WO2017168715A1 - Respiration measuring conversion device for respirometer, respirometer equipped with respiration measuring conversion device, and respiration measuring method - Google Patents

Respiration measuring conversion device for respirometer, respirometer equipped with respiration measuring conversion device, and respiration measuring method Download PDF

Info

Publication number
WO2017168715A1
WO2017168715A1 PCT/JP2016/060801 JP2016060801W WO2017168715A1 WO 2017168715 A1 WO2017168715 A1 WO 2017168715A1 JP 2016060801 W JP2016060801 W JP 2016060801W WO 2017168715 A1 WO2017168715 A1 WO 2017168715A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
respiration
respiratory
measurement
conversion device
Prior art date
Application number
PCT/JP2016/060801
Other languages
French (fr)
Japanese (ja)
Inventor
巌 木幡
中井 嘉之
Original Assignee
株式会社木幡計器製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社木幡計器製作所 filed Critical 株式会社木幡計器製作所
Priority to PCT/JP2016/060801 priority Critical patent/WO2017168715A1/en
Priority to JP2016569099A priority patent/JP6128541B1/en
Publication of WO2017168715A1 publication Critical patent/WO2017168715A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow

Definitions

  • the present invention relates to a respiration measurement conversion device for a respiration measuring device, a respiration measuring device equipped with the respiration measuring conversion device, and a respiration measuring method. More specifically, a breathing device showing a breathing volume or a breathing pressure by being attached to a breathing measuring instrument having a cylinder, a piston that moves in the cylinder, and a marker that moves as the piston moves to indicate the uppermost position of the piston.
  • the present invention relates to a respiration measurement conversion device for a respiration measuring instrument that measures a scale by converting it into an electric signal, a respiration measuring instrument to which the respiration measuring apparatus is attached, and a respiration measuring method.
  • the present invention is a respiration measurement conversion device for a respiration measurement device that can be easily attached to an existing mechanical respiration measurement device and digitized measurement values, and a respiration measurement device equipped with the respiration measurement conversion device.
  • An object of the present invention is to provide a respiration measurement method.
  • the respiration measurement conversion device for a respiration measuring device is characterized by a cylinder, a piston that moves in the cylinder, and an uppermost position of the piston that moves as the piston moves.
  • a breathing scale indicating an expiratory volume or an expiratory pressure is converted into an electrical signal by being attached to a respiration measuring device having a marker, the main body attached to the cylinder, and the vicinity of the movement range of the marker on the main body
  • a plurality of detection heads arranged along the moving direction of the marker, and the position and reality of the detection head through the change of the output value of the detection head accompanying the proximity of the marker to any one of the detection heads
  • a calibration storage unit for storing calibration information of the detection head and the respiratory scale in contrast to the scale of the respiratory measuring instrument is provided for respiratory measurement.
  • Ri in the control information of the position and the calibration memory portion of the detection head in proximity of the detected markers, further comprising an output unit for outputting the value of the respiration scale as an electric signal.
  • the position of the marker can be detected by positioning the detection head on the side thereof. Moreover, since the marker and the detection head are not in contact with each other, there is no possibility that the digitization directly affects the mechanical measurement.
  • the detection head can output an accurate value by calibration accompanying manual operation of the marker.
  • the detection head does not hinder the visual observation of the marker, data can be electronically recorded at the same time while checking the scale with the naked eye.
  • the apparatus further includes a timer that detects the start of movement of the marker and measures the time from the start of movement, and the change in the position of the marker is predetermined even after a predetermined time has elapsed from the start of movement. It is good to provide the determination part which determines with respiration measurement failure when it does not reach a value. As a result, there is insufficient exhalation at the time of start shown in FIG. 8B (detection in the case of air leak or insufficient momentum of exhalation), and sufficient exhalation is blown at the end shown in FIGS. 8D and 8E. It is possible to automatically detect the absence (detection when not exhaling) and to alert the user not to acquire data as an error.
  • the main body is in the form of a sheet, and preferably has an affixing layer that can be detachably attached to the cylinder. This makes it possible to digitize data without impairing the functions of the original mechanical measuring instrument. Moreover, since it can be easily removed, the respiratory measurement device can be cleaned, and the contribution in terms of hygiene is improved.
  • the cylinder may have a square shape with the piston moving direction as one side, and may have a pair of flaps that are engaged with corners of the cylinder at a distance in the piston moving direction. This facilitates alignment when the detection head is moved along the movement range of the marker.
  • the detection head is a detection electrode, and a ground electrode is further provided on the main body along the movement direction of the marker, and the detection electrode is disposed between the ground electrode and the marker movement range,
  • the calibration may be performed by a change in capacitance between the detection electrode and the ground electrode accompanying the proximity of the marker to the detection electrode.
  • the detection head is a detection coil
  • the marker is provided with a marker spring made of a conductive material
  • the calibration is performed by a change in the inductance of the detection coil accompanying the proximity of the spring to the detection coil. It should be a thing. Accordingly, since the electronic measurement is similarly performed using the marker itself, the measurement can be started simply by attaching the present measurement conversion device without disturbing the original mechanical measurement without contact.
  • the detection head is a magnetic sensor, and the marker is provided with a magnetic marker made of a magnetic material, and the calibration is performed by changing the resistance value of the magnetic sensor as the magnetic marker approaches the magnetic sensor. It should be a thing. As a result, electronic measurement is performed with a slight operation of adding a magnet to the marker, so that measurement can be started simply by attaching the present measurement conversion device without disturbing the original mechanical measurement without contact.
  • respiration measuring device It can be implemented as a respiration measuring device by attaching a respiration measuring conversion device for a respiration measuring device as described above.
  • the respiration measurement method according to the present invention is characterized by a respiration having a cylinder, a piston that moves within the cylinder, and a marker that moves along with the movement of the piston and indicates the uppermost position of the piston.
  • a respiratory scale indicating an expiratory volume or an expiratory pressure by attaching to a measuring device by converting to an electric signal, a main body attached to the cylinder, and the movement of the marker on the main body in the vicinity of the moving range of the marker
  • a plurality of detection heads arranged along a direction, and the position of the detection head through the change of the output value of the detection head accompanying the proximity of the marker to any one of the detection heads and the actual respiratory measurement device The calibration information of the detection head and the respiratory scale is stored in the calibration storage unit by contrast with the scale, and the marker detected by the respiratory measurement is stored. In that said by control information of the position and the calibration memory portion of the detector head from the output unit the value of the respiratory graduation as an electrical signal contact.
  • the respiratory measurement device includes at least two zone markers, aligns the markers with the positions of the zone markers, stores the positions of the zone markers in the storage unit, and the markers are in the range of both zone markers at the time of measurement.
  • An alarm signal should be generated when it enters.
  • the respiratory measurement conversion device for a respiratory measurement device According to the above-described features of the respiratory measurement conversion device for a respiratory measurement device according to the present invention, the respiratory measurement device to which the respiratory measurement conversion device is attached, and the respiratory measurement method, the measurement value is digitized by being easily attached to an existing mechanical respiratory measurement device It became possible to be able to. As a result, the user is accustomed to use or can digitize the measurement values by using a general-purpose and inexpensive mechanical respiratory measurement device, and can manage the expiration etc. rationally.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1. It is a block diagram of the measurement system using the respiration measurement conversion apparatus which concerns on this invention. It is a flowchart for demonstrating operation
  • FIG. 8 is a graph showing the operation of the flowchart of FIG.
  • FIG. 3 is a view corresponding to FIG. 2 in a second embodiment of the respiratory measurement conversion device according to the present invention.
  • FIG. 6 is a view corresponding to FIG. 5 in a second embodiment of the present invention. It is a circuit diagram in a 2nd embodiment of the present invention.
  • FIG. 6 is a view corresponding to FIG. 2 in a third embodiment of the respiratory measurement conversion device according to the present invention.
  • FIG. 6 is a view corresponding to FIG. 5 in a third embodiment of the present invention. It is a circuit diagram in a 3rd embodiment of the present invention.
  • FIG. 1 shows a respiratory measurement device 1 to which a respiratory measurement conversion device 20 is attached.
  • This respiratory measurement device is an exhalation measurement device (peak flow meter).
  • the display surface of the respirometer 1 of FIG. 1 is originally the back, the front of the respiration measurement conversion device 20 is displayed, and for the purpose of unifying the display, “FIG. 1 is a front perspective view”.
  • the respiration measuring instrument 1 is provided with a respiration scale 2b on the surface of the measuring instrument main body 2 having a cylinder 2a inside, and a mouthpiece 3 for inhaling breath communicates with the cylinder 2a.
  • a slide shaft 4 is provided in the cylinder 2 a along a piston moving direction DL, which is the longitudinal direction of the measuring device main body 2, and the piston 5 and the slider 6 x of the marker 6 penetrate the slide shaft 4.
  • a moving groove 7 is formed on the surface side of the measuring instrument main body 4 along the piston moving direction DL, and the marker 6 moves along the moving groove 7 and the previous slide shaft 4.
  • the marker is provided with a marker stationary mechanism, which will be described later, and stops at the upper end of movement.
  • the value of the marker 6 is measured by the respiratory scale 2b for confirming the stationary position of the marker 6.
  • the measuring instrument main body 2 is provided with three zone markers 8 for marker determination.
  • the upper zone marker 8a, middle zone marker 8b, and lower zone marker 8c are for setting a red zone, a yellow zone, and a green zone, respectively, and can be moved up and down by hand.
  • the marker stationary mechanism is composed of a slider 6x and a spring 6e as shown in FIG.
  • the slider 6x connects the front enormous portion 6a and the back enormous portion 6b by the connecting portion 6c penetrating the moving groove 7, and stretches the spiral spring 6e between the back enormous portion 6b and the wall surface beside the moving groove 7. Thus, the marker is stopped by the frictional force.
  • a through hole 6d is formed in the back enormous portion 6b, and the previous slide shaft 4 passes therethrough.
  • the respiratory measurement conversion device 20 is configured as an IC tag sensor that is used by being affixed to the surface of the previous respiratory measurement device 1, and has a removable layer 24 made of an adhesive that can be attached to and removed from the back surface of the bendable film part 21. is doing.
  • the conversion unit body 22 of the film unit is provided with a plurality of detection heads S arranged in the vicinity of the moving groove 7, and a control unit 31, a wireless communication unit 32, and a battery 33 are sequentially provided.
  • a pair of upper and lower flaps 23 are provided on one piece along the upper and lower sides of the conversion device main body 22, and the detection head S is moved along the moving groove 7 by being bent and locked at one corner of the measuring device main body 2 having a square shape. be able to.
  • the detection head S is configured as n detection electrodes tn.
  • a ground electrode Te is provided along the piston movement direction DL with the detection electrode interposed therebetween.
  • the capacitance of the capacitor C between the detection electrode t2 and the ground electrode Te is set at each detection electrode tn. taking measurement.
