WO2017168785A1 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
WO2017168785A1
WO2017168785A1 PCT/JP2016/076461 JP2016076461W WO2017168785A1 WO 2017168785 A1 WO2017168785 A1 WO 2017168785A1 JP 2016076461 W JP2016076461 W JP 2016076461W WO 2017168785 A1 WO2017168785 A1 WO 2017168785A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
endoscope
pixel
timing
light
Prior art date
Application number
PCT/JP2016/076461
Other languages
French (fr)
Japanese (ja)
Inventor
紗依里 齋藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017553274A priority Critical patent/JP6275357B1/en
Publication of WO2017168785A1 publication Critical patent/WO2017168785A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances

Definitions

  • the present invention relates to an endoscope, and more particularly to an endoscope that can correct pixel shift caused by decentration of an imaging optical system.
  • An endoscope system including an endoscope that captures an object inside a subject and an image processing device that generates an observation image of the object captured by the endoscope is widely used in the medical field, the industrial field, and the like. It is used.
  • the pixel shift of the imaging signal due to the eccentricity of the imaging optical system or an imaging system using a plurality of imaging elements for example, a 3D imaging system or a prism separates an optical image.
  • a technique for electrically correcting a positional deviation between image pickup devices in an image pickup system such as a 3CCD that receives light by two or more image pickup devices is known.
  • the endoscope system as described above employs a so-called frame sequential observation method, it is necessary to drive the imaging device in synchronization with the light emission and light shielding timing of the light source. In order to perform pixel shift (position shift) correction, it is necessary to shorten the light emission time of the light source.
  • the effective pixel portion displayed on the monitor is effective for the image sensor. Since the position in the pixel is not uniquely determined, the entire effective pixel has to be read during the light-shielding period of the light source.
  • the present invention has been made in view of the above-described circumstances, and does not use a “cutout function” that selectively reads out only pixels in an arbitrary range in an image sensor, and does not shorten the light emission period of the light source.
  • An object of the present invention is to provide an endoscope capable of performing the correction process.
  • An endoscope is an imaging element that captures an image of a subject and generates a predetermined imaging signal, and has the number of lines from the timing of starting one frame to the starting timing of effective pixels related to the imaging element.
  • An imaging device capable of setting a pre-blanking period, which is a corresponding period, and an illumination unit capable of emitting illumination light for irradiating the subject and irradiating the subject with the illumination light from a light source having a light emission period and a light shielding period
  • a pre-blanking period setting unit that sets a predetermined pre-blanking period corresponding to a monitor display pixel to be displayed on a monitor in effective pixels related to the image sensor, and the pre-blanking according to a predetermined vertical synchronization signal
  • a start timing setting unit for setting a start timing of a period, and the start timing setting unit in the light shielding period of the light source It started at the set the start timing comprises a signal reading circuit for reading out an image signal according to the monitor display pixel
  • FIG. 1 is a diagram illustrating a configuration of an endoscope system including an endoscope according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the endoscope system including the endoscope according to the first embodiment.
  • FIG. 3 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the first embodiment.
  • FIG. 4 is a diagram showing the relationship between the read pixel position for each pixel shift correction position and the pixel position displayed on the monitor in the endoscope of the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration of an endoscope system including an endoscope according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an electrical configuration of the endoscope system including the endoscope according to the first embodiment.
  • FIG. 3 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding
  • FIG. 5 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the second embodiment of the present invention.
  • FIG. 6 is a timing chart showing a frame start timing and a sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the conventional endoscope.
  • FIG. 1 is a diagram illustrating a configuration of an endoscope system including an endoscope according to a first embodiment of the present invention
  • FIG. 2 is a diagram of an endoscope system including an endoscope according to the first embodiment. It is a block diagram which shows an electric structure.
  • an endoscope system 1 having the endoscope of the first embodiment is connected to an endoscope 2 that observes and images a subject, and to the endoscope 2.
  • a video processor 3 that inputs the imaging signal and performs predetermined image processing; a light source device 4 that supplies illumination light for illuminating the subject; and a monitor device 5 that displays an observation image corresponding to the imaging signal.
  • the endoscope 2 includes an elongated insertion portion 6 that is inserted into a body cavity or the like of a subject, and an endoscope operation portion 10 that is disposed on the proximal end side of the insertion portion 6 and is operated by being grasped by an operator. And a universal cord 11 provided with one end portion so as to extend from the side portion of the endoscope operation unit 10.
  • the insertion portion 6 includes a rigid distal end portion 7 provided on the distal end side, a bendable bending portion 8 provided at the rear end of the distal end portion 7, and a long and flexible portion provided at the rear end of the bending portion 8. And a flexible tube portion 9 having flexibility.
  • a connector 12 is provided on the base end side of the universal cord 11, and the connector 12 is connected to the light source device 4. That is, a base (not shown) serving as a connection end of a fluid conduit projecting from the tip of the connector 12 and a light guide base (not shown) serving as an illumination light supply end are provided to the light source device 4. It is designed to be detachably connected.
  • connection cable 13 is connected to the electrical contact portion provided on the side surface of the connector 12.
  • the connection cable 13 is provided with a signal line for transmitting an image pickup signal from the image pickup element 22 (see FIG. 2) in the endoscope 2, for example, and the other end connector portion is connected to the video processor 3. It has come to be.
  • the connector 12 is provided with an FPGA 23 to be described later, and endoscope specific information in the endoscope 2 (for example, information related to a pixel shift value of the image sensor or the like according to the pixel shift value).
  • endoscope specific information in the endoscope 2 for example, information related to a pixel shift value of the image sensor or the like according to the pixel shift value.
  • an ID memory 27 or the like storing information such as numerical values of the pre-blanking period) is disposed (these components will be described in detail later).
  • the endoscope 2 is provided with an illumination unit 29 disposed at the distal end portion 7 of the insertion unit 6 and capable of irradiating a subject with a plurality of types of illumination light, and the subject image is incident.
  • An objective optical system 21 including a lens for performing imaging, and an imaging element 22 disposed on an image forming surface of the objective optical system 21.
  • the illumination unit 29 is disposed at the distal end portion of the light guide that extends from the light source device 4 to the inside of the endoscope 2. And the illumination part 29 irradiates the illumination light by which the light emission period and the light-shielding period which were generated in the said light source device 4 were controlled.
  • the objective optical system 21 receives reflected light related to the subject according to predetermined illumination light (frame sequential light) irradiated to the subject by the illumination unit 29.
  • the image sensor 22 is constituted by a CMOS image sensor in the present embodiment. Note that the endoscope system 1 of the present embodiment adopts a frame sequential observation method.
  • the light receiving unit in the imaging element 22 includes a plurality of photodiodes (PD) 22a that are photoelectric conversion units that photoelectrically convert light according to incident light to generate signal charges, and the signal charges generated in the photoelectric conversion unit.
  • PD photodiodes
  • the imaging element 22 photoelectrically converts light incident on each pixel in a photoelectric conversion unit and outputs a predetermined imaging signal.
  • the image sensor 22 can set a preblanking period, which is a period corresponding to the number of lines from the start timing of one frame to the start timing of the effective pixels related to the image sensor 22.
  • the “timing for starting one frame” is set by the “start timing setting unit”, and the “preblanking period” is set by the “preblanking period setting unit”. The details will be described later. To do.
  • the image sensor 22 also includes an AFE (analog front end) 22b.
  • the AFE 22b is a circuit that performs predetermined processing on the imaging signal, and includes a known CDS (Correlation Double Sampling) circuit and an analog / digital converter (ADC), and outputs the imaging signal as a digital imaging signal. To do.
  • CDS Correlation Double Sampling
  • ADC analog / digital converter
  • the image sensor 22 further includes a timing generator (TG) 22c that gives a predetermined timing to the photodiode (PD) 22a and the AFE 22b.
  • TG timing generator
  • the endoscope 2 includes the FPGA 23 in the connector 12 described above.
  • the FPGA 23 is configured by a so-called FPGA (field-programmable gate array), and performs various digital signal processing on the digital image signal output from the AFE 22b.
  • FPGA field-programmable gate array
  • the FPGA 23 includes a read timing setting unit 26 and a signal read unit 25.
  • the read timing setting unit 26 serves as a “preblanking period setting unit” and a “start timing setting unit”.
  • the signal reading unit 25 serves as a “signal reading unit” that reads an imaging signal related to the monitor display pixel in accordance with the preblanking period in the light shielding period related to the light source device 4.
  • the read timing setting unit 26 and the signal read unit 25 will be described in detail later.
  • the endoscope 2 uses the connector 12 to identify the endoscope specific information (for example, information related to the pixel shift value of the image sensor, which will be described later, or the pre-appropriate information corresponding to the pixel shift value).
  • An ID memory 27 storing information (such as numerical values of ranking periods) is disposed and connected to the read timing setting unit 26.
  • the “pixel shift” of the imaging signal may occur due to the eccentricity of the imaging optical system.
  • this “pixel shift” occurs, if the image signal is read without taking any countermeasures, the image displayed on the monitor will naturally shift depending on the degree of “pixel shift”. There is a possibility that an accurate image cannot be displayed.
  • FIG. 4 is a diagram showing the relationship between the read pixel position for each pixel shift correction position and the pixel position displayed on the monitor in the endoscope of the first embodiment. Refer to FIG. A problem caused by “pixel shift” will be briefly described.
  • the endoscope 2 is displayed on the monitor 5 in the pixel group 60 ⁇ / b> A of the image sensor 22, for example, a normal type endoscope in which “pixel shift” has not occurred is “type A”. It is assumed that a pixel group to be indicated is denoted by reference numeral 61. In FIG. 4, a pixel area indicated by “OB” is a so-called optical black area.
  • the pixel group 61 can be displayed as the display image 51 on the monitor 5 without correcting the pixel shift.
  • the pixel group to be displayed on the monitor 5 is compared with the type A in the pixel group 60 ⁇ / b> B indicated by “type B” in FIG. 4 from the position of the pixel group 61. Assume that the position is shifted upward as indicated by the pixel group 61b.
  • the pixel group to be displayed on the monitor 5 for example, is compared with the type A described above. In FIG. 4, it is assumed that the position is shifted upward from a position indicated by a pixel group 61c in a pixel group 60C indicated by "type C" in FIG.
  • the image displayed on the monitor 5 is naturally displayed when the processing of reading the image signal is performed without taking any measures, that is, when reading is performed at the position of the normal pixel 61. Shifts according to the degree of “pixel shift”.
  • the information related to the “pixel shift” includes, for example, information related to the actual pixel shift value of the image sensor or information such as a numerical value of a preblanking period corresponding to the pixel shift value.
  • the endoscope according to the present embodiment detects the degree of pixel shift, and the endoscope itself stores information corresponding to the degree of pixel shift as information for each endoscope. ing.
  • information related to the “pixel shift” of the imaging signal caused by the eccentricity of the imaging optical system is stored in the storage unit inside the endoscope. Or the like.
  • the read timing setting unit 26 in the FPGA 23 serves as a “preblanking period setting unit” and a “start timing setting unit” in the present embodiment.
  • the read timing setting unit 26 first sets a “monitor display pixel” in the effective pixels related to the image sensor 22, that is, a “preblanking period” corresponding to the position of the pixel actually displayed on the monitor. Acts as a “ranking period setting section”.
  • the “preblanking period” is a period corresponding to the number of lines from the start timing of one frame in the image sensor 22 to the start timing of effective pixels related to the image sensor 22.
  • the “pre-blanking period” corresponding to the position also changes in each endoscope. It will be set for each mirror.
  • the endoscope 2 of the present embodiment needs to read only the effective pixel portion (“monitor display pixel”) to be displayed on the monitor among the effective pixels of the image sensor 22 during the light-shielding period of the light source.
  • the reading timing of the “monitor display pixel” and the light-shielding period of the light source are made to substantially coincide with each other regardless of the presence or absence of “pixel shift” of the image sensor 22.
  • the readout timing of the entire effective pixel of the image sensor 22 is not necessarily determined during the light-shielding period of the light source, regardless of whether or not there is a “pixel shift” of the image sensor 22.
  • the present invention is characterized in that a part of the effective pixels other than the “monitor display pixel” can be read out outside the light-shielding period of the light source, that is, within the light-emitting period of the light source.
  • the position of the “monitor display pixel” in the effective pixel changes depending on the degree of “pixel shift” determined for each endoscope.
  • the endoscope 2 of the present embodiment adjusts the reading start timing of the effective pixels and further adjusts the reading start timing of the effective pixels so that the timing substantially coincides with the light shielding period (charge reading period) of the light source.
  • the length of the “pre-blanking period” is set according to the condition.
  • the length of the “pre-blanking period” is variably set according to the degree of “pixel deviation” determined for each endoscope, so that the “monitor”
  • the readout timing of the “display pixel” is always substantially coincident with the light-shielding period (charge readout period) of the light source, whereby the light-shielding period of the light source can be shortened, that is, the light emission time can be set longer.
  • the read timing setting unit 26 serves as a “start timing setting unit” that sets the start timing of the pre-blanking period according to the vertical synchronization signal VSYNC from the drive signal generation unit 35 in the video processor 3.
  • start timing of the pre-blanking period is set to be the same even for endoscopes having different “pixel shifts” determined for each endoscope.
  • the read timing as the “preblanking period setting unit” The setting unit 26 reads out information related to pixel shift of the image sensor from among various unique information stored in the ID memory 27 and sets a “preblanking period” determined for each endoscope. It is like that.
  • the preblanking period is started at the start timing set in the “start timing setting unit” in the read timing setting unit 26, and the preblanking period is read timing setting unit 26.
  • the position of the “monitor display pixel” in the “preblanking period setting unit” in other words, in other words, according to the information related to “pixel shift” stored as individual information for each endoscope, A period is set.
  • the signal reading unit 25 serves as a “signal reading unit” that reads an imaging signal related to the monitor display pixel in accordance with the pre-blanking period in the light shielding period related to the light source device 4. .
  • the signal reading unit 25 reads the effective pixel after the pre-blanking period ends.
  • the “monitor display pixel” in the effective pixel that is, the image pickup signal related to the pixel actually displayed on the monitor in the effective pixel of the image sensor 22 is read out.
  • the video processor 3 inputs a video signal from the endoscope 2 and a control unit 31 that controls various circuits in the connected endoscope 2 and the light source device 4 in addition to the video processor 3.
  • An image processing unit 32 that performs image processing
  • a video output unit 33 that inputs an image signal processed in the image processing unit 3 and generates a video signal for display on the monitor device 5, a predetermined vertical synchronization signal VSYNC, and the like
  • a drive signal generation unit 35 for generating the drive signal.
  • the light source device 4 includes a light source 44, a light source driver 42, a rotary filter 46, a drive unit 45, a drive driver 43, and a light source control unit 41.
  • the light source 44 is configured by using a white LED (Light Emitting Diode), a xenon lamp, or the like, and generates white light under the control of the light source control unit 41.
  • a white LED Light Emitting Diode
  • a xenon lamp or the like
  • the light source driver 42 generates white light in the light source 44 by supplying current to the light source 44 under the control of the light source control unit 41.
  • Light generated by the light source 44 is emitted from the illumination unit 29 of the endoscope 2 via the rotary filter 46, a condenser lens (not shown), and the light guide.
  • the rotary filter 46 is arranged on the optical path of white light emitted from the light source 44, and transmits only the light having a predetermined wavelength band through the white light emitted from the light source 44 by rotating.
  • the rotary filter 46 includes a red filter 46R, a green filter 46G, and a blue filter 46B that transmit light having respective wavelength bands of red light (R), green light (G), and blue light (B).
  • R red light
  • G green light
  • B blue light
  • the driving unit 45 rotates the rotary filter 46 with reference to the synchronization signal transmitted from the video processor 3.
  • the drive driver 43 supplies a predetermined current to the drive unit 45 under the control of the light source control unit 41.
  • the light source control unit 41 controls the amount of current supplied to the light source 44 according to the dimming signal transmitted from the control unit 31 in the video processor 3.
  • the operation timing of the light source by the light source control unit 41 is fixed regardless of the degree of “pixel shift” described later, that is, regardless of whether or not the pixel shift is corrected.
  • the number of lines corresponding to the “monitor display pixel” is the same as when no pixel deviation is corrected, even when the pixel light-shielding period is controlled by the light source control unit 41. It can be set as a time during which minutes can be read out.
  • the image processing unit 32 executes the image processing operation without providing a difference between “when the pixel shift is corrected” and “when no pixel shift is corrected”. Be able to.
  • the light source control unit 41 rotates the rotary filter 46 by driving the drive unit 45 via the drive driver 43.
  • the display device 5 has a function of receiving and displaying the in-vivo image generated by the video processor 3 from the video processor 3 via the video cable.
  • FIG. 3 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the first embodiment. It is the figure which showed the relationship between the read-out pixel position for every pixel shift correction position and the pixel position displayed on a monitor in the endoscope of 1 embodiment.
  • FIG. 9 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the conventional endoscope.
  • the coordinate position of the shifted pixel is specified, and the pixel corresponding to the coordinate position
  • a technique for performing correction using a “cutout function” for selectively reading only the image is known.
  • pixels to be actually displayed on the monitor among the effective pixels related to the image sensor 22 (that is, pixels to be actually read).
  • FIG. 9 shows a conventional endoscope that employs a frame sequential observation method, in which the position of a pixel to be actually displayed on the monitor is shifted in the effective pixel in accordance with the degree of “pixel shift”.
  • 4 is a timing chart showing a frame start timing and a sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing.
  • an endoscope of the normal type in which “pixel shift” has not occurred is referred to as “type A”, and an endoscope in which “pixel shift” has occurred.
  • the mirrors are referred to as “type B (upshift type)” and “type C (downshift type)”.
  • the entire effective pixel has to be read during the light-shielding period of the light source (during the charge reading period) so as to correspond to the type B or type C endoscope.
  • the light source that performs the frame sequential light emission operation irradiation of each R light, G light, and B light
  • the light emission time has been shortened.
  • the present invention has been made in view of the above-described circumstances, and does not use a “cutout function” that selectively reads out only pixels in an arbitrary range in an image sensor, and does not shorten the light emission period of the light source.
  • An endoscope capable of executing the correction process is provided.
  • the normal type endoscope in which the “pixel shift” of the imaging signal does not occur is referred to as “type A”
  • the endoscope in which the “pixel shift” occurs is referred to as “type B ( "Type that shifts upward") and "Type C (type that shifts downward)”.
  • the endoscope 2 detects a “pixel shift” of an image pickup signal caused by the eccentricity of the image pickup optical system or the like at the time of manufacturing the endoscope, and the information related to the “pixel shift” is stored in the ID memory 27. To remember.
  • the information related to the “pixel shift” is, for example, information related to a pixel shift value of an actual image sensor or information such as a numerical value of a pre-blanking period corresponding to the pixel shift value.
  • the read timing setting unit 26 as a “preblanking period setting unit”. Reads out information related to pixel shift of the image sensor from among the various unique information of the endoscope 2 stored in the ID memory 27.
  • the read timing setting unit 26 sets a “preblanking period” and a “timing to start one frame” determined for each endoscope according to the read information.
  • the “pre-blanking period” is a period corresponding to the number of lines from the timing of starting one frame in the image sensor 22 to the start timing of the effective pixel related to the image sensor 22 as described above. To do.
  • the “timing for starting one frame” is set at a fixed timing regardless of the degree of “pixel shift”.
  • the “monitor display pixel” regardless of the degree of “pixel deviation”. Is always substantially coincident with the light shielding period (charge reading period) of the light source.
  • a readout timing setting unit 26 acquires information relating to “pixel shift” from the ID memory 27 in the endoscope 2 of type A, and sets the length of the “preblanking period” and “timing to start one frame”.
  • the “length of the pre-blanking period” and the “timing to start one frame” set by the read timing setting unit 26 are the same as the light-shielding period of the light source (the monitor display pixel) read timing by the signal read unit 25.
  • the pixel group 61 to be displayed on the monitor 5 out of the pixel group 60A in the image sensor 22 is left as it is without correcting the pixel shift. In this state, it can be displayed as a display image 51 on the monitor 5.
  • the readout timing setting unit 26 performs the type B or type C endoscope similarly to the above.
  • Information related to “pixel shift” is acquired from the ID memory 27 in the mirror 2, and the length of “preblanking period” and “timing to start one frame” are set.
  • the “preblanking period length” and the “timing to start one frame” set by the read timing setting unit 26 are the same as the “monitor display pixel” read timing by the signal read unit 25.
  • the readout of a part of the effective pixels on the back side (see type B) or the front side (see type C) of the “monitor display pixel” is outside the light shielding period of the light source, that is, the light source It is “length” and “timing” that is allowed to be performed within the light emission period.
  • the monitor 5 can display the display image 51 at an appropriate position on the monitor screen as in the case of no pixel shift correction. .
  • the length of the “pre-blanking period” is variably set according to the degree of “pixel shift” determined for each endoscope, and “pixel shift” is set. Regardless of the degree, the reading timing of the “monitor display pixel” is substantially coincident with the light shielding period (charge reading period) of the light source, and the reading of a part of the effective pixels other than the “monitor display pixel” is shielded from the light source.
  • the light shielding period charge reading period
  • the pixel shift correction process is performed without using a “cutout function” that selectively reads out only an arbitrary range of pixels in the image sensor and without shortening the light emission period of the light source.
  • a viable endoscope can be provided.
  • the above-described correction processing can be performed without changing the operations of the video processor and the light source device connected to the endoscope. It can be combined with an endoscope system having an apparatus or the like without any trouble.
  • FIG. 5 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the second embodiment of the present invention.
  • the length of the “pre-blanking period” is variably set according to the degree of “pixel shift” determined for each endoscope, so that “pixel” Regardless of the degree of “shift”, the readout timing of the “monitor display pixel” is substantially coincident with the light-shielding period (charge readout period) of the light source, and a part of the effective pixels other than the “monitor display pixel” is read out.
  • the endoscope according to the second embodiment makes the length of the “pre-blanking period” constant while the length of the “pre-blanking period” is constant.
  • timing to start one frame start timing of pre-blanking period” according to the degree of “pixel deviation” determined for each endoscope, regardless of the degree of “pixel deviation”.
  • the readout timing of the “monitor display pixel” is substantially coincided with the light shielding period (charge readout period) of the light source, and reading of a part of the effective pixels other than the “monitor display pixel” is performed outside the light shielding period of the light source, that is, the light emission of the light source. It is characterized by allowing it to be done within a period.
  • the endoscope according to the second embodiment has the same basic configuration as that of the first embodiment. Therefore, only the differences from the first embodiment will be described here, and common parts will be described. The description of is omitted.
  • the endoscope system 1 having the endoscope 2 of the second embodiment is also connected to the endoscope 2 that observes and images the subject, and the endoscope 2.
  • a video processor 3 that inputs the imaging signal and performs predetermined image processing; a light source device 4 that supplies illumination light for illuminating the subject; and a monitor device 5 that displays an observation image corresponding to the imaging signal.
  • the connector 12 in the endoscope 2 is provided with the FPGA 23 as in the first embodiment, and an ID memory 27 and the like storing endoscope identification information in the endoscope 2 is provided.
  • information related to the pixel shift value of the image sensor or the “timing to start one frame” corresponding to the pixel shift value is stored in the ID memory 27 as the endoscope specific information.
  • the image sensor 22 can set a pre-blanking period, which is a period corresponding to the number of lines from the start timing of one frame to the start timing of effective pixels related to the image sensor 22. It has become.
  • the FPGA 23 includes a read timing setting unit 26 and a signal read unit 25.
  • the read timing setting unit 26 serves as a “preblanking period setting unit” and a “start timing setting unit”.
  • the signal reading unit 25 serves as a “signal reading unit” that reads an imaging signal related to the monitor display pixel in accordance with the pre-blanking period in the light shielding period related to the light source device 4.
  • the read timing setting unit 26 sets the start timing of the preblanking period according to the vertical synchronization signal VSYNC from the drive signal generation unit 35 in the video processor 3. To fulfill the role of
  • timing to start one frame start timing of pre-blanking period” corresponding to the position of the “monitor display pixel” in the entire effective pixel is set for each endoscope.
  • the reading timing of the “monitor display pixel” and the light-shielding period (charge reading period) of the light source are substantially matched regardless of the presence or absence of “pixel shift” of the image sensor 22.
  • the readout timing of the entire effective pixel of the image sensor 22 is not necessarily set during the light-shielding period of the light source, regardless of whether or not there is a “pixel shift” of the image sensor 22.
  • reading of a part of the effective pixels other than the “monitor display pixel” is allowed to be performed outside the light-shielding period of the light source, that is, within the light-emitting period of the light source.
  • the position of the “monitor display pixel” in the effective pixel changes depending on the degree of “pixel shift” determined for each endoscope.
  • the endoscope 2 according to the second embodiment adjusts the reading start timing of the effective pixels so that the timing substantially coincides with the light-shielding period (charge reading period) of the light source, and further starts reading of the effective pixels.
  • timing to start one frame start timing of the pre-blanking period” according to the degree of “pixel shift” determined for each endoscope.
  • the readout timing of the “monitor display pixel” always coincides substantially with the light-shielding period (charge readout period) of the light source, thereby shortening the light-shielding period of the light source. That is, the light emission time can be set longer.
  • the length of the pre-blanking period is the same even for endoscopes having different “pixel shifts” determined for each endoscope. Shall be set to
  • the read timing setting as the “start timing setting unit” is performed.
  • the ranking period start timing is set.
  • the preblanking period is determined by the readout timing setting unit 26 according to information related to “pixel shift” stored as individual information for each endoscope. The operation is started at the start timing set in the “start timing setting unit”.
  • the signal readout unit 25 actually performs the “monitor display pixel”, that is, the effective pixel of the image sensor 22 in the light shielding period of the light source device 4 after the preblanking period ends. An imaging signal relating to the pixel displayed on the monitor is read out.
  • the operation timing of the light source by the light source control unit 41 is fixed regardless of the degree of “pixel shift”.
  • FIG. 5 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the second embodiment of the present invention.
  • the normal type endoscope in which the “pixel shift” of the imaging signal does not occur is “type A”, and the endoscope in which the “pixel shift” occurs is “type”. “B (upshift type)” and “type C (downshift type)”.
  • the endoscope 2 detects a “pixel shift” of an image pickup signal caused by the eccentricity of the image pickup optical system or the like at the time of manufacturing the endoscope, and the information related to the “pixel shift” is stored in the ID memory 27. To remember.
  • the read timing setting unit 26 as a “preblanking period setting unit”. Reads out information related to pixel shift of the image sensor from among the various unique information of the endoscope 2 stored in the ID memory 27.
  • the “pre-blanking period” is set to a fixed length regardless of the degree of “pixel shift”.
  • the “length of the pre-blanking period” and the “timing to start one frame” set by the read timing setting unit 26 are the same as the light-shielding period of the light source (the monitor display pixel) read timing by the signal read unit 25.
  • the readout timing setting unit 26 performs the type B or type C endoscope similarly to the above.
  • the “preblanking period length” and the “timing to start one frame” set by the read timing setting unit 26 are the same as the “monitor display pixel” read timing by the signal read unit 25.
  • the readout of a part of the effective pixels on the back side (see type B) or the front side (see type C) of the “monitor display pixel” is outside the light shielding period of the light source, that is, the light source It is “length” and “timing” that is allowed to be performed within the light emission period.
  • the timing to start one frame the start timing of the pre-blanking period” is variably set according to the degree of “pixel shift” determined for each endoscope. Regardless of the degree of “pixel shift”, the readout timing of the “monitor display pixel” is made to substantially coincide with the light-shielding period (charge readout period) of the light source, and one of the effective pixels other than the “monitor display pixel” is selected.
  • Part reading is allowed outside the light-shielding period of the light source, that is, within the light-emitting period of the light source, thereby preventing color mixing of the image displayed on the monitor and shortening the light-shielding period of the light source, that is, reducing the light emission time. It can be set longer.
  • the pixel shift correction process is performed without using a “cutout function” that selectively reads out only an arbitrary range of pixels in the image sensor and without shortening the light emission period of the light source.
  • a viable endoscope can be provided.
  • the correction processing described above can be performed without changing the operations of the video processor and the light source device connected to the endoscope, as in the first embodiment. Therefore, it can be combined with an endoscope system having a conventional video processor and light source device without any trouble.
  • the signal readout unit 25 and the readout timing setting unit 26 are formed in the FPGA 23 in the endoscope 2, but the present invention is not limited to this, and other parts of the endoscope 2, For example, it may be disposed in the operation unit or the like, or may be disposed in the video processor 3 so as to control the image sensor 22 from the video processor 3.
  • an observation method using a surface sequential light source is adopted.
  • the present invention is not limited to this, and an example of performing PWM control using an LED light source or the like, or narrowband light observation (NBI) as special light observation : Narrow Band Imaging), infrared light observation (IRI: InfraRed Imaging), or fluorescence observation (AFI: Auto Fluorescence Imaging).
  • NBI narrowband light observation
  • IRI InfraRed Imaging
  • AFI Auto Fluorescence Imaging

Abstract

Provided is an endoscope, comprising: an image capture element 22 which is capable of setting a pre-blanking interval which is an interval which corresponds to the number of lines from the timing at which one frame is commenced to a timing of valid pixel commencement; an illumination unit 29 which is capable of irradiating illumination light from a light source 44 which is provided with a light emitting interval and a blanking interval; a read-out timing setting unit 26 which sets the pre-blanking interval which corresponds to a monitor display pixel from among the valid pixels, and which sets a commencement timing of the pre-blanking interval according to a vertical synchronization signal; and a signal read-out circuit 25 which reads out, in the blanking interval, an image capture signal which is commenced at the commencement timing and which relates to the monitor display pixel according to the pre-blanking interval.

