WO2017169284A1 - Image processing device and method for operating same, and endoscope processor device and method for operating same - Google Patents

Image processing device and method for operating same, and endoscope processor device and method for operating same Download PDF

Info

Publication number
WO2017169284A1
WO2017169284A1 PCT/JP2017/006198 JP2017006198W WO2017169284A1 WO 2017169284 A1 WO2017169284 A1 WO 2017169284A1 JP 2017006198 W JP2017006198 W JP 2017006198W WO 2017169284 A1 WO2017169284 A1 WO 2017169284A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
index value
image
depth
vessel index
Prior art date
Application number
PCT/JP2017/006198
Other languages
French (fr)
Japanese (ja)
Inventor
駿平 加門
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP17773832.5A priority Critical patent/EP3437541A4/en
Publication of WO2017169284A1 publication Critical patent/WO2017169284A1/en
Priority to US16/143,498 priority patent/US10986980B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1032Determining colour for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/586Depth or shape recovery from multiple images from multiple light sources, e.g. photometric stereo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Definitions

  • the present invention relates to an image processing apparatus that measures the depth of a blood vessel in an observation target, an operation method thereof, an endoscope processor device, and an operation method thereof.
  • diagnosis is generally performed using an endoscope system including a light source device, an endoscope, and a processor device.
  • an endoscope system including a light source device, an endoscope, and a processor device.
  • broadband light such as white light
  • biological function information such as oxygen saturation and blood vessel depth
  • Patent Document 1 based on image signals S1, S2, and S3 obtained by sequentially irradiating narrow-band lights having center wavelengths of 445 nm, 473 nm, and 405 nm, respectively, an index value (blood vessel index value) related to blood vessels is obtained.
  • One luminance ratio S1 / S3 and S2 / S3 is calculated, and from these luminance ratios S1 / S3 and S2 / S3, oxygen saturation and blood vessel depth are calculated, and image processing is performed by color processing such as pseudo color. Is going.
  • the relationship between the blood vessel contrast, which is one of the blood vessel index values, and the blood vessel depth is such that the blood vessel contrast increases as the blood vessel depth increases regardless of the blood vessel depth or the oxygen saturation level. There is a known tendency to be low.
  • the relationship between the blood vessel contrast and the blood vessel depth is different between the case where the blood vessel thickness is large and the case where the blood vessel thickness is small. It cannot be determined accurately.
  • the relationship between the blood vessel contrast and the blood vessel depth is different between when the oxygen saturation is low and when the oxygen saturation is high. It cannot be determined accurately. Therefore, there is a need for a technique that can accurately measure the blood vessel depth of the blood vessel in the observation target using not only the blood vessel index values such as the luminance ratio and the blood vessel contrast but also other information and measurement techniques.
  • the present invention relates to an image processing apparatus that accurately measures the blood vessel depth of a blood vessel in an observation target using not only the blood vessel index value but also other information and the like, an operating method thereof, and an endoscopic processor apparatus and its It aims to provide a method of operation.
  • An image processing apparatus of the present invention is an image processing apparatus that measures a blood vessel depth of a blood vessel in an observation target, an image acquisition unit that acquires an image obtained by imaging the observation target, and a blood vessel index value in the image
  • a blood vessel index value calculating unit that calculates a blood vessel index value from the image for use, a blood vessel index value, a plurality of blood vessel index value fluctuation factors that fluctuate the blood vessel index value, and a plurality of blood vessel index value fluctuation factors including a blood vessel depth
  • a blood vessel index for measuring a specific blood vessel index value variation factor other than the blood vessel depth among the plurality of blood vessel index value variation factors The value variation factor measurement unit and the sub-data set having a specific vascular index value variation factor are narrowed down from the data set, and the blood vessel index value calculated by the vascular index value calculation unit is selected from the sub-data set.
  • a blood vessel depth calculating unit that calculates the blood vessel depth of.
  • the blood vessel index value calculation unit calculates the blood vessel index value of the measurement target blood vessel.
  • the blood vessel index value image includes an image of a plurality of wavelengths, and the blood vessel index value calculation unit calculates a blood vessel index value of the blood vessel to be measured based on the image of the plurality of wavelengths.
  • the blood vessel index value calculating unit calculates a blood vessel index value for each of the images of a plurality of wavelengths, and calculates the blood vessel index value of the blood vessel to be measured by adding each weighted value to the calculated blood vessel index value,
  • the weighting coefficient for the blood vessel index value is preferably set based on the wavelength component of the image used for calculating the blood vessel index value. It is preferable to have a blood vessel index value variation factor selection unit that selects a specific blood vessel index value variation factor measured by the blood vessel index value variation factor measurement unit from among a plurality of blood vessel index value variation factors.
  • the blood vessel index value is preferably a value obtained by combining at least one or more of blood vessel contrast, luminance value of the blood vessel portion, and color information of the blood vessel portion.
  • the blood vessel index value variation factor is preferably a value obtained by combining one or more of blood vessel thickness, oxygen saturation, blood vessel density, imaging distance, imaging angle, yellow pigment concentration, and mucosal scattering coefficient.
  • the specific blood vessel index value fluctuation factors are blood vessel thickness and oxygen saturation
  • the blood vessel index value fluctuation factor measurement unit includes a blood vessel thickness measurement unit that measures blood vessel thickness and an oxygen saturation measurement that measures oxygen saturation. It is preferable to have a part.
  • the blood vessel index value is blood vessel contrast
  • the data set storage unit preferably stores a data set including measurement data in which blood vessel contrast, oxygen saturation, blood vessel depth, and blood vessel depth are associated with each other. .
  • the present invention relates to an endoscopic processor device for measuring a blood vessel depth of a blood vessel in an observation target, an image acquisition unit for acquiring an image obtained by imaging the observation target, and a blood vessel index value for the image
  • a blood vessel index value calculation unit that calculates a blood vessel index value from an image, a blood vessel index value, and a plurality of blood vessel index value fluctuation factors that fluctuate the blood vessel index value and include a plurality of blood vessel index value fluctuation factors including a blood vessel depth
  • a data set storage unit that stores a data set composed of a plurality of associated measurement data, and a blood vessel index value that measures a specific blood vessel index value variation factor other than the blood vessel depth among the plurality of blood vessel index value variation factors Fluctuation factor measurement part and sub-data set with specific vascular index value fluctuation factor in the data set are narrowed down, and it corresponds to the vascular index value calculated by the vascular index value calculation part from the sub-data set.
  • a blood vessel depth calculating unit that calculates
  • the present invention relates to an operation method of an image processing apparatus for measuring a blood vessel depth of a blood vessel in an observation target, wherein the image acquisition unit acquires an image obtained by imaging the observation target, and calculates a blood vessel index value
  • the blood vessel index value variation factor measurement unit is configured to calculate a blood vessel index value from the image, and the blood vessel index value variation factor measurement unit includes a plurality of blood vessel index value variation factors including a blood vessel depth.
  • the present invention relates to an operating method of an endoscopic processor device for measuring a blood vessel depth of a blood vessel in an observation target, wherein the image acquisition unit acquires an image obtained by imaging the observation target;
  • the index value calculation unit calculates a blood vessel index value from a blood vessel index value image in the image, and the blood vessel index value variation factor measurement unit includes a plurality of blood vessel index value variation factors that vary the blood vessel index value.
  • a step of measuring a specific blood vessel index value variation factor other than the blood vessel depth among a plurality of blood vessel index value variation factors including the depth, and the blood vessel depth calculation unit includes the blood vessel index value and the plurality of blood vessel index value variation factors Narrow down to a sub-data set that has a specific blood vessel index value variation factor from the data set that consists of multiple measurement data, and calculate it from the sub-data set by the blood vessel index value calculation unit And a step of obtaining a blood vessel depth corresponding to the vascular index value.
  • the blood vessel depth of the blood vessel in the observation target can be accurately measured.
  • band of LED Light * Emitting * Diode
  • the characteristic of HPF High * Pass * Filter
  • an endoscope system 10 includes an endoscope 12, a light source device 14, and a processor device 16 (an “image processing device” and an “endoscopic processor device” of the present invention). ”, A monitor 18 (corresponding to“ display unit ”of the present invention), and a console 20.
  • the endoscope 12 is optically connected to the light source device 14 and electrically connected to the processor device 16.
  • the endoscope 12 includes an insertion portion 21 to be inserted into a subject, an operation portion 22 provided at a proximal end portion of the insertion portion 21, a bending portion 23 and a distal end portion provided at the distal end side of the insertion portion 21. 24.
  • the angle knob 22a of the operation unit 22 By operating the angle knob 22a of the operation unit 22, the bending unit 23 performs a bending operation. With this bending operation, the distal end portion 24 can be directed in a desired direction.
  • the operation unit 22 includes an observation mode switching SW 22b, a zoom operation unit 22c, and a freeze button (not shown) for storing a still image.
  • the mode switching SW 22b is used for switching operation among four types of modes: a normal observation mode, an oxygen saturation mode, a blood vessel thickness measurement mode, and a blood vessel depth measurement mode.
  • the normal observation mode is a mode in which a normal light image in which the observation target in the subject is converted into a full color image is displayed on the monitor 18.
  • the oxygen saturation mode is a mode in which an oxygen saturation image obtained by imaging the oxygen saturation of blood hemoglobin to be observed is displayed on the monitor 18.
  • the blood vessel thickness measurement mode is a mode for measuring the thickness of the blood vessel to be observed and displaying the measurement result on the monitor 18.
  • the blood vessel depth measurement mode is a mode in which the depth of the blood vessel to be observed is measured and the measurement result is displayed on the monitor 18.
  • the zoom operation unit 22c is used for a zoom operation for driving the zoom lens 47 (see FIG. 2) in the endoscope 12 to enlarge the observation target.
  • the processor device 16 is electrically connected to the monitor 18 and the console 20.
  • the monitor 18 displays images such as normal light images and oxygen saturation images, and information related to these images (hereinafter referred to as image information and the like).
  • the console 20 functions as a UI (User Interface) that receives input operations such as function settings.
  • a recording unit (not shown) for recording image information or the like may be connected to the processor device 16.
  • the light source device 14 includes a first blue laser light source (473LD (Laser Diode)) that emits a first blue laser beam having a center wavelength of 473 nm, and a second blue laser beam having a center wavelength of 445 nm.
  • a violet laser light source (405LD) 38 that emits violet laser light having a central wavelength of 405 nm is provided as a light emission source.
  • the light emission amount and the light emission timing of each of the light sources 34, 36, and 38 including these semiconductor light emitting elements are individually controlled by the light source control unit 40.
  • the half widths of the first and second blue laser beams and the violet laser beam are preferably about ⁇ 10 nm.
  • the center wavelengths of the first and second blue laser beams and the violet laser beam are preferably in the range of ⁇ 5 to 10 nm with respect to the center wavelength shown above.
  • the center wavelengths of the first and second blue laser beams and the violet laser beam may be the same as or different from the peak wavelength.
  • the first blue laser light source 34, the second blue laser light source 36, and the violet laser light source 38 can use broad-area type InGaN laser diodes, and can also use InGaNAs laser diodes or GaNAs laser diodes. it can.
  • the light source may be configured to use a light emitter such as a light emitting diode.
  • the light source control unit 40 performs control to turn on only the second blue laser light source 36 in the normal observation mode and the blood vessel thickness measurement mode. In the oxygen saturation mode and the blood vessel depth measurement mode, the light source control unit 40 performs control to alternately turn on the first blue laser light source 34 and the second blue laser light source 36 at intervals of one frame. In the normal observation mode, the oxygen saturation mode, the blood vessel thickness measurement mode, and the blood vessel depth measurement mode, when the second blue laser light source 36 is turned on, the purple laser light source 38 is also turned on simultaneously. May be performed.
  • the first and second blue laser light and violet laser light emitted from each of the light sources 34, 36, and 38 are passed through optical members (all not shown) such as a condenser lens, an optical fiber, and a multiplexer. Incident on the light guide 41.
  • the light guide 41 is built in the universal cord 17 (see FIG. 1) that connects the light source device 14 and the endoscope 12 and the endoscope 12.
  • the light guide 41 propagates the first and second blue laser light and violet laser light from the light sources 34, 36, and 38 to the distal end portion 24 of the endoscope 12.
  • a multimode fiber can be used as the light guide 41.
  • a thin fiber cable having a core diameter of 105 ⁇ m, a cladding diameter of 125 ⁇ m, and a diameter of ⁇ 0.3 to 0.5 mm including a protective layer serving as an outer shell can be used.
  • the distal end portion 24 of the endoscope 12 has an illumination optical system 24a and an imaging optical system 24b.
  • the illumination optical system 24a is provided with a phosphor 44 and an illumination lens 45.
  • the first and second blue laser light and violet laser light are incident on the phosphor 44 from the light guide 41.
  • the phosphor 44 emits fluorescence when irradiated with the first or second blue laser light. Further, a part of the first or second blue laser light passes through the phosphor 44 as it is. On the other hand, almost all of the violet laser light passes through the phosphor 44.
  • the light emitted from the phosphor 44 is irradiated to the observation target through the illumination lens 45.
  • the spectrum of light emitted to the observation target and the light emission timing are different for each mode.
  • the second blue laser light and the second blue laser light are used to phosphor.
  • the observation object is irradiated with second white light including green to red second fluorescence excited and emitted from 44.
  • the violet laser light is emitted simultaneously with the second blue laser light, the violet laser light is transmitted without being absorbed by the phosphor 44, so that the violet laser light hardly emits fluorescence.
  • the first blue laser light and the second blue laser light are alternately incident on the phosphor 44, and as shown in FIG.
  • First white light including green to red first fluorescence excited and emitted from the phosphor 44 by the first blue laser light and second white light are alternately irradiated on the observation target.
  • the first fluorescence and the second fluorescence have substantially the same waveform (spectrum shape).
  • the amount of absorption with respect to the second blue laser light is larger than the amount of absorption with respect to the first blue laser light. Therefore, when the first and second blue laser beams having the same intensity enter the phosphor 44.
  • the intensity of the entire second fluorescence wavelength is greater than the intensity of the first fluorescence.
  • the phosphor 44 absorbs a part of the first and second blue laser beams and excites and emits green to red light (for example, YAG phosphor or BAM (BaMgAl 10 O 17 )). It is preferable to use a material comprising a phosphor such as.
  • a material comprising a phosphor such as
  • high intensity first white light and second white light can be obtained with high luminous efficiency.
  • the intensity of each white light can be easily adjusted, and changes in color temperature and chromaticity can be kept small.
  • the imaging optical system 24b of the endoscope 12 includes an imaging lens 46, a zoom lens 47, and a sensor 48 (see FIG. 2). Reflected light from the observation object enters the sensor 48 via the imaging lens 46 and the zoom lens 47. As a result, a reflected image of the observation object is formed on the sensor 48.
  • the zoom lens 47 moves between the tele end and the wide end by operating the zoom operation unit 22c.
  • the sensor 48 is a color image sensor, picks up a reflected image of the observation object, and outputs an image signal.
  • a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor can be used.
  • the sensor 48 is a CCD image sensor.
  • the sensor 48 has, on the imaging surface, an R pixel provided with an R color filter, a G pixel provided with a G color filter, and a B pixel provided with a B color filter. By performing photoelectric conversion on these RGB pixels, three, R, G, and B color image signals are output.
  • the B color filter has a spectral transmittance of 380 to 560 nm
  • the G color filter has a spectral transmittance of 450 to 630 nm
  • the first blue laser light and a part of the green component of the first fluorescence enter the B pixel.
  • a part of the green component of the first fluorescence and the first blue laser light attenuated by the G color filter are incident on the G pixel, and a red component of the first fluorescence is incident on the R pixel.
  • the first blue laser light has an emission intensity much higher than that of the first fluorescence, most of the B image signal output from the B pixel is occupied by the reflected light component of the first blue laser light.
  • the light incident components in the RGB pixels when the second white light is irradiated onto the observation target are the same as those in the normal observation mode.
  • a so-called complementary color image sensor having complementary color filters of C (cyan), M (magenta), Y (yellow) and G (green) on the imaging surface may be used.
  • the color conversion unit that performs color conversion from the CMYG four-color image signal to the RGB three-color image signal is any of the endoscope 12, the light source device 14, and the processor device 16. It should be provided in. In this way, even when a complementary color image sensor is used, it is possible to obtain RGB three-color image signals by color conversion from the four-color CMYG image signals.
  • the imaging control unit 49 performs imaging control of the sensor 48.
  • the observation object illuminated with the second white light is imaged by the sensor 48 every one frame period (hereinafter simply referred to as one frame).
  • the sensor 48 outputs an Rc image signal from the R pixel, outputs a Gc image signal from the G pixel, and outputs a Bc image signal from the B pixel.
  • the imaging control unit 49 controls the sensor 48 to perform imaging in synchronization with the emission timings of the first white light and the second white light. Specifically, the sensor 48 reads a signal charge obtained by imaging the observation target under the first white light, outputs an R1 image signal from the R pixel, and outputs a G1 image signal from the G pixel. The B1 image signal is output from the B pixel. Then, the signal charge obtained by imaging the observation target under the second white light is read during the readout period of the second frame, the R2 image signal is output from the R pixel, and the G2 image signal is output from the G pixel. The B2 image signal is output from the B pixel.
  • the image signal of each color output from the sensor 48 is transmitted to a CDS (correlated double sampling) / AGC (automatic gain control) circuit 50 (see FIG. 2).
  • the CDS / AGC circuit 50 performs correlated double sampling (CDS) and automatic gain control (AGC) on the analog image signal output from the sensor 48.
  • CDS correlated double sampling
  • AGC automatic gain control
  • the image signal that has passed through the CDS / AGC circuit 50 is converted into a digital image signal by an A / D (Analog / Digital) converter 52.
  • the digitized image signal is input to the processor device 16.
  • the processor device 16 includes an image signal acquisition unit 54 (corresponding to the “image acquisition unit” of the present invention), the image signal acquisition unit 54 includes a DSP (Digital Signal Processor) 56, a noise reduction unit 58, and a signal conversion unit 59.
  • An image processing switching unit 60 a normal observation image processing unit 62, an oxygen saturation measuring unit 64 (corresponding to the “blood vessel index value variation factor measuring unit” of the present invention), an oxygen saturation image generating unit 65, A blood vessel thickness measurement unit 66, a blood vessel thickness measurement image generation unit 67, a blood vessel depth measurement unit 68 (corresponding to the “blood vessel index value variation factor measurement unit” of the present invention), and a blood vessel depth measurement image generation.
  • Unit 69 and video signal generation unit 70 are examples of the image signal acquisition unit 54 and a signal processing unit 59.
  • the image signal acquisition unit 54 acquires an image signal output from the sensor 48 of the endoscope 12.
  • the DSP 56 performs various signal processing such as defect correction processing, offset processing, gain correction processing, linear matrix processing, gamma conversion processing, demosaic processing, and YC conversion processing on the acquired image signal.
  • defect correction process the signal of the defective pixel of the sensor 48 is corrected.
  • offset process the dark current component is removed from the image signal subjected to the defect correction process, and an accurate zero level is set.
  • the gain correction process adjusts the signal level of each image signal by multiplying each RGB image signal after the offset process by a specific gain.
  • the image signal of each color after the gain correction processing is subjected to linear matrix processing for improving color reproducibility.
  • the image signal after the linear matrix processing is subjected to demosaic processing (also referred to as isotropic processing or simultaneous processing), and a signal of insufficient color for each pixel is generated by interpolation. Through the demosaic processing, all pixels have signals of RGB colors.
  • the DSP 59 performs YC conversion processing on each image signal after demosaic processing, and outputs the luminance signal Y and the color difference signals Cb, Cr generated by the YC conversion processing to the noise reduction unit 58.
  • the noise reduction unit 58 performs noise reduction processing by, for example, a moving average method or a median filter method on the image signal that has been demosaiced by the DSP 56.
  • the image signal with reduced noise is input to the signal conversion unit 59, reconverted into an RGB image signal, and then input to the image processing switching unit 60.
  • the image processing switching unit 60 inputs the image signal that has passed through the signal conversion unit 59 to the normal observation image processing unit 62 when the normal observation mode is set.
  • the image processing switching unit 60 inputs the image signal that has passed through the signal conversion unit 59 to the oxygen saturation measurement unit 64.
  • the image processing switching unit 60 inputs the image signal that has passed through the signal conversion unit 59 to the blood vessel thickness measurement unit 66.
  • the image processing switching unit 60 inputs the image signal that has passed through the signal conversion unit 59 to the blood vessel depth measurement unit 68.
  • the normal observation image processing unit 62 generates RGB image data in which the input Rc image signal, Gc image signal, and Bc image signal for one frame are assigned to the R pixel, the G pixel, and the B pixel, respectively.
  • the RGB image data is further subjected to color conversion processing such as 3 ⁇ 3 matrix processing, gradation conversion processing, and three-dimensional LUT processing.
  • color conversion processing such as 3 ⁇ 3 matrix processing, gradation conversion processing, and three-dimensional LUT processing.
  • various color enhancement processes are performed on the RGB image data subjected to the color conversion process.
  • Structure enhancement processing such as spatial frequency enhancement is applied to RGB image data that has undergone color enhancement processing.
  • the RGB image data subjected to the structure enhancement process is input to the video signal generation unit 70 as a normal observation image.
  • the video signal generation unit 70 converts the input normal observation image into a video signal (for example, a luminance signal Y and color difference signals Cb and Cr), and outputs the converted video signal to the monitor 18. As a result, the normal observation image is displayed on the monitor 18.
  • a video signal for example, a luminance signal Y and color difference signals Cb and Cr
  • the oxygen saturation measuring unit 64 is configured to calculate oxygen saturation of blood hemoglobin based on the input B1 image signal, G1 image signal, R1 image signal, B2 image signal, G2 image signal, and R2 image signal for two frames. Measure. Information on the measured oxygen saturation is sent to the oxygen saturation image generation unit 65.
  • the oxygen saturation image generation unit 65 generates an oxygen saturation image colored according to the oxygen saturation.
  • the generated oxygen saturation image is input to the video signal generator 70.
  • the video signal generation unit 70 converts the input oxygen saturation image into a video signal, and outputs the converted video signal to the monitor 18. As a result, the oxygen saturation image is displayed on the monitor 18.
  • the details of the oxygen saturation measuring unit 64 and the oxygen saturation image generating unit 65 will be described later.
  • the blood vessel thickness measuring unit 66 measures the blood vessel thickness of the blood vessel designated by the user based on the input Bc image signal, Gc image signal, and Rc image signal for one frame.
  • the thickness of the blood vessel is the distance between the boundary line of the blood vessel and the mucous membrane.
  • the number of pixels is counted from the edge of the blood vessel through the blood vessel along the short side of the blood vessel. It is the value. Therefore, the thickness of the blood vessel is the number of pixels, but if the photographing distance and zoom magnification when the image is photographed are known, it can be converted into a unit of length such as “ ⁇ m” as necessary. .
  • the information regarding the blood vessel thickness measured by the blood vessel thickness measuring unit 66 and the Bc image signal, Gc image signal, and Rc image signal for one frame are sent to the blood vessel thickness measurement image generating unit 67.
  • the blood vessel thickness measurement image generation unit 67 generates a blood vessel thickness measurement image in which information related to the blood vessel thickness is superimposed and displayed on the image to be observed.
  • the generated blood vessel thickness measurement image is input to the video signal generation unit 70.
  • the video signal generation unit 70 converts the input blood vessel thickness measurement image into a video signal and outputs the converted video signal to the monitor 18. Thereby, the blood vessel thickness measurement image is displayed on the monitor 18. Details of the blood vessel thickness measurement unit 66 and the blood vessel thickness measurement image generation unit 67 will be described later.
  • the blood vessel depth measuring unit 68 is a blood vessel of the blood vessel designated by the user based on the input B1 image signal, G1 image signal, R1 image signal, B2 image signal, G2 image signal, and R2 image signal for two frames. Measure depth. Information regarding the measured blood vessel depth and the B2 image signal, G2 image signal, and R2 image signal are sent to the blood vessel depth measurement image generation unit 69.
  • the blood vessel depth measurement image generation unit 69 generates a blood vessel depth measurement image in which information related to the blood vessel depth is superimposed on the image to be observed.
  • the generated blood vessel depth measurement image is input to the video signal generation unit 70.
  • the video signal generation unit 70 converts the input blood vessel depth measurement image into a video signal, and outputs the converted video signal to the monitor 18. As a result, the blood vessel depth measurement image is displayed on the monitor 18. Details of the blood vessel depth measurement unit 68 and the blood vessel depth measurement image generation unit 69 will be described later.
  • the oxygen saturation measurement unit 64 includes a signal ratio calculation unit 81, a correlation storage unit 82, and an oxygen saturation calculation unit 83.
  • the signal ratio calculation unit 81 calculates the signal ratio B1 / G2 between the B1 image signal and the G2 image signal for each pixel, and calculates the signal ratio R2 / G2 between the R2 image signal and the G2 image signal for each pixel.
  • the signal ratio calculation unit 81 calculates the signal ratio B1 / G2
  • the signal value of the first fluorescence from the B1 image signal is calculated by inter-pixel calculation using the B1 image signal, the G1 image signal, and the R1 image signal. It is preferable to use a B1 image signal that has been subjected to correction processing for removing color and improving color separation, and corrected to a signal value substantially using only the first blue laser beam.
