WO2017168516A1 - Filter for smoking article, smoking article, and process for producing filter for smoking article - Google Patents

Filter for smoking article, smoking article, and process for producing filter for smoking article Download PDF

Info

Publication number
WO2017168516A1
WO2017168516A1 PCT/JP2016/059916 JP2016059916W WO2017168516A1 WO 2017168516 A1 WO2017168516 A1 WO 2017168516A1 JP 2016059916 W JP2016059916 W JP 2016059916W WO 2017168516 A1 WO2017168516 A1 WO 2017168516A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
particles
core
acid
average particle
Prior art date
Application number
PCT/JP2016/059916
Other languages
French (fr)
Japanese (ja)
Inventor
龍 北岡
正人 宮内
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to EP16896736.2A priority Critical patent/EP3400814A4/en
Priority to PCT/JP2016/059916 priority patent/WO2017168516A1/en
Priority to JP2018507840A priority patent/JP6535810B2/en
Publication of WO2017168516A1 publication Critical patent/WO2017168516A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/12Use of materials for tobacco smoke filters of ion exchange materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • A24D3/163Carbon

Definitions

  • the present invention relates to a filter for smoking articles, a smoking article, and a method for manufacturing a filter for smoking articles.
  • adsorbent particles are added to the filter to adsorb and remove chemical components in mainstream smoke.
  • Activated carbon particles are typically used as the adsorbent particles, but the use of various adsorbent particles has been attempted. For example, it has been reported that hydrotalcite particles having an average particle size of 200 to 800 ⁇ m are added to a cigarette filter to selectively remove formaldehyde in mainstream smoke (Patent Document 1).
  • the particle size of the adsorbent particles is reduced to increase the specific surface area, the adsorption ability is improved.
  • the inventors of the present invention reduced the particle size of hydrotalcite particles to the nano level and added it to the cigarette filter, and tried to improve the adsorption capacity. I found a problem that it is not suitable.
  • an object of the present invention is to provide a filter for smoking articles that can more effectively remove formaldehyde in mainstream smoke without excessively increasing the airflow resistance.
  • Core particles having an average particle size of 200 ⁇ m to 1000 ⁇ m comprising composite particles that are supported on at least a part of the surface of the core particle, are composed of a hydrotalcite compound, and are composed of nanoparticles having an average particle size of 200 nm or less. .
  • a smoking article including such a smoking article filter and a tobacco rod connected to one end of the smoking article filter.
  • a method for producing a filter for smoking articles comprising preparing composite particles having the hydrotalcite particles supported on at least a part of a surface of the surface, and incorporating the obtained composite particles into a filter for smoking articles. Provided.
  • formaldehyde in mainstream smoke can be more effectively removed without excessively increasing the airflow resistance.
  • the disassembled perspective view which shows an example of the filter of this invention.
  • the filter for smoking articles of the present invention is Core particles having an average particle size of 200 ⁇ m to 1000 ⁇ m;
  • FIG. 1 schematically shows an example of a composite particle 11 composed of core particles 11a and nanoparticles 11b. As shown in FIG. 1, the nanoparticles 11b are supported on at least a part of the surface of the core particles 11a.
  • the core particles preferably have a function as adsorbent particles.
  • the core particles have a function as adsorbent particles, it is preferable that the nanoparticles do not cover the entire surface of the core particles.
  • the core particle functions as an adsorbent particle and has pores on the surface thereof, the nanoparticle may enter the pore, but at least a part of the nanoparticle is fine. It is preferably supported on the surface of the core particle excluding the pore surface.
  • the core particles In order for the core particles to efficiently attach the nanoparticles to the surface, the core particles preferably have water retention.
  • Water retention refers to the property of retaining water on the surface of the core particles. Specifically, water retention refers to the property of retaining water on the surface of the core particle by making the surface of the core particle hydrophilic and / or porous.
  • the water retention of the core particles can be quantified by the water retention rate defined below.
  • Water retention (%) [ ⁇ (weight of core particles after passing through metal mesh) ⁇ (weight of core particles before being immersed in water) ⁇ / (weight of core particles before being immersed in water)] ⁇ 100
  • the core particles preferably have a water retention rate of 70% or more, more preferably 70 to 150%, and still more preferably 70 to 100%.
  • porous particles can be used as the core particles. More specifically, as the porous particles, porous particles used as an adsorbent in a filter for smoking articles, for example, activated carbon particles, silica particles, hydrotalcite particles, calcium phosphate particles, zeolite particles, etc. may be used. it can. Preferably, activated carbon particles are used as the porous particles.
  • the activated carbon particles preferably have a BET specific surface area of 400-2800 m 2 / g.
  • Non-porous particles can also be used as the core particles, such as calcium carbonate particles, saccharide particles (eg, particles composed of monosaccharides, disaccharides, oligosaccharides, polysaccharides, or any combination thereof), Cellulose particles, cellulose triacetate particles, and the like can be used.
  • saccharide particles eg, particles composed of monosaccharides, disaccharides, oligosaccharides, polysaccharides, or any combination thereof
  • Cellulose particles eg, cellulose triacetate particles, and the like can be used.
  • the core particles have an average particle size of 200 ⁇ m to 1000 ⁇ m, preferably an average particle size of 300 ⁇ m to 700 ⁇ m, more preferably an average particle size of 400 ⁇ m to 600 ⁇ m.
  • the average particle diameter of the core particles refers to a value measured using a digital image of particles photographed by a CCD camera.
  • an image analysis type particle size distribution measuring device (Camsizer, Retsch technology) is used. Refers to the measured value.
  • the average particle diameter of the nanoparticles refers to a value measured using a transmission electron microscope (TITAN 80-300, FEI).
  • the average particle diameter of the core particles and nanoparticles can be obtained by randomly selecting a statistically sufficient number (for example, 30 particles), measuring the particle diameter, and calculating the arithmetic average.
  • the average particle size of the composite particles can be measured in the same manner as the core particles.
  • the nanoparticles have an average particle diameter of 1 to 200 nm, preferably 10 nm to 150 nm, more preferably 10 nm to 50 nm.
  • the nanoparticles are made of a hydrotalcite compound.
  • the hydrotalcite compound constituting the nanoparticles has a layered structure in which a large number of octahedral layers of metal hydroxide are laminated, and anions are intercalated between these layers.
  • the octahedral layer is called a host and exhibits basicity. Formaldehyde removal by hydrotalcite-type compounds is considered to occur as a result of the basic contribution of the host and the ion exchange action by intercalated anions.
  • the hydrotalcite compound may be natural or synthetic.
  • Hydrotalcite compounds have the following general formula [M 2 + 1-x M 3+ x (OH) 2 ] [(A n ⁇ ) x / n ⁇ m H 2 O] (Wherein, M 2+ is a divalent metal ion selected from the group consisting of Mg, Zn, Ni and Ca, M 3+ is Al ion, A n-is CO 3, SO 4 , OOC-COO, Cl, Br, F, NO 3 , Fe (CN) 6 3 ⁇ , Fe (CN) 6 4 ⁇ , phthalic acid, isophthalic acid, terephthalic acid, maleic acid, alkenyl acid and derivatives thereof, apple An n-valent anion selected from the group consisting of acid, salicylic acid, acrylic acid, adipic acid, succinic acid, citric acid and sulfonic acid, x is 0.1 ⁇ x ⁇ 0.4, and m is 0 ⁇ m ⁇ 2).
  • M 2+ is Mg ion
  • M 3+ is Al ion
  • a n-is CO 3 2-or SO 4 is 2-
  • x is 0.1 ⁇ x ⁇ 0.4
  • m is preferably 0 ⁇ m ⁇ 2.
  • Mg—Al based hydrotalcite compounds are stable when x is in the range of 0.20 to 0.33.
  • the general formula is Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O.
  • Mg-Al-based hydrotalcite compounds are obtained by adding alkali carbonate or alkali carbonate and caustic alkali to an aqueous solution of water-soluble aluminum salt or aluminate and water-soluble magnesium salt selected from aluminum sulfate, aluminum acetate and alum.
  • the reaction mixture can be produced by maintaining the pH of the reaction mixture at 8.0 or higher.
  • nanoparticles having an average particle diameter of 200 nm or less can be obtained.
  • core particles and nanoparticles those prepared according to a known method may be used, or commercially available products may be used.
  • Composite particles composed of core particles and nanoparticles can be prepared as described below. By stirring the suspension containing the nanoparticles and the core particles in water, and then drying the suspension, composite particles in which the nanoparticles are supported on the surface of the core particles can be prepared.
  • the core particles and nanoparticles preferably have a water retention of 70% or more, more preferably 70 to 150%, and still more preferably 70 to 100%.
  • the higher the water retention rate that is, the higher the ability to retain water on the surface
  • the higher the nanoparticle loading rate This is because the core particles and the nanoparticles are bonded together in the suspension mainly by the liquid cross-linking adhesion force, so that the higher the water retention rate of the core particles, the larger the liquid cross-linking adhesion force.
  • the water retention rate is too high, the composite particles agglomerate with each other and uniform addition to the filter becomes difficult. Therefore, a water retention rate of 70 to 100% is particularly desirable in terms of production suitability.
  • the nanoparticles are supported on the surface of the core particles mainly by van der Waals force, and the adhesion thereof is maintained.
  • the core particles and the nanoparticles are mixed in a weight ratio of, for example, 1000: 1 to 1: 1, preferably 100: 1 to 2: 1.
  • these particles can be added to, for example, 30-1000 ⁇ L of water to prepare a suspension.
  • Such a suspension can be dried at 80 to 200 ° C. for 5 to 120 minutes to obtain a sample containing composite particles. Drying is preferably performed until the entire amount of moisture is removed.
  • the sample When all of the used nanoparticles are not supported on the core particles, the sample includes nanoparticles that are not supported on the core particles.
  • the composite particles and the nanoparticles may be separated using a sieve.
  • the treatment for supporting the nanoparticles on the core particles may be repeated. Specifically, after preparing the composite particles, the composite particles and the nanoparticles are separated using a sieve, the separated nanoparticles are suspended in water, and the resulting suspension is separated from the separated composite particles. Mix and dry. This allows additional nanoparticles to be further attached to the composite particles. By carrying out this operation repeatedly, the loading rate can be increased.
  • the composite particles can be generally added to a filter having a diameter of 7.7 mm and a length of 27 mm in an amount of 10 to 100 mg, preferably 15 to 40 mg.
  • the composite particles can generally be added to account for 3 to 33% of the total volume of the filter, preferably 5 to 13% of the total volume of the filter.
  • the composite particles can be incorporated into a smoking article filter to produce various forms of smoking article filters as follows.
  • a filter in which composite particles are dispersed in a filter medium for example, a fiber tow or non-woven fabric such as cellulose acetate.
  • the filter plug may be a conventional cellulose acetate filter or charcoal filter, or may be the filter of (1) or (2). Further, when there are two or more spaces, at least one space may be filled with composite particles, and the other spaces may be filled with activated carbon particles. An example of this filter is shown in FIG.