Description

内視鏡Endoscope
 本発明は、内視鏡に関し、特に、撮像光学系の偏心等に起因する画素ずれを補正可能とする内視鏡に関する。 The present invention relates to an endoscope, and more particularly to an endoscope that can correct pixel shift caused by decentration of an imaging optical system.
 被検体の内部の被写体を撮像する内視鏡、及び、内視鏡により撮像された被写体の観察画像を生成する画像処理装置等を具備する内視鏡システムが、医療分野及び工業分野等において広く用いられている。 An endoscope system including an endoscope that captures an object inside a subject and an image processing device that generates an observation image of the object captured by the endoscope is widely used in the medical field, the industrial field, and the like. It is used.
 このような内視鏡システムにおいては、従来、撮像光学系の偏心に起因する撮像信号の画素ずれ、または、複数の撮像素子を用いた撮像システム(たとえば、3D撮像システムもしくはプリズムで光学像を分離し2つ以上の撮像素子で受光する3CCDの如き撮像システム)において各撮像素子間の位置ずれを電気的に補正する技術が知られている。 In such an endoscope system, conventionally, the pixel shift of the imaging signal due to the eccentricity of the imaging optical system or an imaging system using a plurality of imaging elements (for example, a 3D imaging system or a prism separates an optical image). In addition, there is known a technique for electrically correcting a positional deviation between image pickup devices in an image pickup system such as a 3CCD that receives light by two or more image pickup devices.
 この種の補正技術としては、たとえば、撮像素子における任意範囲の画素のみを選択的に読み出す「切り出し機能」を用い、上記画素ずれの補正を実現する技術が知られている(日本国特開2006-239052号公報)。 As this type of correction technique, for example, a technique that realizes the correction of the pixel shift using a “cutout function” that selectively reads out only an arbitrary range of pixels in the image sensor is known (Japanese Patent Laid-Open No. 2006-2006). -239052).
 しかしながら、近年内視鏡に搭載する撮像素子は益々小型化することが求められている。このため、搭載する機能についても限定する必要が生じてきており、画素ずれを補正する技術として上述した「切り出し機能」を搭載して用いることには困難が伴う状況となっている。 However, in recent years, an image sensor mounted on an endoscope has been required to be further downsized. For this reason, it is necessary to limit the functions to be mounted, and it is difficult to use the “cutout function” described above as a technique for correcting pixel shift.
 また、上述の如き内視鏡システムが、いわゆる面順次方式の観察方式を採用する場合、光源の発光および遮光タイミングに同期して撮像素子の駆動を行う必要があるが、このような場合に、画素ずれ(位置ずれ)補正を行うためには光源の発光時間を短くする必要があった。 In addition, when the endoscope system as described above employs a so-called frame sequential observation method, it is necessary to drive the imaging device in synchronization with the light emission and light shielding timing of the light source. In order to perform pixel shift (position shift) correction, it is necessary to shorten the light emission time of the light source.
 この、補正を行うために従来は光源の発光時間を短くする必要があった理由は以下のとおりである。 The reason why it has been necessary to shorten the light emission time of the light source in order to perform this correction is as follows.
 すなわち、上述の如き観察方式を採用する内視鏡システムにおいては、撮像素子に係る有効画素のうち、少なくともモニタに表示する有効画素部分については、光源の遮光期間中に読み出す必要がある。 That is, in the endoscope system that employs the observation method as described above, it is necessary to read at least the effective pixel portion displayed on the monitor among the effective pixels related to the image sensor during the light shielding period of the light source.
 ここで、仮に、上述した如き画素ずれの補正が行わない場合を仮定すると、光源の遮光期間中には、モニタに表示する有効画素部分のみを読み出せばよい。 Here, if it is assumed that correction of pixel shift as described above is not performed, only the effective pixel portion displayed on the monitor needs to be read during the light-shielding period of the light source.
 一方、画素ずれの補正を行う場合、従来は、その補正の仕方(例えば、画面上の上方にシフトするか下方にシフトするか等)によっては、モニタに表示する有効画素部分が撮像素子の有効画素中のどこに位置するかが一義的には定まらないことから、結局のところ有効画素全体を光源の遮光期間中に読み出さなければならなかった。 On the other hand, when correcting pixel shift, conventionally, depending on the correction method (for example, shifting upward or downward on the screen), the effective pixel portion displayed on the monitor is effective for the image sensor. Since the position in the pixel is not uniquely determined, the entire effective pixel has to be read during the light-shielding period of the light source.
 これは、光源の遮光期間を長くとる、換言すれば、光源の発光期間を短くする必要に迫られ、ひいては、照明の明るさの不足を招く虞があった。 This requires a longer light-shielding period of the light source, in other words, a shorter light-emitting period of the light source, which may lead to insufficient illumination brightness.
 本発明は上述した事情に鑑みてなされたものであり、撮像素子における任意範囲の画素のみを選択的に読み出す「切り出し機能」を用いることなく、かつ、光源の発光期間を短くすることなく画素ずれの補正処理を実行可能な内視鏡を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and does not use a “cutout function” that selectively reads out only pixels in an arbitrary range in an image sensor, and does not shorten the light emission period of the light source. An object of the present invention is to provide an endoscope capable of performing the correction process.
 本発明の一態様の内視鏡は、被写体を撮像し所定の撮像信号を生成する撮像素子であって、1フレームを開始するタイミングから当該撮像素子に係る有効画素の開始タイミングまでのライン数に相当する期間であるプリブランキング期間を設定可能な撮像素子と、被写体に照射するための照明光を発光し発光期間および遮光期間を有する光源からの当該照明光を被写体に向けて照射可能な照明部と、前記撮像素子に係る有効画素中における、モニタに表示するモニタ表示画素に対応する所定の前記プリブランキング期間を設定するプリブランキング期間設定部と、所定の垂直同期信号に応じて、前記プリブランキング期間の開始タイミングを設定する開始タイミング設定部と、前記光源の前記遮光期間において、前記開始タイミング設定部で設定された前記開始タイミングで開始され、前記プリブランキング期間設定部で設定された前記プリブランキング期間に応じて前記モニタ表示画素に係る撮像信号を読み出す信号読出回路と、を具備する。 An endoscope according to an aspect of the present invention is an imaging element that captures an image of a subject and generates a predetermined imaging signal, and has the number of lines from the timing of starting one frame to the starting timing of effective pixels related to the imaging element. An imaging device capable of setting a pre-blanking period, which is a corresponding period, and an illumination unit capable of emitting illumination light for irradiating the subject and irradiating the subject with the illumination light from a light source having a light emission period and a light shielding period A pre-blanking period setting unit that sets a predetermined pre-blanking period corresponding to a monitor display pixel to be displayed on a monitor in effective pixels related to the image sensor, and the pre-blanking according to a predetermined vertical synchronization signal A start timing setting unit for setting a start timing of a period, and the start timing setting unit in the light shielding period of the light source It started at the set the start timing comprises a signal reading circuit for reading out an image signal according to the monitor display pixel in accordance with the pre-blanking period set by the pre-blanking period setting unit.
図1は、本発明の第1の実施形態の内視鏡を含む内視鏡システムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an endoscope system including an endoscope according to a first embodiment of the present invention. 図2は、第1の実施形態の内視鏡を含む内視鏡システムの電気的な構成を示すブロック図である。FIG. 2 is a block diagram illustrating an electrical configuration of the endoscope system including the endoscope according to the first embodiment. 図3は、第1の実施形態の内視鏡における、面順次光源動作タイミングに対応する各画素ずれ補正位置ごとのフレーム開始タイミングおよびセンサ読み出しタイミングを示したタイミングチャートである。FIG. 3 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the first embodiment. 図4は、第1の実施形態の内視鏡における、各画素ずれ補正位置ごとの読み出し画素位置とモニタに表示する画素位置との関係を示した図である。FIG. 4 is a diagram showing the relationship between the read pixel position for each pixel shift correction position and the pixel position displayed on the monitor in the endoscope of the first embodiment. 図5は、本発明の第2の実施形態の内視鏡における、面順次光源動作タイミングに対応する各画素ずれ補正位置ごとのフレーム開始タイミングおよびセンサ読み出しタイミングを示したタイミングチャートである。FIG. 5 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the second embodiment of the present invention. 図6は、従来の内視鏡における、面順次光源動作タイミングに対応する各画素ずれ補正位置ごとのフレーム開始タイミングおよびセンサ読み出しタイミングを示したタイミングチャートである。FIG. 6 is a timing chart showing a frame start timing and a sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the conventional endoscope.
 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <第1の実施形態>
 図1は、本発明の第1の実施形態の内視鏡を含む内視鏡システムの構成を示す図であり、図2は、第1の実施形態の内視鏡を含む内視鏡システムの電気的な構成を示すブロック図である。
<First Embodiment>
FIG. 1 is a diagram illustrating a configuration of an endoscope system including an endoscope according to a first embodiment of the present invention, and FIG. 2 is a diagram of an endoscope system including an endoscope according to the first embodiment. It is a block diagram which shows an electric structure.
 図1、図2に示すように、本第1の実施形態の内視鏡を有する内視鏡システム1は、被検体の観察し撮像する内視鏡2と、当該内視鏡2に接続され前記撮像信号を入力し所定の画像処理を施すビデオプロセッサ3と、被検体を照明するための照明光を供給する光源装置4と、撮像信号に応じた観察画像を表示するモニタ装置5と、を有している。 As shown in FIGS. 1 and 2, an endoscope system 1 having the endoscope of the first embodiment is connected to an endoscope 2 that observes and images a subject, and to the endoscope 2. A video processor 3 that inputs the imaging signal and performs predetermined image processing; a light source device 4 that supplies illumination light for illuminating the subject; and a monitor device 5 that displays an observation image corresponding to the imaging signal. Have.
 内視鏡2は、被検体の体腔内等に挿入される細長の挿入部6と、挿入部6の基端側に配設され術者が把持して操作を行う内視鏡操作部10と、内視鏡操作部10の側部から延出するように一方の端部が設けられたユニバーサルコード11と、を有して構成されている。 The endoscope 2 includes an elongated insertion portion 6 that is inserted into a body cavity or the like of a subject, and an endoscope operation portion 10 that is disposed on the proximal end side of the insertion portion 6 and is operated by being grasped by an operator. And a universal cord 11 provided with one end portion so as to extend from the side portion of the endoscope operation unit 10.
 挿入部6は、先端側に設けられた硬質の先端部7と、先端部7の後端に設けられた湾曲自在の湾曲部8と、湾曲部8の後端に設けられた長尺かつ可撓性を有する可撓管部9と、を有して構成されている。 The insertion portion 6 includes a rigid distal end portion 7 provided on the distal end side, a bendable bending portion 8 provided at the rear end of the distal end portion 7, and a long and flexible portion provided at the rear end of the bending portion 8. And a flexible tube portion 9 having flexibility.
 前記ユニバーサルコード11の基端側にはコネクタ12が設けられ、当該コネクタ12は光源装置4に接続されるようになっている。すなわち、コネクタ12の先端から突出する流体管路の接続端部となる口金(図示せず)と、照明光の供給端部となるライトガイド用の口金(図示せず)とは光源装置4に着脱自在で接続されるようになっている。 A connector 12 is provided on the base end side of the universal cord 11, and the connector 12 is connected to the light source device 4. That is, a base (not shown) serving as a connection end of a fluid conduit projecting from the tip of the connector 12 and a light guide base (not shown) serving as an illumination light supply end are provided to the light source device 4. It is designed to be detachably connected.
 さらに、前記コネクタ12の側面に設けた電気接点部には接続ケーブル13の一端が接続されるようになっている。そして、この接続ケーブル13には、例えば内視鏡2における撮像素子22(図2参照)からの撮像信号を伝送する信号線が内設され、また、他端のコネクタ部はビデオプロセッサ3に接続されるようになっている。 Furthermore, one end of the connection cable 13 is connected to the electrical contact portion provided on the side surface of the connector 12. The connection cable 13 is provided with a signal line for transmitting an image pickup signal from the image pickup element 22 (see FIG. 2) in the endoscope 2, for example, and the other end connector portion is connected to the video processor 3. It has come to be.
 なお、前記コネクタ12には、後述するFPGA23が配設されると共に、当該内視鏡2における内視鏡固別情報(例えば、撮像素子の画素ずれ値等に係る情報または当該画素ずれ値に応じたプリブランキング期間の数値等の情報)を記憶したIDメモリ27等が配設されている(これら各構成要素については、後に詳述する)。 The connector 12 is provided with an FPGA 23 to be described later, and endoscope specific information in the endoscope 2 (for example, information related to a pixel shift value of the image sensor or the like according to the pixel shift value). In addition, an ID memory 27 or the like storing information such as numerical values of the pre-blanking period) is disposed (these components will be described in detail later).
 図2に示すように、内視鏡2は、挿入部6の先端部7に配設された、被写体に対して複数種類の照明光を照射可能とする照明部29と、被写体像を入光するレンズを含む対物光学系21と、対物光学系21における結像面に配設された撮像素子22と、を備える。 As shown in FIG. 2, the endoscope 2 is provided with an illumination unit 29 disposed at the distal end portion 7 of the insertion unit 6 and capable of irradiating a subject with a plurality of types of illumination light, and the subject image is incident. An objective optical system 21 including a lens for performing imaging, and an imaging element 22 disposed on an image forming surface of the objective optical system 21.
 前記照明部29は、光源装置4から内視鏡2内部にかけて延設されるライトガイドの先端部に配設される。そして照明部29は、当該光源装置4において発生される、発光期間および遮光期間が制御された照明光を照射するようになっている。 The illumination unit 29 is disposed at the distal end portion of the light guide that extends from the light source device 4 to the inside of the endoscope 2. And the illumination part 29 irradiates the illumination light by which the light emission period and the light-shielding period which were generated in the said light source device 4 were controlled.
 前記対物光学系21は、前記照明部29により被検体に対して照射された所定の照明光(面順次光)に応じた当該被写体に係る反射光を入光する。 The objective optical system 21 receives reflected light related to the subject according to predetermined illumination light (frame sequential light) irradiated to the subject by the illumination unit 29.
 前記撮像素子22は、本実施形態においてはCMOSイメージセンサにより構成される。なお、本実施形態の内視鏡システム1は面順次式の観察方式を採用するものとする。 The image sensor 22 is constituted by a CMOS image sensor in the present embodiment. Note that the endoscope system 1 of the present embodiment adopts a frame sequential observation method.
 撮像素子22における受光部は、入射光に応じて光を光電変換して信号電荷を生成する複数の光電変換部であるフォトダイオード(PD)22aを有し、当該光電変換部において生成した信号電荷に基づいて撮像信号を生成し出力するための複数の画素を備える。 The light receiving unit in the imaging element 22 includes a plurality of photodiodes (PD) 22a that are photoelectric conversion units that photoelectrically convert light according to incident light to generate signal charges, and the signal charges generated in the photoelectric conversion unit. A plurality of pixels for generating and outputting an imaging signal based on the above.
 そして撮像素子22は、被写体からの光学像が撮像面に結像されると、各画素に入射した光を光電変換部において光電変換して所定の撮像信号を出力するようになっている。 Then, when an optical image from the subject is formed on the imaging surface, the imaging element 22 photoelectrically converts light incident on each pixel in a photoelectric conversion unit and outputs a predetermined imaging signal.