  • the correlation storage unit 82 stores the correlation between the signal ratio calculated by the signal ratio calculation unit 81 and the oxygen saturation. This correlation is stored in a two-dimensional table in which an isoline of oxygen saturation is defined on the two-dimensional space shown in FIG. The positions and shapes of the isolines with respect to the signal ratio are obtained in advance by a physical simulation of light scattering, and the interval between the isolines changes according to the blood volume (horizontal axis in FIG. 7). The correlation between this signal ratio and oxygen saturation is stored on a log scale.
  • the above correlation is closely related to the light absorption characteristics and light scattering characteristics of oxygenated hemoglobin (graph 90) and reduced hemoglobin (graph 91), as shown in FIG.
  • a wavelength range in which the difference between the absorption coefficients of oxyhemoglobin and reduced hemoglobin is large such as the wavelength range near the center wavelength of 473 nm of the first blue laser beam, that is, the extinction coefficient changes depending on the oxygen saturation of blood hemoglobin. It is easy to handle oxygen saturation information in the wavelength range.
  • the B1 image signal including a signal corresponding to 473 nm light is highly dependent not only on the oxygen saturation but also on the blood volume.
  • a signal ratio R2 / G2 obtained from a G2 image signal corresponding to light that changes mainly depending on the blood volume, and an R2 image signal serving as a reference signal for the B1 image signal and the G2 image signal.
  • the oxygen saturation calculation unit 83 calculates the oxygen saturation based on the image signal by using the signal ratio calculated by the signal ratio calculation unit 81. More specifically, the oxygen saturation calculation unit 83 refers to the correlation stored in the correlation storage unit 82 and calculates the oxygen saturation corresponding to the signal ratio calculated by the signal ratio calculation unit 81 for each pixel. calculate. For example, when the signal ratio B1 / G2 and the signal ratio R2 / G2 in the specific pixel are B1 * / G2 * and R2 * / G2 * , respectively, referring to the correlation as shown in FIG. 9, the signal ratio B1 * The oxygen saturation corresponding to / G2 * and the signal ratio R2 * / G2 * is “60%”. Therefore, the oxygen saturation calculation unit 83 calculates the oxygen saturation of this specific pixel as “60%”.
  • the signal ratio B1 / G2 and the signal ratio R2 / G2 are hardly increased or extremely decreased. That is, the values of the signal ratio B1 / G2 and the signal ratio R2 / G2 rarely exceed the lower limit line 93 with an oxygen saturation of 0%, and on the contrary, fall below the upper limit line 94 with an oxygen saturation of 100%. However, when the calculated oxygen saturation falls below the lower limit line 93, the oxygen saturation calculation unit 83 sets the oxygen saturation to 0%. When the calculated oxygen saturation exceeds the upper limit line 94, the oxygen saturation is set to 100. %.
  • the oxygen saturation image generation unit 65 uses the oxygen saturation calculated by the oxygen saturation calculation unit 83 to generate an oxygen saturation image in which the oxygen saturation is colored. Specifically, first, the oxygen saturation image generation unit 65 generates a base image based on the R2 image signal, the G2 image signal, and the B2 image signal by the same generation method as that for the normal observation image. Then, a coloring process is performed on the base image to change the color of the base image according to the oxygen saturation. Thereby, an oxygen saturation image is obtained. In the coloring process, for example, the color of the base image is not changed for a pixel region in which the oxygen saturation exceeds a specific threshold (for example, 70%), and the oxygen saturation is applied to a pixel region in which the oxygen saturation is lower than the specific threshold. It is preferable to change the color of the base image according to the degree.
  • a specific threshold for example, 70%
  • the oxygen saturation image may be generated using a method different from the above.
  • the signal level of the luminance signal Y is changed according to the G2 image signal, and the color difference signals Cr and Cb are changed.
  • the Cr signal level is set to “positive” and the Cb signal level is set to “negative”.
  • the Cr signal level is set to “negative”.
  • the signal level is set to be “positive”. In this case, in the oxygen saturation image, the high oxygen region is displayed reddish while the low oxygen region is displayed bluish.
  • the blood vessel thickness measurement unit 66 measures the blood vessel thickness of a specific blood vessel based on the Rc image signal, the Gc image signal, and the Bc image signal.
  • the blood vessel thickness measurement unit 66 transmits an Rc image signal, a Gc image signal, and a Bc image signal to the measurement target blood vessel specifying unit 100 in order to specify a measurement target blood vessel that is a measurement target of the blood vessel thickness (FIG. 2). reference).
  • the measurement target blood vessel designating unit 100 generates a blood vessel selection image 102 for selecting a measurement target blood vessel based on the Rc image signal, the Gc image signal, and the Bc image signal, as shown in FIG. To display.
  • the blood vessel selection image 102 is preferably an image obtained by extracting blood vessels by binarization processing or the like for distinguishing blood vessels from other portions.
  • the user operates the selection pointer 104 on the blood vessel selection image 102 with an operation member such as the console 20 and designates the measurement target blood vessel TB with the selection pointer 104.
  • the measurement target blood vessel designating unit 100 transmits information related to the measurement target blood vessel TB designated by the operation member such as the console 20 to the blood vessel thickness measurement unit 66.
  • the blood vessel thickness measurement unit 66 specifies a pixel in a portion where the measurement target blood vessel exists among the Rc image signal, the Gc image signal, and the Bc image signal. From this specified pixel, the blood vessel thickness of the blood vessel to be measured is calculated. Specifically, the number of specified pixels (for example, in the case of FIG. 10, the number of pixels is “5 pixels”) is multiplied by the average size per pixel. Thus, the blood vessel thickness of the blood vessel to be measured is calculated. Note that since the blood vessel thickness is affected by the observation distance between the observation target and the distal end portion 24 of the endoscope, the size per pixel is preferably determined according to the observation distance.
  • the blood vessel thickness measurement image generation unit 67 generates a base image based on the Rc image signal, the Gc image signal, and the Bc image signal by the same generation method as that for the normal observation image. Then, the blood vessel thickness measurement image generation unit 67 performs a process of highlighting the measurement target blood vessel and superimposing and displaying the blood vessel thickness of the measurement target blood vessel on the base image. As a result, as shown in FIG. 11, a blood vessel thickness measurement image 110 displaying the highlighted measurement target blood vessel TB and the blood vessel thickness ⁇ x of the measurement target blood vessel TB is obtained.
  • the blood vessel depth measurement unit 68 includes a blood vessel contrast calculation unit 96 (corresponding to the “blood vessel index value calculation unit” of the present invention), a data set storage unit 97, and a blood vessel depth calculation unit 98. And.
  • the measurement target blood vessel to be a blood vessel depth measurement target is designated.
  • the measurement target blood vessel is designated by the measurement target blood vessel designation unit 100 as described above. Note that the measurement target blood vessel designating unit 100 preferably generates a blood vessel selection image based on the B2 image signal, the G2 image signal, and the R2 image signal.
  • the blood vessel contrast calculation unit 96 based on the blood vessel contrast image signal (corresponding to the “blood vessel index value image” of the present invention) of the input image signals, the blood vessel portion pixel value Ib, and other than blood vessels such as mucous membranes Is calculated (for example, an average value of mucous membrane pixel values).
  • the blood vessel contrast calculation unit 96 uses a blood vessel contrast image signal including an image signal with a plurality of wavelengths (corresponding to the “image with a plurality of wavelengths” of the present invention).
  • the image signals of a plurality of wavelengths are composed of a plurality of image signals each having a different wavelength component, and in the present embodiment, correspond to the R2 image signal, the G2 image signal, and the B2 image signal.
  • the blood vessel contrast Ct of the blood vessel to be measured is “Ct * ”.
  • the data set storage unit 97 includes measurement data in which the blood vessel contrast Ct is associated with the oxygen saturation, the blood vessel thickness, and the blood vessel depth when the blood vessel contrast Ct is obtained.
  • Data set 120 is stored.
  • the measurement data is stored separately for each level of oxygen saturation. Specifically, for the measurement data when the oxygen saturation is 100%, the smallest blood vessel thickness ⁇ 1 within the blood vessel thickness measurable range and the shallowest blood vessel depth d1 within the blood vessel depth measurable range. And the measurement data in which the blood vessel thickness ⁇ 1 and the blood vessel contrast Ct (100, ⁇ 1, d1) obtained in the case of the blood vessel depth d1 are associated with each other.
  • a plane 130 shown in FIG. 14
  • the blood vessel contrast decreases as the blood vessel depth increases and the blood vessel thickness decreases.
  • the blood vessel contrast increases as the blood vessel depth decreases and the blood vessel thickness increases.
  • the blood vessel depth calculation unit 98 uses the blood vessel contrast Ct * calculated by the blood vessel contrast calculation unit 96 and the B1 image signal, B2 image signal, G2 image signal, and R2 image signal for two frames, and a data set storage unit 97.
  • the blood vessel depth of a specific blood vessel is calculated with reference to the data set stored in (1).
  • the blood vessel depth calculating unit 98 sends the B1 image signal, the G2 image signal, and the R2 image signal to the oxygen saturation measuring unit 64, and the oxygen saturation measuring unit 64 measures the oxygen saturation s * of the blood vessel to be measured. To do. Information on the measured oxygen saturation s * of the blood vessel to be measured is returned to the blood vessel depth calculation unit 98.
  • the blood vessel depth calculation unit 98 sends the B2 image signal, the G2 image signal, and the R2 image signal to the blood vessel thickness measurement unit 66, and the blood vessel thickness measurement unit 66 uses the blood vessel thickness ⁇ * of the measurement target blood vessel . Measure.
  • the blood vessel depth calculation unit 98 selects the oxygen saturation s of the measurement target blood vessel from the data set stored in the data set storage unit 97.
  • the measurement data corresponding to * and blood vessel thickness ⁇ * is narrowed down as the first sub data set. For example, when the oxygen saturation s * of the measurement target blood vessel is 100% and the blood vessel thickness ⁇ * is ⁇ 1, measurement of a portion corresponding to the oxygen saturation 100% and blood vessel thickness ⁇ 1 from the data set is performed.
  • the data for use is selected as the first sub-data set (see FIG. 13).
  • the blood vessel depth calculation unit 98 calculates the blood vessel depth corresponding to the blood vessel contrast Ct * calculated by the blood vessel contrast calculation unit 96 with reference to the first sub data set. To do. This calculated blood vessel depth becomes the blood vessel depth of the blood vessel to be measured. For example, when the first sub data set shown in FIG. 13 is narrowed down, the blood vessel depth corresponding to the blood vessel contrast Ct * is “d * ” in the first sub data set.
  • the blood vessel contrast, the oxygen saturation, the blood vessel thickness Since the blood vessel depth of the blood vessel to be measured is calculated using the measurement data in which the blood vessel depth is associated with the blood vessel depth, the calculation accuracy of the calculated blood vessel depth was calculated using only the blood vessel contrast. It is higher than the case.
  • this one-variable function is equal to a cross section 132 when the blood vessel thickness ⁇ * is cut along the X-axis direction on the plane 130 representing the two-variable function.
  • the blood vessel contrast Ct is expressed by a function that decreases as the blood vessel depth d increases.
  • it is possible to calculate the blood vessel depth d * from the blood vessel contrast Ct * by dropping to the one-variable function Ct f (s * , ⁇ * , d).
  • the blood vessel depth measurement image generation unit 69 generates a base image by the same generation method as that of the normal observation image based on the R2 image signal, the G2 image signal, and the B2 image signal. Then, the blood vessel depth measurement image generation unit 69 performs a process of highlighting the measurement target blood vessel and superimposing and displaying the blood vessel depth of the measurement target blood vessel on the base image. As a result, as shown in FIG. 17, a blood vessel depth measurement image 150 displaying the highlighted measurement target blood vessel TB and the blood vessel depth d * of the measurement target blood vessel TB is obtained.
  • the user observes an observation target and detects a site that may be a lesion. And when the site
  • the first and second white lights are alternately irradiated onto the observation target in synchronization with the imaging frame of the sensor 48.
  • the sensor 48 outputs an R1 image signal, a G1 image signal, and a B1 image signal in the first frame, and outputs an R2 image signal, a G2 image signal, and a B2 image signal in the second frame.
  • These image signals are acquired by the image signal acquisition unit 54 of the processor device 16 and subjected to various signal processing.
  • a blood vessel selection image 102 is generated based on the R2 image signal, the G2 image signal, and the B2 image signal, and displayed on the monitor 18.
  • the user selects a portion of a blood vessel that may be a lesion in the blood vessel selection image 102 as a measurement target blood vessel.
  • the blood vessel contrast calculation unit 96 calculates the blood vessel contrast Ct * of the measurement target blood vessel.
  • the B1 image signal, the G2 image signal, and the R2 image signal are sent to the oxygen saturation measuring unit 64, and the oxygen saturation measuring unit 64 measures the oxygen saturation s * of the blood vessel to be measured.
  • the R2 image signal, the G2 image signal, and the B2 image signal are sent to the blood vessel thickness measuring unit 66, and the blood vessel thickness measuring unit 66 measures the blood vessel thickness ⁇ * of the measurement target blood vessel.
  • the blood vessel depth calculation unit 98 selects the oxygen saturation of the measurement target blood vessel from the data set stored in the data set storage unit 97.
  • the measurement data corresponding to s * and blood vessel thickness ⁇ * is narrowed down as the first sub data set.
  • the blood vessel depth calculation unit 98 refers to the first sub data set and determines the blood vessel depth corresponding to the blood vessel contrast Ct * of the measurement target blood vessel. Calculated as depth d * .
  • a blood vessel depth measurement image is generated based on the information on the blood vessel depth d * of the measurement target blood vessel and the R2 image signal, the G2 image signal, and the B2 image signal. And displayed on the monitor 18.
  • the blood vessel contrast calculation unit 96 weights the R2 image signal, the G2 image signal, and the B2 image signal, and based on the weighted R2 image signal, G2 image signal, and B2 image signal.
  • the blood vessel contrast of the blood vessel to be measured may be calculated.
  • the approximate blood vessel depth (measured blood vessel depth) of the blood vessel to be measured is visually measured by the user, and weighting is performed according to the measured blood vessel depth. The weighting is set by an operation member such as the console 20.
  • the target blood vessel depth when the target blood vessel depth is shallow, blood vessels located in a shallow portion such as a surface blood vessel are included in a short wavelength image signal. Therefore, the B2 image signal included in the short wavelength image signal is weighted. The weighting is set larger than the other weights for the G2 image signal and the R2 image signal.
  • the target blood vessel depth when the target blood vessel depth is deep, a lot of blood vessels located in a deep part such as a middle-deep blood vessel are included in the long-wavelength image signal. The weight is set larger than the weights for the other B2 image signal and R2 image signal.
  • the calculation accuracy of the blood vessel contrast of the measurement target blood vessel can be improved by increasing the weighting of the image signal in the wavelength band including the measurement target blood vessel. This improvement in blood vessel contrast calculation accuracy leads to an improvement in blood vessel depth calculation accuracy.
  • the blood vessel contrast calculation unit 96 calculates the blood vessel contrast for each of the R2 image signal, the G2 image signal, and the B2 image signal, and calculates the blood vessel contrast of the measurement target blood vessel by combining the calculated blood vessel contrast. May be.
  • a weighted average process for weighting and adding the blood vessel contrast can be considered.
  • the weighting coefficient of the blood vessel contrast Ctr obtained from the R2 image signal is ⁇
  • the weighting coefficient of the blood vessel contrast Ctg obtained from the G2 image signal is ⁇
  • the weighting coefficient of the blood vessel contrast Ctb obtained from the B2 image signal is ⁇ .
  • the blood vessel contrast of the blood vessel to be measured is “ ⁇ ⁇ Ctr + ⁇ ⁇ Ctg + ⁇ ⁇ Ctb”.
  • the weighting coefficient ⁇ is larger than the other weighting coefficients ⁇ and ⁇ .
  • Each blood vessel contrast Ctr, Ctg, and Ctb indicates the blood vessel contrast for the same blood vessel of interest.
  • the oxygen saturation s * of the measurement target blood vessel measured by the oxygen saturation measurement unit 64 and the blood vessel thickness ⁇ * of the measurement target blood vessel measured by the blood vessel thickness measurement unit 66 are used.
  • the first sub data set having the oxygen saturation s * and the blood vessel thickness ⁇ * of the blood vessels to be measured is narrowed down.
  • the sub data sets may be narrowed down by other methods.
  • the information input unit 160 connected to the blood vessel depth calculation unit 98 manually inputs the oxygen saturation s ** and the blood vessel thickness ⁇ ** of the blood vessel to be measured.
  • the blood vessel depth calculation unit 98 narrows down the measurement data having the input oxygen saturation s ** and blood vessel thickness ⁇ ** of the measurement target blood vessel as the second sub data set.
  • the blood vessel depth is calculated in the same manner as in the first sub data set. Note that the function of the information input unit 160 may be incorporated in the console 20.
  • the blood vessel depth calculation unit 98 uses the first sub-data based on the oxygen saturation s * and the blood vessel thickness ⁇ * of the blood vessel to be measured measured by the oxygen saturation measurement unit 64 and the blood vessel thickness measurement unit 66.
  • Two modes can be executed: automatic mode for narrowing the set and manual mode for narrowing the second sub-data set based on the manually input oxygen saturation s ** and blood vessel thickness ⁇ ** of the blood vessel to be measured It may be in a state.
  • the operation member such as the console 20 is selectively set to either the automatic mode or the manual mode.
  • the blood vessel contrast is used to calculate the blood vessel depth, but other blood vessel index values may be used.
  • the blood vessel index value include luminance values (average value and the like) of the measurement target blood vessel and color information of the measurement target blood vessel.
  • color information calculation values obtained by calculation based on R2 image signal, G2 image signal, and B2 image signal, for example, signal ratio such as R2 / G2, B2 / G2, color difference signals Cr, Cb, saturation S, Hue H and the like.
  • the blood vessel index value may be a value obtained by combining the blood vessel contrast, the luminance value of the blood vessel portion, and the color information of the blood vessel portion.
  • the relationship between the blood vessel contrast, the oxygen saturation, the blood vessel thickness, and the blood vessel depth is determined, and the oxygen saturation and the blood vessel depth other than the blood vessel depth are measured.
  • the blood vessel depth was calculated by using the measurement result and the relationship, the blood vessel index value such as the blood vessel contrast and the blood vessel index value fluctuation factor that fluctuates the blood vessel index value are used.
  • the blood vessel depth is calculated by measuring the specific blood vessel index value fluctuation factor after determining the relationship between the specific blood vessel index value fluctuation factor and the blood vessel depth in advance and using the measurement result and the relationship. You may make it do.
  • a selection data set composed of associated measurement data is stored in the selection data set storage unit 165 in advance.
  • a specific blood vessel index value variation factor is selected by the blood vessel index value variation factor selection unit 170 connected to the blood vessel depth measurement unit 68
  • a selection data set corresponding to the selected blood vessel index value variation factor is selected.
  • the integrated data set is stored in the data set storage unit 97, and the blood vessel depth is calculated by the same method.
  • a part is fixed at a representative value (for example, “70%” in the case of oxygen saturation), and other specific blood vessel index value fluctuation factors are blood vessels.
  • a data set in which the index value and the blood vessel depth are associated with each other is preferable. In this case, measurement or input of some specific blood vessel index value fluctuation factors fixed with representative values is not performed, and measurement or input of other specific blood vessel index value fluctuation factors is performed.
  • the specific blood vessel index value fluctuation factors include the following in addition to the oxygen saturation and the blood vessel thickness.
  • the imaging distance and imaging angle are specific blood vessel index value fluctuation factors that change the blood vessel contrast
  • the blood vessel depth is calculated from the relationship between the blood vessel contrast, the imaging distance or imaging angle, and the blood vessel depth. You may make it do.
  • the blood vessel density is a specific blood vessel index value fluctuation factor that fluctuates the blood vessel contrast
  • the blood vessel depth may be calculated from the relationship between the blood vessel contrast, the blood vessel density, and the blood vessel depth.
  • Other specific blood vessel index value fluctuation factors include the concentration of yellow pigments such as bilirubin and the mucosal scattering coefficient.
  • the photographing distance is preferably calculated from the average luminance of the entire mucous membrane.
  • the photographing angle is preferably estimated from the luminance distribution of the entire image.
  • the blood vessel density is preferably calculated based on the extracted blood vessel region extracted from the image.
  • the light source device 14 of the endoscope system 200 includes LED (Light Emitting Diode) instead of the first and second blue laser light sources 34 and 36, the violet laser light source 38, and the light source control unit 40.
  • a light source unit 201 and an LED light source control unit 204 are provided.
  • the phosphor 44 is not provided in the illumination optical system 24a of the endoscope system 200. Other than that, it is the same as the endoscope system 10 of the first embodiment.
  • the LED light source unit 201 includes an R-LED 201a, a G-LED 201b, a B-LED 201c, and a V-LED 201d as light sources that emit light limited to a specific wavelength band.
  • the R-LED 201a emits red band light (hereinafter simply referred to as red light) of about 600 to 650 nm, for example.
  • the center wavelength of the red light is about 620 to 630 nm.
  • the G-LED 201b emits about 500 to 600 nm of green band light (hereinafter simply referred to as green light) represented by a normal distribution.
  • the B-LED 201c emits blue band light having a central wavelength of 445 to 460 nm (hereinafter simply referred to as blue light).
  • the V-LED 201d emits purple band light having a central wavelength of 400 to 410 nm (hereinafter simply referred to as purple light).
  • the LED light source unit 201 has a high-pass filter (HPF) 202 that is inserted into and extracted from the optical path of blue light emitted from the B-LED 201c.
  • the high pass filter 202 cuts blue light having a wavelength band of about 450 nm or less.
  • the blue light from which the wavelength band of about 450 nm or less is cut is composed of a wavelength band (see FIG. 8) in which the absorption coefficient of oxyhemoglobin is larger than that of reduced hemoglobin, and is used for measuring oxygen saturation. be able to. Therefore, hereinafter, blue light from which a wavelength band of about 450 nm or less is cut is referred to as measurement blue light.
  • the high-pass filter 202 is inserted / removed by the HPF insertion / removal unit 203 under the control of the LED light source control unit 204.
  • the LED light source control unit 204 controls turning on / off of each LED 201a to 201d of the LED light source unit 201, each emission amount, and insertion / extraction of the high-pass filter 202. Specifically, in the normal observation mode and the blood vessel thickness measurement mode, the LED light source control unit 204 turns on all the LEDs 201a to 201d, and the high-pass filter 202 retracts the B-LED 301c from the optical path. Thereby, white light on which purple light, blue light, green light, and red light are superimposed is irradiated on the observation target, and the sensor 48 images the observation target with the reflected light, and the Bc image signal, the Gc image signal, and the Rc image. Output a signal.
  • the LED light source control unit 204 turns on only the B-LED 203d and all LEDs 203a to 203d with the high-pass filter 202 inserted. Control to switch alternately every frame. As a result, the observation target is alternately irradiated with measurement blue light and mixed light including violet light, measurement blue light, green light, and red light.
  • the imaging control unit 49 reads out the signal charge obtained by imaging the observation target under the measurement blue light during the readout period of the first frame, and outputs the B1 image signal, the G1 image signal, and the R1 image signal. Output.
  • a signal charge obtained by imaging an observation target under mixed light including purple light, measurement blue light, green light, and red light is read out during a readout period of the second frame, and a B2 image signal is obtained.
  • a G2 image signal and an R2 image signal are output. Subsequent processing can be performed in the same manner as the endoscope system 10.
  • the light source device 14 of the endoscope system 300 includes a broadband light source 301 instead of the first and second blue laser light sources 34 and 36, the violet laser light source 38, and the light source control unit 40.
  • a filter 302 and a rotation filter control unit 303 are provided.
  • the sensor 305 of the endoscope system 300 is a monochrome image sensor that is not provided with a color filter. For this reason, the DSP 56 does not perform processing peculiar to the color image sensor such as demosaic processing. About other than that, it is the same as the endoscope system 10 of 1st Embodiment.
  • the broadband light source 301 includes, for example, a xenon lamp, a white LED, and the like, and emits white light whose wavelength band ranges from blue to red.
  • the rotary filter 302 includes a first filter 310 and a second filter 311 (see FIG. 24), and the first filter 310 is placed on the optical path where white light emitted from the broadband light source 301 enters the light guide 41. It can move in the radial direction between the first position where it is disposed and the second position where the second filter 311 is disposed.
  • the mutual movement of the rotary filter 302 to the first position and the second position is controlled by the rotary filter control unit 303 according to the selected observation mode.
  • the rotation filter 302 rotates in accordance with the imaging frame of the sensor 305 in a state where the rotation filter 302 is disposed at the first position or the second position.
  • the rotation speed of the rotation filter 302 is controlled by the rotation filter control unit 303 according to the selected observation mode.
  • the first filter 310 is used in the normal observation mode and the blood vessel thickness measurement mode, and is provided on the inner peripheral portion of the rotary filter 302.
  • the first filter 310 includes an R filter 310a that transmits red light, a G filter 310b that transmits green light, and a B filter 310c that transmits blue-violet light including violet light and blue light.
  • the rotary filter 302 is disposed at the first position, and the white light from the broadband light source 301 is output from the R filters 310a and G according to the rotation of the rotary filter 302. The light enters one of the filter 310b and the B filter 310c.
  • the observation object is sequentially irradiated with red light, green light, and blue-violet light according to the transmitted filter.
  • the sensor 305 sequentially outputs an Rc image signal, a Gc image signal, and a Bc image signal by imaging the observation target with these reflected lights.
  • the second filter 311 is used in the oxygen saturation mode and the blood vessel depth measurement mode, and is provided on the outer peripheral portion of the rotary filter 302.
  • the second filter 311 includes an R filter 311a that transmits red light, a G filter 311b that transmits green light, a B filter 311c that transmits blue-violet light including violet light and blue light, and a narrow band of 473 ⁇ 10 nm.
  • a narrow band filter 311d that transmits light.
  • the light enters one of the G filter 311b, the B filter 311c, and the narrow band filter 311d. Therefore, the observation target is sequentially irradiated with red light, green light, blue-violet light, and narrowband light (473 nm) according to the transmitted filter.
  • the sensor 405 captures the observation target when the red light is irradiated and outputs an R2 image signal.
  • the sensor 405 captures the observation target and outputs a G2 image signal.
  • the observation target is imaged and a B2 image signal is output, and when the narrow band light is irradiated, the observation target is imaged and the B1 image signal is output. Subsequent processing can be performed similarly to the endoscope system 10 of the first embodiment.
  • the oxygen saturation is calculated.
  • an oxygenated hemoglobin index obtained from “blood volume ⁇ oxygen saturation (%)” or “blood volume” Other biological function information such as a reduced hemoglobin index obtained from “ ⁇ (1-oxygen saturation) (%)” may be calculated.