  • the composite particles 11 are arranged in a space (filter cavity portion) between two filter plugs 12 arranged apart from each other, and plugs are provided around the two filter plugs 12.
  • a web 13 is wound.
  • a filter in which composite particles are incorporated is also referred to as a composite particle-containing filter.
  • the composite particle-containing filter can be incorporated into any smoking article, specifically a combustible smoking article that burns tobacco filler, such as cigarette, or a non-combustible suction article that does not burn tobacco filler, such as heating It can be incorporated into a mold aspirator.
  • a tobacco rod containing a tobacco filler can be connected to one end of a composite particle-containing filter to produce a combustion-type smoking article such as a cigarette.
  • a non-combustible smoking article for example, a heated aspirator
  • a non-combustible smoking article for example, a heated aspirator
  • a composite particle-containing filter at one or both ends of a cylindrical member forming a cavity and arranging a flavor source in the cavity. it can.
  • the composite particle-containing filter is less likely to increase the filter ventilation resistance (see Experiment 1 described later).
  • the composite particles are added in an amount of 10 to 100 mg to a filter having a diameter of 7.7 mm and a length of 27 mm
  • the composite particle-containing filter can exhibit a filter ventilation resistance of, for example, 40 to 80 mmH 2 O.
  • the composite particle-containing filter exhibiting the filter ventilation resistance is incorporated in a cigarette
  • the obtained cigarette can exhibit a cigarette ventilation resistance of, for example, 80 to 120 mmH 2 O.
  • the obtained cigarette can more effectively remove formaldehyde in the mainstream smoke (see Experiment 2 described later).
  • Experiment 1 Filter ventilation resistance (1-1) Preparation of composite particle-containing filter Activated carbon particles (average particle size: 400 ⁇ m; BET specific surface area: 1252 m 2 / g) and hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 ⁇ 4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) was supported to prepare hydrotalcite-supported activated carbon (hereinafter also referred to as composite particles). Specifically, the support of the hydrotalcite particles on the activated carbon particles was performed as follows.
  • the obtained composite particles were placed in a space (filter cavity part) between two filter plugs (filter medium: acetate tow; diameter: 7.7 mm; length: 5 mm) spaced apart from each other, A composite particle-containing filter was produced by winding a plug web around the filter plug (see FIG. 5).
  • Nanoparticles are placed in a space (filter cavity part) between two filter plugs (filter medium: acetate tow; diameter: 7.7 mm; length: 5 mm) and a plug web is wound around the filter plug.
  • a containing filter (Comparative Example 1) was produced.
  • FIG. 3 shows the filter ventilation resistance of the composite particle-containing filter and the nanoparticle-containing filter.
  • FIG. 4 shows the filter ventilation resistance of the composite particle-containing filter and the core particle-containing filter.
  • the addition amount on the horizontal axis indicates the addition amount (mg) of hydrotalcite particles (nanoparticles).
  • the filter ventilation resistance of a composite particle containing filter shows the value calculated by the following formula
  • (Filter ventilation resistance of a filter containing composite particles) (Filter ventilation resistance measured using a filter containing composite particles) ⁇ (Measured using a filter containing activated carbon particles in the same amount as the activated carbon particles used in the filter containing composite particles) Filter ventilation resistance)
  • the filter ventilation resistance of a nanoparticle containing filter shows the value calculated by the following formula
  • (Filter ventilation resistance of the nanoparticle-containing filter) (Filter ventilation resistance measured using a nanoparticle-containing filter) ⁇ (Filter ventilation resistance measured using a filter not containing nanoparticles).
  • the addition amount on the horizontal axis indicates the addition amount (mg) of composite particles or activated carbon particles.
  • the filter ventilation resistance of the composite particle containing filter shows the value calculated by the following formula
  • (Filter ventilation resistance of a filter containing composite particles) (Filter ventilation resistance measured using a filter containing composite particles) ⁇ (Filter ventilation resistance measured using a filter not containing composite particles)
  • the filter ventilation resistance of a core particle containing filter shows the value calculated by the following formula
  • (Filter ventilation resistance of filter containing core particles) (Filter ventilation resistance measured using a filter containing core particles) ⁇ (Filter ventilation resistance measured using a filter containing no core particles).
  • hydrotalcite particles having an average particle size of 50 nm are added to the filter in the form of hydrotalcite-supported activated carbon (composite particles)
  • the presence of hydrotalcite particles is higher than when added directly to the filter. It can be seen that it is difficult to increase the filter ventilation resistance.
  • Experiment 2 Formaldehyde reduction rate (2-1) Production of cigarette of the present invention
  • a composite particle-containing filter was produced in the same manner as in Experiment 1.
  • the produced composite particle-containing filter was connected to a tobacco rod (diameter: 7.7 mm; length: 57 mm; tobacco filler: 605 mg) to produce a cigarette of the present invention.
  • the connection was performed so as to cover the connection part with chip paper (not shown).
  • the produced cigarette of this invention is typically shown in FIG.
  • the filter 10 is composed of two filter plugs 12 that are spaced apart from each other, a plug web 13 wound around the filter plug 12, and composite particles 11 that are disposed between the filter plugs 12.
  • the tobacco rod 20 includes a tobacco filler 21 and a cigarette paper 22 wound around the tobacco filler 21.
  • DNPH 2,4-dinitrophenylhydrazine
  • the DNPH collection liquid 32 is put into the collection air washing bottle 31.
  • the capacity of the washing bottle 31 was 100 mL, and the amount of the DNPH collection liquid 32 was 80 mL.
  • the air bottle 31 is placed in an ice water bath 33 and cooled with ice.
  • the lower end of the glass tube 34 to which the cigarette 30 is attached is immersed in the collected liquid 32 in the air cleaning bottle 31.
  • the glass tube 35 and the Cambridge pad 36 are attached so as to communicate with the dead volume of the air cleaning bottle 31, and the Cambridge pad 36 and the automatic smoker 37 are connected.
  • the cigarette 30 is attached to the glass tube 34, and the cigarette 30 is automatically smoked under standard ISO smoking conditions. That is, for each cigarette, the operation of sucking 35 mL of smoke for 2 seconds with one empty puff is repeated at intervals of 58 seconds. While mainstream smoke is bubbled, formaldehyde is derivatized by DNPH. Two cigarettes for measurement were used. At this time, the pressure loss was adjusted to be the same for each cigarette using any adsorbent particle.
  • the derivative produced as described above is measured by high performance liquid chromatography (HPLC). First, the collected liquid is filtered and then diluted with the Trizma Base solution (collected liquid 4 mL, Trizma Base solution 6 mL). This solution is measured by HPLC.
  • HPLC high performance liquid chromatography
  • control cigarettes As a control experiment, the amount of formaldehyde in mainstream smoke was measured for cigarettes (hereinafter referred to as control cigarettes) equipped with a filter containing neither hydrotalcite-supported activated carbon (composite particles) nor hydrotalcite particles (average particle size: 700 ⁇ m). did.
  • the formaldehyde reduction rate was determined by substituting the measured formaldehyde amount into the following equation.
  • (Formaldehyde reduction rate) [ ⁇ (formaldehyde amount measured with control cigarette) ⁇ (formaldehyde amount measured with cigarette of the present invention or comparative cigarette) ⁇ / (formaldehyde amount measured with control cigarette)] ⁇ 100
  • FIG. 7 shows that hydrotalcite-supported activated carbon (composite particles) can effectively remove formaldehyde in mainstream smoke as compared to hydrotalcite particles having an average particle size of 700 ⁇ m.
  • Core particle A activated carbon particle (average particle diameter: 400 ⁇ m; BET specific surface area: 1252 m 2 / g)
  • Core particle B Hydrotalcite particle (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 700 ⁇ m; BET specific surface area: 103.8 m 2 / g)
  • Core particle C cellulose triacetate granule (average particle size: 400 ⁇ m; particles described in Japanese Patent No. 5786038)
  • Core particle A and core particle B are porous particles.
  • hydrotalcite particles Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g
  • the obtained slurry sample was dried in an oven (100 ° C., 60 minutes) to prepare hydrotalcite-supported particles (composite particles).
  • the hydrotalcite-supported particles obtained using the core particles A are referred to as composite particles A
  • the hydrotalcite-supported particles obtained using the core particles B are referred to as composite particles B, using the core particles C.
  • the obtained hydrotalcite-supported particles are referred to as composite particles C.
  • hydrotalcite particles Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g
  • composite particle D This composite particle is referred to as composite particle D.
  • composite particles A to C 100 mg of hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) in 500 ⁇ L of water The mixture was suspended and mixed with 1 g of core particles, and the mixed solution was stirred until the hydrotalcite particles and the core particles were uniformly mixed to obtain a slurry sample. The obtained slurry sample was dried in an oven (100 ° C., 60 minutes). The dried sample was passed through a mesh 0.15 mm screen.
  • hydrotalcite particles Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g
  • the fine powder that passed through the sieve was suspended in 500 ⁇ L of water, added to and mixed with the particles that did not pass through the sieve, and dried in an oven (100 ° C., 60 minutes). The dried sample was screened again. This operation (mixing, drying and sieving operations) was repeated a total of 3 times. Finally, the weight of the fine powder that passed through the sieve was measured.
  • the composite particle D 100 mg of hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) Mix well with A and shaker. The resulting mixture was passed through a 0.15 mm mesh screen.
  • hydrotalcite particles Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g
  • the fine powder that passed through the sieve was added to and mixed with the particles that did not pass through the sieve.
  • the resulting mixture was screened again. This operation (mixing and sieving operation) was repeated a total of 3 times. Finally, the weight of the fine powder that passed through the sieve was measured.
  • Adhesive force (%) ⁇ (100 (mg) ⁇ weight of fine powder permeated through sieve (mg)) / 100 (mg) ⁇ ⁇ 100
  • Fig. 8 shows the adhesive force (%) of hydrotalcite particles (average particle size: 50 nm) to the core particles.
  • Hydrotalcite having a particle size of 100 to 300 ⁇ m is obtained by pulverizing and classifying hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O). Particles, hydrotalcite particles having a particle size of 300 to 500 ⁇ m, hydrotalcite particles having a particle size of 500 to 700 ⁇ m, and hydrotalcite particles having a particle size of 700 ⁇ m or more were prepared.
  • the produced adsorbent particle-containing filter was connected to a tobacco rod (diameter: 7.7 mm; length: 57 mm; tobacco filler: 605 mg) to produce a cigarette (see FIG. 5).
  • the connection was performed so as to cover the connection part with chip paper.
  • FIGS. 9 and 10 The results of formaldehyde adsorption rate and cigarette ventilation resistance are shown in FIGS. 9 and 10, respectively.
  • the horizontal axis of FIG. 9 represents the amount of hydrotalcite particles added to the filter by volume.
  • the horizontal axis of FIG. 10 represents the amount of hydrotalcite particles added to the filter by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

A filter for smoking articles which includes composite particles configured of core particles having an average particle diameter of 200-1,000 µm and nanoparticles fixed to at least some of the surface of the core particles, the nanoparticles comprising a hydrotalcite compound and having an average particle diameter of 200 nm or smaller.

