し、OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送受信アンテナ105に出力して送信する。 The radio transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol. A band digital signal is generated, the baseband digital signal is converted into an analog signal, an extra frequency component is removed by filtering, the signal is up-converted to a carrier frequency, power amplified, and output to the transmission / reception antenna 105 for transmission. .
 受信部104は、制御部102から入力された制御信号に従って、送受信アンテナ105を介して端末装置2Aから受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。 The receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmission / reception antenna 105 in accordance with the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. .
 無線受信部1041は、送受信アンテナ105を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The radio reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained. The level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal.
 無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出し多重分離部1042に出力する。 The wireless reception unit 1041 removes a portion corresponding to the CP from the converted digital signal. Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
 多重分離部1042は、無線受信部1041から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。なお、この分離は、予め基地局装置1Aが無線リソース制御部1011で決定し、各端末装置2に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。 The demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2.
 また、多重分離部1042は、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1042は、上りリンク参照信号を分離する。 Also, the demultiplexing unit 1042 compensates for the propagation paths of the PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
 復調部1043は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置2各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。 The demodulator 1043 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, acquires modulation symbols, and pre-modulates BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc. for each of the PUCCH and PUSCH modulation symbols. The received signal is demodulated by using a modulation method determined or notified in advance by the own device to each of the terminal devices 2 using an uplink grant.
 復号部1044は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、または自装置が端末装置2に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号部1044は、上位層処理部101から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。 The decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
 図4は、本実施形態における端末装置2の構成を示す概略ブロック図である。図4に示すように、端末装置2Aは、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204、チャネル状態情報生成部(チャネル状態情報生成ステップ)205と送受信アンテナ206を含んで構成される。また、上位層処理部201は、無線リソース制御部(無線リソース制御ステップ)2011、スケジューリング情報解釈部(スケジューリング情報解釈ステップ)2012を含んで構成される。また、送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035を含んで構成される。また、受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、信号検出部(信号検出ステップ)2043を含んで構成される。 FIG. 4 is a schematic block diagram showing the configuration of the terminal device 2 in the present embodiment. As shown in FIG. 4, the terminal device 2A includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state. An information generation unit (channel state information generation step) 205 and a transmission / reception antenna 206 are included. The upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012. The transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio A transmission unit (wireless transmission step) 2035 is included. The reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。また、上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。 The upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203. Further, the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. Process the (Radio Resource Control: RRC) layer.
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。 The upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
 無線リソース制御部2011は、自端末装置の各種設定情報の管理をする。また、無線リソース制御部2011は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。 The radio resource control unit 2011 manages various setting information of the own terminal device. Also, the radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203.
 無線リソース制御部2011は、基地局装置から送信されたCSIフィードバックに関する設定情報を取得し、制御部202に出力する。 The radio resource control unit 2011 acquires setting information regarding CSI feedback transmitted from the base station apparatus, and outputs the setting information to the control unit 202.
 スケジューリング情報解釈部2012は、受信部204を介して受信した下りリンク制御情報を解釈し、スケジューリング情報を判定する。また、スケジューリング情報解釈部2012は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。 The scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines scheduling information. The scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204、チャネル状態情報生成部205および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、チャネル状態情報生成部205および送信部203に出力して受信部204、および送信部203の制御を行なう。 The control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201. The control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
 制御部202は、チャネル状態情報生成部205が生成したCSIを基地局装置に送信するように送信部203を制御する。 The control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
 受信部204は、制御部202から入力された制御信号に従って、送受信アンテナ206を介して基地局装置1Aから受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。 The receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the transmission / reception antenna 206 according to the control signal input from the control unit 202, and sends the decoded information to the upper layer processing unit 201. Output.
 無線受信部2041は、送受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The radio reception unit 2041 converts a downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
 また、無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行ない、周波数領域の信号を抽出する。 Further, the wireless reception unit 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
 多重分離部2042は、抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部2042は、チャネル測定から得られた所望信号のチャネルの推定値に基づいて、PHICH、PDCCH、およびEPDCCHのチャネルの補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。また、制御部202は、PDSCHおよび所望信号のチャネル推定値を信号検出部2043に出力する。 The demultiplexing unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal. Further, the demultiplexing unit 2042 compensates for the PHICH, PDCCH, and EPDCCH channels based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and sends it to the control unit 202. Output. In addition, control unit 202 outputs PDSCH and the channel estimation value of the desired signal to signal detection unit 2043.
 信号検出部2043は、PDSCH、チャネル推定値を用いて、信号検出し、上位層処理部201に出力する。 The signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201.
