WO2017168959A1 - Lens unit - Google Patents

Lens unit Download PDF

Info

Publication number
WO2017168959A1
WO2017168959A1 PCT/JP2017/001281 JP2017001281W WO2017168959A1 WO 2017168959 A1 WO2017168959 A1 WO 2017168959A1 JP 2017001281 W JP2017001281 W JP 2017001281W WO 2017168959 A1 WO2017168959 A1 WO 2017168959A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wall
lens unit
lens barrel
unit according
Prior art date
Application number
PCT/JP2017/001281
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 吉田
健介 益居
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017168959A1 publication Critical patent/WO2017168959A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor

Definitions

  • This disclosure relates to a lens unit.
  • Japanese Patent Nos. 4847020 and 5406165 disclose a lens unit in which a plurality of plastic (resin) lenses are press-fitted into a plastic (resin) lens barrel having a polygonal inner peripheral surface.
  • Japanese Patent Application Laid-Open No. 2006-198763 discloses a holder having a support member that can be elastically deformed as a holder for holding a component such as a lens.
  • Japanese Patent No. 4668410 discloses a structure in which the outer peripheral portion of the lens barrel is recessed to form a thin portion, and the lens is held by this thin portion.
  • a resin barrel may be used from the viewpoint of cost reduction and moldability.
  • the force acting on the contact part between the lens barrel and the lens changes due to the difference in the linear expansion coefficient (thermal expansion coefficient) between the lens barrel and the lens, and the optical characteristics are maintained well.
  • the linear expansion coefficient thermal expansion coefficient
  • a structure using a support member that can be elastically deformed as disclosed in Japanese Patent Application Laid-Open No. 2006-198763, or a structure in which a lens is held by a thin portion as disclosed in Japanese Patent No. 4668410 is conceivable.
  • these have room for improvement from the viewpoint of securing strength against external force acting on the lens barrel.
  • the present disclosure provides a lens unit capable of ensuring the strength of the lens barrel while maintaining good optical characteristics even when the external temperature is increased.
  • a first aspect of the present disclosure is a lens unit, which is formed in a cylindrical shape, and a plurality of circumferential positions are opposed to the inner wall and the inner wall in a radial direction with a hollow portion interposed therebetween and are more radial than the inner wall. And a lens barrel made of resin including a thick outer wall, and a lens fitted in the lens barrel in contact with the plurality of inner walls.
  • the plurality of circumferential positions in the lens barrel are opposed to the inner wall and the inner wall in the radial direction with the hollow portion interposed therebetween, and are thicker in the radial direction than the inner wall. It is comprised including an outer wall.
  • the lens unit according to the first aspect suppresses a change in the force acting on the contact portion between the lens barrel and the lens by bending and deforming the inner wall of the lens barrel that is in contact with the lens during thermal expansion. it can.
  • the lens unit according to the first aspect can suppress changes in optical characteristics even when the external temperature is increased.
  • the radial thickness of the outer wall is thicker than the radial thickness of the inner wall.
  • the radial thickness of the outer wall is the same as the radial thickness of the inner wall, or the radial thickness of the outer wall is smaller than the radial thickness of the inner wall.
  • the radial thickness of the outer wall may be larger than the radial distance between the inner wall and the outer wall.
  • the radial thickness of the outer wall is the same as the radial interval between the inner wall and the outer wall (the radial width in the cavity), or the radial direction of the outer wall. Compared with the case where the thickness of the lens is thinner than the radial width of the cavity, the strength of the lens barrel can be improved.
  • the inner wall may be provided rotationally symmetrically about the optical axis.
  • the lens unit according to the third aspect of the present disclosure it is possible to cancel the force that the lens receives from the lens barrel, and to prevent the center of the optical axis of the lens from shifting.
  • the lens unit according to the fourth aspect of the present disclosure may be a resin lens made of resin in the lens unit according to any one of the first to third aspects.
  • the resin lens has a larger thermal expansion than the lens barrel.
  • the resin lens is thermally expanded toward the lens barrel side, but the reaction force acting on the lens from the lens barrel is reduced and the optical characteristics are favorably maintained by bending and deforming the inner wall of the lens barrel toward the cavity side. be able to.
  • the moldability can be improved as compared with the glass lens made of glass, the degree of design freedom can be increased, and the cost is lower than when the glass lens is used. Can be reduced.
  • the hollow portion may be filled with a filler made of a material having a Young's modulus lower than that of the lens barrel.
  • the amount of bending deformation of the inner wall can be limited by the filler.
  • the filler As a result, in the lens unit according to the fifth aspect, even when the inner wall is formed thin, it is possible to prevent the inner wall from breaking due to a large amount of deformation of the inner wall during thermal expansion.
  • a lens unit according to a sixth aspect of the present disclosure is the lens unit according to any one of the first aspect to the third aspect.
  • the lens is a glass lens made of glass, and the hollow portion includes a lens barrel.
  • a filler having a high linear expansion coefficient may be filled.
  • the lens unit according to the sixth aspect of the present disclosure since the thermal expansion of the lens barrel is larger than that of the glass lens, the holding power of the glass lens is reduced, while the inner wall of the lens barrel bulges to the glass lens side. Therefore, a change in force acting on the contact portion between the lens barrel and the lens can be suppressed.
  • the inner wall can be further bulged toward the glass lens side due to the thermal expansion of the filler, and the optical characteristic is prevented from changing due to the optical axis shift of the glass lens. it can.
  • a lens unit according to a seventh aspect of the present disclosure is the lens unit according to any one of the first to sixth aspects.
  • the lens is in contact with three or more inner walls when viewed from the optical axis direction. May be.
  • the positional accuracy when the lens is assembled to the lens barrel as compared with the case where the lens is in contact with two or less inner walls when viewed from the optical axis direction. Can be improved.
  • the inner peripheral surface of the barrel may be polygonal.
  • the portions corresponding to the inner wall of the mold for forming the lens barrel can be separately surfaced, so that the dimensional accuracy of the inner wall in contact with the lens can be increased. Easy to improve.
  • a lens unit according to a ninth aspect of the present disclosure is the lens unit according to any one of the first to seventh aspects.
  • the contact portion of the inner wall with the lens is viewed from the optical axis direction.
  • a curved surface that is recessed radially outward of the lens barrel and that makes surface contact with the lens may be formed.
  • the optical axis shift caused by distortion of the outer diameter of the lens by receiving the lens with a plurality of curved surfaces, as compared with the configuration in which the lens is received with a point.
  • the optical characteristic defect from can be suppressed.
  • the cavity may be closed by the inner wall and the outer wall when viewed from the optical axis direction.
  • the strength of the inner wall can be increased as compared with the structure in which the hollow portion is opened to the inner wall side.
  • the strength of the outer wall can be increased as compared with the structure in which the cavity is open to the outer wall side.
  • the cavity in the lens unit according to the eleventh aspect of the present disclosure, in the lens unit according to the tenth aspect, the cavity may be provided within a predetermined range of 45 degrees around the optical axis.
  • the strength of the inner wall and the outer wall can be improved as compared with the case where the cavity is formed beyond the range of 45 degrees around the optical axis.
  • a lens unit according to a twelfth aspect of the present disclosure is the lens unit according to any one of the first to eleventh aspects, wherein a plurality of lenses are arranged along the optical axis direction inside the lens barrel.
  • the lens barrel may be provided with an inner wall and an outer wall for a plurality of lenses.
  • the optical characteristics can be favorably maintained for a plurality of lenses even when the external temperature is increased.
  • a lens unit according to a thirteenth aspect of the present disclosure is the lens unit according to the twelfth aspect, wherein the plurality of lenses have different outer diameters, and the inner peripheral surface of the lens barrel is an object according to the outer diameter of the lens.
  • the diameter is increased or decreased from the side toward the image side, and a plurality of hollow portions may be provided at different positions in the radial direction of the lens barrel.
  • the force from the lens barrel acting on each lens can be made the same level.
  • the lens unit according to the fourteenth aspect of the present disclosure is the lens unit according to any one of the first aspect to the thirteenth aspect, and the lens unit may be a vehicle-mounted or monitoring lens unit.
  • the lens unit according to the fourteenth aspect of the present disclosure in a lens unit used in an environment where it is likely to be exposed to high temperatures and it is difficult to maintain imaging performance, such as a monitoring camera or a vehicle-mounted camera.
  • performance degradation can be reduced.
  • FIG. 1 is an overall configuration diagram of a lens unit according to an exemplary embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a cut surface cut along line 2-2 in FIG. It is sectional drawing corresponding to FIG. 2 at the time of thermal expansion. It is an expanded sectional view of a lens barrel showing the 1st modification of a lens unit concerning an exemplary embodiment. It is an expanded sectional view of a lens barrel showing the 2nd modification of a lens unit concerning an exemplary embodiment. It is sectional drawing corresponding to FIG. 2 which shows the 3rd modification of the lens unit which concerns on exemplary embodiment. It is sectional drawing corresponding to FIG. 2 which shows the 4th modification of the lens unit which concerns on exemplary embodiment. It is sectional drawing corresponding to FIG. 2 which shows the 5th modification of the lens unit which concerns on exemplary embodiment.
  • the imaging device 100 includes a lens unit 10 and an imaging module 110.
  • the imaging module 110 includes an imaging element 112 such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
  • the imaging element 112 is provided at an imaging point of the optical system of the lens unit 10. Be placed.
  • the imaging module 110 is supported by a holder (not shown), and this holder is attached to the lens unit 10.
  • the lens unit 10 includes an optical system including a plurality of lenses and a lens barrel 50 that houses the optical system.
  • the optical system includes a first lens 12, a second lens 14, a third lens 16, a fourth lens 18, and a fifth lens 20 arranged in order from the object side (incident side).
  • the first lens 12 is disposed on the most object side, and includes a lens part 12A having an optical surface and a peripheral part 12B that constitutes the outer peripheral part of the lens part 12A.
  • the first lens 12 is a glass lens formed of glass, and the object side surface of the lens portion 12A is curved so as to be convex toward the object side. Further, the first lens 12 is formed with a step so that the image side (imaging module 110 side) is smaller in diameter than the object side, and the large-diameter portion on the object side in the peripheral edge portion 12B is formed on the lens barrel 50. It is in contact with the inner peripheral surface.
  • an O-ring 22 that is a sealing material is disposed around the small-diameter portion on the image side in the peripheral portion 12B.
  • the O-ring 22 seals between the small diameter portion of the peripheral edge portion 12B and the inner peripheral surface of the lens barrel 50.
  • the second lens 14 is disposed on the image side of the first lens 12 with a space coaxially with the first lens 12.
  • the second lens 14 is a glass lens similar to the first lens 12, and includes a lens portion 14A having an optical surface and a peripheral portion 14B constituting the outer peripheral portion of the lens portion 14A.
  • the second lens 14 has a smaller outer diameter than the first lens 12. Specifically, the outer diameter of the second lens 14 is smaller than the large diameter portion of the first lens 12 and larger than the small diameter portion of the first lens 12.
  • the image side surface of the lens portion 14 ⁇ / b> A is curved so as to be convex toward the image side, and the peripheral portion 14 ⁇ / b> B is in contact with the inner peripheral surface of the lens barrel 50.
  • the third lens 16 is arranged on the image side of the second lens 14 with a space coaxially with the second lens 14.
  • the third lens 16 is a resin lens made of resin, and has the same outer diameter as that of the second lens 14.
  • the third lens 16 includes a lens portion 16A having an optical surface and a peripheral edge portion 16B constituting the outer peripheral portion of the lens portion 16A, and the object side surface of the lens portion 16A is convex toward the object side. It is curved to be. Further, the peripheral edge portion 16 ⁇ / b> B of the third lens 16 is in contact with the inner peripheral surface of the lens barrel 50.
  • a fourth lens 18 is disposed coaxially with the third lens 16 on the image side of the third lens 16.
  • the fourth lens 18 is a resin lens made of resin, and is formed with an outer diameter substantially the same as that of the third lens 16.
  • the fourth lens 18 includes a lens portion 18A having an optical surface and a peripheral edge portion 18B that constitutes the outer peripheral portion of the lens portion 18A.
  • the lens portion 18A is curved so that both the object side surface and the image side surface are convex.
  • the peripheral edge portion 18B of the fourth lens 18 is in contact with the peripheral edge portion 16B of the third lens 16 in the optical axis direction, and is in contact with the inner peripheral surface of the lens barrel 50.
  • the fifth lens 20 is arranged on the image side of the fourth lens 18 with a space coaxially with the fourth lens 18.
  • the fifth lens 20 is a resin lens made of resin and has a smaller outer diameter than the third lens 16 and the fourth lens 18.
  • the fifth lens 20 includes a lens portion 20A having an optical surface and a peripheral portion 20B that constitutes the outer peripheral portion of the lens portion 20A.
  • the object side surface of the lens unit 20A is curved so as to be convex toward the object side. Further, the peripheral edge portion 20 ⁇ / b> B of the fifth lens 20 is in contact with the inner peripheral surface of the lens barrel 50.
  • a first spacing ring 24 is disposed between the first lens 12 and the second lens 14, and a second spacing ring 26 is disposed between the second lens 14 and the third lens 16.
  • the third spacing ring 30 is disposed between the fourth lens 18 and the fifth lens 20.
  • the first spacing ring 24 is formed in a substantially annular shape, and the outer peripheral surface is in contact with the inner peripheral surface of the lens barrel 50. Further, an opening 24A is formed on the object side of the first spacing ring 24, and the hole wall of the opening 24A is formed in a tapered shape so as to be positioned radially inward from the object side toward the image side. ing. On the other hand, an opening 24B having a smaller diameter than the opening 24A is formed on the image side of the first spacing ring 24. The hole wall of the opening 24B is formed in a tapered shape so as to be positioned radially inward from the object side toward the image side. Furthermore, the end of the first spacing ring 24 on the object side is in contact with the peripheral edge 12B of the first lens 12, and the end of the first spacing ring 24 on the image side is the peripheral edge of the second lens 14. 14B.
  • the second spacing ring 26 is formed in a substantially annular shape, and the outer peripheral surface is in contact with the inner peripheral surface of the lens barrel 50. Moreover, the opening part 26A is formed in the 2nd space
  • the end of the second spacing ring 26 on the object side is in contact with the peripheral edge 14 ⁇ / b> B of the second lens 14, and the end of the second spacing ring 26 on the image side is the peripheral edge of the third lens 16. It is in contact with 16B.
  • the third spacing ring 30 is formed in a substantially annular shape, and the outer peripheral surface is in contact with the inner peripheral surface of the lens barrel 50. Further, an opening 30 ⁇ / b> A is formed in the third spacing ring 30.
  • the hole wall of the opening 30A extends along the optical axis direction, and the image side of the hole wall is reduced in diameter in the radial direction. Further, the end of the third spacing ring 30 on the object side is in contact with the peripheral edge 18B of the fourth lens 18, and the end of the third spacing ring 30 on the image side is the peripheral edge of the fifth lens 20. It is in contact with 20B.
  • the optical system of the lens unit 10 is configured as described above, and the position of each lens in the optical axis direction is determined by the first spacing ring 24, the second spacing ring 26, and the third spacing ring 30.
  • the lens barrel 50 of the present exemplary embodiment is formed in a substantially cylindrical shape with both ends opened, and is formed by resin molding.
  • a bottom portion 52 that extends radially inward from the inner peripheral surface of the lens barrel 50 is provided at the end of the lens barrel 50 on the image side.
  • a through hole 50A having an optical aperture function is formed in the bottom portion 52, and the peripheral portion 20B of the fifth lens 20 is in contact with the object side surface of the bottom portion 52.
  • the lens barrel 50 may be made of polyphenylene sulfide containing glass fiber and an inorganic filler.
  • the mechanical strength is increased.
  • the resin used include polyamide, polyacetal, polycarbonate, polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyethylene, syndiotactic polystyrene, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyamideimide, and polyether.
  • the fiber glass fiber, carbon fiber, fiber reinforced plastic, inorganic filler, or the like can be used.
  • the above resin material such as fiber reinforced plastic may contain glass fiber, carbon fiber, inorganic filler or the like, if necessary.
  • a fiber reinforced plastic lens barrel containing glass fiber or the like a lens barrel with higher mechanical strength can be obtained.
  • the lens barrel is required to have high light-shielding properties and light-absorbing properties.
  • the resin used is preferably black, and the resin material preferably contains a black pigment or a black dye.
  • the inner wall surface of the lens barrel can be made black, and reflection of visible light on the inner wall surface of the lens barrel can be more effectively suppressed. .
  • a crimping portion 50B is formed at the end of the lens barrel 50 on the object side.
  • the caulking portion 50B is formed by heat caulking the end of the lens barrel 50 on the object side, and the caulking portion 50B prevents the optical system components from being detached from the lens barrel 50.
  • an opening 50C through which light is incident is formed at the center portion of the crimping portion 50B.
  • the lens barrel 50 includes a first step portion 58, a second step portion 56, and a third step portion 54 in order from the object side, and the inner portion of the lens barrel 50 at the boundary portion of each step portion.
  • a step is formed on the peripheral surface.
  • the first step portion 58 is formed from the end of the lens barrel 50 on the object side to the position of the second lens 14, and the inner diameter of the lens barrel 50 is the largest.
  • the first step portion 58 is formed in a circular shape or a polygonal shape as viewed from the optical axis direction, and the peripheral portion 12B of the first lens 12 is formed on the inner peripheral surface of the lens barrel 50 in the first step portion 58. It is in contact.