Description

喫煙物品用フィルター、喫煙物品、および喫煙物品用フィルターの製造方法Filter for smoking article, smoking article, and method for producing filter for smoking article
 本発明は、喫煙物品用フィルター、喫煙物品、および喫煙物品用フィルターの製造方法に関する。 The present invention relates to a filter for smoking articles, a smoking article, and a method for manufacturing a filter for smoking articles.
 シガレットなどの喫煙物品では、フィルターに吸着剤粒子を添加して、主流煙中の化学成分を吸着除去する。吸着剤粒子として、活性炭粒子が代表的に使用されるが、種々の吸着剤粒子の使用が試みられている。たとえば、200~800μmの平均粒径を有するハイドロタルサイト粒子をシガレットフィルターに添加して、主流煙中のホルムアルデヒドを選択的に除去することが報告されている(特許文献1)。 For smoking articles such as cigarettes, adsorbent particles are added to the filter to adsorb and remove chemical components in mainstream smoke. Activated carbon particles are typically used as the adsorbent particles, but the use of various adsorbent particles has been attempted. For example, it has been reported that hydrotalcite particles having an average particle size of 200 to 800 μm are added to a cigarette filter to selectively remove formaldehyde in mainstream smoke (Patent Document 1).
国際公開第2003/056947号International Publication No. 2003/056947
 一般に、吸着剤粒子の粒径を小さくして比表面積を増大させると、吸着能が向上することは知られている。本発明者らは、ハイドロタルサイト粒子の粒径をナノレベルまで小さくしてシガレットフィルターに添加し、吸着能の向上を試みたところ、通気抵抗が著しく増大し、シガレットフィルターの吸着剤としての使用に適していないという問題を見出した。 Generally, it is known that when the particle size of the adsorbent particles is reduced to increase the specific surface area, the adsorption ability is improved. The inventors of the present invention reduced the particle size of hydrotalcite particles to the nano level and added it to the cigarette filter, and tried to improve the adsorption capacity. I found a problem that it is not suitable.
 そこで、本発明は、通気抵抗を過度に増大させることなく、主流煙中のホルムアルデヒドをより効果的に除去することができる喫煙物品用フィルターを提供することを目的とする。 Therefore, an object of the present invention is to provide a filter for smoking articles that can more effectively remove formaldehyde in mainstream smoke without excessively increasing the airflow resistance.
 本発明の一つの側面によれば、
 200μm~1000μmの平均粒径を有するコア粒子と、
 前記コア粒子の表面の少なくとも一部の上に担持され、ハイドロタルサイト類化合物からなり、200nm以下の平均粒径を有するナノ粒子と
から構成される複合粒子を含む喫煙物品用フィルター
が提供される。
According to one aspect of the invention,
Core particles having an average particle size of 200 μm to 1000 μm;
Provided is a filter for smoking articles comprising composite particles that are supported on at least a part of the surface of the core particle, are composed of a hydrotalcite compound, and are composed of nanoparticles having an average particle size of 200 nm or less. .
 別の側面によれば、かかる喫煙物品用フィルターと、前記喫煙物品用フィルターの一端に接続されたたばこロッドとを含む喫煙物品が提供される。 According to another aspect, there is provided a smoking article including such a smoking article filter and a tobacco rod connected to one end of the smoking article filter.
 更に別の側面によれば、
 200μm~1000μmの平均粒径を有するコア粒子と200nm以下の平均粒径を有するハイドロタルサイト粒子とを水中に含む懸濁液を撹拌し、その後、前記懸濁液を乾燥させて、前記コア粒子の表面の少なくとも一部の上に前記ハイドロタルサイト粒子が担持された複合粒子を調製すること、および
 得られた複合粒子を喫煙物品用フィルターに組み込むこと
を含む、喫煙物品用フィルターの製造方法
が提供される。
According to yet another aspect,
Stirring a suspension containing core particles having an average particle size of 200 μm to 1000 μm and hydrotalcite particles having an average particle size of 200 nm or less in water, and then drying the suspension to obtain the core particles A method for producing a filter for smoking articles, comprising preparing composite particles having the hydrotalcite particles supported on at least a part of a surface of the surface, and incorporating the obtained composite particles into a filter for smoking articles. Provided.
 本発明によれば、通気抵抗を過度に増大させることなく、主流煙中のホルムアルデヒドをより効果的に除去することができる。 According to the present invention, formaldehyde in mainstream smoke can be more effectively removed without excessively increasing the airflow resistance.
コア粒子とナノ粒子とから構成される複合粒子の一例を模式的に示す図。The figure which shows typically an example of the composite particle comprised from a core particle and a nanoparticle. 本発明のフィルターの一例を示す分解斜視図。The disassembled perspective view which shows an example of the filter of this invention. 複合粒子含有フィルターおよびナノ粒子含有フィルターのフィルター通気抵抗を示すグラフ。The graph which shows the filter ventilation resistance of a composite particle containing filter and a nanoparticle containing filter. 複合粒子含有フィルターおよびコア粒子含有フィルターのフィルター通気抵抗を示すグラフ。The graph which shows the filter ventilation resistance of a composite particle containing filter and a core particle containing filter. 実施例で作製されたシガレットを模式的に示す図。The figure which shows typically the cigarette produced in the Example. シガレット主流煙中のホルムアルデヒドの測定装置を示す図。The figure which shows the measuring apparatus of formaldehyde in a cigarette mainstream smoke. シガレットのホルムアルデヒド低減率を示すグラフ。The graph which shows the formaldehyde reduction rate of a cigarette. ハイドロタルサイト粒子のコア粒子への付着力を示すグラフ。The graph which shows the adhesive force to the core particle of a hydrotalcite particle. ハイドロタルサイト粒子の粒径とホルムアルデヒド吸着率との関係を示すグラフ。The graph which shows the relationship between the particle size of hydrotalcite particle | grains, and formaldehyde adsorption rate. ハイドロタルサイト粒子の粒径と通気抵抗との関係を示すグラフ。The graph which shows the relationship between the particle size of hydrotalcite particle | grains, and ventilation resistance.
 以下、本発明を説明するが、以下の説明は、本発明を詳説することを目的とし、本発明を限定することを意図しない。 Hereinafter, the present invention will be described, but the following description is intended to explain the present invention in detail and is not intended to limit the present invention.
 本発明の喫煙物品用フィルターは、
 200μm~1000μmの平均粒径を有するコア粒子と、
 前記コア粒子の表面の少なくとも一部の上に担持され、ハイドロタルサイト類化合物からなり、200nm以下の平均粒径を有するナノ粒子と
から構成される複合粒子を含む。
The filter for smoking articles of the present invention is
Core particles having an average particle size of 200 μm to 1000 μm;
The composite particle | grains carry | supported on at least one part of the surface of the said core particle, consisting of a hydrotalcite type compound, and comprised from the nanoparticle which has an average particle diameter of 200 nm or less are included.
 図1は、コア粒子11aとナノ粒子11bとから構成される複合粒子11の一例を模式的に示す。図1に示されるように、ナノ粒子11bは、コア粒子11aの表面の少なくとも一部の上に担持される。 FIG. 1 schematically shows an example of a composite particle 11 composed of core particles 11a and nanoparticles 11b. As shown in FIG. 1, the nanoparticles 11b are supported on at least a part of the surface of the core particles 11a.
 コア粒子は、吸着剤粒子としての機能を有することが好ましい。コア粒子が、吸着剤粒子としての機能を有する場合、ナノ粒子は、コア粒子の表面全体を被覆していないことが好ましい。コア粒子が、吸着剤粒子としての機能を有し、その表面に細孔を有している場合、ナノ粒子は、細孔内に入り込んでいてもよいが、ナノ粒子の少なくとも一部は、細孔表面を除くコア粒子の表面に担持されていることが好ましい。 The core particles preferably have a function as adsorbent particles. When the core particles have a function as adsorbent particles, it is preferable that the nanoparticles do not cover the entire surface of the core particles. When the core particle functions as an adsorbent particle and has pores on the surface thereof, the nanoparticle may enter the pore, but at least a part of the nanoparticle is fine. It is preferably supported on the surface of the core particle excluding the pore surface.
 コア粒子が、その表面にナノ粒子を効率よく付着するために、コア粒子は、保水性を有することが好ましい。保水性とは、コア粒子の表面に水を保持する性質を指す。具体的には、保水性とは、コア粒子の表面が親水性および/または多孔性であることにより、コア粒子の表面に水を保持する性質を指す。 In order for the core particles to efficiently attach the nanoparticles to the surface, the core particles preferably have water retention. Water retention refers to the property of retaining water on the surface of the core particles. Specifically, water retention refers to the property of retaining water on the surface of the core particle by making the surface of the core particle hydrophilic and / or porous.
 コア粒子の保水性は、以下で定義する保水率により数値化することができる。 The water retention of the core particles can be quantified by the water retention rate defined below.
 コア粒子1gを水10mLに浸漬して、1分間経過後に金属メッシュ(0.1mm)を用いて濾過し、コア粒子と水とを分離する。分離されたコア粒子の重量を測定する。測定された重量から、コア粒子の保水率を以下の式により求める。
 保水率(%)=[{(金属メッシュを通過した後のコア粒子の重量)-(水に浸漬する前のコア粒子の重量)}/(水に浸漬する前のコア粒子の重量)]×100
1 g of core particles are immersed in 10 mL of water, and after 1 minute, filtration is performed using a metal mesh (0.1 mm) to separate the core particles and water. The weight of the separated core particles is measured. From the measured weight, the water retention rate of the core particles is determined by the following equation.
Water retention (%) = [{(weight of core particles after passing through metal mesh) − (weight of core particles before being immersed in water)} / (weight of core particles before being immersed in water)] × 100
 コア粒子は、好ましくは70%以上、より好ましくは70~150%、更に好ましくは70~100%の保水率を有する。 The core particles preferably have a water retention rate of 70% or more, more preferably 70 to 150%, and still more preferably 70 to 100%.
 コア粒子として、たとえば、多孔質粒子を使用することができる。より具体的には、多孔質粒子として、喫煙物品用フィルターで吸着剤として使用される多孔質粒子、たとえば、活性炭粒子、シリカ粒子、ハイドロタルサイト粒子、リン酸カルシウム粒子、ゼオライト粒子などを使用することができる。好ましくは、多孔質粒子として、活性炭粒子が使用される。活性炭粒子は、好ましくは400~2800m2/gのBET比表面積を有する。コア粒子として、非多孔質粒子を使用することもでき、たとえば、炭酸カルシウム粒子、糖類粒子(たとえば、単糖、二糖、オリゴ糖、多糖、またはこれらの任意の組み合わせから構成される粒子)、セルロース粒子、セルローストリアセテート粒子などを使用することができる。 For example, porous particles can be used as the core particles. More specifically, as the porous particles, porous particles used as an adsorbent in a filter for smoking articles, for example, activated carbon particles, silica particles, hydrotalcite particles, calcium phosphate particles, zeolite particles, etc. may be used. it can. Preferably, activated carbon particles are used as the porous particles. The activated carbon particles preferably have a BET specific surface area of 400-2800 m 2 / g. Non-porous particles can also be used as the core particles, such as calcium carbonate particles, saccharide particles (eg, particles composed of monosaccharides, disaccharides, oligosaccharides, polysaccharides, or any combination thereof), Cellulose particles, cellulose triacetate particles, and the like can be used.