  • the slider 6x of the previous marker 6 is made of a synthetic resin such as polyethylene or polypropylene, and detects the capacitance change of the previous capacitor C by the dielectric effect as it approaches the detection electrodes t2 (tn).
  • Each detection electrode tn is connected to the control unit 31 through a through hole and a conductive pattern provided on the back surface of the film unit 21.
  • the wireless communication unit 32 and the battery 33 detect the position of the marker 6 with the detection electrode tn in cooperation with the control unit 31 and output it as an electrical signal.
  • the detection electrode tn and the ground electrode Te a thin conductive polymer or the like can be used, and by forming it transparently, there is an advantage that visibility is not hindered.
  • the electrostatic capacitance sensor constituted by each detection electrode tn forms the capacitor C of the RC circuit, and when the marker 6 approaches the electrode, the electrostatic capacitance increases and the discharge time of the capacitor is increased. More specifically, the capacitance C1 is represented by the amount of charge Q generated when a unit voltage is applied to the electrode. If a positive voltage is applied to each detection electrode tn, a positive charge is generated in the electrode, and an electric field is generated between the electrode and the ground. If the marker 6 is present in this electric field, it receives electrostatic induction, negative charges different from the ground electrode Te appear on the side close to the electrode, and positive charges appear on the opposite side.
  • An oscillation circuit is used for the detection circuit of the control unit 31, and the oscillation circuit is configured so that the capacitance C1 of the starting circuit corresponding to any one of the detection electrodes tn becomes an element of the oscillation condition. It is possible to detect which detection electrode tn is approaching the marker 6 (decrease in the distance d) by starting or stopping oscillation in accordance with the change of.
  • the detection of the capacitance sensor may be performed simultaneously with each sensor or may be performed by the sigma delta method.
  • This embodiment detects that the capacitor C becomes larger and the discharge time becomes longer due to the approach of a resin marker originally provided to the respirometer 1. Therefore, it does not depend on the marker material, is resistant to changes in the environment such as temperature, and can be detected with a wide range of markers such as resins such as polycarbonate and acrylic, and various metals.
  • the system configuration of the respiration measurement conversion device 20 is as shown in FIG. 6, and the position of the marker 6 is detected by the detection head S and processed by the processing unit 35 of the control unit 31.
  • the position of the detection head S (t 2) through the change in the output value of the detection head S (t 2) accompanying the proximity of the marker 6 to the detection head S, which is shifted, and the scale of the actual respiratory measurement device
  • the calibration information of the detection head and the respiratory scale is stored in the storage unit 36 (in this case, the storage unit 36 functions as a calibration storage unit).
  • An output unit is also provided for outputting the value of the respiratory scale as an electrical signal by comparing the information of the position of the detection head S (t2) adjacent to the marker 6 detected by the respiration measurement and the storage unit. Further, this output is transmitted to the outside through the wireless communication unit 32 and the antenna 29.
  • the information terminal 100 such as a smartphone cooperates with the previous output unit 37 through the antenna 103 and the wireless communication unit 101 to display an output value as an electric signal on the display unit 102.
  • standards such as Bluetooth (registered trademark) Low Energy are used.
  • control operation of the control part 31 is possible using the user interface of a smart phone.
  • the marker 6 When calibrating, the marker 6 is first positioned at the zero point, the detection head S at which the output value at that time is increased is selected, and the zero point is stored in the storage unit 36 constituted by a nonvolatile memory or the like. Next, the marker 6 is moved to the highest point of the measurement range, the value of the respiratory scale 2b at that time is read, input from the information terminal 100 in association with the detection head S at that time, and stored as calibration data in the storage unit 36. . When the marker 6 is stationary at an intermediate position, the value of the respiration scale 2b is derived from the calibration data.
  • the control unit 31 is provided with a timer 38 that measures the time from the start of the marker 6 moving operation.
  • zone management is performed based on subjective symptoms and peak flow values. Zone management is determined by the doctor based on subjective symptoms and peak flow values. The green zone is in good condition at 80% to 100% of the peak flow value, and the yellow zone is careful at 50% to 80% of the peak flow value. The red zone is less than 50% of the peak flow value and requires immediate medical examination.
  • the user performs calibration by manually moving the marker (pointer) to the zone marker positions of the green / yellow mark, yellow / yellow mark, and yellow / red mark on the peak flow meter.
  • the upper zone marker 8a is a green / yellow mark (a mark indicating the boundary between the green zone and the yellow zone)
  • the middle zone marker 8b is a yellow / yellow mark (a mark indicating the boundary when the yellow zone is divided into two if necessary).
  • the lower zone marker 8c is a yellow / red mark (a mark indicating the boundary between the yellow zone and the red zone).
  • the processing unit 35 compares the position of the marker 6 at the time of measurement with the mark position of the storage unit, and outputs an alarm signal for warning each zone from the output unit 37. If necessary, a speaker may be further provided in the respiration measurement conversion device 20 or the information terminal 100 as appropriate. Thus, it is possible to easily digitize the zone management of the existing peak flow meter that is familiar to you.
  • the processing unit 35, the storage unit 36, and the timer 38 cooperate with the procedure shown in FIGS. 7 and 8 to determine the suitability of the blow start slow start and the blow end.
  • step S1 of FIG. 7 the first to third determination times t1 to t3, the first and second threshold values fs1, fs2, and the third threshold value f3 are set, and the timer 38 is initialized.
  • the timer 38 operates (step S3), and it is determined whether or not the measured value of the marker exceeds the first threshold fs1 within the first time t1 of the timer measurement (step S3). S4). If it does not exceed the value shown in FIG. 8B, an error flag is set (step S6).
  • the movement of the marker is further determined in step S5 as normal expiration, and the movement continues.
  • step S7 the end of blowing is determined. As shown in FIG. 8C, it is determined to be appropriate when the second threshold fs2 is exceeded at the marker second determination time t2. As shown in FIG. 8 (d), if the expiratory flow does not exceed the second threshold value fs2 at the second determination time t2, it is determined to be inappropriate. Alternatively, as shown in FIG. 8 (e), it is also determined to be inappropriate when the exhalation increase amount within the third determination time t3 from the time when the exhalation flow rate is zero exceeds the third threshold f3. If these are inappropriate, an error flag is generated in step S8.
  • the first judgment time t1 is, for example, 1 second to 3 seconds (1 second to 3 seconds or less; the same notation is used in this specification), the second judgment time is, for example, 2 seconds to 6 seconds, and the third judgment time t3 is, for example, 0 .5 seconds to 1 second.
  • the first threshold value fs1 can be set to, for example, 100 ml to 400 ml
  • the second threshold value fs2 can be set to, for example, 50 ml to 100 ml
  • the third threshold value f3 can be set to, for example, 20 ml to 100 ml. In other cases, it is determined as normal, and then the value of the marker 6 or an error signal is generated in step S9.
  • the respiration measurement conversion device 20 is attached to the surface of 1 with the removable layer 24. At this time, by aligning the longitudinal direction of the respiratory measurement conversion device 20 along the previous movement groove 7, folding the flap provided 31 and the two small flaps 23 and attaching them to the measuring instrument body 4, The displacement of the respiration measurement conversion device 20 can be more effectively suppressed. Since it can be attached and detached, the main body of the respiration measurement conversion device 20 can be cleaned, which is convenient. Thereafter, with the communication connection with the information terminal 100, the zero point and the highest point are calibrated and the zone marker 8 is calibrated, and these calibration data are stored in the storage unit 36.
  • the mouthpiece 3 is added, the exhalation is blown, the piston 5 is raised, the stationary position of the marker 6 is read by an electrostatic sensor or the like of the respiration measurement conversion device 20, and the processing is performed based on the calibration data of the storage unit 36. Calibration is performed by the unit 35 and output from the output unit 37 as an electrical signal. Further, an alarm corresponding to each zone is generated based on the calibration data of the zone marker 8 according to the zone where the marker 6 is located. 7 and 8 based on the timer 38 is simultaneously performed by the processing unit 35, and an error is displayed when there is an error.
  • a detection coil unit c1n is provided as the detection head S.
  • a resistor R is connected in series and a capacitor C is connected in parallel to a spiral coil L formed by etching or printing.
  • the detection coil unit c1n is connected to the oscillation circuit c2n, and a magnetic field is generated in the coil L.
  • An eddy current is generated in the spring 6e of the marker 6 due to the induced magnetic field from the coil L, and an inductance change occurs in the coil L due to the magnetic field in the reverse direction.
  • the change of the oscillation circuit constant and the change of the oscillation amplitude and the oscillation frequency are changed by the change of the inductance and the loss, and the change is detected by the comparison circuit c3n, and the proximity of the marker 6 to the detection coil unit c1n ( Detection of decrease in distance d).
  • Each detection module Cn includes a detection coil unit c1n, an oscillation circuit c2n, and a comparison circuit c3n, and a plurality of detection modules Cn are arranged along the piston movement direction DL.
  • Each comparison circuit c3n is connected to the processing unit 31 by the wiring pattern 26, and specifies the detection head S adjacent to the marker 6.
  • the spring 6e of the marker 6 is used as the detection target, but another material for generating eddy current may be separately provided.
  • a magnetic metal iron, nickel
  • an inductive proximity switch having high sensitivity may be used for a nonmagnetic metal.
  • the embodiment is different in that a magnetic sensor m1n is used as the detection module S.
  • the magnetic sensor m1n has an element in which magnetic resistances Rx and Ry shown in FIG. Further, a bottomed cylindrical magnet cap 40 is fitted to the marker 6.
  • the X-direction magnetic resistance Rx is oriented in a direction perpendicular to the piston movement direction DL, and mainly detects the proximity of the magnet cap 40 (decrease in the distance d) by the X-direction magnetic resistance Rx.
  • the magnetic sensor m1n in the present embodiment forms a bridge with the X-direction magnetic resistance Rx, the Y-direction magnetic resistance Ry, the variable resistance Rv, and the fixed resistance Rf, as shown in FIG. 14B.
  • the variable resistor Rv is adjusted so that the voltage E is applied to the input terminals 41a and 41b, and the voltages of the output terminals 42a and 42b that are not close to the magnetic cap 40 are normally zero. Since the influence of temperature acts on both the X direction magnetic resistance Rx and the Y direction magnetic resistance Ry, the output of the bridge is hardly affected by the temperature. However, since the magnetic field has X and Y directions, the proximity of the magnetic cap 40 can be detected.
  • a comparator (comparator) m2n is connected to each magnetic sensor m1n. That is, each detection module Mn has a magnetic sensor m1n and a comparator m2n, and a plurality of detection modules Mn are arranged in the piston movement direction DL as in the previous embodiment. Each comparator m2n is connected to the processing unit 31 by the wiring pattern 26, and specifies the detection head S in the vicinity of the marker 6. As the object to be detected in the embodiment, a permanent magnet cap 40 that can be placed on the marker 6 may be used, but a hole may be formed in the marker 6 and a permanent magnet may be inserted.
  • each member of the present embodiment can be appropriately modified without departing from the gist of the present invention.
  • the elements of the embodiments can be implemented in combination with each other.
  • the detection of each detection head can be determined by the magnitude of the absolute value such as the maximum value or the minimum value of each value.
  • the present invention can be used as a respiration measurement conversion device for a respiration measuring instrument such as a peak flow meter or a spirometer, a respiration measuring instrument equipped with the respiration measuring conversion apparatus, and a respiration measuring method.
  • Respirometers can be used for inspiration as well as exhalation.

