WO2017145813A1 - Imaging system, imaging device and processing device - Google Patents

Imaging system, imaging device and processing device Download PDF

Info

Publication number
WO2017145813A1
WO2017145813A1 PCT/JP2017/004942 JP2017004942W WO2017145813A1 WO 2017145813 A1 WO2017145813 A1 WO 2017145813A1 JP 2017004942 W JP2017004942 W JP 2017004942W WO 2017145813 A1 WO2017145813 A1 WO 2017145813A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
correction data
transmission
video data
Prior art date
Application number
PCT/JP2017/004942
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 進
隆 齊藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017531917A priority Critical patent/JPWO2017145813A1/en
Publication of WO2017145813A1 publication Critical patent/WO2017145813A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to an imaging system, an imaging apparatus, and a processing apparatus that image a subject and generate image data of the subject.
  • CMOS Complementary Metal Oxide Semiconductor
  • correction data relating to fixed pattern noise of the image sensor recorded in the memory in the imaging unit is transmitted to a processing device that processes the video data, and the processing device corrects the video data based on the correction data.
  • the present invention has been made in view of the above, and an imaging system capable of shortening the time until a processing device outputs a high-quality video even when a large amount of correction data is transmitted.
  • An object is to provide an imaging device and a processing device.
  • an imaging system includes a plurality of pixels arranged in a secondary grid, and an image of a subject is captured by the plurality of pixels and configured from a plurality of pixel data.
  • An image sensor for generating video data to be recorded, a recording unit for recording correction data for correcting each of the plurality of pixel data, and a transmission path for transmitting the video data and the correction data to a processing device.
  • the correction data recorded by the recording unit is transmitted to the processing device via the transmission path, and the video data is transmitted to the processing device via the transmission path after the transmission of the correction data is completed.
  • a transmitting unit includes a plurality of pixels arranged in a secondary grid, and an image of a subject is captured by the plurality of pixels and configured from a plurality of pixel data.
  • the transmission unit transmits completion information indicating completion of transmission of the correction data via the transmission path after completing transmission of the correction data. It is characterized by.
  • the imaging system according to the present invention is characterized in that, in the above-mentioned invention, the transmission unit transmits the video data after a predetermined time has elapsed after starting transmission of the correction data.
  • the imaging system according to the present invention further includes a monitoring unit that monitors a startup state of the imaging system in the above invention, and the transmission unit detects the correction when the monitoring unit detects the startup of the imaging system. Data transmission is started.
  • the correction data is data for correcting the sensitivity of each pixel in the imaging element.
  • an imaging device includes a plurality of pixels arranged in a two-dimensional grid, an imaging element that captures an image of a subject with the plurality of pixels and generates video data composed of a plurality of pixel data, A recording unit that records correction data for correcting each of a plurality of pixel data; and the correction data that the recording unit records via a transmission path for transmitting the video data and the correction data to a processing device. And a transmission unit that transmits the video data to the processing device via the transmission path after the transmission of the correction data is completed.
  • the processing apparatus captures an object with a plurality of pixels arranged in a two-dimensional grid via a transmission path capable of transmitting data, and generates video data composed of the plurality of pixel data.
  • a processing device that performs image processing on the video data transmitted from an imaging device including an imaging element that corrects each of the plurality of pixel data from the imaging device via the transmission path
  • a correction unit that receives correction data and receives the video data, and a correction unit that corrects the video data based on the correction data received by the reception unit.
  • the present invention even when a large amount of correction data is transmitted, it is possible to shorten the time until the processing device outputs a high-quality video.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an imaging system according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing functional configurations of the endoscope and the processor according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing an outline of processing executed by the endoscope according to Embodiment 1 of the present invention.
  • FIG. 4 is a timing chart showing an outline of processing executed by the endoscope according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing an outline of processing executed by the processor according to Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart showing an outline of processing executed by the endoscope according to the second embodiment of the present invention.
  • FIG. 7 is a flowchart showing an outline of processing executed by the processor according to Embodiment 2 of the present invention.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an imaging system according to Embodiment 1 of the present invention.
  • An imaging system 1 shown in FIG. 1 inserts a distal end portion into a subject to supply an endoscope 2 that captures an in-vivo image of the subject and illumination light emitted from the distal end of the endoscope 2.
  • a processor 3 processing device that performs predetermined signal processing on video data (imaging signal) captured by the endoscope 2, and a display device 4 that displays an image corresponding to the video data on which the processor 3 has performed signal processing; .
  • the endoscope 2 images the inside of the subject by inserting the insertion portion 101 that is a part of the transmission cable 100 into the body cavity of the subject, and outputs video data (image signal) to the processor 3.
  • the endoscope 2 is on one end side of the transmission cable 100, and an imaging element (imaging unit) that captures an in-vivo image, which will be described later, on the distal end 102 side of the insertion unit 101 inserted into the body cavity of the subject.
  • An operation unit 104 that accepts various operations on the endoscope 2 is provided on the proximal end 103 side of the insertion unit 101.
  • Video data of an image captured by the endoscope 2 is output to the processor 3 through a transmission cable 100 having a length of several meters, for example.
  • the endoscope 2 will be described as a flexible endoscope.
  • the endoscope 2 is not limited to this, and is not limited to this. It may be an optical endoscope in which a camera head is connected to an eyepiece of an optical endoscope such as an optical tube.
  • the endoscope 2 is not limited to the one in which the imaging element is provided at the distal end 102 of the insertion unit 101.
  • the imaging element is provided on the proximal end 103 side of the insertion unit 101, and It may be a flexible endoscope that can capture an optical image transmitted to the optical fiber 103 via an optical fiber. The detailed configuration of the endoscope 2 will be described later.
  • the transmission cable 100 connects the endoscope 2 and the processor 3.
  • the transmission cable 100 transmits video data generated by the image sensor 22 described later, correction data for correcting the image sensor 22, and ID information for identifying the endoscope 2, and the endoscope 3 from the processor 3.
  • the power supply voltage and the ground GND are supplied to the power source, and the synchronization signal and the control signal are transmitted between the endoscope 2 and the processor 3.
  • the transmission cable 100 transmits the illumination light supplied from the processor 3 to the endoscope 2.
  • the transmission cable 100 is configured using, for example, a plurality of cables, optical fibers (light guides), and the like. In the first embodiment, the transmission cable 100 functions as a transmission path.
  • the processor 3 performs predetermined signal processing on the video data input from the transmission cable 100 and outputs it to the display device 4.
  • the processor 3 supplies illumination light to be emitted from the distal end 102 of the endoscope 2 via the transmission cable 100 to the endoscope 2.
  • the processor 3 comprehensively controls the entire imaging system 1.
  • the display device 4 displays an image corresponding to the video data subjected to signal processing by the processor 3.
  • the display device 4 displays various information related to the imaging system 1.
  • the display device 4 is configured using a display panel such as liquid crystal or organic EL (Electro Luminescence).
  • FIG. 2 is a block diagram illustrating functional configurations of the endoscope 2 and the processor 3.
  • the endoscope 2 shown in FIG. 2 includes an optical system 21, an imaging element 22, an imaging drive unit 23, a transmission unit 24, an illumination optical system 25, and an endoscope recording unit 26.
  • the optical system 21 is configured by using one or a plurality of lenses, and forms a subject image on the light receiving surface of the image sensor 22.
  • the optical system 21 has an optical zoom function for changing the angle of view and a focus function for changing the focus.
  • the image sensor 22 receives the light collected by the optical system 21 and photoelectrically converts it to generate video data (electrical signal).
  • a plurality of pixels having a photodiode for accumulating electric charge according to the amount of light and a capacitor for converting electric charge transferred from the photodiode into a voltage level are arranged in a two-dimensional lattice shape (two-dimensional matrix shape). It is configured using image sensors such as CMOS (Complementary Metal Oxide Semiconductor) and CCD (Charge Coupled Device), and generates video data composed of multiple image data.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • each pixel of the image sensor 22 is a filter that transmits light in any one of the wavelength bands of the red (R), green (G), and blue (B) color components, and is mutually connected. Filters having different light receiving sensitivities are arranged in a predetermined arrangement (for example, a Bayer arrangement).
  • the imaging element 22 generates video data and outputs the video data to the transmission unit 24 under the control of the imaging drive unit 23.
  • the filter arranged in each pixel of the image sensor 22 is a complementary color filter in which four types of filters of cyan (Cy), magenta (Mg), yellow (Ye), and green (G) are arranged. In the case of a method of illumination light supplied from the processor 3 to be described later, for example, a frame sequential method, it may not be provided.
  • the imaging drive unit 23 drives the imaging device 22 based on the synchronization signal (for example, the vertical synchronization signal and the horizontal synchronization signal) transmitted from the processor 3 through the transmission cable 100. Specifically, the imaging drive unit 23 outputs video data from the imaging element 22 to the transmission unit 24 based on the vertical synchronization signal.
  • the synchronization signal for example, the vertical synchronization signal and the horizontal synchronization signal
  • the transmission unit 24 transmits the video data input from the image sensor 22 to the processor 3 based on the vertical synchronization signal transmitted from the processor 3 via the transmission cable 100.
  • the transmission unit 24 transmits the video data input from the imaging element 22 to the processor 3 by SER (Serializer) or the like using, for example, FPGA.
  • the transmission unit 24 transmits the correction data recorded by the correction data recording unit 261 in the endoscope recording unit 26 described later to the processor 3 when the imaging system 1 is activated, and the video data is transmitted after the correction data has been transmitted. Transmit to processor 3.
  • the transmission unit 24 transmits correction data according to the vertical synchronization signal, and at the end of the correction data transmission period for transmitting the correction data, a completion code indicating completion of transmission of the correction data. Is transmitted to the processor 3. Thereafter, the transmission unit 24 switches the input destination to which data is input from the correction data recording unit 261 to the image sensor 22 and sequentially transmits the video data generated by the image sensor 22 to the processor 3 according to the vertical synchronization signal.
  • the illumination optical system 25 emits illumination light supplied from the processor 3 via the transmission cable 100.
  • the illumination optical system 25 is configured using one or a plurality of lenses.
  • the endoscope recording unit 26 is configured using a volatile memory, a non-volatile memory, or the like, and records various types of information related to the endoscope 2.
  • the endoscope recording unit 26 includes a correction data recording unit 261 and an ID data recording unit 262.
  • the correction data recording unit 261 records correction data.
  • the correction data is data for correcting each of the plurality of image data constituting the video data generated by the image sensor 22.
  • the correction data is correction data for correcting the sensitivity of each pixel of the image sensor 22.
  • the correction data is a state in which the endoscope 2 is darkened at the time of manufacture or assembly of the endoscope 2 in advance (for example, a state in which a cap is attached to the distal end 102), and a predetermined number of image data (for example, 100) is input to the image sensor 22. Image), and the image sensor 22 generates a predetermined number of image data in a state where the generated image data is averaged for each pixel and the image sensor 22 is irradiated with uniform light. It is a value obtained by averaging the generated plurality of video data for each pixel, a median value, or a coefficient for multiplying the pixel value of each pixel of the video image corresponding to the video data.
  • the ID data recording unit 262 records ID data.
  • the ID data includes identification information for identifying the image sensor 22, type information of the image sensor 22, and defective pixel information of the image sensor 22.
  • the defective pixel information is, for example, address information of abnormal pixels such as white and black scratches on the image sensor 22.
  • the processor 3 shown in FIG. 2 includes a power supply unit 30, a monitoring unit 31, a synchronization signal generation unit 32, a reception unit 33, a first digital processing unit 34, a correction unit 35, and a second digital processing unit 36.
  • the power supply unit 30 supplies power to each unit constituting the imaging system 1 when a power switch (not shown) is operated.
  • the power supply unit 30 converts power supplied from the outside into a predetermined voltage and supplies power to each unit of the imaging system 1.
  • the monitoring unit 31 monitors the activation state of the power supply unit 30 and outputs the monitoring result to the control unit 42. Specifically, when the power supply unit 30 supplies power to each unit constituting the imaging system 1, the monitoring unit 31 outputs information indicating that the imaging system 1 has been activated to the control unit 42.
  • the synchronization signal generator 32 generates a synchronization signal including a vertical synchronization signal and a horizontal synchronization signal, and transmits this synchronization signal to the endoscope 2.
  • the synchronization signal generator 32 generates a synchronization signal based on the clock signal generated by a clock generator (not shown).
  • the receiving unit 33 receives the video data and the correction data transmitted from the endoscope 2 via the transmission cable 100, and outputs the video data to the first digital processing unit 34, while outputting the correction data to the control unit 42. To do.
  • the receiving unit 33 receives and outputs video data and correction data by DES (Deserializer) using, for example, an FPGA.
  • DES Serializer
  • the first digital processing unit 34 performs digital image processing including optical black correction processing and demosaicing processing on the video data input from the reception unit 33 and outputs the result to the correction unit 35.