 コア粒子は、200μm~1000μmの平均粒径、好ましくは300μm~700μmの平均粒径、より好ましくは400μm~600μmの平均粒径を有する。本明細書においてコア粒子の平均粒径は、CCDカメラで撮影された粒子のデジタル画像を用いて測定された値を指し、たとえば画像解析式粒度分布測定装置(カムサイザー、Retsch technology社)を用いて測定された値を指す。ナノ粒子の平均粒径は、透過型電子顕微鏡(TITAN80-300、FEI社)を用いて測定された値を指す。コア粒子およびナノ粒子の平均粒径は、統計学的に十分な個数(たとえば30個)の粒子を無作為に選択して粒径を測定し、算術平均を求めることにより得ることができる。なお、複合粒子の平均粒径は、コア粒子と同様に測定することができる。 The core particles have an average particle size of 200 μm to 1000 μm, preferably an average particle size of 300 μm to 700 μm, more preferably an average particle size of 400 μm to 600 μm. In this specification, the average particle diameter of the core particles refers to a value measured using a digital image of particles photographed by a CCD camera. For example, an image analysis type particle size distribution measuring device (Camsizer, Retsch technology) is used. Refers to the measured value. The average particle diameter of the nanoparticles refers to a value measured using a transmission electron microscope (TITAN 80-300, FEI). The average particle diameter of the core particles and nanoparticles can be obtained by randomly selecting a statistically sufficient number (for example, 30 particles), measuring the particle diameter, and calculating the arithmetic average. The average particle size of the composite particles can be measured in the same manner as the core particles.
 ナノ粒子は、1~200nmの平均粒径、好ましくは10nm~150nmの平均粒径、より好ましくは10nm~50nmの平均粒径を有する。ナノ粒子は、ハイドロタルサイト類化合物からなる。 The nanoparticles have an average particle diameter of 1 to 200 nm, preferably 10 nm to 150 nm, more preferably 10 nm to 50 nm. The nanoparticles are made of a hydrotalcite compound.
 ナノ粒子を構成するハイドロタルサイト類化合物は、金属水酸化物の八面体層が多数積層された層状構造を呈し、これら層の間にアニオンがインターカレーションされている。八面体層はホストと呼ばれ塩基性を示す。ハイドロタルサイト類化合物によるホルムアルデヒド除去は、ホストの塩基性の寄与およびインターカレーションされたアニオンによるイオン交換作用などの結果として生じるものと考えられる。ハイドロタルサイト類化合物は、天然のものでも合成品でもよい。 The hydrotalcite compound constituting the nanoparticles has a layered structure in which a large number of octahedral layers of metal hydroxide are laminated, and anions are intercalated between these layers. The octahedral layer is called a host and exhibits basicity. Formaldehyde removal by hydrotalcite-type compounds is considered to occur as a result of the basic contribution of the host and the ion exchange action by intercalated anions. The hydrotalcite compound may be natural or synthetic.
 ハイドロタルサイト類化合物は、下記一般式
[M 2+ 1-x M 3+ x (OH)2 ][(A n-x/n ・m H2O]
(ここで、M 2+は、Mg、Zn、NiおよびCaからなる群より選択される2価の金属イオンであり、M 3+は、Alイオンであり、A n-は、CO3、SO4、OOC-COO、Cl、Br、F、NO3、Fe(CN)6 3-、Fe(CN)6 4-、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アルケニル酸およびその誘導体、リンゴ酸、サリチル酸、アクリル酸、アジピン酸、コハク酸、クエン酸ならびにスルホン酸からなる群より選択されるn価のアニオンであり、xは0.1<x<0.4であり、mは0<m<2である)で表される。
Hydrotalcite compounds have the following general formula [M 2 + 1-x M 3+ x (OH) 2 ] [(A n− ) x / n · m H 2 O]
(Wherein, M 2+ is a divalent metal ion selected from the group consisting of Mg, Zn, Ni and Ca, M 3+ is Al ion, A n-is CO 3, SO 4 , OOC-COO, Cl, Br, F, NO 3 , Fe (CN) 6 3− , Fe (CN) 6 4− , phthalic acid, isophthalic acid, terephthalic acid, maleic acid, alkenyl acid and derivatives thereof, apple An n-valent anion selected from the group consisting of acid, salicylic acid, acrylic acid, adipic acid, succinic acid, citric acid and sulfonic acid, x is 0.1 <x <0.4, and m is 0 < m <2).
 上記一般式において、M 2+は、Mgイオンであり、M 3+は、Alイオンであり、A n-は、CO3 2-またはSO4 2-であり、xは0.1<x<0.4であり、mは0<m<2であることが好ましい。かかるMg-Al系ハイドロタルサイト類化合物は、xが0.20~0.33の範囲にある場合に安定である。上記一般式は、Mg6Al2(OH)16CO3・4H2Oであることが最も好ましい。 In the general formula, M 2+ is Mg ion, M 3+ is Al ion, A n-is CO 3 2-or SO 4 is 2-, x is 0.1 <x < 0.4 and m is preferably 0 <m <2. Such Mg—Al based hydrotalcite compounds are stable when x is in the range of 0.20 to 0.33. Most preferably, the general formula is Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O.
 Mg-Al系ハイドロタルサイト類化合物は、硫酸アルミニウム、酢酸アルミニウムおよび明ばんから選ばれる水溶性のアルミニウム塩またはアルミン酸と水溶性マグネシウム塩との水溶液に、炭酸アルカリまたは炭酸アルカリと苛性アルカリを添加し、反応混合物のpHを8.0以上に保って反応させることにより製造することができる。得られたハイドロタルサイト類化合物を、粉砕して分級することにより、200nm以下の平均粒径を有するナノ粒子とすることができる。 Mg-Al-based hydrotalcite compounds are obtained by adding alkali carbonate or alkali carbonate and caustic alkali to an aqueous solution of water-soluble aluminum salt or aluminate and water-soluble magnesium salt selected from aluminum sulfate, aluminum acetate and alum. The reaction mixture can be produced by maintaining the pH of the reaction mixture at 8.0 or higher. By pulverizing and classifying the obtained hydrotalcite compound, nanoparticles having an average particle diameter of 200 nm or less can be obtained.
 コア粒子およびナノ粒子は、それぞれ、公知の方法に従って調製したものを使用してもよいし、市販品を使用してもよい。 As the core particles and nanoparticles, those prepared according to a known method may be used, or commercially available products may be used.
 コア粒子とナノ粒子とから構成される複合粒子は、以下で説明するとおり調製することができる。ナノ粒子とコア粒子とを水中に含む懸濁液を撹拌し、その後、懸濁液を乾燥させることにより、コア粒子の表面上にナノ粒子が担持された複合粒子を調製することができる。 Composite particles composed of core particles and nanoparticles can be prepared as described below. By stirring the suspension containing the nanoparticles and the core particles in water, and then drying the suspension, composite particles in which the nanoparticles are supported on the surface of the core particles can be prepared.
 コア粒子およびナノ粒子は、上記で説明したものを使用することができる。コア粒子は、好ましくは70%以上、より好ましくは70~150%、更に好ましくは70~100%の保水率を有する。コア粒子が、高い保水率を有する(すなわち、表面に水を保持する能力が高い)ほど、ナノ粒子の担持率を高めることができる。これは、コア粒子とナノ粒子が、懸濁液中で、主に液架橋付着力により結合するため、コア粒子が高い保水率を有するほど、液架橋付着力も大きくなるためである。一方で、保水率が高すぎる場合、複合粒子同士の凝集が発生し、フィルターへの均一添加が困難となるため、製造適性上70~100%の保水率が特に望ましい。また、懸濁液の乾燥後は、コア粒子の表面に、主にファンデルワールス力によりナノ粒子が担持され、その付着が維持される。 As the core particles and nanoparticles, those described above can be used. The core particles preferably have a water retention of 70% or more, more preferably 70 to 150%, and still more preferably 70 to 100%. The higher the water retention rate (that is, the higher the ability to retain water on the surface), the higher the nanoparticle loading rate. This is because the core particles and the nanoparticles are bonded together in the suspension mainly by the liquid cross-linking adhesion force, so that the higher the water retention rate of the core particles, the larger the liquid cross-linking adhesion force. On the other hand, if the water retention rate is too high, the composite particles agglomerate with each other and uniform addition to the filter becomes difficult. Therefore, a water retention rate of 70 to 100% is particularly desirable in terms of production suitability. Further, after the suspension is dried, the nanoparticles are supported on the surface of the core particles mainly by van der Waals force, and the adhesion thereof is maintained.
 複合粒子の調製において、コア粒子とナノ粒子は、たとえば1000:1~1:1の重量比、好ましくは100:1~2:1の重量比で混合される。20mgのコア粒子と10mgのナノ粒子を混合する場合、これらの粒子をたとえば30~1000μLの水に添加して、懸濁液を調製することができる。かかる懸濁液を、80~200℃で5~120分間乾燥させて、複合粒子を含むサンプルを得ることができる。乾燥は、好ましくは、水分の全量が除去されるまで行われる。 In the preparation of the composite particles, the core particles and the nanoparticles are mixed in a weight ratio of, for example, 1000: 1 to 1: 1, preferably 100: 1 to 2: 1. When mixing 20 mg of core particles and 10 mg of nanoparticles, these particles can be added to, for example, 30-1000 μL of water to prepare a suspension. Such a suspension can be dried at 80 to 200 ° C. for 5 to 120 minutes to obtain a sample containing composite particles. Drying is preferably performed until the entire amount of moisture is removed.
 使用したナノ粒子の全てがコア粒子に担持されなかった場合、サンプル中には、コア粒子に担持されなかったナノ粒子が含まれる。この場合、ふるいを用いて複合粒子とナノ粒子とを分離してもよい。 When all of the used nanoparticles are not supported on the core particles, the sample includes nanoparticles that are not supported on the core particles. In this case, the composite particles and the nanoparticles may be separated using a sieve.
 コア粒子に担持されたナノ粒子の割合(担持率)が低い場合、ナノ粒子をコア粒子に担持させるための処理を繰り返し行ってもよい。具体的には、複合粒子の調製後に、ふるいを用いて複合粒子とナノ粒子とを分離し、分離されたナノ粒子を水に懸濁し、得られた懸濁液を、分離された複合粒子と混合して乾燥させる。これにより、追加のナノ粒子を複合粒子に更に付着させることができる。この操作を繰り返し行って、担持率を高めることができる。 When the ratio (support rate) of the nanoparticles supported on the core particles is low, the treatment for supporting the nanoparticles on the core particles may be repeated. Specifically, after preparing the composite particles, the composite particles and the nanoparticles are separated using a sieve, the separated nanoparticles are suspended in water, and the resulting suspension is separated from the separated composite particles. Mix and dry. This allows additional nanoparticles to be further attached to the composite particles. By carrying out this operation repeatedly, the loading rate can be increased.