Abstract

Provided are: a respiration measuring conversion device for respirometers which can easily be attached to an existing mechanical respirometer and which digitizes measured values; a respirometer equipped with the respiration measuring conversion device; and a respiration measuring method. The present invention relates to a respiration measuring conversion device 20 for respirometers, the respiration measuring conversion device 20 converting respiratory scales indicating expired volume or expiratory pressure into electrical signals to measure respiration by being attached to a respirometer that includes a cylinder, a piston that moves inside the cylinder 2a, and a marker 6 that moves along with the movement of the piston and indicates an upper most position of the piston. The respiration measuring conversion device 20 for respirometers includes: a plurality of detection heads S which are arranged near a movement range of the marker along a direction of movement of the marker; and a calibration storage unit that stores calibration information for the detection heads and the respiratory scales by contrasting the position of one of the detection heads S to which the marker 6 has approached and the actual scale of the respirometer through a change in the output value of the one of the detection heads due to the approach by the marker 6. The respiration measuring conversion device 20 for respirometers also includes an output unit that outputs a value of the respiratory scale as an electrical signal.

Description

呼吸測定器用の呼吸測定変換装置及びこれを取り付けた呼吸測定器並びに呼吸測定方法Respiration measurement conversion device for respiration measuring device, respiration measuring device equipped with the respiration measuring conversion device, and respiration measuring method
 本発明は、呼吸測定器用の呼吸測定変換装置及びこれを取り付けた呼吸測定器並びに呼吸測定方法に関する。さらに詳しくは、シリンダと、このシリンダ内で移動するピストンと、このピストンの移動に伴って移動しピストンの最上位置を示すマーカーとを有する呼吸測定器に取り付けることで呼気量または呼気圧力を示す呼吸目盛を電気信号に変換して測定する呼吸測定器用の呼吸測定変換装置及びこれを取り付けた呼吸測定器並びに呼吸測定方法に関する。 The present invention relates to a respiration measurement conversion device for a respiration measuring device, a respiration measuring device equipped with the respiration measuring conversion device, and a respiration measuring method. More specifically, a breathing device showing a breathing volume or a breathing pressure by being attached to a breathing measuring instrument having a cylinder, a piston that moves in the cylinder, and a marker that moves as the piston moves to indicate the uppermost position of the piston. The present invention relates to a respiration measurement conversion device for a respiration measuring instrument that measures a scale by converting it into an electric signal, a respiration measuring instrument to which the respiration measuring apparatus is attached, and a respiration measuring method.
 ピークフローメーターやスパイロメーター等、呼気測定器における測定値を継続的に管理するため、これらの測定値の電子化が望まれている。例えば、特許文献1のように、流量を電気信号に換算し出力する電子式の機器が提供されている。 In order to continuously manage the measured values in breath measuring devices such as peak flow meters and spirometers, digitization of these measured values is desired. For example, as in Patent Document 1, an electronic device that converts a flow rate into an electrical signal and outputs the signal is provided.
 しかし、これらの機器は電気部品も一体的に組み込まれているため洗浄が困難である。その一方、測定値を目視で読み取る機械式の呼吸測定器は世の中に多数出回っており安価であるが、出力値の電子化はなされていないのが現状である。 However, these devices are difficult to clean because they also have integrated electrical components. On the other hand, there are many mechanical respirometers that visually read the measured values and are inexpensive, but the current situation is that the output values are not digitized.
特開平7-110247号公報Japanese Unexamined Patent Publication No. 7-110247
 かかる従来の実情に鑑みて、本発明は、既存の機械式の呼吸測定装置に容易に取り付けて測定値を電子化することができる呼吸測定器用の呼吸測定変換装置及びこれを取り付けた呼吸測定器並びに呼吸測定方法を提供することを目的とする。 In view of such a conventional situation, the present invention is a respiration measurement conversion device for a respiration measurement device that can be easily attached to an existing mechanical respiration measurement device and digitized measurement values, and a respiration measurement device equipped with the respiration measurement conversion device. An object of the present invention is to provide a respiration measurement method.
 上記目的を達成するため、本発明に係る呼吸測定器用の呼吸測定変換装置の特徴は、シリンダと、このシリンダ内で移動するピストンと、このピストンの移動に伴って移動しピストンの最上位置を示すマーカーとを有する呼吸測定器に取り付けることで呼気量または呼気圧力を示す呼吸目盛を電気信号に変換して測定する構成において、前記シリンダに取り付ける本体と、この本体上で前記マーカーの移動範囲の近傍にこのマーカーの移動方向に沿って配置される複数の検出ヘッドとを備え、前記いずれかの検出ヘッドへのマーカーの近接に伴う当該検出ヘッドの出力値の変を通じた当該検出ヘッドの位置と現実の呼吸測定器の目盛との対照により前記これらの検出ヘッドと呼吸目盛との校正情報を記憶する校正記憶部を備え、呼吸測定により検出されたマーカーの近接する前記検出ヘッドの位置と前記校正記憶部との情報の対照により呼吸目盛の値を電気信号として出力する出力部を備えたことにある。 In order to achieve the above object, the respiration measurement conversion device for a respiration measuring device according to the present invention is characterized by a cylinder, a piston that moves in the cylinder, and an uppermost position of the piston that moves as the piston moves. In a configuration in which a breathing scale indicating an expiratory volume or an expiratory pressure is converted into an electrical signal by being attached to a respiration measuring device having a marker, the main body attached to the cylinder, and the vicinity of the movement range of the marker on the main body And a plurality of detection heads arranged along the moving direction of the marker, and the position and reality of the detection head through the change of the output value of the detection head accompanying the proximity of the marker to any one of the detection heads A calibration storage unit for storing calibration information of the detection head and the respiratory scale in contrast to the scale of the respiratory measuring instrument is provided for respiratory measurement. Ri in the control information of the position and the calibration memory portion of the detection head in proximity of the detected markers, further comprising an output unit for outputting the value of the respiration scale as an electric signal.
 上記特徴構成によれば、マーカーは物理的に移動するので、その側方に検出ヘッドを位置させることで、マーカーの位置を検出することができる。しかも、マーカーと検出ヘッドは非接触であるため、電子化が機械式の測定に直接影響を及ぼす恐れもない。検出ヘッドは前記マーカーの手動操作に伴う校正で、正確な値を出力することができる。しかも、検出ヘッドはマーカーの目視を妨げないため、従来通りの目盛りの確認を肉眼で行いながら、同時にデータの電子記録も可能となる。 According to the above characteristic configuration, since the marker physically moves, the position of the marker can be detected by positioning the detection head on the side thereof. Moreover, since the marker and the detection head are not in contact with each other, there is no possibility that the digitization directly affects the mechanical measurement. The detection head can output an accurate value by calibration accompanying manual operation of the marker. In addition, since the detection head does not hinder the visual observation of the marker, data can be electronically recorded at the same time while checking the scale with the naked eye.
 上記特徴構成に加え、前記マーカーの移動開始を検出し、当該移動開始時点からの時間を測定するタイマーをさらに備え、前記マーカーの位置の変化が、その移動開始から所定時間経過しても所定の値に達しない場合に呼吸測定失敗と判定する判定部を備えるとよい。これにより、図8(b)に示すスタート時の呼気の不足や(空気漏れや、呼気の勢い不足の場合の検出)、図8(d)(e)に示す終了時に十分呼気が吹き込まれていないこと(呼気を出し切っていない場合等の検出)を自動検出でき、エラーとしてデータ取得しないようにユーザーに対して注意を促すことができる。 In addition to the above characteristic configuration, the apparatus further includes a timer that detects the start of movement of the marker and measures the time from the start of movement, and the change in the position of the marker is predetermined even after a predetermined time has elapsed from the start of movement. It is good to provide the determination part which determines with respiration measurement failure when it does not reach a value. As a result, there is insufficient exhalation at the time of start shown in FIG. 8B (detection in the case of air leak or insufficient momentum of exhalation), and sufficient exhalation is blown at the end shown in FIGS. 8D and 8E. It is possible to automatically detect the absence (detection when not exhaling) and to alert the user not to acquire data as an error.
 前記マーカーの移動開始を検出し、当該移動開始時点からの時間を測定するタイマーをさらに備え、前記マーカーの移動終了時点が移動開始時点から所定時間内において、当該測定時間後半における前記マーカーの上昇値が一定量を超えた場合に呼吸測定失敗と判定する判定部を備えるとよい。これにより、図8(e)に示す終了時における不適切な呼気(最後に息が急に停止するような息を出し切っていない場合等)を自動検出でき、エラーとしてデータ取得しないようにユーザーに対して注意を促すことができる。 A timer for detecting the start of movement of the marker and measuring a time from the start time of the marker; and an increase value of the marker in the latter half of the measurement time within a predetermined time from the start time of movement of the marker. It is good to provide the determination part which determines with respiration measurement failure when exceeds a fixed amount. As a result, improper exhalation at the end shown in FIG. 8 (e) can be automatically detected (such as when the breath has suddenly stopped), and the user is prevented from acquiring data as an error. You can call attention to it.
 前記本体はシート状であり、前記シリンダに着脱貼付け自在な貼り付け層を有しているとよい。これにより、本来の機械式測定器の機能を損なわずにデータの電子化ができる。しかも、容易に取り外せるため、呼吸測定器を洗浄することができて、衛生面での貢献度も向上する。 The main body is in the form of a sheet, and preferably has an affixing layer that can be detachably attached to the cylinder. This makes it possible to digitize data without impairing the functions of the original mechanical measuring instrument. Moreover, since it can be easily removed, the respiratory measurement device can be cleaned, and the contribution in terms of hygiene is improved.
 前記シリンダは前記ピストン移動方向を一辺とする方形であり、前記ピストン移動方向に距離を隔ててこのシリンダの角部に係止する一対のフラップを有しているとよい。これにより、前記検出ヘッドをマーカーの移動範囲に沿わせる際に、位置合わせが容易となる。 The cylinder may have a square shape with the piston moving direction as one side, and may have a pair of flaps that are engaged with corners of the cylinder at a distance in the piston moving direction. This facilitates alignment when the detection head is moved along the movement range of the marker.
 前記検出ヘッドは検出電極であり、前記マーカーの移動方向に沿ってアース電極を前記本体上にさらに設け、このアース電極と前記マーカー移動範囲との間に前記検出電極が配置され、前記いずれかの検出電極へのマーカーの近接に伴う当該検出電極と前記アース電極間の静電容量の変化により前記校正がなされるものであるとよい。これにより、マーカーそのものを利用して、電子測定がなされるため、非接触で本来の機械測定を妨げず、本測定変換装置を取り付けるだけで測定開始が可能となる。 The detection head is a detection electrode, and a ground electrode is further provided on the main body along the movement direction of the marker, and the detection electrode is disposed between the ground electrode and the marker movement range, The calibration may be performed by a change in capacitance between the detection electrode and the ground electrode accompanying the proximity of the marker to the detection electrode. Thus, since the electronic measurement is performed using the marker itself, the measurement can be started only by attaching the present measurement conversion device without disturbing the original mechanical measurement without contact.
 前記検出ヘッドは検出コイルであり、前記マーカーには導電材料で構成されたマーカーの静止用バネが設けられ、検出コイルにバネが近接することに伴う検出コイルのインダクタンスの変化により前記校正がなされるものであるとよい。これにより、同様にマーカーそのものを利用して、電子測定がなされるため、非接触で本来の機械測定を妨げず、本測定変換装置を取り付けるだけで測定開始が可能となる。 The detection head is a detection coil, and the marker is provided with a marker spring made of a conductive material, and the calibration is performed by a change in the inductance of the detection coil accompanying the proximity of the spring to the detection coil. It should be a thing. Accordingly, since the electronic measurement is similarly performed using the marker itself, the measurement can be started simply by attaching the present measurement conversion device without disturbing the original mechanical measurement without contact.