 また、撮像素子22は、1フレームを開始するタイミングから当該撮像素子22に係る有効画素の開始タイミングまでのライン数に相当する期間であるプリブランキング期間を設定可能となっている。 Further, the image sensor 22 can set a preblanking period, which is a period corresponding to the number of lines from the start timing of one frame to the start timing of the effective pixels related to the image sensor 22.
 なお、この「1フレームを開始するタイミング」については、「開始タイミング設定部」により、また、前記「プリブランキング期間」については「プリブランキング期間設定部」によりそれぞれ設定されるが、詳細については後述する。 The “timing for starting one frame” is set by the “start timing setting unit”, and the “preblanking period” is set by the “preblanking period setting unit”. The details will be described later. To do.
 撮像素子22はまた、AFE(アナログフロントエンド)22bを備える。このAFE22bは、前記撮像信号に対して所定の処理を行う回路であり、公知のCDS(Correlation Double Sampling)回路およびアナログ/デジタル変換器(ADC)等を備え、当該撮像信号をデジタル撮像信号として出力する。 The image sensor 22 also includes an AFE (analog front end) 22b. The AFE 22b is a circuit that performs predetermined processing on the imaging signal, and includes a known CDS (Correlation Double Sampling) circuit and an analog / digital converter (ADC), and outputs the imaging signal as a digital imaging signal. To do.
 撮像素子22はさらに、フォトダイオード(PD)22aおよびAFE22bに対して所定のタイミングを与えるタイミングジェネレータ(TG)22cを備える。 The image sensor 22 further includes a timing generator (TG) 22c that gives a predetermined timing to the photodiode (PD) 22a and the AFE 22b.
 内視鏡2は、上述したコネクタ12にFPGA23を備える。このFPGA23は、いわゆるFPGA(field-programmable gate array)により構成され、前記AFE22bから出力されるデジタル画像信号に対して各種のデジタル信号処理を施すようになっている。 The endoscope 2 includes the FPGA 23 in the connector 12 described above. The FPGA 23 is configured by a so-called FPGA (field-programmable gate array), and performs various digital signal processing on the digital image signal output from the AFE 22b.
 また前記FPGA23は、読出タイミング設定部26および信号読出部25を備える。前記読出タイミング設定部26は、本実施形態においては、「プリブランキング期間設定部」および「開始タイミング設定部」としての役目を果たす。また、前記信号読出部25は、前記光源装置4に係る遮光期間において、前記プリブランキング期間に応じて前記モニタ表示画素に係る撮像信号を読み出す「信号読出部」としての役目を果たす。なお、これら読出タイミング設定部26および信号読出部25については、後に詳述する。 The FPGA 23 includes a read timing setting unit 26 and a signal read unit 25. In the present embodiment, the read timing setting unit 26 serves as a “preblanking period setting unit” and a “start timing setting unit”. In addition, the signal reading unit 25 serves as a “signal reading unit” that reads an imaging signal related to the monitor display pixel in accordance with the preblanking period in the light shielding period related to the light source device 4. The read timing setting unit 26 and the signal read unit 25 will be described in detail later.
 さらに、内視鏡2は、前記コネクタ12において、当該内視鏡2における内視鏡固別情報(例えば、後述する、撮像素子の画素ずれ値等に係る情報または当該画素ずれ値に応じたプリブランキング期間の数値等の情報)を記憶したIDメモリ27を配設され、前記読出タイミング設定部26に接続されている。 Furthermore, the endoscope 2 uses the connector 12 to identify the endoscope specific information (for example, information related to the pixel shift value of the image sensor, which will be described later, or the pre-appropriate information corresponding to the pixel shift value). An ID memory 27 storing information (such as numerical values of ranking periods) is disposed and connected to the read timing setting unit 26.
 <撮像信号の画素ずれについて>
 次に、本実施形態における「画素ずれの検出」および「画素ずれに係る情報の記憶」について説明する。
<Regarding pixel shift in imaging signal>
Next, “detection of pixel shift” and “storage of information relating to pixel shift” in the present embodiment will be described.
 上述したように、撮像光学系の偏心等に起因して撮像信号の「画素ずれ」が生じることがある。この「画素ずれ」が生じたとき、何等対策を講じずそのまま画像信号を読み出す処理等を行うと、当然ながら、モニタに表示される画像は「画素ずれ」の度合いに応じてずれてしまうこととなり、正確な画像を表示することができない虞がある。 As described above, the “pixel shift” of the imaging signal may occur due to the eccentricity of the imaging optical system. When this “pixel shift” occurs, if the image signal is read without taking any countermeasures, the image displayed on the monitor will naturally shift depending on the degree of “pixel shift”. There is a possibility that an accurate image cannot be displayed.
 図4は、第1の実施形態の内視鏡における、各画素ずれ補正位置ごとの読み出し画素位置とモニタに表示する画素位置との関係を示した図であるが、この図4を参照して、「画素ずれ」に起因する問題点について簡単に説明する。 FIG. 4 is a diagram showing the relationship between the read pixel position for each pixel shift correction position and the pixel position displayed on the monitor in the endoscope of the first embodiment. Refer to FIG. A problem caused by “pixel shift” will be briefly described.
 図4に示すように、当該内視鏡2が、例えば「画素ずれ」が生じていない通常タイプの内視鏡を“タイプA”とし、撮像素子22における画素群60Aのうち、モニタ5に表示したい画素群を符号61で示すとする。なお、図4中、“OB”で示される画素領域は、いわゆるオプティカルブラック領域である。 As shown in FIG. 4, the endoscope 2 is displayed on the monitor 5 in the pixel group 60 </ b> A of the image sensor 22, for example, a normal type endoscope in which “pixel shift” has not occurred is “type A”. It is assumed that a pixel group to be indicated is denoted by reference numeral 61. In FIG. 4, a pixel area indicated by “OB” is a so-called optical black area.
 この場合、内視鏡2は「画素ずれ」が生じていないため、画素ずれの補正をすること無しにそのままの状態で上記画素群61をモニタ5における表示画像51として表示することができる。 In this case, since there is no “pixel shift” in the endoscope 2, the pixel group 61 can be displayed as the display image 51 on the monitor 5 without correcting the pixel shift.
 一方、内視鏡2が「画素ずれ」が生じている場合であって、いま当該内視鏡を“タイプB”および“タイプC”とする。 On the other hand, when the endoscope 2 has a “pixel shift”, the endoscope is now referred to as “type B” and “type C”.
 上記タイプBの内視鏡2においては、例えばモニタ5に表示したい画素群が、上述したタイプAに比して、画素群61の位置から図4中、“タイプB”で示す画素群60Bにおける画素群61bで示す位置のように上方にシフトしているとし、上記タイプCの内視鏡2においては、例えばモニタ5に表示したい画素群が、上述したタイプAに比して、画素群61の位置から図4中、“タイプC”で示す画素群60Cにおける画素群61cで示す位置のように上方にシフトしているとする。 In the type B endoscope 2, for example, the pixel group to be displayed on the monitor 5 is compared with the type A in the pixel group 60 </ b> B indicated by “type B” in FIG. 4 from the position of the pixel group 61. Assume that the position is shifted upward as indicated by the pixel group 61b. In the type C endoscope 2, the pixel group to be displayed on the monitor 5, for example, is compared with the type A described above. In FIG. 4, it is assumed that the position is shifted upward from a position indicated by a pixel group 61c in a pixel group 60C indicated by "type C" in FIG.
 これらタイプBまたはタイプCの内視鏡2の場合、何等対策を講じずそのまま画像信号を読み出す処理等を行うと、すなわち通常の画素61の位置で読み出すと、当然ながらモニタ5に表示される画像は「画素ずれ」の度合いに応じてずれてしまう。 In the case of these type B or type C endoscopes 2, the image displayed on the monitor 5 is naturally displayed when the processing of reading the image signal is performed without taking any measures, that is, when reading is performed at the position of the normal pixel 61. Shifts according to the degree of “pixel shift”.
 このように、撮像光学系の偏心等に起因して撮像信号の「画素ずれ」が生じた場合、または「画素ずれ」が生じた内視鏡の場合、正確な画像を表示することができない虞があるが、この問題に対しては、例えば、「画素ずれ」が生じた際、当該ずれた画素の座標位置を特定し、その座標位置に対応した画素のみを選択的に読み出す「切り出し機能」を用いて補正する技術を採用すれば、当該「画素ずれ」の問題に対処することができるが、本発明は当該「切り出し機能」を用いずに画素ずれを補正可能とするものである。 As described above, when the “pixel shift” of the image pickup signal occurs due to the eccentricity of the image pickup optical system or the endoscope in which the “pixel shift” occurs, an accurate image may not be displayed. However, for this problem, for example, when a “pixel shift” occurs, a “cutout function” that specifies the coordinate position of the shifted pixel and selectively reads out only the pixel corresponding to the coordinate position If the technique of correcting using is used, the problem of the “pixel shift” can be dealt with. However, the present invention makes it possible to correct the pixel shift without using the “cutout function”.
 <画素ずれ検出および画素ずれ情報の記憶>
 本実施形態においては、画素ずれ補正の前提として、例えば内視鏡の製造時等において、撮像光学系の偏心等に起因する撮像信号の「画素ずれ」を検出した際、当該「画素ずれ」に係る情報をIDメモリ27に記憶するようになっている。
<Pixel shift detection and storage of pixel shift information>
In the present embodiment, as a premise for correcting the pixel shift, for example, when the “pixel shift” of the imaging signal due to the eccentricity of the imaging optical system is detected at the time of manufacturing the endoscope, the “pixel shift” is determined. Such information is stored in the ID memory 27.
 なお、この「画素ずれ」に係る情報としては、例えば、実際の撮像素子の画素ずれ値等に係る情報または当該画素ずれ値に応じたプリブランキング期間の数値等の情報が挙げられる。 The information related to the “pixel shift” includes, for example, information related to the actual pixel shift value of the image sensor or information such as a numerical value of a preblanking period corresponding to the pixel shift value.
 このように、本実施形態に係る内視鏡は、画素ずれの度合いを検出し、その画素ずれの度合いに応じた情報を各内視鏡個別の情報として内視鏡自身が記憶するようになっている。 Thus, the endoscope according to the present embodiment detects the degree of pixel shift, and the endoscope itself stores information corresponding to the degree of pixel shift as information for each endoscope. ing.
 なお、本実施形態においては、撮像光学系の偏心等に起因する撮像信号の「画素ずれ」に係る情報を内視鏡内部の記憶部に記憶するものとしたがこれに限らず、外部のサーバー等に記憶するようしてもよい。 In the present embodiment, information related to the “pixel shift” of the imaging signal caused by the eccentricity of the imaging optical system is stored in the storage unit inside the endoscope. Or the like.
 <画素ずれ補正とプリブランキング期間>
 ここで、本実施形態に係る画素ずれ補正の仕方と、プリブランキング期間並びに当該プリブランキング期間の設定部および開始タイミング設定部について詳しく説明する。
<Pixel shift correction and pre-blanking period>
Here, the pixel shift correction method according to the present embodiment, the preblanking period, the setting unit for the preblanking period, and the start timing setting unit will be described in detail.
 上述したように、前記FPGA23における読出タイミング設定部26は、本実施形態においては、「プリブランキング期間設定部」および「開始タイミング設定部」としての役目を果たす。 As described above, the read timing setting unit 26 in the FPGA 23 serves as a “preblanking period setting unit” and a “start timing setting unit” in the present embodiment.
 前記読出タイミング設定部26は、まず、前記撮像素子22に係る有効画素中における「モニタ表示画素」、すなわち、実際にモニタに表示する画素の位置に対応する「プリブランキング期間」を設定する「プリブランキング期間設定部」としての役目を果たす。 The read timing setting unit 26 first sets a “monitor display pixel” in the effective pixels related to the image sensor 22, that is, a “preblanking period” corresponding to the position of the pixel actually displayed on the monitor. Acts as a “ranking period setting section”.
 なお、本実施形態において「プリブランキング期間」とは、撮像素子22において1フレームを開始するタイミングから当該撮像素子22に係る有効画素の開始タイミングまでのライン数に相当する期間とする。 In the present embodiment, the “preblanking period” is a period corresponding to the number of lines from the start timing of one frame in the image sensor 22 to the start timing of effective pixels related to the image sensor 22.
 また、前記「モニタ表示画素」は、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて有効画素中における位置も変わるため、当該位置に対応する「プリブランキング期間」もまた各内視鏡ごとに設定されることとなる。 In addition, since the position of the “monitor display pixel” in the effective pixel also changes depending on the degree of “pixel shift” determined for each endoscope, the “pre-blanking period” corresponding to the position also changes in each endoscope. It will be set for each mirror.
 ところで、本実施形態の内視鏡2は、光源の遮光期間中には、撮像素子22の有効画素全体のうちモニタに表示する有効画素部分(「モニタ表示画素」)のみが読み出せばよいことに着目し、撮像素子22の「画素ずれ」の有無に拘わらず、「モニタ表示画素」の読み出しタイミングと光源の遮光期間とを略一致させるようにしている。 By the way, the endoscope 2 of the present embodiment needs to read only the effective pixel portion (“monitor display pixel”) to be displayed on the monitor among the effective pixels of the image sensor 22 during the light-shielding period of the light source. In view of the above, the reading timing of the “monitor display pixel” and the light-shielding period of the light source are made to substantially coincide with each other regardless of the presence or absence of “pixel shift” of the image sensor 22.
 すなわち本実施形態の内視鏡2は、撮像素子22の有効画素全体の読み出しタイミングは、撮像素子22の「画素ずれ」の有無を問わず、有効画素全体の画素が必ずしも光源の遮光期間中になされるものではなく、前記「モニタ表示画素」以外の有効画素の一部の読出しは、光源の遮光期間外、すなわち光源の発光期間内になされることを許容することを特徴とする。 That is, in the endoscope 2 of the present embodiment, the readout timing of the entire effective pixel of the image sensor 22 is not necessarily determined during the light-shielding period of the light source, regardless of whether or not there is a “pixel shift” of the image sensor 22. However, the present invention is characterized in that a part of the effective pixels other than the “monitor display pixel” can be read out outside the light-shielding period of the light source, that is, within the light-emitting period of the light source.
 そして、上述したように前記「モニタ表示画素」は、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて有効画素中における位置も変わるが、当該「モニタ表示画素」の読み出しタイミングが、光源の遮光期間(電荷読出期間)と略一致するタイミングとなるように、本実施形態の内視鏡2は、有効画素の読出し開始タイミングを調整し、さらに、この有効画素の読出し開始タイミングの調整具合に応じるように、「プリブランキング期間」の長さを設定することを特徴とする。 As described above, the position of the “monitor display pixel” in the effective pixel changes depending on the degree of “pixel shift” determined for each endoscope. The endoscope 2 of the present embodiment adjusts the reading start timing of the effective pixels and further adjusts the reading start timing of the effective pixels so that the timing substantially coincides with the light shielding period (charge reading period) of the light source. The length of the “pre-blanking period” is set according to the condition.
 換言すれば、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて「プリブランキング期間」の長さを可変的に設定することで、「画素ずれ」の度合いに拘わらず、当該「モニタ表示画素」の読み出しタイミングは、常に、光源の遮光期間(電荷読出期間)と略一致することとなり、これにより光源の遮光期間を短く、すなわち発光時間を長く設定することが可能となる。 In other words, the length of the “pre-blanking period” is variably set according to the degree of “pixel deviation” determined for each endoscope, so that the “monitor” The readout timing of the “display pixel” is always substantially coincident with the light-shielding period (charge readout period) of the light source, whereby the light-shielding period of the light source can be shortened, that is, the light emission time can be set longer.
 また前記読出タイミング設定部26は、ビデオプロセッサ3における駆動信号生成部35からの垂直同期信号VSYNCに応じて、前記プリブランキング期間の開始タイミングを設定する「開始タイミング設定部」としての役目を果たす。 The read timing setting unit 26 serves as a “start timing setting unit” that sets the start timing of the pre-blanking period according to the vertical synchronization signal VSYNC from the drive signal generation unit 35 in the video processor 3.
 なお、本第1の実施形態においては、各内視鏡ごとに定まる「画素ずれ」が互いに異なる内視鏡であっても、そのプリブランキング期間の開始タイミングは同一に設定されるものとする。 In the first embodiment, it is assumed that the start timing of the pre-blanking period is set to be the same even for endoscopes having different “pixel shifts” determined for each endoscope.