  • the second step portion 56 is formed from the position of the second lens 14 to the position of the fifth lens 20, and the inner diameter of the lens barrel 50 is smaller than that of the first step portion 58. Further, the inner peripheral surface of the lens barrel 50 in the second step portion 56 is formed in a substantially octagonal shape as viewed from the optical axis direction, as shown in FIG. Specifically, the inner peripheral surface of the lens barrel 50 in the second step portion 56 is formed by connecting the eight flat surfaces forming the sides of the octagon and the adjacent flat surfaces (the corner portions in FIG. 2). ).
  • a plurality of peripheral edges 14B of the second lens 14, peripheral edges 16B of the third lens 16, and peripheral edges 18B of the fourth lens 18 are provided on the inner peripheral surface of the lens barrel 50 in the second step portion 56 in the circumferential direction. It touches at the place.
  • reference numeral 16 ⁇ / b> C in FIG. 2 is a gate portion formed in the third lens 16.
  • the third step portion 54 is formed from the position of the fifth lens 20 to the bottom portion 52, and the inner diameter of the lens barrel 50 is smaller than that of the second step portion 56. Further, the inner peripheral surface of the lens barrel 50 in the third step portion 54 is formed in a substantially octagonal shape when viewed from the optical axis direction, like the second step portion 56, and the lens barrel 50 in the third step portion 54.
  • the peripheral edge portion 20B of the fifth lens 20 is in contact with the inner peripheral surface at a plurality of locations in the circumferential direction.
  • the inner peripheral surface of the lens barrel 50 is reduced in diameter from the object side toward the image side. Yes.
  • Each part is press-fitted into the lens barrel 50 in the order of twelve, and then the object-side end portion of the lens barrel 50 is thermally crimped.
  • a spacer or the like as a light shielding plate may be arranged.
  • the lens barrel 50 is provided with a plurality of hollow portions 60.
  • the cavity 60 of the exemplary embodiment is in the direction of the optical axis from the image-side end of the lens barrel 50 to a position between the third lens 16 and the second lens 14 (position of the second spacing ring 26). Is extended along.
  • the third lens 16 is in contact with the second step portion 56 (inner peripheral surface) of the lens barrel 50 at a plurality of locations, and as an example in the present exemplary embodiment, at eight locations. It is in contact.
  • the cavity portion 60 is provided on the outer side in the radial direction of the contact portion P with the third lens 16 in the lens barrel 50.
  • eight cavity portions 60 are provided when viewed from the optical axis direction. It has been.
  • the lens barrel 50 includes an inner wall 62 and an outer wall 64 that are opposed to each other in the radial direction across the cavity 60. In other words, the cavity 60 is provided between the inner wall 62 and the outer wall 64.
  • the inner walls 62 are provided so as to be rotationally symmetric about the optical axis S, and are provided at equal intervals around the optical axis S when viewed from the optical axis direction. Further, the eight hollow portions 60 are formed in substantially the same shape, and the length from the optical axis S to each hollow portion 60 is also substantially the same. For this reason, the pair of inner walls 62 facing each other with the optical axis S interposed therebetween have the same radial thickness.
  • the relationship between the thickness of the inner wall 62 and the thickness of the outer wall 64 is such that the outer wall 64 is thicker in the radial direction than the inner wall 62.
  • the thickness T3 of the outer wall 64 is formed to be thicker than the thickness T1 of the inner wall 62 on the imaginary line connecting the optical axis S (center of the lens barrel 50) and the contact portion P.
  • the radial thickness of the outer wall 64 is formed to be thicker than the radial interval between the inner wall 62 and the outer wall 64.
  • the thickness T3 of the outer wall 64 is the radial distance between the inner wall 62 and the outer wall 64 (the diameter of the cavity 60). (Width in the direction) is formed thicker than T2.
  • the hollow portion 60 is provided within a predetermined range of 45 degrees around the optical axis S. Specifically, a cavity is formed in a region between the imaginary line L1 and the imaginary line L2 that is extended so as to pass through the corner of the inner peripheral surface of the lens barrel 50 at an interval of 45 degrees from the optical axis S when viewed from the optical axis direction. A portion 60 is provided. Furthermore, the cavity 60 is closed by the inner wall 62 and the outer wall 64 when viewed from the optical axis direction. That is, the communication hole etc. which connect with the cavity part 60 are not formed in the inner wall 62 and the outer wall 64 seeing from the optical axis direction, but the cavity part 60 is obstruct
  • the mold part corresponding to the lens housing portion and the mold part corresponding to the cavity 60 are slid from the image side from the image side.
  • the cavity 60 is formed.
  • a common cavity 60 is also provided on the radially outer side of the contact portion between the fourth lens 18 and the lens barrel 50, and the radially outer side of the contact portion between the fifth lens 20 and the lens barrel 50 is provided.
  • a common cavity 60 is provided. That is, the lens barrel 50 is provided with an inner wall 62 and an outer wall 64 for a plurality of lenses (see FIG. 1).
  • a plurality of circumferential locations in the lens barrel 50 are opposed to the inner wall 62 and the inner wall 62 in the radial direction across the cavity 60 and more than the inner wall 62.
  • an outer wall 64 having a large radial thickness that is, in the exemplary embodiment, the cavity 60 is provided on the outer side in the radial direction from the contact portion P with the third lens 16 in the lens barrel 50.
  • the cavity 60 is located between the inner wall 62 and the outer wall 64.
  • the third lens 16 that is a resin lens is more thermally expanded than the lens barrel 50, a radially outward force acts on the inner wall 62 of the lens barrel 50 from the third lens 16.
  • the reaction force acting on the third lens 16 from the inner wall 62 due to the inner wall 62 being bent and deformed toward the cavity 60 is reduced. That is, the force from the third lens 16 is absorbed.
  • the fourth lens 18 and the fifth lens 20 are also provided with the inner wall 62, so that deformation of the lens due to thermal expansion can be suppressed. That is, this exemplary embodiment can maintain good optical characteristics for a plurality of lenses even when the external temperature is increased.
  • the outer wall 64 is formed to have a greater radial thickness than the inner wall 62. This ensures the strength of the outer wall 64 as compared with the case where the radial thickness T3 of the outer wall 64 is the same as the radial thickness T1 of the inner wall 62 or thinner than the radial thickness T1 of the inner wall 62. Can do. As described above, this exemplary embodiment can ensure the strength of the lens barrel 50 while maintaining good optical characteristics.
  • the outer wall 64 is formed to be thicker in the radial direction than the radial interval T2 between the inner wall 62 and the outer wall 64.
  • this exemplary embodiment can improve the intensity
  • the lens unit 10 can be used for various purposes.
  • the plurality of cavities 60 are provided rotationally symmetrically about the optical axis S, and the pair of inner walls 62 opposed across the optical axis S have the same thickness in the radial direction. It is said that.
  • this exemplary embodiment can cancel the force that the third lens 16 receives from the lens barrel 50, and can suppress the center of the optical axis of the third lens 16 from deviating.
  • a resin lens is used for at least one of the lenses constituting the lens unit 10 (the third lens 16, the fourth lens 18, and the fifth lens 20).
  • this exemplary embodiment can improve a moldability compared with a glass lens, and can raise a design freedom.
  • this exemplary embodiment can reduce cost rather than the case where all the lenses are made of glass.
  • the third lens 16 is in contact with the eight inner walls 62 as viewed from the optical axis direction.
  • this exemplary embodiment can improve the positional accuracy when the lens is assembled to the lens barrel 50 as compared with the case where the third lens 16 is in contact with two or less inner walls 62.
  • the contact portion P between the third lens 16 and the lens barrel 50 becomes a flat surface. For this reason, in this exemplary embodiment, surface projection is easier than in the case where the lens is held by a curved surface like a lens barrel having a circular inner peripheral surface, and dimensional accuracy is easily improved.
  • the inner wall is compared with the structure in which the cavity 60 is opened to the inner wall 62 side.
  • the strength of 62 can be increased.
  • the strength of the outer wall 64 can be increased as compared with the structure in which the hollow portion 60 is opened to the outer wall 64 side.
  • the cavity 60 is formed within a predetermined range of 45 degrees around the optical axis S, the cavity 60 does not become too large, and the strength of the inner wall 62 and the outer wall 64 is increased. It can be improved effectively.
  • the shape of the cavity may be different as in the first modified example illustrated in FIG. 4 or the second modified example illustrated in FIG. 5.
  • the shape of the inner peripheral surface of the lens barrel may be different as in the third modified example shown in FIG. 6 and the fourth modified example shown in FIG.
  • the same reference numerals are given to the same configurations as those of the exemplary embodiment, and description thereof will be omitted as appropriate.
  • the lens barrel 50 constituting the lens unit 65 according to the first modification includes a first step portion (not shown), a second step portion 56, and a third step, as in the exemplary embodiment.
  • Part 54. 4 and 5 only a part of the lens barrel 50 is shown for convenience of explanation, and illustration of the lens is omitted. Further, only one side from the optical axis S in the cross section of the lens barrel 50 is shown, and the other side from the optical axis S is not shown.
  • a hollow portion 66 is formed in the second step portion 56 and the third step portion 54.
  • the cavity portion 66 extends along the optical axis direction, and includes a wide portion 66A on the image side and a narrow portion 66B on the object side.
  • the wide width portion 66A and the narrow width portion 66B are formed continuously in the optical axis direction, and the narrow width portion 66B is formed with the same width in the radial direction as the cavity portion 60 of the exemplary embodiment.
  • the wide portion 66A is formed from the boundary portion between the second step portion 56 and the third step portion 54 to the bottom portion (not shown) of the lens barrel 50, and has a larger radial width than the narrow width portion 66B. Is formed. Specifically, the wide portion 66 ⁇ / b> A is formed wider on the inner side by the level difference located at the boundary portion between the second step portion 56 and the third step portion 54.
  • the thickness of the inner wall 62 and the outer wall 64 is set to the optical axis. Can be constant in direction.
  • the lens barrel 50 constituting the lens unit 67 according to the second modification includes a first step portion (not shown), a second step portion 56, and a third step as in the exemplary embodiment. Part 54.
  • a plurality of cavities are provided at different positions in the radial direction of the lens barrel 50.
  • a first cavity portion 70 is formed in the second step portion 56
  • a second cavity portion 68 is formed in the third step portion 54.
  • the first cavity portion 70 is formed from the boundary portion between the second step portion 56 and the third step portion 54 to the boundary portion between the first step portion and the second step portion 56.
  • the second cavity portion 68 is formed from the boundary portion between the second step portion 56 and the third step portion 54 to the bottom portion (not shown) of the lens barrel 50. Further, the second cavity portion 68 is formed on the radially inner side with respect to the first cavity portion 70.
  • the inner wall 62 inside the first cavity portion 70 and the inner wall 62 inside the second cavity portion 68 have the same thickness in the radial direction. That is, the radial thickness of the inner wall 62 with which one lens abuts is the same as the radial thickness of the inner wall 62 with which another lens with a different outer diameter abuts.
  • the inner wall 62 can be made constant in the optical axis direction.
  • the outer wall 64 in the third step portion 54 can be formed thicker than in the first modification.
  • the first cavity portion 70 and the second cavity portion 68 may be formed by sliding the mold portions corresponding to the first cavity portion 70 and the second cavity portion 68 when the lens barrel 50 is injection molded. it can.
  • the lens barrel 74 constituting the lens unit 72 according to the third modified example is provided with eight hollow portions 60 as in the exemplary embodiment.
  • the third lens 16 is disposed inside the lens barrel 74, and the third lens 16 and the lens barrel 74 are in contact with each other at eight contact portions P.
  • the eight flat surfaces forming each side of the inner peripheral surface of the lens barrel 74 are curved surfaces that protrude radially inward. For this reason, the inner wall 62 inside the cavity 60 is bulged radially inward.
  • Other configurations are the same as those of the exemplary embodiment, and this modification has the same effects as those of the exemplary embodiment.
  • the lens barrel 76 constituting the lens unit 75 is provided with eight inner walls 82, and these inner walls 82 are centered on the optical axis S. As rotationally symmetric.
  • Each of the inner walls 82 is formed to be shorter in the circumferential direction than the inner wall 62 of the above exemplary embodiment, and is curved in a surface contact with the third lens 16 by being recessed radially outward when viewed from the optical axis direction. It has a surface.
  • the third lens 16 is disposed inside the lens barrel 76, and the third lens 16 is in contact with the contact portions P respectively set on the eight inner walls 82.
  • the cavity portion 78 is provided on the radially outer side of the contact portion P, and is located between the inner wall 82 and the outer wall 84.
  • the relationship of the radial thickness of the inner wall 82 and the outer wall 84 is the same as that of the above exemplary embodiment.
  • the inner peripheral surface of the lens barrel 76 is configured to include a plurality (eight) curved surfaces curved outward in the radial direction and eight concave portions 80 formed between adjacent flat surfaces. . More specifically, the curved surfaces constituting the inner peripheral surface of the lens barrel 76 are provided at equal intervals around the optical axis S, and constitute the radially inner surface of the inner wall 82. The eight curved surfaces are formed with the same length as viewed from the optical axis direction. The third lens 16 is in contact with this curved surface.
  • the recess 80 is formed by denting a portion between adjacent flat surfaces outward in the radial direction.
  • Other configurations are the same as those in the exemplary embodiment.
  • the contact area with the lens can be increased as compared with the configuration in which the lens is received with a point as in the above exemplary embodiment.
  • Others have the same effects as the above exemplary embodiment.
  • a filler 92 is filled in the hollow portion 60 of the lens barrel 50 constituting the lens unit 90.
  • the filler 92 is formed of a material having a Young's modulus lower than that of the material constituting the lens barrel 50.
  • the filler 92 can be selected from the same material group as the lens barrel 50. Moreover, the Young's modulus and the linear expansion coefficient of the filler 92 can be adjusted by changing the ratio of the inorganic substance contained in the resin or changing the resin.
  • the amount of bending deformation of the inner wall 62 can be limited by the filler 92. That is, the amount of flexural deformation of the inner wall 62 is small as compared to a structure in which nothing is filled in the cavity 60 (a structure containing air) as in the exemplary embodiment. As a result, even when the inner wall 62 is formed thin, it is possible to prevent the inner wall 62 from being broken due to a large amount of deformation of the inner wall 62 during thermal expansion.
  • this indication is not limited to the above-mentioned exemplary embodiment and modification, and can change variously in the range which does not deviate from a gist.
  • the third lens 16, the fourth lens 18, and the fifth lens 20 are resin lenses, but the present invention is not limited thereto, and glass lenses may be used.
  • the third lens 16 is a glass lens
  • the thermal expansion of the lens barrel 50 is larger than that of the third lens 16. For this reason, when the external temperature rises, the holding force of the third lens 16 decreases, and the inner wall 62 bulges toward the third lens 16, so that the contact portion P between the lens barrel 50 and the third lens 16. It is possible to suppress a change in force acting on the.
  • the linear expansion coefficient is higher than the material constituting the lens barrel 50 in the cavity portion 60 of the fifth modification shown in FIG. 8 instead of the filler 92.
  • a filler may be filled.
  • the filler filled in the cavity portion 60 is thermally expanded, so that the inner wall 62 of the lens barrel 50 is further bulged toward the third lens 16, and the third lens 16 is displaced from the optical axis, resulting in optical characteristics. The change can be suppressed.
  • the present invention is not limited to this.
  • the inner peripheral surface of the lens barrel 50 may be a hexagon or more and nine or more contact portions P may be provided.
  • the gate portion 16 ⁇ / b> C is positioned between adjacent flat surfaces, but the third lens is positioned so that the gate portion 16 ⁇ / b> C is positioned at a position facing the flat surface. If 16 is arranged, there will be seven contact portions P. Even in this case, there is an effect of suppressing the change of the optical characteristics due to the deformation of the third lens 16 and the optical axis deviation at the time of thermal expansion.
  • the inner peripheral surface of the lens barrel 50 is reduced in diameter as it goes from the object side to the image side.
  • the present invention is not limited thereto, and the inner peripheral surface of the lens barrel 50 is the object.
  • the diameter may be increased from the side toward the image side. In this case, a lens having a larger outer diameter on the image side than on the object side is disposed.
  • the inner peripheral surface of the lens barrel 50 is connected to the eight flat surfaces forming the sides of the octagon and the adjacent flat surfaces.
  • (Corner part) It comprised, but it is not limited to this. For example, it is good also as a structure which connected between the adjacent flat surfaces by the substantially circular arc-shaped connection part. In this case, stress concentration can be suppressed as compared with a configuration in which the connecting portion is a corner portion.
  • the shape of the cavity 60 is formed in a substantially rectangular shape when viewed from the optical axis direction, but is not limited thereto.
  • the cavity 60 may be formed in a substantially oval shape or a substantially oval shape when viewed from the optical axis direction.
  • the radial thickness of the inner wall in the present disclosure is the thickness of the inner wall on the imaginary line connecting the optical axis S and the contact portion P.
  • the “thickness in the radial direction of the outer wall” in the present disclosure is the thickness of the outer wall on an imaginary line connecting the optical axis S and the contact portion P.
  • the “radial distance between the inner wall and the outer wall” in the present disclosure is the width of the hollow portion 60 on the imaginary line connecting the optical axis S and the contact portion P.
  • the hollow portion 60 is provided on the radially outer side of all the contact portions P, but the present invention is not limited to this.
  • four cavities 60 may be provided at intervals of 90 degrees around the optical axis S when viewed from the optical axis direction, and the cavities 60 may be appropriately formed according to the strength against external force required for the lens barrel 50. The size and number may be changed.
  • the cavity 60 is closed by the inner wall 62 and the outer wall 64 when viewed from the optical axis direction, but is not limited thereto.
  • a communication hole that communicates with the cavity 60 may be provided in the inner wall 62.
  • the inner wall 62 is cantilevered when viewed from the optical axis direction.
  • a structure in which the cavity 60 is closed is preferable from the viewpoint of securing the strength of the inner wall 62.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