 前記検出ヘッドは磁気センサであり、前記マーカーには磁気材料で構成された磁気マーカーが設けられ、磁気センサに前記磁気マーカーが近接することに伴う磁気センサの抵抗値の変化により前記校正がなされるものであるとよい。これにより、マーカーに磁石を付加する軽微な操作で電子測定がなされるため、非接触で本来の機械測定を妨げず、本測定変換装置を取り付けるだけで測定開始が可能となる。 The detection head is a magnetic sensor, and the marker is provided with a magnetic marker made of a magnetic material, and the calibration is performed by changing the resistance value of the magnetic sensor as the magnetic marker approaches the magnetic sensor. It should be a thing. As a result, electronic measurement is performed with a slight operation of adding a magnet to the marker, so that measurement can be started simply by attaching the present measurement conversion device without disturbing the original mechanical measurement without contact.
 上記いずれかに記載の呼吸測定器用の呼吸測定変換装置を取り付けて呼吸測定器として実施することが可能である。 It can be implemented as a respiration measuring device by attaching a respiration measuring conversion device for a respiration measuring device as described above.
 上記目的を達成するため、本発明に係る呼吸測定方法の特徴は、シリンダと、このシリンダ内で移動するピストンと、このピストンの移動に伴って移動しピストンの最上位置を示すマーカーとを有する呼吸測定器に取り付けることで呼気量または呼気圧力を示す呼吸目盛を電気信号に変換して測定する方法において、前記シリンダに取り付ける本体と、この本体上で前記マーカーの移動範囲の近傍にこのマーカーの移動方向に沿って配置される複数の検出ヘッドとを備え、前記いずれかの検出ヘッドへのマーカーの近接に伴う当該検出ヘッドの出力値の変を通じた当該検出ヘッドの位置と現実の呼吸測定器の目盛との対照により前記これらの検出ヘッドと呼吸目盛との校正情報を校正記憶部に記憶し、呼吸測定により検出されたマーカーの近接する前記検出ヘッドの位置と前記校正記憶部との情報の対照により呼吸目盛の値を電気信号として出力部から出力することにある。 In order to achieve the above object, the respiration measurement method according to the present invention is characterized by a respiration having a cylinder, a piston that moves within the cylinder, and a marker that moves along with the movement of the piston and indicates the uppermost position of the piston. In a method for measuring a respiratory scale indicating an expiratory volume or an expiratory pressure by attaching to a measuring device by converting to an electric signal, a main body attached to the cylinder, and the movement of the marker on the main body in the vicinity of the moving range of the marker A plurality of detection heads arranged along a direction, and the position of the detection head through the change of the output value of the detection head accompanying the proximity of the marker to any one of the detection heads and the actual respiratory measurement device The calibration information of the detection head and the respiratory scale is stored in the calibration storage unit by contrast with the scale, and the marker detected by the respiratory measurement is stored. In that said by control information of the position and the calibration memory portion of the detector head from the output unit the value of the respiratory graduation as an electrical signal contact.
 係る場合、前記呼吸測定器は少なくとも2つのゾーンマーカーを備え、各ゾーンマーカーの位置に前記マーカーを合わせて各ゾーンマーカーの位置を記憶部に記憶させ、測定時に両ゾーンマーカーの範囲に前記マーカーが入った場合にアラーム信号を発生させるとよい。 In this case, the respiratory measurement device includes at least two zone markers, aligns the markers with the positions of the zone markers, stores the positions of the zone markers in the storage unit, and the markers are in the range of both zone markers at the time of measurement. An alarm signal should be generated when it enters.
 上記本発明に係る呼吸測定器用の呼吸測定変換装置及びこれを取り付けた呼吸測定器並びに呼吸測定方法の特徴によれば、既存の機械式の呼吸測定装置に容易に取り付けて測定値を電子化することができることが可能となった。その結果、ユーザーは使い慣れ、または、汎用で安価な機械式の呼吸測定装置を利用して測定値を電子化でき、呼気等の管理を合理的に行うことが可能となった。 According to the above-described features of the respiratory measurement conversion device for a respiratory measurement device according to the present invention, the respiratory measurement device to which the respiratory measurement conversion device is attached, and the respiratory measurement method, the measurement value is digitized by being easily attached to an existing mechanical respiratory measurement device It became possible to be able to. As a result, the user is accustomed to use or can digitize the measurement values by using a general-purpose and inexpensive mechanical respiratory measurement device, and can manage the expiration etc. rationally.
 本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。 Other objects, configurations, and effects of the present invention will be apparent from the following embodiments of the present invention.
呼吸測定変換装置を取り付けた呼吸測定器(呼気測定装置、ピークフローメーター)の正面側の斜視図である。It is a perspective view of the front side of the respiration measuring device (exhalation measuring device, peak flow meter) which attached the respiration measurement conversion device. 呼吸測定変換装置の正面図である。It is a front view of a respiration measurement conversion device. 呼吸測定変換装置の背面図である。It is a rear view of a respiration measurement conversion device. 呼吸測定器の背面側の斜視図である。It is a perspective view of the back side of a respiration measuring device. 図1のA-A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 本発明に係る呼吸測定変換装置を用いた測定システムのブロック図である。It is a block diagram of the measurement system using the respiration measurement conversion apparatus which concerns on this invention. 呼吸測定変換装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the respiration measurement conversion apparatus. 図7のフローチャートの動作を示すグラフであって、(a)(b)はスロースタート、(c)(d)(e)は吹き終わりの状態を示すものである。FIG. 8 is a graph showing the operation of the flowchart of FIG. 7, where (a) and (b) show the slow start, and (c), (d) and (e) show the end of blowing. 本発明に係る呼吸測定変換装置の第2実施形態における図2相当図である。FIG. 3 is a view corresponding to FIG. 2 in a second embodiment of the respiratory measurement conversion device according to the present invention. 本発明の第2実施形態における図5相当図である。FIG. 6 is a view corresponding to FIG. 5 in a second embodiment of the present invention. 本発明の第2実施形態における回路図である。It is a circuit diagram in a 2nd embodiment of the present invention. 本発明に係る呼吸測定変換装置の第3実施形態における図2相当図である。FIG. 6 is a view corresponding to FIG. 2 in a third embodiment of the respiratory measurement conversion device according to the present invention. 本発明の第3実施形態における図5相当図である。FIG. 6 is a view corresponding to FIG. 5 in a third embodiment of the present invention. 本発明の第3実施形態における回路図である。It is a circuit diagram in a 3rd embodiment of the present invention.
 次に、図1~8を参照しながら、本発明の第1実施形態を詳しく説明する。
 図1は、呼吸測定変換装置20を取り付けた呼吸測定器1であり、この呼吸測定器は呼気測定装置(ピークフローメーター)である。なお、本来図1の呼吸測定器1の表示面は背面であるが、呼吸測定変換装置20は正面が表示されており表示の統一のため、「図1は正面側の斜視図」と表記する。
 呼吸測定器1は、内部がシリンダ2aである測定器本体2の表面に呼吸目盛2bが設けられ、息を吹き込むマウスピース3がシリンダ2aに連通している。シリンダ2a内にはスライド軸4が測定器本体2の長手方向であるピストン移動方向DLに沿って設けられ、スライド軸4にピストン5とマーカー6のスライダー6xとが貫通している。
Next, the first embodiment of the present invention will be described in detail with reference to FIGS.
FIG. 1 shows a respiratory measurement device 1 to which a respiratory measurement conversion device 20 is attached. This respiratory measurement device is an exhalation measurement device (peak flow meter). Although the display surface of the respirometer 1 of FIG. 1 is originally the back, the front of the respiration measurement conversion device 20 is displayed, and for the purpose of unifying the display, “FIG. 1 is a front perspective view”. .
The respiration measuring instrument 1 is provided with a respiration scale 2b on the surface of the measuring instrument main body 2 having a cylinder 2a inside, and a mouthpiece 3 for inhaling breath communicates with the cylinder 2a. A slide shaft 4 is provided in the cylinder 2 a along a piston moving direction DL, which is the longitudinal direction of the measuring device main body 2, and the piston 5 and the slider 6 x of the marker 6 penetrate the slide shaft 4.
 測定器本体4の表面側には、ピストン移動方向DLに沿って移動溝7が形成され、マーカー6はこの移動溝7と先のスライド軸4とに沿って移動する。マーカーには後述のマーカー静止機構が設けられ、移動上端で静止する。マーカー6の静止位置を確認するための呼吸目盛2bにより、マーカー6の値が測定される。 A moving groove 7 is formed on the surface side of the measuring instrument main body 4 along the piston moving direction DL, and the marker 6 moves along the moving groove 7 and the previous slide shaft 4. The marker is provided with a marker stationary mechanism, which will be described later, and stops at the upper end of movement. The value of the marker 6 is measured by the respiratory scale 2b for confirming the stationary position of the marker 6.
 測定器本体2には、マーカー判定の3つのゾーンマーカー8が設けられている。上ゾーンマーカー8a、中ゾーンマーカー8b、下ゾーンマーカー8cはそれぞれレッドゾーン、イエローゾーン、グリーンゾーンを設定するためのものであり、手で上下に移動させることが可能である。 The measuring instrument main body 2 is provided with three zone markers 8 for marker determination. The upper zone marker 8a, middle zone marker 8b, and lower zone marker 8c are for setting a red zone, a yellow zone, and a green zone, respectively, and can be moved up and down by hand.
 マーカー静止機構は、図5に示すようにスライダー6xとバネ6eとよりなる。スライダー6xは、移動溝7を貫通する連結部6cにより、表膨大部6a及び裏膨大部6bをつなぎ、裏膨大部6bと移動溝7横の壁面との間で螺旋状のバネ6eを突っ張らせることにより、その摩擦力でマーカーを静止させる。裏膨大部6bには貫通孔6dが形成され、先のスライド軸4が貫通している。 The marker stationary mechanism is composed of a slider 6x and a spring 6e as shown in FIG. The slider 6x connects the front enormous portion 6a and the back enormous portion 6b by the connecting portion 6c penetrating the moving groove 7, and stretches the spiral spring 6e between the back enormous portion 6b and the wall surface beside the moving groove 7. Thus, the marker is stopped by the frictional force. A through hole 6d is formed in the back enormous portion 6b, and the previous slide shaft 4 passes therethrough.
 使用に際しては、マウスピースから呼気を吹き込む。吹き込まれた呼気はピストン5の弾性力に抗してこのピストン5を押し上げることにより、シリンダ2a内を上昇し、同時にマーカー6を押し上げ、上死点でマーカー6を静止させ、呼気の流量又は圧力を表示する。 When using, breathe in from the mouthpiece. The exhaled breath that is blown up pushes up the piston 5 against the elastic force of the piston 5 to rise in the cylinder 2a, simultaneously pushes up the marker 6 and stops the marker 6 at the top dead center. Is displayed.
 呼吸測定変換装置20は、先の呼吸測定器1の表面に貼り付けて使用されるICタグセンサとして構成され、屈曲可能なフィルム部21の裏面に貼付け取り外し自在な粘着剤よりなる着脱層24を有している。フィルム部の変換装置本体22には、先の移動溝7近傍に配置される複数の検出ヘッドSが設けられ、制御部31、無線通信部32及びバッテリー33が順次設けられている。変換装置本体22の上下に沿う一片には、上下一対のフラップ23が設けられ、方形を呈する測定器本体2の一角に屈曲させて係止させることで、検出ヘッドSを移動溝7に沿わせることができる。 The respiratory measurement conversion device 20 is configured as an IC tag sensor that is used by being affixed to the surface of the previous respiratory measurement device 1, and has a removable layer 24 made of an adhesive that can be attached to and removed from the back surface of the bendable film part 21. is doing. The conversion unit body 22 of the film unit is provided with a plurality of detection heads S arranged in the vicinity of the moving groove 7, and a control unit 31, a wireless communication unit 32, and a battery 33 are sequentially provided. A pair of upper and lower flaps 23 are provided on one piece along the upper and lower sides of the conversion device main body 22, and the detection head S is moved along the moving groove 7 by being bent and locked at one corner of the measuring device main body 2 having a square shape. be able to.