 上述したように、IDメモリ27に内視鏡個別の情報としての「画素ずれに係る情報」が記憶されている状態で内視鏡2が稼働すると、「プリブランキング期間設定部」としての読出タイミング設定部26は、前記IDメモリ27に記憶された当該内視鏡2の各種固有情報のうち、撮像素子の画素ずれに係る情報を読み出し当該内視鏡ごとに定まる「プリブランキング期間」を設定するようになっている。 As described above, when the endoscope 2 is operated in a state where “information relating to pixel shift” is stored in the ID memory 27 as individual information of the endoscope, the read timing as the “preblanking period setting unit” The setting unit 26 reads out information related to pixel shift of the image sensor from among various unique information stored in the ID memory 27 and sets a “preblanking period” determined for each endoscope. It is like that.
 以上説明したように、前記プリブランキング期間は、前記読出タイミング設定部26における前記「開始タイミング設定部」において設定された前記開始タイミングで開始され、また、前記プリブランキング期間は、読出タイミング設定部26における前記「プリブランキング期間設定部」において前記「モニタ表示画素」の位置に応じて、換言すれば、内視鏡ごとに個別の情報として記憶される「画素ずれ」に係る情報に応じて、その期間が設定される。 As described above, the preblanking period is started at the start timing set in the “start timing setting unit” in the read timing setting unit 26, and the preblanking period is read timing setting unit 26. According to the position of the “monitor display pixel” in the “preblanking period setting unit” in other words, in other words, according to the information related to “pixel shift” stored as individual information for each endoscope, A period is set.
 一方、上述したように、信号読出部25は、前記光源装置4に係る遮光期間において、前記プリブランキング期間に応じて前記モニタ表示画素に係る撮像信号を読み出す「信号読出部」としての役目を果たす。 On the other hand, as described above, the signal reading unit 25 serves as a “signal reading unit” that reads an imaging signal related to the monitor display pixel in accordance with the pre-blanking period in the light shielding period related to the light source device 4. .
 そして前記信号読出部25は、本第1の実施形態においては、当該プリブランキング期間が終了した後に、有効画素を読み出す。光源装置4に係る遮光期間において有効画素における前記「モニタ表示画素」、すなわち撮像素子22の有効画素中における実際にモニタに表示される画素に係る撮像信号を読み出すようになっている。 In the first embodiment, the signal reading unit 25 reads the effective pixel after the pre-blanking period ends. In the light shielding period related to the light source device 4, the “monitor display pixel” in the effective pixel, that is, the image pickup signal related to the pixel actually displayed on the monitor in the effective pixel of the image sensor 22 is read out.
 一方、ビデオプロセッサ3は、当該ビデオプロセッサ3の他、接続された内視鏡2および光源装置4における各種回路を制御する制御部31と、内視鏡2からの画像信号を入力し、所定の画像処理を施す画像処理部32と、当該画像処理部3において処理された画像信号を入力しモニタ装置5において表示するための映像信号を生成する映像出力部33と、所定の垂直同期信号VSYNC等の駆動信号を生成する駆動信号生成部35と、を備える。 On the other hand, the video processor 3 inputs a video signal from the endoscope 2 and a control unit 31 that controls various circuits in the connected endoscope 2 and the light source device 4 in addition to the video processor 3. An image processing unit 32 that performs image processing, a video output unit 33 that inputs an image signal processed in the image processing unit 3 and generates a video signal for display on the monitor device 5, a predetermined vertical synchronization signal VSYNC, and the like And a drive signal generation unit 35 for generating the drive signal.
 光源装置4は、光源44と、光源ドライバ42と、回転フィルタ46と、駆動部45と、駆動ドライバ43と、光源制御部41と、を備える。 The light source device 4 includes a light source 44, a light source driver 42, a rotary filter 46, a drive unit 45, a drive driver 43, and a light source control unit 41.
 光源44は、白色LED(Light Emitting Diode)またはキセノンランプ等を用いて構成され、光源制御部41の制御のもと、白色光を発生する。 The light source 44 is configured by using a white LED (Light Emitting Diode), a xenon lamp, or the like, and generates white light under the control of the light source control unit 41.
 光源ドライバ42は、光源44に対して光源制御部41の制御のもとで電流を供給することにより、光源44に白色光を発生させる。光源44が発生した光は、回転フィルタ46および集光レンズ(図示せず)および前記ライトガイドを経由して内視鏡2の照明部29から照射される。 The light source driver 42 generates white light in the light source 44 by supplying current to the light source 44 under the control of the light source control unit 41. Light generated by the light source 44 is emitted from the illumination unit 29 of the endoscope 2 via the rotary filter 46, a condenser lens (not shown), and the light guide.
 回転フィルタ46は、光源44が発した白色光の光路上に配置され、回転することにより光源44が発する白色光を所定の波長帯域を有する光のみを透過させる。具体的には、回転フィルタ46は、赤色光(R)、緑色光(G)および青色光(B)のそれぞれの波長帯域を有する光を透過させる赤色フィルタ46R、緑色フィルタ46Gおよび青色フィルタ46Bを有する。 The rotary filter 46 is arranged on the optical path of white light emitted from the light source 44, and transmits only the light having a predetermined wavelength band through the white light emitted from the light source 44 by rotating. Specifically, the rotary filter 46 includes a red filter 46R, a green filter 46G, and a blue filter 46B that transmit light having respective wavelength bands of red light (R), green light (G), and blue light (B). Have.
 駆動部45は、ビデオプロセッサ3から送信される同期信号を基準として回転フィルタ46を回転動作させる。駆動ドライバ43は、光源制御部41の制御のもと、駆動部45に所定の電流を供給する。 The driving unit 45 rotates the rotary filter 46 with reference to the synchronization signal transmitted from the video processor 3. The drive driver 43 supplies a predetermined current to the drive unit 45 under the control of the light source control unit 41.
 光源制御部41は、ビデオプロセッサ3における制御部31から送信された調光信号に従って光源44に供給する電流量を制御する。なお、本実施形態において、光源制御部41による光源の動作タイミングは、後述する「画素ずれ」の度合いによらず、すなわち、画素ずれの補正の有無によらず固定とする。 The light source control unit 41 controls the amount of current supplied to the light source 44 according to the dimming signal transmitted from the control unit 31 in the video processor 3. In the present embodiment, the operation timing of the light source by the light source control unit 41 is fixed regardless of the degree of “pixel shift” described later, that is, regardless of whether or not the pixel shift is corrected.
 そして、後述するように、光源制御部41の制御による光源の遮光期間は、「画素ずれ補正時」であっても、画素ずれ補正無し時と同様に、「モニタ表示画素」に対応するライン数分の読み出しが行える時間として設定することができる。 As will be described later, the number of lines corresponding to the “monitor display pixel” is the same as when no pixel deviation is corrected, even when the pixel light-shielding period is controlled by the light source control unit 41. It can be set as a time during which minutes can be read out.
 また、当該内視鏡2が接続されるビデオプロセッサ3においても、画像処理部32は、「画素ずれ補正時」と「画素ずれ補正無し時」とで差異を設けることなく画像処理動作を実行することができるようになっている。 Also in the video processor 3 to which the endoscope 2 is connected, the image processing unit 32 executes the image processing operation without providing a difference between “when the pixel shift is corrected” and “when no pixel shift is corrected”. Be able to.
 また、光源制御部41は、駆動ドライバ43を介して駆動部45を駆動することにより、回転フィルタ46を回転させる。 Also, the light source control unit 41 rotates the rotary filter 46 by driving the drive unit 45 via the drive driver 43.
 表示装置5は、映像ケーブルを介してビデオプロセッサ3が生成した体内画像をビデオプロセッサ3から受信して表示する機能を有する。 The display device 5 has a function of receiving and displaying the in-vivo image generated by the video processor 3 from the video processor 3 via the video cable.
 <第1実施形態の作用>
 次に、本発明の第1実施形態の作用について図3および図4を参照して説明する。
<Operation of First Embodiment>
Next, the operation of the first embodiment of the present invention will be described with reference to FIGS.
 図3は、第1の実施形態の内視鏡における、面順次光源動作タイミングに対応する各画素ずれ補正位置ごとのフレーム開始タイミングおよびセンサ読み出しタイミングを示したタイミングチャートであり、図4は、第1の実施形態の内視鏡における、各画素ずれ補正位置ごとの読み出し画素位置とモニタに表示する画素位置との関係を示した図である。また、図9は、従来の内視鏡における、面順次光源動作タイミングに対応する各画素ずれ補正位置ごとのフレーム開始タイミングおよびセンサ読み出しタイミングを示したタイミングチャートである。 FIG. 3 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the first embodiment. It is the figure which showed the relationship between the read-out pixel position for every pixel shift correction position and the pixel position displayed on a monitor in the endoscope of 1 embodiment. FIG. 9 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the conventional endoscope.
 ここで、本実施形態の作用を説明するに先立って、本発明に対する従来の例ついて、簡単に説明する。 Here, prior to describing the operation of the present embodiment, a conventional example for the present invention will be briefly described.
 上述したように、撮像光学系の偏心等に起因して撮像信号の「画素ずれ」に対しては、上述したように、当該ずれた画素の座標位置を特定し、その座標位置に対応した画素のみを選択的に読み出す「切り出し機能」を用いて補正する技術が、従来知られている。 As described above, for the “pixel shift” of the imaging signal due to the eccentricity of the imaging optical system, as described above, the coordinate position of the shifted pixel is specified, and the pixel corresponding to the coordinate position A technique for performing correction using a “cutout function” for selectively reading only the image is known.
 また、この「画素ずれ」に対しては、例えば、「画素ずれ」が生じた際、前記撮像素子22に係る有効画素中において実際にモニタに表示するべき画素(すなわち、実際に読み出すべき画素)の位置を、「画素ずれ」の度合いに応じて有効画素中においてシフトすることで対応する技術についても、従来知られるところにある。 In addition, with respect to the “pixel shift”, for example, when the “pixel shift” occurs, pixels to be actually displayed on the monitor among the effective pixels related to the image sensor 22 (that is, pixels to be actually read). There is also a conventionally known technique for dealing with this by shifting the position in the effective pixel in accordance with the degree of “pixel shift”.
 また、図9は、面順次方式の観察方式を採用する従来の内視鏡であって、実際にモニタに表示するべき画素の位置を、「画素ずれ」の度合いに応じて有効画素中においてシフトする例を示したものであり、面順次光源動作タイミングに対応する各画素ずれ補正位置ごとのフレーム開始タイミングおよびセンサ読み出しタイミングを示したタイミングチャートである。 FIG. 9 shows a conventional endoscope that employs a frame sequential observation method, in which the position of a pixel to be actually displayed on the monitor is shifted in the effective pixel in accordance with the degree of “pixel shift”. 4 is a timing chart showing a frame start timing and a sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing.
 図9に示すように、従来の例においても、撮像素子に係る有効画素のうち、少なくともモニタに表示する有効画素部分については、光源の遮光期間中に読み出す必要がある。 As shown in FIG. 9, even in the conventional example, it is necessary to read at least the effective pixel portion displayed on the monitor among the effective pixels related to the image sensor during the light shielding period of the light source.
 ここで、図4に示す例と同様に、当該内視鏡が、例えば「画素ずれ」が生じていない通常タイプの内視鏡を“タイプA”とし、「画素ずれ」が生じている内視鏡を“タイプB(上方シフトするタイプ)”および“タイプC(下方シフトするタイプ)”とする。 Here, similarly to the example shown in FIG. 4, for example, an endoscope of the normal type in which “pixel shift” has not occurred is referred to as “type A”, and an endoscope in which “pixel shift” has occurred. The mirrors are referred to as “type B (upshift type)” and “type C (downshift type)”.
 このとき、内視鏡が「画素ずれ」が生じておらず、画素ずれの補正が行わないタイプAの場合、光源の遮光期間中(電荷読出期間中)には、モニタに表示する有効画素部分のみを読み出せばよい。 At this time, in the case of Type A in which the endoscope has no “pixel shift” and correction of pixel shift is not performed, the effective pixel portion displayed on the monitor during the light-shielding period (charge reading period) of the light source Need only be read.
 しかしながら、内視鏡が「画素ずれ」を生じているタイプBまたはタイプCの場合、モニタに表示する有効画素部分が撮像素子の有効画素中のどこに位置するかが一義的には定まらない。 However, in the case of Type B or Type C in which the endoscope has a “pixel shift”, it is not uniquely determined where the effective pixel portion displayed on the monitor is located in the effective pixel of the image sensor.
 これにより従来の例では、これらタイプBまたはタイプCの内視鏡にも対応するように、結局のところ有効画素全体を光源の遮光期間中(電荷読出期間中)に読み出さなければならなかった。 As a result, in the conventional example, the entire effective pixel has to be read during the light-shielding period of the light source (during the charge reading period) so as to correspond to the type B or type C endoscope.
 これは、光源の遮光期間を長くとる、換言すれば、光源の発光期間(各R光、G光、B光の照明時間)を短くする必要に迫られ、ひいては、照明の明るさの不足を招く虞があった。 This requires a longer light shielding period, in other words, a shorter light emission period (lighting time for each R light, G light, and B light), which in turn reduces the brightness of the light. There was a risk of inviting.
 すなわち、従来の例においては、図9に示すように、有効画素を読み出す期間中には、面順次発光動作を行う光源の発光(各R光、G光、B光の照明)を行うことができず、当該発光時間を短くすることが余儀なくされていた。 That is, in the conventional example, as shown in FIG. 9, during the period of reading out the effective pixels, the light source that performs the frame sequential light emission operation (irradiation of each R light, G light, and B light) is performed. However, the light emission time has been shortened.
 本発明は上述した事情に鑑みてなされたものであり、撮像素子における任意範囲の画素のみを選択的に読み出す「切り出し機能」を用いることなく、かつ、光源の発光期間を短くすることなく画素ずれの補正処理を実行可能な内視鏡を提供するものである。 The present invention has been made in view of the above-described circumstances, and does not use a “cutout function” that selectively reads out only pixels in an arbitrary range in an image sensor, and does not shorten the light emission period of the light source. An endoscope capable of executing the correction process is provided.
 以下、図3を参照して、本第1の実施形態に係る画素ずれ補正の仕方と、プリブランキング期間の設定および開始タイミングの設定について説明する。 Hereinafter, with reference to FIG. 3, description will be given of how to correct the pixel shift, the setting of the pre-blanking period, and the setting of the start timing according to the first embodiment.
 ここで、上述した例と同様に、撮像信号の「画素ずれ」が生じていない通常タイプの内視鏡を“タイプA”とし、「画素ずれ」が生じている内視鏡を“タイプB(上方シフトするタイプ)”および“タイプC(下方シフトするタイプ)”とする。 Here, as in the above-described example, the normal type endoscope in which the “pixel shift” of the imaging signal does not occur is referred to as “type A”, and the endoscope in which the “pixel shift” occurs is referred to as “type B ( "Type that shifts upward") and "Type C (type that shifts downward)".
 まず、内視鏡2は、当該内視鏡の製造時等において、撮像光学系の偏心等に起因する撮像信号の「画素ずれ」を検出し、当該「画素ずれ」に係る情報をIDメモリ27に記憶する。 First, the endoscope 2 detects a “pixel shift” of an image pickup signal caused by the eccentricity of the image pickup optical system or the like at the time of manufacturing the endoscope, and the information related to the “pixel shift” is stored in the ID memory 27. To remember.
 この「画素ずれ」に係る情報は、上述したように、例えば、実際の撮像素子の画素ずれ値等に係る情報または当該画素ずれ値に応じたプリブランキング期間の数値等の情報である。 As described above, the information related to the “pixel shift” is, for example, information related to a pixel shift value of an actual image sensor or information such as a numerical value of a pre-blanking period corresponding to the pixel shift value.
 そして、IDメモリ27に内視鏡個別の情報としての「画素ずれに係る情報」が記憶されている状態で内視鏡2が稼働すると、「プリブランキング期間設定部」としての読出タイミング設定部26は、前記IDメモリ27に記憶された当該内視鏡2の各種固有情報のうち、撮像素子の画素ずれに係る情報を読み出す。 Then, when the endoscope 2 is operated in a state where “information relating to pixel shift” as information specific to the endoscope is stored in the ID memory 27, the read timing setting unit 26 as a “preblanking period setting unit”. Reads out information related to pixel shift of the image sensor from among the various unique information of the endoscope 2 stored in the ID memory 27.