Provided is a lens unit having: a resin lens barrel formed cylindrically and configured such that a plurality of locations in the circumferential direction thereof includes an inner wall and an outer wall that faces the inner wall in the radial direction, having a cavity interposed therebetween, and is thicker in the radial direction than the inner wall; and a lens coming in contact with the plurality of inner walls and fitting to the lens barrel.

Description

レンズユニットLens unit
 本開示は、レンズユニットに関する。 This disclosure relates to a lens unit.
 特許第4847020号公報、及び特許第5406165号公報には、プラスチック(樹脂)製の複数のレンズを多角形状の内周面を有するプラスチック(樹脂)製の鏡筒内に圧入したレンズユニットが開示されている。一方、特開2006-198763号公報には、レンズなどの部品を保持するホルダとして、弾性変形可能な支持部材を備えたホルダが開示されている。また、特許第4684010号公報には、鏡筒の外周部を凹ませて薄肉部を形成し、この薄肉部でレンズを保持した構造が開示されている。 Japanese Patent Nos. 4847020 and 5406165 disclose a lens unit in which a plurality of plastic (resin) lenses are press-fitted into a plastic (resin) lens barrel having a polygonal inner peripheral surface. ing. On the other hand, Japanese Patent Application Laid-Open No. 2006-198763 discloses a holder having a support member that can be elastically deformed as a holder for holding a component such as a lens. Japanese Patent No. 4668410 discloses a structure in which the outer peripheral portion of the lens barrel is recessed to form a thin portion, and the lens is held by this thin portion.
 特許第4847020号公報、及び特許第5406165号公報に開示された技術のように、低コスト化や成形性などの観点から樹脂製の鏡筒が用いられることがある。ここで、外部温度の上昇時には、鏡筒とレンズとの線膨張率(熱膨張率)の違いによって、鏡筒とレンズとの当接部に作用する力が変化し、光学特性を良好に維持するのが困難となる可能性がある。この対策として、特開2006-198763号公報のように弾性変形可能な支持部材を採用した構造や、特許第4684010号公報のように薄肉部によってレンズを保持する構造が考えられる。しかしながら、これらは、鏡筒に作用する外力に対する強度を確保する観点から改善の余地がある。 As in the technique disclosed in Japanese Patent No. 4847020 and Japanese Patent No. 5406165, a resin barrel may be used from the viewpoint of cost reduction and moldability. Here, when the external temperature rises, the force acting on the contact part between the lens barrel and the lens changes due to the difference in the linear expansion coefficient (thermal expansion coefficient) between the lens barrel and the lens, and the optical characteristics are maintained well. Can be difficult to do. As countermeasures, a structure using a support member that can be elastically deformed as disclosed in Japanese Patent Application Laid-Open No. 2006-198763, or a structure in which a lens is held by a thin portion as disclosed in Japanese Patent No. 4668410 is conceivable. However, these have room for improvement from the viewpoint of securing strength against external force acting on the lens barrel.
 本開示は、外部温度の上昇時であっても光学特性を良好に維持しつつ、鏡筒の強度を確保できるレンズユニットを提供する。 The present disclosure provides a lens unit capable of ensuring the strength of the lens barrel while maintaining good optical characteristics even when the external temperature is increased.
 本開示の第1態様は、レンズユニットであって、筒状に形成され、周方向の複数カ所が、内壁と、内壁に対し空洞部を挟んで径方向に対向しかつ内壁よりも径方向の厚みが厚い外壁とを含んで構成された樹脂製の鏡筒と、複数の内壁に当接して鏡筒に嵌合されたレンズと、を有する。 A first aspect of the present disclosure is a lens unit, which is formed in a cylindrical shape, and a plurality of circumferential positions are opposed to the inner wall and the inner wall in a radial direction with a hollow portion interposed therebetween and are more radial than the inner wall. And a lens barrel made of resin including a thick outer wall, and a lens fitted in the lens barrel in contact with the plurality of inner walls.
 本開示の第1態様に係るレンズユニットによれば、鏡筒における周方向の複数カ所が、内壁と、内壁に対し空洞部を挟んで径方向に対向しかつ内壁よりも径方向の厚みが厚い外壁とを含んで構成されている。これにより、第1態様に係るレンズユニットは、熱膨張時にレンズと当接している鏡筒の内壁が撓み変形し、鏡筒とレンズとの当接部に作用する力の変化を抑制することができる。この結果、第1態様に係るレンズユニットは、外部温度の上昇時であっても光学特性の変化を抑制することができる。 According to the lens unit according to the first aspect of the present disclosure, the plurality of circumferential positions in the lens barrel are opposed to the inner wall and the inner wall in the radial direction with the hollow portion interposed therebetween, and are thicker in the radial direction than the inner wall. It is comprised including an outer wall. As a result, the lens unit according to the first aspect suppresses a change in the force acting on the contact portion between the lens barrel and the lens by bending and deforming the inner wall of the lens barrel that is in contact with the lens during thermal expansion. it can. As a result, the lens unit according to the first aspect can suppress changes in optical characteristics even when the external temperature is increased.
 また、第1態様に係るレンズユニットでは、外壁の径方向の厚みは、内壁の径方向の厚みよりも厚い。これにより、第1態様に係るレンズユニットでは、外壁の径方向の厚みが内壁の径方向の厚みと同じか、あるいは外壁の径方向の厚みが内壁の径方向の厚みよりも薄い場合と比較して、鏡筒の強度を確保することができる。 Further, in the lens unit according to the first aspect, the radial thickness of the outer wall is thicker than the radial thickness of the inner wall. Thereby, in the lens unit according to the first aspect, the radial thickness of the outer wall is the same as the radial thickness of the inner wall, or the radial thickness of the outer wall is smaller than the radial thickness of the inner wall. Thus, the strength of the lens barrel can be ensured.
 本開示の第2態様のレンズユニットは、第1態様のレンズユニットにおいて、外壁の径方向の厚みは、内壁と外壁との間の径方向の間隔よりも厚くてもよい。 In the lens unit according to the second aspect of the present disclosure, in the lens unit according to the first aspect, the radial thickness of the outer wall may be larger than the radial distance between the inner wall and the outer wall.
 本開示の第2態様に係るレンズユニットによれば、外壁の径方向の厚みが内壁と外壁との間の径方向の間隔(空洞部における径方向の幅)と同じか、あるいは外壁の径方向の厚みが空洞部における径方向の幅よりも薄い場合と比較して、鏡筒の強度を向上させることができる。 According to the lens unit according to the second aspect of the present disclosure, the radial thickness of the outer wall is the same as the radial interval between the inner wall and the outer wall (the radial width in the cavity), or the radial direction of the outer wall. Compared with the case where the thickness of the lens is thinner than the radial width of the cavity, the strength of the lens barrel can be improved.
 本開示の第3態様に係るレンズユニットは、第1態様又は第2態様に係るレンズユニットにおいて、内壁は、光軸を中心として回転対称に設けられていてもよい。 In the lens unit according to the third aspect of the present disclosure, in the lens unit according to the first aspect or the second aspect, the inner wall may be provided rotationally symmetrically about the optical axis.
 本開示の第3態様に係るレンズユニットによれば、レンズが鏡筒から受ける力を相殺することができ、レンズの光軸中心がずれるのを抑制することができる。 According to the lens unit according to the third aspect of the present disclosure, it is possible to cancel the force that the lens receives from the lens barrel, and to prevent the center of the optical axis of the lens from shifting.
 本開示の第4態様に係るレンズユニットは、第1態様~第3態様の何れか1つの態様に係るレンズユニットにおいて、レンズは、樹脂製の樹脂レンズであってもよい。 The lens unit according to the fourth aspect of the present disclosure may be a resin lens made of resin in the lens unit according to any one of the first to third aspects.
 本開示の第4態様に係るレンズユニットによれば、鏡筒よりも樹脂レンズの方が熱膨張が大きい。この場合、樹脂レンズが鏡筒側へ熱膨張するが、鏡筒の内壁が空洞部側へ撓み変形することで、鏡筒からレンズへ作用する反力が低減され、光学特性を良好に維持することができる。また、第4態様に係るレンズユニットでは、ガラス製のガラスレンズと比較して成形性を向上させることができ、設計自由度を高めることができ、かつ、ガラスレンズを用いた場合よりもコストを低減することができる。 According to the lens unit according to the fourth aspect of the present disclosure, the resin lens has a larger thermal expansion than the lens barrel. In this case, the resin lens is thermally expanded toward the lens barrel side, but the reaction force acting on the lens from the lens barrel is reduced and the optical characteristics are favorably maintained by bending and deforming the inner wall of the lens barrel toward the cavity side. be able to. Further, in the lens unit according to the fourth aspect, the moldability can be improved as compared with the glass lens made of glass, the degree of design freedom can be increased, and the cost is lower than when the glass lens is used. Can be reduced.
 本開示の第5態様に係るレンズユニットは、第4態様に係るレンズユニットにおいて、空洞部には、鏡筒よりもヤング率が低い材料からなる充填材が充填されていてもよい。 In the lens unit according to the fifth aspect of the present disclosure, in the lens unit according to the fourth aspect, the hollow portion may be filled with a filler made of a material having a Young's modulus lower than that of the lens barrel.
 本開示の第5態様に係るレンズユニットによれば、充填材によって内壁の撓み変形量を制限することができる。この結果、第5態様に係るレンズユニットでは、内壁を薄く形成した場合であっても、熱膨張時に内壁の撓み変形量が大きくなって内壁が破断するのを抑制することができる。 According to the lens unit according to the fifth aspect of the present disclosure, the amount of bending deformation of the inner wall can be limited by the filler. As a result, in the lens unit according to the fifth aspect, even when the inner wall is formed thin, it is possible to prevent the inner wall from breaking due to a large amount of deformation of the inner wall during thermal expansion.
 本開示の第6態様に係るレンズユニットは、第1態様~第3態様の何れか1つの態様に係るレンズユニットにおいて、レンズは、ガラス製のガラスレンズであり、空洞部には、鏡筒よりも線膨張率が高い充填材が充填されていてもよい。 A lens unit according to a sixth aspect of the present disclosure is the lens unit according to any one of the first aspect to the third aspect. The lens is a glass lens made of glass, and the hollow portion includes a lens barrel. Alternatively, a filler having a high linear expansion coefficient may be filled.
 本開示の第6態様に係るレンズユニットによれば、ガラスレンズよりも鏡筒の方が熱膨張が大きいため、ガラスレンズの保持力が低下する一方、鏡筒の内壁がガラスレンズ側へ膨出されるため、鏡筒とレンズとの当接部に作用する力の変化を抑制することができる。また、第6態様に係るレンズユニットでは、充填材が熱膨張することにより、内壁をガラスレンズ側へより膨出させることができ、ガラスレンズが光軸ずれして光学特性が変化するのを抑制できる。 According to the lens unit according to the sixth aspect of the present disclosure, since the thermal expansion of the lens barrel is larger than that of the glass lens, the holding power of the glass lens is reduced, while the inner wall of the lens barrel bulges to the glass lens side. Therefore, a change in force acting on the contact portion between the lens barrel and the lens can be suppressed. In the lens unit according to the sixth aspect, the inner wall can be further bulged toward the glass lens side due to the thermal expansion of the filler, and the optical characteristic is prevented from changing due to the optical axis shift of the glass lens. it can.
 本開示の第7態様に係るレンズユニットは、第1態様~第6態様の何れか1つの態様に係るレンズユニットにおいて、レンズは、光軸方向から見て三つ以上の内壁に当接されていてもよい。 A lens unit according to a seventh aspect of the present disclosure is the lens unit according to any one of the first to sixth aspects. The lens is in contact with three or more inner walls when viewed from the optical axis direction. May be.
 本開示の第7態様に係るレンズユニットによれば、光軸方向から見てレンズが二つ以下の内壁に当接している場合と比較して、鏡筒にレンズを組付ける際の位置精度を向上させることができる。 According to the lens unit according to the seventh aspect of the present disclosure, the positional accuracy when the lens is assembled to the lens barrel as compared with the case where the lens is in contact with two or less inner walls when viewed from the optical axis direction. Can be improved.
 本開示の第8態様に係るレンズユニットは、第1態様~第7態様の何れか1つの態様に係るレンズユニットにおいて、鏡筒の内周面は、多角形状であってもよい。 In the lens unit according to the eighth aspect of the present disclosure, in the lens unit according to any one of the first aspect to the seventh aspect, the inner peripheral surface of the barrel may be polygonal.
 本開示の第8態様に係るレンズユニットによれば、鏡筒を形成するための金型における内壁に対応する部位をそれぞれ別々に面出しすることができるため、レンズと当接する内壁の寸法精度を向上させやすい。 According to the lens unit according to the eighth aspect of the present disclosure, the portions corresponding to the inner wall of the mold for forming the lens barrel can be separately surfaced, so that the dimensional accuracy of the inner wall in contact with the lens can be increased. Easy to improve.
 本開示の第9態様に係るレンズユニットは、第1態様~第7態様の何れか1つの態様に係るレンズユニットにおいて、前記内壁における前記レンズとの当接部分には、光軸方向から見て前記鏡筒の径方向外側に窪んで前記レンズと面接触する湾曲面が形成されていてもよい。 A lens unit according to a ninth aspect of the present disclosure is the lens unit according to any one of the first to seventh aspects. The contact portion of the inner wall with the lens is viewed from the optical axis direction. A curved surface that is recessed radially outward of the lens barrel and that makes surface contact with the lens may be formed.
 本開示の第9態様に係るレンズユニットによれば、複数の湾曲面でレンズを受けることにより、レンズを点で受ける構成と比較して、レンズの外径の歪みに起因して生じる光軸ずれからの光特性不良を抑制することができる。 According to the lens unit according to the ninth aspect of the present disclosure, the optical axis shift caused by distortion of the outer diameter of the lens, by receiving the lens with a plurality of curved surfaces, as compared with the configuration in which the lens is received with a point. The optical characteristic defect from can be suppressed.
 本開示の第10態様に係るレンズユニットは、第1態様~第9態様の何れか1つの態様に係るレンズユニットにおいて、光軸方向から見て内壁及び外壁によって空洞部が閉じられていてもよい。 In the lens unit according to the tenth aspect of the present disclosure, in the lens unit according to any one of the first to ninth aspects, the cavity may be closed by the inner wall and the outer wall when viewed from the optical axis direction. .
 本開示の第10態様に係るレンズユニットによれば、空洞部が内壁側に開放された構造と比較して、内壁の強度を高めることができる。第10態様に係るレンズユニットは、また、空洞部が外壁側に開放された構造と比較して、外壁の強度を高めることができる。 According to the lens unit according to the tenth aspect of the present disclosure, the strength of the inner wall can be increased as compared with the structure in which the hollow portion is opened to the inner wall side. In the lens unit according to the tenth aspect, the strength of the outer wall can be increased as compared with the structure in which the cavity is open to the outer wall side.
 本開示の第11態様に係るレンズユニットは、第10態様に係るレンズユニットにおいて、空洞部は、光軸周りに45度の定められた範囲内に設けられていてもよい。 In the lens unit according to the eleventh aspect of the present disclosure, in the lens unit according to the tenth aspect, the cavity may be provided within a predetermined range of 45 degrees around the optical axis.
 本開示の第11態様に係るレンズユニットによれば、空洞部が光軸周りに45度の範囲を超えて形成された場合と比較して、内壁及び外壁の強度を向上させることができる。 According to the lens unit according to the eleventh aspect of the present disclosure, the strength of the inner wall and the outer wall can be improved as compared with the case where the cavity is formed beyond the range of 45 degrees around the optical axis.
 本開示の第12態様に係るレンズユニットは、第1態様~第11態様の何れか1つの態様に係るレンズユニットにおいて、鏡筒の内側には、光軸方向に沿って複数のレンズが配置されており、鏡筒には、複数のレンズに対して内壁及び外壁が設けられていてもよい。 A lens unit according to a twelfth aspect of the present disclosure is the lens unit according to any one of the first to eleventh aspects, wherein a plurality of lenses are arranged along the optical axis direction inside the lens barrel. The lens barrel may be provided with an inner wall and an outer wall for a plurality of lenses.
 本開示の第12態様に係るレンズユニットによれば、複数のレンズに対して、外部温度の上昇時であっても光学特性を良好に維持することができる。 According to the lens unit according to the twelfth aspect of the present disclosure, the optical characteristics can be favorably maintained for a plurality of lenses even when the external temperature is increased.
 本開示の第13態様に係るレンズユニットは、第12態様に係るレンズユニットにおいて、複数のレンズはそれぞれ異なる外径とされており、鏡筒の内周面は、レンズの外径に応じて物体側から像側へ向かうにつれて拡径又は縮径されており、鏡筒の径方向で異なる位置に複数の空洞部が設けられていてもよい。 A lens unit according to a thirteenth aspect of the present disclosure is the lens unit according to the twelfth aspect, wherein the plurality of lenses have different outer diameters, and the inner peripheral surface of the lens barrel is an object according to the outer diameter of the lens. The diameter is increased or decreased from the side toward the image side, and a plurality of hollow portions may be provided at different positions in the radial direction of the lens barrel.
 本開示の第13態様に係るレンズユニットによれば、外径が異なる複数のレンズを用いた場合であっても、それぞれのレンズに作用する鏡筒からの力を同程度にすることができる。 According to the lens unit according to the thirteenth aspect of the present disclosure, even when a plurality of lenses having different outer diameters are used, the force from the lens barrel acting on each lens can be made the same level.
 本開示の第14態様に係るレンズユニットは、第1態様~第13態様の何れか1つの態様に係るレンズユニットにおいて、レンズユニットは、車載用又は監視用のレンズユニットであってもよい。 The lens unit according to the fourteenth aspect of the present disclosure is the lens unit according to any one of the first aspect to the thirteenth aspect, and the lens unit may be a vehicle-mounted or monitoring lens unit.
 本開示の第14態様に係るレンズユニットによれば、監視用カメラや車載用カメラなどのように、高温に晒される可能性があって結像性能の維持が難しい環境下で用いられるレンズユニットにおいても、性能劣化を少なくできる。 According to the lens unit according to the fourteenth aspect of the present disclosure, in a lens unit used in an environment where it is likely to be exposed to high temperatures and it is difficult to maintain imaging performance, such as a monitoring camera or a vehicle-mounted camera. However, performance degradation can be reduced.
 本開示の上記態様によれば、外部温度の上昇時であっても光学特性を良好に維持しつつ、鏡筒の強度を確保することができるレンズユニットを提供できる。 According to the above aspect of the present disclosure, it is possible to provide a lens unit that can ensure the strength of the lens barrel while maintaining good optical characteristics even when the external temperature is increased.