 本実施形態では、検出ヘッドSはn個の検出電極tnとして構成されている。また、検出電極を挟んで、ピストン移動方向DLに沿ってアース電極Teが設けられ、図5に示すように、検出電極t2とアース電極Teとの間のキャパシタCの容量を各検出電極tnで測定する。先のマーカー6のスライダー6xはポリエチレンやポリプロピレン等の合成樹脂で構成され、各検出電極t2(tn)への近接に伴って、誘電効果により先のキャパシタCの容量変化を検出する。 In the present embodiment, the detection head S is configured as n detection electrodes tn. In addition, a ground electrode Te is provided along the piston movement direction DL with the detection electrode interposed therebetween. As shown in FIG. 5, the capacitance of the capacitor C between the detection electrode t2 and the ground electrode Te is set at each detection electrode tn. taking measurement. The slider 6x of the previous marker 6 is made of a synthetic resin such as polyethylene or polypropylene, and detects the capacitance change of the previous capacitor C by the dielectric effect as it approaches the detection electrodes t2 (tn).
 各検出電極tnはスルーホール及びフィルム部21の裏面に設けられた導電パターンを通じて制御部31に接続されている。無線通信部32及びバッテリー33は制御部31と連携してマーカー6の位置を検出電極tnにより検出し、電気信号として出力する。検出電極tnやアース電極Teとしては、厚さの薄い導電性ポリマー等を用いることができ、透明に構成することで、視認性を妨げない利点がある。 Each detection electrode tn is connected to the control unit 31 through a through hole and a conductive pattern provided on the back surface of the film unit 21. The wireless communication unit 32 and the battery 33 detect the position of the marker 6 with the detection electrode tn in cooperation with the control unit 31 and output it as an electrical signal. As the detection electrode tn and the ground electrode Te, a thin conductive polymer or the like can be used, and by forming it transparently, there is an advantage that visibility is not hindered.
 各検出電極tnにより構成される静電容量センサは、RC回路のキャパシタCを形成し、電極にマーカー6が近づくと、静電容量が増えてコンデンサの放電時間が長くなることで検出する。さらに詳述すると、静電容量C1は、電極に単位の電圧印加時に生ずる電荷量Qで表わされる。各検出電極tnに正電圧を加えたならば、電極には+の電荷が生じ、電極と大地間に電界ができる。この電界中にマーカー6が存在すれば静電誘導を受けて、電極に近い側にアース電極Teと異種の負電荷が現われ、反対側には正電荷が現われる。制御部31の検出回路に発振回路を利用し、いずれかの検出電極tnに対応する発進回路の静電容量C1が発振条件の一要素となるように発振回路を構成し、この検出電極のC1の変化にしたがって発振を開始、あるいは停止するようにして、いずれの検出電極tnにマーカー6が接近しているのか(距離dの減少)を検出することが可能である。静電容量センサの検出は各センサ同時に行っても、シグマデルタ方式で行ってもいい。 The electrostatic capacitance sensor constituted by each detection electrode tn forms the capacitor C of the RC circuit, and when the marker 6 approaches the electrode, the electrostatic capacitance increases and the discharge time of the capacitor is increased. More specifically, the capacitance C1 is represented by the amount of charge Q generated when a unit voltage is applied to the electrode. If a positive voltage is applied to each detection electrode tn, a positive charge is generated in the electrode, and an electric field is generated between the electrode and the ground. If the marker 6 is present in this electric field, it receives electrostatic induction, negative charges different from the ground electrode Te appear on the side close to the electrode, and positive charges appear on the opposite side. An oscillation circuit is used for the detection circuit of the control unit 31, and the oscillation circuit is configured so that the capacitance C1 of the starting circuit corresponding to any one of the detection electrodes tn becomes an element of the oscillation condition. It is possible to detect which detection electrode tn is approaching the marker 6 (decrease in the distance d) by starting or stopping oscillation in accordance with the change of. The detection of the capacitance sensor may be performed simultaneously with each sensor or may be performed by the sigma delta method.
 本実施形態は、呼吸測定器1に元来より設けられている樹脂製のマーカーが接近することでキャパシタCが大きくなり、放電時間が長くなることを検出するものである。したがって、マーカーの材質に依存せず、温度など環境の変化に強く、ポリカーボネート、アクリルなど樹脂一般や、各種金属など、幅広い材質のマーカーで検出できるのが特徴である。 This embodiment detects that the capacitor C becomes larger and the discharge time becomes longer due to the approach of a resin marker originally provided to the respirometer 1. Therefore, it does not depend on the marker material, is resistant to changes in the environment such as temperature, and can be detected with a wide range of markers such as resins such as polycarbonate and acrylic, and various metals.
 呼吸測定変換装置20のシステム構成は図6の通りであり、マーカー6の位置を検出ヘッドSで検出し、制御部31の処理部35で処理する。制御部31では、ずれかの検出ヘッドSへのマーカー6の近接に伴う当該検出ヘッドS(t2)の出力値の変を通じた当該検出ヘッドS(t2)の位置と現実の呼吸測定器の目盛との対照により前記これらの検出ヘッドと呼吸目盛との校正情報を記憶部36に記憶する(この際、記憶部36は校正記憶部として機能する。)。呼吸測定により検出されたマーカー6の近接する検出ヘッドS(t2)の位置と記憶部との情報の対照により呼吸目盛の値を電気信号として出力する出力部も備えてある。さらに、この出力を、無線通信部32及びアンテナ29を通じて外部に発信する。 The system configuration of the respiration measurement conversion device 20 is as shown in FIG. 6, and the position of the marker 6 is detected by the detection head S and processed by the processing unit 35 of the control unit 31. In the control unit 31, the position of the detection head S (t 2) through the change in the output value of the detection head S (t 2) accompanying the proximity of the marker 6 to the detection head S, which is shifted, and the scale of the actual respiratory measurement device In contrast, the calibration information of the detection head and the respiratory scale is stored in the storage unit 36 (in this case, the storage unit 36 functions as a calibration storage unit). An output unit is also provided for outputting the value of the respiratory scale as an electrical signal by comparing the information of the position of the detection head S (t2) adjacent to the marker 6 detected by the respiration measurement and the storage unit. Further, this output is transmitted to the outside through the wireless communication unit 32 and the antenna 29.
 スマートフォン等の情報端末100は、アンテナ103及び無線通信部101を通じて先の出力部37と連携し、表示部102に電気信号としての出力値を表示させる。通信には、例えばBluetooth(登録商標) Low Energyなどの規格が用いられる。また、スマートフォンのユーザーインターフェイスを利用して、制御部31の制御操作が可能である。 The information terminal 100 such as a smartphone cooperates with the previous output unit 37 through the antenna 103 and the wireless communication unit 101 to display an output value as an electric signal on the display unit 102. For communication, standards such as Bluetooth (registered trademark) Low Energy are used. Moreover, control operation of the control part 31 is possible using the user interface of a smart phone.
 校正に際しては、まずゼロ点にマーカー6を位置させて、その際の出力値が高くなる検出ヘッドSを選択し、ゼロ点として不揮発性メモリなどで構成される記憶部36に記憶する。次いで、測定範囲の最上点までマーカー6を移動させ、その際の呼吸目盛2bの値を読み取り、その際の検出ヘッドSと関連付けて情報端末100から入力し、記憶部36に校正データとして記憶する。これらの中間の位置にマーカー6が静止した場合は、この校正データより呼吸目盛2bの値を導出する。制御部31には、マーカー6移動動作の開始ときからの時間を測定するタイマー38が設けられている。 When calibrating, the marker 6 is first positioned at the zero point, the detection head S at which the output value at that time is increased is selected, and the zero point is stored in the storage unit 36 constituted by a nonvolatile memory or the like. Next, the marker 6 is moved to the highest point of the measurement range, the value of the respiratory scale 2b at that time is read, input from the information terminal 100 in association with the detection head S at that time, and stored as calibration data in the storage unit 36. . When the marker 6 is stationary at an intermediate position, the value of the respiration scale 2b is derived from the calibration data. The control unit 31 is provided with a timer 38 that measures the time from the start of the marker 6 moving operation.
 喘息患者が呼吸測定器1を使用する場合、自覚症状とピークフロー値をもとにゾーン管理を行っている。ゾーン管理は自覚症状とピークフロー値によって、医師が決定するものであり、グリーンゾーンはピークフロー値の80%~100%で良好な状態、イエローゾーンはピークフロー値の50%~80%で注意が必要、レッドゾーンはピークフロー値から50%未満で直ちに受診が必要な状態である。 ¡When an asthmatic patient uses the respirometer 1, zone management is performed based on subjective symptoms and peak flow values. Zone management is determined by the doctor based on subjective symptoms and peak flow values. The green zone is in good condition at 80% to 100% of the peak flow value, and the yellow zone is careful at 50% to 80% of the peak flow value. The red zone is less than 50% of the peak flow value and requires immediate medical examination.
 使用者はピークフローメーターの緑・黄マーク、黄・黄マーク、黄・赤マークのゾーンマーカー位置に手でマーカ(指針)を動かしてキャリブレーションを行う。上ゾーンマーカー8aは緑・黄マーク (グリーンゾーンとイエローゾーンの境界を示すマーク)、中ゾーンマーカー8bは黄・黄マーク(必要に応じてイエローゾーンを2つに分ける場合の境界を示すマーク)、下ゾーンマーカー8cは、黄・赤マーク(イエローゾーンとレッドゾーンの境界を示すマーク)である。各ゾーンマーカー8を上記趣旨の位置にセットし、先のマーカー6を各ゾーンマーカー8の位置に合わせ、情報端末100を通じてそれぞれのマーク位置を先の記憶部36に記憶させる。処理部35は測定時におけるマーカー6の位置と記憶部のマーク位置とを対照し、上記各ゾーンを警告するアラーム信号を出力部37から出力する。必要に応じ、適宜スピーカーを呼吸測定変換装置20や情報端末100にさらに設けてもよい。このように使い慣れた既存のピークフローメーターのゾーン管理を簡単に電子化することが可能である。 The user performs calibration by manually moving the marker (pointer) to the zone marker positions of the green / yellow mark, yellow / yellow mark, and yellow / red mark on the peak flow meter. The upper zone marker 8a is a green / yellow mark (a mark indicating the boundary between the green zone and the yellow zone), and the middle zone marker 8b is a yellow / yellow mark (a mark indicating the boundary when the yellow zone is divided into two if necessary). The lower zone marker 8c is a yellow / red mark (a mark indicating the boundary between the yellow zone and the red zone). Each zone marker 8 is set at the above-mentioned position, the previous marker 6 is aligned with the position of each zone marker 8, and each mark position is stored in the previous storage unit 36 through the information terminal 100. The processing unit 35 compares the position of the marker 6 at the time of measurement with the mark position of the storage unit, and outputs an alarm signal for warning each zone from the output unit 37. If necessary, a speaker may be further provided in the respiration measurement conversion device 20 or the information terminal 100 as appropriate. Thus, it is possible to easily digitize the zone management of the existing peak flow meter that is familiar to you.
 上記処理部35、記憶部36及びタイマー38は、図7,8に示す手順により連携して吹き始めのslow start及び吹き終わりの適否を判定する。図7のステップS1では、第一~第三判断時間t1~t3、第一、第二閾値fs1,fs2,第三閾値f3がセットされ、タイマー38は初期化される。マーカー6の移動が検出されると(ステップS2)、タイマー38が動作し(ステップS3)、タイマー計測の第一時間t1内でマーカーの測定値が第一閾値fs1を超えるかどうか判定する(ステップS4)。図8(b)に示す超えない場合は、エラーフラグが立つ(ステップS6)。図8(a)に示す超える場合は、正常な呼気としてステップS5でさらにマーカーの移動が判定され、移動する場合に継続する。 The processing unit 35, the storage unit 36, and the timer 38 cooperate with the procedure shown in FIGS. 7 and 8 to determine the suitability of the blow start slow start and the blow end. In step S1 of FIG. 7, the first to third determination times t1 to t3, the first and second threshold values fs1, fs2, and the third threshold value f3 are set, and the timer 38 is initialized. When the movement of the marker 6 is detected (step S2), the timer 38 operates (step S3), and it is determined whether or not the measured value of the marker exceeds the first threshold fs1 within the first time t1 of the timer measurement (step S3). S4). If it does not exceed the value shown in FIG. 8B, an error flag is set (step S6). In the case shown in FIG. 8 (a), the movement of the marker is further determined in step S5 as normal expiration, and the movement continues.
 ステップS7では吹き終わりの判定がなされる。図8(c)に示すように、マーカーの第二判断時間t2において第二閾値fs2を超える場合は適切と判断される。図8(d)に示すように、この第二判断時間t2において、呼気流量が第二閾値fs2を超えない場合は不適切と判断される。または、図8(e)に示すように、呼気流量ゼロの時点から第三判断時間t3内の呼気増加量が第三閾値f3を超える場合にも不適切と判断される。これら不適切な場合は、ステップS8でエラーフラグが発生させられる。第一判断時間t1は例えば1秒~3秒(1秒以上、3秒以下、この明細書において以下同一表記)、第二判断時間は例えば2秒~6秒、第三判断時間t3は例えば0.5秒~1秒とすることができる。また、第一閾値fs1は、例えば100ml~400ml、第二閾値fs2は、例えば50ml~100ml、第三閾値f3は、例えば20ml~100ml等とすることができる。他の場合は正常と判断され、その後ステップS9でマーカー6の値またはエラー信号を発生させる。 In step S7, the end of blowing is determined. As shown in FIG. 8C, it is determined to be appropriate when the second threshold fs2 is exceeded at the marker second determination time t2. As shown in FIG. 8 (d), if the expiratory flow does not exceed the second threshold value fs2 at the second determination time t2, it is determined to be inappropriate. Alternatively, as shown in FIG. 8 (e), it is also determined to be inappropriate when the exhalation increase amount within the third determination time t3 from the time when the exhalation flow rate is zero exceeds the third threshold f3. If these are inappropriate, an error flag is generated in step S8. The first judgment time t1 is, for example, 1 second to 3 seconds (1 second to 3 seconds or less; the same notation is used in this specification), the second judgment time is, for example, 2 seconds to 6 seconds, and the third judgment time t3 is, for example, 0 .5 seconds to 1 second. Further, the first threshold value fs1 can be set to, for example, 100 ml to 400 ml, the second threshold value fs2 can be set to, for example, 50 ml to 100 ml, and the third threshold value f3 can be set to, for example, 20 ml to 100 ml. In other cases, it is determined as normal, and then the value of the marker 6 or an error signal is generated in step S9.