 複合粒子は、直径7.7mm、長さ27mmのサイズを有するフィルターに、一般に10~100mg、好ましくは15~40mgの量で添加することができる。複合粒子は、一般にフィルターの全体積の3~33%、好ましくはフィルターの全体積の5~13%を占めるように添加することができる。 The composite particles can be generally added to a filter having a diameter of 7.7 mm and a length of 27 mm in an amount of 10 to 100 mg, preferably 15 to 40 mg. The composite particles can generally be added to account for 3 to 33% of the total volume of the filter, preferably 5 to 13% of the total volume of the filter.
 複合粒子は、喫煙物品用フィルターに組み込んで、以下のような種々の形態の喫煙物品用フィルターを作製することができる。
(1)複合粒子を濾材、たとえばセルロースアセテートなどの繊維のトウまたは不織布に分散させたフィルター。 
(2)複合粒子を原料に添加して抄紙したペーパーシートを成形したフィルター。 
(3)2セグメント以上からなるフィルターであって、少なくとも1セグメントは(1)または(2)のフィルターからなるフィルター。この場合、他のセグメントは、従来のセルロースアセテートフィルターまたはチャコールフィルターとすることができる。 
(4)互いに離間して配置された2つ以上のフィルタープラグの間のスペース(フィルターキャビティー部)に複合粒子を充填したフィルター。この場合、フィルタープラグは、従来のセルロースアセテートフィルターもしくはチャコールフィルターであってもよいし、または(1)もしくは(2)のフィルターであってもよい。また、2つ以上のスペースがある場合には、少なくとも1つのスペースに複合粒子を充填すればよく、他のスペースには活性炭粒子を充填することもできる。このフィルターの一例を図2に示す。
The composite particles can be incorporated into a smoking article filter to produce various forms of smoking article filters as follows.
(1) A filter in which composite particles are dispersed in a filter medium, for example, a fiber tow or non-woven fabric such as cellulose acetate.
(2) A filter formed from a paper sheet obtained by adding composite particles to a raw material and making paper.
(3) A filter comprising two or more segments, wherein at least one segment comprises the filter of (1) or (2). In this case, the other segment can be a conventional cellulose acetate filter or charcoal filter.
(4) A filter in which composite particles are filled in a space (filter cavity portion) between two or more filter plugs arranged apart from each other. In this case, the filter plug may be a conventional cellulose acetate filter or charcoal filter, or may be the filter of (1) or (2). Further, when there are two or more spaces, at least one space may be filled with composite particles, and the other spaces may be filled with activated carbon particles. An example of this filter is shown in FIG.
 図2に示されるフィルター10において、複合粒子11は、互いに離間して配置された2つのフィルタープラグ12の間のスペース(フィルターキャビティー部)に配置され、2つのフィルタープラグ12の周囲にはプラグ巻取紙13が巻かれている。 In the filter 10 shown in FIG. 2, the composite particles 11 are arranged in a space (filter cavity portion) between two filter plugs 12 arranged apart from each other, and plugs are provided around the two filter plugs 12. A web 13 is wound.
 以下の説明において、複合粒子が組み込まれたフィルターを複合粒子含有フィルターともいう。複合粒子含有フィルターは、任意の喫煙物品に組み込むことができ、具体的には、たばこ充填材を燃焼させる燃焼型喫煙物品、たとえばシガレット、またはたばこ充填材を燃焼させない非燃焼型吸引物品、たとえば加熱型吸引器などに組み込むことができる。加熱型吸引器は、たとえばWO2006/073065またはWO2010/110226号を参照することができる。たとえば、複合粒子含有フィルターの一端に、たばこ充填材を含むたばこロッドを連結して、燃焼型喫煙物品、たとえばシガレットを作製することができる。あるいは、たとえば、空洞を形成する筒状部材の一端あるいは両端に複合粒子含有フィルターを配し、前記空洞に香味源を配して、非燃焼型喫煙物品、たとえば加熱型吸引器を作製することができる。 In the following description, a filter in which composite particles are incorporated is also referred to as a composite particle-containing filter. The composite particle-containing filter can be incorporated into any smoking article, specifically a combustible smoking article that burns tobacco filler, such as cigarette, or a non-combustible suction article that does not burn tobacco filler, such as heating It can be incorporated into a mold aspirator. Reference can be made, for example, to WO 2006/073065 or WO 2010/110226 for a heated suction device. For example, a tobacco rod containing a tobacco filler can be connected to one end of a composite particle-containing filter to produce a combustion-type smoking article such as a cigarette. Alternatively, for example, a non-combustible smoking article, for example, a heated aspirator, can be produced by arranging a composite particle-containing filter at one or both ends of a cylindrical member forming a cavity and arranging a flavor source in the cavity. it can.
 複合粒子含有フィルターは、ナノ粒子を直接添加したフィルターと比べて、フィルター通気抵抗が増大しにくい(後述の実験1を参照)。複合粒子は、直径7.7mm、長さ27mmのサイズを有するフィルターに10~100mgの量で添加した場合、複合粒子含有フィルターは、たとえば40~80mmH2Oのフィルター通気抵抗を示すことができる。これにより、上記フィルター通気抵抗を示す複合粒子含有フィルターをシガレットに組み込んだ場合、得られたシガレットは、たとえば80~120mmH2Oのシガレット通気抵抗を示すことができる。 Compared with a filter to which nanoparticles are directly added, the composite particle-containing filter is less likely to increase the filter ventilation resistance (see Experiment 1 described later). When the composite particles are added in an amount of 10 to 100 mg to a filter having a diameter of 7.7 mm and a length of 27 mm, the composite particle-containing filter can exhibit a filter ventilation resistance of, for example, 40 to 80 mmH 2 O. Thus, when the composite particle-containing filter exhibiting the filter ventilation resistance is incorporated in a cigarette, the obtained cigarette can exhibit a cigarette ventilation resistance of, for example, 80 to 120 mmH 2 O.
 また、複合粒子含有フィルターをシガレットに組み込んだ場合、得られたシガレットは、主流煙中のホルムアルデヒドをより効果的に除去することができる(後述の実験2を参照)。 In addition, when the composite particle-containing filter is incorporated in a cigarette, the obtained cigarette can more effectively remove formaldehyde in the mainstream smoke (see Experiment 2 described later).
 実験1:フィルター通気抵抗
 (1-1)複合粒子含有フィルターの作製
 活性炭粒子(平均粒径:400μm;BET比表面積:1252m2/g)に、ハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O、平均粒径:50nm;BET比表面積:111.5m2/g)を担持させて、ハイドロタルサイト担持活性炭(以下、複合粒子ともいう)を調製した。ハイドロタルサイト粒子の活性炭粒子への担持は、具体的には、以下のとおり行った。活性炭粒子20mgとハイドロタルサイト粒子10mgとの混合物に、水40μLを添加し、これを活性炭粒子とハイドロタルサイト粒子が均一に混ざるまで撹拌して、スラリー状のサンプルを得た。得られたスラリー状のサンプルをオーブン(100℃、60分)で乾燥させ、その後、22℃の温度および60%の湿度の条件下に48時間置いて調和し、複合粒子を得た。
Experiment 1: Filter ventilation resistance (1-1) Preparation of composite particle-containing filter Activated carbon particles (average particle size: 400 μm; BET specific surface area: 1252 m 2 / g) and hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) was supported to prepare hydrotalcite-supported activated carbon (hereinafter also referred to as composite particles). Specifically, the support of the hydrotalcite particles on the activated carbon particles was performed as follows. 40 μL of water was added to a mixture of 20 mg of activated carbon particles and 10 mg of hydrotalcite particles, and this was stirred until the activated carbon particles and hydrotalcite particles were uniformly mixed to obtain a slurry sample. The resulting slurry sample was dried in an oven (100 ° C., 60 minutes) and then conditioned for 48 hours under conditions of a temperature of 22 ° C. and a humidity of 60% to obtain composite particles.
 得られた複合粒子を、互いに離間して配置された2つのフィルタープラグ(濾材:アセテートトウ;直径:7.7mm;長さ:5mm)の間のスペース(フィルターキャビティー部)に配置して、フィルタープラグの周囲にプラグ巻取紙を巻くことにより、複合粒子含有フィルターを作製した(図5参照)。 The obtained composite particles were placed in a space (filter cavity part) between two filter plugs (filter medium: acetate tow; diameter: 7.7 mm; length: 5 mm) spaced apart from each other, A composite particle-containing filter was produced by winding a plug web around the filter plug (see FIG. 5).
 (1-2)ナノ粒子含有フィルターの作製
 ハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O、平均粒径:50nm;BET比表面積:111.5m2/g)を、2つのフィルタープラグ(濾材:アセテートトウ;直径:7.7mm;長さ:5mm)の間のスペース(フィルターキャビティー部)に配置して、フィルタープラグの周囲にプラグ巻取紙を巻くことにより、ナノ粒子含有フィルター(比較例1)を作製した。
(1-2) Preparation of nanoparticle-containing filter Hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) Nanoparticles are placed in a space (filter cavity part) between two filter plugs (filter medium: acetate tow; diameter: 7.7 mm; length: 5 mm) and a plug web is wound around the filter plug. A containing filter (Comparative Example 1) was produced.
 (1-3)コア粒子含有フィルターの作製
 活性炭粒子(平均粒径:400μm;BET比表面積:1252m2/g)を、2つのフィルタープラグ(濾材:アセテートトウ;直径:7.7mm;長さ:5mm)の間のスペース(フィルターキャビティー部)に配置して、フィルタープラグの周囲にプラグ巻取紙を巻くことにより、コア粒子含有フィルター(比較例2)を作製した。
(1-3) Preparation of Core Particle-Containing Filter Activated carbon particles (average particle size: 400 μm; BET specific surface area: 1252 m 2 / g) were passed through two filter plugs (filter medium: acetate tow; diameter: 7.7 mm; length: 5 mm), a core particle-containing filter (Comparative Example 2) was manufactured by winding a plug web around the filter plug.
 (1-4)フィルター通気抵抗の測定
 フィルター通気抵抗はISO6565:2015Draw resistance of cigarettes and pressure drop of filter rodsに準拠し測定を実施した。
(1-4) Measurement of filter ventilation resistance The filter ventilation resistance was measured according to ISO 6565: 2015 Draw resistance of cigarettes and pressure drop of filter rods.
 (1-5)結果
 複合粒子含有フィルターおよびナノ粒子含有フィルターのフィルター通気抵抗を図3に示す。複合粒子含有フィルターおよびコア粒子含有フィルターのフィルター通気抵抗を図4に示す。
(1-5) Results FIG. 3 shows the filter ventilation resistance of the composite particle-containing filter and the nanoparticle-containing filter. FIG. 4 shows the filter ventilation resistance of the composite particle-containing filter and the core particle-containing filter.