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ206を介して基地局装置1Aに送信する。 The transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 201, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 1A via the transmission / reception antenna 206.
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報を畳み込み符号化、ブロック符号化等の符号化を行なう。また、符号化部2031は、PUSCHのスケジューリングに用いられる情報に基づきターボ符号化を行なう。 The encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201. Also, the coding unit 2031 performs turbo coding based on information used for PUSCH scheduling.
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。 The modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
 上りリンク参照信号生成部2033は、基地局装置1Aを識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。 The uplink reference signal generation unit 2033 has a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging an uplink reference signal, and an uplink grant. A sequence determined by a predetermined rule (formula) is generated on the basis of the cyclic shift and the parameter value for generating the DMRS sequence notified in (1).
 多重部2034は、制御部202から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)する。また、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。 The multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT). Also, the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行ない、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送受信アンテナ206に出力して送信する。 The radio transmission unit 2035 performs inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, generates an SC-FDMA symbol, and generates the generated SC-FDMA symbol. CP is added to baseband digital signal, baseband digital signal is converted to analog signal, excess frequency component is removed, converted to carrier frequency by up-conversion, power amplification, transmission / reception antenna It outputs to 206 and transmits.
 なお、本発明に係る基地局装置および端末装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであっても良い。また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。 Note that the program that operates in the base station apparatus and the terminal apparatus according to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments according to the present invention. Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary. As a recording medium for storing the program, a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient. In addition, by executing the loaded program, not only the functions of the above-described embodiment are realized, but also based on the instructions of the program, the processing is performed in cooperation with the operating system or other application programs. The functions of the invention may be realized.
 また、市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。また、上述した実施形態における端末装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現しても良い。受信装置の各機能ブロックは個別にチップ化しても良いし、一部、または全部を集積してチップ化しても良い。各機能ブロックを集積回路化した場合に、それらを制御する集積回路制御部が付加される。 In addition, when distributing to the market, the program can be stored in a portable recording medium for distribution, or transferred to a server computer connected via a network such as the Internet. In this case, the storage device of the server computer is also included in the present invention. Moreover, you may implement | achieve part or all of the terminal device and base station apparatus in embodiment mentioned above as LSI which is typically an integrated circuit. Each functional block of the receiving apparatus may be individually chipped, or a part or all of them may be integrated into a chip. When each functional block is integrated, an integrated circuit controller for controlling them is added.
 また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to progress in semiconductor technology, an integrated circuit based on the technology can also be used.
 なお、本願発明は上述の実施形態に限定されるものではない。本願発明の端末装置は、移動局装置への適用に限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などに適用出来ることは言うまでもない。 Note that the present invention is not limited to the above-described embodiment. The terminal device of the present invention is not limited to application to a mobile station device, but is a stationary or non-movable electronic device installed indoors or outdoors, such as AV equipment, kitchen equipment, cleaning / washing equipment Needless to say, it can be applied to air conditioning equipment, office equipment, vending machines, and other daily life equipment.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も請求の範囲に含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and the design and the like within the scope of the present invention are also within the scope of the claims. include.
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。 The present invention is suitable for use in a base station device, a terminal device, and a communication method.
 なお、本国際出願は、2015年2月13日に出願した日本国特許出願第2015-025904号に基づく優先権を主張するものであり、日本国特許出願第2015-025904号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2015-025904 filed on February 13, 2015, and the entire contents of Japanese Patent Application No. 2015-025904 are hereby incorporated by reference. Included in international applications.
1A 基地局装置
2A、2B 端末装置
101 上位層処理部
102 制御部
103 送信部
104 受信部
105 送受信アンテナ
1011 無線リソース制御部
1012 スケジューリング部
1031 符号化部
1032 変調部
1033 下りリンク参照信号生成部
1034 多重部
1035 無線送信部
1041 無線受信部
1042 多重分離部
1043 復調部
1044 復号部
201 上位層処理部
202 制御部
203 送信部
204 受信部
205 チャネル状態情報生成部
206 送受信アンテナ
2011 無線リソース制御部
2012 スケジューリング情報解釈部
2031 符号化部
2032 変調部
2033 上りリンク参照信号生成部
2034 多重部
2035 無線送信部
2041 無線受信部
2042 多重分離部
2043 信号検出部
1A Base station apparatus 2A, 2B Terminal apparatus 101 Upper layer processing section 102 Control section 103 Transmission section 104 Reception section 105 Transmission / reception antenna 1011 Radio resource control section 1012 Scheduling section 1031 Encoding section 1032 Modulation section 1033 Downlink reference signal generation section 1034 Multiplexing Unit 1035 radio transmission unit 1041 radio reception unit 1042 demultiplexing unit 1043 demodulation unit 1044 decoding unit 201 upper layer processing unit 202 control unit 203 transmission unit 204 reception unit 205 channel state information generation unit 206 transmission / reception antenna 2011 radio resource control unit 2012 scheduling information Interpreter 2031 Encoder 2032 Modulator 2033 Uplink reference signal generator 2034 Multiplexer 2035 Radio transmitter 2041 Radio receiver 2042 Demultiplexer 2043 Signal detector