 使用に際しては、1の表面に呼吸測定変換装置20を着脱層24で貼り付ける。この際、先の移動溝7に沿って呼吸測定変換装置20の長手方向を位置合わせし、31等の設けられたフラップと2つの小さなフラップ23を折り曲げて測定器本体4に貼り付けることで、呼吸測定変換装置20のずれをより有効に抑制できる。着脱が可能なので、呼吸測定変換装置20本体の洗浄もできて便宜である。その後、情報端末100と通信接続を行った状態で、ゼロ点と最高点との校正、ゾーンマーカー8の校正を行い、これらの校正データを記憶部36に記憶させる。 In use, the respiration measurement conversion device 20 is attached to the surface of 1 with the removable layer 24. At this time, by aligning the longitudinal direction of the respiratory measurement conversion device 20 along the previous movement groove 7, folding the flap provided 31 and the two small flaps 23 and attaching them to the measuring instrument body 4, The displacement of the respiration measurement conversion device 20 can be more effectively suppressed. Since it can be attached and detached, the main body of the respiration measurement conversion device 20 can be cleaned, which is convenient. Thereafter, with the communication connection with the information terminal 100, the zero point and the highest point are calibrated and the zone marker 8 is calibrated, and these calibration data are stored in the storage unit 36.
 測定に際しては、マウスピース3を加えて呼気を吹き込み、ピストン5を上昇させて、マーカー6の静止位置を呼吸測定変換装置20の静電センサ等で読み込み、記憶部36の校正データを元に処理部35で校正して、出力部37から電気信号として出力させる。また、マーカー6の位置するゾーンにより、上記ゾーンマーカー8の校正データを元に、各ゾーンに対応するアラームを発生させる。タイマー38に基づく図7,8のエラー判定が同時に処理部35でなされ、エラーのときはエラー表示がなされる。 In the measurement, the mouthpiece 3 is added, the exhalation is blown, the piston 5 is raised, the stationary position of the marker 6 is read by an electrostatic sensor or the like of the respiration measurement conversion device 20, and the processing is performed based on the calibration data of the storage unit 36. Calibration is performed by the unit 35 and output from the output unit 37 as an electrical signal. Further, an alarm corresponding to each zone is generated based on the calibration data of the zone marker 8 according to the zone where the marker 6 is located. 7 and 8 based on the timer 38 is simultaneously performed by the processing unit 35, and an error is displayed when there is an error.
 次に、図9~11を参照しながら、近接誘導センサを用いた本発明の第二実施形態を説明する。なお、以下の説明において、第一実施形態と同様の部材については同一の符号を附してある。 Next, a second embodiment of the present invention using a proximity induction sensor will be described with reference to FIGS. In addition, in the following description, the same code | symbol is attached | subjected about the member similar to 1st embodiment.
 本実施形態の呼吸測定変換装置20では、検出ヘッドSとして、検出コイルユニットc1nを設けている。この検出コイルユニットc1nは、エッチングや印刷により形成された渦巻き状のコイルLに抵抗Rは直列接続されると共にキャパシタCが並列接続されたものである。そして、この検出コイルユニットc1nは発振回路c2nに接続されてコイルLに磁界が発生する。マーカー6のバネ6eにコイルLからの誘導磁界に起因して渦電流が発生し、逆方向の磁界によってコイルLにインダクタンスの変化が起こる。このインダクタンスや損失の変化によって、発振回路定数が変化し、 発振振幅や発振周波数が変化するのを利用して、その変化を比較回路c3nが検出し、検出コイルユニットc1nに対するマーカー6の近接を(距離dの減少)検出する。 In the respiration measurement conversion device 20 of the present embodiment, a detection coil unit c1n is provided as the detection head S. In the detection coil unit c1n, a resistor R is connected in series and a capacitor C is connected in parallel to a spiral coil L formed by etching or printing. The detection coil unit c1n is connected to the oscillation circuit c2n, and a magnetic field is generated in the coil L. An eddy current is generated in the spring 6e of the marker 6 due to the induced magnetic field from the coil L, and an inductance change occurs in the coil L due to the magnetic field in the reverse direction. The change of the oscillation circuit constant and the change of the oscillation amplitude and the oscillation frequency are changed by the change of the inductance and the loss, and the change is detected by the comparison circuit c3n, and the proximity of the marker 6 to the detection coil unit c1n ( Detection of decrease in distance d).
 各検出モジュールCnは、検出コイルユニットc1n、発振回路c2n及び比較回路c3nをそれぞれ備え、ピストン移動方向DLに沿って複数並べられている。各比較回路c3nは処理部31と配線パターン26で接続され、マーカー6の近接する検出ヘッドSを特定する。同実施形態での、被検出体としては、マーカー6のバネ6eを用いたが、他の渦電流の発生する材料を別途設けても良い。被検出体として、磁性金属(鉄、ニッケル)を用いても良いが、非磁性金属に感度の高い誘導形近接スイッチを用いてもよい。 Each detection module Cn includes a detection coil unit c1n, an oscillation circuit c2n, and a comparison circuit c3n, and a plurality of detection modules Cn are arranged along the piston movement direction DL. Each comparison circuit c3n is connected to the processing unit 31 by the wiring pattern 26, and specifies the detection head S adjacent to the marker 6. In the embodiment, the spring 6e of the marker 6 is used as the detection target, but another material for generating eddy current may be separately provided. A magnetic metal (iron, nickel) may be used as an object to be detected, but an inductive proximity switch having high sensitivity may be used for a nonmagnetic metal.
 次に、図12~14を参照しながら、磁気センサを用いた本発明の第三実施形態を説明する。同実施形態では、検出モジュールSとして、磁気センサm1nを用いている点が異なる。同磁気センサm1nは、図14(a)に示す磁気抵抗Rx,Ryを直列接続した素子を有している。また、先のマーカー6には有底円筒状の磁石キャップ40が嵌合されている。この素子は、X方向磁気抵抗Rxが前記ピストン移動方向DLに直交する方向に配向されており、主として、X方向磁気抵抗Rxにより磁石キャップ40の近接(距離dの減少)を検出する。 Next, a third embodiment of the present invention using a magnetic sensor will be described with reference to FIGS. The embodiment is different in that a magnetic sensor m1n is used as the detection module S. The magnetic sensor m1n has an element in which magnetic resistances Rx and Ry shown in FIG. Further, a bottomed cylindrical magnet cap 40 is fitted to the marker 6. In this element, the X-direction magnetic resistance Rx is oriented in a direction perpendicular to the piston movement direction DL, and mainly detects the proximity of the magnet cap 40 (decrease in the distance d) by the X-direction magnetic resistance Rx.
 本実施形態での磁気センサm1nは、図14(b)に示すように、X方向磁気抵抗Rx、Y方向磁気抵抗Ry、可変抵抗Rv、固定抵抗Rfでブリッジを構成している。入力端子41a,41bには電圧Eが印加され、磁気キャップ40の近接しない通常は出力端子42a,42bの電圧はゼロとなるように、可変抵抗Rvの調整がなされる。温度の影響はX方向磁気抵抗Rx、Y方向磁気抵抗Ry双方に作用するため、ブリッジの出力は温度の影響を受けにくい。しかし、磁界についてはそれぞれX,Yの方向性を有しているため、磁気キャップ40の近接を検出することができる。 The magnetic sensor m1n in the present embodiment forms a bridge with the X-direction magnetic resistance Rx, the Y-direction magnetic resistance Ry, the variable resistance Rv, and the fixed resistance Rf, as shown in FIG. 14B. The variable resistor Rv is adjusted so that the voltage E is applied to the input terminals 41a and 41b, and the voltages of the output terminals 42a and 42b that are not close to the magnetic cap 40 are normally zero. Since the influence of temperature acts on both the X direction magnetic resistance Rx and the Y direction magnetic resistance Ry, the output of the bridge is hardly affected by the temperature. However, since the magnetic field has X and Y directions, the proximity of the magnetic cap 40 can be detected.
 各磁気センサm1nには比較器(コンパレーター)m2nが接続されている。すなわち、各検出モジュールMnは、磁気センサm1nと比較器m2nとを有しており、先の実施例と同様に複数の検出ジュールMnがピストン移動方向DLに向けて並べられている。各比較器m2nは、処理部31と配線パターン26で接続され、マーカー6の近接する検出ヘッドSを特定する。同実施形態での、被検出体としては、マーカー6に被せることの可能な永久磁石のキャップ40を用いればよいが、マーカー6に穴を形成し、永久磁石を差し込んでもよい。 A comparator (comparator) m2n is connected to each magnetic sensor m1n. That is, each detection module Mn has a magnetic sensor m1n and a comparator m2n, and a plurality of detection modules Mn are arranged in the piston movement direction DL as in the previous embodiment. Each comparator m2n is connected to the processing unit 31 by the wiring pattern 26, and specifies the detection head S in the vicinity of the marker 6. As the object to be detected in the embodiment, a permanent magnet cap 40 that can be placed on the marker 6 may be used, but a hole may be formed in the marker 6 and a permanent magnet may be inserted.
 その他、本実施形態の各部材は、本発明の趣旨を逸脱しない限り、適宜改変が可能である。また、各実施形態の要素は相互に組み合わせて実施することができる。各検出ヘッドの検出は、各値の最大値または最小値等、絶対値の大小で判断することができる。 In addition, each member of the present embodiment can be appropriately modified without departing from the gist of the present invention. In addition, the elements of the embodiments can be implemented in combination with each other. The detection of each detection head can be determined by the magnitude of the absolute value such as the maximum value or the minimum value of each value.
 本発明は、ピークフローメーター、スパイロメーター等の呼吸測定器用の呼吸測定変換装置及びこれを取り付けた呼吸測定器並びに呼吸測定方法として利用することができる。呼吸測定器は呼気のみならず、吸気に対して用いることもできる。 The present invention can be used as a respiration measurement conversion device for a respiration measuring instrument such as a peak flow meter or a spirometer, a respiration measuring instrument equipped with the respiration measuring conversion apparatus, and a respiration measuring method. Respirometers can be used for inspiration as well as exhalation.
1:呼吸測定器、2:測定器本体、2a:シリンダ、2b:呼吸目盛、3:マウスピース、4:スライド軸、5:ピストン、6:マーカー、6a:表膨大部、6b:裏膨大部、6c:連結部、6d:貫通孔、6e:バネ、6x:スライダー、7:移動溝、8:ゾーンマーカー、8a:上ゾーンマーカー、8b:中ゾーンマーカー、8c:下ゾーンマーカー、20:呼吸測定変換装置、21:フィルム部、22:変換装置本体、23:フラップ、24:着脱層、25:スルーホール、26:配線パターン、29:アンテナ、31:制御部、32:無線通信部、33:バッテリー、35:処理部、36:記憶部、37:出力部、38:タイマー、40:磁石キャップ、41a,41b:入力端子、42a,42b:出力端子、100:情報端末(スマートフォン)、101:無線通信部、102:表示部、103:アンテナ、C:静電容量、Cn:検出モジュール、c1n(S):検出コイルユニット(検出ヘッド)、c2n:発振回路、c3n:比較回路、DL:ピストン移動方向、E:電源、S:検出ヘッド、t:検出電極、t1:第一電極、t2:第二電極、tn:第n電極、Te:アース電極、M:検出モジュール、m1n(S):磁気センサ(検出ヘッド)、m2n:コンパレーター(比較器)、Rx:X方向磁気抵抗、Ry:Y方向磁気抵抗、Rv:可変抵抗、Rf:固定抵抗 1: Respiration measuring instrument, 2: Measuring instrument main body, 2a: Cylinder, 2b: Respiratory scale, 3: Mouthpiece, 4: Slide shaft, 5: Piston, 6: Marker, 6a: Front enormous part, 6b: Back enormous part 6c: connecting portion, 6d: through hole, 6e: spring, 6x: slider, 7: moving groove, 8: zone marker, 8a: upper zone marker, 8b: middle zone marker, 8c: lower zone marker, 20: breathing Measurement conversion device, 21: film unit, 22: conversion device main body, 23: flap, 24: detachable layer, 25: through hole, 26: wiring pattern, 29: antenna, 31: control unit, 32: wireless communication unit, 33 : Battery, 35: processing unit, 36: storage unit, 37: output unit, 38: timer, 40: magnet cap, 41a, 41b: input terminal, 42a, 42b: output terminal, 100: information terminal ( (Mart phone), 101: wireless communication unit, 102: display unit, 103: antenna, C: capacitance, Cn: detection module, c1n (S): detection coil unit (detection head), c2n: oscillation circuit, c3n: Comparison circuit, DL: piston moving direction, E: power supply, S: detection head, t: detection electrode, t1: first electrode, t2: second electrode, tn: nth electrode, Te: ground electrode, M: detection module , M1n (S): magnetic sensor (detection head), m2n: comparator (comparator), Rx: X direction magnetic resistance, Ry: Y direction magnetic resistance, Rv: variable resistance, Rf: fixed resistance