  • the correction unit 35 corrects the sensitivity of each pixel of the video image corresponding to the video data input from the first digital processing unit 34 based on the correction data of the image pickup device 22 recorded in the main body recording unit 38. 2 Output to the digital processing unit 36.
  • the second digital processing unit 36 performs digital processing including white balance adjustment processing, electronic zoom processing, and enhancement processing on the video data in which the sensitivity of each pixel input from the correction unit 35 is corrected, and outputs a video output unit. 37 and the dimming control unit 39 respectively.
  • the video output unit 37 converts the digital video data input from the second digital processing unit 36 into analog video data, converts it into a predetermined format, and outputs it to the display device 4. Note that the video output unit 37 may output the video data to the display device 4 as it is. In this case, the video output unit 37 outputs video data converted in accordance with various digital standards such as SDI, DisplayPort HDMI (registered trademark), and DVI to the display device 4.
  • various digital standards such as SDI, DisplayPort HDMI (registered trademark), and DVI to the display device 4.
  • the main body recording unit 38 records correction data or ID data input from the control unit 42, various types of information regarding the processor 3, and information being processed by the processor 3.
  • the main body recording unit 38 includes a program recording unit 381 that records a program executed by the processor 3.
  • the main body recording unit 38 is configured using a volatile memory, a nonvolatile memory, or the like.
  • the dimming control unit 39 adjusts the amount of light emitted from the light source 40 based on the brightness of the video image corresponding to the video data input from the second digital processing unit 36. For example, the dimming control unit 39 adjusts the amount of light emitted from the light source 40 by PWM control or the like.
  • the light source 40 emits illumination light for irradiating the subject under the control of the dimming control unit 39.
  • the light source 40 includes, for example, a white LED (Light Emitting Diode) that emits white light, a xenon lamp, a halogen lamp, or the like.
  • the light source 40 may be configured to generate white light by combining light from a plurality of LEDs or laser light sources having different emission wavelength bands.
  • the optical filter 41 has a transmission characteristic that limits light emitted from the light source 40 to a predetermined wavelength band.
  • the optical filter 41 is provided on the optical path of the light source 40 so that the optical filter 41 can be inserted and removed.
  • the optical filter 41 is arranged on the optical path of the light source 40 when the observation mode of the imaging system 1 is set to the special light observation mode, while the observation mode of the imaging system 1 is set to the normal observation mode. If set, the light source 40 is disposed at a position retracted from the optical path. Further, the transmission characteristics of the optical filter 41 are appropriately set according to the type of special light observation.
  • the optical filter 41 when performing narrow-band light observation (NBI) as special light observation, uses blue narrow-band light (for example, 390 nm to 445 nm) and light emitted from the light source 40, and Each of the green narrow-band lights (for example, 530 nm to 550 nm) is transmitted.
  • NBI narrow-band light observation
  • the optical filter 41 when performing fluorescence observation (Auto Fluorescence Imaging: AFI) as special light observation, the optical filter 41 is excited for observing autofluorescence from a fluorescent substance such as collagen with respect to light emitted from the light source 40.
  • Light for example, 390 nm to 470 nm
  • light having a wavelength for example, 540 nm to 560 nm
  • the optical filter 41 performs two infrared lights (for example, 790 nm to 820 nm and 905 nm to 905 nm to the light emitted from the light source 40 when performing infrared light observation (IRI) as special light observation. 970 nm).
  • IRI infrared light observation
  • the control unit 42 comprehensively controls each unit of the imaging system 1.
  • the control unit 42 is configured using a CPU (Central Processing Unit) or the like.
  • the control unit 42 records the correction data received by the receiving unit 33 in the main body recording unit 38. Further, the control unit 42 acquires the ID data of the endoscope 2 from the ID data recording unit 262 of the endoscope 2 via the transmission cable 100 when the imaging system 1 is activated. Further, the control unit 42 transmits information indicating that the imaging system 1 has been activated to the endoscope 2 via the transmission cable 100. Furthermore, when the receiving unit 33 receives the completion code, the control unit 42 switches the output destination of the data output from the receiving unit 33 from the control unit 42 to the first digital processing unit 34.
  • CPU Central Processing Unit
  • FIG. 3 is a flowchart showing an outline of processing executed by the endoscope 2.
  • FIG. 4 is a timing chart of processing executed by the endoscope 2.
  • (a) is the start timing of the power supply of the imaging system 1
  • (b) is the rising and falling timing of the vertical synchronization signal
  • (c) is the transmission timing of the correction data and video data
  • (d) is the transmission timing.
  • the horizontal axis indicates time.
  • the transmission unit 24 corrects the correction data recording unit 261 according to the vertical synchronization signal input from the processor 3 through the transmission cable 100.
  • the correction data to be recorded is transmitted to the receiving unit 33 every predetermined amount of data (step S102).
  • the activation of the imaging system 1 is a state in which the monitoring unit 31 detects that the power source of the imaging system 1 has been started up, or a state in which the connection of the endoscope 2 is detected after the processor 3 is activated. As shown in FIG.
  • the transmitting unit 24 receives information indicating that the imaging system 1 has been activated from the control unit 42 via the transmission cable 100. Then, transmission of correction data is started in accordance with the rising timing of the vertical synchronization signal (time t 2 ). In this case, the transmission unit 24 sequentially transmits correction data in a predetermined data amount for each field (for each pulse of the vertical synchronization signal) (correction data C1, correction data C2, correction data C3 to correction data C). n-1 and correction data C n (n: integer of 4 or more).
  • step S103 when the transmission of the correction data recorded by the correction data recording unit 261 is completed (step S103: Yes), the transmission unit 24 adds a completion code indicating completion of the correction data to the correction data and sends it to the reception unit 33. Transmit (step S104). Specifically, as shown in FIG. 4, the transmission unit 24 adds a completion code to the correction data Cn and transmits the correction data Cn to the reception unit 33 (time t 3 ).
  • the transmission unit 24 switches the data input destination from the correction data recording unit 261 to the image sensor 22 (step S105), and the image sensor 22 generates according to the vertical synchronization signal input from the processor 3 via the transmission cable 100.
  • the transmitted video data is transmitted to the receiving unit 33 (step S106). Specifically, as illustrated in FIG. 4, the transmission unit 24 starts transmission of video data in accordance with the vertical synchronization signal (time t 4 ). In this case, the transmission unit 24 sequentially transmits the video data (video data D1, video data D2, video data D3...) Generated by the imaging element 22 to the reception unit 33 for each field.
  • step S107: Yes when an instruction signal for instructing the end of imaging is input from the processor 3 (step S107: Yes), the endoscope 2 ends this process. On the other hand, when the instruction signal instructing the end of photographing is not input from the processor 3 (step S107: No), the endoscope 2 returns to step S106 described above.
  • step S101 when the imaging system 1 is not activated (step S101: No), the endoscope 2 continues this determination until the imaging system 1 is activated.
  • Step S103 when transmission of the correction data recorded by the correction data recording unit 261 is not completed (Step S103: No), the endoscope 2 returns to Step S102 described above.
  • FIG. 5 is a flowchart showing an outline of processing executed by the processor 3.
  • the control unit 42 uses the correction data input from the reception unit 33 as the main body. Recording is performed in the recording unit 38 (step S202).
  • step S203: Yes when the reception unit 33 receives a completion code from the transmission unit 24 via the transmission cable 100 (step S203: Yes), the processor 3 proceeds to step S204 described later. On the other hand, when the reception unit 33 has not received the completion code from the transmission unit 24 via the transmission cable 100 (step S203: No), the processor 3 returns to step S201 described above.
  • step S204 the control unit 42 switches the output destination of the data received by the reception unit 33 from the control unit 42 to the first digital processing unit 34.
  • the correction unit 35 receives the correction data based on the correction data recorded in the main body recording unit 38.
  • Correction processing for correcting the sensitivity of each pixel of the video image corresponding to the video data input via the unit 33 and the first digital processing unit 34 is executed (step S206).
  • the correction unit 35 may correct a defective pixel or the like of the video image based on the ID data recorded in the main body recording unit 38.
  • the video output unit 37 converts the video data input via the correction unit 35 and the second digital processing unit 36 into a predetermined format and outputs the video data to the display device 4 (step S207).
  • the display device 4 displays an image picture corresponding to the image data (time t 5).
  • step S208: Yes the processor 3 ends the present process.
  • step S208: No the processor 3 returns to step S205 described above.
  • step S201 when the reception unit 33 has not received correction data from the transmission unit 24 via the transmission cable 100 (step S201: No), the processor 3 makes this determination when receiving correction data from the transmission unit 24. Continue.
  • step S205 when the receiving unit 33 has not received the video data from the transmitting unit 24 via the transmission cable 100 (step S205: No), the processor 3 continues this determination.
  • the transmission unit 24 transmits the correction data recorded by the correction data recording unit 261 via the transmission cable 100, and the transmission of the correction data is completed. Since the video data is transmitted, even when a large amount of correction data is transmitted, the time until the processor 3 outputs a high-quality video can be shortened.
  • the control unit 42 Can smoothly switch the data output destination of the receiving unit 33.
  • the transmission unit 24 transmits the correction data from the endoscope 2 to the processor 3 using the existing transmission cable 100 that transmits the video data. Regardless, large-capacity correction data can be transmitted to the processor 3, and versatility can be provided.
  • the data input destination (data reading destination) is switched from the correction data recording unit 261 to the image sensor 22.
  • a large amount of correction data can be transmitted to the processor 3 using the existing transmission cable 100.
  • the transmission unit 24 immediately after the imaging system 1 is activated, transmits the correction data to the processor 3, so that a large capacity is obtained within the time until the examination of the subject is started. Correction data can be transmitted, and the subject can be examined without delay.
  • Embodiment 2 Next, a second embodiment of the present invention will be described.
  • the second embodiment is different only in processing executed by each of the endoscope and the processor.
  • video data is transmitted after transmitting a completion code indicating completion of correction data.
  • transmission of correction data is started.
  • Video data is transmitted after a predetermined time has elapsed.
  • symbol is attached
  • FIG. 6 is a flowchart illustrating an outline of processing executed by the endoscope 2 according to the second embodiment.
  • step S301, step S302, and step S304 to step S306 respectively correspond to step S101, step S102, and step S105 to step S107 of FIG.
  • step S303 when a predetermined time has elapsed since the start of transmission of correction data (step S303: Yes), the endoscope 2 proceeds to step S304.
  • the predetermined time is a time when the number of rising edges of the vertical synchronization signal reaches a predetermined number (for example, 10 pulses) after the transmission unit 24 starts transmitting the correction data. Note that this predetermined number can be determined in advance according to the time during which the total number of correction data can be transmitted because the amount of correction data can be grasped in advance when the endoscope 2 is assembled or shipped.
  • FIG. 7 is a flowchart showing an outline of processing executed by the processor 3 according to the second embodiment.
  • step S401, step S402, and step S404 to step S408 correspond to step S201, step S202, and step S204 to step S208 of FIG.
  • step S403 when the predetermined time has elapsed after the reception unit 33 starts receiving the correction data transmitted from the transmission unit 24 (step S403: Yes), the processor 3 proceeds to step S404. On the other hand, when the predetermined time has not elapsed since the reception unit 33 started to receive the correction data transmitted from the transmission unit 24 (step S403: No), the processor 3 returns to step S401.
  • the transmission unit 24 transmits the correction data for correcting the sensitivity of the pixels of the image sensor 22 recorded by the correction data recording unit 261.
  • the sensitivity of each pixel After transmitting standard data as a standard, the difference value for correcting the difference in sensitivity between the standard data and each pixel may be sequentially transmitted as correction data.
  • the transmission unit 24 may transmit the correction data and the ID data recorded by the ID data recording unit 262 via the transmission cable 100 that transmits the correction data and the video data when the imaging system 1 is activated.
  • the video data and the correction data are transmitted via the transmission cable 100.
  • the video data and the correction data need not be wired, for example, and may be wireless.
  • the transmission unit 24 may transmit correction data and video data to the processor 3 in accordance with a predetermined wireless communication standard (for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)). Wireless communication may be performed according to other wireless communication standards.
  • the transmission unit 24 transmits to the processor 3 by electrical communication.
  • the present invention is not limited to this, and the correction data may be transmitted by optical communication, for example.
  • Optical communication can be performed.
  • the processor and the light source are integrally formed.
  • the present invention is not limited to this.
  • the processor and the light source may be configured as separate devices.
  • the illumination light is radiated simultaneously, but for example, it is configured by using a plurality of filters that transmit light of different wavelength bands, and is driven by a drive unit (not shown).
  • the present invention can also be applied to a frame sequential type that transmits light of a predetermined wavelength band.
  • the transmission unit 24 determines whether or not the correction data recorded by the correction data recording unit 261 has a data capacity, and images the data input destination (reading destination) from the correction data recording unit 261.
  • the transmission unit 24 is configured by an FPGA, and an FPGA or the like is separately provided in the endoscope 2 as a control unit, for example, correction data by the SER or the like of the FPGA as the transmission unit 24 It is determined whether all the data of the recording unit 261 has been transmitted, and based on the determination result, the data transmitted by the SER of the FPGA as the control unit is switched from the correction data to the video data generated by the image sensor 22. May be.
  • the endoscope is inserted into the subject.
  • the present invention can also be applied to, for example, a capsule endoscope or an imaging device that images the subject.
  • the present invention can include various embodiments not described herein, and various design changes can be made within the scope of the technical idea specified by the claims. It is.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