 図3において、横軸の添加量は、ハイドロタルサイト粒子(ナノ粒子)の添加量(mg)を指す。また、図3において、複合粒子含有フィルターのフィルター通気抵抗は、以下の式により計算される値を示す。 
(複合粒子含有フィルターのフィルター通気抵抗)=(複合粒子含有フィルターを用いて測定されたフィルター通気抵抗)-(複合粒子含有フィルターで使用された活性炭粒子と同量の活性炭粒子を含むフィルターで測定されたフィルター通気抵抗)
 また、図3において、ナノ粒子含有フィルターのフィルター通気抵抗は、以下の式により計算される値を示す。 
(ナノ粒子含有フィルターのフィルター通気抵抗)=(ナノ粒子含有フィルターを用いて測定されたフィルター通気抵抗)-(ナノ粒子を含まないフィルターを用いて測定されたフィルター通気抵抗)。
In FIG. 3, the addition amount on the horizontal axis indicates the addition amount (mg) of hydrotalcite particles (nanoparticles). Moreover, in FIG. 3, the filter ventilation resistance of a composite particle containing filter shows the value calculated by the following formula | equation.
(Filter ventilation resistance of a filter containing composite particles) = (Filter ventilation resistance measured using a filter containing composite particles) − (Measured using a filter containing activated carbon particles in the same amount as the activated carbon particles used in the filter containing composite particles) Filter ventilation resistance)
Moreover, in FIG. 3, the filter ventilation resistance of a nanoparticle containing filter shows the value calculated by the following formula | equation.
(Filter ventilation resistance of the nanoparticle-containing filter) = (Filter ventilation resistance measured using a nanoparticle-containing filter) − (Filter ventilation resistance measured using a filter not containing nanoparticles).
 図4において、横軸の添加量は、複合粒子または活性炭粒子の添加量(mg)を指す。また、図4において、複合粒子含有フィルターのフィルター通気抵抗は、以下の式により計算される値を示す。 
(複合粒子含有フィルターのフィルター通気抵抗)=(複合粒子含有フィルターを用いて測定されたフィルター通気抵抗)-(複合粒子を含まないフィルターで測定されたフィルター通気抵抗)
 また、図4において、コア粒子含有フィルターのフィルター通気抵抗は、以下の式により計算される値を示す。 
(コア粒子含有フィルターのフィルター通気抵抗)=(コア粒子含有フィルターを用いて測定されたフィルター通気抵抗)-(コア粒子を含まないフィルターを用いて測定されたフィルター通気抵抗)。
In FIG. 4, the addition amount on the horizontal axis indicates the addition amount (mg) of composite particles or activated carbon particles. Moreover, in FIG. 4, the filter ventilation resistance of the composite particle containing filter shows the value calculated by the following formula | equation.
(Filter ventilation resistance of a filter containing composite particles) = (Filter ventilation resistance measured using a filter containing composite particles) − (Filter ventilation resistance measured using a filter not containing composite particles)
Moreover, in FIG. 4, the filter ventilation resistance of a core particle containing filter shows the value calculated by the following formula | equation.
(Filter ventilation resistance of filter containing core particles) = (Filter ventilation resistance measured using a filter containing core particles) − (Filter ventilation resistance measured using a filter containing no core particles).
 図3の結果から以下のことがわかる。平均粒径50nmのハイドロタルサイト粒子を直接フィルターに添加すると、ハイドロタルサイト粒子の添加量に応じて、フィルター通気抵抗が著しく増大する。一方、平均粒径50nmのハイドロタルサイト粒子をハイドロタルサイト担持活性炭(複合粒子)の形態でフィルターに添加すると、ハイドロタルサイト粒子の存在が、フィルター通気抵抗を大きく増大させない。 The following can be understood from the results of FIG. When hydrotalcite particles having an average particle diameter of 50 nm are directly added to the filter, the filter ventilation resistance is remarkably increased according to the amount of the hydrotalcite particles added. On the other hand, when hydrotalcite particles having an average particle size of 50 nm are added to the filter in the form of hydrotalcite-supported activated carbon (composite particles), the presence of the hydrotalcite particles does not greatly increase the filter ventilation resistance.
 図4の結果から以下のことがわかる。平均粒径50nmのハイドロタルサイト粒子をハイドロタルサイト担持活性炭(複合粒子)の形態でフィルターに添加すると、かかるフィルターは、同量の活性炭粒子を添加したフィルターと同等のフィルター通気抵抗を示し、ハイドロタルサイト粒子の存在が、フィルター通気抵抗を大きく増大させない。 From the results shown in FIG. When hydrotalcite particles with an average particle size of 50 nm are added to the filter in the form of hydrotalcite-supported activated carbon (composite particles), such a filter exhibits a filter ventilation resistance equivalent to a filter to which the same amount of activated carbon particles are added. The presence of talcite particles does not greatly increase the filter ventilation resistance.
 これらの結果から、平均粒径50nmのハイドロタルサイト粒子は、ハイドロタルサイト担持活性炭(複合粒子)の形態でフィルターに添加すると、直接フィルターに添加した場合と比べて、ハイドロタルサイト粒子の存在が、フィルター通気抵抗を増加させにくいことがわかる。 From these results, when hydrotalcite particles having an average particle size of 50 nm are added to the filter in the form of hydrotalcite-supported activated carbon (composite particles), the presence of hydrotalcite particles is higher than when added directly to the filter. It can be seen that it is difficult to increase the filter ventilation resistance.
 実験2:ホルムアルデヒド低減率
 (2-1)本発明のシガレットの作製
 実験1と同様の方法で、複合粒子含有フィルターを作製した。作製された複合粒子含有フィルターをたばこロッド(直径:7.7mm;長さ:57mm;たばこ充填材:605mg)に連結して、本発明のシガレットを作製した。連結は、チップペーパー(図示せず)で連結部を覆うように行った。作製された本発明のシガレットを模式的に図5に示す。
Experiment 2: Formaldehyde reduction rate (2-1) Production of cigarette of the present invention A composite particle-containing filter was produced in the same manner as in Experiment 1. The produced composite particle-containing filter was connected to a tobacco rod (diameter: 7.7 mm; length: 57 mm; tobacco filler: 605 mg) to produce a cigarette of the present invention. The connection was performed so as to cover the connection part with chip paper (not shown). The produced cigarette of this invention is typically shown in FIG.
 図5において、フィルター10は、互いに離間して配置された2つのフィルタープラグ12と、その周囲に巻かれたプラグ巻取紙13と、フィルタープラグ12の間に配置された複合粒子11とから構成される。たばこロッド20は、たばこ充填材21とその周囲に巻かれたたばこ巻紙22とから構成される。 In FIG. 5, the filter 10 is composed of two filter plugs 12 that are spaced apart from each other, a plug web 13 wound around the filter plug 12, and composite particles 11 that are disposed between the filter plugs 12. . The tobacco rod 20 includes a tobacco filler 21 and a cigarette paper 22 wound around the tobacco filler 21.
 (2-2)比較例のシガレットの作製
 ハイドロタルサイト担持活性炭(複合粒子)の代わりに、10mgのハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O、平均粒径:700μm;BET比表面積:103.8m2/g)を用いた以外は、本発明のシガレットと同様の方法で、比較例のシガレットを作製した。平均粒径700μmのハイドロタルサイト粒子は、先行技術文献(WO2003/056947)で使用される吸着剤粒子に相当する。
(2-2) Preparation of Cigarette of Comparative Example Instead of hydrotalcite-supported activated carbon (composite particles), 10 mg of hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: A cigarette of a comparative example was produced in the same manner as the cigarette of the present invention except that 700 μm; BET specific surface area: 103.8 m 2 / g) was used. The hydrotalcite particles having an average particle size of 700 μm correspond to the adsorbent particles used in the prior art document (WO2003 / 056947).
 (2-3)主流煙中のホルムアルデヒド量の測定
 主流煙中のホルムアルデヒドの量をカナダ公定法(2,4-DNPH-HPLC法)により測定し、ホルムアルデヒドの低減率を求めた。
(2-3) Measurement of formaldehyde in mainstream smoke The amount of formaldehyde in mainstream smoke was measured by the official Canadian method (2,4-DNPH-HPLC method) to determine the reduction rate of formaldehyde.
 まず、2,4-ジニトロフェニルヒドラジン(DNPH)9.51gをアセトニトリル1Lに加温して溶解した後、60%過塩素酸5.6mLを加え、超純水を加えて2Lの捕集液を調製した。 First, 9.51 g of 2,4-dinitrophenylhydrazine (DNPH) was dissolved by heating in 1 L of acetonitrile, and then 5.6 mL of 60% perchloric acid was added, and ultrapure water was added to add 2 L of collected liquid. Prepared.
 図6を参照して測定装置の概要を説明する。図6に示すように、捕集用洗気瓶31にDNPH捕集液32を入れる。洗気瓶31の容量は100mLであり、DNPH捕集液32の量を80mLとした。この洗気瓶31を氷水バス33に入れて氷冷する。洗気瓶31内の捕集液32に、シガレット30が取り付けられるガラス管34の下端を浸漬する。洗気瓶31のデッドボリュームに連通するように、ガラス管35およびケンブリッジパッド36を取り付け、ケンブリッジパッド36と自動喫煙器37とを接続する。 The outline of the measuring apparatus will be described with reference to FIG. As shown in FIG. 6, the DNPH collection liquid 32 is put into the collection air washing bottle 31. The capacity of the washing bottle 31 was 100 mL, and the amount of the DNPH collection liquid 32 was 80 mL. The air bottle 31 is placed in an ice water bath 33 and cooled with ice. The lower end of the glass tube 34 to which the cigarette 30 is attached is immersed in the collected liquid 32 in the air cleaning bottle 31. The glass tube 35 and the Cambridge pad 36 are attached so as to communicate with the dead volume of the air cleaning bottle 31, and the Cambridge pad 36 and the automatic smoker 37 are connected.
 ガラス管34にシガレット30を取り付け、ISO準拠の標準喫煙条件でシガレット30を自動喫煙させる。すなわち、シガレット1本につき、空パフ1回で2秒間35mL吸煙する動作を58秒間隔で繰り返す。主流煙がバブリングしている間に、ホルムアルデヒドはDNPHによって誘導体化される。測定用シガレットは2本とした。このとき、いずれの吸着剤粒子を用いたシガレットでも圧力損失が同一になるように調整した。 The cigarette 30 is attached to the glass tube 34, and the cigarette 30 is automatically smoked under standard ISO smoking conditions. That is, for each cigarette, the operation of sucking 35 mL of smoke for 2 seconds with one empty puff is repeated at intervals of 58 seconds. While mainstream smoke is bubbled, formaldehyde is derivatized by DNPH. Two cigarettes for measurement were used. At this time, the pressure loss was adjusted to be the same for each cigarette using any adsorbent particle.