Abstract

Provided are an image processing device and a method for operating same, as well as an endoscope processor device and a method for operating same, with which the blood vessel depth of blood vessels in an observation subject is accurately measured. A data set storage unit 97 stores a data set composed of a plurality of items of measurement data associating blood vessel indicator values such as vascular contrast and a plurality of blood vessel indicator value change factors including the blood vessel depth. A specific blood vessel indicator value change factor other than the blood vessel depth is measured. The data set is narrowed to a sub-data set having the specific blood vessel indicator value change factor. A blood vessel depth corresponding to a blood vessel indicator value calculated at a blood vessel indicator value calculation unit (vascular contrast calculation unit 96) is established from the sub-data set.

Description

画像処理装置及びその作動方法、並びに内視鏡用プロセッサ装置及びその作動方法Image processing apparatus and operating method thereof, endoscope processor apparatus and operating method thereof
 本発明は、観察対象における血管の血管深さを測定する画像処理装置及びその作動方法並びに内視鏡用プロセッサ装置及びその作動方法に関する。 The present invention relates to an image processing apparatus that measures the depth of a blood vessel in an observation target, an operation method thereof, an endoscope processor device, and an operation method thereof.
 医療分野においては、光源装置、内視鏡、およびプロセッサ装置を備える内視鏡システムを用いて診断することが一般的になっている。また、近年においては、白色光などの広帯域光を用いる通常観察だけでなく、酸素飽和度および血管深さなどの生体機能情報を用いる特殊観察も行われるようになってきている。 In the medical field, diagnosis is generally performed using an endoscope system including a light source device, an endoscope, and a processor device. In recent years, not only normal observation using broadband light such as white light but also special observation using biological function information such as oxygen saturation and blood vessel depth has been performed.
 例えば、特許文献1では、中心波長445nm、473nm、および405nmの狭帯域光をそれぞれ順次照射して得られた画像信号S1、S2、およびS3に基づいて、血管に関する指標値(血管指標値)の一つである輝度比S1/S3およびS2/S3を算出し、それら輝度比S1/S3およびS2/S3から、酸素飽和度と血管深さを算出し、疑似カラー等の色処理で画像化を行っている。 For example, in Patent Document 1, based on image signals S1, S2, and S3 obtained by sequentially irradiating narrow-band lights having center wavelengths of 445 nm, 473 nm, and 405 nm, respectively, an index value (blood vessel index value) related to blood vessels is obtained. One luminance ratio S1 / S3 and S2 / S3 is calculated, and from these luminance ratios S1 / S3 and S2 / S3, oxygen saturation and blood vessel depth are calculated, and image processing is performed by color processing such as pseudo color. Is going.
特開2013-202189号公報(特許第5774531号)JP 2013-202189 A (Patent No. 5774531)
 酸素飽和度については、特許文献1で示した輝度比S1/S3およbS2/S3などの血管指標値だけでなく、その他の測定技術も組み込むことによって、酸素飽和度を正確に測定できるようになっている。一方、血管深さについては、血管指標値のみを用いて算出する方法がほとんどであり、以下に示すような理由から、血管深さを正確に測定することができない場合がある。 Regarding oxygen saturation, not only the blood vessel index values such as the luminance ratios S1 / S3 and bS2 / S3 shown in Patent Document 1, but also other measurement techniques are incorporated so that the oxygen saturation can be accurately measured. It has become. On the other hand, most of the methods for calculating the blood vessel depth using only the blood vessel index value are not possible, and the blood vessel depth may not be measured accurately for the following reasons.
 例えば、図25及び図26に示すように、血管指標値の一つである血管コントラストと血管深さとの関係は、血管深さや酸素飽和度の大小にかかわらず、血管深さが深くなるほど血管コントラストが低くなるという傾向が分かっている。しかし、図25に示すように、血管コントラストと血管深さとの関係は、血管太さが大きい場合と小さい場合とで異なることから、血管太さが変わると、血管コントラストだけでは、血管深さを正確に求めることができない。また、図26に示すように、血管コントラストと血管深さとの関係は、酸素飽和度が低い場合と高い場合とで異なることから、酸素飽和度が変わると、血管コントラストだけでは、血管深さを正確に求めることができない。したがって、輝度比および血管コントラストなどの血管指標値だけでなく、その他の情報および測定技術を用いて、観察対象における血管の血管深さを正確に測定できる技術が求められていた。 For example, as shown in FIGS. 25 and 26, the relationship between the blood vessel contrast, which is one of the blood vessel index values, and the blood vessel depth is such that the blood vessel contrast increases as the blood vessel depth increases regardless of the blood vessel depth or the oxygen saturation level. There is a known tendency to be low. However, as shown in FIG. 25, the relationship between the blood vessel contrast and the blood vessel depth is different between the case where the blood vessel thickness is large and the case where the blood vessel thickness is small. It cannot be determined accurately. In addition, as shown in FIG. 26, the relationship between the blood vessel contrast and the blood vessel depth is different between when the oxygen saturation is low and when the oxygen saturation is high. It cannot be determined accurately. Therefore, there is a need for a technique that can accurately measure the blood vessel depth of the blood vessel in the observation target using not only the blood vessel index values such as the luminance ratio and the blood vessel contrast but also other information and measurement techniques.
 本発明は、血管指標値のみだけでなく、その他の情報等を用いて、観察対象における血管の血管深さを正確に測定する画像処理装置及びその作動方法、並びに内視鏡用プロセッサ装置及びその作動方法を提供することを目的とする。 The present invention relates to an image processing apparatus that accurately measures the blood vessel depth of a blood vessel in an observation target using not only the blood vessel index value but also other information and the like, an operating method thereof, and an endoscopic processor apparatus and its It aims to provide a method of operation.
 本発明の画像処理装置は、観察対象における血管の血管深さを測定する画像処理装置であって、観察対象を撮像することにより得られる画像を取得する画像取得部と、画像のうち血管指標値用画像から血管指標値を算出する血管指標値算出部と、血管指標値と、血管指標値を変動させる複数の血管指標値変動要因であって血管深さを含む複数の血管指標値変動要因とを対応付けた複数の測定用データから構成されるデータセットを記憶するデータセット記憶部と、複数の血管指標値変動要因のうち血管深さ以外の特定の血管指標値変動要因を測定する血管指標値変動要因測定部と、データセットの中から特定の血管指標値変動要因を持つサブデータセットに絞り込み、サブデータセットの中から血管指標値算出部で算出した血管指標値に対応する血管深さを求める血管深さ算出部とを備える。 An image processing apparatus of the present invention is an image processing apparatus that measures a blood vessel depth of a blood vessel in an observation target, an image acquisition unit that acquires an image obtained by imaging the observation target, and a blood vessel index value in the image A blood vessel index value calculating unit that calculates a blood vessel index value from the image for use, a blood vessel index value, a plurality of blood vessel index value fluctuation factors that fluctuate the blood vessel index value, and a plurality of blood vessel index value fluctuation factors including a blood vessel depth And a blood vessel index for measuring a specific blood vessel index value variation factor other than the blood vessel depth among the plurality of blood vessel index value variation factors The value variation factor measurement unit and the sub-data set having a specific vascular index value variation factor are narrowed down from the data set, and the blood vessel index value calculated by the vascular index value calculation unit is selected from the sub-data set. And a blood vessel depth calculating unit that calculates the blood vessel depth of.
 観察対象において血管深さの測定対象となる測定対象血管を指定する測定対象血管指定部を有し、血管指標値算出部は、測定対象血管の血管指標値を算出することが好ましい。血管指標値用画像は、複数波長の画像を含み、血管指標値算出部は、複数波長の画像に基づいて、測定対象血管の血管指標値を算出することが好ましい。血管指標値算出部は、複数波長の画像毎に血管指標値を算出し、算出した血管指標値に対して、それぞれ重み付して加算することにより、測定対象血管の血管指標値を算出し、血管指標値に対する重み付け係数は、血管指標値の算出に用いた画像が有する波長成分に基づいて設定されることが好ましい。複数の血管指標値変動要因の中から、血管指標値変動要因測定部で測定する特定の血管指標値変動要因を選択する血管指標値変動要因選択部を有することが好ましい。 It is preferable to have a measurement target blood vessel designating unit that designates a measurement target blood vessel that is a measurement target of the blood vessel depth in the observation target, and the blood vessel index value calculation unit calculates the blood vessel index value of the measurement target blood vessel. It is preferable that the blood vessel index value image includes an image of a plurality of wavelengths, and the blood vessel index value calculation unit calculates a blood vessel index value of the blood vessel to be measured based on the image of the plurality of wavelengths. The blood vessel index value calculating unit calculates a blood vessel index value for each of the images of a plurality of wavelengths, and calculates the blood vessel index value of the blood vessel to be measured by adding each weighted value to the calculated blood vessel index value, The weighting coefficient for the blood vessel index value is preferably set based on the wavelength component of the image used for calculating the blood vessel index value. It is preferable to have a blood vessel index value variation factor selection unit that selects a specific blood vessel index value variation factor measured by the blood vessel index value variation factor measurement unit from among a plurality of blood vessel index value variation factors.
 血管深さ算出部の算出結果を表示部に表示するための血管深さ測定画像を生成する血管深さ測定画像生成部を有することが好ましい。血管指標値は、血管コントラスト、血管部の輝度値、又は血管部の色情報のうち少なくとも1以上を組み合わせて得られる値であることが好ましい。血管指標値変動要因は、血管太さ、酸素飽和度、血管密度、撮影距離、撮影角度、黄色色素濃度、及び粘膜の散乱係数のうち1以上を組み合わせて得られる値であることが好ましい。 It is preferable to have a blood vessel depth measurement image generation unit that generates a blood vessel depth measurement image for displaying the calculation result of the blood vessel depth calculation unit on the display unit. The blood vessel index value is preferably a value obtained by combining at least one or more of blood vessel contrast, luminance value of the blood vessel portion, and color information of the blood vessel portion. The blood vessel index value variation factor is preferably a value obtained by combining one or more of blood vessel thickness, oxygen saturation, blood vessel density, imaging distance, imaging angle, yellow pigment concentration, and mucosal scattering coefficient.
 特定の血管指標値変動要因は、血管太さと酸素飽和度であり、血管指標値変動要因測定部は、血管太さを測定する血管太さ測定部と、酸素飽和度を測定する酸素飽和度測定部を有することが好ましい。血管指標値は血管コントラストであり、データセット記憶部は、血管コントラストと、酸素飽和度と、血管深さと、血管深さとを対応付けた測定用データで構成されたデータセットを記憶することが好ましい。 The specific blood vessel index value fluctuation factors are blood vessel thickness and oxygen saturation, and the blood vessel index value fluctuation factor measurement unit includes a blood vessel thickness measurement unit that measures blood vessel thickness and an oxygen saturation measurement that measures oxygen saturation. It is preferable to have a part. The blood vessel index value is blood vessel contrast, and the data set storage unit preferably stores a data set including measurement data in which blood vessel contrast, oxygen saturation, blood vessel depth, and blood vessel depth are associated with each other. .
 本発明は、観察対象における血管の血管深さを測定する内視鏡用プロセッサ装置であって、観察対象を撮像することにより得られる画像を取得する画像取得部と、画像のうち血管指標値用画像から血管指標値を算出する血管指標値算出部と、血管指標値と、血管指標値を変動させる複数の血管指標値変動要因であって血管深さを含む複数の血管指標値変動要因とを対応付けた複数の測定用データから構成されるデータセットを記憶するデータセット記憶部と、複数の血管指標値変動要因のうち血管深さ以外の特定の血管指標値変動要因を測定する血管指標値変動要因測定部と、データセットの中から特定の血管指標値変動要因を持つサブデータセットに絞り込み、サブデータセットの中から血管指標値算出部で算出した血管指標値に対応する血管深さを求める血管深さ算出部とを備える。 The present invention relates to an endoscopic processor device for measuring a blood vessel depth of a blood vessel in an observation target, an image acquisition unit for acquiring an image obtained by imaging the observation target, and a blood vessel index value for the image A blood vessel index value calculation unit that calculates a blood vessel index value from an image, a blood vessel index value, and a plurality of blood vessel index value fluctuation factors that fluctuate the blood vessel index value and include a plurality of blood vessel index value fluctuation factors including a blood vessel depth A data set storage unit that stores a data set composed of a plurality of associated measurement data, and a blood vessel index value that measures a specific blood vessel index value variation factor other than the blood vessel depth among the plurality of blood vessel index value variation factors Fluctuation factor measurement part and sub-data set with specific vascular index value fluctuation factor in the data set are narrowed down, and it corresponds to the vascular index value calculated by the vascular index value calculation part from the sub-data set. And a blood vessel depth calculating unit that calculates the blood vessel depth.
 本発明は、観察対象における血管の血管深さを測定する画像処理装置の作動方法であって、画像取得部が、観察対象を撮像することにより得られる画像を取得するステップと、血管指標値算出部が、画像から血管指標値を算出するステップと、血管指標値変動要因測定部が、血管指標値を変動させる複数の血管指標値変動要因であって血管深さを含む複数の血管指標値変動要因のうち、血管深さ以外の特定の血管指標値変動要因を測定するステップと、血管深さ算出部が、血管指標値と複数の血管指標値変動要因とを対応付けた複数の測定用データから構成されるデータセットの中から、特定の血管指標値変動要因を持つサブデータセットに絞り込み、サブデータセットの中から血管指標値算出部で算出した血管指標値に対応する血管深さを求めるステップとを有する。 The present invention relates to an operation method of an image processing apparatus for measuring a blood vessel depth of a blood vessel in an observation target, wherein the image acquisition unit acquires an image obtained by imaging the observation target, and calculates a blood vessel index value The blood vessel index value variation factor measurement unit is configured to calculate a blood vessel index value from the image, and the blood vessel index value variation factor measurement unit includes a plurality of blood vessel index value variation factors including a blood vessel depth. Among the factors, a step of measuring a specific blood vessel index value variation factor other than the blood vessel depth, and a plurality of measurement data in which the blood vessel depth calculation unit associates the blood vessel index value with a plurality of blood vessel index value variation factors From the data set composed of the sub-data set having a specific blood vessel index value variation factor, and the blood vessel depth corresponding to the blood vessel index value calculated by the blood vessel index value calculation unit from the sub data set And a step of obtaining.
 本発明は、観察対象における血管の血管深さを測定する内視鏡用プロセッサ装置の作動方法であって、画像取得部が、観察対象を撮像することにより得られる画像を取得するステップと、血管指標値算出部が、画像のうち血管指標値用画像から血管指標値を算出するステップと、血管指標値変動要因測定部が、血管指標値を変動させる複数の血管指標値変動要因であって血管深さを含む複数の血管指標値変動要因のうち、血管深さ以外の特定の血管指標値変動要因を測定するステップと、血管深さ算出部が、血管指標値と複数の血管指標値変動要因とを対応付けた複数の測定用データから構成されるデータセットの中から、特定の血管指標値変動要因を持つサブデータセットに絞り込み、サブデータセットの中から血管指標値算出部で算出した血管指標値に対応する血管深さを求めるステップとを有する。 The present invention relates to an operating method of an endoscopic processor device for measuring a blood vessel depth of a blood vessel in an observation target, wherein the image acquisition unit acquires an image obtained by imaging the observation target; The index value calculation unit calculates a blood vessel index value from a blood vessel index value image in the image, and the blood vessel index value variation factor measurement unit includes a plurality of blood vessel index value variation factors that vary the blood vessel index value. A step of measuring a specific blood vessel index value variation factor other than the blood vessel depth among a plurality of blood vessel index value variation factors including the depth, and the blood vessel depth calculation unit includes the blood vessel index value and the plurality of blood vessel index value variation factors Narrow down to a sub-data set that has a specific blood vessel index value variation factor from the data set that consists of multiple measurement data, and calculate it from the sub-data set by the blood vessel index value calculation unit And a step of obtaining a blood vessel depth corresponding to the vascular index value.
 本発明によれば、血管指標値のみだけでなく、その他の情報を用いることによって、観察対象における血管の血管深さを正確に測定することができる。 According to the present invention, by using not only the blood vessel index value but also other information, the blood vessel depth of the blood vessel in the observation target can be accurately measured.
内視鏡システムの外観図である。It is an external view of an endoscope system. 第1実施形態の内視鏡システムのブロック図である。It is a block diagram of the endoscope system of a 1st embodiment. 第2白色光と青色レーザ光のスペクトルを示すグラフである。It is a graph which shows the spectrum of 2nd white light and blue laser beam. 第1白色光のスペクトルを示すグラフである。It is a graph which shows the spectrum of 1st white light. RGBカラーフィルタの分光透過率を示すグラフである。It is a graph which shows the spectral transmittance of a RGB color filter. 酸素飽和度測定部の機能を示すブロック図である。It is a block diagram which shows the function of an oxygen saturation measuring part. 信号比と酸素飽和度の相関関係を示すグラフである。It is a graph which shows the correlation of a signal ratio and oxygen saturation. 酸化ヘモグロビンと還元ヘモグロビンの吸光係数を示すグラフである。It is a graph which shows the light absorption coefficient of oxygenated hemoglobin and reduced hemoglobin. 酸素飽和度を算出する方法を示す説明図である。It is explanatory drawing which shows the method of calculating oxygen saturation. 血管選択用画像を示す画像図である。It is an image figure which shows the image for blood vessel selection. 血管太さ測定画像を示す画像図である。It is an image figure which shows the blood vessel thickness measurement image. 血管深さ測定部の機能を示すブロック図である。It is a block diagram which shows the function of the blood vessel depth measurement part. データセットを示す説明図である。It is explanatory drawing which shows a data set. 酸素飽和度が特定値s*である場合における血管太さφ、血管深さd、血管コントラストCtの関係を表す3次元空間上の平面を示すグラフである。It is a graph which shows the plane on the three-dimensional space showing the relationship of the blood vessel thickness (phi), the blood vessel depth d, and the blood vessel contrast Ct in case oxygen saturation is specific value s * . 酸素飽和度が特定値s*である場合における血管太さφ、血管深さd、血管コントラストCtの関係を表す3次元空間上の平面を示すグラフであり、平面のうち血管太さφ*である部分を示す断面を表したグラフである。Vessel size when oxygen saturation is a specific value s * phi, blood vessel depth d, a graph showing the plane of the three-dimensional space representing the relationship of the blood vessel contrast Ct, in vessel size of plane phi * It is a graph showing the cross section which shows a certain part. 酸素飽和度が特定値s*であり、血管太さが特定値φ*である場合における血管深さdと血管コントラストCtとの関係を表した2次元空間上の関係線を示すグラフである。It is a graph which shows the relationship line on the two-dimensional space showing the relationship between the blood vessel depth d and the blood vessel contrast Ct in case oxygen saturation is specific value s * and blood vessel thickness is specific value (phi) * . 血管深さ測定画像を示す画像図である。It is an image figure which shows the blood vessel depth measurement image. 内視鏡システムの作用を示すフローチャートである。It is a flowchart which shows the effect | action of an endoscope system. 情報入力部が接続された血管深さ測定部の機能を示すブロック図である。It is a block diagram which shows the function of the blood vessel depth measurement part to which the information input part was connected. 血管指標値変動要因選択部が接続された血管深さ測定部の機能を示すブロック図である。It is a block diagram which shows the function of the blood vessel depth measurement part to which the blood vessel index value variation factor selection part was connected. 第2実施形態の内視鏡システムのブロック図である。It is a block diagram of the endoscope system of a 2nd embodiment. LED(Light Emitting Diode)の発光帯域とHPF(High Pass Filter)の特性を示すグラフである。It is a graph which shows the light emission zone | band of LED (Light * Emitting * Diode), and the characteristic of HPF (High * Pass * Filter). 第3実施形態の内視鏡システムのブロック図である。It is a block diagram of the endoscope system of a 3rd embodiment. 回転フィルタの平面図である。It is a top view of a rotation filter. 血管太さが異なる場合における血管深さと血管コントラストの関係を示すグラフである。It is a graph which shows the relationship between the blood vessel depth and blood vessel contrast in case blood vessel thickness differs. 酸素飽和度が異なる場合における血管深さと血管コントラストの関係を示すグラフである。It is a graph which shows the relationship between the blood vessel depth and blood vessel contrast when oxygen saturation differs.
[第1実施形態]
 図1に示すように、第1実施形態の内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16(本発明の「画像処理装置」および「内視鏡用プロセッサ装置」に対応する)、モニタ18(本発明の「表示部」に対応する)と、コンソール20とを有する。内視鏡12は、光源装置14と光学的に接続され、かつ、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部21と、挿入部21の基端部分に設けられた操作部22と、挿入部21の先端側に設けられた湾曲部23及び先端部24を有している。操作部22のアングルノブ22aを操作することにより、湾曲部23は湾曲動作する。この湾曲動作にともなって、先端部24を所望の方向に向けることができる。
[First Embodiment]
As shown in FIG. 1, an endoscope system 10 according to the first embodiment includes an endoscope 12, a light source device 14, and a processor device 16 (an “image processing device” and an “endoscopic processor device” of the present invention). ”, A monitor 18 (corresponding to“ display unit ”of the present invention), and a console 20. The endoscope 12 is optically connected to the light source device 14 and electrically connected to the processor device 16. The endoscope 12 includes an insertion portion 21 to be inserted into a subject, an operation portion 22 provided at a proximal end portion of the insertion portion 21, a bending portion 23 and a distal end portion provided at the distal end side of the insertion portion 21. 24. By operating the angle knob 22a of the operation unit 22, the bending unit 23 performs a bending operation. With this bending operation, the distal end portion 24 can be directed in a desired direction.
 また、操作部22には、アングルノブ22aの他、観察モード切替SW22bと、ズーム操作部22cと、静止画像を保存するためのフリーズボタン(図示しない)と、が設けられている。モード切替SW22bは、通常観察モードと、酸素飽和度モードと、血管太さ測定モードと、血管深さ測定モードとの4種類のモード間の切り替え操作に用いられる。 In addition to the angle knob 22a, the operation unit 22 includes an observation mode switching SW 22b, a zoom operation unit 22c, and a freeze button (not shown) for storing a still image. The mode switching SW 22b is used for switching operation among four types of modes: a normal observation mode, an oxygen saturation mode, a blood vessel thickness measurement mode, and a blood vessel depth measurement mode.
 通常観察モードは、被検体内の観察対象をフルカラー画像化した通常光画像をモニタ18に表示するモードである。酸素飽和度モードは、観察対象の血中ヘモグロビンの酸素飽和度を画像化した酸素飽和度画像をモニタ18に表示するモードである。血管太さ測定モードは、観察対象の血管の太さを測定し、測定結果をモニタ18に表示するモードである。血管深さ測定モードは、観察対象の血管の深さを測定し、測定結果をモニタ18に表示するモードである。ズーム操作部22cは、内視鏡12内のズームレンズ47(図2参照)を駆動させて、観察対象を拡大させるズーム操作に用いられる。 The normal observation mode is a mode in which a normal light image in which the observation target in the subject is converted into a full color image is displayed on the monitor 18. The oxygen saturation mode is a mode in which an oxygen saturation image obtained by imaging the oxygen saturation of blood hemoglobin to be observed is displayed on the monitor 18. The blood vessel thickness measurement mode is a mode for measuring the thickness of the blood vessel to be observed and displaying the measurement result on the monitor 18. The blood vessel depth measurement mode is a mode in which the depth of the blood vessel to be observed is measured and the measurement result is displayed on the monitor 18. The zoom operation unit 22c is used for a zoom operation for driving the zoom lens 47 (see FIG. 2) in the endoscope 12 to enlarge the observation target.
 プロセッサ装置16は、モニタ18及びコンソール20と電気的に接続される。モニタ18は、通常光画像や酸素飽和度画像等の画像、及びこれらの画像に関する情報(以下、画像情報等という)を表示する。コンソール20は、機能設定等の入力操作を受け付けるUI(User Interface:ユーザインタフェース)として機能する。なお、プロセッサ装置16には、画像情報等を記録する記録部(図示省略)を接続しても良い。 The processor device 16 is electrically connected to the monitor 18 and the console 20. The monitor 18 displays images such as normal light images and oxygen saturation images, and information related to these images (hereinafter referred to as image information and the like). The console 20 functions as a UI (User Interface) that receives input operations such as function settings. Note that a recording unit (not shown) for recording image information or the like may be connected to the processor device 16.
 図2に示すように、光源装置14は、中心波長473nmの第1青色レーザ光を発する第1青色レーザ光源(473LD(Laser Diode:レーザダイオード))34と、中心波長445nmの第2青色レーザ光を発する第2青色レーザ光源(445LD)36と、中心波長405nmの紫色レーザ光を発する紫色レーザ光源(405LD)38と、を発光源として備えている。これらの半導体発光素子からなる各光源34,36,および38の発光量及び発光タイミングは、光源制御部40により個別に制御される。 As shown in FIG. 2, the light source device 14 includes a first blue laser light source (473LD (Laser Diode)) that emits a first blue laser beam having a center wavelength of 473 nm, and a second blue laser beam having a center wavelength of 445 nm. And a violet laser light source (405LD) 38 that emits violet laser light having a central wavelength of 405 nm is provided as a light emission source. The light emission amount and the light emission timing of each of the light sources 34, 36, and 38 including these semiconductor light emitting elements are individually controlled by the light source control unit 40.
 なお、第1,第2青色レーザ光及び紫色レーザ光の半値幅は±10nm程度にすることが好ましい。また、第1、第2青色レーザ光及び紫色レーザ光の中心波長は、上記で示した中心波長に対して±5~10nmの範囲に入ることが好ましい。また、第1、第2青色レーザ光及び紫色レーザ光の中心波長は、ピーク波長と同じであってもよく異なってもよい。また、第1青色レーザ光源34、第2青色レーザ光源36、及び紫色レーザ光源38は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。また、上記光源として、発光ダイオード等の発光体を用いた構成としても良い。 It should be noted that the half widths of the first and second blue laser beams and the violet laser beam are preferably about ± 10 nm. The center wavelengths of the first and second blue laser beams and the violet laser beam are preferably in the range of ± 5 to 10 nm with respect to the center wavelength shown above. The center wavelengths of the first and second blue laser beams and the violet laser beam may be the same as or different from the peak wavelength. The first blue laser light source 34, the second blue laser light source 36, and the violet laser light source 38 can use broad-area type InGaN laser diodes, and can also use InGaNAs laser diodes or GaNAs laser diodes. it can. The light source may be configured to use a light emitter such as a light emitting diode.
 光源制御部40は、通常観察モード及び血管太さ測定モードの場合には、第2青色レーザ光源36のみを点灯させる制御を行う。また、酸素飽和度モード及び血管深さ測定モードの場合には、光源制御部40は、1フレーム間隔で、第1青色レーザ光源34と第2青色レーザ光源36を交互に点灯させる制御を行う。なお、通常観察モード、酸素飽和度モード、血管太さ測定モード、及び血管深さ測定モードのいずれのモードにおいても、第2青色レーザ光源36を点灯した時には、紫色レーザ光源38も同時に点灯する制御を行ってもよい。 The light source control unit 40 performs control to turn on only the second blue laser light source 36 in the normal observation mode and the blood vessel thickness measurement mode. In the oxygen saturation mode and the blood vessel depth measurement mode, the light source control unit 40 performs control to alternately turn on the first blue laser light source 34 and the second blue laser light source 36 at intervals of one frame. In the normal observation mode, the oxygen saturation mode, the blood vessel thickness measurement mode, and the blood vessel depth measurement mode, when the second blue laser light source 36 is turned on, the purple laser light source 38 is also turned on simultaneously. May be performed.
 各光源34,36,および38から出射される第1,第2青色レーザ光及び紫色レーザ光は、集光レンズ、光ファイバ、合波器等の光学部材(いずれも図示せず)を介してライトガイド41に入射する。ライトガイド41は、光源装置14と内視鏡12を接続するユニバーサルコード17(図1参照)と、内視鏡12とに内蔵されている。ライトガイド41は、各光源34,36,および38からの第1,第2青色レーザ光及び紫色レーザ光を、内視鏡12の先端部24まで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、および外皮となる保護層を含めた径がφ0.3~0.5mmの細径なファイバケーブルを使用することができる。 The first and second blue laser light and violet laser light emitted from each of the light sources 34, 36, and 38 are passed through optical members (all not shown) such as a condenser lens, an optical fiber, and a multiplexer. Incident on the light guide 41. The light guide 41 is built in the universal cord 17 (see FIG. 1) that connects the light source device 14 and the endoscope 12 and the endoscope 12. The light guide 41 propagates the first and second blue laser light and violet laser light from the light sources 34, 36, and 38 to the distal end portion 24 of the endoscope 12. A multimode fiber can be used as the light guide 41. As an example, a thin fiber cable having a core diameter of 105 μm, a cladding diameter of 125 μm, and a diameter of φ0.3 to 0.5 mm including a protective layer serving as an outer shell can be used.