Provided are an imaging system, an imaging device and a processing device capable of shortening the time until a processing device outputs a high-quality image, even when a large volume of correction data is transmitted. An imaging system 1 is provided with: an imaging element 22 that captures a subject and generates image data comprising a plurality of pixel data items; a correction data recording unit 261 that records correction data for correcting each of the plurality of pixel data items; a transmission cable 100 for transmitting the image data and the correction data to a processor 3; and a sending unit 24 that sends, via the transmission cable 100, the correction data recorded by the correction data recording unit 261, and sends the image data to the processor 3 via the transmission cable 100 after the sending of the correction data is completed.

Description

撮像システム、撮像装置および処理装置Imaging system, imaging apparatus, and processing apparatus
 本発明は、被写体を撮像して該被写体の画像データを生成する撮像システム、撮像装置および処理装置に関する。 The present invention relates to an imaging system, an imaging apparatus, and a processing apparatus that image a subject and generate image data of the subject.
 従来、撮像システムでは、高画質な映像を提供するため、CMOS(Complementary Metal Oxide Semiconductor)等の撮像素子によって生成された映像データに対して様々な補正処理を行っている。このような補正処理として、撮像部内のメモリに記録された撮像素子の固定パターンノイズに関する補正データを、映像データを処理する処理装置に伝送し、処理装置が補正データに基づいて映像データを補正する(特許文献1参照)。 Conventionally, in an imaging system, various correction processes are performed on video data generated by an imaging element such as a CMOS (Complementary Metal Oxide Semiconductor) in order to provide a high-quality video. As such correction processing, correction data relating to fixed pattern noise of the image sensor recorded in the memory in the imaging unit is transmitted to a processing device that processes the video data, and the processing device corrects the video data based on the correction data. (See Patent Document 1).
特開2012-115310号公報JP2012-115310A
 ところで、撮像素子における画素数の増加に伴って、補正データのデータ量も増加する。しかしながら、従来の撮像システムでは、撮像素子から処理装置へデータを伝送する信号ラインの数が限られているため、大容量の補正データを撮像部から処理装置へ送信する送信時間も長くなることによって、処理装置が高画質な映像を出力するまでに長時間掛かってしまうという問題点があった。 Incidentally, as the number of pixels in the image sensor increases, the amount of correction data also increases. However, in the conventional imaging system, since the number of signal lines for transmitting data from the imaging device to the processing device is limited, the transmission time for transmitting large-capacity correction data from the imaging unit to the processing device is also increased. There is a problem that it takes a long time for the processing device to output a high-quality video.
 本発明は、上記に鑑みてなされたものであって、大容量の補正データを送信する場合であっても、処理装置が高画質な映像を出力するまでの時間を短くすることができる撮像システム、撮像装置および処理装置を提供することを目的とする。 The present invention has been made in view of the above, and an imaging system capable of shortening the time until a processing device outputs a high-quality video even when a large amount of correction data is transmitted. An object is to provide an imaging device and a processing device.
 上述した課題を解決し、目的を達成するために、本発明に係る撮像システムは、複数の画素が二次格子状に配置され、被写体を該複数の画素で撮像して複数の画素データから構成される映像データを生成する撮像素子と、前記複数の画素データの各々を補正するための補正データを記録する記録部と、前記映像データおよび前記補正データを処理装置に伝送するための伝送路と、前記伝送路を介して前記記録部が記録する前記補正データを前記処理装置へ送信し、かつ、該補正データの送信が完了した後に前記伝送路を介して前記映像データを前記処理装置へ送信する送信部と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, an imaging system according to the present invention includes a plurality of pixels arranged in a secondary grid, and an image of a subject is captured by the plurality of pixels and configured from a plurality of pixel data. An image sensor for generating video data to be recorded, a recording unit for recording correction data for correcting each of the plurality of pixel data, and a transmission path for transmitting the video data and the correction data to a processing device. The correction data recorded by the recording unit is transmitted to the processing device via the transmission path, and the video data is transmitted to the processing device via the transmission path after the transmission of the correction data is completed. And a transmitting unit.
 また、本発明に係る撮像システムは、上記発明において、前記送信部は、前記補正データの送信を完了した後に、前記伝送路を介して前記補正データの送信の完了を示す完了情報を送信することを特徴とする。 In the imaging system according to the present invention, in the above invention, the transmission unit transmits completion information indicating completion of transmission of the correction data via the transmission path after completing transmission of the correction data. It is characterized by.
 また、本発明に係る撮像システムは、上記発明において、前記送信部は、前記補正データの送信を開始してから所定時間経過後に、前記映像データを送信することを特徴とする。 The imaging system according to the present invention is characterized in that, in the above-mentioned invention, the transmission unit transmits the video data after a predetermined time has elapsed after starting transmission of the correction data.
 また、本発明に係る撮像システムは、上記発明において、当該撮像システムの起動状態を監視する監視部をさらに備え、前記送信部は、前記監視部によって当該撮像システムの起動を検出した場合、前記補正データの送信を開始することを特徴とする。 The imaging system according to the present invention further includes a monitoring unit that monitors a startup state of the imaging system in the above invention, and the transmission unit detects the correction when the monitoring unit detects the startup of the imaging system. Data transmission is started.
 また、本発明に係る撮像システムは、上記発明において、前記補正データは、前記撮像素子における各画素の感度を補正するためのデータであることを特徴とする。 In the imaging system according to the present invention, the correction data is data for correcting the sensitivity of each pixel in the imaging element.
 また、本発明に係る撮像装置は、複数の画素が二次元格子状に配置され、被写体を該複数の画素で撮像して複数の画素データから構成される映像データを生成する撮像素子と、前記複数の画素データの各々を補正するための補正データを記録する記録部と、前記映像データおよび前記補正データを処理装置に伝送するための伝送路を介して前記記録部が記録する前記補正データを前記処理装置へ送信し、かつ、該補正データの送信が完了した後に前記伝送路を介して前記映像データを前記処理装置へ送信する送信部と、を備えたことを特徴とする。 Further, an imaging device according to the present invention includes a plurality of pixels arranged in a two-dimensional grid, an imaging element that captures an image of a subject with the plurality of pixels and generates video data composed of a plurality of pixel data, A recording unit that records correction data for correcting each of a plurality of pixel data; and the correction data that the recording unit records via a transmission path for transmitting the video data and the correction data to a processing device. And a transmission unit that transmits the video data to the processing device via the transmission path after the transmission of the correction data is completed.
 また、本発明に係る処理装置は、データを伝送可能な伝送路を介して、二次元格子状に配置された複数の画素により被写体を撮像して複数の画素データから構成される映像データを生成する撮像素子を備えた撮像装置から送信された前記映像データに対して画像処理を施す処理装置であって、前記伝送路を介して前記撮像装置から前記複数の画素データの各々を補正するための補正データを受信し、かつ、前記映像データを受信する受信部と、前記受信部が受信した前記補正データに基づいて、前記映像データを補正する補正部と、を備えたことを特徴とする。 In addition, the processing apparatus according to the present invention captures an object with a plurality of pixels arranged in a two-dimensional grid via a transmission path capable of transmitting data, and generates video data composed of the plurality of pixel data. A processing device that performs image processing on the video data transmitted from an imaging device including an imaging element that corrects each of the plurality of pixel data from the imaging device via the transmission path A correction unit that receives correction data and receives the video data, and a correction unit that corrects the video data based on the correction data received by the reception unit.
 本発明によれば、大容量の補正データを送信する場合であっても、処理装置が高画質な映像を出力するまでの時間を短くすることができるという効果を奏する。 According to the present invention, even when a large amount of correction data is transmitted, it is possible to shorten the time until the processing device outputs a high-quality video.
図1は、本発明の実施の形態1に係る撮像システムの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of an imaging system according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る内視鏡およびプロセッサの機能構成を示すブロック図である。FIG. 2 is a block diagram showing functional configurations of the endoscope and the processor according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る内視鏡が実行する処理の概要を示すフローチャートである。FIG. 3 is a flowchart showing an outline of processing executed by the endoscope according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1に係る内視鏡が実行する処理の概要を示すタイミングチャートである。FIG. 4 is a timing chart showing an outline of processing executed by the endoscope according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1に係るプロセッサが実行する処理の概要を示すフローチャートである。FIG. 5 is a flowchart showing an outline of processing executed by the processor according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態2に係る内視鏡が実行する処理の概要を示すフローチャートである。FIG. 6 is a flowchart showing an outline of processing executed by the endoscope according to the second embodiment of the present invention. 図7は、本発明の実施の形態2に係るプロセッサが実行する処理の概要を示すフローチャートである。FIG. 7 is a flowchart showing an outline of processing executed by the processor according to Embodiment 2 of the present invention.
 以下、本発明を実施するための形態(以下、「実施の形態」という)を説明する。実施の形態では、本発明に係る撮像装置および処理装置を含む撮像システムの一例として、患者等の被検体内の画像を撮像して表示する医療用の内視鏡システムについて説明する。なお、この実施の形態により、この発明が限定されるものではない。さらに、図面の記載において、同一部分には同一の符号を付して説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described. In the embodiment, as an example of an imaging system including an imaging device and a processing device according to the present invention, a medical endoscope system that captures and displays an image in a subject such as a patient will be described. In addition, this invention is not limited by this embodiment. Furthermore, in the description of the drawings, the same portions will be described with the same reference numerals.
(実施の形態1)
 図1は、本発明の実施の形態1に係る撮像システムの概略構成を示す模式図である。図1に示す撮像システム1は、被検体内に先端部を挿入することによって、被検体の体内画像を撮像する内視鏡2と、内視鏡2の先端から出射する照明光を供給するとともに、内視鏡2が撮像した映像データ(撮像信号)に所定の信号処理を施すプロセッサ3(処理装置)と、プロセッサ3が信号処理を施した映像データに対応する画像を表示する表示装置4と、を備える。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a schematic configuration of an imaging system according to Embodiment 1 of the present invention. An imaging system 1 shown in FIG. 1 inserts a distal end portion into a subject to supply an endoscope 2 that captures an in-vivo image of the subject and illumination light emitted from the distal end of the endoscope 2. A processor 3 (processing device) that performs predetermined signal processing on video data (imaging signal) captured by the endoscope 2, and a display device 4 that displays an image corresponding to the video data on which the processor 3 has performed signal processing; .
 内視鏡2は、伝送ケーブル100の一部である挿入部101を被検体の体腔内に挿入することによって被検体の体内を撮像して映像データ(画像信号)をプロセッサ3へ出力する。また、内視鏡2は、伝送ケーブル100の一端側であり、被検体の体腔内に挿入される挿入部101の先端102側に、後述する体内画像の撮像を行う撮像素子(撮像部)が設けられており、挿入部101の基端103側に、内視鏡2に対する各種操作を受け付ける操作部104が設けられている。内視鏡2が撮像した画像の映像データは、例えば、数mの長さを有する伝送ケーブル100を通り、プロセッサ3に出力される。なお、以下において、本実施の形態1に係る内視鏡2を軟性内視鏡として説明するが、これに限定されることなく、挿入部101が硬性である硬性内視鏡や、ファイバスコープや光学視管等の光学式内視鏡の接眼部にカメラヘッドを接続する光学式内視鏡であってもよい。さらに、内視鏡2は、挿入部101の先端102に撮像素子を設けたものに限らず、例えば撮像素子が挿入部101の基端103側に設けられ、挿入部101の先端102から基端103へ光ファイバで伝送された光学像を撮像可能な軟性内視鏡であってもよい。なお、内視鏡2の詳細な構成は、後述する。 The endoscope 2 images the inside of the subject by inserting the insertion portion 101 that is a part of the transmission cable 100 into the body cavity of the subject, and outputs video data (image signal) to the processor 3. The endoscope 2 is on one end side of the transmission cable 100, and an imaging element (imaging unit) that captures an in-vivo image, which will be described later, on the distal end 102 side of the insertion unit 101 inserted into the body cavity of the subject. An operation unit 104 that accepts various operations on the endoscope 2 is provided on the proximal end 103 side of the insertion unit 101. Video data of an image captured by the endoscope 2 is output to the processor 3 through a transmission cable 100 having a length of several meters, for example. In the following, the endoscope 2 according to the first embodiment will be described as a flexible endoscope. However, the endoscope 2 is not limited to this, and is not limited to this. It may be an optical endoscope in which a camera head is connected to an eyepiece of an optical endoscope such as an optical tube. Furthermore, the endoscope 2 is not limited to the one in which the imaging element is provided at the distal end 102 of the insertion unit 101. For example, the imaging element is provided on the proximal end 103 side of the insertion unit 101, and It may be a flexible endoscope that can capture an optical image transmitted to the optical fiber 103 via an optical fiber. The detailed configuration of the endoscope 2 will be described later.
 伝送ケーブル100は、内視鏡2とプロセッサ3とを接続する。伝送ケーブル100は、後述する撮像素子22が生成した映像データ、撮像素子22を補正するための補正データおよび内視鏡2を識別するためのID情報を伝送するとともに、プロセッサ3から内視鏡2へ電源電圧、グランドGNDを供給するとともに、同期信号、制御信号が内視鏡2とプロセッサ3との間で伝送される。さらに、伝送ケーブル100は、プロセッサ3から供給される照明光を内視鏡2へ伝送する。伝送ケーブル100は、例えば複数のケーブルや光ファイバ(ライトガイド)等を用いて構成される。なお、本実施の形態1では、伝送ケーブル100が伝送路として機能する。 The transmission cable 100 connects the endoscope 2 and the processor 3. The transmission cable 100 transmits video data generated by the image sensor 22 described later, correction data for correcting the image sensor 22, and ID information for identifying the endoscope 2, and the endoscope 3 from the processor 3. The power supply voltage and the ground GND are supplied to the power source, and the synchronization signal and the control signal are transmitted between the endoscope 2 and the processor 3. Further, the transmission cable 100 transmits the illumination light supplied from the processor 3 to the endoscope 2. The transmission cable 100 is configured using, for example, a plurality of cables, optical fibers (light guides), and the like. In the first embodiment, the transmission cable 100 functions as a transmission path.