Claims (11)

  1. シリンダと、このシリンダ内で移動するピストンと、このピストンの移動に伴って移動しピストンの最上位置を示すマーカーとを有する呼吸測定器に取り付けることで呼気量または呼気圧力を示す呼吸目盛を電気信号に変換して測定する呼吸測定器用の呼吸測定変換装置であって、
    前記シリンダに取り付ける本体と、この本体上で前記マーカーの移動範囲の近傍にこのマーカーの移動方向に沿って配置される複数の検出ヘッドとを備え、
    前記いずれかの検出ヘッドへのマーカーの近接に伴う当該検出ヘッドの出力値の変を通じた当該検出ヘッドの位置と現実の呼吸測定器の目盛との対照により前記これらの検出ヘッドと呼吸目盛との校正情報を記憶する校正記憶部を備え、
    呼吸測定により検出されたマーカーの近接する前記検出ヘッドの位置と前記校正記憶部との情報の対照により呼吸目盛の値を電気信号として出力する出力部を備えた呼吸測定器用の呼吸測定変換装置。
    A breathing scale indicating an expiratory volume or expiratory pressure is attached to a respiratory measuring instrument having a cylinder, a piston that moves in the cylinder, and a marker that moves with the movement of the piston and indicates the uppermost position of the piston. A respiration measurement conversion device for a respiration measuring device that converts and measures
    A main body to be attached to the cylinder, and a plurality of detection heads arranged along the moving direction of the marker in the vicinity of the moving range of the marker on the main body,
    By comparing the position of the detection head through the change of the output value of the detection head with the proximity of the marker to any one of the detection heads and the scale of the actual respiratory measurement instrument, the detection head and the respiratory scale A calibration storage unit for storing calibration information is provided.
    A respiratory measurement conversion device for a respiratory measuring instrument, comprising: an output unit that outputs a value of a respiratory scale as an electrical signal based on a comparison of information between the position of the detection head adjacent to a marker detected by respiratory measurement and the calibration storage unit.
  2. 前記マーカーの移動開始を検出し、当該移動開始時点からの時間を測定するタイマーをさらに備え、前記マーカーの位置の変化が、その移動開始から所定時間経過しても所定の値に達しない場合に呼吸測定失敗と判定する判定部を備えた請求項1記載の呼吸測定器用の呼吸測定変換装置。 A timer for detecting the start of movement of the marker and measuring a time from the start of the movement is further provided, and a change in the position of the marker does not reach a predetermined value even after a predetermined time has elapsed since the start of the movement. The respiration measurement conversion device for a respirometer according to claim 1, further comprising a determination unit that determines that respiration measurement has failed.
  3. 前記マーカーの移動開始を検出し、当該移動開始時点からの時間を測定するタイマーをさらに備え、前記マーカーの移動終了時点が移動開始時点から所定時間内において、当該測定時間後半における前記マーカーの上昇値が一定量を超えた場合に呼吸測定失敗と判定する判定部を備えた請求項1記載の呼吸測定器用の呼吸測定変換装置。 A timer for detecting the start of movement of the marker and measuring a time from the start time of the marker; and an increase value of the marker in the latter half of the measurement time within a predetermined time from the start time of movement of the marker. The respiratory measurement conversion device for a respiratory measurement device according to claim 1, further comprising a determination unit that determines that the respiratory measurement has failed when the value exceeds a certain amount.
  4. 前記本体はシート状であり、前記シリンダに着脱貼付け自在な貼り付ける貼り付け層を有している請求項1記載の呼吸測定器用の呼吸測定変換装置。 The respiration measurement conversion device for a respirometer according to claim 1, wherein the main body has a sheet shape and has an affixing layer that can be attached to and detached from the cylinder.
  5. 前記シリンダは前記ピストン移動方向を一辺とする方形であり、前記ピストン移動方向に距離を隔ててこのシリンダの角部に係止する一対のフラップを有している請求項4記載の呼吸測定器用の呼吸測定変換装置。 The respiratory cylinder according to claim 4, wherein the cylinder has a square shape with the piston moving direction as one side, and has a pair of flaps that are engaged with corner portions of the cylinder at a distance in the piston moving direction. Respiration measurement conversion device.
  6. 前記検出ヘッドは検出電極であり、前記マーカーの移動方向に沿ってアース電極を前記本体上にさらに設け、このアース電極と前記マーカー移動範囲との間に前記検出電極が配置され、前記いずれかの検出電極へのマーカーの近接に伴う当該検出電極と前記アース電極間の静電容量の変化により前記校正がなされるものである請求項1記載の呼吸測定器用の呼吸測定変換装置。 The detection head is a detection electrode, and a ground electrode is further provided on the main body along the movement direction of the marker, and the detection electrode is disposed between the ground electrode and the marker movement range, The respiration measurement conversion apparatus for a respiration measuring device according to claim 1, wherein the calibration is performed by a change in capacitance between the detection electrode and the ground electrode accompanying the proximity of the marker to the detection electrode.
  7. 前記検出ヘッドは検出コイルであり、前記マーカーには導電材料で構成されたマーカーの静止用バネが設けられ、検出コイルにバネが近接することに伴う検出コイルのインダクタンスの変化により前記校正がなされるものである請求項1記載の呼吸測定器用の呼吸測定変換装置。 The detection head is a detection coil, and the marker is provided with a marker spring made of a conductive material, and the calibration is performed by a change in the inductance of the detection coil accompanying the proximity of the spring to the detection coil. The respiration measurement conversion device for a respiration measuring device according to claim 1.
  8. 前記検出ヘッドは磁気センサであり、前記マーカーには磁気材料で構成された磁気マーカーが設けられ、磁気センサに前記磁気マーカーが近接することに伴う磁気センサの抵抗値の変化により前記校正がなされるものである請求項1記載の呼吸測定器用の呼吸測定変換装置。 The detection head is a magnetic sensor, and the marker is provided with a magnetic marker made of a magnetic material, and the calibration is performed by changing the resistance value of the magnetic sensor as the magnetic marker approaches the magnetic sensor. The respiration measurement conversion device for a respiration measuring device according to claim 1.
  9. 請求項1~8のいずれかに記載の呼吸測定器用の呼吸測定変換装置を取り付けてある呼吸測定器。 A respiratory measurement device to which the respiratory measurement conversion device for a respiratory measurement device according to any one of claims 1 to 8 is attached.
  10. シリンダと、このシリンダ内で移動するピストンと、このピストンの移動に伴って移動しピストンの最上位置を示すマーカーとを有する呼吸測定器に取り付けることで呼気量または呼気圧力を示す呼吸目盛を電気信号に変換して測定する呼吸測定方法であって、
    前記シリンダに取り付ける本体と、この本体上で前記マーカーの移動範囲の近傍にこのマーカーの移動方向に沿って配置される複数の検出ヘッドとを備え、
    前記いずれかの検出ヘッドへのマーカーの近接に伴う当該検出ヘッドの出力値の変を通じた当該検出ヘッドの位置と現実の呼吸測定器の目盛との対照により前記これらの検出ヘッドと呼吸目盛との校正情報を校正記憶部に記憶し、
    呼吸測定により検出されたマーカーの近接する前記検出ヘッドの位置と前記校正記憶部との情報の対照により呼吸目盛の値を電気信号として出力部から出力する呼吸測定方法。
    A breathing scale indicating an expiratory volume or expiratory pressure is attached to a respiratory measuring instrument having a cylinder, a piston that moves in the cylinder, and a marker that moves with the movement of the piston and indicates the uppermost position of the piston. A respiration measurement method for measuring by converting to
    A main body to be attached to the cylinder, and a plurality of detection heads arranged along the moving direction of the marker in the vicinity of the moving range of the marker on the main body,
    By comparing the position of the detection head through the change of the output value of the detection head with the proximity of the marker to any one of the detection heads and the scale of the actual respiratory measurement instrument, the detection head and the respiratory scale Store calibration information in the calibration memory,
    A respiration measurement method for outputting a value of a respiration scale from an output unit as an electrical signal by comparing information between the position of the detection head adjacent to a marker detected by respiration measurement and the information stored in the calibration storage unit.
  11. 前記呼吸測定器は少なくとも2つのゾーンマーカーを備え、各ゾーンマーカーの位置に前記マーカーを合わせて各ゾーンマーカーの位置を記憶部に記憶させ、測定時に両ゾーンマーカーの範囲に前記マーカーが入った場合にアラーム信号を発生させる請求項10記載の呼吸測定方法。 The respiratory measurement device includes at least two zone markers, the markers are aligned with the positions of the zone markers, the positions of the zone markers are stored in the storage unit, and the markers are in the range of both zone markers at the time of measurement. The respiration measurement method according to claim 10, wherein an alarm signal is generated in the apparatus.
PCT/JP2016/060801 2016-03-31 2016-03-31 Respiration measuring conversion device for respirometer, respirometer equipped with respiration measuring conversion device, and respiration measuring method WO2017168715A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/060801 WO2017168715A1 (en) 2016-03-31 2016-03-31 Respiration measuring conversion device for respirometer, respirometer equipped with respiration measuring conversion device, and respiration measuring method
JP2016569099A JP6128541B1 (en) 2016-03-31 2016-03-31 Respiration measurement conversion device for respiration measuring device, respiration measuring device equipped with respiration measuring conversion device, and respiration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060801 WO2017168715A1 (en) 2016-03-31 2016-03-31 Respiration measuring conversion device for respirometer, respirometer equipped with respiration measuring conversion device, and respiration measuring method