例示的実施形態に係るレンズユニットの全体構成図である。1 is an overall configuration diagram of a lens unit according to an exemplary embodiment. 図1の2-2線で切断した切断面を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view of a cut surface cut along line 2-2 in FIG. 熱膨張時における図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 at the time of thermal expansion. 例示的実施形態に係るレンズユニットの第1変形例を示す、鏡筒の拡大断面図である。It is an expanded sectional view of a lens barrel showing the 1st modification of a lens unit concerning an exemplary embodiment. 例示的実施形態に係るレンズユニットの第2変形例を示す、鏡筒の拡大断面図である。It is an expanded sectional view of a lens barrel showing the 2nd modification of a lens unit concerning an exemplary embodiment. 例示的実施形態に係るレンズユニットの第3変形例を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the 3rd modification of the lens unit which concerns on exemplary embodiment. 例示的実施形態に係るレンズユニットの第4変形例を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the 4th modification of the lens unit which concerns on exemplary embodiment. 例示的実施形態に係るレンズユニットの第5変形例を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the 5th modification of the lens unit which concerns on exemplary embodiment.
 以下、図面を参照しながら本開示に係る例示的実施形態を説明する。なお、図面において同一機能を有する構成要素には同一符号を付し、説明を適宜省略する。また、各図において適宜示されるSは、光軸を示すものであり、光軸Sに沿った方向を光軸方向と記載する。 Hereinafter, exemplary embodiments according to the present disclosure will be described with reference to the drawings. In the drawings, components having the same function are denoted by the same reference numerals, and description thereof will be omitted as appropriate. Moreover, S shown suitably in each figure shows an optical axis, and the direction along the optical axis S is described as an optical axis direction.
 図1に示されるように、撮像装置100は、レンズユニット10と、撮像モジュール110とを含んで構成されている。撮像モジュール110は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやCCD(Charge Coupled Device)イメージセンサなどの撮像素子112を備えており、この撮像素子112は、レンズユニット10の光学系の結像点に配置される。また、撮像モジュール110は、ホルダ(図示せず)に支持されており、このホルダがレンズユニット10に取り付けられる。 As shown in FIG. 1, the imaging device 100 includes a lens unit 10 and an imaging module 110. The imaging module 110 includes an imaging element 112 such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor. The imaging element 112 is provided at an imaging point of the optical system of the lens unit 10. Be placed. The imaging module 110 is supported by a holder (not shown), and this holder is attached to the lens unit 10.
(レンズユニットの全体構成)
 本例示的実施形態に係るレンズユニット10は、複数のレンズを含む光学系と、光学系を収容する鏡筒50とを含んで構成されている。光学系は、物体側(入射側)から順に、第1レンズ12、第2レンズ14、第3レンズ16、第4レンズ18及び第5レンズ20が配置されて構成されている。
(Entire configuration of lens unit)
The lens unit 10 according to the present exemplary embodiment includes an optical system including a plurality of lenses and a lens barrel 50 that houses the optical system. The optical system includes a first lens 12, a second lens 14, a third lens 16, a fourth lens 18, and a fifth lens 20 arranged in order from the object side (incident side).
 第1レンズ12は、最も物体側に配置されており、光学面を有するレンズ部12Aと、レンズ部12Aの外周部を構成する周縁部12Bとを備えている。また、第1レンズ12は、ガラスによって形成されたガラスレンズであり、レンズ部12Aの物体側の面は、物体側に凸となるように湾曲されている。さらに、第1レンズ12には、物体側よりも像側(撮像モジュール110側)が小径となるように段差が形成されており、周縁部12Bにおける物体側の大径部は、鏡筒50の内周面に当接されている。一方、周縁部12Bにおける像側の小径部の周囲にはシール材であるOリング22が配置されている。そして、このOリング22によって周縁部12Bの小径部と鏡筒50の内周面との間がシールされている。 The first lens 12 is disposed on the most object side, and includes a lens part 12A having an optical surface and a peripheral part 12B that constitutes the outer peripheral part of the lens part 12A. The first lens 12 is a glass lens formed of glass, and the object side surface of the lens portion 12A is curved so as to be convex toward the object side. Further, the first lens 12 is formed with a step so that the image side (imaging module 110 side) is smaller in diameter than the object side, and the large-diameter portion on the object side in the peripheral edge portion 12B is formed on the lens barrel 50. It is in contact with the inner peripheral surface. On the other hand, an O-ring 22 that is a sealing material is disposed around the small-diameter portion on the image side in the peripheral portion 12B. The O-ring 22 seals between the small diameter portion of the peripheral edge portion 12B and the inner peripheral surface of the lens barrel 50.
 第1レンズ12よりも像側には、第1レンズ12と同軸上に間隔をあけて第2レンズ14が配置されている。第2レンズ14は、第1レンズ12と同様のガラスレンズであり、光学面を有するレンズ部14Aと、レンズ部14Aの外周部を構成する周縁部14Bとを備えている。また、第2レンズ14は、第1レンズ12よりも外径が小さく形成されている。詳細には、第2レンズ14の外径は、第1レンズ12の大径部よりも小さく、かつ、第1レンズ12の小径部よりも大きく形成されている。また、レンズ部14Aの像側の面は、像側に凸となるように湾曲されており、周縁部14Bが鏡筒50の内周面に当接されている。 The second lens 14 is disposed on the image side of the first lens 12 with a space coaxially with the first lens 12. The second lens 14 is a glass lens similar to the first lens 12, and includes a lens portion 14A having an optical surface and a peripheral portion 14B constituting the outer peripheral portion of the lens portion 14A. The second lens 14 has a smaller outer diameter than the first lens 12. Specifically, the outer diameter of the second lens 14 is smaller than the large diameter portion of the first lens 12 and larger than the small diameter portion of the first lens 12. Further, the image side surface of the lens portion 14 </ b> A is curved so as to be convex toward the image side, and the peripheral portion 14 </ b> B is in contact with the inner peripheral surface of the lens barrel 50.
 第2レンズ14よりも像側には、第2レンズ14と同軸上に間隔をあけて第3レンズ16が配置されている。第3レンズ16は、樹脂によって形成された樹脂レンズであり、第2レンズ14と略同一の外径で形成されている。また、第3レンズ16は、光学面を有するレンズ部16Aと、レンズ部16Aの外周部を構成する周縁部16Bとを備えており、レンズ部16Aの物体側の面は、物体側に凸となるように湾曲されている。さらに、第3レンズ16の周縁部16Bは、鏡筒50の内周面に当接されている。 The third lens 16 is arranged on the image side of the second lens 14 with a space coaxially with the second lens 14. The third lens 16 is a resin lens made of resin, and has the same outer diameter as that of the second lens 14. The third lens 16 includes a lens portion 16A having an optical surface and a peripheral edge portion 16B constituting the outer peripheral portion of the lens portion 16A, and the object side surface of the lens portion 16A is convex toward the object side. It is curved to be. Further, the peripheral edge portion 16 </ b> B of the third lens 16 is in contact with the inner peripheral surface of the lens barrel 50.
 第3レンズ16よりも像側には、第3レンズ16と同軸上に第4レンズ18が配置されている。第4レンズ18は、樹脂によって形成された樹脂レンズであり、第3レンズ16と略同一の外径で形成されている。また、第4レンズ18は、光学面を有するレンズ部18Aと、レンズ部18Aの外周部を構成する周縁部18Bとを備えている。レンズ部18Aは、物体側の面及び像側の面の両面が凸となるように湾曲されている。また、第4レンズ18の周縁部18Bは、第3レンズ16の周縁部16Bと光軸方向に当接されており、かつ、鏡筒50の内周面に当接されている。 A fourth lens 18 is disposed coaxially with the third lens 16 on the image side of the third lens 16. The fourth lens 18 is a resin lens made of resin, and is formed with an outer diameter substantially the same as that of the third lens 16. The fourth lens 18 includes a lens portion 18A having an optical surface and a peripheral edge portion 18B that constitutes the outer peripheral portion of the lens portion 18A. The lens portion 18A is curved so that both the object side surface and the image side surface are convex. Further, the peripheral edge portion 18B of the fourth lens 18 is in contact with the peripheral edge portion 16B of the third lens 16 in the optical axis direction, and is in contact with the inner peripheral surface of the lens barrel 50.
 第4レンズ18よりも像側には、第4レンズ18と同軸上に間隔をあけて第5レンズ20が配置されている。第5レンズ20は、樹脂によって形成された樹脂レンズであり、第3レンズ16や第4レンズ18よりも外径が小さく形成されている。また、第5レンズ20は、光学面を有するレンズ部20Aと、レンズ部20Aの外周部を構成する周縁部20Bとを備えている。レンズ部20Aの物体側の面は、物体側に凸となるように湾曲されている。さらに、第5レンズ20の周縁部20Bは、鏡筒50の内周面に当接されている。 The fifth lens 20 is arranged on the image side of the fourth lens 18 with a space coaxially with the fourth lens 18. The fifth lens 20 is a resin lens made of resin and has a smaller outer diameter than the third lens 16 and the fourth lens 18. The fifth lens 20 includes a lens portion 20A having an optical surface and a peripheral portion 20B that constitutes the outer peripheral portion of the lens portion 20A. The object side surface of the lens unit 20A is curved so as to be convex toward the object side. Further, the peripheral edge portion 20 </ b> B of the fifth lens 20 is in contact with the inner peripheral surface of the lens barrel 50.
 ここで、第1レンズ12と第2レンズ14との間には、第1間隔環24が配置されており、第2レンズ14と第3レンズ16との間には、第2間隔環26が配置されており、第4レンズ18と第5レンズ20との間には、第3間隔環30が配置されている。 Here, a first spacing ring 24 is disposed between the first lens 12 and the second lens 14, and a second spacing ring 26 is disposed between the second lens 14 and the third lens 16. The third spacing ring 30 is disposed between the fourth lens 18 and the fifth lens 20.
 第1間隔環24は、略円環状に形成されており、外周面が鏡筒50の内周面に当接されている。また、第1間隔環24の物体側には開口部24Aが形成されており、開口部24Aの孔壁は、物体側から像側へ向かうにつれて径方向内側に位置するようにテーパ状に形成されている。一方、第1間隔環24の像側には、開口部24Aよりも小径の開口部24Bが形成されている。開口部24Bの孔壁は、物体側から像側へ向かうにつれて径方向内側に位置するようにテーパ状に形成されている。さらに、第1間隔環24の物体側の端部は、第1レンズ12の周縁部12Bに当接されており、第1間隔環24の像側の端部は、第2レンズ14の周縁部14Bに当接されている。 The first spacing ring 24 is formed in a substantially annular shape, and the outer peripheral surface is in contact with the inner peripheral surface of the lens barrel 50. Further, an opening 24A is formed on the object side of the first spacing ring 24, and the hole wall of the opening 24A is formed in a tapered shape so as to be positioned radially inward from the object side toward the image side. ing. On the other hand, an opening 24B having a smaller diameter than the opening 24A is formed on the image side of the first spacing ring 24. The hole wall of the opening 24B is formed in a tapered shape so as to be positioned radially inward from the object side toward the image side. Furthermore, the end of the first spacing ring 24 on the object side is in contact with the peripheral edge 12B of the first lens 12, and the end of the first spacing ring 24 on the image side is the peripheral edge of the second lens 14. 14B.
 第2間隔環26は、略円環状に形成されており、外周面が鏡筒50の内周面に当接されている。また、第2間隔環26には開口部26Aが形成されており、開口部26Aの孔壁は、光軸方向に沿って延在されている。さらに、開口部26Aの孔壁には径方向内側へ突出した突起部26Bが形成されている。また、第2間隔環26の物体側の端部は、第2レンズ14の周縁部14Bに当接されており、第2間隔環26の像側の端部は、第3レンズ16の周縁部16Bに当接されている。 The second spacing ring 26 is formed in a substantially annular shape, and the outer peripheral surface is in contact with the inner peripheral surface of the lens barrel 50. Moreover, the opening part 26A is formed in the 2nd space | interval ring 26, and the hole wall of 26 A of opening parts is extended along the optical axis direction. Further, a protrusion 26B protruding radially inward is formed on the hole wall of the opening 26A. The end of the second spacing ring 26 on the object side is in contact with the peripheral edge 14 </ b> B of the second lens 14, and the end of the second spacing ring 26 on the image side is the peripheral edge of the third lens 16. It is in contact with 16B.
 第3間隔環30は、略円環状に形成されており、外周面が鏡筒50の内周面に当接されている。また、第3間隔環30には開口部30Aが形成されている。開口部30Aの孔壁は、光軸方向に沿って延在されており、孔壁の像側が径方向内側へ縮径されている。さらに、第3間隔環30の物体側の端部は、第4レンズ18の周縁部18Bに当接されており、第3間隔環30の像側の端部は、第5レンズ20の周縁部20Bに当接されている。レンズユニット10の光学系は、以上のように構成されており、第1間隔環24、第2間隔環26、及び第3間隔環30によって各レンズの光軸方向の位置が決められている。 The third spacing ring 30 is formed in a substantially annular shape, and the outer peripheral surface is in contact with the inner peripheral surface of the lens barrel 50. Further, an opening 30 </ b> A is formed in the third spacing ring 30. The hole wall of the opening 30A extends along the optical axis direction, and the image side of the hole wall is reduced in diameter in the radial direction. Further, the end of the third spacing ring 30 on the object side is in contact with the peripheral edge 18B of the fourth lens 18, and the end of the third spacing ring 30 on the image side is the peripheral edge of the fifth lens 20. It is in contact with 20B. The optical system of the lens unit 10 is configured as described above, and the position of each lens in the optical axis direction is determined by the first spacing ring 24, the second spacing ring 26, and the third spacing ring 30.
(鏡筒50の構成)
 次に、本開示の要部である鏡筒50の構成について説明する。
(Configuration of the lens barrel 50)
Next, a configuration of the lens barrel 50 that is a main part of the present disclosure will be described.
 本例示的実施形態の鏡筒50は、両端部が開口された略円筒状に形成されており、樹脂成形により形成されている。また、鏡筒50の像側の端部には、鏡筒50の内周面から径方向内側へ延出された底部52が設けられている。底部52には、光学絞りの機能を有する透孔50Aが形成されており、底部52における物体側の面には、第5レンズ20の周縁部20Bが当接されている。 The lens barrel 50 of the present exemplary embodiment is formed in a substantially cylindrical shape with both ends opened, and is formed by resin molding. In addition, a bottom portion 52 that extends radially inward from the inner peripheral surface of the lens barrel 50 is provided at the end of the lens barrel 50 on the image side. A through hole 50A having an optical aperture function is formed in the bottom portion 52, and the peripheral portion 20B of the fifth lens 20 is in contact with the object side surface of the bottom portion 52.
 ここで、鏡筒50は一例として、ガラス繊維と無機フィラーを含有するポリフェニレンスルファイドで構成されてもよい。鏡筒をガラス繊維等を含有する繊維強化プラスチック製とすることにより、機械的強度が高くなる。使用する樹脂としては、例えば、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン、シンジオタクチックポリスチレン、ポリサルホン、ポリエーテルサルホン、ポリフェニレンスルファイド、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、アクリロニトリルブダジエンスチレン、ポリオレフィン及び各々の変性ポリマーからなる群より選択される少なくとも一種、又は当該群から選択される少なくとも一種を含むポリマーアロイなどを用いることができる。繊維としては、ガラス繊維や炭素繊維、繊維強化プラスチック、無機フィラー等を用いることができる。 Here, as an example, the lens barrel 50 may be made of polyphenylene sulfide containing glass fiber and an inorganic filler. By making the lens barrel made of fiber reinforced plastic containing glass fiber or the like, the mechanical strength is increased. Examples of the resin used include polyamide, polyacetal, polycarbonate, polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyethylene, syndiotactic polystyrene, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyamideimide, and polyether. It is possible to use at least one selected from the group consisting of imide, polyetheretherketone, acrylonitrile butadiene styrene, polyolefin and each modified polymer, or a polymer alloy containing at least one selected from the group. As the fiber, glass fiber, carbon fiber, fiber reinforced plastic, inorganic filler, or the like can be used.
 また、繊維強化プラスチック等、上記の樹脂材料には、必要に応じてガラス繊維、炭素繊維、無機フィラー等を含有させてもよい。ガラス繊維等を含有する繊維強化プラスチック製の鏡筒とすることにより、より機械的強度の高い鏡筒を得ることができる。 In addition, the above resin material such as fiber reinforced plastic may contain glass fiber, carbon fiber, inorganic filler or the like, if necessary. By using a fiber reinforced plastic lens barrel containing glass fiber or the like, a lens barrel with higher mechanical strength can be obtained.
 なお、鏡筒は、高い遮光性及び光吸収性が要求される。使用する樹脂は黒色であることが好ましく、上記の樹脂材料は黒色顔料又は黒色染料を含むことが好ましい。黒色顔料又は黒色染料を含む樹脂材料により鏡筒を構成することにより、鏡筒の内壁面を黒色とすることができ、鏡筒の内壁面における可視光の反射をより有効に抑制することができる。 Note that the lens barrel is required to have high light-shielding properties and light-absorbing properties. The resin used is preferably black, and the resin material preferably contains a black pigment or a black dye. By constituting the lens barrel with a resin material containing a black pigment or black dye, the inner wall surface of the lens barrel can be made black, and reflection of visible light on the inner wall surface of the lens barrel can be more effectively suppressed. .
 鏡筒50の物体側の端部には、カシメ部50Bが形成されている。カシメ部50Bは、鏡筒50の物体側の端部を熱カシメすることにより形成されており、このカシメ部50Bによって光学系の部品が鏡筒50から外れるのを抑制している。また、カシメ部50Bの中心部分には、光が入射される開口50Cが形成されている。 A crimping portion 50B is formed at the end of the lens barrel 50 on the object side. The caulking portion 50B is formed by heat caulking the end of the lens barrel 50 on the object side, and the caulking portion 50B prevents the optical system components from being detached from the lens barrel 50. In addition, an opening 50C through which light is incident is formed at the center portion of the crimping portion 50B.
 ここで、鏡筒50は、物体側から順に第1段部58、第2段部56及び第3段部54を含んで構成されており、それぞれの段部の境界部分における鏡筒50の内周面には段差が形成されている。第1段部58は、鏡筒50の物体側の端部から第2レンズ14の位置まで形成されており、最も鏡筒50の内径が最も大きくなっている。また、第1段部58は、光軸方向から見て円形状又は多角形状に形成されており、この第1段部58における鏡筒50の内周面に第1レンズ12の周縁部12Bが当接している。 Here, the lens barrel 50 includes a first step portion 58, a second step portion 56, and a third step portion 54 in order from the object side, and the inner portion of the lens barrel 50 at the boundary portion of each step portion. A step is formed on the peripheral surface. The first step portion 58 is formed from the end of the lens barrel 50 on the object side to the position of the second lens 14, and the inner diameter of the lens barrel 50 is the largest. Further, the first step portion 58 is formed in a circular shape or a polygonal shape as viewed from the optical axis direction, and the peripheral portion 12B of the first lens 12 is formed on the inner peripheral surface of the lens barrel 50 in the first step portion 58. It is in contact.
 第2段部56は、第2レンズ14の位置から第5レンズ20の位置まで形成されており、第1段部58よりも鏡筒50の内径が小さくなっている。また、第2段部56における鏡筒50の内周面は、図2に示されるように、光軸方向から見て略八角形状に形成されている。詳細には、第2段部56における鏡筒50の内周面は、八角形の各辺を形成する八つの平坦面と、隣り合う平坦面の間を繋ぐ連結部(図2における角の部分)とを含んで構成されている。そして、この第2段部56における鏡筒50の内周面に第2レンズ14の周縁部14B、第3レンズ16の周縁部16B、及び第4レンズ18の周縁部18Bがそれぞれ周方向の複数カ所で当接している。なお、図2の符号16Cは、第3レンズ16に形成されたゲート部である。 The second step portion 56 is formed from the position of the second lens 14 to the position of the fifth lens 20, and the inner diameter of the lens barrel 50 is smaller than that of the first step portion 58. Further, the inner peripheral surface of the lens barrel 50 in the second step portion 56 is formed in a substantially octagonal shape as viewed from the optical axis direction, as shown in FIG. Specifically, the inner peripheral surface of the lens barrel 50 in the second step portion 56 is formed by connecting the eight flat surfaces forming the sides of the octagon and the adjacent flat surfaces (the corner portions in FIG. 2). ). A plurality of peripheral edges 14B of the second lens 14, peripheral edges 16B of the third lens 16, and peripheral edges 18B of the fourth lens 18 are provided on the inner peripheral surface of the lens barrel 50 in the second step portion 56 in the circumferential direction. It touches at the place. Note that reference numeral 16 </ b> C in FIG. 2 is a gate portion formed in the third lens 16.