 その後、読出タイミング設定部26は、当該読み出した情報に応じて内視鏡ごとに定まる「プリブランキング期間」および「1フレームを開始するタイミング」を設定する。 Thereafter, the read timing setting unit 26 sets a “preblanking period” and a “timing to start one frame” determined for each endoscope according to the read information.
 なお、本実施形態において「プリブランキング期間」とは、上述したように、撮像素子22において1フレームを開始するタイミングから当該撮像素子22に係る有効画素の開始タイミングまでのライン数に相当する期間とする。 In the present embodiment, the “pre-blanking period” is a period corresponding to the number of lines from the timing of starting one frame in the image sensor 22 to the start timing of the effective pixel related to the image sensor 22 as described above. To do.
 また、前記「モニタ表示画素」は、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて有効画素中における位置も変わるため、当該位置に対応する「プリブランキング期間」も内視鏡ごとに設定される。 Further, since the position of the “monitor display pixel” in the effective pixel also changes depending on the degree of “pixel shift” determined for each endoscope, the “preblanking period” corresponding to the position also varies for each endoscope. Set to
 なお、本第1の実施形態においては、「1フレームを開始するタイミング」は「画素ずれ」の度合いに拠らず、一定のタイミングに設定されることとなる。 In the first embodiment, the “timing for starting one frame” is set at a fixed timing regardless of the degree of “pixel shift”.
 また、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて「プリブランキング期間」の長さを可変的に設定することで、「画素ずれ」の度合いに拘わらず、当該「モニタ表示画素」の読み出しタイミングは、常に、光源の遮光期間(電荷読出期間)と略一致することとなる。 Also, by setting the length of the “pre-blanking period” variably according to the degree of “pixel deviation” determined for each endoscope, the “monitor display pixel” regardless of the degree of “pixel deviation”. Is always substantially coincident with the light shielding period (charge reading period) of the light source.
 より具体的に、本第1の実施形態においては、図3に示すように、内視鏡2が撮像信号の「画素ずれ」が生じていないタイプAの内視鏡の場合、読出タイミング設定部26は、当該タイプAの内視鏡2におけるIDメモリ27から、「画素ずれ」に係る情報を取得し、「プリブランキング期間」の長さおよび「1フレームを開始するタイミング」を設定する。 More specifically, in the first embodiment, as shown in FIG. 3, when the endoscope 2 is a type A endoscope in which “pixel shift” of the imaging signal does not occur, a readout timing setting unit 26 acquires information relating to “pixel shift” from the ID memory 27 in the endoscope 2 of type A, and sets the length of the “preblanking period” and “timing to start one frame”.
 このとき、読出タイミング設定部26によって設定される「プリブランキング期間の長さ」および「1フレームを開始するタイミング」は、信号読出部25による「モニタ表示画素」の読み出しタイミングを光源の遮光期間(電荷読出期間)内に行うと共に、前記「モニタ表示画素」前後の有効画素の一部の読出しが、光源の遮光期間外、すなわち光源の発光期間内になされることを許容する「長さ」であり、「タイミング」である。 At this time, the “length of the pre-blanking period” and the “timing to start one frame” set by the read timing setting unit 26 are the same as the light-shielding period of the light source (the monitor display pixel) read timing by the signal read unit 25. In the “charge readout period” and with a “length” that allows reading out some of the effective pixels before and after the “monitor display pixel” outside the light-shielding period of the light source, that is, within the light-emitting period of the light source Yes, “timing”.
 また、図4に示すように、当該内視鏡2がタイプAの場合、撮像素子22における画素群60Aのうちモニタ5に表示したい画素群61は、画素ずれの補正をすること無しにそのままの状態でモニタ5における表示画像51として表示することができる。 As shown in FIG. 4, when the endoscope 2 is type A, the pixel group 61 to be displayed on the monitor 5 out of the pixel group 60A in the image sensor 22 is left as it is without correcting the pixel shift. In this state, it can be displayed as a display image 51 on the monitor 5.
 一方、内視鏡2が撮像信号の「画素ずれ」が生じているタイプBまたはタイプCの内視鏡の場合、読出タイミング設定部26は、上記同様に、当該タイプBまたはタイプCの内視鏡2におけるIDメモリ27から、「画素ずれ」に係る情報を取得し、「プリブランキング期間」の長さおよび「1フレームを開始するタイミング」を設定する。 On the other hand, when the endoscope 2 is a type B or type C endoscope in which the “pixel shift” of the imaging signal has occurred, the readout timing setting unit 26 performs the type B or type C endoscope similarly to the above. Information related to “pixel shift” is acquired from the ID memory 27 in the mirror 2, and the length of “preblanking period” and “timing to start one frame” are set.
 そしてこの場合も、読出タイミング設定部26によって設定される「プリブランキング期間の長さ」および「1フレームを開始するタイミング」は、信号読出部25による「モニタ表示画素」の読み出しタイミングを光源の遮光期間(電荷読出期間)内に行うと共に、前記「モニタ表示画素」の後ろ側(タイプB参照)または前側(タイプC参照)の有効画素の一部の読出しが、光源の遮光期間外、すなわち光源の発光期間内になされることを許容する「長さ」であり、「タイミング」である。 In this case as well, the “preblanking period length” and the “timing to start one frame” set by the read timing setting unit 26 are the same as the “monitor display pixel” read timing by the signal read unit 25. During the period (charge readout period), the readout of a part of the effective pixels on the back side (see type B) or the front side (see type C) of the “monitor display pixel” is outside the light shielding period of the light source, that is, the light source It is “length” and “timing” that is allowed to be performed within the light emission period.
 また、図4に示すように、当該内視鏡2が“タイプB”または“タイプC”の場合、撮像素子22における画素群60Bまたは画素群60Cのうちモニタ5に表示したい画素群61bまたは画素群61cに対しても、読み出しタイミングが適正に調整されているので、モニタ5においては、画素ずれ補正無しの場合と同様に、モニタ画面上の適正な位置に表示画像51として表示することができる。 Further, as shown in FIG. 4, when the endoscope 2 is “type B” or “type C”, the pixel group 61b or the pixel to be displayed on the monitor 5 out of the pixel group 60B or the pixel group 60C in the image sensor 22. Since the readout timing is also adjusted appropriately for the group 61c, the monitor 5 can display the display image 51 at an appropriate position on the monitor screen as in the case of no pixel shift correction. .
 以上説明したように、本第1の実施形態によると、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて「プリブランキング期間」の長さを可変的に設定し、「画素ずれ」の度合いに拘わらず、前記「モニタ表示画素」の読み出しタイミングを光源の遮光期間(電荷読出期間)と略一致させると共に、当該「モニタ表示画素」以外の有効画素の一部の読出しを光源の遮光期間外、すなわち光源の発光期間内になされることを許容することで、モニタに表示される画像の混色を防ぎ、かつ、光源の遮光期間を短く、すなわち発光時間を長く設定することが可能となる。 As described above, according to the first embodiment, the length of the “pre-blanking period” is variably set according to the degree of “pixel shift” determined for each endoscope, and “pixel shift” is set. Regardless of the degree, the reading timing of the “monitor display pixel” is substantially coincident with the light shielding period (charge reading period) of the light source, and the reading of a part of the effective pixels other than the “monitor display pixel” is shielded from the light source. By allowing it to be performed outside the period, that is, within the light emission period of the light source, it is possible to prevent color mixing of the image displayed on the monitor, and to set the light emission period shorter, that is, the light emission time can be set longer. Become.
 また、本第1の実施形態によると、撮像素子における任意範囲の画素のみを選択的に読み出す「切り出し機能」を用いることなく、かつ、光源の発光期間を短くすることなく画素ずれの補正処理を実行可能な内視鏡を提供することができる。 Further, according to the first embodiment, the pixel shift correction process is performed without using a “cutout function” that selectively reads out only an arbitrary range of pixels in the image sensor and without shortening the light emission period of the light source. A viable endoscope can be provided.
 さらに、第1の実施形態の内視鏡によると、内視鏡に接続されるビデオプロセッサおよび光源装置の動作を変更せずに上述した補正処理をすることができるため、従来のビデオプロセッサおよび光源装置等を有する内視鏡システムに対しても支障なく組み合わせることができる。 Furthermore, according to the endoscope of the first embodiment, the above-described correction processing can be performed without changing the operations of the video processor and the light source device connected to the endoscope. It can be combined with an endoscope system having an apparatus or the like without any trouble.
 <第2の実施形態>
 次に、本発明の第2の実施形態について説明する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described.
 図5は、本発明の第2の実施形態の内視鏡における、面順次光源動作タイミングに対応する各画素ずれ補正位置ごとのフレーム開始タイミングおよびセンサ読み出しタイミングを示したタイミングチャートである。 FIG. 5 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the second embodiment of the present invention.
 上述した第1の実施形態の内視鏡2においては、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて「プリブランキング期間」の長さを可変的に設定することで、「画素ずれ」の度合いに拘わらず、前記「モニタ表示画素」の読み出しタイミングを光源の遮光期間(電荷読出期間)と略一致させると共に、当該「モニタ表示画素」以外の有効画素の一部の読出しを光源の遮光期間外、すなわち光源の発光期間内になされることを許容するようにしたが、第2の実施形態の内視鏡は、「プリブランキング期間」の長さを一定とする一方で、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」を可変的に設定することで、「画素ずれ」の度合いに拘わらず、前記「モニタ表示画素」の読み出しタイミングを光源の遮光期間(電荷読出期間)と略一致させると共に、当該「モニタ表示画素」以外の有効画素の一部の読出しを光源の遮光期間外、すなわち光源の発光期間内になされることを許容することを特徴とする。 In the endoscope 2 according to the first embodiment described above, the length of the “pre-blanking period” is variably set according to the degree of “pixel shift” determined for each endoscope, so that “pixel” Regardless of the degree of “shift”, the readout timing of the “monitor display pixel” is substantially coincident with the light-shielding period (charge readout period) of the light source, and a part of the effective pixels other than the “monitor display pixel” is read out. However, the endoscope according to the second embodiment makes the length of the “pre-blanking period” constant while the length of the “pre-blanking period” is constant. By variably setting “timing to start one frame = start timing of pre-blanking period” according to the degree of “pixel deviation” determined for each endoscope, regardless of the degree of “pixel deviation”, The readout timing of the “monitor display pixel” is substantially coincided with the light shielding period (charge readout period) of the light source, and reading of a part of the effective pixels other than the “monitor display pixel” is performed outside the light shielding period of the light source, that is, the light emission of the light source. It is characterized by allowing it to be done within a period.
 したがって、本第2の実施形態の内視鏡は、基本的な構成については第1の実施形態と同様であるので、ここでは第1の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。 Therefore, the endoscope according to the second embodiment has the same basic configuration as that of the first embodiment. Therefore, only the differences from the first embodiment will be described here, and common parts will be described. The description of is omitted.
 本第2の実施形態の内視鏡2を有する内視鏡システム1も、第1の実施形態と同様に、被検体の観察し撮像する内視鏡2と、当該内視鏡2に接続され前記撮像信号を入力し所定の画像処理を施すビデオプロセッサ3と、被検体を照明するための照明光を供給する光源装置4と、撮像信号に応じた観察画像を表示するモニタ装置5と、を有している。 Similarly to the first embodiment, the endoscope system 1 having the endoscope 2 of the second embodiment is also connected to the endoscope 2 that observes and images the subject, and the endoscope 2. A video processor 3 that inputs the imaging signal and performs predetermined image processing; a light source device 4 that supplies illumination light for illuminating the subject; and a monitor device 5 that displays an observation image corresponding to the imaging signal. Have.
 また、内視鏡2におけるコネクタ12には、第1の実施形態と同様にFPGA23が配設されると共に、当該内視鏡2における内視鏡固別情報を記憶したIDメモリ27等が配設されるが、第2の実施形態においては、IDメモリ27に内視鏡固別情報として例えば、撮像素子の画素ずれ値等に係る情報または当該画素ずれ値に応じた「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」の数値等の情報が記憶されるようになっている。 In addition, the connector 12 in the endoscope 2 is provided with the FPGA 23 as in the first embodiment, and an ID memory 27 and the like storing endoscope identification information in the endoscope 2 is provided. However, in the second embodiment, for example, information related to the pixel shift value of the image sensor or the “timing to start one frame” corresponding to the pixel shift value is stored in the ID memory 27 as the endoscope specific information. = Numerical information such as “= pre-blanking period start timing” is stored.
 また、本第2の実施形態においても、撮像素子22は、1フレームを開始するタイミングから当該撮像素子22に係る有効画素の開始タイミングまでのライン数に相当する期間であるプリブランキング期間を設定可能となっている。 Also in the second embodiment, the image sensor 22 can set a pre-blanking period, which is a period corresponding to the number of lines from the start timing of one frame to the start timing of effective pixels related to the image sensor 22. It has become.
 第2の実施形態においても、前記FPGA23は、読出タイミング設定部26および信号読出部25を備え、読出タイミング設定部26は、「プリブランキング期間設定部」および「開始タイミング設定部」としての役目を果たし、また、信号読出部25は、前記光源装置4に係る遮光期間において、前記プリブランキング期間に応じて前記モニタ表示画素に係る撮像信号を読み出す「信号読出部」としての役目を果たす。 Also in the second embodiment, the FPGA 23 includes a read timing setting unit 26 and a signal read unit 25. The read timing setting unit 26 serves as a “preblanking period setting unit” and a “start timing setting unit”. In addition, the signal reading unit 25 serves as a “signal reading unit” that reads an imaging signal related to the monitor display pixel in accordance with the pre-blanking period in the light shielding period related to the light source device 4.
 <画素ずれ補正とプリブランキング期間>
 ここで、本第2の実施形態に係る画素ずれ補正の仕方と、プリブランキング期間並びに当該プリブランキング期間の設定部および開始タイミング設定部について説明する。
<Pixel shift correction and pre-blanking period>
Here, a pixel shift correction method, a preblanking period, a setting unit for the preblanking period, and a start timing setting unit according to the second embodiment will be described.
 本第2の実施形態において前記読出タイミング設定部26は、ビデオプロセッサ3における駆動信号生成部35からの垂直同期信号VSYNCに応じて、前記プリブランキング期間の開始タイミングを設定する「開始タイミング設定部」としての役目を果たす。 In the second embodiment, the read timing setting unit 26 sets the start timing of the preblanking period according to the vertical synchronization signal VSYNC from the drive signal generation unit 35 in the video processor 3. To fulfill the role of
 具体的に、有効画素全体における前記「モニタ表示画素」の位置に対応する「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」が各内視鏡ごとに設定されるようになっている。 Specifically, “timing to start one frame = start timing of pre-blanking period” corresponding to the position of the “monitor display pixel” in the entire effective pixel is set for each endoscope.
 また、本実施形態においても、撮像素子22の「画素ずれ」の有無に拘わらず、「モニタ表示画素」の読み出しタイミングと光源の遮光期間(電荷読出期間)とを略一致させるようにしている。 Also in the present embodiment, the reading timing of the “monitor display pixel” and the light-shielding period (charge reading period) of the light source are substantially matched regardless of the presence or absence of “pixel shift” of the image sensor 22.