 内視鏡12の先端部24は、照明光学系24aと撮像光学系24bとを有している。照明光学系24aには、蛍光体44と、照明レンズ45とが設けられている。蛍光体44には、ライトガイド41から第1,第2青色レーザ光及び紫色レーザ光が入射する。蛍光体44は、第1または第2青色レーザ光が照射されることにより蛍光を発する。また、一部の第1または第2青色レーザ光は、そのまま蛍光体44を透過する。これに対して、紫色レーザ光は、ほぼ全てが蛍光体44を透過する。蛍光体44を出射した光は、照明レンズ45を介して観察対象に照射される。 The distal end portion 24 of the endoscope 12 has an illumination optical system 24a and an imaging optical system 24b. The illumination optical system 24a is provided with a phosphor 44 and an illumination lens 45. The first and second blue laser light and violet laser light are incident on the phosphor 44 from the light guide 41. The phosphor 44 emits fluorescence when irradiated with the first or second blue laser light. Further, a part of the first or second blue laser light passes through the phosphor 44 as it is. On the other hand, almost all of the violet laser light passes through the phosphor 44. The light emitted from the phosphor 44 is irradiated to the observation target through the illumination lens 45.
 観察対象に対して照射される光のスペクトルと発光タイミングは、モード毎に異なっている。通常観察モード及び血管太さ測定モードにおいては、第2青色レーザ光のみが蛍光体44に入射するため、図3に示すように、第2青色レーザ光と、この第2青色レーザ光により蛍光体44から励起発光する緑色~赤色の第2蛍光とを含む第2白色光が観察対象に照射される。なお、第2青色レーザ光と同時に紫色レーザ光を発光した場合、紫色レーザ光は蛍光体44で吸収されずにそのまま透過するため、紫色レーザ光により蛍光が発光することはほとんどない。 The spectrum of light emitted to the observation target and the light emission timing are different for each mode. In the normal observation mode and the blood vessel thickness measurement mode, only the second blue laser light is incident on the phosphor 44. Therefore, as shown in FIG. 3, the second blue laser light and the second blue laser light are used to phosphor. The observation object is irradiated with second white light including green to red second fluorescence excited and emitted from 44. When the violet laser light is emitted simultaneously with the second blue laser light, the violet laser light is transmitted without being absorbed by the phosphor 44, so that the violet laser light hardly emits fluorescence.
 酸素飽和度モード及び血管深さモードにおいては、第1青色レーザ光と第2青色レーザ光が蛍光体44に交互に入射することにより、図4に示すように、第1青色レーザ光と、この第1青色レーザ光により蛍光体44から励起発光する緑色~赤色の第1蛍光とを含む第1白色光と、第2白色光とが観察対象に交互に照射される。第1蛍光と第2蛍光は、波形(スペクトルの形状)がほぼ同じである。ただし、蛍光体44においては、第2青色レーザ光に対する吸収量は、第1青色レーザ光に対する吸収量よりも大きいため、同じ強度の第1及び第2青色レーザ光が蛍光体44に入射した場合、第2蛍光の波長全体の強度は第1蛍光の強度よりも大きくなっている。 In the oxygen saturation mode and the blood vessel depth mode, the first blue laser light and the second blue laser light are alternately incident on the phosphor 44, and as shown in FIG. First white light including green to red first fluorescence excited and emitted from the phosphor 44 by the first blue laser light and second white light are alternately irradiated on the observation target. The first fluorescence and the second fluorescence have substantially the same waveform (spectrum shape). However, in the phosphor 44, the amount of absorption with respect to the second blue laser light is larger than the amount of absorption with respect to the first blue laser light. Therefore, when the first and second blue laser beams having the same intensity enter the phosphor 44. The intensity of the entire second fluorescence wavelength is greater than the intensity of the first fluorescence.
 なお、蛍光体44は、第1及び第2青色レーザ光の一部を吸収して、緑色~赤色に励起発光する複数種類の蛍光体(例えばYAG系蛍光体、あるいはBAM(BaMgAl1017)等の蛍光体)を含んで構成されるものを使用することが好ましい。また、本実施形態のように、半導体発光素子を蛍光体44の励起光源として用いれば、高い発光効率で高強度の第1白色光及び第2白色光が得られる。また、各白色光の強度を容易に調整できる上に、色温度および色度の変化を小さく抑えることができる。 The phosphor 44 absorbs a part of the first and second blue laser beams and excites and emits green to red light (for example, YAG phosphor or BAM (BaMgAl 10 O 17 )). It is preferable to use a material comprising a phosphor such as In addition, when the semiconductor light emitting element is used as an excitation light source of the phosphor 44 as in the present embodiment, high intensity first white light and second white light can be obtained with high luminous efficiency. In addition, the intensity of each white light can be easily adjusted, and changes in color temperature and chromaticity can be kept small.
 内視鏡12の撮像光学系24bは、撮像レンズ46、ズームレンズ47、およびセンサ48を有している(図2参照)。観察対象からの反射光は、撮像レンズ46及びズームレンズ47を介してセンサ48に入射する。これにより、センサ48に観察対象の反射像が結像される。ズームレンズ47は、ズーム操作部22cを操作することによりテレ端とワイド端との間を移動する。 The imaging optical system 24b of the endoscope 12 includes an imaging lens 46, a zoom lens 47, and a sensor 48 (see FIG. 2). Reflected light from the observation object enters the sensor 48 via the imaging lens 46 and the zoom lens 47. As a result, a reflected image of the observation object is formed on the sensor 48. The zoom lens 47 moves between the tele end and the wide end by operating the zoom operation unit 22c.
 センサ48は、カラーの撮像素子であり、観察対象の反射像を撮像して画像信号を出力する。センサ48としては、例えばCCD(Charge Coupled Device)イメージセンサまたはCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサを用いることができる。本実施形態では、センサ48はCCDイメージセンサである。また、センサ48は、撮像面に対して、Rカラーフィルタが設けられたR画素と、Gカラーフィルタが設けられたG画素と、Bカラーフィルタが設けられたB画素とを有している。これらRGBの各色の画素で光電変換をすることによってR,GおよびBの三色の画像信号を出力する。 The sensor 48 is a color image sensor, picks up a reflected image of the observation object, and outputs an image signal. As the sensor 48, for example, a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor can be used. In the present embodiment, the sensor 48 is a CCD image sensor. The sensor 48 has, on the imaging surface, an R pixel provided with an R color filter, a G pixel provided with a G color filter, and a B pixel provided with a B color filter. By performing photoelectric conversion on these RGB pixels, three, R, G, and B color image signals are output.
 図5に示すように、Bカラーフィルタは380~560nmの分光透過率を有しており、Gカラーフィルタは450~630nmの分光透過率を有しており、Rカラーフィルタ580~760nmの分光透過率を有している。したがって、通常観察モード及び血管太さ測定モード時に第2白色光が観察対象に照射された場合には、B画素には第2青色レーザ光と第2蛍光の緑色成分の一部が入射し、G画素には第2蛍光の緑色成分の一部が入射し、R画素には第2蛍光の赤色成分が入射する。 As shown in FIG. 5, the B color filter has a spectral transmittance of 380 to 560 nm, the G color filter has a spectral transmittance of 450 to 630 nm, and the spectral transmission of the R color filter 580 to 760 nm. Have a rate. Therefore, when the second white light is irradiated on the observation target in the normal observation mode and the blood vessel thickness measurement mode, the second blue laser light and a part of the green component of the second fluorescence enter the B pixel, Part of the green component of the second fluorescence is incident on the G pixel, and the red component of the second fluorescence is incident on the R pixel.
 一方、酸素飽和度モード及び血管深さ測定モード時に第1白色光が観察対象に照射された場合には、B画素には第1青色レーザ光と第1蛍光の緑色成分の一部が入射し、G画素には第1蛍光の緑色成分の一部とGカラーフィルタによって減衰した第1青色レーザ光が入射し、R画素には第1蛍光の赤色成分が入射する。第1青色レーザ光は第1蛍光よりも発光強度が極めて大きいので、B画素から出力されるB画像信号の大部分は第1青色レーザ光の反射光成分で占められている。酸素飽和度モード及び血管深さ測定モード時に第2白色光が観察対象に照射されたときのRGB各画素での光入射成分は、通常観察モードの場合と同様である。 On the other hand, when the observation target is irradiated with the first white light in the oxygen saturation mode and the blood vessel depth measurement mode, the first blue laser light and a part of the green component of the first fluorescence enter the B pixel. , A part of the green component of the first fluorescence and the first blue laser light attenuated by the G color filter are incident on the G pixel, and a red component of the first fluorescence is incident on the R pixel. Since the first blue laser light has an emission intensity much higher than that of the first fluorescence, most of the B image signal output from the B pixel is occupied by the reflected light component of the first blue laser light. In the oxygen saturation mode and the blood vessel depth measurement mode, the light incident components in the RGB pixels when the second white light is irradiated onto the observation target are the same as those in the normal observation mode.
 センサ48としては、撮像面にC(シアン),M(マゼンタ),Y(イエロー)及びG(グリーン)の補色フィルタを備えた、いわゆる補色イメージセンサを用いても良い。センサ48として補色イメージセンサを用いる場合は、CMYGの四色の画像信号からRGBの三色の画像信号に色変換する色変換部を、内視鏡12、光源装置14またはプロセッサ装置16のいずれかに設けておけば良い。こうすれば補色イメージセンサを用いる場合でも、CMYGの4色の画像信号から色変換によってRGB3色の画像信号を得ることができる。 As the sensor 48, a so-called complementary color image sensor having complementary color filters of C (cyan), M (magenta), Y (yellow) and G (green) on the imaging surface may be used. When a complementary color image sensor is used as the sensor 48, the color conversion unit that performs color conversion from the CMYG four-color image signal to the RGB three-color image signal is any of the endoscope 12, the light source device 14, and the processor device 16. It should be provided in. In this way, even when a complementary color image sensor is used, it is possible to obtain RGB three-color image signals by color conversion from the four-color CMYG image signals.
 撮像制御部49はセンサ48の撮像制御を行う。通常観察モード及び血管太さ測定モード時には、1フレームの期間(以下、単に1フレームという)毎に、第2白色光で照明された観察対象をセンサ48で撮像する。これにより、1フレーム毎に、センサ48は、R画素からRc画像信号を出力し、G画素からGc画像信号を出力し、B画素からBc画像信号を出力する。 The imaging control unit 49 performs imaging control of the sensor 48. In the normal observation mode and the blood vessel thickness measurement mode, the observation object illuminated with the second white light is imaged by the sensor 48 every one frame period (hereinafter simply referred to as one frame). Thus, for each frame, the sensor 48 outputs an Rc image signal from the R pixel, outputs a Gc image signal from the G pixel, and outputs a Bc image signal from the B pixel.
 撮像制御部49は、酸素飽和度モード及び血管深さ測定モード時には、第1白色光と第2白色光の発光タイミングに同期して、センサ48が撮像を行うように制御する。具体的には、センサ48は、第1白色光のもとで観察対象を撮像して得た信号電荷を読み出して、R画素からR1画像信号を出力し、G画素からG1画像信号を出力し、B画素からB1画像信号を出力する。そして、第2白色光のもとで観察対象を撮像して得た信号電荷を2フレーム目の読出期間に読み出して、R画素からR2画像信号を出力し、G画素からG2画像信号を出力し、B画素からB2画像信号を出力する。 In the oxygen saturation mode and the blood vessel depth measurement mode, the imaging control unit 49 controls the sensor 48 to perform imaging in synchronization with the emission timings of the first white light and the second white light. Specifically, the sensor 48 reads a signal charge obtained by imaging the observation target under the first white light, outputs an R1 image signal from the R pixel, and outputs a G1 image signal from the G pixel. The B1 image signal is output from the B pixel. Then, the signal charge obtained by imaging the observation target under the second white light is read during the readout period of the second frame, the R2 image signal is output from the R pixel, and the G2 image signal is output from the G pixel. The B2 image signal is output from the B pixel.
 図2に示すように、センサ48から出力される各色の画像信号は、CDS(correlateddouble sampling)/AGC(automatic gain control)回路50に送信される(図2参照)。CDS/AGC回路50は、センサ48から出力されるアナログの画像信号に相関二重サンプリング(CDS)や自動利得制御(AGC)を行う。CDS/AGC回路50を経た画像信号は、A/D(Analog/Digital)変換器52によってデジタル画像信号に変換される。こうしてデジタル化された画像信号はプロセッサ装置16に入力される。 As shown in FIG. 2, the image signal of each color output from the sensor 48 is transmitted to a CDS (correlated double sampling) / AGC (automatic gain control) circuit 50 (see FIG. 2). The CDS / AGC circuit 50 performs correlated double sampling (CDS) and automatic gain control (AGC) on the analog image signal output from the sensor 48. The image signal that has passed through the CDS / AGC circuit 50 is converted into a digital image signal by an A / D (Analog / Digital) converter 52. The digitized image signal is input to the processor device 16.
 プロセッサ装置16は、画像信号取得部54(本発明の「画像取得部」に対応する)と、画像信号取得部54はDSP(Digital Signal Processor)56と、ノイズ低減部58と、信号変換部59と、画像処理切替部60と、通常観察画像処理部62と、酸素飽和度測定部64(本発明の「血管指標値変動要因測定部」に対応する)と、酸素飽和度画像生成部65と、血管太さ測定部66と、血管太さ測定画像生成部67と、血管深さ測定部68(本発明の「血管指標値変動要因測定部」に対応する)と、血管深さ測定画像生成部69と、映像信号生成部70とを備えている。 The processor device 16 includes an image signal acquisition unit 54 (corresponding to the “image acquisition unit” of the present invention), the image signal acquisition unit 54 includes a DSP (Digital Signal Processor) 56, a noise reduction unit 58, and a signal conversion unit 59. An image processing switching unit 60, a normal observation image processing unit 62, an oxygen saturation measuring unit 64 (corresponding to the “blood vessel index value variation factor measuring unit” of the present invention), an oxygen saturation image generating unit 65, A blood vessel thickness measurement unit 66, a blood vessel thickness measurement image generation unit 67, a blood vessel depth measurement unit 68 (corresponding to the “blood vessel index value variation factor measurement unit” of the present invention), and a blood vessel depth measurement image generation. Unit 69 and video signal generation unit 70.
 画像信号取得部54は、内視鏡12のセンサ48から出力される画像信号を取得する。DSP56は、取得した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、デモザイク処理、YC変換処理等の各種信号処理を行う。欠陥補正処理では、センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施された画像信号から暗電流成分が除かれ、正確な零レベルが設定される。ゲイン補正処理は、オフセット処理後のRGB各画像信号に特定のゲインを乗じることにより各画像信号の信号レベルを整える。ゲイン補正処理後の各色の画像信号には、色再現性を高めるためのリニアマトリクス処理が施される。 The image signal acquisition unit 54 acquires an image signal output from the sensor 48 of the endoscope 12. The DSP 56 performs various signal processing such as defect correction processing, offset processing, gain correction processing, linear matrix processing, gamma conversion processing, demosaic processing, and YC conversion processing on the acquired image signal. In the defect correction process, the signal of the defective pixel of the sensor 48 is corrected. In the offset process, the dark current component is removed from the image signal subjected to the defect correction process, and an accurate zero level is set. The gain correction process adjusts the signal level of each image signal by multiplying each RGB image signal after the offset process by a specific gain. The image signal of each color after the gain correction processing is subjected to linear matrix processing for improving color reproducibility.
 その後、ガンマ変換処理によって、各画像信号の明るさや彩度が整えられる。リニアマトリクス処理後の画像信号には、デモザイク処理(等方化処理または同時化処理とも言う)が施され、補間により各画素の不足した色の信号が生成される。デモザイク処理によって、全画素がRGB各色の信号を有するようになる。DSP59は、デモザイク処理後の各画像信号にYC変換処理を施し、YC変換処理によって生成された輝度信号Yと色差信号Cb,Crをノイズ低減部58に出力する。 After that, the brightness and saturation of each image signal are adjusted by gamma conversion processing. The image signal after the linear matrix processing is subjected to demosaic processing (also referred to as isotropic processing or simultaneous processing), and a signal of insufficient color for each pixel is generated by interpolation. Through the demosaic processing, all pixels have signals of RGB colors. The DSP 59 performs YC conversion processing on each image signal after demosaic processing, and outputs the luminance signal Y and the color difference signals Cb, Cr generated by the YC conversion processing to the noise reduction unit 58.
 ノイズ低減部58は、DSP56でデモザイク処理等が施された画像信号に対して、例えば移動平均法やメディアンフィルタ法等によるノイズ低減処理を施す。ノイズが低減された画像信号は、信号変換部59に入力され、RGBの画像信号に再変換された後、画像処理切替部60に入力される。 The noise reduction unit 58 performs noise reduction processing by, for example, a moving average method or a median filter method on the image signal that has been demosaiced by the DSP 56. The image signal with reduced noise is input to the signal conversion unit 59, reconverted into an RGB image signal, and then input to the image processing switching unit 60.
 画像処理切替部60は、通常観察モードにセットされている場合には、信号変換部59を経た画像信号を通常観察画像処理部62に入力する。また、酸素飽和度モードに設定されている場合、画像処理切替部60は、信号変換部59を経た画像信号を酸素飽和度測定部64に入力する。また、血管太さ測定モードに設定されている場合には、画像処理切替部60は、信号変換部59を経た画像信号を血管太さ測定部66に入力する。また、血管深さ測定モードに設定されている場合には、画像処理切替部60は、信号変換部59を経た画像信号を血管深さ測定部に68に入力する。 The image processing switching unit 60 inputs the image signal that has passed through the signal conversion unit 59 to the normal observation image processing unit 62 when the normal observation mode is set. When the oxygen saturation mode is set, the image processing switching unit 60 inputs the image signal that has passed through the signal conversion unit 59 to the oxygen saturation measurement unit 64. If the blood vessel thickness measurement mode is set, the image processing switching unit 60 inputs the image signal that has passed through the signal conversion unit 59 to the blood vessel thickness measurement unit 66. When the blood vessel depth measurement mode is set, the image processing switching unit 60 inputs the image signal that has passed through the signal conversion unit 59 to the blood vessel depth measurement unit 68.
 通常観察画像処理部62は、入力された1フレーム分のRc画像信号、Gc画像信号、およびBc画像信号を、それぞれR画素、G画素、およびB画素に割り当てたRGB画像データを生成する。そして、RGB画像データに対して、さらに3×3のマトリックス処理、階調変換処理、3次元LUT処理等の色変換処理を施す。そして、色変換処理済みのRGB画像データに対して、各種色彩強調処理を施す。色彩強調処理済みのRGB画像データに対しては、空間周波数強調等の構造強調処理を施す。構造強調処理が施されたRGB画像データは、通常観察画像として映像信号生成部70に入力される。映像信号生成部70では、入力された通常観察画像を映像信号(例えば、輝度信号Yと色差信号CbおよびCr)に変換し、変換後の映像信号をモニタ18に出力する。これにより、モニタ18には通常観察画像が表示される。 The normal observation image processing unit 62 generates RGB image data in which the input Rc image signal, Gc image signal, and Bc image signal for one frame are assigned to the R pixel, the G pixel, and the B pixel, respectively. The RGB image data is further subjected to color conversion processing such as 3 × 3 matrix processing, gradation conversion processing, and three-dimensional LUT processing. Then, various color enhancement processes are performed on the RGB image data subjected to the color conversion process. Structure enhancement processing such as spatial frequency enhancement is applied to RGB image data that has undergone color enhancement processing. The RGB image data subjected to the structure enhancement process is input to the video signal generation unit 70 as a normal observation image. The video signal generation unit 70 converts the input normal observation image into a video signal (for example, a luminance signal Y and color difference signals Cb and Cr), and outputs the converted video signal to the monitor 18. As a result, the normal observation image is displayed on the monitor 18.
 酸素飽和度測定部64は、入力された2フレーム分のB1画像信号、G1画像信号、R1画像信号、B2画像信号、G2画像信号、およびR2画像信号に基づいて、血中ヘモグロビンの酸素飽和度を測定する。測定した酸素飽和度に関する情報は、酸素飽和度画像生成部65に送られる。酸素飽和度画像生成部65では、酸素飽和度に応じて色付けした酸素飽和度画像を生成する。生成された酸素飽和度画像は映像信号生成部70に入力される。映像信号生成部70では、入力された酸素飽和度画像を映像信号に変換し、変換後の映像信号をモニタ18に出力する。これにより、モニタ18には酸素飽和度画像が表示される。なお、酸素飽和度測定部64及び酸素飽和度画像生成部65の詳細については後述する。 The oxygen saturation measuring unit 64 is configured to calculate oxygen saturation of blood hemoglobin based on the input B1 image signal, G1 image signal, R1 image signal, B2 image signal, G2 image signal, and R2 image signal for two frames. Measure. Information on the measured oxygen saturation is sent to the oxygen saturation image generation unit 65. The oxygen saturation image generation unit 65 generates an oxygen saturation image colored according to the oxygen saturation. The generated oxygen saturation image is input to the video signal generator 70. The video signal generation unit 70 converts the input oxygen saturation image into a video signal, and outputs the converted video signal to the monitor 18. As a result, the oxygen saturation image is displayed on the monitor 18. The details of the oxygen saturation measuring unit 64 and the oxygen saturation image generating unit 65 will be described later.
 血管太さ測定部66は、入力された1フレーム分のBc画像信号、Gc画像信号、およびRc画像信号に基づいて、ユーザーが指定した血管の血管太さを測定する。ここで、血管の太さ(血管径)とは、血管と粘膜の境界線間の距離であり、例えば、血管のエッジから血管の中を通って血管の短手方向に沿って画素数を計数した値である。したがって、血管の太さは画素数であるが、画像を撮影した際の撮影距離およびズーム倍率等が既知の場合には、必要に応じて「μm」等の長さの単位に換算可能である。 The blood vessel thickness measuring unit 66 measures the blood vessel thickness of the blood vessel designated by the user based on the input Bc image signal, Gc image signal, and Rc image signal for one frame. Here, the thickness of the blood vessel (blood vessel diameter) is the distance between the boundary line of the blood vessel and the mucous membrane. For example, the number of pixels is counted from the edge of the blood vessel through the blood vessel along the short side of the blood vessel. It is the value. Therefore, the thickness of the blood vessel is the number of pixels, but if the photographing distance and zoom magnification when the image is photographed are known, it can be converted into a unit of length such as “μm” as necessary. .
 血管太さ測定部66で測定した血管太さに関する情報と1フレーム分のBc画像信号、Gc画像信号、およびRc画像信号は、血管太さ測定画像生成部67に送られる。血管太さ測定画像生成部67では、観察対象の画像に対して、血管太さに関する情報が重畳表示された血管太さ測定画像を生成する。生成された血管太さ測定画像は映像信号生成部70に入力される。映像信号生成部70では、入力された血管太さ測定画像を映像信号に変換し、変換後の映像信号をモニタ18に出力する。これにより、モニタ18には血管太さ測定画像が表示される。なお、血管太さ測定部66及び血管太さ測定画像生成部67の詳細については後述する。 The information regarding the blood vessel thickness measured by the blood vessel thickness measuring unit 66 and the Bc image signal, Gc image signal, and Rc image signal for one frame are sent to the blood vessel thickness measurement image generating unit 67. The blood vessel thickness measurement image generation unit 67 generates a blood vessel thickness measurement image in which information related to the blood vessel thickness is superimposed and displayed on the image to be observed. The generated blood vessel thickness measurement image is input to the video signal generation unit 70. The video signal generation unit 70 converts the input blood vessel thickness measurement image into a video signal and outputs the converted video signal to the monitor 18. Thereby, the blood vessel thickness measurement image is displayed on the monitor 18. Details of the blood vessel thickness measurement unit 66 and the blood vessel thickness measurement image generation unit 67 will be described later.
 血管深さ測定部68は、入力された2フレーム分のB1画像信号、G1画像信号、R1画像信号、B2画像信号、G2画像信号、およびR2画像信号に基づいて、ユーザーが指定した血管の血管深さを測定する。測定した血管深さに関する情報とB2画像信号、G2画像信号、およびR2画像信号は、血管深さ測定画像生成部69に送られる。血管深さ測定画像生成部69では、観察対象の画像に対して、血管深さに関する情報が重畳表示された血管深さ測定画像を生成する。生成された血管深さ測定画像は映像信号生成部70に入力される。映像信号生成部70では、入力された血管深さ測定画像を映像信号に変換し、変換後の映像信号をモニタ18に出力する。これにより、モニタ18には血管深さ測定画像が表示される。なお、血管深さ測定部68及び血管深さ測定画像生成部69の詳細については後述する。 The blood vessel depth measuring unit 68 is a blood vessel of the blood vessel designated by the user based on the input B1 image signal, G1 image signal, R1 image signal, B2 image signal, G2 image signal, and R2 image signal for two frames. Measure depth. Information regarding the measured blood vessel depth and the B2 image signal, G2 image signal, and R2 image signal are sent to the blood vessel depth measurement image generation unit 69. The blood vessel depth measurement image generation unit 69 generates a blood vessel depth measurement image in which information related to the blood vessel depth is superimposed on the image to be observed. The generated blood vessel depth measurement image is input to the video signal generation unit 70. The video signal generation unit 70 converts the input blood vessel depth measurement image into a video signal, and outputs the converted video signal to the monitor 18. As a result, the blood vessel depth measurement image is displayed on the monitor 18. Details of the blood vessel depth measurement unit 68 and the blood vessel depth measurement image generation unit 69 will be described later.
 図6に示すように、酸素飽和度測定部64は、信号比算出部81と、相関関係記憶部82と、酸素飽和度算出部83とを有する。信号比算出部81は、B1画像信号とG2画像信号の信号比B1/G2を画素毎に算出し、かつ、R2画像信号とG2画像信号の信号比R2/G2を画素毎に算出する。なお、信号比算出部81は、信号比B1/G2を算出する際に、B1画像信号,G1画像信号,およびR1画像信号を用いた画素間演算によって、B1画像信号から第1蛍光による信号値を除去して色の分離性を高める補正処理を施し、ほぼ第1青色レーザ光だけによる信号値に補正したB1画像信号を用いることが好ましい。 As shown in FIG. 6, the oxygen saturation measurement unit 64 includes a signal ratio calculation unit 81, a correlation storage unit 82, and an oxygen saturation calculation unit 83. The signal ratio calculation unit 81 calculates the signal ratio B1 / G2 between the B1 image signal and the G2 image signal for each pixel, and calculates the signal ratio R2 / G2 between the R2 image signal and the G2 image signal for each pixel. When the signal ratio calculation unit 81 calculates the signal ratio B1 / G2, the signal value of the first fluorescence from the B1 image signal is calculated by inter-pixel calculation using the B1 image signal, the G1 image signal, and the R1 image signal. It is preferable to use a B1 image signal that has been subjected to correction processing for removing color and improving color separation, and corrected to a signal value substantially using only the first blue laser beam.
 相関関係記憶部82は、信号比算出部81が算出する信号比と、酸素飽和度との相関関係を記憶している。この相関関係は、図7に示す二次元空間上に酸素飽和度の等値線を定義した2次元テーブルで記憶されている。信号比に対する等値線の位置及び形状は、光散乱の物理的なシミュレーションによって予め得られ、各等値線の間隔は血液量(図7の横軸)に応じて変化する。この信号比と酸素飽和度との相関関係はlogスケールで記憶されている。 The correlation storage unit 82 stores the correlation between the signal ratio calculated by the signal ratio calculation unit 81 and the oxygen saturation. This correlation is stored in a two-dimensional table in which an isoline of oxygen saturation is defined on the two-dimensional space shown in FIG. The positions and shapes of the isolines with respect to the signal ratio are obtained in advance by a physical simulation of light scattering, and the interval between the isolines changes according to the blood volume (horizontal axis in FIG. 7). The correlation between this signal ratio and oxygen saturation is stored on a log scale.
 上記相関関係は、図8に示すように、酸化ヘモグロビン(グラフ90)や還元ヘモグロビン(グラフ91)の吸光特性および光散乱特性と密接に関連し合っている。例えば、第1青色レーザ光の中心波長473nmの近傍の波長範囲のように、酸化ヘモグロビンと還元ヘモグロビンの吸光係数の差が大きい波長範囲、すなわち血中ヘモグロビンの酸素飽和度に応じて吸光係数が変化する波長範囲では、酸素飽和度の情報を取り扱いやすい。しかし、473nmの光に対応する信号を含むB1画像信号は、酸素飽和度だけでなく、血液量にも依存度が高い。そこで、B1画像信号に加え、主として血液量に依存して変化する光に対応するG2画像信号と、B1画像信号とG2画像信号のリファレンス信号となるR2画像信号とから得られる信号比R2/G2を用いることによって血液量に依存することなく、酸素飽和度を正確に求めることができる。 The above correlation is closely related to the light absorption characteristics and light scattering characteristics of oxygenated hemoglobin (graph 90) and reduced hemoglobin (graph 91), as shown in FIG. For example, a wavelength range in which the difference between the absorption coefficients of oxyhemoglobin and reduced hemoglobin is large, such as the wavelength range near the center wavelength of 473 nm of the first blue laser beam, that is, the extinction coefficient changes depending on the oxygen saturation of blood hemoglobin. It is easy to handle oxygen saturation information in the wavelength range. However, the B1 image signal including a signal corresponding to 473 nm light is highly dependent not only on the oxygen saturation but also on the blood volume. Therefore, in addition to the B1 image signal, a signal ratio R2 / G2 obtained from a G2 image signal corresponding to light that changes mainly depending on the blood volume, and an R2 image signal serving as a reference signal for the B1 image signal and the G2 image signal. By using, oxygen saturation can be accurately obtained without depending on the blood volume.