 図1に示されるように、第3段部54は、第5レンズ20の位置から底部52まで形成されており、第2段部56よりも鏡筒50の内径が小さくなっている。また、第3段部54における鏡筒50の内周面は、第2段部56と同様に光軸方向から見て略八角形状に形成されており、この第3段部54における鏡筒50の内周面に第5レンズ20の周縁部20Bがそれぞれ周方向の複数カ所で当接している。 As shown in FIG. 1, the third step portion 54 is formed from the position of the fifth lens 20 to the bottom portion 52, and the inner diameter of the lens barrel 50 is smaller than that of the second step portion 56. Further, the inner peripheral surface of the lens barrel 50 in the third step portion 54 is formed in a substantially octagonal shape when viewed from the optical axis direction, like the second step portion 56, and the lens barrel 50 in the third step portion 54. The peripheral edge portion 20B of the fifth lens 20 is in contact with the inner peripheral surface at a plurality of locations in the circumferential direction.
 以上のように第1段部58、第2段部56、及び第3段部54が形成されているため、鏡筒50の内周面は、物体側から像側へ向かうにつれて縮径されている。そして、レンズユニット10の製造時には、第5レンズ20、第3間隔環30、第4レンズ18、第3レンズ16、第2間隔環26、第2レンズ14、第1間隔環24、第1レンズ12の順で鏡筒50に各部品を圧入し、その後、鏡筒50の物体側の端部が熱カシメされる。なお、この他に、遮光板としてのスペーサなどを配置してもよい。 Since the first step portion 58, the second step portion 56, and the third step portion 54 are formed as described above, the inner peripheral surface of the lens barrel 50 is reduced in diameter from the object side toward the image side. Yes. When the lens unit 10 is manufactured, the fifth lens 20, the third interval ring 30, the fourth lens 18, the third lens 16, the second interval ring 26, the second lens 14, the first interval ring 24, the first lens. Each part is press-fitted into the lens barrel 50 in the order of twelve, and then the object-side end portion of the lens barrel 50 is thermally crimped. In addition, a spacer or the like as a light shielding plate may be arranged.
 ここで、鏡筒50には、複数の空洞部60が設けられている。本例示的実施形態の空洞部60は一例として、鏡筒50の像側の端部から第3レンズ16と第2レンズ14との間の位置(第2間隔環26の位置)まで光軸方向に沿って延在されている。 Here, the lens barrel 50 is provided with a plurality of hollow portions 60. As an example, the cavity 60 of the exemplary embodiment is in the direction of the optical axis from the image-side end of the lens barrel 50 to a position between the third lens 16 and the second lens 14 (position of the second spacing ring 26). Is extended along.
 図2に示されるように、第3レンズ16は、鏡筒50の第2段部56(内周面)と複数カ所で当接されており、本例示的実施形態では一例として、八カ所で当接されている。そして、空洞部60は、鏡筒50における第3レンズ16との当接部Pの径方向外側に設けられており、本例示的実施形態では光軸方向から見て八つの空洞部60が設けられている。そして、鏡筒50は、空洞部60を挟んで径方向に対向する内壁62と外壁64とを備えている。換言すれば、空洞部60は、内壁62と外壁64との間に設けられている。 As shown in FIG. 2, the third lens 16 is in contact with the second step portion 56 (inner peripheral surface) of the lens barrel 50 at a plurality of locations, and as an example in the present exemplary embodiment, at eight locations. It is in contact. The cavity portion 60 is provided on the outer side in the radial direction of the contact portion P with the third lens 16 in the lens barrel 50. In the present exemplary embodiment, eight cavity portions 60 are provided when viewed from the optical axis direction. It has been. The lens barrel 50 includes an inner wall 62 and an outer wall 64 that are opposed to each other in the radial direction across the cavity 60. In other words, the cavity 60 is provided between the inner wall 62 and the outer wall 64.
 内壁62はそれぞれ、光軸Sを中心として回転対称に設けられており、光軸方向から見て光軸S周りに等間隔に設けられている。さらに、八つの空洞部60は略同一の形状に形成されており、光軸Sからそれぞれの空洞部60までの長さも略同一とされている。このため、光軸Sを挟んで対向する一対の内壁62は、径方向の厚みが同じ厚みとされている。 The inner walls 62 are provided so as to be rotationally symmetric about the optical axis S, and are provided at equal intervals around the optical axis S when viewed from the optical axis direction. Further, the eight hollow portions 60 are formed in substantially the same shape, and the length from the optical axis S to each hollow portion 60 is also substantially the same. For this reason, the pair of inner walls 62 facing each other with the optical axis S interposed therebetween have the same radial thickness.
 ここで、内壁62の厚みと外壁64の厚みとの関係は、内壁62よりも外壁64の方が径方向の厚みが厚くなるように形成されている。詳細には、光軸S(鏡筒50の中心)と当接部Pとを結ぶ仮想線上において、外壁64の厚みT3は、内壁62の厚みT1よりも厚く形成されている。 Here, the relationship between the thickness of the inner wall 62 and the thickness of the outer wall 64 is such that the outer wall 64 is thicker in the radial direction than the inner wall 62. Specifically, the thickness T3 of the outer wall 64 is formed to be thicker than the thickness T1 of the inner wall 62 on the imaginary line connecting the optical axis S (center of the lens barrel 50) and the contact portion P.
 また、外壁64の径方向の厚みは、内壁62と外壁64との間の径方向の間隔よりも厚く形成されている。詳細には、第3レンズ16の光軸Sと当接部Pとを結ぶ仮想線上において、外壁64の厚みT3は、内壁62と外壁64との間の径方向の間隔(空洞部60の径方向の幅)T2よりも厚く形成されている。 Moreover, the radial thickness of the outer wall 64 is formed to be thicker than the radial interval between the inner wall 62 and the outer wall 64. Specifically, on the imaginary line connecting the optical axis S of the third lens 16 and the contact portion P, the thickness T3 of the outer wall 64 is the radial distance between the inner wall 62 and the outer wall 64 (the diameter of the cavity 60). (Width in the direction) is formed thicker than T2.
 さらに、空洞部60は、光軸S周りの定められた45度の範囲内に設けられている。詳細には、光軸方向から見て光軸Sから45度の間隔で鏡筒50の内周面の角を通るように延ばされた仮想線L1と仮想線L2との間の領域に空洞部60が設けられている。さらにまた、光軸方向から見て内壁62及び外壁64によって空洞部60が閉じられている。すなわち、光軸方向から見て内壁62や外壁64に空洞部60と連通する連通孔などが形成されておらず、空洞部60が閉塞されている。 Furthermore, the hollow portion 60 is provided within a predetermined range of 45 degrees around the optical axis S. Specifically, a cavity is formed in a region between the imaginary line L1 and the imaginary line L2 that is extended so as to pass through the corner of the inner peripheral surface of the lens barrel 50 at an interval of 45 degrees from the optical axis S when viewed from the optical axis direction. A portion 60 is provided. Furthermore, the cavity 60 is closed by the inner wall 62 and the outer wall 64 when viewed from the optical axis direction. That is, the communication hole etc. which connect with the cavity part 60 are not formed in the inner wall 62 and the outer wall 64 seeing from the optical axis direction, but the cavity part 60 is obstruct | occluded.
 なお、本例示的実施形態では一例として、鏡筒50の成型時に、像側からレンズ収容部に対応する金型の部位と、空洞部60に対応する金型の部位とを像側からスライドさせることによって空洞部60を形成している。また、本例示的実施形態では、第3レンズ16と鏡筒50との当接部Pの径方向外側に設けられた空洞部60についてのみ説明した。しかしながら、第4レンズ18と鏡筒50との当接部の径方向外側にも、共通の空洞部60が設けられており、第5レンズ20と鏡筒50との当接部の径方向外側にも、共通の空洞部60が設けられている。すなわち、鏡筒50には、複数のレンズに対して内壁62及び外壁64が設けられている(図1参照)。 In the exemplary embodiment, as an example, when the lens barrel 50 is molded, the mold part corresponding to the lens housing portion and the mold part corresponding to the cavity 60 are slid from the image side from the image side. Thus, the cavity 60 is formed. In the exemplary embodiment, only the hollow portion 60 provided on the radially outer side of the contact portion P between the third lens 16 and the lens barrel 50 has been described. However, a common cavity 60 is also provided on the radially outer side of the contact portion between the fourth lens 18 and the lens barrel 50, and the radially outer side of the contact portion between the fifth lens 20 and the lens barrel 50 is provided. In addition, a common cavity 60 is provided. That is, the lens barrel 50 is provided with an inner wall 62 and an outer wall 64 for a plurality of lenses (see FIG. 1).
(作用及び効果)
 次に、本例示的実施形態の作用及び効果について説明する。
(Function and effect)
Next, operations and effects of the exemplary embodiment will be described.
 本例示的実施形態では、図2に示されるように、鏡筒50における周方向の複数カ所が、内壁62と、内壁62に対し空洞部60を挟んで径方向に対向しかつ内壁62よりも径方向の厚みが厚い外壁64とを含んで構成されている。すなわち、本例示的実施形態では、鏡筒50における第3レンズ16との当接部Pより径方向外側に空洞部60が設けられている。この空洞部60は、内壁62と外壁64との間に位置している。ここで、外部温度の上昇などによってレンズユニット10が熱膨張した場合について考える。 In the present exemplary embodiment, as shown in FIG. 2, a plurality of circumferential locations in the lens barrel 50 are opposed to the inner wall 62 and the inner wall 62 in the radial direction across the cavity 60 and more than the inner wall 62. And an outer wall 64 having a large radial thickness. That is, in the exemplary embodiment, the cavity 60 is provided on the outer side in the radial direction from the contact portion P with the third lens 16 in the lens barrel 50. The cavity 60 is located between the inner wall 62 and the outer wall 64. Here, a case where the lens unit 10 is thermally expanded due to an increase in external temperature or the like will be considered.
 この場合、樹脂レンズである第3レンズ16の方が鏡筒50よりも熱膨張するため、鏡筒50の内壁62に対して第3レンズ16から径方向外側の力が作用する。ここで、本例示的実施形態では、図3に示されるように、内壁62が空洞部60側へ撓み変形して内壁62から第3レンズ16へ作用する反力が低減される。すなわち、第3レンズ16からの力を吸収する。この結果、第3レンズ16の変形を抑制することができ、光学特性を良好に維持することができる。同様にして、第4レンズ18及び第5レンズ20についても、内壁62を設けたことによって、熱膨張によるレンズの変形を抑制することができる。すなわち、本例示的実施形態は、外部温度の上昇時であっても複数のレンズに対して光学特性を良好に維持することができる。 In this case, since the third lens 16 that is a resin lens is more thermally expanded than the lens barrel 50, a radially outward force acts on the inner wall 62 of the lens barrel 50 from the third lens 16. Here, in this exemplary embodiment, as shown in FIG. 3, the reaction force acting on the third lens 16 from the inner wall 62 due to the inner wall 62 being bent and deformed toward the cavity 60 is reduced. That is, the force from the third lens 16 is absorbed. As a result, the deformation of the third lens 16 can be suppressed, and the optical characteristics can be maintained well. Similarly, the fourth lens 18 and the fifth lens 20 are also provided with the inner wall 62, so that deformation of the lens due to thermal expansion can be suppressed. That is, this exemplary embodiment can maintain good optical characteristics for a plurality of lenses even when the external temperature is increased.
 また、本例示的実施形態では、図2に示されるように、外壁64は、内壁62よりも径方向の厚みが厚く形成されている。これにより、外壁64の径方向の厚みT3が内壁62の径方向の厚みT1と同じか、あるいは内壁62の径方向の厚みT1よりも薄い場合と比較して、外壁64の強度を確保することができる。以上のように、本例示的実施形態は、光学特性を良好に維持しつつ、鏡筒50の強度を確保することができる。 In the exemplary embodiment, as shown in FIG. 2, the outer wall 64 is formed to have a greater radial thickness than the inner wall 62. This ensures the strength of the outer wall 64 as compared with the case where the radial thickness T3 of the outer wall 64 is the same as the radial thickness T1 of the inner wall 62 or thinner than the radial thickness T1 of the inner wall 62. Can do. As described above, this exemplary embodiment can ensure the strength of the lens barrel 50 while maintaining good optical characteristics.
 さらに、本例示的実施形態では、外壁64は、内壁62と外壁64との間の径方向の間隔T2よりも径方向に厚く形成されている。これにより、本例示的実施形態は、外壁64の径方向の厚みT3が間隔T2と同じか、あるいは間隔T2よりも薄い場合と比較して、外壁64の強度を向上させることができる。すなわち、本例示的実施形態は、レンズユニット10をホルダやブラケット(図示せず)などに締結した場合において、このホルダやブラケットなどから外力が作用しても鏡筒50の変形を抑制することができ、種々の用途でレンズユニット10を使用することができる。 Furthermore, in the exemplary embodiment, the outer wall 64 is formed to be thicker in the radial direction than the radial interval T2 between the inner wall 62 and the outer wall 64. Thereby, this exemplary embodiment can improve the intensity | strength of the outer wall 64 compared with the case where the thickness T3 of the radial direction of the outer wall 64 is the same as the space | interval T2, or is thinner than the space | interval T2. That is, in the exemplary embodiment, when the lens unit 10 is fastened to a holder or a bracket (not shown), the deformation of the lens barrel 50 is suppressed even if an external force is applied from the holder or the bracket. The lens unit 10 can be used for various purposes.
 さらにまた、本例示的実施形態では、複数の空洞部60が光軸Sを中心として回転対称に設けられており、光軸Sを挟んで対向する一対の内壁62の径方向の厚みが同じ厚みとされている。これにより、本例示的実施形態は、第3レンズ16が鏡筒50から受ける力を相殺することができ、第3レンズ16の光軸中心がずれるのを抑制することができる。 Furthermore, in the present exemplary embodiment, the plurality of cavities 60 are provided rotationally symmetrically about the optical axis S, and the pair of inner walls 62 opposed across the optical axis S have the same thickness in the radial direction. It is said that. Thereby, this exemplary embodiment can cancel the force that the third lens 16 receives from the lens barrel 50, and can suppress the center of the optical axis of the third lens 16 from deviating.
 また、本例示的実施形態では、レンズユニット10を構成する複数のレンズのうち、少なくとも一つのレンズ(第3レンズ16、第4レンズ18、第5レンズ20)に樹脂レンズを用いている。これにより、本例示的実施形態は、ガラス製のレンズと比較して成形性を向上させることができ、設計自由度を高めることができる。また、本例示的実施形態は、全てのレンズをガラス製のガラスレンズとした場合よりもコストを低減することができる。 In the exemplary embodiment, a resin lens is used for at least one of the lenses constituting the lens unit 10 (the third lens 16, the fourth lens 18, and the fifth lens 20). Thereby, this exemplary embodiment can improve a moldability compared with a glass lens, and can raise a design freedom. Moreover, this exemplary embodiment can reduce cost rather than the case where all the lenses are made of glass.
 さらに、本例示的実施形態では、光軸方向から見て第3レンズ16が八つの内壁62に当接されている。これにより、本例示的実施形態は、第3レンズ16が二つ以下の内壁62に当接している場合と比較して、レンズを鏡筒50に組付ける際の位置精度を向上させることができる。特に、本例示的実施形態のように鏡筒50の内周面を八角形状(多角形状)とすることにより、第3レンズ16と鏡筒50との当接部Pが平面となる。このため、本例示的実施形態では、内周面が円形とされた鏡筒のように曲面でレンズを保持する場合と比較して面出しが容易であり、寸法精度を向上させやすい。 Further, in the exemplary embodiment, the third lens 16 is in contact with the eight inner walls 62 as viewed from the optical axis direction. Thereby, this exemplary embodiment can improve the positional accuracy when the lens is assembled to the lens barrel 50 as compared with the case where the third lens 16 is in contact with two or less inner walls 62. . In particular, by making the inner peripheral surface of the lens barrel 50 octagonal (polygonal) as in this exemplary embodiment, the contact portion P between the third lens 16 and the lens barrel 50 becomes a flat surface. For this reason, in this exemplary embodiment, surface projection is easier than in the case where the lens is held by a curved surface like a lens barrel having a circular inner peripheral surface, and dimensional accuracy is easily improved.
 さらにまた、本例示的実施形態では、光軸方向から見て内壁62及び外壁64によって空洞部60が閉じられているため、空洞部60が内壁62側に開放された構造と比較して、内壁62の強度を高めることができる。また、空洞部60が外壁64側に開放された構造と比較して、外壁64の強度を高めることができる。また、本例示的実施形態では、空洞部60が光軸S周りに45度の定められた範囲内に形成されているため、空洞部60が大きくなり過ぎず、内壁62及び外壁64の強度を効果的に向上させることができる。 Furthermore, in this exemplary embodiment, since the cavity 60 is closed by the inner wall 62 and the outer wall 64 when viewed from the optical axis direction, the inner wall is compared with the structure in which the cavity 60 is opened to the inner wall 62 side. The strength of 62 can be increased. In addition, the strength of the outer wall 64 can be increased as compared with the structure in which the hollow portion 60 is opened to the outer wall 64 side. In the exemplary embodiment, since the cavity 60 is formed within a predetermined range of 45 degrees around the optical axis S, the cavity 60 does not become too large, and the strength of the inner wall 62 and the outer wall 64 is increased. It can be improved effectively.
 以上、例示的実施形態について説明したが、その他の変形例として、図4に示される第1変形例や、図5に示される第2変形例のように空洞部の形状を異なる形状としてもよい。また、図6に示される第3変形例や、図7に示される第4変形例のように鏡筒の内周面の形状を異なる形状としてもよい。さらに、図8に示される第5変形例のように空洞部に充填材を充填してもよい。なお、以下の変形例の説明において、例示的実施形態と同様の構成については同じ符号を付し、適宜説明を省略する。 As described above, the exemplary embodiment has been described. However, as another modified example, the shape of the cavity may be different as in the first modified example illustrated in FIG. 4 or the second modified example illustrated in FIG. 5. . Further, the shape of the inner peripheral surface of the lens barrel may be different as in the third modified example shown in FIG. 6 and the fourth modified example shown in FIG. Furthermore, you may fill a cavity with a filler like the 5th modification shown by FIG. In the following description of the modified examples, the same reference numerals are given to the same configurations as those of the exemplary embodiment, and description thereof will be omitted as appropriate.
(第1変形例)
 図4に示されるように、第1変形例に係るレンズユニット65を構成する鏡筒50は、例示的実施形態と同様に第1段部(不図示)と第2段部56と第3段部54とを含んで構成されている。なお、図4及び図5では、説明の便宜上、鏡筒50の一部のみを図示しており、レンズの図示を省略している。また、鏡筒50の断面における光軸Sよりも一方側のみが図示されており、光軸Sよりも他方側の図示を省略している。
(First modification)
As shown in FIG. 4, the lens barrel 50 constituting the lens unit 65 according to the first modification includes a first step portion (not shown), a second step portion 56, and a third step, as in the exemplary embodiment. Part 54. 4 and 5, only a part of the lens barrel 50 is shown for convenience of explanation, and illustration of the lens is omitted. Further, only one side from the optical axis S in the cross section of the lens barrel 50 is shown, and the other side from the optical axis S is not shown.