 さらに本第2の実施形態においても、撮像素子22の有効画素全体の読み出しタイミングは、撮像素子22の「画素ずれ」の有無を問わず、有効画素全体の画素が必ずしも光源の遮光期間中になされるものではなく、前記「モニタ表示画素」以外の有効画素の一部の読出しは、光源の遮光期間外、すなわち光源の発光期間内になされることを許容する。 Further, also in the second embodiment, the readout timing of the entire effective pixel of the image sensor 22 is not necessarily set during the light-shielding period of the light source, regardless of whether or not there is a “pixel shift” of the image sensor 22. However, reading of a part of the effective pixels other than the “monitor display pixel” is allowed to be performed outside the light-shielding period of the light source, that is, within the light-emitting period of the light source.
 そして、上述したように前記「モニタ表示画素」は、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて有効画素中における位置も変わるが、当該「モニタ表示画素」の読み出しタイミングが、光源の遮光期間(電荷読出期間)と略一致するタイミングとなるように、本第2の実施形態の内視鏡2は、有効画素の読出し開始タイミングを調整し、さらに、この有効画素の読出し開始タイミングの調整具合に応じるように、「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」を設定することを特徴とする。 As described above, the position of the “monitor display pixel” in the effective pixel changes depending on the degree of “pixel shift” determined for each endoscope. The endoscope 2 according to the second embodiment adjusts the reading start timing of the effective pixels so that the timing substantially coincides with the light-shielding period (charge reading period) of the light source, and further starts reading of the effective pixels. According to the timing adjustment, “timing to start one frame = start timing of pre-blanking period” is set.
 換言すれば、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」を可変的に設定することで、第1の実施形態と同様に、「画素ずれ」の度合いに拘わらず、当該「モニタ表示画素」の読み出しタイミングは、常に、光源の遮光期間(電荷読出期間)と略一致することとなり、これにより光源の遮光期間を短く、すなわち発光時間を長く設定することが可能となる。 In other words, by variably setting “timing to start one frame = start timing of the pre-blanking period” according to the degree of “pixel shift” determined for each endoscope, Similarly, regardless of the degree of “pixel shift”, the readout timing of the “monitor display pixel” always coincides substantially with the light-shielding period (charge readout period) of the light source, thereby shortening the light-shielding period of the light source. That is, the light emission time can be set longer.
 なお、本第2の実施形態においては、第1の実施形態と異なり、各内視鏡ごとに定まる「画素ずれ」が互いに異なる内視鏡であっても、そのプリブランキング期間の長さは同一に設定されるものとする。 In the second embodiment, unlike the first embodiment, the length of the pre-blanking period is the same even for endoscopes having different “pixel shifts” determined for each endoscope. Shall be set to
 上述したように、IDメモリ27に内視鏡個別の情報としての「画素ずれに係る情報」が記憶されている状態で内視鏡2が稼働すると、「開始タイミング設定部」としての読出タイミング設定部26は、前記IDメモリ27に記憶された当該内視鏡2の各種固有情報のうち、撮像素子の画素ずれに係る情報を読み出し当該内視鏡ごとに定まる「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」を設定するようになっている。 As described above, when the endoscope 2 is operated in a state where “information relating to pixel shift” as individual information of the endoscope is stored in the ID memory 27, the read timing setting as the “start timing setting unit” is performed. The unit 26 reads out information related to the pixel shift of the image sensor from among the various pieces of unique information stored in the ID memory 27 and determines “one frame start timing = previous” determined for each endoscope. The ranking period start timing is set.
 すなわち、本第2の実施形態の内視鏡2において前記プリブランキング期間は、内視鏡ごとに個別の情報として記憶される「画素ずれ」に係る情報に応じて前記読出タイミング設定部26における前記「開始タイミング設定部」において設定された前記開始タイミングで開始される。 That is, in the endoscope 2 of the second embodiment, the preblanking period is determined by the readout timing setting unit 26 according to information related to “pixel shift” stored as individual information for each endoscope. The operation is started at the start timing set in the “start timing setting unit”.
 そして本第2の実施形態においても信号読出部25は、当該プリブランキング期間が終了した後に、光源装置4に係る遮光期間において前記「モニタ表示画素」、すなわち撮像素子22の有効画素中における実際にモニタに表示される画素に係る撮像信号を読み出すようになっている。 Also in the second embodiment, the signal readout unit 25 actually performs the “monitor display pixel”, that is, the effective pixel of the image sensor 22 in the light shielding period of the light source device 4 after the preblanking period ends. An imaging signal relating to the pixel displayed on the monitor is read out.
 また、本第2の実施形態において光源制御部41による光源の動作タイミングは、「画素ずれ」の度合いによらず固定とする。 In the second embodiment, the operation timing of the light source by the light source control unit 41 is fixed regardless of the degree of “pixel shift”.
 <第2実施形態の作用>
 次に、本発明の第2実施形態の作用について図5を参照して説明する。
<Operation of Second Embodiment>
Next, the operation of the second embodiment of the present invention will be described with reference to FIG.
 図5は、本発明の第2の実施形態の内視鏡における、面順次光源動作タイミングに対応する各画素ずれ補正位置ごとのフレーム開始タイミングおよびセンサ読み出しタイミングを示したタイミングチャートである。 FIG. 5 is a timing chart showing the frame start timing and sensor readout timing for each pixel shift correction position corresponding to the frame sequential light source operation timing in the endoscope of the second embodiment of the present invention.
 図5においても、上述した例と同様に、撮像信号の「画素ずれ」が生じていない通常タイプの内視鏡を“タイプA”とし、「画素ずれ」が生じている内視鏡を“タイプB(上方シフトするタイプ)”および“タイプC(下方シフトするタイプ)”とする。 Also in FIG. 5, as in the above-described example, the normal type endoscope in which the “pixel shift” of the imaging signal does not occur is “type A”, and the endoscope in which the “pixel shift” occurs is “type”. “B (upshift type)” and “type C (downshift type)”.
 まず、内視鏡2は、当該内視鏡の製造時等において、撮像光学系の偏心等に起因する撮像信号の「画素ずれ」を検出し、当該「画素ずれ」に係る情報をIDメモリ27に記憶する。 First, the endoscope 2 detects a “pixel shift” of an image pickup signal caused by the eccentricity of the image pickup optical system or the like at the time of manufacturing the endoscope, and the information related to the “pixel shift” is stored in the ID memory 27. To remember.
 この「画素ずれ」に係る情報は、例えば、実際の撮像素子の画素ずれ値等に係る情報または当該画素ずれ値に応じた「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」等の情報である。 The information related to this “pixel shift” is, for example, information related to the pixel shift value of the actual image sensor or information such as “timing to start one frame = start timing of the preblanking period” corresponding to the pixel shift value. It is.
 そして、IDメモリ27に内視鏡個別の情報としての「画素ずれに係る情報」が記憶されている状態で内視鏡2が稼働すると、「プリブランキング期間設定部」としての読出タイミング設定部26は、前記IDメモリ27に記憶された当該内視鏡2の各種固有情報のうち、撮像素子の画素ずれに係る情報を読み出す。 Then, when the endoscope 2 is operated in a state where “information relating to pixel shift” as information specific to the endoscope is stored in the ID memory 27, the read timing setting unit 26 as a “preblanking period setting unit”. Reads out information related to pixel shift of the image sensor from among the various unique information of the endoscope 2 stored in the ID memory 27.
 その後、読出タイミング設定部26は、当該読み出した情報に応じて内視鏡ごとに定まる「プリブランキング期間」および「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」を設定する。 Thereafter, the read timing setting unit 26 sets “preblanking period” and “timing to start one frame = start timing of preblanking period” determined for each endoscope according to the read information.
 また、前記「モニタ表示画素」は、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて有効画素中における位置も変わるため、当該位置に対応する「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」も内視鏡ごとに設定される。 Further, since the position of the “monitor display pixel” in the effective pixel also changes depending on the degree of “pixel shift” determined for each endoscope, “timing for starting one frame = preblanking” corresponding to the position. The “period start timing” is also set for each endoscope.
 なお、本第2の実施形態においては、「プリブランキング期間」は「画素ずれ」の度合いに拠らず、一定の長さに設定されることとなる。 In the second embodiment, the “pre-blanking period” is set to a fixed length regardless of the degree of “pixel shift”.
 より具体的に、本第2の実施形態においては、内視鏡2が「画素ずれ」が生じていないタイプAの内視鏡の場合、読出タイミング設定部26は、当該タイプAの内視鏡2におけるIDメモリ27から、「画素ずれ」に係る情報を取得し、「プリブランキング期間」の長さおよび「「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」を設定する。 More specifically, in the second embodiment, when the endoscope 2 is a type A endoscope in which no “pixel shift” occurs, the read timing setting unit 26 sets the type A endoscope. 2 is acquired from the ID memory 27 and the length of the “preblanking period” and “the timing for starting one frame = the starting timing of the preblanking period” are set.
 このとき、読出タイミング設定部26によって設定される「プリブランキング期間の長さ」および「1フレームを開始するタイミング」は、信号読出部25による「モニタ表示画素」の読み出しタイミングを光源の遮光期間(電荷読出期間)内に行うと共に、前記「モニタ表示画素」前後の有効画素の一部の読出しが、光源の遮光期間外、すなわち光源の発光期間内になされることを許容する「長さ」であり、「タイミング」である。 At this time, the “length of the pre-blanking period” and the “timing to start one frame” set by the read timing setting unit 26 are the same as the light-shielding period of the light source (the monitor display pixel) read timing by the signal read unit 25. In the “charge readout period” and with a “length” that allows reading out some of the effective pixels before and after the “monitor display pixel” outside the light-shielding period of the light source, that is, within the light-emitting period of the light source Yes, “timing”.
 一方、内視鏡2が撮像信号の「画素ずれ」が生じているタイプBまたはタイプCの内視鏡の場合、読出タイミング設定部26は、上記同様に、当該タイプBまたはタイプCの内視鏡2におけるIDメモリ27から、「画素ずれ」に係る情報を取得し、「プリブランキング期間」の長さおよび「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」を設定する。 On the other hand, when the endoscope 2 is a type B or type C endoscope in which the “pixel shift” of the imaging signal has occurred, the readout timing setting unit 26 performs the type B or type C endoscope similarly to the above. Information related to “pixel shift” is acquired from the ID memory 27 in the mirror 2, and the length of “preblanking period” and “timing of starting one frame = starting timing of preblanking period” are set.
 そしてこの場合も、読出タイミング設定部26によって設定される「プリブランキング期間の長さ」および「1フレームを開始するタイミング」は、信号読出部25による「モニタ表示画素」の読み出しタイミングを光源の遮光期間(電荷読出期間)内に行うと共に、前記「モニタ表示画素」の後ろ側(タイプB参照)または前側(タイプC参照)の有効画素の一部の読出しが、光源の遮光期間外、すなわち光源の発光期間内になされることを許容する「長さ」であり、「タイミング」である。 In this case as well, the “preblanking period length” and the “timing to start one frame” set by the read timing setting unit 26 are the same as the “monitor display pixel” read timing by the signal read unit 25. During the period (charge readout period), the readout of a part of the effective pixels on the back side (see type B) or the front side (see type C) of the “monitor display pixel” is outside the light shielding period of the light source, that is, the light source It is “length” and “timing” that is allowed to be performed within the light emission period.
 以上説明したように、本第2の実施形態によると、各内視鏡ごとに定まる「画素ずれ」の度合いに応じて「1フレームを開始するタイミング=プリブランキング期間の開始タイミング」を可変的に設定し、「画素ずれ」の度合いに拘わらず、前記「モニタ表示画素」の読み出しタイミングを光源の遮光期間(電荷読出期間)と略一致させると共に、当該「モニタ表示画素」以外の有効画素の一部の読出しを光源の遮光期間外、すなわち光源の発光期間内になされることを許容することで、モニタに表示される画像の混色を防ぎ、かつ、光源の遮光期間を短く、すなわち発光時間を長く設定することが可能となる。 As described above, according to the second embodiment, “the timing to start one frame = the start timing of the pre-blanking period” is variably set according to the degree of “pixel shift” determined for each endoscope. Regardless of the degree of “pixel shift”, the readout timing of the “monitor display pixel” is made to substantially coincide with the light-shielding period (charge readout period) of the light source, and one of the effective pixels other than the “monitor display pixel” is selected. Part reading is allowed outside the light-shielding period of the light source, that is, within the light-emitting period of the light source, thereby preventing color mixing of the image displayed on the monitor and shortening the light-shielding period of the light source, that is, reducing the light emission time. It can be set longer.
 また、本第2の実施形態によると、撮像素子における任意範囲の画素のみを選択的に読み出す「切り出し機能」を用いることなく、かつ、光源の発光期間を短くすることなく画素ずれの補正処理を実行可能な内視鏡を提供することができる。 In addition, according to the second embodiment, the pixel shift correction process is performed without using a “cutout function” that selectively reads out only an arbitrary range of pixels in the image sensor and without shortening the light emission period of the light source. A viable endoscope can be provided.
 さらに、第2の実施形態の内視鏡によると、第1の実施形態と同様に、内視鏡に接続されるビデオプロセッサおよび光源装置の動作を変更せずに上述した補正処理をすることができるため、従来のビデオプロセッサおよび光源装置等を有する内視鏡システムに対しても支障なく組み合わせることができる。 Furthermore, according to the endoscope of the second embodiment, the correction processing described above can be performed without changing the operations of the video processor and the light source device connected to the endoscope, as in the first embodiment. Therefore, it can be combined with an endoscope system having a conventional video processor and light source device without any trouble.
 なお、上述した各実施形態では、前記信号読出部25および読出タイミング設定部26は、内視鏡2におけるFPGA23に形成するものとしたが、これに限らず、内視鏡2の他の箇所、例えば、操作部等に配設してもよく、また、ビデオプロセッサ3に配設し、当該ビデオプロセッサ3から撮像素子22を制御するようにしてもよい。 In each of the above-described embodiments, the signal readout unit 25 and the readout timing setting unit 26 are formed in the FPGA 23 in the endoscope 2, but the present invention is not limited to this, and other parts of the endoscope 2, For example, it may be disposed in the operation unit or the like, or may be disposed in the video processor 3 so as to control the image sensor 22 from the video processor 3.
 なお、上記各実施形態においては、面順次光源による観察方式を採用するものとしたが、これに限らず、LED光源等によるPWM制御を行う例、または特殊光観察としての狭帯域光観察(NBI:Narrow Band Imaging)、赤外光観察(IRI:InfraRed Imaging)もしくは蛍光観察(AFI:Auto Fluorescence Imaging)を採用する例にも適用できる。 In each of the above embodiments, an observation method using a surface sequential light source is adopted. However, the present invention is not limited to this, and an example of performing PWM control using an LED light source or the like, or narrowband light observation (NBI) as special light observation : Narrow Band Imaging), infrared light observation (IRI: InfraRed Imaging), or fluorescence observation (AFI: Auto Fluorescence Imaging).
 本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 本出願は、2016年3月30日に日本国に出願された特願2016-68668号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。 This application is filed on the basis of the priority claim of Japanese Patent Application No. 2016-68668 filed in Japan on March 30, 2016, and the above disclosure is included in the present specification and claims. Shall be quoted.