 酸素飽和度算出部83は、信号比算出部81にて算出された信号比を用いることにより、画像信号に基づいて酸素飽和度を算出する。より具体的には、酸素飽和度算出部83は、相関関係記憶部82に記憶された相関関係を参照し、信号比算出部81で算出された信号比に対応する酸素飽和度を画素毎に算出する。例えば、特定画素における信号比B1/G2及び信号比R2/G2がそれぞれB1*/G2*及びR2*/G2*である場合、図9に示すように、相関関係を参照すると、信号比B1*/G2*及び信号比R2*/G2*に対応する酸素飽和度は「60%」である。したがって、酸素飽和度算出部83は、この特定画素の酸素飽和度を「60%」と算出する。 The oxygen saturation calculation unit 83 calculates the oxygen saturation based on the image signal by using the signal ratio calculated by the signal ratio calculation unit 81. More specifically, the oxygen saturation calculation unit 83 refers to the correlation stored in the correlation storage unit 82 and calculates the oxygen saturation corresponding to the signal ratio calculated by the signal ratio calculation unit 81 for each pixel. calculate. For example, when the signal ratio B1 / G2 and the signal ratio R2 / G2 in the specific pixel are B1 * / G2 * and R2 * / G2 * , respectively, referring to the correlation as shown in FIG. 9, the signal ratio B1 * The oxygen saturation corresponding to / G2 * and the signal ratio R2 * / G2 * is “60%”. Therefore, the oxygen saturation calculation unit 83 calculates the oxygen saturation of this specific pixel as “60%”.
 なお、信号比B1/G2及び信号比R2/G2が極めて大きくなったり、極めて小さくなったりすることはほとんどない。すなわち、信号比B1/G2および信号比R2/G2の値が、酸素飽和度0%の下限ライン93を上回ったり、反対に酸素飽和度100%の上限ライン94を下回ったりすることはほとんどない。但し、算出する酸素飽和度が下限ライン93を下回ってしまった場合には酸素飽和度算出部83は酸素飽和度を0%とし、上限ライン94を上回ってしまった場合には酸素飽和度を100%とする。また、信号比B1/G2及び信号比R2/G2に対応する点が下限ライン93と上限ライン94の間から外れた場合には、その画素における酸素飽和度の信頼度が低いことが分かるように表示をしたり、酸素飽和度を算出しないようにしても良い。 It should be noted that the signal ratio B1 / G2 and the signal ratio R2 / G2 are hardly increased or extremely decreased. That is, the values of the signal ratio B1 / G2 and the signal ratio R2 / G2 rarely exceed the lower limit line 93 with an oxygen saturation of 0%, and on the contrary, fall below the upper limit line 94 with an oxygen saturation of 100%. However, when the calculated oxygen saturation falls below the lower limit line 93, the oxygen saturation calculation unit 83 sets the oxygen saturation to 0%. When the calculated oxygen saturation exceeds the upper limit line 94, the oxygen saturation is set to 100. %. Further, when the points corresponding to the signal ratio B1 / G2 and the signal ratio R2 / G2 deviate from between the lower limit line 93 and the upper limit line 94, it is understood that the reliability of oxygen saturation in the pixel is low. It is also possible not to display or calculate the oxygen saturation.
 酸素飽和度画像生成部65は、酸素飽和度算出部83にて算出された酸素飽和度を用いて、酸素飽和度を色付けした酸素飽和度画像を生成する。具体的には、まず、酸素飽和度画像生成部65では、R2画像信号、G2画像信号、およびB2画像信号に基づいて、通常観察画像と同様の生成方法で、ベース画像を生成する。そして、ベース画像に対して、ベース画像の色を酸素飽和度に応じて変更する色付け処理を施す。これにより、酸素飽和度画像が得られる。なお、色付け処理では、例えば、酸素飽和度が特定の閾値(例えば70%)を超える画素領域についてはベース画像の色を変更せず、酸素飽和度が特定の閾値を下回る画素領域については酸素飽和度に応じてベース画像の色を変更するようにすることが好ましい。 The oxygen saturation image generation unit 65 uses the oxygen saturation calculated by the oxygen saturation calculation unit 83 to generate an oxygen saturation image in which the oxygen saturation is colored. Specifically, first, the oxygen saturation image generation unit 65 generates a base image based on the R2 image signal, the G2 image signal, and the B2 image signal by the same generation method as that for the normal observation image. Then, a coloring process is performed on the base image to change the color of the base image according to the oxygen saturation. Thereby, an oxygen saturation image is obtained. In the coloring process, for example, the color of the base image is not changed for a pixel region in which the oxygen saturation exceeds a specific threshold (for example, 70%), and the oxygen saturation is applied to a pixel region in which the oxygen saturation is lower than the specific threshold. It is preferable to change the color of the base image according to the degree.
 また、上記とは別の方法を用いて、酸素飽和度画像を生成してもよい。例えば、輝度信号Yと色差信号CrおよびCbを用いて酸素飽和度画像を生成する場合には、輝度信号YについてはG2画像信号に応じて信号レベルを変え、かつ、色差信号CrおよびCbについては、酸素飽和度に応じて信号レベルを変えることが好ましい。例えば、酸素飽和度が高いときには、Crの信号レベルを「正」にし、Cbの信号レベルを「負」にする一方で、酸素飽和度が低い時には、Crの信号レベルを「負」にし、Cbの信号レベルを「正」にするように設定することが好ましい。この場合には、酸素飽和度画像では、高酸素領域が赤みを帯びて表示される一方、低酸素領域が青みを帯びて表示される。 Further, the oxygen saturation image may be generated using a method different from the above. For example, when an oxygen saturation image is generated using the luminance signal Y and the color difference signals Cr and Cb, the signal level of the luminance signal Y is changed according to the G2 image signal, and the color difference signals Cr and Cb are changed. It is preferable to change the signal level according to the oxygen saturation. For example, when the oxygen saturation is high, the Cr signal level is set to “positive” and the Cb signal level is set to “negative”. On the other hand, when the oxygen saturation is low, the Cr signal level is set to “negative”. It is preferable that the signal level is set to be “positive”. In this case, in the oxygen saturation image, the high oxygen region is displayed reddish while the low oxygen region is displayed bluish.
 血管太さ測定部66は、Rc画像信号、Gc画像信号、およびBc画像信号に基づいて、特定の血管の血管太さを測定する。血管太さ測定部66では、血管太さの測定対象となる測定対象血管を指定するために、Rc画像信号、Gc画像信号、およびBc画像信号を測定対象血管指定部100に送信する(図2参照)。測定対象血管指定部100では、図10に示すように、Rc画像信号、Gc画像信号、およびBc画像信号に基づいて、測定対象血管を選択するための血管選択用画像102を生成し、モニタ18に表示する。血管選択用画像102は、血管とそれ以外の部分を区別する二値化処理等によって、血管を抽出した画像であることが好ましい。ユーザーは、コンソール20等の操作部材により血管選択用画像102上の選択ポインタ104を操作し、選択ポインタ104で測定対象血管TBを指定する。測定対象血管指定部100は、コンソール20等の操作部材で指定された測定対象血管TBに関する情報を、血管太さ測定部66に送信される。 The blood vessel thickness measurement unit 66 measures the blood vessel thickness of a specific blood vessel based on the Rc image signal, the Gc image signal, and the Bc image signal. The blood vessel thickness measurement unit 66 transmits an Rc image signal, a Gc image signal, and a Bc image signal to the measurement target blood vessel specifying unit 100 in order to specify a measurement target blood vessel that is a measurement target of the blood vessel thickness (FIG. 2). reference). The measurement target blood vessel designating unit 100 generates a blood vessel selection image 102 for selecting a measurement target blood vessel based on the Rc image signal, the Gc image signal, and the Bc image signal, as shown in FIG. To display. The blood vessel selection image 102 is preferably an image obtained by extracting blood vessels by binarization processing or the like for distinguishing blood vessels from other portions. The user operates the selection pointer 104 on the blood vessel selection image 102 with an operation member such as the console 20 and designates the measurement target blood vessel TB with the selection pointer 104. The measurement target blood vessel designating unit 100 transmits information related to the measurement target blood vessel TB designated by the operation member such as the console 20 to the blood vessel thickness measurement unit 66.
 血管太さ測定部66は、測定対象血管が指定されたら、Rc画像信号、Gc画像信号、およびBc画像信号のうち、測定対象血管が存在する部分の画素を特定する。この特定した画素から、測定対象血管の血管太さを算出する。具体的には、特定した画素の画素数(例えば、図10の場合であれば、画素数は「5画素」となる。)に対して、1画素あたりの平均的な大きさを掛け合わせることによって、測定対象血管の血管太さが算出される。なお、血管太さは、観察対象と内視鏡の先端部24との間の観察距離によって影響を受けるため、1画素当たりの大きさは、観察距離に応じて決めておくことが好ましい。 When the measurement target blood vessel is designated, the blood vessel thickness measurement unit 66 specifies a pixel in a portion where the measurement target blood vessel exists among the Rc image signal, the Gc image signal, and the Bc image signal. From this specified pixel, the blood vessel thickness of the blood vessel to be measured is calculated. Specifically, the number of specified pixels (for example, in the case of FIG. 10, the number of pixels is “5 pixels”) is multiplied by the average size per pixel. Thus, the blood vessel thickness of the blood vessel to be measured is calculated. Note that since the blood vessel thickness is affected by the observation distance between the observation target and the distal end portion 24 of the endoscope, the size per pixel is preferably determined according to the observation distance.
 血管太さ測定画像生成部67は、Rc画像信号、Gc画像信号、およびBc画像信号に基づいて、通常観察画像と同様の生成方法で、ベース画像を生成する。そして、血管太さ測定画像生成部67は、ベース画像に対して、測定対象血管を強調表示し、かつ、測定対象血管の血管太さを重畳表示する処理を行う。これにより、図11に示すように、強調表示された測定対象血管TBと、測定対象血管TBの血管太さφxが表示された血管太さ測定画像110が得られる。 The blood vessel thickness measurement image generation unit 67 generates a base image based on the Rc image signal, the Gc image signal, and the Bc image signal by the same generation method as that for the normal observation image. Then, the blood vessel thickness measurement image generation unit 67 performs a process of highlighting the measurement target blood vessel and superimposing and displaying the blood vessel thickness of the measurement target blood vessel on the base image. As a result, as shown in FIG. 11, a blood vessel thickness measurement image 110 displaying the highlighted measurement target blood vessel TB and the blood vessel thickness φx of the measurement target blood vessel TB is obtained.
 図12に示すように、血管深さ測定部68は、血管コントラスト算出部96(本発明の「血管指標値算出部」に対応する)と、データセット記憶部97と、血管深さ算出部98とを備えている。この血管深さ算出部98においても、血管太さ測定部66と同様に、血管深さの測定対象となる測定対象血管の指定を行う。測定対象血管の指定は、上記と同様、測定対象血管指定部100によって行う。なお、測定対象血管指定部100では、B2画像信号、G2画像信号、およびR2画像信号に基づいて血管選択用画像を生成することが好ましい。 As shown in FIG. 12, the blood vessel depth measurement unit 68 includes a blood vessel contrast calculation unit 96 (corresponding to the “blood vessel index value calculation unit” of the present invention), a data set storage unit 97, and a blood vessel depth calculation unit 98. And. In the blood vessel depth calculation unit 98, similarly to the blood vessel thickness measurement unit 66, the measurement target blood vessel to be a blood vessel depth measurement target is designated. The measurement target blood vessel is designated by the measurement target blood vessel designation unit 100 as described above. Note that the measurement target blood vessel designating unit 100 preferably generates a blood vessel selection image based on the B2 image signal, the G2 image signal, and the R2 image signal.
 血管コントラスト算出部96は、入力された画像信号のうち血管コントラスト用画像信号(本発明の「血管指標値用画像」に対応する)に基づいて、血管部分の画素値Ibと、粘膜など血管以外の部分の画素値Im(例えば、粘膜の画素値の平均値)を算出する。この血管コントラスト算出部96では、複数波長の画像信号(本発明の「複数波長の画像」に対応する)を含む血管コントラスト用画像信号を使用する。複数波長の画像信号は、それぞれが異なる波長成分を持つ複数の画像信号から構成され、本実施形態では、R2画像信号、G2画像信号、およびB2画像信号に対応している。そして、血管コントラスト算出部96は、下記式により、血管コントラストCtを算出する。
式)Ct=-Log(Ib/Im)
なお、以下において、測定対象血管の血管コントラストCtを「Ct*」とする。
The blood vessel contrast calculation unit 96, based on the blood vessel contrast image signal (corresponding to the “blood vessel index value image” of the present invention) of the input image signals, the blood vessel portion pixel value Ib, and other than blood vessels such as mucous membranes Is calculated (for example, an average value of mucous membrane pixel values). The blood vessel contrast calculation unit 96 uses a blood vessel contrast image signal including an image signal with a plurality of wavelengths (corresponding to the “image with a plurality of wavelengths” of the present invention). The image signals of a plurality of wavelengths are composed of a plurality of image signals each having a different wavelength component, and in the present embodiment, correspond to the R2 image signal, the G2 image signal, and the B2 image signal. Then, the blood vessel contrast calculation unit 96 calculates the blood vessel contrast Ct by the following formula.
Formula) Ct = −Log (Ib / Im)
In the following, the blood vessel contrast Ct of the blood vessel to be measured is “Ct * ”.
 データセット記憶部97は、図13に示すように、血管コントラストCtと、その血管コントラストCtが得られる場合の酸素飽和度、血管太さ、及び血管深さとを対応づけた測定用データで構成されるデータセット120を記憶している。図13の場合であれば、測定用データは、酸素飽和度のレベル毎に分けて記憶されている。具体的には、酸素飽和度が100%の場合における測定用データについては、血管太さ測定可能範囲内で最小の血管太さφ1と血管深さ測定可能範囲内で一番浅い血管深さd1と、血管太さφ1と血管深さd1の場合に得られる血管コントラストCt(100、φ1、d1)とを対応付けた測定用データを記憶している。 As shown in FIG. 13, the data set storage unit 97 includes measurement data in which the blood vessel contrast Ct is associated with the oxygen saturation, the blood vessel thickness, and the blood vessel depth when the blood vessel contrast Ct is obtained. Data set 120 is stored. In the case of FIG. 13, the measurement data is stored separately for each level of oxygen saturation. Specifically, for the measurement data when the oxygen saturation is 100%, the smallest blood vessel thickness φ1 within the blood vessel thickness measurable range and the shallowest blood vessel depth d1 within the blood vessel depth measurable range. And the measurement data in which the blood vessel thickness φ1 and the blood vessel contrast Ct (100, φ1, d1) obtained in the case of the blood vessel depth d1 are associated with each other.
 同様にして、最小の血管太さφ1に対する血管深さP2~Pnの全ての組み合わせと、それらを組み合わせた場合に得られる血管コントラストCt(100、φ1、d2)~Ct(100、φ1、dn)とを対応付けた測定用データも記憶している。また、酸素飽和度が100%の場合における血管太さφ2~φmについても、上記と同様の対応付けが行われた測定用データを記憶している。更には、酸素飽和度が0%~99%の場合においても、上記と同様の対応付けが行われた測定用データを記憶している。 Similarly, all combinations of the blood vessel depths P2 to Pn with respect to the minimum blood vessel thickness φ1 and blood vessel contrasts Ct (100, φ1, d2) to Ct (100, φ1, dn) obtained when they are combined. Is also stored. In addition, for the blood vessel thicknesses φ2 to φm when the oxygen saturation is 100%, the measurement data in which the same association as described above is performed is stored. Further, even when the oxygen saturation is 0% to 99%, the measurement data in which the same association as described above is performed is stored.
 なお、血管コントラストCtと、酸素飽和度s、血管太さφ、及び血管深さdとの関係は、関数Ct=f(s、φ、d)で表すことができる。この関数Ct=f(s、φ、d)については、酸素飽和度sを特定値に固定した場合、血管深さdをX軸とし、血管太さφをY軸とし、血管コントラストCtをZ軸とする3次元空間上では、図14に示すような平面130で表される。この図14では、血管深さが深く且つ血管太さが細くなるほど、血管コントラストが低くなることが分かる。一方、血管深さが浅く且つ血管太さが太くなるほど、血管コントラストが高くなることが分かる。 The relationship between the blood vessel contrast Ct, the oxygen saturation s, the blood vessel thickness φ, and the blood vessel depth d can be expressed by the function Ct = f (s, φ, d). For this function Ct = f (s, φ, d), when the oxygen saturation s is fixed to a specific value, the blood vessel depth d is the X axis, the blood vessel thickness φ is the Y axis, and the blood vessel contrast Ct is Z On a three-dimensional space as an axis, it is represented by a plane 130 as shown in FIG. In FIG. 14, it can be seen that the blood vessel contrast decreases as the blood vessel depth increases and the blood vessel thickness decreases. On the other hand, it can be seen that the blood vessel contrast increases as the blood vessel depth decreases and the blood vessel thickness increases.
 血管深さ算出部98は、血管コントラスト算出部96で算出した血管コントラストCt*と、2フレーム分のB1画像信号、B2画像信号、G2画像信号、およびR2画像信号を用い、データセット記憶部97に記憶したデータセットを参照して、特定の血管の血管深さを算出する。 The blood vessel depth calculation unit 98 uses the blood vessel contrast Ct * calculated by the blood vessel contrast calculation unit 96 and the B1 image signal, B2 image signal, G2 image signal, and R2 image signal for two frames, and a data set storage unit 97. The blood vessel depth of a specific blood vessel is calculated with reference to the data set stored in (1).
 血管深さ算出部98は、B1画像信号、G2画像信号、およびR2画像信号を酸素飽和度測定部64に送り、酸素飽和度測定部64にて、測定対象血管の酸素飽和度s*を測定する。測定した測定対象血管の酸素飽和度s*の情報は、血管深さ算出部98に返される。また、血管深さ算出部98は、B2画像信号、G2画像信号、およびR2画像信号を血管太さ測定部66に送り、血管太さ測定部66にて、測定対象血管の血管太さφ*を測定する。 The blood vessel depth calculating unit 98 sends the B1 image signal, the G2 image signal, and the R2 image signal to the oxygen saturation measuring unit 64, and the oxygen saturation measuring unit 64 measures the oxygen saturation s * of the blood vessel to be measured. To do. Information on the measured oxygen saturation s * of the blood vessel to be measured is returned to the blood vessel depth calculation unit 98. In addition, the blood vessel depth calculation unit 98 sends the B2 image signal, the G2 image signal, and the R2 image signal to the blood vessel thickness measurement unit 66, and the blood vessel thickness measurement unit 66 uses the blood vessel thickness φ * of the measurement target blood vessel . Measure.
 測定対象血管の酸素飽和度s*と血管太さφ*が得られたら、血管深さ算出部98は、データセット記憶部97に記憶したデータセットの中から、測定対象血管の酸素飽和度s*と血管太さφ*に該当する測定用データを第1のサブデータセットとして絞り込む。例えば、測定対象血管の酸素飽和度s*が100%で、血管太さφ*がφ1の場合には、データセットの中から、酸素飽和度100%、血管太さφ1に該当する部分の測定用データが、第1のサブデータセットとして選択される(図13参照)。 When the oxygen saturation s * and the blood vessel thickness φ * of the measurement target blood vessel are obtained, the blood vessel depth calculation unit 98 selects the oxygen saturation s of the measurement target blood vessel from the data set stored in the data set storage unit 97. The measurement data corresponding to * and blood vessel thickness φ * is narrowed down as the first sub data set. For example, when the oxygen saturation s * of the measurement target blood vessel is 100% and the blood vessel thickness φ * is φ1, measurement of a portion corresponding to the oxygen saturation 100% and blood vessel thickness φ1 from the data set is performed. The data for use is selected as the first sub-data set (see FIG. 13).
 第1のサブデータセットが絞り込まれたら、血管深さ算出部98は、第1のサブデータセットを参照して、血管コントラスト算出部96で算出した血管コントラストCt*に対応する血管深さを算出する。この算出された血管深さが、測定対象血管の血管深さとなる。例えば、図13に示す第1のサブデータセットに絞り込んだ場合には、第1のサブデータセットにおいて、血管コントラストCt*に対応する血管深さは「d*」となる。以上のように、血管コントラストだけでなく、酸素飽和度測定部64にて測定した酸素飽和度や血管太さ測定部66にて測定した血管太さと、血管コントラスト、酸素飽和度、血管太さ、及び血管深さとを対応付けた測定用データとを用いて、測定対象血管の血管深さを算出していることから、算出された血管深さの算出精度は、血管コントラストだけで算出を行った場合に比べて、高くなっている。 When the first sub data set is narrowed down, the blood vessel depth calculation unit 98 calculates the blood vessel depth corresponding to the blood vessel contrast Ct * calculated by the blood vessel contrast calculation unit 96 with reference to the first sub data set. To do. This calculated blood vessel depth becomes the blood vessel depth of the blood vessel to be measured. For example, when the first sub data set shown in FIG. 13 is narrowed down, the blood vessel depth corresponding to the blood vessel contrast Ct * is “d * ” in the first sub data set. As described above, not only the blood vessel contrast but also the oxygen saturation measured by the oxygen saturation measuring unit 64 and the blood vessel thickness measured by the blood vessel thickness measuring unit 66, the blood vessel contrast, the oxygen saturation, the blood vessel thickness, Since the blood vessel depth of the blood vessel to be measured is calculated using the measurement data in which the blood vessel depth is associated with the blood vessel depth, the calculation accuracy of the calculated blood vessel depth was calculated using only the blood vessel contrast. It is higher than the case.
 なお、血管コントラストCtと酸素飽和度s、血管太さφ、及び血管深さdとの関係を、上記した3変数関数Ct=f(s、φ、d)で表した場合における血管深さの算出方法は、以下のようになる。まず、測定対象血管の酸素飽和度s*が確定すると、関数Ct=f(s*、φ、d)は、血管太さφと血管深さdについての2変数関数となる。この2変数関数を上記の3次元空間で表した場合には、図14に示す平面130で表される。更に、血管太さφ*が確定すると、関数Ct=f(s*、φ*、d)は、血管深さdについての1変数関数となる。 It should be noted that the relationship between the blood vessel contrast Ct, the oxygen saturation s, the blood vessel thickness φ, and the blood vessel depth d is represented by the above-described three-variable function Ct = f (s, φ, d). The calculation method is as follows. First, when the oxygen saturation s * of the blood vessel to be measured is determined, the function Ct = f (s * , φ, d) becomes a two-variable function with respect to the blood vessel thickness φ and the blood vessel depth d. When this two-variable function is represented in the above-described three-dimensional space, it is represented by a plane 130 shown in FIG. Further, when the blood vessel thickness φ * is determined, the function Ct = f (s * , φ * , d) becomes a one-variable function with respect to the blood vessel depth d.
 この1変数関数については、図15に示すように、上記2変数関数を表した平面130において血管太さφ*の部分でX軸方向に沿って切断した場合の断面132に等しくなる。また、X軸を血管深さdとし、Y軸を血管コントラストCtする2次元平面で上記の1変数関数Ct=f(s*、φ*、d)を表した場合には、図16に示すように、血管深さdが深くなるほど、血管コントラストCtが減少するような関数で表される。上記のように、1変数関数Ct=f(s*、φ*、d)にまで落とし込むことで、血管コントラストCt*から、血管深さd*を算出することが可能となる。 As shown in FIG. 15, this one-variable function is equal to a cross section 132 when the blood vessel thickness φ * is cut along the X-axis direction on the plane 130 representing the two-variable function. Further, when the above-described one-variable function Ct = f (s * , φ * , d) is represented on a two-dimensional plane in which the X axis is the blood vessel depth d and the Y axis is the blood vessel contrast Ct, it is shown in FIG. Thus, the blood vessel contrast Ct is expressed by a function that decreases as the blood vessel depth d increases. As described above, it is possible to calculate the blood vessel depth d * from the blood vessel contrast Ct * by dropping to the one-variable function Ct = f (s * , φ * , d).
 血管深さ測定画像生成部69は、R2画像信号、G2画像信号、およびB2画像信号に基づいて、通常観察画像と同様の生成方法で、ベース画像を生成する。そして、血管深さ測定画像生成部69は、ベース画像に対して、測定対象血管を強調表示し、かつ、測定対象血管の血管深さを重畳表示する処理を行う。これにより、図17に示すように、強調表示された測定対象血管TBと、測定対象血管TBの血管深さd*が表示された血管深さ測定画像150が得られる。 The blood vessel depth measurement image generation unit 69 generates a base image by the same generation method as that of the normal observation image based on the R2 image signal, the G2 image signal, and the B2 image signal. Then, the blood vessel depth measurement image generation unit 69 performs a process of highlighting the measurement target blood vessel and superimposing and displaying the blood vessel depth of the measurement target blood vessel on the base image. As a result, as shown in FIG. 17, a blood vessel depth measurement image 150 displaying the highlighted measurement target blood vessel TB and the blood vessel depth d * of the measurement target blood vessel TB is obtained.
 次に、本実施形態の内視鏡システム10による観察の流れを図18のフローチャートに沿って説明する。まず、通常観察モードにおいて、ユーザーは観察対象の観察を行い、病変部の可能性がある部位の検出を行う。そして、病変部の可能性ある部位を発見した場合には、その部分の血管について血管深さを測定するために、モード切替SW22bを操作して、血管深さ測定モードに切り替える。 Next, the flow of observation by the endoscope system 10 of the present embodiment will be described along the flowchart of FIG. First, in the normal observation mode, the user observes an observation target and detects a site that may be a lesion. And when the site | part which may be a lesioned part is discovered, in order to measure the blood vessel depth about the blood vessel of the part, mode switch SW22b is operated and it switches to the blood vessel depth measurement mode.
 血管深さ測定モードに切り替えられると、第1及び第2白色光がセンサ48の撮像フレームに同期して交互に観察対象に照射される。センサ48は1フレーム目にR1画像信号,G1画像信号,およびB1画像信号を出力し、2フレーム目にR2画像信号,G2画像信号,およびB2画像信号を出力する。これらの画像信号は、プロセッサ装置16の画像信号取得部54に取得され、各種信号処理が施される。 When switched to the blood vessel depth measurement mode, the first and second white lights are alternately irradiated onto the observation target in synchronization with the imaging frame of the sensor 48. The sensor 48 outputs an R1 image signal, a G1 image signal, and a B1 image signal in the first frame, and outputs an R2 image signal, a G2 image signal, and a B2 image signal in the second frame. These image signals are acquired by the image signal acquisition unit 54 of the processor device 16 and subjected to various signal processing.
 そして、R2画像信号、G2画像信号、およびB2画像信号に基づいて血管選択用画像102が生成され、モニタ18に表示される。ユーザーは、血管選択用画像102において病変部の可能性がある部分の血管を測定対象血管として選択する。測定対象血管が選択されると、血管コントラスト算出部96が、測定対象血管の血管コントラストCt*を算出する。また、B1画像信号、G2画像信号、およびR2画像信号が酸素飽和度測定部64に送られ、酸素飽和度測定部64で測定対象血管の酸素飽和度s*が測定される。また、R2画像信号、G2画像信号、およびB2画像信号が血管太さ測定部66に送られ、血管太さ測定部66で測定対象血管の血管太さφ*が測定される。 Then, a blood vessel selection image 102 is generated based on the R2 image signal, the G2 image signal, and the B2 image signal, and displayed on the monitor 18. The user selects a portion of a blood vessel that may be a lesion in the blood vessel selection image 102 as a measurement target blood vessel. When the measurement target blood vessel is selected, the blood vessel contrast calculation unit 96 calculates the blood vessel contrast Ct * of the measurement target blood vessel. Also, the B1 image signal, the G2 image signal, and the R2 image signal are sent to the oxygen saturation measuring unit 64, and the oxygen saturation measuring unit 64 measures the oxygen saturation s * of the blood vessel to be measured. In addition, the R2 image signal, the G2 image signal, and the B2 image signal are sent to the blood vessel thickness measuring unit 66, and the blood vessel thickness measuring unit 66 measures the blood vessel thickness φ * of the measurement target blood vessel.
 測定対象血管の酸素飽和度s*と血管太さφ*を測定した後は、血管深さ算出部98が、データセット記憶部97に記憶したデータセットの中から、測定対象血管の酸素飽和度s*と血管太さφ*に該当する測定用データを第1のサブデータセットとして絞り込む。第1のサブデータセットが絞り込まれたら、血管深さ算出部98は、第1のサブデータセットを参照して、測定対象血管の血管コントラストCt*に対応する血管深さを測定対象血管の血管深さd*として算出する。測定対象血管の血管深さd*が算出されたら、測定対象血管の血管深さd*の情報とR2画像信号、G2画像信号、およびB2画像信号に基づいて、血管深さ測定画像を生成し、モニタ18に表示する。 After measuring the oxygen saturation s * and the blood vessel thickness φ * of the measurement target blood vessel, the blood vessel depth calculation unit 98 selects the oxygen saturation of the measurement target blood vessel from the data set stored in the data set storage unit 97. The measurement data corresponding to s * and blood vessel thickness φ * is narrowed down as the first sub data set. When the first sub data set is narrowed down, the blood vessel depth calculation unit 98 refers to the first sub data set and determines the blood vessel depth corresponding to the blood vessel contrast Ct * of the measurement target blood vessel. Calculated as depth d * . After the blood vessel depth d * of the measurement target blood vessel is calculated, a blood vessel depth measurement image is generated based on the information on the blood vessel depth d * of the measurement target blood vessel and the R2 image signal, the G2 image signal, and the B2 image signal. And displayed on the monitor 18.
 なお、上記実施形態において、血管コントラスト算出部96にて、R2画像信号、G2画像信号、およびB2画像信号に対して重み付けを行い、重み付けしたR2画像信号、G2画像信号、およびB2画像信号に基づいて、測定対象血管の血管コントラストを算出してもよい。例えば、血管選択用画像102において、ユーザによる目視により、測定対象血管のおおよその血管深さ(目測の血管深さ)を測り、その目測の血管深さに応じた重み付けを行う。なお、重み付けの設定は、コンソール20等の操作部材により行う。 In the above embodiment, the blood vessel contrast calculation unit 96 weights the R2 image signal, the G2 image signal, and the B2 image signal, and based on the weighted R2 image signal, G2 image signal, and B2 image signal. Thus, the blood vessel contrast of the blood vessel to be measured may be calculated. For example, in the blood vessel selection image 102, the approximate blood vessel depth (measured blood vessel depth) of the blood vessel to be measured is visually measured by the user, and weighting is performed according to the measured blood vessel depth. The weighting is set by an operation member such as the console 20.