 ここで、第2段部56及び第3段部54には空洞部66が形成されている。空洞部66は、光軸方向に沿って延在されており、像側の広幅部66Aと物体側の狭幅部66Bとを含んで構成されている。広幅部66Aと狭幅部66Bとは、光軸方向に連続して形成されており、狭幅部66Bは、例示的実施形態の空洞部60と径方向に同じ幅で形成されている。 Here, a hollow portion 66 is formed in the second step portion 56 and the third step portion 54. The cavity portion 66 extends along the optical axis direction, and includes a wide portion 66A on the image side and a narrow portion 66B on the object side. The wide width portion 66A and the narrow width portion 66B are formed continuously in the optical axis direction, and the narrow width portion 66B is formed with the same width in the radial direction as the cavity portion 60 of the exemplary embodiment.
 一方、広幅部66Aは、第2段部56と第3段部54との境界部分から鏡筒50の底部(不図示)まで形成されており、狭幅部66Bよりも径方向の幅が広く形成されている。詳細には、第2段部56と第3段部54との境界部分に位置する段差分だけ広幅部66Aが内側に広く形成されている。 On the other hand, the wide portion 66A is formed from the boundary portion between the second step portion 56 and the third step portion 54 to the bottom portion (not shown) of the lens barrel 50, and has a larger radial width than the narrow width portion 66B. Is formed. Specifically, the wide portion 66 </ b> A is formed wider on the inner side by the level difference located at the boundary portion between the second step portion 56 and the third step portion 54.
 以上のように構成された第1変形例では、鏡筒50の内周面が物体側から像側へ向かうにつれて縮径されている場合であっても、内壁62及び外壁64の厚みを光軸方向で一定にすることができる。 In the first modified example configured as described above, even when the inner peripheral surface of the lens barrel 50 is reduced in diameter as it goes from the object side to the image side, the thickness of the inner wall 62 and the outer wall 64 is set to the optical axis. Can be constant in direction.
(第2変形例)
 図5に示されるように、第2変形例に係るレンズユニット67を構成する鏡筒50は、例示的実施形態と同様に第1段部(不図示)と第2段部56と第3段部54とを含んで構成されている。
(Second modification)
As shown in FIG. 5, the lens barrel 50 constituting the lens unit 67 according to the second modification includes a first step portion (not shown), a second step portion 56, and a third step as in the exemplary embodiment. Part 54.
 ここで、本変形例では、鏡筒50の径方向で異なる位置に複数の空洞部が設けられている。詳細には、第2段部56には、第1空洞部70が形成されており、第3段部54には、第2空洞部68が形成されている。第1空洞部70は、第2段部56と第3段部54との境界部分から第1段部と第2段部56との境界部分まで形成されている。 Here, in this modification, a plurality of cavities are provided at different positions in the radial direction of the lens barrel 50. Specifically, a first cavity portion 70 is formed in the second step portion 56, and a second cavity portion 68 is formed in the third step portion 54. The first cavity portion 70 is formed from the boundary portion between the second step portion 56 and the third step portion 54 to the boundary portion between the first step portion and the second step portion 56.
 一方、第2空洞部68は、第2段部56と第3段部54との境界部分から鏡筒50の底部(不図示)まで形成されている。また、第2空洞部68は、第1空洞部70よりも径方向内側に形成されている。そして、第1空洞部70の内側の内壁62と、第2空洞部68の内側の内壁62とが径方向で同じ厚みとなっている。すなわち、一のレンズが当接される内壁62の径方向の厚みと、外径が異なる他のレンズが当接される内壁62の径方向の厚みとが同じ厚みとなっている。 On the other hand, the second cavity portion 68 is formed from the boundary portion between the second step portion 56 and the third step portion 54 to the bottom portion (not shown) of the lens barrel 50. Further, the second cavity portion 68 is formed on the radially inner side with respect to the first cavity portion 70. The inner wall 62 inside the first cavity portion 70 and the inner wall 62 inside the second cavity portion 68 have the same thickness in the radial direction. That is, the radial thickness of the inner wall 62 with which one lens abuts is the same as the radial thickness of the inner wall 62 with which another lens with a different outer diameter abuts.
 以上のように構成された第2変形例では、第1変形例と同様に、鏡筒50の内周面が物体側から像側へ向かうにつれて縮径されている場合であっても、内壁62の厚みを光軸方向で一定にすることができる。また、第1変形例と比較して第3段部54における外壁64の厚みを厚く形成することができる。なお、第1空洞部70及び第2空洞部68は、鏡筒50の射出成型時に第1空洞部70及び第2空洞部68に対応する金型の部位をそれぞれスライドさせることによって形成することができる。 In the second modified example configured as described above, as in the first modified example, even when the inner peripheral surface of the lens barrel 50 is reduced in diameter from the object side toward the image side, the inner wall 62 Can be made constant in the optical axis direction. In addition, the outer wall 64 in the third step portion 54 can be formed thicker than in the first modification. The first cavity portion 70 and the second cavity portion 68 may be formed by sliding the mold portions corresponding to the first cavity portion 70 and the second cavity portion 68 when the lens barrel 50 is injection molded. it can.
(第3変形例)
 図6に示されるように、第3変形例に係るレンズユニット72を構成する鏡筒74には、例示的実施形態と同様に八つの空洞部60が設けられている。また、鏡筒74の内側には、第3レンズ16が配置されており、第3レンズ16と鏡筒74とは八カ所の当接部Pにおいて当接されている。
(Third Modification)
As shown in FIG. 6, the lens barrel 74 constituting the lens unit 72 according to the third modified example is provided with eight hollow portions 60 as in the exemplary embodiment. The third lens 16 is disposed inside the lens barrel 74, and the third lens 16 and the lens barrel 74 are in contact with each other at eight contact portions P.
 ここで、本変形例では、鏡筒74の内周面の各辺を形成する八つの平坦面がそれぞれ径方向内側に凸となる湾曲面となっている。このため、空洞部60の内側の内壁62が径方向内側へ膨出されている。その他の構成について例示的実施形態と同様であり、本変形例では、例示的実施形態と同様の効果を有する。 Here, in this modification, the eight flat surfaces forming each side of the inner peripheral surface of the lens barrel 74 are curved surfaces that protrude radially inward. For this reason, the inner wall 62 inside the cavity 60 is bulged radially inward. Other configurations are the same as those of the exemplary embodiment, and this modification has the same effects as those of the exemplary embodiment.
(第4変形例)
 次に、第4変形例では、図7に示されるように、レンズユニット75を構成する鏡筒76には、八つの内壁82が設けられており、これらの内壁82は、光軸Sを中心として回転対称に設けられている。また、内壁82はそれぞれ、上記例示的実施形態の内壁62よりも周方向の長さが短く形成されており、光軸方向から見て径方向外側に窪んで第3レンズ16と面接触する湾曲面を備えている。さらに、鏡筒76の内側には、第3レンズ16が配置されており、第3レンズ16は、八カ所の内壁82にそれぞれ設定された当接部Pにおいて当接されている。そして、空洞部78は、この当接部Pの径方向外側に設けられており、内壁82と外壁84との間に位置している。なお、内壁82と外壁84との径方向の厚みの関係は、上記例示的実施形態と同じである。
(Fourth modification)
Next, in the fourth modification example, as shown in FIG. 7, the lens barrel 76 constituting the lens unit 75 is provided with eight inner walls 82, and these inner walls 82 are centered on the optical axis S. As rotationally symmetric. Each of the inner walls 82 is formed to be shorter in the circumferential direction than the inner wall 62 of the above exemplary embodiment, and is curved in a surface contact with the third lens 16 by being recessed radially outward when viewed from the optical axis direction. It has a surface. Further, the third lens 16 is disposed inside the lens barrel 76, and the third lens 16 is in contact with the contact portions P respectively set on the eight inner walls 82. The cavity portion 78 is provided on the radially outer side of the contact portion P, and is located between the inner wall 82 and the outer wall 84. In addition, the relationship of the radial thickness of the inner wall 82 and the outer wall 84 is the same as that of the above exemplary embodiment.
 ここで、鏡筒76の内周面は、径方向外側へ湾曲した複数(八つ)の湾曲面と、隣り合う平坦面の間に形成された八つの凹部80とを含んで構成されている。詳細には、鏡筒76の内周面を構成する湾曲面はそれぞれ、光軸S周りに等間隔に設けられており、内壁82の径方向内側の面を構成している。また、八つの湾曲面は、光軸方向から見て同じ長さで形成されている。そして、この湾曲面に第3レンズ16が当接されている。 Here, the inner peripheral surface of the lens barrel 76 is configured to include a plurality (eight) curved surfaces curved outward in the radial direction and eight concave portions 80 formed between adjacent flat surfaces. . More specifically, the curved surfaces constituting the inner peripheral surface of the lens barrel 76 are provided at equal intervals around the optical axis S, and constitute the radially inner surface of the inner wall 82. The eight curved surfaces are formed with the same length as viewed from the optical axis direction. The third lens 16 is in contact with this curved surface.
 凹部80は、隣り合う平坦面の間の部位を径方向外側へ凹ませて形成されている。その他の構成について上記例示的実施形態と同様である。本変形例では、複数の湾曲面でレンズを受けることにより、上記例示的実施形態のようにレンズを点で受ける構成と比較して、レンズとの接触面積を大きくすることができる。この結果、レンズの外径の歪みに起因して生じる光軸ずれからの光特性不良を抑制することができる。その他は、上記例示的実施形態と同様の効果を有する。 The recess 80 is formed by denting a portion between adjacent flat surfaces outward in the radial direction. Other configurations are the same as those in the exemplary embodiment. In this modification, by receiving the lens with a plurality of curved surfaces, the contact area with the lens can be increased as compared with the configuration in which the lens is received with a point as in the above exemplary embodiment. As a result, it is possible to suppress an optical characteristic defect from an optical axis shift caused by distortion of the outer diameter of the lens. Others have the same effects as the above exemplary embodiment.
(第5変形例)
 次に、第5変形例では、図8に示されるように、レンズユニット90を構成する鏡筒50の空洞部60に充填材92が充填されている。充填材92は、鏡筒50を構成する材料よりもヤング率が低い材料によって形成されている。
(5th modification)
Next, in the fifth modified example, as shown in FIG. 8, a filler 92 is filled in the hollow portion 60 of the lens barrel 50 constituting the lens unit 90. The filler 92 is formed of a material having a Young's modulus lower than that of the material constituting the lens barrel 50.
 ここで、充填材92は、鏡筒50と同様の素材群から選定することができる。また、充填材92のヤング率及び線膨張係数は、樹脂に含有する無機物の割合の変更、あるいは樹脂の変更によって調整することができる。 Here, the filler 92 can be selected from the same material group as the lens barrel 50. Moreover, the Young's modulus and the linear expansion coefficient of the filler 92 can be adjusted by changing the ratio of the inorganic substance contained in the resin or changing the resin.
 本変形例では、充填材92によって内壁62の撓み変形量を制限することができる。すなわち、例示的実施形態のように空洞部60に何も充填されていない構造(空気が入っている構造)と比較して、内壁62の撓み変形量が小さくなる。この結果、内壁62を薄く形成した場合であっても、熱膨張時に内壁62の撓み変形量が大きくなって内壁62が破断するのを抑制することができる。 In this modification, the amount of bending deformation of the inner wall 62 can be limited by the filler 92. That is, the amount of flexural deformation of the inner wall 62 is small as compared to a structure in which nothing is filled in the cavity 60 (a structure containing air) as in the exemplary embodiment. As a result, even when the inner wall 62 is formed thin, it is possible to prevent the inner wall 62 from being broken due to a large amount of deformation of the inner wall 62 during thermal expansion.
 以上、本開示の例示的実施形態及び変形例について説明したが、本開示は、上記例示的実施形態及び変形例に限定されるものではなく、要旨を逸脱しない範囲において種々変更可能である。例えば、上記例示的実施形態では、第3レンズ16、第4レンズ18、及び第5レンズ20を樹脂レンズとしたが、これに限定されず、ガラスレンズを用いてもよい。 As mentioned above, although exemplary embodiment and modification of this indication were explained, this indication is not limited to the above-mentioned exemplary embodiment and modification, and can change variously in the range which does not deviate from a gist. For example, in the above exemplary embodiment, the third lens 16, the fourth lens 18, and the fifth lens 20 are resin lenses, but the present invention is not limited thereto, and glass lenses may be used.
(第3レンズ16をガラスレンズとした場合)
 第3レンズ16がガラス製のガラスレンズであれば、第3レンズ16よりも鏡筒50の方が熱膨張が大きくなる。このため、外部温度の上昇時には、第3レンズ16の保持力が低下する一方で、内壁62が第3レンズ16側へ膨出されるため、鏡筒50と第3レンズ16との当接部Pに作用する力の変化を抑制することができる。
(When the third lens 16 is a glass lens)
If the third lens 16 is a glass lens, the thermal expansion of the lens barrel 50 is larger than that of the third lens 16. For this reason, when the external temperature rises, the holding force of the third lens 16 decreases, and the inner wall 62 bulges toward the third lens 16, so that the contact portion P between the lens barrel 50 and the third lens 16. It is possible to suppress a change in force acting on the.
 また、第3レンズ16としてガラスレンズを用いた場合において、図8に示される第5変形例の空洞部60に、充填材92に替えて鏡筒50を構成する材料よりも線膨張率が高い充填材を充填してもよい。この場合、空洞部60に充填された充填材が熱膨張することにより、鏡筒50の内壁62がより第3レンズ16側へ膨出され、第3レンズ16が光軸ずれして光学特性が変化するのを抑制できる。 Further, when a glass lens is used as the third lens 16, the linear expansion coefficient is higher than the material constituting the lens barrel 50 in the cavity portion 60 of the fifth modification shown in FIG. 8 instead of the filler 92. A filler may be filled. In this case, the filler filled in the cavity portion 60 is thermally expanded, so that the inner wall 62 of the lens barrel 50 is further bulged toward the third lens 16, and the third lens 16 is displaced from the optical axis, resulting in optical characteristics. The change can be suppressed.
 また、上記例示的実施形態及び変形例では、レンズと鏡筒50との当接部Pを八つとしたが、これに限定されない。例えば、鏡筒50の内周面を九角形以上として、当接部Pを九つ以上設けてもよい。また逆に、当接部Pが七つ以下となるように構成してもよい。図2に示されるように、上記例示的実施形態では、隣り合う平坦面の間にゲート部16Cが位置していたが、平坦面と対向する位置にゲート部16Cが位置するように第3レンズ16を配置すれば、当接部Pが七つとなる。この場合であっても、熱膨張時に第3レンズ16の変形及び光軸ずれによる光学特性の変化を抑制する効果を有する。 In the exemplary embodiment and the modification described above, eight contact portions P between the lens and the lens barrel 50 are used, but the present invention is not limited to this. For example, the inner peripheral surface of the lens barrel 50 may be a hexagon or more and nine or more contact portions P may be provided. On the contrary, you may comprise so that the contact part P may be seven or less. As shown in FIG. 2, in the exemplary embodiment, the gate portion 16 </ b> C is positioned between adjacent flat surfaces, but the third lens is positioned so that the gate portion 16 </ b> C is positioned at a position facing the flat surface. If 16 is arranged, there will be seven contact portions P. Even in this case, there is an effect of suppressing the change of the optical characteristics due to the deformation of the third lens 16 and the optical axis deviation at the time of thermal expansion.
 さらに、上記例示的実施形態及び変形例では、鏡筒50の内周面が物体側から像側へ向かうにつれて縮径されていたが、これに限定されず、鏡筒50の内周面が物体側から像側へ向かうにつれて拡径される構成としてもよい。この場合、物体側よりも像側の方が外径の大きいレンズが配置される。 Furthermore, in the exemplary embodiment and the modification described above, the inner peripheral surface of the lens barrel 50 is reduced in diameter as it goes from the object side to the image side. However, the present invention is not limited thereto, and the inner peripheral surface of the lens barrel 50 is the object. The diameter may be increased from the side toward the image side. In this case, a lens having a larger outer diameter on the image side than on the object side is disposed.
 さらにまた、上記例示的実施形態では、図2に示されるように、鏡筒50の内周面を八角形の各辺を形成する八つの平坦面と、隣り合う平坦面の間を繋ぐ連結部(角部)とで構成したが、これに限定されない。例えば、隣り合う平坦面の間を略円弧状の連結部によって繋いだ構成としてもよい。この場合、連結部が角部とされた構成と比較して、応力の集中を抑制することができる。 Furthermore, in the exemplary embodiment, as shown in FIG. 2, the inner peripheral surface of the lens barrel 50 is connected to the eight flat surfaces forming the sides of the octagon and the adjacent flat surfaces. (Corner part) It comprised, but it is not limited to this. For example, it is good also as a structure which connected between the adjacent flat surfaces by the substantially circular arc-shaped connection part. In this case, stress concentration can be suppressed as compared with a configuration in which the connecting portion is a corner portion.
 また、上記例示的実施形態では、空洞部60の形状を光軸方向から見て略矩形状に形成したが、これに限定されない。例えば、空洞部60を光軸方向から見て略長円状や略楕円状に形成してもよい。この場合、本開示における「内壁の径方向の厚み」は、光軸Sと当接部Pとを結ぶ仮想線上における内壁の厚みとなる。同様にして、本開示における「外壁の径方向の厚み」は、光軸Sと当接部Pとを結ぶ仮想線上における外壁の厚みとなる。さらに、本開示における「内壁と外壁との間の径方向の間隔」は、光軸Sと当接部Pとを結ぶ仮想線上における空洞部60の幅となる。 In the above exemplary embodiment, the shape of the cavity 60 is formed in a substantially rectangular shape when viewed from the optical axis direction, but is not limited thereto. For example, the cavity 60 may be formed in a substantially oval shape or a substantially oval shape when viewed from the optical axis direction. In this case, “the radial thickness of the inner wall” in the present disclosure is the thickness of the inner wall on the imaginary line connecting the optical axis S and the contact portion P. Similarly, the “thickness in the radial direction of the outer wall” in the present disclosure is the thickness of the outer wall on an imaginary line connecting the optical axis S and the contact portion P. Further, the “radial distance between the inner wall and the outer wall” in the present disclosure is the width of the hollow portion 60 on the imaginary line connecting the optical axis S and the contact portion P.
 さらに、本例示的実施形態では、全ての当接部Pの径方向外側に空洞部60を設けたが、これに限定されない。例えば、光軸方向から見て光軸S周りに90度の間隔で四つの空洞部60を設けた構成としてもよく、鏡筒50に要求される外力に対する強度などに応じて適宜空洞部60の大きさや数を変更してもよい。 Furthermore, in this exemplary embodiment, the hollow portion 60 is provided on the radially outer side of all the contact portions P, but the present invention is not limited to this. For example, four cavities 60 may be provided at intervals of 90 degrees around the optical axis S when viewed from the optical axis direction, and the cavities 60 may be appropriately formed according to the strength against external force required for the lens barrel 50. The size and number may be changed.
 さらにまた、本例示的実施形態では、空洞部60は、光軸方向から見て内壁62及び外壁64によって閉じられているが、これに限定されない。例えば、内壁62に空洞部60と連通する連通孔を設けてもよい。この場合、内壁62は、光軸方向から見て片持ち状となる。ただし、内壁62の強度を確保する観点から空洞部60を閉じた構造が好ましい。 Furthermore, in this exemplary embodiment, the cavity 60 is closed by the inner wall 62 and the outer wall 64 when viewed from the optical axis direction, but is not limited thereto. For example, a communication hole that communicates with the cavity 60 may be provided in the inner wall 62. In this case, the inner wall 62 is cantilevered when viewed from the optical axis direction. However, a structure in which the cavity 60 is closed is preferable from the viewpoint of securing the strength of the inner wall 62.
 日本出願2016-065655の開示は、その全体が参照により本明細書に取り込まれる。 The entire disclosure of Japanese Application 2016-0665655 is incorporated herein by reference.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (14)