Claims (4)

  1.  被写体を撮像し所定の撮像信号を生成する撮像素子であって、1フレームを開始するタイミングから当該撮像素子に係る有効画素の開始タイミングまでのライン数に相当する期間であるプリブランキング期間を設定可能な撮像素子と、
     被写体に照射するための照明光を発光し発光期間および遮光期間を有する光源からの当該照明光を被写体に向けて照射可能な照明部と、
     前記撮像素子に係る有効画素中における、モニタに表示するモニタ表示画素に対応する所定の前記プリブランキング期間を設定するプリブランキング期間設定部と、
     所定の垂直同期信号に応じて、前記プリブランキング期間の開始タイミングを設定する開始タイミング設定部と、
     前記光源の前記遮光期間において、前記開始タイミング設定部で設定された前記開始タイミングで開始され、前記プリブランキング期間設定部で設定された前記プリブランキング期間に応じて前記モニタ表示画素に係る撮像信号を読み出す信号読出回路と、
     を具備することを特徴とする内視鏡。
    An image pickup device that picks up an image of a subject and generates a predetermined image pickup signal. A preblanking period that is a period corresponding to the number of lines from the start timing of one frame to the start timing of effective pixels related to the image pickup device can be set. An image sensor,
    An illumination unit that emits illumination light for illuminating the subject and that can irradiate the illumination light from the light source having a light emission period and a light shielding period toward the subject;
    A pre-blanking period setting unit that sets a predetermined pre-blanking period corresponding to a monitor display pixel to be displayed on a monitor in the effective pixels related to the image sensor;
    A start timing setting unit for setting a start timing of the pre-blanking period according to a predetermined vertical synchronization signal;
    In the light shielding period of the light source, an imaging signal that is started at the start timing set by the start timing setting unit and is related to the monitor display pixel according to the preblanking period set by the preblanking period setting unit. A signal readout circuit to read out;
    An endoscope comprising:
  2.  前記プリブランキング期間設定部は、前記撮像素子に係る画素ずれに対応して変化する、前記撮像素子に係る有効画素中における前記モニタ表示画素の位置に応じて、前記プリブランキング期間を設定する
     ことを特徴とする請求項1に記載の内視鏡。
    The preblanking period setting unit sets the preblanking period according to a position of the monitor display pixel in an effective pixel related to the image sensor, which changes corresponding to a pixel shift related to the image sensor. The endoscope according to claim 1, wherein the endoscope is characterized in that:
  3.  前記開始タイミング設定部は、前記撮像素子に係る画素ずれに対応して変化する、前記撮像素子に係る有効画素中における前記モニタ表示画素の位置に応じて、前記プリブランキング期間の開始タイミングを設定する
     ことを特徴とする請求項1に記載の内視鏡。
    The start timing setting unit sets the start timing of the preblanking period according to the position of the monitor display pixel in the effective pixels related to the image sensor, which changes corresponding to the pixel shift related to the image sensor. The endoscope according to claim 1.
  4.  前記プリブランキング期間設定部は、前記撮像素子に係る画素ずれに対応して変化する、前記撮像素子に係る有効画素中における前記モニタ表示画素の位置に拘わらず、前記プリブランキング期間を一定値に設定する
     ことを特徴とする請求項3に記載の内視鏡。
    The preblanking period setting unit sets the preblanking period to a constant value regardless of the position of the monitor display pixel in the effective pixel related to the image sensor, which changes corresponding to the pixel shift related to the image sensor. The endoscope according to claim 3, wherein:
PCT/JP2016/076461 2016-03-30 2016-09-08 Endoscope WO2017168785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017553274A JP6275357B1 (en) 2016-03-30 2016-09-08 Endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016068668 2016-03-30
JP2016-068668 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017168785A1 true WO2017168785A1 (en) 2017-10-05