 上記のようにして生成した誘導体を高速液体クロマトグラフィー(HPLC)によって測定する。まず、捕集液を濾過した後、Trizma Base液で希釈する(捕集液4mL、Trizma Base液6mL)。この液をHPLCで測定する。HPLC測定条件は以下の通りである。
カラム:HP LiChrospher 100RP-18(5μ)250×4mm
ガードカラム:HP LiChrospher 100RP-18(5μ)4×4mm
カラム温度:30℃
検出波長:DAD356nm
注入量:20μL
移動相:3相によるグラジエント(A液:アセトニトリル30%、テトラヒドロフラン10%およびイソプロパノール1%を含有する超純水水溶液、B液:アセトニトリル65%、テトラヒドロフラン1%およびイソプロパノール1%を含有する超純水水溶液、C液:アセトニトリル100%)。
The derivative produced as described above is measured by high performance liquid chromatography (HPLC). First, the collected liquid is filtered and then diluted with the Trizma Base solution (collected liquid 4 mL, Trizma Base solution 6 mL). This solution is measured by HPLC. The HPLC measurement conditions are as follows.
Column: HP LiChropher 100RP-18 (5μ) 250 × 4 mm
Guard column: HP LiChropher 100RP-18 (5μ) 4x4mm
Column temperature: 30 ° C
Detection wavelength: DAD 356 nm
Injection volume: 20 μL
Mobile phase: gradient by three phases (liquid A: ultrapure water aqueous solution containing 30% acetonitrile, 10% tetrahydrofuran and 1% isopropanol, liquid B: ultrapure water containing 65% acetonitrile, 1% tetrahydrofuran and 1% isopropanol Aqueous solution, solution C: acetonitrile 100%).
 コントロール実験として、ハイドロタルサイト担持活性炭(複合粒子)もハイドロタルサイト粒子(平均粒径:700μm)も含有しないフィルターを備えたシガレット(以下、コントロールシガレットという)について、主流煙中のホルムアルデヒド量を測定した。 As a control experiment, the amount of formaldehyde in mainstream smoke was measured for cigarettes (hereinafter referred to as control cigarettes) equipped with a filter containing neither hydrotalcite-supported activated carbon (composite particles) nor hydrotalcite particles (average particle size: 700 μm). did.
 測定されたホルムアルデヒド量を以下の式に代入することにより、ホルムアルデヒド低減率を求めた。
(ホルムアルデヒド低減率)=[{(コントロールシガレットで測定されたホルムアルデヒド量)-(本発明のシガレットまたは比較例のシガレットで測定されたホルムアルデヒド量)}/(コントロールシガレットで測定されたホルムアルデヒド量)]×100
The formaldehyde reduction rate was determined by substituting the measured formaldehyde amount into the following equation.
(Formaldehyde reduction rate) = [{(formaldehyde amount measured with control cigarette) − (formaldehyde amount measured with cigarette of the present invention or comparative cigarette)} / (formaldehyde amount measured with control cigarette)] × 100
 (2-4)結果
 本発明のシガレットおよび比較例のシガレットのホルムアルデヒド(FA)低減率を図7に示す。
(2-4) Results The formaldehyde (FA) reduction rate of the cigarette of the present invention and the cigarette of the comparative example is shown in FIG.
 図7の結果から、ハイドロタルサイト担持活性炭(複合粒子)は、平均粒径700μmのハイドロタルサイト粒子と比べて、主流煙中のホルムアルデヒドを効果的に除去できることがわかる。 FIG. 7 shows that hydrotalcite-supported activated carbon (composite particles) can effectively remove formaldehyde in mainstream smoke as compared to hydrotalcite particles having an average particle size of 700 μm.
 実験3:ハイドロタルサイト粒子のコア粒子への付着力
 (3-1)ハイドロタルサイト担持粒子の作製
 コア粒子として、以下のコア粒子A~Cを使用した。 
 コア粒子A:活性炭粒子(平均粒径:400μm;BET比表面積:1252m2/g)
 コア粒子B:ハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O、平均粒径:700μm;BET比表面積:103.8m2/g)
 コア粒子C:セルローストリアセテート顆粒(平均粒径:400μm;日本国特許第5786038号に記載の粒子)
 コア粒子Aおよびコア粒子Bは、多孔質粒子である。
Experiment 3: Adhesive force of hydrotalcite particles to core particles (3-1) Preparation of hydrotalcite-supported particles The following core particles A to C were used as core particles.
Core particle A: activated carbon particle (average particle diameter: 400 μm; BET specific surface area: 1252 m 2 / g)
Core particle B: Hydrotalcite particle (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 700 μm; BET specific surface area: 103.8 m 2 / g)
Core particle C: cellulose triacetate granule (average particle size: 400 μm; particles described in Japanese Patent No. 5786038)
Core particle A and core particle B are porous particles.
 100mgのハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O、平均粒径:50nm;BET比表面積:111.5m2/g)を水500μLに懸濁し、1gのコア粒子と混合し、ハイドロタルサイト粒子とコア粒子が均一に混ざるまで撹拌し、スラリー状のサンプルを得た。得られたスラリー状のサンプルをオーブン(100℃、60分)で乾燥させて、ハイドロタルサイト担持粒子(複合粒子)を作製した。コア粒子Aを用いて得られたハイドロタルサイト担持粒子を、複合粒子Aと呼び、コア粒子Bを用いて得られたハイドロタルサイト担持粒子を、複合粒子Bと呼び、コア粒子Cを用いて得られたハイドロタルサイト担持粒子を、複合粒子Cと呼ぶ。 100 mg of hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) are suspended in 500 μL of water, and 1 g of core particles And stirred until the hydrotalcite particles and the core particles were uniformly mixed to obtain a slurry sample. The obtained slurry sample was dried in an oven (100 ° C., 60 minutes) to prepare hydrotalcite-supported particles (composite particles). The hydrotalcite-supported particles obtained using the core particles A are referred to as composite particles A, and the hydrotalcite-supported particles obtained using the core particles B are referred to as composite particles B, using the core particles C. The obtained hydrotalcite-supported particles are referred to as composite particles C.
 また、100mgのハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O、平均粒径:50nm;BET比表面積:111.5m2/g)を、1gのコア粒子Aと振とう器を用いてよく混合して、ハイドロタルサイト担持粒子(複合粒子)を作製した。この複合粒子を複合粒子Dと呼ぶ。 Further, 100 mg of hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) were shaken with 1 g of core particles A. The mixture was mixed well using a stirrer to prepare hydrotalcite-supported particles (composite particles). This composite particle is referred to as composite particle D.
 (3-2)保水率の測定
 コア粒子1gを水10mLに浸漬して、1分間経過後に金属メッシュ(0.1mm)を用いて濾過し、コア粒子と水とを分離した。分離されたコア粒子の重量を測定した。測定された重量から、コア粒子の保水率を以下の式により求めた。 
 保水率(%)=[{(金属メッシュを通過した後のコア粒子の重量)-(水に浸漬する前のコア粒子の重量)}/(水に浸漬する前のコア粒子の重量)]×100
(3-2) Measurement of water retention rate 1 g of core particles was immersed in 10 mL of water, and after 1 minute, filtration was performed using a metal mesh (0.1 mm) to separate the core particles and water. The weight of the separated core particles was measured. From the measured weight, the water retention rate of the core particles was determined by the following equation.
Water retention (%) = [{(weight of core particles after passing through metal mesh) − (weight of core particles before being immersed in water)} / (weight of core particles before being immersed in water)] × 100
 (3-3)付着力の測定
 ハイドロタルサイト粒子のコア粒子への付着力を以下のとおり測定した。
(3-3) Measurement of adhesion force The adhesion force of hydrotalcite particles to the core particles was measured as follows.
 複合粒子A~Cの場合
 100mgのハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O、平均粒径:50nm;BET比表面積:111.5m2/g)を水500μLに懸濁し、1gのコア粒子と混合し、混合液をハイドロタルサイト粒子とコア粒子が均一に混ざるまで撹拌し、スラリー状のサンプルを得た。得られたスラリー状のサンプルをオーブン(100℃、60分)で乾燥させた。乾燥させたサンプルを、メッシュ0.15mmのふるいにかけた。
In the case of composite particles A to C: 100 mg of hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) in 500 μL of water The mixture was suspended and mixed with 1 g of core particles, and the mixed solution was stirred until the hydrotalcite particles and the core particles were uniformly mixed to obtain a slurry sample. The obtained slurry sample was dried in an oven (100 ° C., 60 minutes). The dried sample was passed through a mesh 0.15 mm screen.
 ふるいを透過した微粉体を水500μLに懸濁し、ふるいを透過しなかった粒子に添加して混合し、オーブン(100℃、60分)で乾燥させた。乾燥させたサンプルを再度ふるいにかけた。この作業(混合、乾燥およびふるい分けの作業)を合計3回繰り返した。最後にふるいを透過した微粉体の重量を測定した。 The fine powder that passed through the sieve was suspended in 500 μL of water, added to and mixed with the particles that did not pass through the sieve, and dried in an oven (100 ° C., 60 minutes). The dried sample was screened again. This operation (mixing, drying and sieving operations) was repeated a total of 3 times. Finally, the weight of the fine powder that passed through the sieve was measured.
 複合粒子Dの場合
 100mgのハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O、平均粒径:50nm;BET比表面積:111.5m2/g)を、1gのコア粒子Aと振とう器を用いてよく混合した。得られた混合物を、メッシュ0.15mmのふるいにかけた。
In the case of the composite particle D: 100 mg of hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, average particle size: 50 nm; BET specific surface area: 111.5 m 2 / g) Mix well with A and shaker. The resulting mixture was passed through a 0.15 mm mesh screen.
 ふるいを透過した微粉体を、ふるいを透過しなかった粒子に添加して混合した。得られた混合物を再度ふるいにかけた。この作業(混合およびふるい分けの作業)を合計3回繰り返した。最後にふるいを透過した微粉体の重量を測定した。 The fine powder that passed through the sieve was added to and mixed with the particles that did not pass through the sieve. The resulting mixture was screened again. This operation (mixing and sieving operation) was repeated a total of 3 times. Finally, the weight of the fine powder that passed through the sieve was measured.
 ハイドロタルサイト粒子(平均粒径:50nm)のコア粒子への付着力を以下の式により求めた。
付着力(%)={(100(mg)-ふるいを透過した微粉体の重量(mg))/100(mg)}×100
The adhesion force of hydrotalcite particles (average particle size: 50 nm) to the core particles was determined by the following equation.
Adhesive force (%) = {(100 (mg) −weight of fine powder permeated through sieve (mg)) / 100 (mg)} × 100
 (3-4)結果
 コア粒子A~Cの保水率を以下に示す。 
 コア粒子A: 保水率95%
 コア粒子B: 保水率74%
 コア粒子C: 保水率34%
(3-4) Results The water retention rates of the core particles A to C are shown below.
Core particle A: water retention 95%
Core particle B: water retention 74%
Core particle C: water retention 34%
 ハイドロタルサイト粒子(平均粒径:50nm)のコア粒子への付着力(%)を図8に示す。 Fig. 8 shows the adhesive force (%) of hydrotalcite particles (average particle size: 50 nm) to the core particles.