  1.  筒状に形成され、周方向の複数カ所が、内壁と、前記内壁に対し空洞部を挟んで径方向に対向しかつ前記内壁よりも径方向の厚みが厚い外壁とを含んで構成された樹脂製の鏡筒と、
     複数の前記内壁に当接して前記鏡筒に嵌合されたレンズと、
     を有するレンズユニット。
    A resin that is formed in a cylindrical shape and includes a plurality of circumferential walls including an inner wall and an outer wall that is opposed to the inner wall in a radial direction with a hollow portion interposed therebetween and is thicker in the radial direction than the inner wall. A lens barrel,
    A lens abutting against the plurality of inner walls and fitted into the lens barrel;
    A lens unit.
  2.  前記外壁の径方向の厚みは、前記内壁と前記外壁との間の径方向の間隔よりも厚い請求項1に記載のレンズユニット。 2. The lens unit according to claim 1, wherein a radial thickness of the outer wall is thicker than a radial interval between the inner wall and the outer wall.
  3.  前記内壁は、光軸を中心として回転対称に設けられている請求項1又は請求項2に記載のレンズユニット。 3. The lens unit according to claim 1, wherein the inner wall is provided rotationally symmetrically about the optical axis.
  4.  前記レンズは、樹脂製の樹脂レンズである請求項1から請求項3の何れか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 3, wherein the lens is a resin lens made of resin.
  5.  前記空洞部には、前記鏡筒を構成する材料よりもヤング率が低い材料からなる充填材が充填されている請求項4に記載のレンズユニット。 The lens unit according to claim 4, wherein the hollow portion is filled with a filler made of a material having a Young's modulus lower than that of the material constituting the lens barrel.
  6.  前記レンズは、ガラス製のガラスレンズであり、
     前記空洞部には、前記鏡筒を構成する材料よりも線膨張率が高い充填材が充填されている請求項1から請求項3の何れか1項に記載のレンズユニット。
    The lens is a glass lens made of glass,
    The lens unit according to any one of claims 1 to 3, wherein the hollow portion is filled with a filler having a higher linear expansion coefficient than a material constituting the lens barrel.
  7.  前記レンズは、光軸方向から見て三つ以上の前記内壁に当接されている請求項1から請求項6の何れか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 6, wherein the lens is in contact with three or more inner walls as viewed from the optical axis direction.
  8.  前記鏡筒の内周面は、多角形状である請求項1から請求項7の何れか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 7, wherein an inner peripheral surface of the lens barrel has a polygonal shape.
  9.  前記内壁における前記レンズとの当接部分には、光軸方向から見て前記鏡筒の径方向外側に窪んで前記レンズと面接触する湾曲面が形成されている請求項1から請求項7の何れか1項に記載のレンズユニット。 8. A curved surface that is indented radially outward of the lens barrel when viewed from the optical axis direction and is in surface contact with the lens is formed at a contact portion of the inner wall with the lens. The lens unit according to any one of the above.
  10.  光軸方向から見て前記内壁及び前記外壁によって前記空洞部が閉じられている請求項1から請求項9の何れか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 9, wherein the cavity is closed by the inner wall and the outer wall when viewed from the optical axis direction.
  11.  前記空洞部は、光軸周りに45度の定められた範囲内に設けられている請求項1から請求項10の何れか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 10, wherein the hollow portion is provided within a predetermined range of 45 degrees around the optical axis.
  12.  前記鏡筒の内側には、光軸方向に沿って複数の前記レンズが配置されており、
     前記鏡筒には、複数の前記レンズに対して前記内壁及び前記外壁が設けられている請求項1から請求項11の何れか1項に記載のレンズユニット。
    Inside the lens barrel, a plurality of the lenses are arranged along the optical axis direction,
    The lens unit according to any one of claims 1 to 11, wherein the lens barrel is provided with the inner wall and the outer wall with respect to a plurality of the lenses.
  13.  複数の前記レンズはそれぞれ異なる外径とされており、
     前記鏡筒の内周面は、前記レンズの外径に応じて物体側から像側へ向かうにつれて拡径又は縮径されており、
     前記鏡筒の径方向で異なる位置に複数の前記空洞部が設けられている請求項12に記載のレンズユニット。
    The plurality of lenses have different outer diameters,
    The inner peripheral surface of the lens barrel is enlarged or reduced in diameter as it goes from the object side to the image side according to the outer diameter of the lens,
    The lens unit according to claim 12, wherein a plurality of the cavity portions are provided at different positions in the radial direction of the lens barrel.
  14.  前記レンズユニットは、車載用又は監視用のレンズユニットである請求項1から請求項13の何れか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 13, wherein the lens unit is an in-vehicle or monitoring lens unit.
PCT/JP2017/001281 2016-03-29 2017-01-16 Lens unit WO2017168959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016065655A JP2019095463A (en) 2016-03-29 2016-03-29 Lens unit
JP2016-065655 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017168959A1 true WO2017168959A1 (en) 2017-10-05