 プロセッサ3は、伝送ケーブル100から入力された映像データに所定の信号処理を施して表示装置4へ出力する。また、プロセッサ3は、伝送ケーブル100を介して内視鏡2の先端102から出射するための照明光を内視鏡2へ供給する。さらに、プロセッサ3は、撮像システム1全体を統括的に制御する。 The processor 3 performs predetermined signal processing on the video data input from the transmission cable 100 and outputs it to the display device 4. In addition, the processor 3 supplies illumination light to be emitted from the distal end 102 of the endoscope 2 via the transmission cable 100 to the endoscope 2. Furthermore, the processor 3 comprehensively controls the entire imaging system 1.
 表示装置4は、プロセッサ3が信号処理を施した映像データに対応する画像を表示する。表示装置4は、撮像システム1に関する各種情報を表示する。表示装置4は、液晶や有機EL(Electro Luminescence)等の表示パネル等を用いて構成される。 The display device 4 displays an image corresponding to the video data subjected to signal processing by the processor 3. The display device 4 displays various information related to the imaging system 1. The display device 4 is configured using a display panel such as liquid crystal or organic EL (Electro Luminescence).
 次に、上述した内視鏡2およびプロセッサ3の詳細な構成について説明する。図2は、内視鏡2およびプロセッサ3の機能構成を示すブロック図である。 Next, detailed configurations of the endoscope 2 and the processor 3 described above will be described. FIG. 2 is a block diagram illustrating functional configurations of the endoscope 2 and the processor 3.
 〔内視鏡の構成〕
 まず、内視鏡2について説明する。
 図2に示す内視鏡2は、光学系21と、撮像素子22と、撮像駆動部23と、送信部24と、照明光学系25と、内視鏡記録部26と、を備える。
[Configuration of endoscope]
First, the endoscope 2 will be described.
The endoscope 2 shown in FIG. 2 includes an optical system 21, an imaging element 22, an imaging drive unit 23, a transmission unit 24, an illumination optical system 25, and an endoscope recording unit 26.
 光学系21は、一または複数のレンズを用いて構成され、被写体像を撮像素子22の受光面に結像する。また、光学系21は、画角を変化させる光学ズーム機能および焦点を変化させるフォーカス機能を有する。 The optical system 21 is configured by using one or a plurality of lenses, and forms a subject image on the light receiving surface of the image sensor 22. The optical system 21 has an optical zoom function for changing the angle of view and a focus function for changing the focus.
 撮像素子22は、光学系21が集光した光を受光して光電変換して映像データ(電気信号)を生成する。撮像素子22は、光量に応じた電荷を蓄積するフォトダイオードおよびフォトダイオードから転送される電荷を電圧レベルに変換するコンデンサ等を有する複数の画素が二次元格子状(二次元マトリックス状)に配置されてなるCMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)等のイメージセンサを用いて構成され、複数の画像データから構成される映像データを生成する。さらに、撮像素子22の各画素には、赤色(R)、緑色(G)および青色(B)の各色成分の波長帯域のうちのいずれかの波長帯域の光を透過するフィルタであって、互いに受光感度が異なるフィルタが所定の配列(例えばベイヤー配列)によって配置されてなる。撮像素子22は、撮像駆動部23の制御のもと、映像データを生成して送信部24へ出力する。なお、撮像素子22の各画素に配置してなるフィルタは、シアン(Cy)、マゼンタ(Mg)、イエロー(Ye)、及びグリーン(G)の4種類のフィルタが配列されてなる補色系フィルタを用いるものでも良く、後述するプロセッサ3から供給される照明光の方式、例えば面順次式の場合、設けなくともよい。 The image sensor 22 receives the light collected by the optical system 21 and photoelectrically converts it to generate video data (electrical signal). In the imaging device 22, a plurality of pixels having a photodiode for accumulating electric charge according to the amount of light and a capacitor for converting electric charge transferred from the photodiode into a voltage level are arranged in a two-dimensional lattice shape (two-dimensional matrix shape). It is configured using image sensors such as CMOS (Complementary Metal Oxide Semiconductor) and CCD (Charge Coupled Device), and generates video data composed of multiple image data. Furthermore, each pixel of the image sensor 22 is a filter that transmits light in any one of the wavelength bands of the red (R), green (G), and blue (B) color components, and is mutually connected. Filters having different light receiving sensitivities are arranged in a predetermined arrangement (for example, a Bayer arrangement). The imaging element 22 generates video data and outputs the video data to the transmission unit 24 under the control of the imaging drive unit 23. The filter arranged in each pixel of the image sensor 22 is a complementary color filter in which four types of filters of cyan (Cy), magenta (Mg), yellow (Ye), and green (G) are arranged. In the case of a method of illumination light supplied from the processor 3 to be described later, for example, a frame sequential method, it may not be provided.
 撮像駆動部23は、伝送ケーブル100を介してプロセッサ3から伝送された同期信号(例えば垂直同期信号および水平同期信号)に基づいて、撮像素子22を駆動する。具体的には、撮像駆動部23は、垂直同期信号に基づいて、撮像素子22から映像データを送信部24へ出力させる。 The imaging drive unit 23 drives the imaging device 22 based on the synchronization signal (for example, the vertical synchronization signal and the horizontal synchronization signal) transmitted from the processor 3 through the transmission cable 100. Specifically, the imaging drive unit 23 outputs video data from the imaging element 22 to the transmission unit 24 based on the vertical synchronization signal.
 送信部24は、伝送ケーブル100を介してプロセッサ3から伝送された垂直同期信号に基づいて、撮像素子22から入力された映像データをプロセッサ3へ送信する。送信部24は、例えばFPGAを用いてSER(Serializer)等によって撮像素子22から入力された映像データをプロセッサ3へ送信する。また、送信部24は、撮像システム1の起動時に、後述する内視鏡記録部26における補正データ記録部261が記録する補正データをプロセッサ3へ送信し、補正データの送信完了後に、映像データをプロセッサ3へ送信する。具体的には、送信部24は、撮像システム1の起動時に、垂直同期信号に従って、補正データを送信し、補正データを送信する補正データ送信期間の最後に、補正データの送信完了を示す完了コードを付加してプロセッサ3へ送信する。その後、送信部24は、データが入力される入力先を、補正データ記録部261から撮像素子22に切り替えて撮像素子22によって生成された映像データを、垂直同期信号に従ってプロセッサ3へ順次送信する。 The transmission unit 24 transmits the video data input from the image sensor 22 to the processor 3 based on the vertical synchronization signal transmitted from the processor 3 via the transmission cable 100. The transmission unit 24 transmits the video data input from the imaging element 22 to the processor 3 by SER (Serializer) or the like using, for example, FPGA. The transmission unit 24 transmits the correction data recorded by the correction data recording unit 261 in the endoscope recording unit 26 described later to the processor 3 when the imaging system 1 is activated, and the video data is transmitted after the correction data has been transmitted. Transmit to processor 3. Specifically, when the imaging system 1 is activated, the transmission unit 24 transmits correction data according to the vertical synchronization signal, and at the end of the correction data transmission period for transmitting the correction data, a completion code indicating completion of transmission of the correction data. Is transmitted to the processor 3. Thereafter, the transmission unit 24 switches the input destination to which data is input from the correction data recording unit 261 to the image sensor 22 and sequentially transmits the video data generated by the image sensor 22 to the processor 3 according to the vertical synchronization signal.
 照明光学系25は、伝送ケーブル100を介してプロセッサ3から供給される照明光を出射する。照明光学系25は、一または複数のレンズを用いて構成される。 The illumination optical system 25 emits illumination light supplied from the processor 3 via the transmission cable 100. The illumination optical system 25 is configured using one or a plurality of lenses.
 内視鏡記録部26は、揮発性メモリや不揮発性メモリ等を用いて構成され、内視鏡2に関する各種情報を記録する。内視鏡記録部26は、補正データ記録部261と、IDデータ記録部262と、を有する。 The endoscope recording unit 26 is configured using a volatile memory, a non-volatile memory, or the like, and records various types of information related to the endoscope 2. The endoscope recording unit 26 includes a correction data recording unit 261 and an ID data recording unit 262.
 補正データ記録部261は、補正データを記録する。ここで、補正データとは、撮像素子22によって生成された映像データを構成する複数の画像データの各々を補正するためのデータである。詳細には、補正データとは、撮像素子22の各画素の感度を補正するための補正データである。補正データは、予め内視鏡2の製造時や組立時に内視鏡2を暗時にした状態(例えば先端102にキャップを装着した状態)で、撮像素子22に映像データを所定の枚数(例えば100枚)だけ生成させ、この生成された複数の映像データを画素毎に平均した値、撮像素子22に均一な光を照射した状態で、撮像素子22に映像データを所定の枚数だけ生成させ、この生成された複数の映像データを画素毎に平均した値や中央値および映像データに対応する映像画像の各画素の画素値に乗算する係数のいずれかである。 The correction data recording unit 261 records correction data. Here, the correction data is data for correcting each of the plurality of image data constituting the video data generated by the image sensor 22. Specifically, the correction data is correction data for correcting the sensitivity of each pixel of the image sensor 22. The correction data is a state in which the endoscope 2 is darkened at the time of manufacture or assembly of the endoscope 2 in advance (for example, a state in which a cap is attached to the distal end 102), and a predetermined number of image data (for example, 100) is input to the image sensor 22. Image), and the image sensor 22 generates a predetermined number of image data in a state where the generated image data is averaged for each pixel and the image sensor 22 is irradiated with uniform light. It is a value obtained by averaging the generated plurality of video data for each pixel, a median value, or a coefficient for multiplying the pixel value of each pixel of the video image corresponding to the video data.
 IDデータ記録部262は、IDデータを記録する。ここで、IDデータとは、撮像素子22を識別するための識別情報、撮像素子22の種別情報および撮像素子22の欠陥画素情報を含む。ここで、欠陥画素情報とは、撮像素子22の白傷および黒傷等の異常画素のアドレス情報等である。 The ID data recording unit 262 records ID data. Here, the ID data includes identification information for identifying the image sensor 22, type information of the image sensor 22, and defective pixel information of the image sensor 22. Here, the defective pixel information is, for example, address information of abnormal pixels such as white and black scratches on the image sensor 22.
 〔プロセッサの構成〕
 次に、プロセッサ3の詳細な構成について説明する。
 図2に示すプロセッサ3は、電源部30と、監視部31と、同期信号生成部32と、受信部33と、第1デジタル処理部34と、補正部35と、第2デジタル処理部36と、映像出力部37と、本体記録部38と、調光制御部39と、光源40と、光学フィルタ41と、制御部42と、を備える。
[Processor configuration]
Next, a detailed configuration of the processor 3 will be described.
The processor 3 shown in FIG. 2 includes a power supply unit 30, a monitoring unit 31, a synchronization signal generation unit 32, a reception unit 33, a first digital processing unit 34, a correction unit 35, and a second digital processing unit 36. A video output unit 37, a main body recording unit 38, a dimming control unit 39, a light source 40, an optical filter 41, and a control unit 42.
 電源部30は、図示しない電源スイッチが操作された場合、撮像システム1を構成する各部へ電力を供給する。電源部30は、外部から供給される電力を所定の電圧に変換して撮像システム1の各部へ電力を供給する。 The power supply unit 30 supplies power to each unit constituting the imaging system 1 when a power switch (not shown) is operated. The power supply unit 30 converts power supplied from the outside into a predetermined voltage and supplies power to each unit of the imaging system 1.
 監視部31は、電源部30の起動状態を監視し、この監視結果を制御部42へ出力する。具体的には、監視部31は、電源部30が撮像システム1を構成する各部へ電力を供給した場合、撮像システム1が起動したことを示す情報を制御部42へ出力する。 The monitoring unit 31 monitors the activation state of the power supply unit 30 and outputs the monitoring result to the control unit 42. Specifically, when the power supply unit 30 supplies power to each unit constituting the imaging system 1, the monitoring unit 31 outputs information indicating that the imaging system 1 has been activated to the control unit 42.
 同期信号生成部32は、垂直同期信号および水平同期信号を含む同期信号を生成し、この同期信号を内視鏡2へ送信する。同期信号生成部32は、図示しないクロック生成部によって生成されたクロック信号に基づいて、同期信号を生成する。 The synchronization signal generator 32 generates a synchronization signal including a vertical synchronization signal and a horizontal synchronization signal, and transmits this synchronization signal to the endoscope 2. The synchronization signal generator 32 generates a synchronization signal based on the clock signal generated by a clock generator (not shown).
 受信部33は、伝送ケーブル100を介して内視鏡2から送信された映像データおよび補正データを受信し、映像データを第1デジタル処理部34へ出力する一方、補正データを制御部42へ出力する。受信部33は、例えばFPGAを用いてDES(Deserializer)等によって、映像データおよび補正データを受信して出力する。 The receiving unit 33 receives the video data and the correction data transmitted from the endoscope 2 via the transmission cable 100, and outputs the video data to the first digital processing unit 34, while outputting the correction data to the control unit 42. To do. The receiving unit 33 receives and outputs video data and correction data by DES (Deserializer) using, for example, an FPGA.
 第1デジタル処理部34は、受信部33から入力された映像データに対して、オプティカルブラック補正処理およびデモザイキング処理を含むデジタルの画像処理を施して補正部35へ出力する。 The first digital processing unit 34 performs digital image processing including optical black correction processing and demosaicing processing on the video data input from the reception unit 33 and outputs the result to the correction unit 35.
 補正部35は、本体記録部38に記録された撮像素子22の補正データに基づいて、第1デジタル処理部34から入力された映像データに対応する映像画像の各画素の感度を補正して第2デジタル処理部36へ出力する。 The correction unit 35 corrects the sensitivity of each pixel of the video image corresponding to the video data input from the first digital processing unit 34 based on the correction data of the image pickup device 22 recorded in the main body recording unit 38. 2 Output to the digital processing unit 36.
 第2デジタル処理部36は、補正部35から入力された各画素の感度が補正された映像データに対して、ホワイトバランス調整処理、電子ズーム処理および強調処理を含むデジタル処理を施して映像出力部37および調光制御部39へそれぞれ出力する。 The second digital processing unit 36 performs digital processing including white balance adjustment processing, electronic zoom processing, and enhancement processing on the video data in which the sensitivity of each pixel input from the correction unit 35 is corrected, and outputs a video output unit. 37 and the dimming control unit 39 respectively.
 映像出力部37は、第2デジタル処理部36から入力されたデジタルの映像データをアナログの映像データに変換するとともに、所定のフォーマットに変換して表示装置4へ出力する。なお、映像出力部37は、映像データをデジタルのまま表示装置4へ出力してもよい。この場合、映像出力部37は、SDI、DisplayPort HDMI(登録商標)およびDVI等の各種デジタル規格に従って変換した映像データを表示装置4へ出力する。 The video output unit 37 converts the digital video data input from the second digital processing unit 36 into analog video data, converts it into a predetermined format, and outputs it to the display device 4. Note that the video output unit 37 may output the video data to the display device 4 as it is. In this case, the video output unit 37 outputs video data converted in accordance with various digital standards such as SDI, DisplayPort HDMI (registered trademark), and DVI to the display device 4.
 本体記録部38は、制御部42から入力される補正データまたはIDデータ、プロセッサ3に関する各種情報およびプロセッサ3の処理中の情報を記録する。本体記録部38は、プロセッサ3が実行するプログラムを記録するプログラム記録部381を有する。本体記録部38は、揮発性メモリや不揮発性メモリ等を用いて構成される。 The main body recording unit 38 records correction data or ID data input from the control unit 42, various types of information regarding the processor 3, and information being processed by the processor 3. The main body recording unit 38 includes a program recording unit 381 that records a program executed by the processor 3. The main body recording unit 38 is configured using a volatile memory, a nonvolatile memory, or the like.