 ここで、目測の血管深さが浅い場合には、表層血管など浅い部分に位置する血管は短波長の画像信号に多く含まれることから、短波長の画像信号に含まれるB2画像信号に対する重み付けを、その他のG2画像信号およびR2画像信号に対する重み付けよりも大きくする。一方、目測の血管深さが深い場合には、中深層血管などの深い部分に位置する血管は、長波長の画像信号に多く含まれることから、長波長の画像信号に含まれるG2画像信号に対する重み付けを、その他のB2画像信号およびR2画像信号に対する重み付けよりも大きくする。以上のように、測定対象血管が含まれる波長帯域の画像信号の重み付けを大きくすることで、測定対象血管の血管コントラストの算出精度を向上することができる。この血管コントラストの算出精度向上は、血管深さの算出精度の向上にも繋がることになる。 Here, when the target blood vessel depth is shallow, blood vessels located in a shallow portion such as a surface blood vessel are included in a short wavelength image signal. Therefore, the B2 image signal included in the short wavelength image signal is weighted. The weighting is set larger than the other weights for the G2 image signal and the R2 image signal. On the other hand, when the target blood vessel depth is deep, a lot of blood vessels located in a deep part such as a middle-deep blood vessel are included in the long-wavelength image signal. The weight is set larger than the weights for the other B2 image signal and R2 image signal. As described above, the calculation accuracy of the blood vessel contrast of the measurement target blood vessel can be improved by increasing the weighting of the image signal in the wavelength band including the measurement target blood vessel. This improvement in blood vessel contrast calculation accuracy leads to an improvement in blood vessel depth calculation accuracy.
 また、血管コントラスト算出部96では、R2画像信号、G2画像信号、およびB2画像信号毎に、血管コントラストを算出し、算出した血管コントラストを組み合わせて演算することにより、測定対象血管の血管コントラストを算出してもよい。血管コントラストを組み合わせて演算する方法としては、例えば、血管コントラストに重み付して加算する重み付け平均処理が考えられる。この重み付け平均処理を行う場合には、各血管コントラストに対する重み付け係数は、血管コントラストの算出に用いた画像信号が有する波長成分に基づいて設定することが好ましい。 In addition, the blood vessel contrast calculation unit 96 calculates the blood vessel contrast for each of the R2 image signal, the G2 image signal, and the B2 image signal, and calculates the blood vessel contrast of the measurement target blood vessel by combining the calculated blood vessel contrast. May be. As a method of calculating by combining the blood vessel contrast, for example, a weighted average process for weighting and adding the blood vessel contrast can be considered. When performing this weighted average processing, it is preferable to set the weighting coefficient for each blood vessel contrast based on the wavelength component of the image signal used for calculating the blood vessel contrast.
 例えば、R2画像信号から得られた血管コントラストCtrの重み付け係数をα、G2画像信号から得られた血管コントラストCtgの重み付け係数をβ、B2画像信号から得られた血管コントラストCtbの重み付け係数をγとすると、測定対象血管の血管コントラストは「α×Ctr+β×Ctg+γ×Ctb」となる。測定対象血管が表層血管である場合には、重み付け係数γを、他の重み付け係数αおよびβよりも大きくすることが好ましい。なお、各血管コントラストCtr、Ctg、およびCtbは、それぞれ同一の注目血管に対する血管コントラストを示している。 For example, the weighting coefficient of the blood vessel contrast Ctr obtained from the R2 image signal is α, the weighting coefficient of the blood vessel contrast Ctg obtained from the G2 image signal is β, and the weighting coefficient of the blood vessel contrast Ctb obtained from the B2 image signal is γ. Then, the blood vessel contrast of the blood vessel to be measured is “α × Ctr + β × Ctg + γ × Ctb”. When the blood vessel to be measured is a surface blood vessel, it is preferable that the weighting coefficient γ is larger than the other weighting coefficients α and β. Each blood vessel contrast Ctr, Ctg, and Ctb indicates the blood vessel contrast for the same blood vessel of interest.
 なお、上記実施形態においては、酸素飽和度測定部64にて測定した測定対象血管の酸素飽和度s*と、血管太さ測定部66にて測定した測定対象血管の血管太さφ*とを用いて、それら測定対象血管の酸素飽和度s*と血管太さφ*を持つ第1のサブデータセットの絞り込みを行っているが、その他の方法でサブデータセットの絞り込みを行ってもよい。例えば、図19に示すように、血管深さ算出部98に接続された情報入力部160により、測定対象血管の酸素飽和度s**と血管太さφ**を、手動で入力した上で、血管深さ算出部98は、その入力した測定対象血管の酸素飽和度s**と血管太さφ**を持つ測定用データを第2のサブデータセットとして絞り込む。この第2のサブデータセットの場合も、第1のサブデータセットと同様の方法で、血管深さの算出を行う。なお、情報入力部160の機能はコンソール20に組み込んでもよい。 In the above embodiment, the oxygen saturation s * of the measurement target blood vessel measured by the oxygen saturation measurement unit 64 and the blood vessel thickness φ * of the measurement target blood vessel measured by the blood vessel thickness measurement unit 66 are used. The first sub data set having the oxygen saturation s * and the blood vessel thickness φ * of the blood vessels to be measured is narrowed down. However, the sub data sets may be narrowed down by other methods. For example, as shown in FIG. 19, the information input unit 160 connected to the blood vessel depth calculation unit 98 manually inputs the oxygen saturation s ** and the blood vessel thickness φ ** of the blood vessel to be measured. The blood vessel depth calculation unit 98 narrows down the measurement data having the input oxygen saturation s ** and blood vessel thickness φ ** of the measurement target blood vessel as the second sub data set. Also in the case of this second sub data set, the blood vessel depth is calculated in the same manner as in the first sub data set. Note that the function of the information input unit 160 may be incorporated in the console 20.
 以上のように、手動で測定対象血管の酸素飽和度s**と血管太さφ**を入力する状況としては、血管深さを測定する前に、既に、ユーザーが、酸素飽和度画像および血管太さ測定画像を見て、おおよその酸素飽和度と血管太さを認識している状況が考えられる。なお、血管深さ算出部98は、酸素飽和度測定部64及び血管太さ測定部66で測定した測定対象血管の酸素飽和度s*と血管太さφ*に基づいて、第1のサブデータセットを絞り込む自動モードと、手動入力された測定対象血管の酸素飽和度s**と血管太さφ**に基づいて、第2のサブデータセットを絞り込む手動モードの2つのモードを実行可能な状態にしてもよい。この場合には、コンソール20等の操作部材により、自動モードと手動モードのいずれかのモードに選択的に設定される。 As described above, as a situation where the oxygen saturation s ** and the blood vessel thickness φ ** of the blood vessel to be measured are manually input, before the blood vessel depth is measured, the user already has an oxygen saturation image and A situation in which an approximate oxygen saturation and a blood vessel thickness are recognized by looking at a blood vessel thickness measurement image can be considered. The blood vessel depth calculation unit 98 uses the first sub-data based on the oxygen saturation s * and the blood vessel thickness φ * of the blood vessel to be measured measured by the oxygen saturation measurement unit 64 and the blood vessel thickness measurement unit 66. Two modes can be executed: automatic mode for narrowing the set and manual mode for narrowing the second sub-data set based on the manually input oxygen saturation s ** and blood vessel thickness φ ** of the blood vessel to be measured It may be in a state. In this case, the operation member such as the console 20 is selectively set to either the automatic mode or the manual mode.
 なお、上記実施形態では、血管深さを算出するために、血管コントラストを用いたが、その他の血管指標値を用いてもよい。血管指標値としては、例えば、測定対象血管の輝度値(平均値など)および測定対象血管の色情報が挙げられる。色情報としては、R2画像信号、G2画像信号、およびB2画像信号に基づく演算により得られる演算値、例えば、R2/G2、B2/G2など信号比や、色差信号Cr、Cb、彩度S、色相Hなどがある。また、血管指標値は、血管コントラスト、血管部の輝度値、及び血管部の色情報を組み合わせて得られる値としてもよい。 In the above embodiment, the blood vessel contrast is used to calculate the blood vessel depth, but other blood vessel index values may be used. Examples of the blood vessel index value include luminance values (average value and the like) of the measurement target blood vessel and color information of the measurement target blood vessel. As color information, calculation values obtained by calculation based on R2 image signal, G2 image signal, and B2 image signal, for example, signal ratio such as R2 / G2, B2 / G2, color difference signals Cr, Cb, saturation S, Hue H and the like. The blood vessel index value may be a value obtained by combining the blood vessel contrast, the luminance value of the blood vessel portion, and the color information of the blood vessel portion.
 なお、上記実施形態では、血管コントラストと、酸素飽和度、血管太さ、及び血管深さとの関係を定めておいた上で、血管深さ以外の酸素飽和度及び血管深さを測定し、この測定結果と関係を用いることによって、血管深さを算出したが、これに限らず、血管コントラストなどの血管指標値と、血管指標値を変動させる血管指標値変動要因であって、血管深さ以外の特定の血管指標値変動要因と、血管深さとの関係を予め定めておいた上で、特定の血管指標値変動要因を測定し、その測定結果と関係を用いることによって、血管深さを算出するようにしてもよい。 In the above embodiment, the relationship between the blood vessel contrast, the oxygen saturation, the blood vessel thickness, and the blood vessel depth is determined, and the oxygen saturation and the blood vessel depth other than the blood vessel depth are measured. Although the blood vessel depth was calculated by using the measurement result and the relationship, the blood vessel index value such as the blood vessel contrast and the blood vessel index value fluctuation factor that fluctuates the blood vessel index value are used. The blood vessel depth is calculated by measuring the specific blood vessel index value fluctuation factor after determining the relationship between the specific blood vessel index value fluctuation factor and the blood vessel depth in advance and using the measurement result and the relationship. You may make it do.
 この場合、複数の血管指標値変動要因の中から、特定の血管指標値変動要因を選択又は追加できるようにするために、図20に示すように、各血管指標値変動要因について血管指標値と対応付けした測定用データで構成される選択用データセットを選択用データセット記憶部165に予め記憶してくことが好ましい。そして、血管深さ測定部68に接続された血管指標値変動要因選択部170で特定の血管指標値変動要因が選択されると、その選択された血管指標値変動要因に対応する選択用データセットを選択用データセット記憶部165から読み出して、1つのデータセットとして統合する。この統合したデータセットをデータセット記憶部97に記憶し、同様の方法で、血管深さの算出を行う。なお、酸素飽和度及び血管太さ以外の特定の血管指標値変動要因が選択された場合には、その特定の血管指標値変動要因を測定することができる特定測定部が新たに必要となる。 In this case, in order to be able to select or add a specific blood vessel index value fluctuation factor from among a plurality of blood vessel index value fluctuation factors, as shown in FIG. It is preferable that a selection data set composed of associated measurement data is stored in the selection data set storage unit 165 in advance. When a specific blood vessel index value variation factor is selected by the blood vessel index value variation factor selection unit 170 connected to the blood vessel depth measurement unit 68, a selection data set corresponding to the selected blood vessel index value variation factor is selected. Are read from the selection data set storage unit 165 and integrated as one data set. The integrated data set is stored in the data set storage unit 97, and the blood vessel depth is calculated by the same method. When a specific blood vessel index value variation factor other than oxygen saturation and blood vessel thickness is selected, a specific measurement unit that can measure the specific blood vessel index value variation factor is newly required.
 なお、特定の血管指標値変動要因が複数ある場合には、一部は代表値(例えば、酸素飽和度であれば「70%」)で固定し、その他の特定の血管指標値変動要因について血管指標値と血管深さとを対応付けたデータセットとすることが好ましい。この場合には、代表値で固定した一部の特定の血管指標値変動要因の測定又は入力は行わず、その他の特定の血管指標値変動要因の測定又は入力のみを行うことになる。 When there are a plurality of specific blood vessel index value fluctuation factors, a part is fixed at a representative value (for example, “70%” in the case of oxygen saturation), and other specific blood vessel index value fluctuation factors are blood vessels. A data set in which the index value and the blood vessel depth are associated with each other is preferable. In this case, measurement or input of some specific blood vessel index value fluctuation factors fixed with representative values is not performed, and measurement or input of other specific blood vessel index value fluctuation factors is performed.
 特定の血管指標値変動要因としては、酸素飽和度および血管太さ以外に、以下がある。例えば、撮影距離および撮影角度は、血管コントラストを変動させる特定の血管指標値変動要因であることから、血管コントラストと、撮影距離又は撮影角度などと、血管深さとの関係から、血管深さを算出するようにしてもよい。また、血管密度についても、血管コントラストを変動させる特定の血管指標値変動要因であることから、血管コントラストと、血管密度と、血管深さとの関係から、血管深さを算出するようにしてもよい。その他の特定の血管指標値変動要因としては、ビリルビンなどの黄色色素の濃度や、粘膜の散乱係数などがある。なお、撮影距離については、粘膜全体の平均輝度から算出することが好ましい。また、撮影角度については、画像全体の輝度分布から推定することが好ましい。また、血管密度については、画像中の血管領域を抽出し、抽出した血管領域に基づいて算出することが好ましい。 The specific blood vessel index value fluctuation factors include the following in addition to the oxygen saturation and the blood vessel thickness. For example, since the imaging distance and imaging angle are specific blood vessel index value fluctuation factors that change the blood vessel contrast, the blood vessel depth is calculated from the relationship between the blood vessel contrast, the imaging distance or imaging angle, and the blood vessel depth. You may make it do. Further, since the blood vessel density is a specific blood vessel index value fluctuation factor that fluctuates the blood vessel contrast, the blood vessel depth may be calculated from the relationship between the blood vessel contrast, the blood vessel density, and the blood vessel depth. . Other specific blood vessel index value fluctuation factors include the concentration of yellow pigments such as bilirubin and the mucosal scattering coefficient. Note that the photographing distance is preferably calculated from the average luminance of the entire mucous membrane. The photographing angle is preferably estimated from the luminance distribution of the entire image. The blood vessel density is preferably calculated based on the extracted blood vessel region extracted from the image.
[第2実施形態]
 図21に示すように、内視鏡システム200の光源装置14には、第1及び第2青色レーザ光源34,36及び紫色レーザ光源38と光源制御部40の代わりに、LED(Light Emitting Diode)光源ユニット201と、LED光源制御部204が設けられている。また、内視鏡システム200の照明光学系24aには蛍光体44が設けられていない。それ以外については、第1実施形態の内視鏡システム10と同様である。
[Second Embodiment]
As shown in FIG. 21, the light source device 14 of the endoscope system 200 includes LED (Light Emitting Diode) instead of the first and second blue laser light sources 34 and 36, the violet laser light source 38, and the light source control unit 40. A light source unit 201 and an LED light source control unit 204 are provided. In addition, the phosphor 44 is not provided in the illumination optical system 24a of the endoscope system 200. Other than that, it is the same as the endoscope system 10 of the first embodiment.
 LED光源ユニット201は、特定の波長帯域に制限された光を発光する光源として、R-LED201a,G-LED201b,B-LED201c、およびV-LED201dを有する。図22に示すように、R-LED201aは、例えば約600~650nmの赤色帯域光(以下、単に赤色光という)を発光する。この赤色光の中心波長は約620~630nmである。G-LED201bは、正規分布で表される約500~600nmの緑色帯域光(以下、単に緑色光)を発光する。B-LED201cは、445~460nmを中心波長とする青色帯域光(以下、単に青色光という)を発光する。V-LED201dは、400~410nmを中心波長とする紫色帯域光(以下、単に紫色光という)を発行する。 The LED light source unit 201 includes an R-LED 201a, a G-LED 201b, a B-LED 201c, and a V-LED 201d as light sources that emit light limited to a specific wavelength band. As shown in FIG. 22, the R-LED 201a emits red band light (hereinafter simply referred to as red light) of about 600 to 650 nm, for example. The center wavelength of the red light is about 620 to 630 nm. The G-LED 201b emits about 500 to 600 nm of green band light (hereinafter simply referred to as green light) represented by a normal distribution. The B-LED 201c emits blue band light having a central wavelength of 445 to 460 nm (hereinafter simply referred to as blue light). The V-LED 201d emits purple band light having a central wavelength of 400 to 410 nm (hereinafter simply referred to as purple light).
 また、LED光源ユニット201は、B-LED201cが発する青色光の光路上に挿抜されるハイパスフィルタ(HPF)202を有する。ハイパスフィルタ202は、約450nm以下の波長帯域の青色光をカットする。この約450nm以下の波長帯域がカットされた青色光は、酸化ヘモグロビンの吸光係数が還元ヘモグロビンの吸光係数よりも大きい波長帯域(図8参照)で構成されるため、酸素飽和度の測定に使用することができる。そのため、以下、約450nm以下の波長帯域がカットされた青色光を測定用青色光という。なお、ハイパスフィルタ202の挿抜は、LED光源制御部204の制御のもとで、HPF挿抜部203によって行われる。 Also, the LED light source unit 201 has a high-pass filter (HPF) 202 that is inserted into and extracted from the optical path of blue light emitted from the B-LED 201c. The high pass filter 202 cuts blue light having a wavelength band of about 450 nm or less. The blue light from which the wavelength band of about 450 nm or less is cut is composed of a wavelength band (see FIG. 8) in which the absorption coefficient of oxyhemoglobin is larger than that of reduced hemoglobin, and is used for measuring oxygen saturation. be able to. Therefore, hereinafter, blue light from which a wavelength band of about 450 nm or less is cut is referred to as measurement blue light. The high-pass filter 202 is inserted / removed by the HPF insertion / removal unit 203 under the control of the LED light source control unit 204.
 LED光源制御部204は、LED光源ユニット201の各LED201a~201dの点灯/消灯及び各発光量、及びハイパスフィルタ202の挿抜を制御する。具体的には、通常観察モード及び血管太さ測定モードの場合、LED光源制御部204は、各LED201a~201dを全て点灯させ、ハイパスフィルタ202はB-LED301cを光路上から退避させる。これにより、紫色光、青色光,緑色光,および赤色光が重畳した白色光が観察対象に照射され、センサ48はその反射光により観察対象を撮像し、Bc画像信号,Gc画像信号,Rc画像信号を出力する。 The LED light source control unit 204 controls turning on / off of each LED 201a to 201d of the LED light source unit 201, each emission amount, and insertion / extraction of the high-pass filter 202. Specifically, in the normal observation mode and the blood vessel thickness measurement mode, the LED light source control unit 204 turns on all the LEDs 201a to 201d, and the high-pass filter 202 retracts the B-LED 301c from the optical path. Thereby, white light on which purple light, blue light, green light, and red light are superimposed is irradiated on the observation target, and the sensor 48 images the observation target with the reflected light, and the Bc image signal, the Gc image signal, and the Rc image. Output a signal.
 一方、酸素飽和度モード及び血管深さ測定モードの場合、LED光源制御部204は、ハイパスフィルタ202を挿入した状態で、B-LED203dのみの点灯と、全てのLED203a~203dの点灯とを、1フレームごとに交互に切り替える制御を行う。これにより、観察対象には、測定用青色光と、紫色光、測定用青色光、緑色光、及び赤色光とを含む混合光とが交互に照射される。 On the other hand, in the oxygen saturation mode and the blood vessel depth measurement mode, the LED light source control unit 204 turns on only the B-LED 203d and all LEDs 203a to 203d with the high-pass filter 202 inserted. Control to switch alternately every frame. As a result, the observation target is alternately irradiated with measurement blue light and mixed light including violet light, measurement blue light, green light, and red light.
 そして、撮像制御部49では、測定用青色光のもとで観察対象を撮像して得た信号電荷を1フレーム目の読出し期間に読み出して、B1画像信号,G1画像信号,およびR1画像信号を出力する。また、紫色光、測定用青色光、緑色光、及び赤色光とを含む混合光のもとで観察対象を撮像して得た信号電荷を2フレーム目の読出期間に読み出して、B2画像信号、G2画像信号、R2画像信号を出力する。その後の処理は内視鏡システム10と同様に行うことができる。 Then, the imaging control unit 49 reads out the signal charge obtained by imaging the observation target under the measurement blue light during the readout period of the first frame, and outputs the B1 image signal, the G1 image signal, and the R1 image signal. Output. In addition, a signal charge obtained by imaging an observation target under mixed light including purple light, measurement blue light, green light, and red light is read out during a readout period of the second frame, and a B2 image signal is obtained. A G2 image signal and an R2 image signal are output. Subsequent processing can be performed in the same manner as the endoscope system 10.
[第3実施形態]
 図23に示すように、内視鏡システム300の光源装置14には、第1及び第2青色レーザ光源34,36及び紫色レーザ光源38と光源制御部40の代わりに、広帯域光源301と、回転フィルタ302と、回転フィルタ制御部303が設けられている。また、内視鏡システム300のセンサ305は、カラーフィルタが設けられていないモノクロの撮像素子である。このため、DSP56は、デモザイク処理等のカラー撮像素子に特有の処理は行わない。それ以外については、第1実施形態の内視鏡システム10と同じである。
[Third Embodiment]
As shown in FIG. 23, the light source device 14 of the endoscope system 300 includes a broadband light source 301 instead of the first and second blue laser light sources 34 and 36, the violet laser light source 38, and the light source control unit 40. A filter 302 and a rotation filter control unit 303 are provided. In addition, the sensor 305 of the endoscope system 300 is a monochrome image sensor that is not provided with a color filter. For this reason, the DSP 56 does not perform processing peculiar to the color image sensor such as demosaic processing. About other than that, it is the same as the endoscope system 10 of 1st Embodiment.
 広帯域光源301は、例えばキセノンランプ、白色LED等からなり、波長帯域が青色から赤色に及ぶ白色光を発する。回転フィルタ302は、第1フィルタ310と第2フィルタ311とを備えており(図24参照)、広帯域光源301から発せられる白色光がライトガイド41に入射される光路上に、第1フィルタ310を配置する第1位置と、第2フィルタ311を配置する第2位置との間で径方向に移動可能である。 The broadband light source 301 includes, for example, a xenon lamp, a white LED, and the like, and emits white light whose wavelength band ranges from blue to red. The rotary filter 302 includes a first filter 310 and a second filter 311 (see FIG. 24), and the first filter 310 is placed on the optical path where white light emitted from the broadband light source 301 enters the light guide 41. It can move in the radial direction between the first position where it is disposed and the second position where the second filter 311 is disposed.
 第1位置と第2位置への回転フィルタ302の相互移動は、選択された観察モードに応じて回転フィルタ制御部303によって制御される。また、回転フィルタ302は、第1位置または第2位置に配置された状態で、センサ305の撮像フレームに応じて回転する。回転フィルタ302の回転速度は、選択された観察モードに応じて回転フィルタ制御部303によって制御される。 The mutual movement of the rotary filter 302 to the first position and the second position is controlled by the rotary filter control unit 303 according to the selected observation mode. The rotation filter 302 rotates in accordance with the imaging frame of the sensor 305 in a state where the rotation filter 302 is disposed at the first position or the second position. The rotation speed of the rotation filter 302 is controlled by the rotation filter control unit 303 according to the selected observation mode.
 図24に示すように、第1フィルタ310は、通常観察モード及び血管太さ測定モード時に用いられ、回転フィルタ302の内周部に設けられている。第1フィルタ310は、赤色光を透過するRフィルタ310aと、緑色光を透過するGフィルタ310bと、紫色光及び青色光を含む青紫色光を透過するBフィルタ310cと有する。通常観察モード及び血管太さ測定モードに設定された場合には、回転フィルタ302は第1位置に配置され、広帯域光源301からの白色光は、回転フィルタ302の回転に応じてRフィルタ310a、Gフィルタ310b、Bフィルタ310cのいずれかに入射する。このため、観察対象には、透過したフィルタに応じて、赤色光、緑色光、および青紫色光が順次照射される。センサ305は、これらの反射光によりそれぞれ観察対象を撮像することにより、Rc画像信号、Gc画像信号、およびBc画像信号を順次出力する。 As shown in FIG. 24, the first filter 310 is used in the normal observation mode and the blood vessel thickness measurement mode, and is provided on the inner peripheral portion of the rotary filter 302. The first filter 310 includes an R filter 310a that transmits red light, a G filter 310b that transmits green light, and a B filter 310c that transmits blue-violet light including violet light and blue light. When the normal observation mode and the blood vessel thickness measurement mode are set, the rotary filter 302 is disposed at the first position, and the white light from the broadband light source 301 is output from the R filters 310a and G according to the rotation of the rotary filter 302. The light enters one of the filter 310b and the B filter 310c. For this reason, the observation object is sequentially irradiated with red light, green light, and blue-violet light according to the transmitted filter. The sensor 305 sequentially outputs an Rc image signal, a Gc image signal, and a Bc image signal by imaging the observation target with these reflected lights.
 また、第2フィルタ311は、酸素飽和度モード及び血管深さ測定モード時に用いられ、回転フィルタ302の外周部に設けられている。第2フィルタ311は、赤色光を透過するRフィルタ311aと、緑色光を透過するGフィルタ311bと、紫色光及び青色光を含む青紫色光を透過するBフィルタ311cと、473±10nmの狭帯域光を透過する狭帯域フィルタ311dとを有する。酸素飽和度モード及び血管深さ測定モードに設定された場合には、回転フィルタ302は第2位置に配置され、広帯域光源301からの白色光は、回転フィルタ302の回転に応じてRフィルタ311a、Gフィルタ311b、Bフィルタ311c、および狭帯域フィルタ311dのいずれかに入射する。このため、観察対象には、透過したフィルタに応じて、赤色光、緑色光、青紫色光,および狭帯域光(473nm)が順次照射される。 The second filter 311 is used in the oxygen saturation mode and the blood vessel depth measurement mode, and is provided on the outer peripheral portion of the rotary filter 302. The second filter 311 includes an R filter 311a that transmits red light, a G filter 311b that transmits green light, a B filter 311c that transmits blue-violet light including violet light and blue light, and a narrow band of 473 ± 10 nm. A narrow band filter 311d that transmits light. When the oxygen saturation mode and the blood vessel depth measurement mode are set, the rotation filter 302 is disposed at the second position, and the white light from the broadband light source 301 is converted into an R filter 311a according to the rotation of the rotation filter 302. The light enters one of the G filter 311b, the B filter 311c, and the narrow band filter 311d. Therefore, the observation target is sequentially irradiated with red light, green light, blue-violet light, and narrowband light (473 nm) according to the transmitted filter.
 センサ405は、赤色光が照射されたときに観察対象の撮像を行ってR2画像信号を出力し、緑色光が照射されたときに観察対象の撮像を行ってG2画像信号を出力し、青紫色光が照射されたときに観察対象の撮像を行ってB2画像信号を出力し、狭帯域光が照射されたときに観察対象の撮像を行ってB1画像信号を出力する。その後の処理は第1実施形態の内視鏡システム10と同様に行うことができる。 The sensor 405 captures the observation target when the red light is irradiated and outputs an R2 image signal. When the green light is irradiated, the sensor 405 captures the observation target and outputs a G2 image signal. When the light is irradiated, the observation target is imaged and a B2 image signal is output, and when the narrow band light is irradiated, the observation target is imaged and the B1 image signal is output. Subsequent processing can be performed similarly to the endoscope system 10 of the first embodiment.
 第1~第3実施形態では酸素飽和度を算出しているが、これに代えて、あるいはこれに加えて、「血液量×酸素飽和度(%)」から求まる酸化ヘモグロビンインデックスや、「血液量×(1-酸素飽和度)(%)」から求まる還元ヘモグロビンインデックス等、他の生体機能情報を算出しても良い。 In the first to third embodiments, the oxygen saturation is calculated. Instead of or in addition to this, an oxygenated hemoglobin index obtained from “blood volume × oxygen saturation (%)” or “blood volume” Other biological function information such as a reduced hemoglobin index obtained from “× (1-oxygen saturation) (%)” may be calculated.
10 内視鏡システム
12 内視鏡
14 光源装置
16 プロセッサ装置
17 ユニバーサルコード
18 モニタ
20 コンソール
21 挿入部
22 操作部
22a アングルノブ
22c ズーム操作部
23 湾曲部
24 先端部
24a 照明光学系
24b 撮像光学系
34 第1青色レーザ光源
36 第2青色レーザ光源
38 紫色レーザ光源
40 光源制御部
41 ライトガイド
44 蛍光体
45 照明レンズ
46 撮像レンズ
47 ズームレンズ
48 センサ
49 撮像制御部
50 CDS/AGC回路
52 A/D変換器
54 画像信号取得部
56 DSP
58 ノイズ低減部
59 信号変換部
60 画像処理切替部
62 通常観察画像処理部
64 酸素飽和度測定部
65 酸素飽和度画像生成部
66 血管太さ測定部
67 血管太さ測定画像生成部
68 血管深さ測定部
69 血管深さ測定画像生成部
70 映像信号生成部
81 信号比算出部
82 相関関係記憶部
83 酸素飽和度算出部
90 グラフ
91 グラフ
93 下限ライン
94 上限ライン
96 血管コントラスト算出部
97 データセット記憶部
98 血管深さ算出部
100 測定対象血管指定部
102 血管選択用画像
104 選択ポインタ
110 血管太さ測定画像
120 データセット
150 血管深さ測定画像
160 情報入力部
170 血管指標値変動要因選択部
200 内視鏡システム
201 LED光源ユニット
202 ハイパスフィルタ
203 挿抜部
204 光源制御部
300 内視鏡システム
301 広帯域光源
302 回転フィルタ
303 回転フィルタ制御部
305 センサ
310 第1フィルタ
310a Rフィルタ
310b Gフィルタ
310c Bフィルタ
311 第2フィルタ
311a Rフィルタ
311b Gフィルタ
311c Bフィルタ
311d 狭帯域フィルタ
405 センサ
DESCRIPTION OF SYMBOLS 10 Endoscope system 12 Endoscope 14 Light source apparatus 16 Processor apparatus 17 Universal code 18 Monitor 20 Console 21 Insertion part 22 Operation part 22a Angle knob 22c Zoom operation part 23 Bending part 24 Tip part 24a Illumination optical system 24b Imaging optical system 34 First blue laser light source 36 Second blue laser light source 38 Purple laser light source 40 Light source control unit 41 Light guide 44 Phosphor 45 Illumination lens 46 Imaging lens 47 Zoom lens 48 Sensor 49 Imaging control unit 50 CDS / AGC circuit 52 A / D conversion 54 Image signal acquisition unit 56 DSP
58 Noise reduction unit 59 Signal conversion unit 60 Image processing switching unit 62 Normal observation image processing unit 64 Oxygen saturation measurement unit 65 Oxygen saturation image generation unit 66 Blood vessel thickness measurement unit 67 Blood vessel thickness measurement image generation unit 68 Blood vessel depth Measurement unit 69 Blood vessel depth measurement image generation unit 70 Video signal generation unit 81 Signal ratio calculation unit 82 Correlation storage unit 83 Oxygen saturation calculation unit 90 Graph 91 Graph 93 Lower limit line 94 Upper limit line 96 Blood vessel contrast calculation unit 97 Data set storage Unit 98 Blood vessel depth calculation unit 100 Measurement target blood vessel designation unit 102 Blood vessel selection image 104 Selection pointer 110 Blood vessel thickness measurement image 120 Data set 150 Blood vessel depth measurement image 160 Information input unit 170 Blood vessel index value variation factor selection unit 200 Endoscope system 201 LED light source unit 202 High pass filter 203 Insertion / extraction section 204 Light source control Control unit 300 Endoscope system 301 Broadband light source 302 Rotating filter 303 Rotating filter control unit 305 Sensor 310 First filter 310a R filter 310b G filter 310c B filter 311 Second filter 311a R filter 311b G filter 311c B filter 311d Narrow band filter 405 sensor