Claims (7)

  1.  第1の端末装置および第2の端末装置と通信する基地局装置であって、
     前記第1の端末装置に所定の送信モードを設定した場合に、時間リソース、周波数リソースおよびアンテナポートのうち少なくとも1つが同一リソースで、第1の端末装置および第2の端末装置の下りリンク共有チャネルを送信する送信部を備え、
     前記第2の端末装置に設定する送信モードは前記第1の端末装置の送信モードとは異なる基地局装置。
    A base station apparatus that communicates with a first terminal apparatus and a second terminal apparatus,
    When a predetermined transmission mode is set in the first terminal device, at least one of a time resource, a frequency resource, and an antenna port is the same resource, and the downlink shared channel of the first terminal device and the second terminal device A transmission unit for transmitting
    A transmission mode set in the second terminal apparatus is a base station apparatus different from the transmission mode of the first terminal apparatus.
  2.  前記第1の端末装置に送信する下りリンク制御情報には、前記第2の端末装置の下りリンク共有チャネルに関する電力割当て情報を含む請求項1に記載の基地局装置。 The base station apparatus according to claim 1, wherein the downlink control information transmitted to the first terminal apparatus includes power allocation information related to a downlink shared channel of the second terminal apparatus.
  3.  基地局装置と通信する端末装置であって、
     前記基地局装置に所定の送信モードが設定された場合、時間リソース、周波数リソースおよびアンテナポートのうち少なくとも1つが同一リソースで、第1の端末装置および第2の端末装置の下りリンク共有チャネルを受信する受信部を備え、
     前記第2の端末装置に設定される送信モードは自装置の送信モードとは異なる端末装置。
    A terminal device that communicates with a base station device,
    When a predetermined transmission mode is set in the base station device, at least one of a time resource, a frequency resource, and an antenna port receives the downlink shared channel of the first terminal device and the second terminal device with the same resource Including a receiving unit,
    A terminal device in which the transmission mode set in the second terminal device is different from the transmission mode of the own device.
  4.  前記基地局装置から受信する下りリンク制御情報には、前記第2の端末装置の下りリンク共有チャネルに関する電力割当て情報を含む請求項3に記載の端末装置。 The terminal apparatus according to claim 3, wherein the downlink control information received from the base station apparatus includes power allocation information related to a downlink shared channel of the second terminal apparatus.
  5.  前記下りリンク制御情報を用いて、干渉となる前記第2の端末装置の信号を除去して自装置の信号を復調する請求項4に記載の端末装置。 The terminal device according to claim 4, wherein the downlink control information is used to demodulate the signal of the own device by removing the signal of the second terminal device that causes interference.
  6.  第1の端末装置および第2の端末装置と通信する基地局装置における通信方法であって、
     前記第1の端末装置に所定の送信モードを設定した場合に、同じ時間リソース、周波数リソースおよびアンテナポートのうち少なくとも1つが同一リソースで、第1の端末装置および第2の端末装置の下りリンク共有チャネルを送信し、
     前記第2の端末装置に設定する送信モードは前記第1の端末装置の送信モードとは異なる通信方法。
    A communication method in a base station apparatus that communicates with a first terminal apparatus and a second terminal apparatus,
    When a predetermined transmission mode is set in the first terminal apparatus, at least one of the same time resource, frequency resource, and antenna port is the same resource, and downlink sharing of the first terminal apparatus and the second terminal apparatus Send the channel,
    The transmission mode set in the second terminal device is a communication method different from the transmission mode of the first terminal device.
  7.  基地局装置と通信する端末装置における通信方法であって、
     前記基地局装置に所定の送信モードが設定された場合、同じ時間リソース、周波数リソースおよびアンテナポートのうち少なくとも1つが同一リソースで、第1の端末装置および第2の端末装置の下りリンク共有チャネルを受信し、
     前記第2の端末装置に設定される送信モードは自装置の送信モードとは異なる通信方法。
    A communication method in a terminal device that communicates with a base station device,
    When a predetermined transmission mode is set in the base station apparatus, at least one of the same time resource, frequency resource, and antenna port is the same resource, and the downlink shared channel of the first terminal apparatus and the second terminal apparatus is used. Receive
    A communication method in which the transmission mode set in the second terminal device is different from the transmission mode of the own device.
PCT/JP2016/052800 2015-02-13 2016-01-29 Base station device, terminal device, and communication method WO2016129425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015025904A JP2018056605A (en) 2015-02-13 2015-02-13 Base station device, terminal device, and communication method
JP2015-025904 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129425A1 true WO2016129425A1 (en) 2016-08-18

Family

ID=56614616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052800 WO2016129425A1 (en) 2015-02-13 2016-01-29 Base station device, terminal device, and communication method

Country Status (2)

Country Link
JP (1) JP2018056605A (en)
WO (1) WO2016129425A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204277A (en) * 2013-04-04 2014-10-27 株式会社Nttドコモ Radio base station, user terminal and radio communication method
JP2015012411A (en) * 2013-06-28 2015-01-19 株式会社Nttドコモ Radio base station, user terminal, radio communication method, and radio communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204277A (en) * 2013-04-04 2014-10-27 株式会社Nttドコモ Radio base station, user terminal and radio communication method
JP2015012411A (en) * 2013-06-28 2015-01-19 株式会社Nttドコモ Radio base station, user terminal, radio communication method, and radio communication system

Also Published As

Publication number Publication date
JP2018056605A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6529087B2 (en) Base station apparatus, terminal apparatus and integrated circuit
CN108293224B (en) Base station device, terminal device, and communication method
JP6646582B2 (en) Base station apparatus, terminal apparatus and method
JP6899326B2 (en) Base station equipment, terminal equipment and communication methods
JPWO2016043020A1 (en) Terminal apparatus, base station apparatus, and communication method
JPWO2015190312A1 (en) Base station apparatus, terminal apparatus and communication method
WO2016136779A1 (en) Terminal device, base station device, and communication method
WO2016129424A1 (en) Base station device, terminal device, and communication method
JP6811714B2 (en) Base station equipment, terminal equipment and communication methods
JP6588018B2 (en) Base station apparatus, terminal apparatus and method
WO2016136777A1 (en) Terminal device, base-station device, and communication method
JPWO2015166865A1 (en) Terminal device and integrated circuit
WO2015107771A1 (en) Terminal device, base station device, and integrated circuit
WO2015107978A1 (en) Terminal device, base station device, and integrated circuit
WO2016027646A1 (en) Terminal device, base station device, and communication method
WO2015190313A1 (en) Terminal device and integrated circuit
WO2015137112A1 (en) Terminal device, base station device, and integrated circuit
WO2015141266A1 (en) Terminal apparatus, base station apparatus, and integrated circuit
JPWO2015166861A1 (en) Terminal device and integrated circuit
JP2018110280A (en) Base station device, terminal device, and communication method
JP6472031B2 (en) Terminal apparatus, base station apparatus, and communication method
WO2016129425A1 (en) Base station device, terminal device, and communication method
WO2016129429A1 (en) Base station device, terminal device, and communication method
WO2015141438A1 (en) Terminal device and integrated circuit
WO2016136780A1 (en) Terminal device, base station device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16749069

Country of ref document: EP

Kind code of ref document: A1