 調光制御部39は、第2デジタル処理部36から入力される映像データに対応する映像画像の明るさに基づいて、光源40が出射する光量を調整する。例えば、調光制御部39は、PWM制御等によって、光源40が出射する光量を調整する。 The dimming control unit 39 adjusts the amount of light emitted from the light source 40 based on the brightness of the video image corresponding to the video data input from the second digital processing unit 36. For example, the dimming control unit 39 adjusts the amount of light emitted from the light source 40 by PWM control or the like.
 光源40は、調光制御部39の制御のもと、被写体を照射するための照明光を発する。光源40は、例えば白色光を発する白色LED(Light Emitting Diode)、キセノンランプおよびハロゲンランプ等を用いて構成される。もちろん、光源40を出射波長帯域の異なる複数のLEDやレーザー光源等の光を合波することで白色光を生成する構成としてもよい。 The light source 40 emits illumination light for irradiating the subject under the control of the dimming control unit 39. The light source 40 includes, for example, a white LED (Light Emitting Diode) that emits white light, a xenon lamp, a halogen lamp, or the like. Of course, the light source 40 may be configured to generate white light by combining light from a plurality of LEDs or laser light sources having different emission wavelength bands.
 光学フィルタ41は、光源40から出射される光を所定の波長帯域に制限する透過特性を有する。光学フィルタ41は、光源40の光路上に挿抜可能に設けられており、制御部位42の制御のもと、図示しない駆動源によって光源40の光路上に配置されている。具体的には、光学フィルタ41は、撮像システム1の観察モードが特殊光観察モードに設定されている場合、光源40の光路上に配置される一方、撮像システム1の観察モードが通常観察モードに設定されている場合、光源40の光路上から退避した位置に配置される。また、光学フィルタ41は、特殊光観察の種類に応じて透過特性が適宜設定される。例えば、光学フィルタ41は、特殊光観察として狭帯域光観察(Narrow Band Imaging :NBI)を行う場合、光源40から出射される光に対して、青色の狭帯域の光(例えば390nm~445nm)および緑色の狭帯域の光(例えば530nm~550nm)それぞれを透過する。また、光学フィルタ41は、特殊光観察として蛍光観察(Auto Fluorescence Imaging :AFI)を行う場合、光源40から出射される光に対して、コラーゲン等の蛍光物質からの自家蛍光を観察するための励起光(例えば390nm~470nm)および血液中のヘモグロビンに吸収される波長(例えば540nm~560nm)の光それぞれを透過する。さらに、光学フィルタ41は、特殊光観察として赤外光観察(Infra Red Imaging :IRI)を行う場合、光源40から出射される光に対して、2つの赤外光(例えば790nm~820nmおよび905nm~970nm)それぞれを透過する。 The optical filter 41 has a transmission characteristic that limits light emitted from the light source 40 to a predetermined wavelength band. The optical filter 41 is provided on the optical path of the light source 40 so that the optical filter 41 can be inserted and removed. Specifically, the optical filter 41 is arranged on the optical path of the light source 40 when the observation mode of the imaging system 1 is set to the special light observation mode, while the observation mode of the imaging system 1 is set to the normal observation mode. If set, the light source 40 is disposed at a position retracted from the optical path. Further, the transmission characteristics of the optical filter 41 are appropriately set according to the type of special light observation. For example, when performing narrow-band light observation (NBI) as special light observation, the optical filter 41 uses blue narrow-band light (for example, 390 nm to 445 nm) and light emitted from the light source 40, and Each of the green narrow-band lights (for example, 530 nm to 550 nm) is transmitted. In addition, when performing fluorescence observation (Auto Fluorescence Imaging: AFI) as special light observation, the optical filter 41 is excited for observing autofluorescence from a fluorescent substance such as collagen with respect to light emitted from the light source 40. Light (for example, 390 nm to 470 nm) and light having a wavelength (for example, 540 nm to 560 nm) absorbed by hemoglobin in blood are transmitted. Further, the optical filter 41 performs two infrared lights (for example, 790 nm to 820 nm and 905 nm to 905 nm to the light emitted from the light source 40 when performing infrared light observation (IRI) as special light observation. 970 nm).
 制御部42は、撮像システム1の各部を統括的に制御する。制御部42は、CPU(Central Processing Unit)等を用いて構成される。制御部42は、受信部33が受信した補正データを本体記録部38に記録する。また、制御部42は、撮像システム1の起動時に、伝送ケーブル100を介して内視鏡2のIDデータ記録部262から内視鏡2のIDデータを取得する。また、制御部42は、伝送ケーブル100を介して撮像システム1が起動したことを示す情報を内視鏡2に送信する。さらに、制御部42は、受信部33が完了コードを受信した場合、受信部33が出力するデータの出力先を制御部42から第1デジタル処理部34に切り替える。 The control unit 42 comprehensively controls each unit of the imaging system 1. The control unit 42 is configured using a CPU (Central Processing Unit) or the like. The control unit 42 records the correction data received by the receiving unit 33 in the main body recording unit 38. Further, the control unit 42 acquires the ID data of the endoscope 2 from the ID data recording unit 262 of the endoscope 2 via the transmission cable 100 when the imaging system 1 is activated. Further, the control unit 42 transmits information indicating that the imaging system 1 has been activated to the endoscope 2 via the transmission cable 100. Furthermore, when the receiving unit 33 receives the completion code, the control unit 42 switches the output destination of the data output from the receiving unit 33 from the control unit 42 to the first digital processing unit 34.
 〔内視鏡の処理〕
 次に、内視鏡2の処理について説明する。
 図3は、内視鏡2が実行する処理の概要を示すフローチャートである。図4は、内視鏡2が実行する処理のタイミングチャートである。図4において、上段から(a)が撮像システム1の電源の起動タイミング、(b)が垂直同期信号の立ち上がり、立ち下がりタイミング、(c)が補正データおよび映像データの送信タイミングおよび(d)が映像データの出力タイミングを示す。なお、図4において、横軸が時間を示す。
[Endoscope processing]
Next, processing of the endoscope 2 will be described.
FIG. 3 is a flowchart showing an outline of processing executed by the endoscope 2. FIG. 4 is a timing chart of processing executed by the endoscope 2. In FIG. 4, from the top, (a) is the start timing of the power supply of the imaging system 1, (b) is the rising and falling timing of the vertical synchronization signal, (c) is the transmission timing of the correction data and video data, and (d) is the transmission timing. Indicates the output timing of video data. In FIG. 4, the horizontal axis indicates time.
 図3に示すように、まず、撮像システム1が起動した場合(ステップS101:Yes)、送信部24は、伝送ケーブル100を介してプロセッサ3から入力される垂直同期信号に従って、補正データ記録部261が記録する補正データを所定のデータ量毎に受信部33へ送信する(ステップS102)。ここで、撮像システム1が起動とは、監視部31によって撮像システム1の電源が立ち上がったことを検知した状態、またはプロセッサ3の起動後に内視鏡2の接続が検知された状態である。また、図4に示すように、送信部24は、撮像システム1が起動した場合(時刻t)において、伝送ケーブル100を介して制御部42から撮像システム1が起動したことを示す情報を受信したとき、垂直同期信号の立ち上がりタイミングに従って、補正データの送信を開始する(時刻t)。この場合、送信部24は、1フィールド毎に(垂直同期信号の1パルス毎に)、所定のデータ量で補正データを順次送信する(補正データC1、補正データC2、補正データC3~補正データCn-1および補正データC(n:4以上の整数)。 As shown in FIG. 3, first, when the imaging system 1 is activated (step S <b> 101: Yes), the transmission unit 24 corrects the correction data recording unit 261 according to the vertical synchronization signal input from the processor 3 through the transmission cable 100. The correction data to be recorded is transmitted to the receiving unit 33 every predetermined amount of data (step S102). Here, the activation of the imaging system 1 is a state in which the monitoring unit 31 detects that the power source of the imaging system 1 has been started up, or a state in which the connection of the endoscope 2 is detected after the processor 3 is activated. As shown in FIG. 4, when the imaging system 1 is activated (time t 1 ), the transmitting unit 24 receives information indicating that the imaging system 1 has been activated from the control unit 42 via the transmission cable 100. Then, transmission of correction data is started in accordance with the rising timing of the vertical synchronization signal (time t 2 ). In this case, the transmission unit 24 sequentially transmits correction data in a predetermined data amount for each field (for each pulse of the vertical synchronization signal) (correction data C1, correction data C2, correction data C3 to correction data C). n-1 and correction data C n (n: integer of 4 or more).
 続いて、補正データ記録部261が記録する補正データの送信が完了した場合(ステップS103:Yes)、送信部24は、補正データの完了を示す完了コードを補正データに付記して受信部33へ送信する(ステップS104)。具体的には、図4に示すように、送信部24は、補正データCnに完了コードを付記して受信部33へ送信する(時刻t)。 Subsequently, when the transmission of the correction data recorded by the correction data recording unit 261 is completed (step S103: Yes), the transmission unit 24 adds a completion code indicating completion of the correction data to the correction data and sends it to the reception unit 33. Transmit (step S104). Specifically, as shown in FIG. 4, the transmission unit 24 adds a completion code to the correction data Cn and transmits the correction data Cn to the reception unit 33 (time t 3 ).
 その後、送信部24は、データの入力先を補正データ記録部261から撮像素子22に切り替え(ステップS105)、伝送ケーブル100を介してプロセッサ3から入力される垂直同期信号に従って、撮像素子22が生成した映像データを受信部33へ送信する(ステップS106)。具体的には、図4に示すように、送信部24は、垂直同期信号に従って、映像データの送信を開始する(時刻t)。この場合、送信部24は、1フィールド毎に、撮像素子22が生成した映像データ(映像データD1、映像データD2、映像データD3・・・)を受信部33に順次送信する。 Thereafter, the transmission unit 24 switches the data input destination from the correction data recording unit 261 to the image sensor 22 (step S105), and the image sensor 22 generates according to the vertical synchronization signal input from the processor 3 via the transmission cable 100. The transmitted video data is transmitted to the receiving unit 33 (step S106). Specifically, as illustrated in FIG. 4, the transmission unit 24 starts transmission of video data in accordance with the vertical synchronization signal (time t 4 ). In this case, the transmission unit 24 sequentially transmits the video data (video data D1, video data D2, video data D3...) Generated by the imaging element 22 to the reception unit 33 for each field.
 続いて、プロセッサ3から撮影の終了を指示する指示信号が入力された場合(ステップS107:Yes)、内視鏡2は、本処理を終了する。これに対して、プロセッサ3から撮影の終了を指示する指示信号が入力されていない場合(ステップS107:No)、内視鏡2は、上述したステップS106へ戻る。 Subsequently, when an instruction signal for instructing the end of imaging is input from the processor 3 (step S107: Yes), the endoscope 2 ends this process. On the other hand, when the instruction signal instructing the end of photographing is not input from the processor 3 (step S107: No), the endoscope 2 returns to step S106 described above.
 ステップS101において、撮像システム1が起動していない場合(ステップS101:No)、内視鏡2は、撮像システム1が起動するまで、この判断を続ける。 In step S101, when the imaging system 1 is not activated (step S101: No), the endoscope 2 continues this determination until the imaging system 1 is activated.
 ステップS103において、補正データ記録部261が記録する補正データの送信が完了していない場合(ステップS103:No)、内視鏡2は、上述したステップS102へ戻る。 In Step S103, when transmission of the correction data recorded by the correction data recording unit 261 is not completed (Step S103: No), the endoscope 2 returns to Step S102 described above.
 〔プロセッサの処理〕
 次に、プロセッサ3の処理について説明する。
 図5は、プロセッサ3が実行する処理の概要を示すフローチャートである。
[Processing of the processor]
Next, processing of the processor 3 will be described.
FIG. 5 is a flowchart showing an outline of processing executed by the processor 3.
 図5に示すように、受信部33が伝送ケーブル100を介して送信部24から補正データを受信した場合(ステップS201:Yes)、制御部42は、受信部33から入力された補正データを本体記録部38に記録する(ステップS202)。 As illustrated in FIG. 5, when the reception unit 33 receives correction data from the transmission unit 24 via the transmission cable 100 (step S201: Yes), the control unit 42 uses the correction data input from the reception unit 33 as the main body. Recording is performed in the recording unit 38 (step S202).
 続いて、受信部33が伝送ケーブル100を介して送信部24から完了コードを受信した場合(ステップS203:Yes)、プロセッサ3は、後述するステップS204へ移行する。これに対して、受信部33が伝送ケーブル100を介して送信部24から完了コードを受信していない場合(ステップS203:No)、プロセッサ3は、上述したステップS201へ戻る。 Subsequently, when the reception unit 33 receives a completion code from the transmission unit 24 via the transmission cable 100 (step S203: Yes), the processor 3 proceeds to step S204 described later. On the other hand, when the reception unit 33 has not received the completion code from the transmission unit 24 via the transmission cable 100 (step S203: No), the processor 3 returns to step S201 described above.
 ステップS204において、制御部42は、受信部33が受信したデータの出力先を制御部42から第1デジタル処理部34に切り替える。 In step S204, the control unit 42 switches the output destination of the data received by the reception unit 33 from the control unit 42 to the first digital processing unit 34.
 続いて、受信部33が伝送ケーブル100を介して送信部24から映像データを受信した場合(ステップS205:Yes)、補正部35は、本体記録部38に記録された補正データに基づいて、受信部33および第1デジタル処理部34を介して入力される映像データに対応する映像画像の各画素の感度を補正する補正処理を実行する(ステップS206)。この場合、補正部35は、本体記録部38に記録されたIDデータに基づいて、映像画像の欠陥画素等を補正してもよい。 Subsequently, when the reception unit 33 receives video data from the transmission unit 24 via the transmission cable 100 (step S205: Yes), the correction unit 35 receives the correction data based on the correction data recorded in the main body recording unit 38. Correction processing for correcting the sensitivity of each pixel of the video image corresponding to the video data input via the unit 33 and the first digital processing unit 34 is executed (step S206). In this case, the correction unit 35 may correct a defective pixel or the like of the video image based on the ID data recorded in the main body recording unit 38.
 続いて、映像出力部37は、補正部35および第2デジタル処理部36を介して入力された映像データを所定のフォーマットに変換して表示装置4へ出力する(ステップS207)。これにより、図4に示すように、表示装置4は、映像データに対応する映像画像を表示する(時刻t)。 Subsequently, the video output unit 37 converts the video data input via the correction unit 35 and the second digital processing unit 36 into a predetermined format and outputs the video data to the display device 4 (step S207). Thus, as shown in FIG. 4, the display device 4 displays an image picture corresponding to the image data (time t 5).
 その後、内視鏡2による撮影の終了を指示する指示信号が入力された場合(ステップS208:Yes)、プロセッサ3は、本処理を終了する。これに対して、内視鏡2による撮影の終了を指示する指示信号が入力されていない場合(ステップS208:No)、プロセッサ3は、上述したステップS205へ戻る。 Thereafter, when an instruction signal instructing the end of imaging by the endoscope 2 is input (step S208: Yes), the processor 3 ends the present process. On the other hand, when the instruction signal for instructing the end of photographing by the endoscope 2 is not input (step S208: No), the processor 3 returns to step S205 described above.
 ステップS201において、受信部33が伝送ケーブル100を介して送信部24から補正データを受信していない場合(ステップS201:No)、プロセッサ3は、送信部24から補正データを受信する場合、この判断を続ける。 In step S201, when the reception unit 33 has not received correction data from the transmission unit 24 via the transmission cable 100 (step S201: No), the processor 3 makes this determination when receiving correction data from the transmission unit 24. Continue.
 ステップS205において、受信部33が伝送ケーブル100を介して送信部24から映像データを受信していない場合(ステップS205:No)、プロセッサ3は、この判断を続ける。 In step S205, when the receiving unit 33 has not received the video data from the transmitting unit 24 via the transmission cable 100 (step S205: No), the processor 3 continues this determination.
 以上説明した本発明の実施の形態1によれば、送信部24が伝送ケーブル100を介して補正データ記録部261によって記録された補正データを送信し、かつ、この補正データの送信が完了した後に、映像データを送信するので、大容量の補正データを送信する場合であっても、プロセッサ3による高画質な映像を出力するまでの時間を短くすることができる。 According to the first embodiment of the present invention described above, the transmission unit 24 transmits the correction data recorded by the correction data recording unit 261 via the transmission cable 100, and the transmission of the correction data is completed. Since the video data is transmitted, even when a large amount of correction data is transmitted, the time until the processor 3 outputs a high-quality video can be shortened.
 また、本発明の実施の形態1によれば、送信部24が補正データの送信を完了した後に、伝送ケーブル100を介して補正データの送信の完了を示す完了コードを送信するので、制御部42が受信部33のデータの出力先を滑らかに切り替えることができる。 Further, according to the first embodiment of the present invention, after the transmission unit 24 completes the transmission of the correction data, the completion code indicating the completion of the transmission of the correction data is transmitted via the transmission cable 100. Therefore, the control unit 42 Can smoothly switch the data output destination of the receiving unit 33.
 また、本発明の実施の形態1によれば、送信部24が映像データを伝送する既存の伝送ケーブル100を用いて内視鏡2からプロセッサ3に補正データを送信するので、プロセッサ3の種別に関わらず、大容量の補正データをプロセッサ3に送信することができ、汎用性を持たせることができる。 Further, according to the first embodiment of the present invention, the transmission unit 24 transmits the correction data from the endoscope 2 to the processor 3 using the existing transmission cable 100 that transmits the video data. Regardless, large-capacity correction data can be transmitted to the processor 3, and versatility can be provided.
 また、本発明の実施の形態1によれば、送信部24が補正データの送信を完了した後に、データの入力先(データの読み取り先)を補正データ記録部261から撮像素子22に切り替えるので、既存の伝送ケーブル100を用いて大容量の補正データをプロセッサ3に送信することができる。 Further, according to the first embodiment of the present invention, after the transmission unit 24 completes transmission of the correction data, the data input destination (data reading destination) is switched from the correction data recording unit 261 to the image sensor 22. A large amount of correction data can be transmitted to the processor 3 using the existing transmission cable 100.
 また、本発明の実施の形態1によれば、撮像システム1が起動した直後に、送信部24が補正データをプロセッサ3へ送信するので、被検体の検査を開始するまでの時間内に大容量の補正データを送信することができ、遅延なく被検体の検査を行うことができる。 Further, according to the first embodiment of the present invention, immediately after the imaging system 1 is activated, the transmission unit 24 transmits the correction data to the processor 3, so that a large capacity is obtained within the time until the examination of the subject is started. Correction data can be transmitted, and the subject can be examined without delay.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。本実施の形態2は、内視鏡およびプロセッサの各々が実行する処理のみ異なる。具体的には、上述した実施の形態1では、補正データの完了を示す完了コードを送信後に、映像データを送信していたが、本実施の形態2では、補正データの送信を開始してから所定時間経過後に、映像データを送信する。以下においては、本実施の形態2に係る内視鏡が実行する処理を説明後、本実施の形態2に係るプロセッサが実行する処理について説明する。なお、上述した実施の形態1に係る撮像システム1と同一の構成には同一の符号を付して説明を省略する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. The second embodiment is different only in processing executed by each of the endoscope and the processor. Specifically, in Embodiment 1 described above, video data is transmitted after transmitting a completion code indicating completion of correction data. However, in Embodiment 2, transmission of correction data is started. Video data is transmitted after a predetermined time has elapsed. In the following, after describing the process executed by the endoscope according to the second embodiment, the process executed by the processor according to the second embodiment will be described. In addition, the same code | symbol is attached | subjected to the structure same as the imaging system 1 which concerns on Embodiment 1 mentioned above, and description is abbreviate | omitted.
 〔内視鏡の処理〕
 まず、本実施の形態2に係る内視鏡2が実行する処理について説明する。
 図6は、本実施の形態2に係る内視鏡2が実行する処理の概要を示すフローチャートである。図6において、ステップS301、ステップS302およびステップS304~ステップS306は、上述した図3のステップS101、ステップS102およびステップS105~ステップS107それぞれに対応する。
[Endoscope processing]
First, the process which the endoscope 2 which concerns on this Embodiment 2 performs is demonstrated.
FIG. 6 is a flowchart illustrating an outline of processing executed by the endoscope 2 according to the second embodiment. In FIG. 6, step S301, step S302, and step S304 to step S306 respectively correspond to step S101, step S102, and step S105 to step S107 of FIG.
 ステップS303において、補正データの送信を開始してから所定時間経過した場合(ステップS303:Yes)、内視鏡2は、ステップS304へ移行する。これに対して、補正データの送信を開始してから所定時間経過していない場合(ステップS303:No)、内視鏡2は、ステップS302へ戻る。ここで、所定時間とは、送信部24が補正データの送信を開始してから垂直同期信号の立ち上がりの数が所定数(例えば10パルス)に到達した時間である。なお、この所定数は、内視鏡2の組立時や出荷時に補正データのデータ量を予め把握することができるため、補正データの総データ数を送信できる時間によって予め設定しておけばよい。 In step S303, when a predetermined time has elapsed since the start of transmission of correction data (step S303: Yes), the endoscope 2 proceeds to step S304. On the other hand, when the predetermined time has not elapsed since the start of transmission of the correction data (step S303: No), the endoscope 2 returns to step S302. Here, the predetermined time is a time when the number of rising edges of the vertical synchronization signal reaches a predetermined number (for example, 10 pulses) after the transmission unit 24 starts transmitting the correction data. Note that this predetermined number can be determined in advance according to the time during which the total number of correction data can be transmitted because the amount of correction data can be grasped in advance when the endoscope 2 is assembled or shipped.
 〔プロセッサの処理〕
 次に、本実施の形態2に係るプロセッサ3が実行する処理について説明する。
 図7は、本実施の形態2に係るプロセッサ3が実行する処理の概要を示すフローチャートである。図7において、ステップS401、ステップS402およびステップS404~ステップS408は、上述した図5のステップS201、ステップS202およびステップS204~ステップS208それぞれに対応する。
[Processing of the processor]
Next, processing executed by the processor 3 according to the second embodiment will be described.
FIG. 7 is a flowchart showing an outline of processing executed by the processor 3 according to the second embodiment. In FIG. 7, step S401, step S402, and step S404 to step S408 correspond to step S201, step S202, and step S204 to step S208 of FIG.
 ステップS403において、受信部33が送信部24から送信された補正データの受信を開始してから所定時間経過した場合(ステップS403:Yes)、プロセッサ3は、ステップS404へ移行する。これに対して、受信部33が送信部24から送信された補正データの受信を開始してから所定時間経過していない場合(ステップS403:No)、プロセッサ3は、ステップS401へ戻る。 In step S403, when the predetermined time has elapsed after the reception unit 33 starts receiving the correction data transmitted from the transmission unit 24 (step S403: Yes), the processor 3 proceeds to step S404. On the other hand, when the predetermined time has not elapsed since the reception unit 33 started to receive the correction data transmitted from the transmission unit 24 (step S403: No), the processor 3 returns to step S401.
 以上説明した本発明の実施の形態2によれば、上述した実施の形態1と同様の効果を有し、プロセッサ3の動作を遅延させることなく、大容量の補正データを送信することができる。 According to the second embodiment of the present invention described above, the same effect as that of the first embodiment described above can be obtained, and a large amount of correction data can be transmitted without delaying the operation of the processor 3.
(その他の実施の形態)
 なお、本発明の実施の形態では、送信部24が補正データ記録部261によって記録された撮像素子22の画素の感度を補正するための補正データを送信していたが、例えば、各画素の感度の標準となる標準データを送信した後に、この標準データと各画素の感度の差を補正するための差分値を補正データとして順次送信してもよい。これにより、各画素のデータビット数を削減することができ、送信部24が送信する補正データのデータ量を低減することができる。もちろん、送信部24は、撮像システム1の起動時に、補正データおよび映像データを伝送する伝送ケーブル100を介して補正データおよびIDデータ記録部262が記録するIDデータを送信してもよい。
(Other embodiments)
In the embodiment of the present invention, the transmission unit 24 transmits the correction data for correcting the sensitivity of the pixels of the image sensor 22 recorded by the correction data recording unit 261. For example, the sensitivity of each pixel After transmitting standard data as a standard, the difference value for correcting the difference in sensitivity between the standard data and each pixel may be sequentially transmitted as correction data. As a result, the number of data bits of each pixel can be reduced, and the amount of correction data transmitted by the transmission unit 24 can be reduced. Of course, the transmission unit 24 may transmit the correction data and the ID data recorded by the ID data recording unit 262 via the transmission cable 100 that transmits the correction data and the video data when the imaging system 1 is activated.
 また、本発明の実施の形態では、伝送ケーブル100を介して映像データおよび補正データを送信していたが、例えば有線である必要はなく、無線であってもよい。この場合、送信部24は、所定の無線通信規格(例えばWi-Fi(登録商標)やBluetooth(登録商標)に従って、補正データおよび映像データ等をプロセッサ3へ送信するようにすればよい。もちろん、他の無線通信規格に従って無線通信を行ってもよい。 In the embodiment of the present invention, the video data and the correction data are transmitted via the transmission cable 100. However, the video data and the correction data need not be wired, for example, and may be wireless. In this case, the transmission unit 24 may transmit correction data and video data to the processor 3 in accordance with a predetermined wireless communication standard (for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)). Wireless communication may be performed according to other wireless communication standards.
 また、本発明の実施の形態では、送信部24が電気通信によってプロセッサ3に送信していたが、これに限定されることなく、例えば光通信によって補正データを送信してもよい。この場合、送信部24の後段に電気信号を光信号に変換するE/O変換回路を設けるとともに、受信部33の前段に光信号を電気信号に変換するO/E変換回路を設けることによって、光通信を行うことができる。 In the embodiment of the present invention, the transmission unit 24 transmits to the processor 3 by electrical communication. However, the present invention is not limited to this, and the correction data may be transmitted by optical communication, for example. In this case, by providing an E / O conversion circuit that converts an electrical signal into an optical signal at the subsequent stage of the transmission unit 24 and an O / E conversion circuit that converts an optical signal into an electrical signal at the previous stage of the reception unit 33, Optical communication can be performed.
 また、本発明の実施の形態では、プロセッサと光源とが一体的に形成されていたが、これに限定されることなく、例えばプロセッサと光源とを別体の装置として構成してもよい。 In the embodiment of the present invention, the processor and the light source are integrally formed. However, the present invention is not limited to this. For example, the processor and the light source may be configured as separate devices.
 また、本発明の実施の形態では、同時式によって照明光を照射していたが、例えば互いに異なる波長帯域の光を透過させる複数のフィルタを用いて構成され、図示しない駆動部によって駆動することにより、所定の波長帯域の光を透過する面順次式であっても適用することができる。 Further, in the embodiment of the present invention, the illumination light is radiated simultaneously, but for example, it is configured by using a plurality of filters that transmit light of different wavelength bands, and is driven by a drive unit (not shown). The present invention can also be applied to a frame sequential type that transmits light of a predetermined wavelength band.
 また、本発明の実施の形態では、送信部24が補正データ記録部261によって記録された補正データのデータ容量の有無を判断し、データの入力先(読み取り先)を補正データ記録部261から撮像素子22に切り替えていたが、例えば送信部24をFPGAによって構成し、かつ、内視鏡2内に、別途、制御部としてFPGA等を設け、例えば送信部24としてのFPGAのSER等によって補正データ記録部261のデータを全て送信したか否かを判断し、この判断結果に基づいて制御部としてのFPGAのSERが送信するデータを補正データから撮像素子22によって生成された映像データに切り替えるようにしてもよい。 Further, in the embodiment of the present invention, the transmission unit 24 determines whether or not the correction data recorded by the correction data recording unit 261 has a data capacity, and images the data input destination (reading destination) from the correction data recording unit 261. Although switching to the element 22 is performed, for example, the transmission unit 24 is configured by an FPGA, and an FPGA or the like is separately provided in the endoscope 2 as a control unit, for example, correction data by the SER or the like of the FPGA as the transmission unit 24 It is determined whether all the data of the recording unit 261 has been transmitted, and based on the determination result, the data transmitted by the SER of the FPGA as the control unit is switched from the correction data to the video data generated by the image sensor 22. May be.
 また、本発明の実施の形態では、被検体に挿入される内視鏡であったが、例えばカプセル型の内視鏡または被検体を撮像する撮像装置であっても適用することができる。 In the embodiment of the present invention, the endoscope is inserted into the subject. However, the present invention can also be applied to, for example, a capsule endoscope or an imaging device that images the subject.
 なお、本明細書におけるフローチャートおよびタイミングチャートの説明では、「まず」、「その後」、「続いて」等の表現を用いて各処理の前後関係を明示していたが、本発明を実施するために必要な処理の順序は、それらの表現によって一意的に定められるわけではない。即ち、本明細書で記載したフローチャートおよびタイミングチャートにおける処理の順序は、矛盾のない範囲で変更することができる。 In the description of the flowcharts and timing charts in the present specification, the context of each process is clearly indicated using expressions such as “first”, “after”, “follow”, etc. The order of the processes required for the above is not uniquely determined by their expressions. That is, the order of processing in the flowcharts and timing charts described in this specification can be changed within a consistent range.
 このように、本発明は、ここでは記載していない様々な実施の形態を含みうるものであり、請求の範囲によって特定される技術的思想の範囲内で種々の設計変更等を行うことが可能である。 As described above, the present invention can include various embodiments not described herein, and various design changes can be made within the scope of the technical idea specified by the claims. It is.
 1 撮像システム
 2 内視鏡
 3 プロセッサ
 4 表示装置
 21 光学系
 22 撮像素子
 23 撮像駆動部
 24 送信部
 25 照明光学系
 26 内視鏡記録部
 30 電源部
 31 監視部
 32 同期信号生成部
 33 受信部
 34 第1デジタル処理部
 35 補正部
 36 第2デジタル処理部
 37 映像出力部
 38 本体記録部
 39 調光制御部
 40 光源
 41 光学フィルタ
 42 制御部
 100 伝送ケーブル
 101 挿入部
 102 先端
 103 基端
 104 操作部
 261 補正データ記録部
 262 IDデータ記録部
 381 プログラム記録部
DESCRIPTION OF SYMBOLS 1 Imaging system 2 Endoscope 3 Processor 4 Display apparatus 21 Optical system 22 Imaging element 23 Imaging drive part 24 Transmission part 25 Illumination optical system 26 Endoscope recording part 30 Power supply part 31 Monitoring part 32 Synchronization signal generation part 33 Reception part 34 First digital processing unit 35 Correction unit 36 Second digital processing unit 37 Video output unit 38 Main body recording unit 39 Light control unit 40 Light source 41 Optical filter 42 Control unit 100 Transmission cable 101 Insertion unit 102 Tip 103 Base end 104 Operation unit 261 Correction data recording unit 262 ID data recording unit 381 Program recording unit

Claims (7)

  1.  複数の画素が二次格子状に配置され、被写体を該複数の画素で撮像して複数の画素データから構成される映像データを生成する撮像素子と、
     前記複数の画素データの各々を補正するための補正データを記録する記録部と、
     前記映像データおよび前記補正データを処理装置に伝送するための伝送路と、
     前記伝送路を介して前記記録部が記録する前記補正データを前記処理装置へ送信し、かつ、該補正データの送信が完了した後に前記伝送路を介して前記映像データを前記処理装置へ送信する送信部と、
     を備えたことを特徴とする撮像システム。
    An image sensor in which a plurality of pixels are arranged in a secondary grid, and an image of a subject is captured by the plurality of pixels to generate video data composed of a plurality of pixel data;
    A recording unit that records correction data for correcting each of the plurality of pixel data;
    A transmission path for transmitting the video data and the correction data to a processing device;
    The correction data recorded by the recording unit is transmitted to the processing device via the transmission path, and the video data is transmitted to the processing device via the transmission path after the transmission of the correction data is completed. A transmission unit;
    An imaging system comprising:
  2.  前記送信部は、前記補正データの送信を完了した後に、前記伝送路を介して前記補正データの送信の完了を示す完了情報を送信することを特徴とする請求項1に記載の撮像システム。 The imaging system according to claim 1, wherein after the transmission of the correction data is completed, the transmission unit transmits completion information indicating completion of the transmission of the correction data via the transmission path.
  3.  前記送信部は、前記補正データの送信を開始してから所定時間経過後に、前記映像データを送信することを特徴とする請求項1に記載の撮像システム。 The imaging system according to claim 1, wherein the transmission unit transmits the video data after a predetermined time has elapsed since the transmission of the correction data was started.
  4.  当該撮像システムの起動状態を監視する監視部をさらに備え、
     前記送信部は、前記監視部によって当該撮像システムの起動を検出した場合、前記補正データの送信を開始することを特徴とする請求項1~3のいずれか一つに記載の撮像システム。
    A monitoring unit that monitors a startup state of the imaging system;
    The imaging system according to any one of claims 1 to 3, wherein the transmission unit starts transmitting the correction data when the monitoring unit detects activation of the imaging system.
  5.  前記補正データは、前記撮像素子における各画素の感度を補正するためのデータであることを特徴とする請求項1~4のいずれか一つに記載の撮像システム。 The imaging system according to any one of claims 1 to 4, wherein the correction data is data for correcting sensitivity of each pixel in the imaging device.
  6.  複数の画素が二次元格子状に配置され、被写体を該複数の画素で撮像して複数の画素データから構成される映像データを生成する撮像素子と、
     前記複数の画素データの各々を補正するための補正データを記録する記録部と、
     前記映像データおよび前記補正データを処理装置に伝送するための伝送路を介して前記記録部が記録する前記補正データを前記処理装置へ送信し、かつ、該補正データの送信が完了した後に前記伝送路を介して前記映像データを前記処理装置へ送信する送信部と、
     を備えたことを特徴とする撮像装置。
    An image sensor in which a plurality of pixels are arranged in a two-dimensional grid, and an image of a subject is captured by the plurality of pixels to generate video data composed of a plurality of pixel data;
    A recording unit that records correction data for correcting each of the plurality of pixel data;
    The correction data recorded by the recording unit is transmitted to the processing device via a transmission path for transmitting the video data and the correction data to the processing device, and the transmission is performed after the transmission of the correction data is completed. A transmission unit for transmitting the video data to the processing device via a path;
    An imaging apparatus comprising:
  7.  データを伝送可能な伝送路を介して、二次元格子状に配置された複数の画素により被写体を撮像して複数の画素データから構成される映像データを生成する撮像素子を備えた撮像装置から送信された前記映像データに対して画像処理を施す処理装置であって、
     前記伝送路を介して前記撮像装置から前記複数の画素データの各々を補正するための補正データを受信し、かつ、前記映像データを受信する受信部と、
     前記受信部が受信した前記補正データに基づいて、前記映像データを補正する補正部と、
     を備えたことを特徴とする処理装置。
    Transmitted from an imaging device equipped with an imaging device that captures an image of a subject with a plurality of pixels arranged in a two-dimensional grid and generates video data composed of a plurality of pixel data via a transmission path capable of transmitting data A processing device for performing image processing on the video data,
    A receiving unit for receiving correction data for correcting each of the plurality of pixel data from the imaging device via the transmission path, and receiving the video data;
    A correction unit that corrects the video data based on the correction data received by the reception unit;
    A processing apparatus comprising:
PCT/JP2017/004942 2016-02-25 2017-02-10 Imaging system, imaging device and processing device WO2017145813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017531917A JPWO2017145813A1 (en) 2016-02-25 2017-02-10 Imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-034491 2016-02-25
JP2016034491 2016-02-25