Claims (13)

  1.  観察対象における血管の血管深さを測定する画像処理装置であって、
     前記観察対象を撮像することにより得られる画像を取得する画像取得部と、
     前記画像のうち血管指標値用画像から血管指標値を算出する血管指標値算出部と、
     前記血管指標値と、前記血管指標値を変動させる複数の血管指標値変動要因であって血管深さを含む複数の血管指標値変動要因とを対応付けた複数の測定用データから構成されるデータセットを記憶するデータセット記憶部と、
     前記複数の血管指標値変動要因のうち血管深さ以外の特定の血管指標値変動要因を測定する血管指標値変動要因測定部と、
     前記データセットの中から前記特定の血管指標値変動要因を持つサブデータセットに絞り込み、前記サブデータセットの中から前記血管指標値算出部で算出した血管指標値に対応する血管深さを求める血管深さ算出部とを備える画像処理装置。
    An image processing apparatus for measuring a blood vessel depth of a blood vessel in an observation target,
    An image acquisition unit for acquiring an image obtained by imaging the observation target;
    A blood vessel index value calculation unit for calculating a blood vessel index value from the image for blood vessel index value of the image;
    Data composed of a plurality of measurement data in which the blood vessel index value is associated with a plurality of blood vessel index value variation factors that vary the blood vessel index value and include a blood vessel depth A data set storage unit for storing the set;
    A blood vessel index value fluctuation factor measurement unit that measures a specific blood vessel index value fluctuation factor other than the blood vessel depth among the plurality of blood vessel index value fluctuation factors;
    A blood vessel that narrows down the sub-data set having the specific blood vessel index value variation factor from the data set, and obtains a blood vessel depth corresponding to the blood vessel index value calculated by the blood vessel index value calculation unit from the sub data set An image processing apparatus comprising a depth calculation unit.
  2.  前記観察対象において前記血管深さの測定対象となる測定対象血管を指定する測定対象血管指定部を有し、
     前記血管指標値算出部は、前記測定対象血管の血管指標値を算出する請求項1記載の画像処理装置。
    A measurement target blood vessel designating unit for designating a measurement target blood vessel to be a measurement target of the blood vessel depth in the observation target;
    The image processing apparatus according to claim 1, wherein the blood vessel index value calculation unit calculates a blood vessel index value of the measurement target blood vessel.
  3.  前記血管指標値用画像は、複数波長の画像を含み、
     前記血管指標値算出部は、前記複数波長の画像に基づいて、前記測定対象血管の血管指標値を算出する請求項2記載の画像処理装置。
    The blood vessel index value image includes an image of a plurality of wavelengths,
    The image processing apparatus according to claim 2, wherein the blood vessel index value calculation unit calculates a blood vessel index value of the measurement target blood vessel based on the images of the plurality of wavelengths.
  4.  前記血管指標値算出部は、前記複数波長の画像毎に血管指標値を算出し、算出した血管指標値に対して、それぞれ重み付して加算することにより、前記測定対象血管の血管指標値を算出し、
     前記血管指標値に対する重み付け係数は、前記血管指標値の算出に用いた画像が有する波長成分に基づいて設定される請求項3記載の画像処理装置。
    The blood vessel index value calculation unit calculates a blood vessel index value for each of the images of the plurality of wavelengths, and adds the weighted index value to the calculated blood vessel index value, thereby calculating the blood vessel index value of the measurement target blood vessel. Calculate
    The image processing apparatus according to claim 3, wherein the weighting coefficient for the blood vessel index value is set based on a wavelength component included in the image used for calculating the blood vessel index value.
  5.  前記複数の血管指標値変動要因の中から、前記血管指標値変動要因測定部にて測定する特定の血管指標値変動要因を選択する血管指標値変動要因選択部を有する請求項1ないし4いずれか1項記載の画像処理装置。 5. The blood vessel index value variation factor selection unit that selects a specific blood vessel index value variation factor measured by the blood vessel index value variation factor measurement unit from the plurality of blood vessel index value variation factors. The image processing apparatus according to claim 1.
  6.  前記血管深さ算出部の算出結果を表示部に表示するための血管深さ測定画像を生成する血管深さ測定画像生成部を有する請求項1ないし5いずれか1項記載の画像処理装置。 6. The image processing apparatus according to claim 1, further comprising a blood vessel depth measurement image generation unit that generates a blood vessel depth measurement image for displaying a calculation result of the blood vessel depth calculation unit on a display unit.
  7.  前記血管指標値は、血管コントラスト、血管部の輝度値、又は血管部の色情報のうち少なくとも1以上を組み合わせて得られる値である請求項1ないし6いずれか1項記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 6, wherein the blood vessel index value is a value obtained by combining at least one of blood vessel contrast, luminance value of the blood vessel portion, and color information of the blood vessel portion.
  8.  前記血管指標値変動要因は、血管太さ、酸素飽和度、血管密度、撮影距離、撮影角度、黄色色素濃度、及び粘膜の散乱係数のうち1以上を組み合わせて得られる値である請求項1ないし7いずれか1項記載の画像処理装置。 The blood vessel index value variation factor is a value obtained by combining one or more of blood vessel thickness, oxygen saturation, blood vessel density, imaging distance, imaging angle, yellow pigment concentration, and mucosal scattering coefficient. 8. The image processing device according to any one of claims 7.
  9.  前記特定の血管指標値変動要因は、血管太さと酸素飽和度であり、
     前記血管指標値変動要因測定部は、前記血管太さを測定する血管太さ測定部と、前記酸素飽和度を測定する酸素飽和度測定部を有する請求項1ないし8いずれか1項記載の画像処理装置。
    The specific blood vessel index value variation factors are blood vessel thickness and oxygen saturation,
    The image according to any one of claims 1 to 8, wherein the blood vessel index value variation factor measurement unit includes a blood vessel thickness measurement unit that measures the blood vessel thickness and an oxygen saturation measurement unit that measures the oxygen saturation. Processing equipment.
  10.  前記血管指標値は血管コントラストであり、
     前記データセット記憶部は、前記血管コントラストと、前記酸素飽和度と、前記血管深さと、前記血管深さとを対応付けた測定用データとで構成されたデータセットを記憶する請求項9記載の画像処理装置。
    The blood vessel index value is blood vessel contrast;
    The image according to claim 9, wherein the data set storage unit stores a data set including measurement data in which the blood vessel contrast, the oxygen saturation, the blood vessel depth, and the blood vessel depth are associated with each other. Processing equipment.
  11.  観察対象における血管の血管深さを測定する内視鏡用プロセッサ装置であって、
     前記観察対象を撮像することにより得られる画像を取得する画像取得部と、
     前記画像のうち血管指標値用画像から血管指標値を算出する血管指標値算出部と、
     前記血管指標値と、前記血管指標値を変動させる複数の血管指標値変動要因であって血管深さを含む複数の血管指標値変動要因とを対応付けた複数の測定用データから構成されるデータセットを記憶するデータセット記憶部と、
     前記複数の血管指標値変動要因のうち血管深さ以外の特定の血管指標値変動要因を測定する血管指標値変動要因測定部と、
     前記データセットの中から前記特定の血管指標値変動要因を持つサブデータセットに絞り込み、前記サブデータセットの中から前記血管指標値算出部で算出した血管指標値に対応する血管深さを求める血管深さ算出部とを備える内視鏡用プロセッサ装置。
    An endoscope processor device for measuring a blood vessel depth of a blood vessel in an observation object,
    An image acquisition unit for acquiring an image obtained by imaging the observation target;
    A blood vessel index value calculation unit for calculating a blood vessel index value from the image for blood vessel index value of the image;
    Data composed of a plurality of measurement data in which the blood vessel index value is associated with a plurality of blood vessel index value variation factors that vary the blood vessel index value and include a blood vessel depth A data set storage unit for storing the set;
    A blood vessel index value fluctuation factor measurement unit that measures a specific blood vessel index value fluctuation factor other than the blood vessel depth among the plurality of blood vessel index value fluctuation factors;
    A blood vessel that narrows down the sub-data set having the specific blood vessel index value variation factor from the data set, and obtains a blood vessel depth corresponding to the blood vessel index value calculated by the blood vessel index value calculation unit from the sub data set An endoscopic processor device comprising a depth calculation unit.
  12.  観察対象における血管の血管深さを測定する画像処理装置の作動方法であって、
     画像取得部が、前記観察対象を撮像することにより得られる画像を取得するステップと、
     血管指標値算出部が、前記画像のうち血管指標値用画像から血管指標値を算出するステップと、
     血管指標値変動要因測定部が、前記血管指標値を変動させる複数の血管指標値変動要因であって血管深さを含む複数の血管指標値変動要因のうち、血管深さ以外の特定の血管指標値変動要因を測定するステップと、
     血管深さ算出部が、前記血管指標値と前記複数の血管指標値変動要因とを対応付けた複数の測定用データから構成されるデータセットの中から、前記特定の血管指標値変動要因を持つサブデータセットに絞り込み、前記サブデータセットの中から前記血管指標値算出部で算出した血管指標値に対応する血管深さを求めるステップとを有する画像処理装置の作動方法。
    An operation method of an image processing device for measuring a blood vessel depth of a blood vessel in an observation object,
    An image acquisition unit acquiring an image obtained by imaging the observation target;
    A blood vessel index value calculating unit calculating a blood vessel index value from a blood vessel index value image in the image;
    The blood vessel index value variation factor measurement unit is a plurality of blood vessel index value variation factors that vary the blood vessel index value, and among the plurality of blood vessel index value variation factors including the blood vessel depth, a specific blood vessel index other than the blood vessel depth Measuring the value fluctuation factor;
    A blood vessel depth calculation unit has the specific blood vessel index value variation factor from a data set composed of a plurality of measurement data in which the blood vessel index value and the plurality of blood vessel index value variation factors are associated with each other. A method of operating the image processing apparatus, comprising: narrowing down to a sub-data set and obtaining a blood vessel depth corresponding to the blood vessel index value calculated by the blood vessel index value calculation unit from the sub-data set.
  13.  観察対象における血管の血管深さを測定する内視鏡用プロセッサ装置の作動方法であって、
     画像取得部が、前記観察対象を撮像することにより得られる画像を取得するステップと、
     血管指標値算出部が、前記画像のうち血管指標値用画像から血管指標値を算出するステップと、
     血管指標値変動要因測定部が、前記血管指標値を変動させる複数の血管指標値変動要因であって血管深さを含む複数の血管指標値変動要因のうち、血管深さ以外の特定の血管指標値変動要因を測定するステップと、
     血管深さ算出部が、前記血管指標値と前記複数の血管指標値変動要因とを対応付けた複数の測定用データから構成されるデータセットの中から、前記特定の血管指標値変動要因を持つサブデータセットに絞り込み、前記サブデータセットの中から前記血管指標値算出部で算出した血管指標値に対応する血管深さを求めるステップとを有する内視鏡用プロセッサ装置の作動方法。
    An operation method of a processor device for an endoscope for measuring a blood vessel depth of a blood vessel in an observation object,
    An image acquisition unit acquiring an image obtained by imaging the observation target;
    A blood vessel index value calculating unit calculating a blood vessel index value from a blood vessel index value image in the image;
    The blood vessel index value variation factor measurement unit is a plurality of blood vessel index value variation factors that vary the blood vessel index value, and among the plurality of blood vessel index value variation factors including the blood vessel depth, a specific blood vessel index other than the blood vessel depth Measuring the value fluctuation factor;
    A blood vessel depth calculation unit has the specific blood vessel index value variation factor from a data set composed of a plurality of measurement data in which the blood vessel index value and the plurality of blood vessel index value variation factors are associated with each other. And a step of narrowing down to a sub-data set and obtaining a blood vessel depth corresponding to the blood vessel index value calculated by the blood vessel index value calculating unit from the sub-data set.
PCT/JP2017/006198 2016-04-01 2017-02-20 Image processing device and method for operating same, and endoscope processor device and method for operating same WO2017169284A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17773832.5A EP3437541A4 (en) 2016-04-01 2017-02-20 Image processing device and method for operating same, and endoscope processor device and method for operating same
US16/143,498 US10986980B2 (en) 2016-04-01 2018-09-27 Image processing device, method for operating same, endoscope processor device, and method for operating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-074254 2016-04-01
JP2016074254A JP6779025B2 (en) 2016-04-01 2016-04-01 Image processing device and its operation method, endoscope processor device and its operation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/143,498 Continuation US10986980B2 (en) 2016-04-01 2018-09-27 Image processing device, method for operating same, endoscope processor device, and method for operating same