Family

ID=59963000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001281 WO2017168959A1 (en) 2016-03-29 2017-01-16 Lens unit

Country Status (2)

Country Link
JP (1) JP2019095463A (en)
WO (1) WO2017168959A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086671A (en) * 2017-11-08 2019-06-06 マクセル株式会社 Lens barrel, lens unit, and camera module
CN110873933A (en) * 2018-08-29 2020-03-10 宁波舜宇车载光学技术有限公司 Optical lens, assembling method thereof and anti-cracking method
US20200341263A1 (en) * 2018-01-09 2020-10-29 Olympus Corporation Laminated lens array, endoscope and image pickup unit
WO2022249735A1 (en) * 2021-05-27 2022-12-01 キヤノン株式会社 Lens device, imaging device, and on-board system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801154B (en) * 2022-02-25 2023-05-01 大立光電股份有限公司 Imaging lens assembly, camera module and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202707A (en) * 1987-02-16 1988-08-22 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Precision lens mounting assembly and method and device for manufacturing precision lens cell assembly
JPH03182708A (en) * 1989-12-13 1991-08-08 Canon Inc Lens holder unit
JP2003029116A (en) * 2001-07-13 2003-01-29 Canon Inc Lens-holding device and projection exposure device incorporating the same
JP2005215503A (en) * 2004-01-30 2005-08-11 Olympus Corp Lens holding mechanism and lens unit
JP2006201378A (en) * 2005-01-19 2006-08-03 Hitachi Maxell Ltd Lens system
DE102006060088A1 (en) * 2006-12-15 2008-06-19 Carl Zeiss Sms Gmbh Optical assembly, e.g. for use in photolithography, has rotation symmetrical rim for holding optical components, rotation symmetrical rim holder with at least one first and second part; first rim holder part encloses rim circumference
JP2009271122A (en) * 2008-04-30 2009-11-19 Sharp Corp Lens, lens unit, imaging apparatus, and electronic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202707A (en) * 1987-02-16 1988-08-22 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Precision lens mounting assembly and method and device for manufacturing precision lens cell assembly
JPH03182708A (en) * 1989-12-13 1991-08-08 Canon Inc Lens holder unit
JP2003029116A (en) * 2001-07-13 2003-01-29 Canon Inc Lens-holding device and projection exposure device incorporating the same
JP2005215503A (en) * 2004-01-30 2005-08-11 Olympus Corp Lens holding mechanism and lens unit
JP2006201378A (en) * 2005-01-19 2006-08-03 Hitachi Maxell Ltd Lens system
DE102006060088A1 (en) * 2006-12-15 2008-06-19 Carl Zeiss Sms Gmbh Optical assembly, e.g. for use in photolithography, has rotation symmetrical rim for holding optical components, rotation symmetrical rim holder with at least one first and second part; first rim holder part encloses rim circumference
JP2009271122A (en) * 2008-04-30 2009-11-19 Sharp Corp Lens, lens unit, imaging apparatus, and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086671A (en) * 2017-11-08 2019-06-06 マクセル株式会社 Lens barrel, lens unit, and camera module
US20200341263A1 (en) * 2018-01-09 2020-10-29 Olympus Corporation Laminated lens array, endoscope and image pickup unit
CN110873933A (en) * 2018-08-29 2020-03-10 宁波舜宇车载光学技术有限公司 Optical lens, assembling method thereof and anti-cracking method
WO2022249735A1 (en) * 2021-05-27 2022-12-01 キヤノン株式会社 Lens device, imaging device, and on-board system

Also Published As

Publication number Publication date
JP2019095463A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2017168959A1 (en) Lens unit
JP6479282B2 (en) Lens unit
US10656366B2 (en) Lens unit
JP6559523B2 (en) Lens unit
US10775582B2 (en) Lens unit and manufacturing method of metal mold
JP7103818B2 (en) Lens unit
JP6941471B2 (en) Lens unit
JP2019012111A (en) Lens unit
JP7103819B2 (en) Lens unit
JP6499608B2 (en) Lens unit
JP7252074B2 (en) lens unit
WO2017168960A1 (en) Lens unit
WO2012133552A1 (en) Lens unit and image capture unit
US10365451B2 (en) Lens array and camera module including same
JP6739629B2 (en) Lens unit
JP7129851B2 (en) lens unit
JP2020030387A (en) Lens unit and douser
JP6872405B2 (en) Lens unit
WO2018051634A1 (en) Lens unit
JP2023123050A (en) lens unit
WO2018055844A1 (en) Lens unit
KR20110044473A (en) Lens barrel and camera module package having the same
CN113655552A (en) Spacer ring and lens
JP2007240941A (en) Lens unit
JP2020154119A (en) Lens unit

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773509

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP