WO2017168766A1 - 回転機械翼、過給機、および、これらの流れ場の形成方法 - Google Patents

回転機械翼、過給機、および、これらの流れ場の形成方法 Download PDF

Info

Publication number
WO2017168766A1
WO2017168766A1 PCT/JP2016/061641 JP2016061641W WO2017168766A1 WO 2017168766 A1 WO2017168766 A1 WO 2017168766A1 JP 2016061641 W JP2016061641 W JP 2016061641W WO 2017168766 A1 WO2017168766 A1 WO 2017168766A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wing
flow
suction surface
clearance flow
Prior art date
Application number
PCT/JP2016/061641
Other languages
English (en)
French (fr)
Inventor
浩範 本田
茨木 誠一
健一郎 岩切
直志 神坂
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2016/061641 priority Critical patent/WO2017168766A1/ja
Priority to US16/082,191 priority patent/US11041505B2/en
Priority to CN201680083160.4A priority patent/CN108779708B/zh
Priority to EP16896983.0A priority patent/EP3412892B1/en
Priority to JP2018508348A priority patent/JP6710271B2/ja
Publication of WO2017168766A1 publication Critical patent/WO2017168766A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the present invention relates to a rotary machine blade, a turbocharger, and a method of forming these flow fields.
  • the leak flow vortex reducing plate formed on the moving blade of Patent Document 1 changes the circumferential shape of the blade at the tip of the moving blade. Therefore, the performance of the moving blade may be reduced or the loss may be increased due to a decrease in throat area and the like.
  • An object of the present invention is to provide a rotary machine blade, a supercharger, and a method of forming these flow fields, which can efficiently reduce the clearance flow without reducing the performance or increasing the loss.
  • the rotary machine blade when the lean angle has one or more inflection points and the direction from the pressure side to the suction side is the positive direction, the rotary machine blade is most toward the wing end side.
  • the air conditioner further includes a clearance flow suppression wing portion formed so that the inflection point of the lean angle located is turned from negative to positive in a direction away from the wing tip.
  • the lean angle inflection point located closest to the wing tip side in the first aspect may be formed at least in a region where the span height is 70% or more.
  • the clearance flow suppression wing in the first mode may be formed at least in part between the leading edge and the trailing edge of the wing. Such a configuration can reduce the clearance flow at least in part between the leading edge and the trailing edge of the wing.
  • the clearance flow suppression wing portion in the third aspect may be formed in a range of 0 to 40% from the leading edge to the trailing edge of the wing.
  • the rotary mechanical blade may have a curved portion in which at least a part of the suction surface is formed in a concave shape in any one of the first to fourth aspects. .
  • the performance of the blade can be improved by curving the curved portion in a concave shape, and at the blade end, the clearance flow can be reduced to suppress the performance decrease and the loss increase.
  • the pressure surface or the suction surface may be formed in a straight line. With this configuration, the clearance flow can be reduced even if the pressure surface or suction surface is linear.
  • a supercharger includes the rotary machine blade according to any one of the first to sixth aspects. With such a configuration, the clearance flow can be reduced, and the performance of the turbocharger can be improved.
  • the rotary mechanical blade when rotating, forms a flow field in which the secondary flow flowing near the suction surface flows toward the wing tip side along the suction surface.
  • a secondary flow flowing in the vicinity of the suction surface of the rotary machine blade is directed to the wing end side of the rotary machine blade along the suction surface. It forms a flow field so as to flow toward it.
  • a method of forming a flow field of a supercharger comprising: a compressor wheel having a disk formed in the shape of a disk and a plurality of blades formed spaced apart in the circumferential direction of the disk
  • a turbocharger including a compressor housing for accommodating the compressor wheel, a turbine wheel, and a turbine housing for accommodating the turbine wheel, wherein the compressor wheel is induced near the suction surface of the blade when the compressor wheel rotates
  • the secondary flow forms a flow field which flows along the suction surface toward the tip end of the blade.
  • the clearance flow can be efficiently reduced without the performance decrease and the loss increase.
  • FIG. 3 shows schematic structure of the supercharger in 1st embodiment of this invention. It is a meridional sectional view of a rotary machine pole in a first embodiment of the present invention. It is sectional drawing of the braid
  • the turbocharger of this embodiment is mounted on a vehicle such as an automobile having a reciprocating engine (hereinafter simply referred to as an engine) as a drive source as an internal combustion engine.
  • the supercharger is a so-called turbocharger that compresses intake air by using exhaust gas from an engine.
  • FIG. 1 is a view showing a schematic configuration of a turbocharger according to a first embodiment of the present invention.
  • FIG. 2 is a meridional cross-sectional view of the rotary machine pole in the first embodiment of the present invention.
  • the turbocharger 1 includes a compressor unit 2, a turbine unit 3, and a bearing unit 4.
  • the compressor unit 2 compresses intake air introduced from an air cleaner (not shown) and feeds it to a cylinder 7 of the engine 6.
  • the compressor unit 2 includes a compressor wheel 8 and a compressor housing 9.
  • the compressor wheel 8 rotates about its axis O1.
  • the compressor wheel 8 flows the intake air A flowing from the direction of the axis O1 while compressing the intake air A from the inside in the radial direction centering on the axis by the centrifugal force.
  • the compressed air B compressed by the compressor wheel 8 is discharged toward the outside of the compressor wheel 8 in the radial direction about the axis O1.
  • the compressor housing 9 includes a wheel housing portion 10, an introduction portion 11, and a discharge portion 12.
  • the wheel housing portion 10 covers the compressor wheel 8 from the outside in a rotatable state.
  • the introduction portion 11 communicates with the wheel housing portion 10 near the rotation center of the compressor wheel 8.
  • the introduction portion 11 forms an introduction flow passage 13 for introducing the intake air A in the direction of the axis O1 with respect to the wheel housing portion 10.
  • the discharge portion 12 communicates with the wheel storage portion 10 at the radially outer side of the compressor wheel 8.
  • the discharge unit 12 is connected to the intake manifold 14 via a diffuser, a scroll passage (not shown), and the like.
  • the discharge portion 12 forms a discharge passage 15 for introducing the compressed air B into the cylinder 7 of the engine 6 through the intake manifold 14.
  • the turbine unit 3 includes a turbine wheel 16 and a turbine housing 17.
  • the turbine wheel 16 recovers a part of the thermal energy of the exhaust gas C discharged from the engine 6 and rotates around its axis O2.
  • the turbine housing 17 includes a turbine wheel accommodating portion 19, an exhaust introducing portion 20, and an exhaust discharging portion 21.
  • the turbine wheel housing 19 covers the turbine wheel 16 from the outside in a rotatable state.
  • the exhaust introduction portion 20 forms an exhaust introduction flow passage 20 a for introducing the exhaust gas of the engine 6 into the turbine wheel housing portion 19.
  • the exhaust introducing unit 20 introduces exhaust gas into the turbine wheel housing 19 via a scroll (not shown).
  • the turbine wheel housing portion 19 communicates with the exhaust gas introduction portion 20 at the radially outer side of the turbine wheel 16.
  • the exhaust discharge portion 21 forms an exhaust discharge passage 21 a communicating with the turbine wheel housing portion 19 near the rotation center of the compressor wheel 8.
  • the bearing unit 4 includes a rotating shaft 18 and a bearing housing (not shown).
  • the rotating shaft 18 transmits the rotation of the turbine wheel 16 to the compressor wheel 8.
  • the rotating wheel 18 has a turbine wheel 16 fixed to a first end 18 a thereof and a compressor wheel 8 fixed to a second end 18 b thereof.
  • a bearing housing (not shown) covers the rotating shaft 18 from the outside.
  • the bearing housing has a bearing (not shown) that rotatably supports the rotating shaft 18.
  • the compressor housing 9 and the turbine housing 17 described above are respectively fixed to the bearing housing.
  • FIG. 2 is a cross-sectional view along an axis of a compressor wheel in the first embodiment of the present invention.
  • the compressor wheel 8 includes a disk 30 and a blade 31.
  • the disk 30 is formed in a disk shape centered on the axis O1. More specifically, the disk 30 has a radial direction centered on the axis O1 as it goes from one side (left side in FIG. 2) to the other side (right side in FIG. 2) of the rotary shaft 18 in the axis line O1 direction. It is formed to gradually expand in diameter.
  • the blades 31 are formed on the surface 32 that faces one side in the direction of the axis O1 of the disk 30, and a plurality of blades 31 are formed at intervals in the circumferential direction of the axis O1. Further, the blades 31 extend away from the disk 30 and are arranged radially about the axis O1. Further, the blade 31 has an inner circumferential surface 19 a of the turbine wheel housing 19 and a wing end 33 disposed with a slight gap S in the direction in which the blade 31 extends. Like the surface 32 of the disk 30, the wing end 33 is curved outward in the radial direction centered on the axis O1 as it goes from one side to the other side of the rotary shaft 18 in the direction of the axis O1. It is formed.
  • the gap S between the wing tip 33 and the inner circumferential surface 19 a is a constant figure of the wing tip clearance throughout the extending direction of the wing tip 33.
  • FIG. 3 is a cross-sectional view of the blade taken along line III-III in the embodiment of the present invention.
  • the cross section of the blade 31 shown in FIG. 3 is a position of a% in the longitudinal direction of the airfoil centerline on the wing end 33 side in FIG. 2 and in the longitudinal direction of the airfoil centerline on the surface 32 side of the disk 30.
  • the straight line connecting the a% position is a cross section of the blade 31 when the compressor wheel 8 is cut with a conical cross section formed by rotating it around the axis O1.
  • “a” is an arbitrary value between 0 and 100.
  • the blade 31 includes a clearance flow suppressing wing portion 34 which suppresses a clearance flow flowing from the pressure side 31 a of the blade 31 to the suction side 31 b through the gap S described above.
  • the clearance flow suppression wing 34 in this embodiment is formed throughout the fluid flow direction from the leading edge 35 to the trailing edge 36 of the blade 31.
  • the rotational direction of the compressor wheel 8 is indicated by a white arrow.
  • the clearance flow suppressing wing portion 34 has one or more inflection points in the lean angle, and the inflection point located closest to the wing tip 33 in the cross section of FIG. 3 is negative from the pressure surface 31 a of the blade 31.
  • the lean angle is formed to shift from negative to positive.
  • the lean angle is an angle formed by an imaginary straight line K extending in the radial direction from the axis O1 in the cross section of FIG. 3 described above.
  • the lean angle is the tilt angle of the blade 31 with respect to the radial direction centered on the axis O1.
  • the clearance flow suppressing wing portion 34 in this embodiment has one or more inflection points at the lean angle of the center line C1 (shown by an alternate long and short dash line in FIG. 3) of the blade 31 in the cross section of FIG.
  • the inflection point located closest to the wing tip 33 is formed so that the lean angle changes from negative to positive when the direction from the pressure side 31 a of the blade 31 to the suction side 31 b is positive.
  • the blade 31 in this embodiment exemplifies a case where there are two lean angle inflection points.
  • three lean angles ⁇ 1, ⁇ 2, and ⁇ 3 are illustrated.
  • two inflection points P1 and P2 of the lean angle of the blade 31 are illustrated.
  • the lean angle in this embodiment is an acute angle on the outside in the radial direction centering on the axis O1 with respect to the intersection of the center line C1 and the virtual straight line K among the angles formed by the center line C1 and the virtual straight line K. Point to the angle.
  • the lean angle ⁇ 1 is a positive angle when the direction from the pressure surface 31a to the suction surface 31b is a positive direction.
  • the lean angle ⁇ 2 is a negative angle. Then, at the inflection point P1 between the position of the lean angle ⁇ 1 and the position of the lean angle ⁇ 2, the positive or negative of the lean angle is reversed. That is, as it separates from the wing tip 33, the lean angle shifts from a positive angle to a negative angle.
  • the absolute value of the positive lean angle gradually decreases from the outer wing tip 33 toward the inflection point P1 in the radial direction about the axis O1, and becomes zero at the inflection point P1. .
  • the absolute value of the negative lean angle gradually increases. Then, the absolute value of the negative lean angle becomes maximum between the inflection point P1 and the inflection point P2.
  • the above-mentioned lean angle ⁇ 2 is a lean angle near the position where this lean angle is maximum.
  • the absolute value of the negative lean angle becomes smaller as it approaches the inflection point P2, becomes zero at the inflection point P2, and then it becomes radially inner from the inflection point P2.
  • the absolute value of the positive lean angle gradually increases as The aforementioned lean angle ⁇ 3 is a lean angle located radially inward of the inflection point P2.
  • the blade 31 includes a curved portion 37 in which the negative pressure surface 31 b is formed in a concave shape.
  • the center line C1 is concavely curved toward the negative pressure surface 31b side, and the blade 31 itself is curved.
  • the curved portion 37 in this embodiment is formed on the inner side in the radial direction centering on the axis O1 than the inflection point P1 which is the inflection point closest to the wing end 33.
  • FIG. 4 is a partial enlarged view in the vicinity of the wing tip of FIG. 3.
  • the blade 31 is formed such that the region near the wing tip 33 thereof falls toward the pressure side 31 a. Therefore, when the compressor wheel 8 rotates, on the negative pressure surface 31b side of the blade 31, the secondary flow F2 flowing in the vicinity of the negative pressure surface 31b tends to flow along the negative pressure surface 31b toward the wing tip 33 side.
  • a lift has a radial direction component. In this state, the secondary flow F2 tends to flow radially outward. That is, the blade 31 flows in the vicinity of the suction surface 31b (in other words, induced in the vicinity of the suction surface 31b) such that the secondary flow F2 flows along the suction surface 31b toward the wing tip 33
  • the secondary flow F2 includes a component that opposes the flow of the clearance flow Fc and a component that pushes radially outward by the secondary flow F2 flowing toward the blade tip 33 along the suction surface 31b. And the clearance flow Fc is contracted.
  • the pressure surface 31a On the other hand, on the pressure surface 31a side, the pressure surface 31a is directed obliquely downward, that is, radially inward with respect to the axis O1. Therefore, the fluid colliding with the pressure surface 31a tends to move inward in the radial direction, thereby causing the secondary flow F2 to flow up the pressure surface 31a toward the wing tip 33 by the centrifugal force. It can be suppressed. Therefore, the fluid flowing into the gap S can be reduced.
  • the direction in which the compressor wheel 8 rotates is indicated by a white arrow.
  • the clearance flow suppression wing portion 34 by providing the clearance flow suppression wing portion 34, the clearance flow Fc between the wing tip portion 33 and the inner circumferential surface 19a can be obtained without changing the circumferential shape of the blade 31.
  • the secondary flow F2 can be made to flow in the direction of contraction. As a result, the clearance flow Fc can be efficiently reduced without the performance decrease or the loss increase of the blade 31.
  • the clearance flow Fc is reduced at the wing tip 33 to suppress the performance decrease and the loss increase. be able to.
  • the shape of the clearance flow suppression wing portion 34 is not limited to the shape of the first embodiment described above.
  • each modification of the first embodiment described above will be described based on the drawings. In the description of each of the modified examples, the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 3 in a modification of the first embodiment of the present invention.
  • the clearance flow suppressing wing portion 34 in which the center line C1 is formed in a curved shape having inflection points P1 and P2 is illustrated.
  • the curved center line C1 of the clearance flow suppressing wing portion 34 of the first embodiment may be replaced with a center line C1B formed of a combination of straight lines.
  • the lean angle is formed so as to shift from negative to positive at the inflection point P1 located closest to the wing tip 33 side.
  • FIG. 6 is a cross-sectional view corresponding to FIG. 3 in a modification of the first embodiment of the present invention.
  • the center line C1B of the clearance flow suppression wing portion 34B is configured by a combination of straight lines.
  • a straight line and a curved line may be combined.
  • the clearance flow suppressing wing portion 34C in the second modification exemplifies the case where the center line C1C on the side close to the wing tip 33 is formed in a straight line.
  • the center line C1C indicates a straight section by "St" and a curved section by "Cr".
  • FIG. 7 is a cross-sectional view corresponding to FIG. 3 in a modification of the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view corresponding to FIG. 3 in a modification of the first embodiment of the present invention.
  • the pressure surface 31a may be formed in a straight line, and only the suction surface 31b may be formed by a curve.
  • the blade 31 of the third modified example shown in FIG. 7 is formed so as to be inclined as a whole so as to be positioned forward in the rotational direction (indicated by a white arrow in FIG. 7) toward the wing end 33. As a result, the pressure surface 31a is inclined forward in the rotational direction.
  • the suction surface 31b is formed in a straight line, and only the pressure surface 31a is formed by a curve. Also good.
  • the clearance flow suppression wing 34E shown in FIG. 8 has three inflection points of the lean angle of the center line C1E (P1 to P3 in FIG. 8).
  • blade part of 2nd embodiment of this invention is demonstrated based on drawing.
  • the clearance flow suppressing wing portion of the second embodiment is different from the first embodiment only in that the clearance flow suppressing wing portion is formed in a part of the blade. Therefore, while attaching and explaining the same code
  • FIG. 9 is a meridional cross-sectional view corresponding to FIG. 2 in the second embodiment of the present invention.
  • the blade 231 in the second embodiment is formed on the surface 32 facing one side in the direction of the axis O1 of the disk 30 similarly to the blade 31 in the first embodiment, and the periphery of the axis O1 A plurality of directions are formed at intervals. Further, the blades 231 extend away from the disk 30 and are arranged radially about the axis O1.
  • the blade 231 has an inner circumferential surface 19 a of the turbine wheel housing 19 and a wing tip 33 disposed with a slight gap S in the extending direction of the blade 231.
  • the wing tip 33 is formed to curve outward in the radial direction centering on the axis O1 as it goes from one side to the other side of the rotary shaft 18 in the axis O1 direction.
  • the gap S between the wing tip 33 and the inner circumferential surface 19 a has a constant size throughout the extending direction of the wing tip 33.
  • the blade 231 includes a clearance flow suppressing wing portion 34 which suppresses a clearance flow flowing from the pressure surface 31 a of the blade 231 to the suction surface 31 b through the gap S.
  • the blade 231 in the second embodiment has a region where the above-described lean angle is negative in a region of 70% or more of the span height (a region shown by hatching in FIG. 9).
  • the lean angle inflection point P1 of the clearance flow suppression wing portion 234 of the blade 231 in this embodiment is arranged in the area of 70% or more of the span height. At the inflection point P1, the lean angle changes from negative to positive in the direction away from the wing tip 33, as in the first embodiment.
  • the span height is the span (wing width), that is, the position of a% in the longitudinal direction of the airfoil centerline on the wing tip 33 side, and the longitudinal direction of the airfoil centerline on the surface 32 of the disc. It is a height position in the direction connecting the a% position.
  • the position of the surface 32 of the disk is 0%, and the position of the wing tip 33 is 100%.
  • the secondary flow can be made to flow in the direction to reduce the clearance flow, particularly in a region where the span height having a large influence on the clearance flow is 70% or more. As a result, the clearance flow can be efficiently reduced.
  • FIG. 10 is a meridional cross-sectional view corresponding to FIG. 2 in the third embodiment of the present invention.
  • the blade 331 of the third embodiment is formed on the surface 32 facing the axial line O1 direction one side of the disk 30 similarly to the blade 31 of the first embodiment, and the circumference of the axial line O1.
  • a plurality of directions are formed at intervals.
  • the blades 331 extend away from the disk 30 and are arranged radially about the axis O1.
  • the blade 331 has an inner circumferential surface 19 a of the turbine wheel housing 19 and a wing tip 33 disposed with a slight gap S in the direction in which the blade 231 extends.
  • the wing tip 33 is formed to curve outward in the radial direction centering on the axis O1 as it goes from one side to the other side of the rotary shaft 18 in the axis O1 direction.
  • the gap S between the wing tip 33 and the inner circumferential surface 19 a has a constant size throughout the extending direction of the wing tip 33.
  • the blade 331 includes a clearance flow suppression wing portion 334 which suppresses a clearance flow flowing from the pressure surface 31 a of the blade 331 to the suction surface 31 b through the gap S.
  • the blade 331 in this third embodiment is partially formed in the fluid flow direction from the front edge 35 to the rear edge 36 of the blade 331.
  • the clearance flow suppression wing portion 334 has the same configuration as the clearance flow suppression wing portion 34 of the first embodiment described above, and the inflection point P1 of the lean angle located closest to the wing end portion 33 is the wing end portion 33. It is formed to shift from negative to positive in the direction away from.
  • the present invention is not limited to the above-described embodiments and modifications, and includes various modifications of the above-described embodiments and modifications without departing from the spirit of the present invention. . That is, the specific shape, configuration, and the like described in each embodiment and each modification are merely examples, and can be changed as appropriate.
  • the clearance flow suppression wing portion 334 is provided on the front edge 35 side in the fluid flow direction.
  • the arrangement of the clearance flow suppression wing portion 334 in the fluid flow direction is not limited to the arrangement of the modification of the third embodiment, and may be formed at least at a part between the leading edge and the trailing edge. Further, the clearance flow suppression wing portion 334 may be provided in a predetermined range from the trailing edge 36 to the leading edge 35.
  • the supercharger was a turbocharger for cars.
  • the supercharger is not limited to that for automobiles, and may be, for example, a marine turbocharger.
  • a clearance flow suppression wing part is applied to a compressor wheel of a supercharger was explained.
  • the clearance flow suppression wings can also be applied to turbine wheels.
  • the trailing edge 36 of the blade 31, 231, 331 described above is the leading edge
  • the leading edge 35 is the trailing edge.
  • this invention is applicable also to the moving blade of rotary machines, such as a gas turbine and a steam turbine, other than a supercharger, for example.
  • a clearance flow control wing part is provided in a blade of an impeller of a centrifugal compressor or a radial flow turbine.
  • axial compressors and blades of axial flow turbines are also applicable.
  • each embodiment and each modification which were mentioned above may be combined suitably, and may be used.
  • the present invention is applicable to rotary machine blades, turbochargers, and methods of forming these flow fields. According to the present invention, it is possible to efficiently reduce the clearance flow without the performance decrease and the loss increase.
  • Exhaust Introductory flow path 21 exhaust exhaust portion 21a: exhaust exhaust passage 30: disk 31, 231, 331: blade 31a: positive pressure surface 31b: negative pressure surface 32: surface 33: wing end 34, 34B, 34C, 34D, 34E, 234 , 334 ... Clearance flow Seitsubasa portion 35 ... front edge 36 ... trailing edge 37 ... curved centerline ... C1, C1B, C1C, C1D, C1E

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

回転機械翼(31)は、リーン角が変曲点を一つ以上有し、かつ正圧面(31a)から負圧面(31b)に向かう方向を正方向としたときに、最も翼端(33)側に位置するリーン角の変曲点(P1)が前記翼端(33)から離間する方向で負から正に転じるように形成されたクリアランスフロー抑制翼部(34)を備える。

Description

回転機械翼、過給機、および、これらの流れ場の形成方法
 この発明は、回転機械翼、過給機、および、これらの流れ場の形成方法に関する。
 コンプレッサーやタービンなどの回転機械は、動翼とケーシングとの隙間を流れるクリアランスフローによって性能低下することが知られている。クリアランスフローは、例えば、負圧面と正圧面との差圧によって生じる場合が多い。このクリアランスフローは、動翼が回転するための隙間を通じて流れるためゼロにはできない。そのため、クリアランスフローをできるだけ低減することが望まれている。
 特許文献1には、軸流タービンにおいて、動翼のチップクリアランスによる漏れ渦を低減するために、動翼のチップの、湾曲する腹側の翼面に弦をなすように漏れ流れ渦低減用プレートを設けることが記載されている。
日本国特許第4178545号公報
 特許文献1の動翼に形成される漏れ流れ渦低減用プレートは、動翼のチップにおける翼の周方向形状を変化させてしまう。そのため、スロート面積が減少する等により、動翼の性能が低下したり、損失が増加したりしてしまう可能性がある。
 この発明は、性能低下や損失増加することなしにクリアランスフローを効率よく低減することが可能な回転機械翼、過給機、および、これらの流れ場の形成方法を提供することを目的とする。
 この発明の第一態様によれば、回転機械翼は、リーン角が変曲点を一つ以上有し、かつ正圧面から負圧面に向かう方向を正方向としたときに、最も翼端側に位置するリーン角の変曲点が前記翼端から離間する方向で負から正に転じるように形成されたクリアランスフロー抑制翼部を備える。
 このようなクリアランスフロー抑制翼部を備えることで、翼の周方向形状を変化させることなく、翼端とシュラウドとのクリアランスフローを縮流させる方向に翼面の二次流れを流すことができる。その結果、性能低下や損失増加することなしにクリアランスフローを効率よく低減することができる。
 この発明の第二態様によれば、回転機械翼は、第一態様における最も翼端側に位置するリーン角の変曲点が、スパンハイトが70%以上の領域に少なくとも形成されていてもよい。
 このように構成することで、特にクリアランスフローへの影響が増加するスパンハイトが70%以上の領域において、クリアランスフローを低減する方向に二次流れを流すことができる。その結果、効率よくクリアランスフローを低減できる。
 この発明の第三態様によれば、回転機械翼は、第一態様におけるクリアランスフロー抑制翼部が、翼の前縁から後縁の間の少なくとも一部に形成されていてもよい。
 このように構成することで、翼の前縁から後縁の間の少なくとも一部におけるクリアランスフローを低減できる。
 この発明の第四態様によれば、回転機械翼は、第三態様におけるクリアランスフロー抑制翼部は、翼の前縁から後縁に向かって0~40%の範囲に形成されていてもよい。
 このように構成することで、特にクリアランスフローが増加する翼の前縁から後縁に向かって0~40%の範囲におけるクリアランスフローを低減できる。その結果、効率よくクリアランスフローを低減できる。
 この発明の第五態様によれば、回転機械翼は、第一から第四態様の何れか一つの態様において、少なくとも一部の前記負圧面が凹状に形成される湾曲部を備えていてもよい。
 このように湾曲部によって凹状に湾曲させることで翼の性能を向上しつつ、翼端では、クリアランスフローを低減して、性能低下や損失増加を抑制することができる。
 この発明の第六態様によれば、回転機械翼は、第一から第四態様の何れか一つの態様において、前記正圧面又は前記負圧面が直線状に形成されていてもよい。
 このように構成することで、正圧面又は負圧面が直線状であってもクリアランスフローを低減できる。
 この発明の第七態様によれば、過給機は、第一から第六態様の何れか一つの態様における回転機械翼を備える。
 このように構成することで、クリアランスフローを低減することができるため、過給機の性能を向上することができる。
 この発明の第八態様によれば、回転機械翼は、回転時に、負圧面近傍を流れる二次流れが、前記負圧面に沿って翼端側に向かって流れるような流れ場を形成する。
 この発明の第九態様によれば、回転機械翼の流れ場の形成方法は、回転機械翼の負圧面近傍を流れる二次流れが、前記負圧面に沿って前記回転機械翼の翼端側に向かって流れるように流れ場を形成する。
 この発明の第十態様によれば、過給機の流れ場の形成方法は、円盤状に形成されたディスクと前記ディスクの周方向に間隔をあけて複数形成されたブレードとを有するコンプレッサーホイールと、前記コンプレッサーホイールを収容するコンプレッサーハウジングと、タービンホイールと、前記タービンホイールを収容するタービンハウジングと、を備えた過給機において、前記コンプレッサーホイールの回転時において、前記ブレードの負圧面近傍で誘起された二次流れが前記負圧面に沿って前記ブレードの翼端側に向かって流れる流れ場を形成する。
 上記回転機械翼によれば、性能低下や損失増加することなしにクリアランスフローを効率よく低減することができる。
この発明の第一実施形態における過給器の概略構成を示す図である。 この発明の第一実施形態における回転機械極の子午線断面図である。 この発明の実施形態のおけるIII−III線に沿うブレードの断面図である。 図3の翼端部近傍の部分拡大図である。 この発明の第一実施形態の変形例における図3に相当する断面図である。 この発明の第一実施形態の変形例における図3に相当する断面図である。 この発明の第一実施形態の変形例における図3に相当する断面図である。 この発明の第一実施形態の変形例における図3に相当する断面図である。 この発明の第二実施形態における図2に相当する子午線断面図である。 この発明の第三実施形態における図2に相当する子午線断面図である。
(第一実施形態)
 次に、この発明の第一実施形態における回転機械翼、過給機、および、これらの流れ場の形成の方法を図面に基づき説明する。この実施形態の過給機は、内燃機関としてレシプロエンジン(以下、単にエンジンと称する)を駆動源として有した自動車等の車両に搭載されている。この過給機は、エンジンの排気ガスを利用して吸気を圧縮する、いわゆるターボチャージャーである。
 図1は、この発明の第一実施形態における過給器の概略構成を示す図である。図2は、この発明の第一実施形態における回転機械極の子午線断面図である。
 図1に示すように、過給機1は、コンプレッサー部2と、タービン部3と、軸受部4と、備えている。
 コンプレッサー部2は、エアクリーナー(図示せず)から導入された吸気を圧縮して、エンジン6のシリンダー7に送り込む。コンプレッサー部2は、コンプレッサーホイール8と、コンプレッサーハウジング9とを備えている。
 コンプレッサーホイール8は、その軸線O1を中心に回転する。コンプレッサーホイール8は、その遠心力により、軸線O1方向から流入する吸気Aを、軸線を中心とした径方向の内側から外側に向かって圧縮しながら流す。このコンプレッサーホイール8により圧縮された圧縮空気Bは、軸線O1を中心とする径方向において、コンプレッサーホイール8の外側に向かって排出される。
 コンプレッサーハウジング9は、ホイール収容部10と、導入部11と、排出部12と、を備えている。ホイール収容部10は、コンプレッサーホイール8が回転可能な状態で外側から覆っている。導入部11は、ホイール収容部10に対してコンプレッサーホイール8の回転中心の近くで連通している。この導入部11は、ホイール収容部10に対して軸線O1方向に吸気Aを導入する導入流路13を形成している。排出部12は、コンプレッサーホイール8の径方向の外側でホイール収容部10と連通している。この排出部12は、ディフューザーやスクロール流路(図示せず)等を介してインテークマニホールド14に接続されている。この排出部12は、圧縮空気Bを、インテークマニホールド14を介してエンジン6のシリンダー7へ導入する排出通路15を形成している。
 タービン部3は、タービンホイール16と、タービンハウジング17とを備えている。
 タービンホイール16は、エンジン6から排出される排気ガスCの熱エネルギーの一部を回収して、その軸線O2回りに回転する。
 タービンハウジング17は、タービンホイール収容部19と、排気導入部20と、排気排出部21と、を備えている。
 タービンホイール収容部19は、タービンホイール16が回転可能な状態で外側から覆っている。
 排気導入部20は、エンジン6の排気ガスをタービンホイール収容部19へ導入する排気導入流路20aを形成する。この排気導入部20は、スクロール(図示せず)を介して排気ガスをタービンホイール収容部19へ導入する。
 タービンホイール収容部19は、タービンホイール16の径方向外側で排気導入部20と連通している。
 排気排出部21は、コンプレッサーホイール8の回転中心の近くでタービンホイール収容部19に連通する排気排出通路21aを形成する。
 軸受部4は、回転軸18と、軸受ハウジング(図示せず)と、を備えている。
 回転軸18は、タービンホイール16の回転を、コンプレッサーホイール8に伝達する。回転軸18は、その第一端部18aにタービンホイール16が固定され、その第二端部18bにコンプレッサーホイール8が固定されている。
 ここで、軸受ハウジング(図示せず)は、回転軸18を外側から覆う。この軸受ハウジングは、回転軸18を回転自在に支持する軸受(図示せず)を有している。軸受ハウジングには、上述したコンプレッサーハウジング9やタービンハウジング17がそれぞれ固定される。
 次に、上述した過給機1の備えるコンプレッサーホイール8、および、タービンホイール16の翼形状について説明する。この翼形状は、例えば、上述したコンプレッサーホイール8、および、タービンホイール16の両方に用いることができる。そのため、この実施形態の説明においては、コンプレッサーホイール8の翼形状のみを説明し、タービンホイール16の翼形状については、回転軸18の回転方向に対してブレードの正圧面と負圧面とが反対側になるだけであるため詳細説明を省略する。
 図2は、この発明の第一実施形態におけるコンプレッサーホイールの軸線に沿う断面図である。
 図2に示すように、コンプレッサーホイール8は、ディスク30と、ブレード31と、を備えている。
 ディスク30は、軸線O1を中心とした円盤状に形成されている。より具体的には、ディスク30は、軸線O1方向における回転軸18の一方側(図2中、左側)から他方側(図2中、右側)に向かうにつれて、軸線O1を中心とした径方向で漸次拡径するように形成されている。
 ブレード31は、ディスク30の軸線O1方向一方側を向く面32に形成されるとともに、軸線O1の周方向に間隔をあけて複数形成されている。さらに、これらブレード31は、ディスク30から離間するように延びるとともに、軸線O1を中心に放射状に配置されている。
 また、ブレード31は、タービンホイール収容部19の内周面19aと、そのブレード31の延びる方向で僅かな隙間Sを介して配置される翼端部33を有している。この翼端部33は、ディスク30の面32と同様に、軸線O1方向における回転軸18の一方側から他方側に向かうにつれて、軸線O1を中心とした径方向で外側に向かって湾曲するように形成されている。ここでは、簡素化のため翼端部33と、内周面19aとの隙間Sは、翼端部33の延びる方向の全域で、翼端隙間一定の図を示す。
 図3は、この発明の実施形態のおけるIII−III線に沿うブレードの断面図である。
 図3に示すブレード31の断面は、図2における翼端部33側における翼型中心線の長さ方向におけるa%の位置と、ディスク30の面32側における翼型中心線の長さ方向におけるa%の位置とを結ぶ直線を、軸線O1回りに回転させて形成される円錐断面でコンプレッサーホイール8を切ったときのブレード31の断面である。ここで、「a」は、0から100の間の任意の値である。
 ブレード31は、上述した隙間Sを通じてブレード31の正圧面31aから負圧面31bに向かって流れるクリアランスフローを抑制するクリアランスフロー抑制翼部34を備えている。この実施形態におけるクリアランスフロー抑制翼部34は、ブレード31の前縁35から後縁36に向かう流体の流れ方向の全域に形成されている。図3において、コンプレッサーホイール8の回転方向を白抜き矢印で示している。
 クリアランスフロー抑制翼部34は、リーン角が変曲点を一つ以上有し、かつ、図3の断面において最も翼端部33側に位置する変曲点が、ブレード31の正圧面31aから負圧面31bに向かう方向を正方向としたときにリーン角が負から正に転じるように形成されている。
 ここで、リーン角とは、上述した図3の断面において、軸線O1から径方向に延びる仮想直線Kとのなす角度である。言い換えれば、リーン角は、軸線O1を中心とする放射方向に対するブレード31の倒れ角である。
 この実施形態におけるクリアランスフロー抑制翼部34は、図3の断面におけるブレード31の中心線(図3中、一点鎖線で示す)C1のリーン角が、変曲点を一つ以上有し、かつ、最も翼端部33側に位置する変曲点が、ブレード31の正圧面31aから負圧面31bに向かう方向を正方向としたときにリーン角が負から正に転じるように形成されている。
 この実施形態におけるブレード31は、リーン角の変曲点を2つ有している場合を例示している。図3においては、3箇所のリーン角θ1,θ2,θ3を例示している。また、ブレード31のリーン角の2つの変曲点P1,P2を例示している。ここで、これらリーン角は、例えば、軸線O1を中心とした径方向に延びている場合にリーン角が0度となる。すなわち、この実施形態におけるリーン角は、中心線C1と仮想直線Kとのなす角のうち、中心線C1と仮想直線Kとの交点に対して軸線O1を中心とする径方向の外側における鋭角の角度を指す。
 この図3に示すようにリーン角θ1は、正圧面31aから負圧面31bに向かう方向を正方向とした場合、正の角度となる。一方で、リーン角θ2は、負の角度となる。そして、これらリーン角θ1の位置とリーン角θ2の位置との間の変曲点P1で、リーン角の正負が逆転する。すなわち、翼端部33から離間するにつれてリーン角が正の角度から負の角度に転じる。
 この実施形態においては、軸線O1を中心とする径方向において外側の翼端部33から変曲点P1に向かって、徐々に正のリーン角の絶対値が小さくなり変曲点P1でゼロとなる。一方で、変曲点P1から径方向内側に向かうにつれて、負のリーン角の絶対値が徐々に大きくなる。そして、変曲点P1と変曲点P2との間で負のリーン角の絶対値が最大となる。上述したリーン角θ2は、このリーン角が最大となる位置の近傍のリーン角である。
 その後、上述した変曲点P1とは反対に、変曲点P2に近づくにつれて、負のリーン角の絶対値が小さくなり、変曲点P2でゼロとなり、その後、変曲点P2から径方向内側に向かうにつれて徐々に正のリーン角の絶対値が大きくなる。上述したリーン角θ3は、この変曲点P2よりも径方向内側におけるリーン角である。
 ブレード31は、負圧面31bが凹状に形成される湾曲部37を備えている。この実施形態における湾曲部37は、図3の断面において、中心線C1が負圧面31b側に向かって凹状に湾曲しており、ブレード31自体が湾曲している。この実施形態における湾曲部37は、最も翼端部33側の変曲点である変曲点P1よりも軸線O1を中心とした径方向の内側に形成されている。
 次に、上述したクリアランスフロー抑制翼部34の作用を説明する。
 図4は、図3の翼端部近傍の部分拡大図である。
 図4に示すように、ブレード31は、その翼端部33付近の領域が、正圧面31a側に倒れるように形成されている。そのため、コンプレッサーホイール8の回転時、ブレード31の負圧面31b側では、負圧面31b付近を流れる二次流れF2が、負圧面31bに沿って翼端部33側に向かって流れやすくなる。この際、ブレード31の揚力の方向が斜め上方を向く状態では、揚力が半径方向成分を持つこととなる。この状態において、二次流れF2が径方向外側に向かって流れ易くなる。つまり、ブレード31は、負圧面31b近傍を流れる(言い換えれば、負圧面31b近傍で誘起される)二次流れF2が、負圧面31bに沿って翼端部33側に向かって流れるような流れ場を形成する。
 このように二次流れF2が負圧面31bに沿って翼端部33に向かって流れることで、二次流れF2がクリアランスフローFcの流れに抗する成分および、径方向外側に押し込む成分を含むこととなり、クリアランスフローFcが縮流される。
 一方で、正圧面31a側においては、正圧面31aが斜め下方すなわち、軸線O1を中心とする径方向内側を向くこととなる。そのため、正圧面31aに衝突する流体は、この径方向内側に向かいやすくなり、これにより遠心力によって正圧面31aを翼端部33に向かって、駆け上がるように流れようとする二次流れF2を抑制できる。そのため、隙間Sへ流入する流体を減少させることができる。なお、図4においても、コンプレッサーホイール8の回転する方向を白抜き矢印で示している。
 したがって、上述した第一実施形態によれば、クリアランスフロー抑制翼部34を備えることで、ブレード31の周方向形状を変化させることなく、翼端部33と内周面19aとのクリアランスフローFcを縮流させる方向に二次流れF2を流すことができる。その結果、ブレード31の性能低下や損失増加することなしにクリアランスフローFcを効率よく低減することができる。
 さらに、湾曲部37によって負圧面31b側が凹状となるように湾曲させることでブレード31の性能を向上しつつ、翼端部33では、クリアランスフローFcを低減して、性能低下や損失増加を抑制することができる。
(第一実施形態の変形例)
 クリアランスフロー抑制翼部34の形状は、上述した第一実施形態の形状に限られない。次に、上述した第一実施形態の各変形例を図面に基づき説明する。これら各変形例の説明においては、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
(第一変形例)
 図5は、この発明の第一実施形態の変形例における図3に相当する断面図である。
 上述した第一実施形態においては、変曲点P1,P2を有する曲線状に中心線C1が形成されているクリアランスフロー抑制翼部34を例示した。しかし、図5に示すように、第一実施形態のクリアランスフロー抑制翼部34の曲線状の中心線C1を、直線の組合せからなる中心線C1Bに置き換えても良い。このクリアランスフロー抑制翼部34Bにおいても、最も翼端部33側に位置する変曲点P1でリーン角が負から正に転じるように形成されている。
(第二変形例)
 図6は、この発明の第一実施形態の変形例における図3に相当する断面図である。
 第一変形例においては、直線の組合せによりクリアランスフロー抑制翼部34Bの中心線C1Bを構成する場合について説明した。しかし、図6に示す第二変形例のクリアランスフロー抑制翼部34Cのように、直線と曲線とを組み合わせても良い。この第二変形例におけるクリアランスフロー抑制翼部34Cは、翼端部33に近い側の中心線C1Cが直線で形成される場合を例示している。図6中、中心線C1Cが直線の区間を「St」、曲線の区間を「Cr」で示している。
(第三、第四変形例)
 図7は、この発明の第一実施形態の変形例における図3に相当する断面図である。図8は、この発明の第一実施形態の変形例における図3に相当する断面図である。
 上述した第一実施形態では、正圧面31aと負圧面31bとの両方が曲線によって形成される場合について説明した。しかし、図7に示す第三変形例のクリアランスフロー抑制翼部34Dのように、正圧面31aを一直線状に形成し、負圧面31bのみを曲線により形成しても良い。この図7に示すクリアランスフロー抑制翼部34Dも、中心線C1Dのリーン角の変曲点を2つ(図7中、P1,P2)有している。この図7に示す第三変形例のブレード31は、翼端部33ほど回転方向(図7中、白抜き矢印で示す)の前方に位置するように、全体が傾斜して形成されている。これにより、正圧面31aが回転方向前方に向かって傾斜している。
 さらに、第三変形例とは反対に、図8に示す第四変形例のクリアランスフロー抑制翼部34Eのように、負圧面31bを一直線状に形成し、正圧面31aのみを曲線により形成しても良い。図8に示すクリアランスフロー抑制翼部34Eは、中心線C1Eのリーン角の変曲点を3つ(図8中、P1~P3)有している。
(第二実施形態)
 次に、この発明の第二実施形態のクリアランスフロー抑制翼部を図面に基づき説明する。この第二実施形態のクリアランスフロー抑制翼部は、ブレードの一部にクリアランスフロー抑制翼部が形成されている点でのみ第一実施形態と異なる。そのため、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
 図9は、この発明の第二実施形態における図2に相当する子午線断面図である。
 図9に示すように、この第二実施形態におけるブレード231は、第一実施形態のブレード31と同様に、ディスク30の軸線O1方向一方側を向く面32に形成されるとともに、軸線O1の周方向に間隔をあけて複数形成されている。さらに、これらブレード231は、ディスク30から離間するように延びるとともに、軸線O1を中心に放射状に配置されている。
 ブレード231は、タービンホイール収容部19の内周面19aと、そのブレード231の延びる方向で僅かな隙間Sを介して配置される翼端部33を有している。この翼端部33は、軸線O1方向における回転軸18の一方側から他方側に向かうにつれて、軸線O1を中心とした径方向で外側に向かって湾曲するように形成されている。翼端部33と、内周面19aとの隙間Sは、翼端部33の延びる方向の全域で、一定の大きさとされている。
 ブレード231は、隙間Sを通じてブレード231の正圧面31aから負圧面31bに向かって流れるクリアランスフローを抑制するクリアランスフロー抑制翼部34を備えている。この第二実施形態におけるブレード231は、スパンハイト70%以上の領域(図9中、網掛けで示す領域)に、上述したリーン角が負となる領域を有している。この実施形態におけるブレード231のクリアランスフロー抑制翼部234のリーン角の変曲点P1は、スパンハイト70%以上の領域に配置されている。変曲点P1においては、第一実施形態と同様に、翼端部33から離間する方向でリーン角が負から正に転じる。
 ここで、スパンハイトとは、スパン(翼幅)すなわち、翼端部33側における翼型中心線の長さ方向におけるa%の位置と、ディスクの面32側における翼型中心線の長さ方向におけるa%の位置とを結ぶ方向における高さ位置である。スパンハイトは、ディスクの面32の位置が0%であり、翼端部33の位置が100%である。
 したがって、上述した第二実施形態によれば、特にクリアランスフローへの影響が大きいスパンハイトが70%以上の領域において、クリアランスフローを低減する方向に二次流れを流すことができる。その結果、効率よくクリアランスフローを低減することができる。
(第三実施形態)
 次に、この発明の第三実施形態を図面に基づき説明する。上述した第一実施形態では、クリアランスフロー抑制翼部34が、ブレード31の全域に形成される場合について説明した。この第三実施形態は、クリアランスフロー抑制翼部34が、ブレード31の一部の領域に形成される点でのみ第一実施形態と異なる。そのため、上述した第一実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
 図10は、この発明の第三実施形態における図2に相当する子午線断面図である。
 図10に示すように、この第三実施形態のブレード331は、第一実施形態のブレード31と同様に、ディスク30の軸線O1方向一方側を向く面32に形成されるとともに、軸線O1の周方向に間隔をあけて複数形成されている。さらに、これらブレード331は、ディスク30から離間するように延びるとともに、軸線O1を中心に放射状に配置されている。
 ブレード331は、タービンホイール収容部19の内周面19aと、そのブレード231の延びる方向で僅かな隙間Sを介して配置される翼端部33を有している。この翼端部33は、軸線O1方向における回転軸18の一方側から他方側に向かうにつれて、軸線O1を中心とした径方向で外側に向かって湾曲するように形成されている。翼端部33と、内周面19aとの隙間Sは、翼端部33の延びる方向の全域で、一定の大きさとされている。
 ブレード331は、隙間Sを通じてブレード331の正圧面31aから負圧面31bに向かって流れるクリアランスフローを抑制するクリアランスフロー抑制翼部334を備えている。この第三実施形態におけるブレード331は、ブレード331の前縁35から後縁36までの流体が流れる方向において、一部に形成されている。
 より具体的には、この第三実施形態においては、ブレード331の前縁35を0%とすると、上述した流体が流れる方向で、後縁36に向かって0%から40%の範囲(図10中、網掛けで示す)に形成されている。クリアランスフロー抑制翼部334は、上述した第一実施形態のクリアランスフロー抑制翼部34と同様の構成であり、最も翼端部33側に位置するリーン角の変曲点P1が、翼端部33から離間する方向で負から正に転じるように形成されている。
 したがって、上述した第三実施形態によれば、特にクリアランスフローが増加する翼の前縁から後縁に向かって0~40%の範囲におけるクリアランスフローを低減できる。その結果、効率よくクリアランスフローを低減することが可能となる。
 この発明は、上述した各実施形態や各変形例に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した各実施形態や各変形例に種々の変更を加えたものを含む。すなわち、各実施形態や各変形例で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上述した第三実施形態においては、流体の流れる方向における前縁35側にクリアランスフロー抑制翼部334を設ける場合について説明した。しかし、流体の流れる方向におけるクリアランスフロー抑制翼部334の配置は、第三実施形態の変形例の配置に限られず、前縁と後縁との間の少なくとも一部に形成されていればよい。また、後縁36から前縁35に向かう所定範囲にクリアランスフロー抑制翼部334を設けても良い。
 上述した各実施形態においては、過給機が自動車用のターボチャージャーである場合について説明した。しかし、過給機は、自動車用に限られず、例えば、舶用ターボチャージャーであっても良い。更に、クリアランスフロー抑制翼部を過給機のコンプレッサーホイールに適用する場合について説明した。しかし、クリアランスフロー抑制翼部は、タービンホイールにも適用できる。この場合、上述したブレード31,231,331の後縁36が前縁となり、前縁35が後縁となる。
 また、この発明は、過給機以外の例えば、ガスタービン、蒸気タービン等の回転機械の動翼にも適用可能である。更に、上述した各実施形態においては、クリアランスフロー抑制翼部を遠心圧縮機や半径流タービンのインペラのブレードに設ける場合について例示した。しかし、軸流圧縮機や軸流タービンの動翼にも適用可能である。
 さらに、上述した各実施形態および各変形例は、適宜組み合わせて用いても良い。
 この発明は、回転機械翼、過給機、および、これらの流れ場の形成の方法に適用可能である。この発明によれば、性能低下や損失増加することなしにクリアランスフローを効率よく低減することが可能となる。
 1…過給機 2…コンプレッサー部 3…タービン部 4…軸受部 6…エンジン 7…シリンダー 8…コンプレッサーホイール 9…コンプレッサーハウジング 10…ホイール収容部 11…導入部 12…排出部 13…導入流路 14…インテークマニホールド 15…排出通路 16…タービンホイール 17…タービンハウジング 18…回転軸 18a…第一端部 18b…第二端部 19…タービンホイール収容部 19a…内周面 20…排気導入部 20a…排気導入流路 21…排気排出部 21a…排気排出通路 30…ディスク 31,231,331…ブレード 31a…正圧面 31b…負圧面 32…面 33…翼端部 34,34B,34C,34D,34E,234,334…クリアランスフロー抑制翼部 35…前縁 36…後縁 37…湾曲部 中心線…C1,C1B,C1C,C1D,C1E

Claims (10)

  1.  リーン角が変曲点を一つ以上有し、かつ正圧面から負圧面に向かう方向を正方向としたときに、最も翼端側に位置するリーン角の変曲点が前記翼端から離間する方向で負から正に転じるように形成されたクリアランスフロー抑制翼部を備える回転機械翼。
  2.  前記最も翼端側に位置するリーン角の変曲点は、
     スパンハイトが70%以上の領域に少なくとも形成されている請求項1に記載の回転機械翼。
  3.  前記クリアランスフロー抑制翼部は、翼の前縁から後縁の間の少なくとも一部に形成されている請求項1に記載の回転機械翼。
  4.  前記クリアランスフロー抑制翼部は、
     翼の前縁から後縁に向かって0~40%の範囲に形成されている請求項3に記載の回転機械翼。
  5.  少なくとも一部の前記負圧面が凹状に形成される湾曲部を備える請求項1から4の何れか一項に記載の回転機械翼。
  6.  前記正圧面又は前記負圧面が直線状に形成されている請求項1から4の何れか一項に記載の回転機械翼。
  7.  請求項1から6の何れか一項に記載の回転機械翼を備える過給機。
  8.  回転時に、負圧面近傍を流れる二次流れが、前記負圧面に沿って翼端側に向かって流れるような流れ場を形成する回転機械翼。
  9.  回転機械翼の負圧面近傍を流れる二次流れが、前記負圧面に沿って前記回転機械翼の翼端側に向かって流れるように流れ場を形成する回転機械翼の流れ場の形成方法。
  10.  円盤状に形成されたディスクと前記ディスクの周方向に間隔をあけて複数形成されたブレードとを有するコンプレッサーホイールと、
     前記コンプレッサーホイールを収容するコンプレッサーハウジングと、
     タービンホイールと、
     前記タービンホイールを収容するタービンハウジングと、
    を備えた過給機において、
     前記コンプレッサーホイールの回転時において、前記ブレードの負圧面近傍で誘起された二次流れが前記負圧面に沿って前記ブレードの翼端側に向かって流れる流れ場を形成する過給機の流れ場の形成方法。
PCT/JP2016/061641 2016-03-31 2016-03-31 回転機械翼、過給機、および、これらの流れ場の形成方法 WO2017168766A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/061641 WO2017168766A1 (ja) 2016-03-31 2016-03-31 回転機械翼、過給機、および、これらの流れ場の形成方法
US16/082,191 US11041505B2 (en) 2016-03-31 2016-03-31 Rotary machine blade, supercharger, and method for forming flow field of same
CN201680083160.4A CN108779708B (zh) 2016-03-31 2016-03-31 旋转机械叶片、增压器及旋转机械叶片和增压器的流场的形成方法
EP16896983.0A EP3412892B1 (en) 2016-03-31 2016-03-31 Rotary machine blade, supercharger, and method for forming flow field of same
JP2018508348A JP6710271B2 (ja) 2016-03-31 2016-03-31 回転機械翼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061641 WO2017168766A1 (ja) 2016-03-31 2016-03-31 回転機械翼、過給機、および、これらの流れ場の形成方法

Publications (1)

Publication Number Publication Date
WO2017168766A1 true WO2017168766A1 (ja) 2017-10-05

Family

ID=59963845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061641 WO2017168766A1 (ja) 2016-03-31 2016-03-31 回転機械翼、過給機、および、これらの流れ場の形成方法

Country Status (5)

Country Link
US (1) US11041505B2 (ja)
EP (1) EP3412892B1 (ja)
JP (1) JP6710271B2 (ja)
CN (1) CN108779708B (ja)
WO (1) WO2017168766A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073551A1 (ja) * 2017-10-11 2019-04-18 三菱重工エンジン&ターボチャージャ株式会社 遠心式回転機械のインペラ及び遠心式回転機械

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215471A1 (ja) * 2020-04-23 2021-10-28 三菱重工マリンマシナリ株式会社 インペラ、及び遠心圧縮機
CN113757134B (zh) * 2021-07-28 2023-07-14 浙江镕达永能压缩机有限公司 双叶轮背对布置的离心蒸汽压缩机
GB2611561A (en) * 2021-10-08 2023-04-12 Cummins Ltd Compressor impeller
US11603857B1 (en) * 2022-02-22 2023-03-14 Garrett Transportation I Inc. Turbocharger turbine wheel
CN116044514B (zh) * 2023-03-17 2023-07-18 潍柴动力股份有限公司 涡轮及涡轮增压器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031219A (ja) * 2013-08-05 2015-02-16 株式会社Ihi ラジアルタービン及び過給機
JP5762641B2 (ja) * 2012-09-06 2015-08-12 三菱重工業株式会社 斜流タービン
US20160061216A1 (en) * 2014-08-27 2016-03-03 Pratt & Whitney Canada Corp. Compressor rotor airfoil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH351065A (de) 1957-02-21 1960-12-31 Ingenieurbureau W Hausammann & Laufrad für Turbomaschinen, speziell Axialkompressoren
JP4178545B2 (ja) 2002-10-02 2008-11-12 株式会社Ihi 回転機械の動翼
JP4691002B2 (ja) 2006-11-20 2011-06-01 三菱重工業株式会社 斜流タービンまたはラジアルタービン
DE102008020673B4 (de) 2007-05-09 2018-10-31 Schaeffler Technologies AG & Co. KG Abgestufte Statorschaufel
DE102008004014A1 (de) * 2008-01-11 2009-07-23 Continental Automotive Gmbh Leitschaufel für eine variable Turbinengeometrie
US20100298924A1 (en) 2009-05-19 2010-11-25 Tayside Flow Technologies Ltd. Vascular Graft
JP5608062B2 (ja) 2010-12-10 2014-10-15 株式会社日立製作所 遠心型ターボ機械
JP5611307B2 (ja) * 2012-11-06 2014-10-22 三菱重工業株式会社 遠心回転機械のインペラ、遠心回転機械
EP3009686B1 (en) * 2013-06-13 2017-11-15 Mitsubishi Heavy Industries, Ltd. Impeller and fluid machine
DE102014003123A1 (de) * 2014-03-03 2015-09-03 Mtu Friedrichshafen Gmbh Verdichter
WO2016035329A1 (ja) 2014-09-04 2016-03-10 株式会社デンソー ターボチャージャの排気タービン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5762641B2 (ja) * 2012-09-06 2015-08-12 三菱重工業株式会社 斜流タービン
JP2015031219A (ja) * 2013-08-05 2015-02-16 株式会社Ihi ラジアルタービン及び過給機
US20160061216A1 (en) * 2014-08-27 2016-03-03 Pratt & Whitney Canada Corp. Compressor rotor airfoil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073551A1 (ja) * 2017-10-11 2019-04-18 三菱重工エンジン&ターボチャージャ株式会社 遠心式回転機械のインペラ及び遠心式回転機械
JPWO2019073551A1 (ja) * 2017-10-11 2020-04-09 三菱重工エンジン&ターボチャージャ株式会社 遠心式回転機械のインペラ及び遠心式回転機械
US11525457B2 (en) 2017-10-11 2022-12-13 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller for centrifugal turbomachine and centrifugal turbomachine

Also Published As

Publication number Publication date
US11041505B2 (en) 2021-06-22
JP6710271B2 (ja) 2020-06-17
CN108779708A (zh) 2018-11-09
EP3412892A1 (en) 2018-12-12
JPWO2017168766A1 (ja) 2018-12-27
EP3412892B1 (en) 2020-03-18
EP3412892A4 (en) 2019-01-23
CN108779708B (zh) 2021-02-12
US20200088210A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2017168766A1 (ja) 回転機械翼、過給機、および、これらの流れ場の形成方法
JP6017033B2 (ja) 半径流入式軸流タービン及びターボチャージャ
WO2006080055A1 (ja) ターボファンエンジン
WO2018146753A1 (ja) 遠心圧縮機、ターボチャージャ
JP6210459B2 (ja) インペラ、及び回転機械
US10746025B2 (en) Turbine wheel, radial turbine, and supercharger
CN109804149B (zh) 可变喷嘴单元以及增压器
CN111630250B (zh) 涡轮
CN111911455A (zh) 离心压缩机的叶轮、离心压缩机以及涡轮增压器
US11821339B2 (en) Turbocharger
WO2022054561A1 (ja) タービンホイール、タービン及びターボチャージャ
JP2016108994A (ja) 圧縮機インペラ、遠心圧縮機、及び過給機
JP7435164B2 (ja) タービンおよび過給機
US20210102471A1 (en) Turbine and turbocharger
JP7501254B2 (ja) タービンおよび過給機
CN110770449B (zh) 压缩机叶轮、压缩机以及涡轮增压器
US11835057B2 (en) Impeller of centrifugal compressor, centrifugal compressor, and turbocharger
WO2019167181A1 (ja) 半径流入式タービン及びターボチャージャー
JP7491151B2 (ja) タービンおよび過給機
JP7395002B2 (ja) タービン及びターボチャージャ
JP7413514B2 (ja) スクロールケーシングおよび遠心圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508348

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2016896983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016896983

Country of ref document: EP

Effective date: 20180903

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896983

Country of ref document: EP

Kind code of ref document: A1