Publications (1)

Publication Number Publication Date
WO2017145813A1 true WO2017145813A1 (en) 2017-08-31

Family

ID=59685432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004942 WO2017145813A1 (en) 2016-02-25 2017-02-10 Imaging system, imaging device and processing device

Country Status (2)

Country Link
JP (1) JPWO2017145813A1 (en)
WO (1) WO2017145813A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143721A1 (en) * 2009-06-12 2010-12-16 オリンパスメディカルシステムズ株式会社 In-vivo information acquiring system and receiver device
JP2012110478A (en) * 2010-11-24 2012-06-14 Toshiba Corp Imaging apparatus, method for operating the same, and endoscope apparatus
JP2015037477A (en) * 2013-08-19 2015-02-26 Hoya株式会社 Electronic endoscope system and operation condition setting method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143721A1 (en) * 2009-06-12 2010-12-16 オリンパスメディカルシステムズ株式会社 In-vivo information acquiring system and receiver device
JP2012110478A (en) * 2010-11-24 2012-06-14 Toshiba Corp Imaging apparatus, method for operating the same, and endoscope apparatus
JP2015037477A (en) * 2013-08-19 2015-02-26 Hoya株式会社 Electronic endoscope system and operation condition setting method therefor

Also Published As

Publication number Publication date
JPWO2017145813A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
US8866893B2 (en) Imaging apparatus
US9844312B2 (en) Endoscope system for suppressing decrease of frame rate without changing clock rate of reading
WO2013175908A1 (en) Imaging system
US9439554B2 (en) Endoscope having connector part with output selector
JP5899172B2 (en) Endoscope device
JP2016504068A (en) Endoscope camera head memory
WO2013128764A1 (en) Medical system
JP6378846B2 (en) Image processing device
JPWO2013084566A1 (en) Endoscope device
US9814376B2 (en) Endoscope system and method for operating the same
WO2016104386A1 (en) Dimmer, imaging system, method for operating dimmer, and operating program for dimmer
JP2015160098A (en) endoscope system
JP2010158413A (en) Light source apparatus for endoscope
US11882995B2 (en) Endoscope system
JP5926980B2 (en) Imaging apparatus and imaging system
US20160134792A1 (en) Light source device for endoscope, endoscope system, and method for operating endoscope system
JP6190906B2 (en) Imaging module and endoscope apparatus
WO2017145813A1 (en) Imaging system, imaging device and processing device
US10188266B2 (en) Endoscopic imaging device for reducing data amount of image signal
JP7224963B2 (en) Medical controller and medical observation system
JP6275357B1 (en) Endoscope
JP7235540B2 (en) Medical image processing device and medical observation system
JP5032648B2 (en) IMAGING DEVICE, IMAGING DEVICE OPERATING METHOD, AND ENDOSCOPE DEVICE
US20230233070A1 (en) Endoscope light source device, endoscope system, and method of changing illumination light in endoscope light source device
WO2017022323A1 (en) Image signal processing method, image signal processing device and image signal processing program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756254

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756254

Country of ref document: EP

Kind code of ref document: A1