Publications (1)

Publication Number Publication Date
WO2017169284A1 true WO2017169284A1 (en) 2017-10-05

Family

ID=59963175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006198 WO2017169284A1 (en) 2016-04-01 2017-02-20 Image processing device and method for operating same, and endoscope processor device and method for operating same

Country Status (4)

Country Link
US (1) US10986980B2 (en)
EP (1) EP3437541A4 (en)
JP (1) JP6779025B2 (en)
WO (1) WO2017169284A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640865B2 (en) * 2015-09-29 2020-02-05 富士フイルム株式会社 Image processing apparatus, endoscope system, and image processing method
JP7048628B2 (en) 2016-11-28 2022-04-05 アダプティブエンドウ エルエルシー Endoscope with separable disposable shaft
WO2019092950A1 (en) * 2017-11-13 2019-05-16 ソニー株式会社 Image processing device, image processing method, and image processing system
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254794A (en) * 2008-03-27 2009-11-05 Fujifilm Corp Imaging apparatus, imaging method, and program
JP2011218135A (en) * 2009-09-30 2011-11-04 Fujifilm Corp Electronic endoscope system, processor for electronic endoscope, and method of displaying vascular information
JP2013202189A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Endoscope system, processor device of endoscope system, endoscope moving image display method, and image processing program

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080104A (en) * 1995-05-16 2000-06-27 Asahi Kogaku Kogyo Kabushiki Kaisha Electronic endoscope system
JP5435532B2 (en) * 2007-07-17 2014-03-05 富士フイルム株式会社 Image processing system
US8668636B2 (en) 2009-09-30 2014-03-11 Fujifilm Corporation Electronic endoscope system, processor for electronic endoscope, and method of displaying vascular information
JP5393554B2 (en) * 2010-03-23 2014-01-22 富士フイルム株式会社 Electronic endoscope system
JP5438571B2 (en) * 2010-03-24 2014-03-12 富士フイルム株式会社 Electronic endoscope system
JP5395725B2 (en) * 2010-04-05 2014-01-22 富士フイルム株式会社 Electronic endoscope system
JP5616303B2 (en) * 2010-08-24 2014-10-29 富士フイルム株式会社 Electronic endoscope system and method for operating electronic endoscope system
JP5435746B2 (en) * 2011-01-24 2014-03-05 富士フイルム株式会社 Endoscope device
JP5624505B2 (en) * 2011-03-08 2014-11-12 株式会社東芝 Image processing device
JP5753105B2 (en) * 2012-01-16 2015-07-22 富士フイルム株式会社 Electronic endoscope system, image processing apparatus, and method of operating image processing apparatus
JP6128888B2 (en) 2013-02-27 2017-05-17 オリンパス株式会社 Image processing apparatus, image processing method, and image processing program
JP5844447B2 (en) * 2014-10-07 2016-01-20 富士フイルム株式会社 Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254794A (en) * 2008-03-27 2009-11-05 Fujifilm Corp Imaging apparatus, imaging method, and program
JP2011218135A (en) * 2009-09-30 2011-11-04 Fujifilm Corp Electronic endoscope system, processor for electronic endoscope, and method of displaying vascular information
JP2013202189A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Endoscope system, processor device of endoscope system, endoscope moving image display method, and image processing program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3437541A4 *

Also Published As

Publication number Publication date
US20190021579A1 (en) 2019-01-24
EP3437541A1 (en) 2019-02-06
JP2017184861A (en) 2017-10-12
EP3437541A4 (en) 2019-04-03
US10986980B2 (en) 2021-04-27
JP6779025B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US9629555B2 (en) Endoscope system, endoscope system processor device, operation method for endoscope system, and operation method for endoscope system processor device
JP5887367B2 (en) Processor device, endoscope system, and operation method of endoscope system
JP6039639B2 (en) Endoscope system, processor device for endoscope system, method for operating endoscope system, and method for operating processor device for endoscope system
US10022074B2 (en) Endoscope system, processor device for endoscope system, operation method for endoscope system, and operation method for processor device
US9907493B2 (en) Endoscope system processor device, endoscope system, operation method for endoscope system processor device, and operation method for endoscope system
WO2017183307A1 (en) Endoscope system, image processing device, and image processing device operation method
JP6039606B2 (en) Endoscope system, light source device, operation method of endoscope system, and operation method of light source device
JP6196598B2 (en) Endoscope system, processor device, operation method of endoscope system, and operation method of processor device
US10986980B2 (en) Image processing device, method for operating same, endoscope processor device, and method for operating same
WO2018061434A1 (en) Processor device, endoscope system, and operation method for processor device
JP2019041947A (en) Endoscope system
WO2019163540A1 (en) Endoscope system
JP6408400B2 (en) Endoscope system, endoscope processor device, and operation method of endoscope system
US20190246874A1 (en) Processor device, endoscope system, and method of operating processor device
JP2016158837A (en) Endoscope light source device, endoscope system, and operation method of endoscope light source device
JP6039605B2 (en) Endoscope system and operating method thereof
JP6276149B2 (en) Endoscope system and operating method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773832

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773832

Country of ref document: EP

Kind code of ref document: A1