Publications (1)

Publication Number Publication Date
WO2017168715A1 true WO2017168715A1 (en) 2017-10-05

Family

ID=58714686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060801 WO2017168715A1 (en) 2016-03-31 2016-03-31 Respiration measuring conversion device for respirometer, respirometer equipped with respiration measuring conversion device, and respiration measuring method

Country Status (2)

Country Link
JP (1) JP6128541B1 (en)
WO (1) WO2017168715A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501720A (en) * 1991-10-03 1995-02-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Peak flow measurement device for exhaled breath analysis
JPH07110247A (en) * 1993-10-08 1995-04-25 Chiesuto M I Kk Instrument for measuring flow rate of exhalation
JPH10216104A (en) * 1997-02-06 1998-08-18 Clement Clarke Internatl Ltd Maximum flow measuring apparatus
US20060217627A1 (en) * 2005-03-23 2006-09-28 Trudell Medical International Peak flow meter
US9138167B1 (en) * 2009-09-25 2015-09-22 Krispin Johan Leydon Means for rendering key respiratory measurements accessible to mobile digital devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501720A (en) * 1991-10-03 1995-02-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Peak flow measurement device for exhaled breath analysis
JPH07110247A (en) * 1993-10-08 1995-04-25 Chiesuto M I Kk Instrument for measuring flow rate of exhalation
JPH10216104A (en) * 1997-02-06 1998-08-18 Clement Clarke Internatl Ltd Maximum flow measuring apparatus
US20060217627A1 (en) * 2005-03-23 2006-09-28 Trudell Medical International Peak flow meter
US9138167B1 (en) * 2009-09-25 2015-09-22 Krispin Johan Leydon Means for rendering key respiratory measurements accessible to mobile digital devices

Also Published As

Publication number Publication date
JPWO2017168715A1 (en) 2018-04-05
JP6128541B1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
US8283921B2 (en) Magnetoresistance sensors for position and orientation determination
US3946726A (en) Pulmonary diagnostic instrument including breath transducer
AU769447B2 (en) Volumetric physiological measuring system
US20090012418A1 (en) Medical surgical sponge and instrument detection system and method
US8872508B2 (en) Method and apparatus for a half-bridge variable differential transformer position sensing system
US20130172696A1 (en) Medical hand-held measuring device with exchangeable probe
US20130267833A1 (en) Automatic instrument detection for surgical navigation
CN109690232A (en) Noncontacting proximity sensor
JP6128541B1 (en) Respiration measurement conversion device for respiration measuring device, respiration measuring device equipped with respiration measuring conversion device, and respiration measuring method
CN104055493B (en) Measuring device and measuring system
US20210072044A1 (en) Output system and gauge
JP3834222B2 (en) Voltage detection circuit for resistor for current detection
WO2011054158A1 (en) Electronic sphygmomanometer capable of indicating correct measurement position
JP3972116B2 (en) Magnetic attractive force measuring device for magnet body
US6016707A (en) Non-intrusive pressure variation monitoring device adapted to monitor abdominal pressure in pregnant women
US6687646B2 (en) Caliper
RU2015143889A (en) DEVICE AND METHOD FOR DETERMINING A RESPIRATORY SIGNAL SIGNAL BY IMAGE DATA
GB2424956A (en) Device for the measurement of a volume flow with inductive coupling
JP7076728B2 (en) Capacitive sensor
JP3910940B2 (en) Displacement sensor and pressure measuring instrument using it
US7038449B1 (en) Biased magnetic field strength indication tool
JPH11223565A (en) Load sensor
Xiang et al. Magnetic induction sensing with a gradiometer coil and measurement circuit
WO2018102830A1 (en) Vehicle battery current sensing system
CA2541314C (en) Biased magnetic field strength indication tool

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016569099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896932

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896932

Country of ref document: EP

Kind code of ref document: A1