Family

ID=59962850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076461 WO2017168785A1 (en) 2016-03-30 2016-09-08 Endoscope

Country Status (2)

Country Link
JP (1) JP6275357B1 (en)
WO (1) WO2017168785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084784A1 (en) * 2018-10-26 2020-04-30 オリンパス株式会社 Image processing device and endoscope system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186810A (en) * 1995-01-05 1996-07-16 Toshiba Corp Electronic endoscope
WO2014034184A1 (en) * 2012-09-03 2014-03-06 オリンパスメディカルシステムズ株式会社 Scanning endoscope system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186810A (en) * 1995-01-05 1996-07-16 Toshiba Corp Electronic endoscope
WO2014034184A1 (en) * 2012-09-03 2014-03-06 オリンパスメディカルシステムズ株式会社 Scanning endoscope system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084784A1 (en) * 2018-10-26 2020-04-30 オリンパス株式会社 Image processing device and endoscope system

Also Published As

Publication number Publication date
JPWO2017168785A1 (en) 2018-04-05
JP6275357B1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
US9029755B2 (en) Imaging system with illumination controller to variably control illumination light
US8866893B2 (en) Imaging apparatus
US9844312B2 (en) Endoscope system for suppressing decrease of frame rate without changing clock rate of reading
US8823789B2 (en) Imaging apparatus
US20130169843A1 (en) Image pickup apparatus
JP5164473B2 (en) Endoscope device
JP6588043B2 (en) Image processing apparatus, endoscope system, method of operating image processing apparatus, and program
CN105792727A (en) Endoscope device
WO2013128764A1 (en) Medical system
JP5467182B1 (en) Imaging system
JP2015160098A (en) endoscope system
JP5558635B2 (en) Endoscope device
CN107072506A (en) Camera device and processing unit
WO2015114906A1 (en) Imaging system and imaging device
US9775492B2 (en) Image device for synchronizing timing of imaging by first and second image sensors, and endoscopic device
JP2012010962A (en) Light source device for excitation light, and electronic endoscope system
US11882995B2 (en) Endoscope system
JP2012223376A (en) Control circuit and control method of light-emitting diode for lighting, and electronic endoscope apparatus using the same
WO2020178962A1 (en) Endoscope system and image processing device
JP5810016B2 (en) Endoscope system
JP6275357B1 (en) Endoscope
US10188266B2 (en) Endoscopic imaging device for reducing data amount of image signal
US20230233070A1 (en) Endoscope light source device, endoscope system, and method of changing illumination light in endoscope light source device
WO2017145813A1 (en) Imaging system, imaging device and processing device
JP2014226196A (en) Light source device for endoscope and electronic endoscope system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017553274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897002

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897002

Country of ref document: EP

Kind code of ref document: A1