 保水率の結果および図8の結果から以下のことがわかる。ナノ粒子と保水率を有するコア粒子とを水の存在下で混合し、混合物を乾燥させて複合粒子を作製すると、ナノ粒子をコア粒子に担持(付着)させることができる(複合粒子A~C)。一方、ナノ粒子と保水率を有するコア粒子とを水の非存在下で混合して複合粒子を作製すると、ハイドロタルサイト粒子の付着率は低くなる(複合粒子D)。また、複合粒子A~Cの結果から、コア粒子が、高い保水率を有する(すなわち、表面に水を保持する能力が高い)ほど、ハイドロタルサイト粒子の付着率を高めることができることがわかる。 The following can be seen from the results of the water retention rate and the results of FIG. When nanoparticles and core particles having a water retention rate are mixed in the presence of water and the mixture is dried to produce composite particles, the nanoparticles can be supported (attached) to the core particles (composite particles A to C). ). On the other hand, when the nanoparticle and the core particle having a water retention rate are mixed in the absence of water to produce a composite particle, the adhesion rate of the hydrotalcite particle becomes low (composite particle D). From the results of the composite particles A to C, it can be seen that the adhesion rate of the hydrotalcite particles can be increased as the core particles have a higher water retention rate (that is, the higher the ability to retain water on the surface).
 実験4:参考例
 ハイドロタルサイト粒子の粒径とホルムアルデヒド吸着率との関係、並びにハイドロタルサイト粒子の粒径と通気抵抗との関係について調べた。
Experiment 4: Reference Example The relationship between the particle size of hydrotalcite particles and formaldehyde adsorption rate and the relationship between the particle size of hydrotalcite particles and ventilation resistance were examined.
 (4-1)ハイドロタルサイト粒子の調製
 ハイドロタルサイト粒子(Mg6Al2(OH)16CO3・4H2O)を粉砕して分級することにより、100~300μmの粒子径のハイドロタルサイト粒子、300~500μmの粒子径のハイドロタルサイト粒子、500~700μmの粒子径のハイドロタルサイト粒子、および700μm以上の粒子径のハイドロタルサイト粒子を調製した。
(4-1) Preparation of hydrotalcite particles Hydrotalcite having a particle size of 100 to 300 μm is obtained by pulverizing and classifying hydrotalcite particles (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O). Particles, hydrotalcite particles having a particle size of 300 to 500 μm, hydrotalcite particles having a particle size of 500 to 700 μm, and hydrotalcite particles having a particle size of 700 μm or more were prepared.
 (4-2)シガレットの作製
 得られたハイドロタルサイト粒子を、互いに離間して配置された2つのフィルタープラグ(濾材:アセテートトウ;直径:7.7mm;長さ:5mm)の間のスペース(フィルターキャビティー部)に配置して、フィルタープラグの周囲にプラグ巻取紙を巻くことにより、吸着剤粒子含有フィルターを作製した。
(4-2) Production of cigarette The obtained hydrotalcite particles were separated from each other by a space between two filter plugs (filter medium: acetate tow; diameter: 7.7 mm; length: 5 mm) ( An adsorbent particle-containing filter was prepared by placing a plug web around the filter plug in the filter cavity portion).
 作製された吸着剤粒子含有フィルターをたばこロッド(直径:7.7mm;長さ:57mm;たばこ充填材:605mg)に連結して、シガレットを作製した(図5参照)。連結は、チップペーパーで連結部を覆うように行った。 The produced adsorbent particle-containing filter was connected to a tobacco rod (diameter: 7.7 mm; length: 57 mm; tobacco filler: 605 mg) to produce a cigarette (see FIG. 5). The connection was performed so as to cover the connection part with chip paper.
 (4-3)ホルムアルデヒド吸着率の測定
 実験2に記載の方法と同じ方法で、主流煙中のホルムアルデヒド量を測定し、測定されたホルムアルデヒド量を以下の式に代入することにより、ホルムアルデヒド吸着率を求めた。
(ホルムアルデヒド吸着率)=[{(コントロールシガレットで測定されたホルムアルデヒド量)-(測定されたホルムアルデヒド量)}/(コントロールシガレットで測定されたホルムアルデヒド量)]
 なお、コントロールシガレットは、吸着剤粒子を添加しなかったことを除いて、上記で作製されたシガレットと同じ構成を有する。
(4-3) Measurement of formaldehyde adsorption rate The amount of formaldehyde in mainstream smoke is measured by the same method as described in Experiment 2, and the formaldehyde adsorption rate is calculated by substituting the measured formaldehyde amount into the following equation. Asked.
(Formaldehyde adsorption rate) = [{(formaldehyde amount measured with control cigarette) − (measured formaldehyde amount)} / (formaldehyde amount measured with control cigarette)]
The control cigarette has the same configuration as the cigarette produced above except that no adsorbent particles were added.
 (4-4)フィルター通気抵抗の測定
 実験1に記載の方法と同じ方法で、フィルター通気抵抗を測定した。
(4-4) Measurement of filter ventilation resistance The filter ventilation resistance was measured by the same method as described in Experiment 1.
 (4-5)結果
 ホルムアルデヒド吸着率およびシガレット通気抵抗の結果をそれぞれ図9および図10に示す。図9の横軸は、フィルターに添加されたハイドロタルサイト粒子の量を体積で表す。図10の横軸は、フィルターに添加されたハイドロタルサイト粒子の量を重量で表す。
(4-5) Results The results of formaldehyde adsorption rate and cigarette ventilation resistance are shown in FIGS. 9 and 10, respectively. The horizontal axis of FIG. 9 represents the amount of hydrotalcite particles added to the filter by volume. The horizontal axis of FIG. 10 represents the amount of hydrotalcite particles added to the filter by weight.
 図9の結果から、吸着剤粒子の粒径を小さくすると、ホルムアルデヒド吸着能が向上することがわかる。図10の結果から、吸着剤粒子の粒径を小さくすると、通気抵抗が増大することがわかる。 From the results of FIG. 9, it can be seen that when the particle size of the adsorbent particles is reduced, the formaldehyde adsorption ability is improved. From the results of FIG. 10, it can be seen that the airflow resistance increases when the particle size of the adsorbent particles is reduced.
10・・・フィルター、11・・・複合粒子、11a・・・コア粒子、11b・・・ナノ粒子、12・・・フィルタープラグ、13・・・プラグ巻取紙、20・・・たばこロッド、21・・・たばこ充填材、22・・・たばこ巻紙、30・・・シガレット、31・・・洗気瓶、32・・・捕集液、33・・・氷水バス、34・・・ガラス管、35・・・ガラス管、36・・・ケンブリッジパッド、37・・・自動喫煙器 DESCRIPTION OF SYMBOLS 10 ... Filter, 11 ... Composite particle, 11a ... Core particle, 11b ... Nanoparticle, 12 ... Filter plug, 13 ... Plug web, 20 ... Tobacco rod, 21. ..Tobacco filler, 22... Cigarette paper, 30... Cigarette, 31... Air-washing bottle, 32 .. collecting liquid, 33 .. ice water bath, 34. ... Glass tube, 36 ... Cambridge pad, 37 ... Automatic smoker

Claims (12)

  1.  200μm~1000μmの平均粒径を有するコア粒子と、
     前記コア粒子の表面の少なくとも一部の上に担持され、ハイドロタルサイト類化合物からなり、1~200nmの平均粒径を有するナノ粒子と
    から構成される複合粒子を含む喫煙物品用フィルター。
    Core particles having an average particle size of 200 μm to 1000 μm;
    A filter for a smoking article comprising composite particles which are supported on at least a part of the surface of the core particles and which are composed of a hydrotalcite compound and composed of nanoparticles having an average particle diameter of 1 to 200 nm.
  2.  前記コア粒子が保水性を有する請求項1に記載の喫煙物品用フィルター。 The filter for smoking articles according to claim 1, wherein the core particles have water retention.
  3.  前記コア粒子が70%以上の保水率を有する請求項2に記載の喫煙物品用フィルター。 The filter for smoking articles according to claim 2, wherein the core particles have a water retention rate of 70% or more.
  4.  前記コア粒子が多孔質粒子である請求項2または3に記載の喫煙物品用フィルター。 The filter for smoking articles according to claim 2 or 3, wherein the core particles are porous particles.
  5.  前記多孔質粒子が活性炭粒子である請求項4に記載の喫煙物品用フィルター。 The filter for smoking articles according to claim 4, wherein the porous particles are activated carbon particles.
  6.  前記ナノ粒子が、一般式:
    [M 2+ 1-x M 3+ x (OH)2 ][(A n-x/n ・m H2O]
    (ここで、M 2+は、Mg、Zn、NiおよびCaからなる群より選択される2価の金属イオンであり、M 3+は、Alイオンであり、A n-は、CO3、SO4、OOC-COO、Cl、Br、F、NO3、Fe(CN)6 3-、Fe(CN)6 4-、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アルケニル酸およびその誘導体、リンゴ酸、サリチル酸、アクリル酸、アジピン酸、コハク酸、クエン酸ならびにスルホン酸からなる群より選択されるn価のアニオンであり、xは0.1<x<0.4であり、mは0<m<2である)で表されるハイドロタルサイト類化合物からなる請求項1~5の何れか1項に記載の喫煙物品用フィルター。
    The nanoparticles have the general formula:
    [M 2+ 1-x M 3+ x (OH) 2 ] [(A n− ) x / n · m H 2 O]
    (Wherein, M 2+ is a divalent metal ion selected from the group consisting of Mg, Zn, Ni and Ca, M 3+ is Al ion, A n-is CO 3, SO 4 , OOC-COO, Cl, Br, F, NO 3 , Fe (CN) 6 3− , Fe (CN) 6 4− , phthalic acid, isophthalic acid, terephthalic acid, maleic acid, alkenyl acid and derivatives thereof, apple An n-valent anion selected from the group consisting of acid, salicylic acid, acrylic acid, adipic acid, succinic acid, citric acid and sulfonic acid, x is 0.1 <x <0.4, and m is 0 < The filter for smoking articles according to any one of claims 1 to 5, comprising a hydrotalcite compound represented by m <2.
  7.  前記一般式において、M 2+は、Mgイオンであり、M 3+は、Alイオンであり、A n-は、CO3 2-またはSO4 2-であり、xは0.1<x<0.4であり、mは0<m<2である請求項6に記載の喫煙物品用フィルター。 In the general formula, M 2+ is Mg ion, M 3+ is Al ion, A n-is CO 3 2-or SO 4 is 2-, x is 0.1 <x < The filter for smoking articles according to claim 6, wherein 0.4 and m are 0 <m <2.
  8.  前記一般式が、Mg6Al2(OH)16CO3・4H2Oである請求項6に記載の喫煙物品用フィルター。 The filter for smoking articles according to claim 6, wherein the general formula is Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O.
  9.  前記コア粒子の平均粒径が300μm~700μmであり、好ましくは400μm~600μmである請求項1~8の何れか1項に記載の喫煙物品用フィルター。 The filter for smoking articles according to any one of claims 1 to 8, wherein the average particle size of the core particles is 300 µm to 700 µm, preferably 400 µm to 600 µm.
  10.  前記ナノ粒子の平均粒径が10nm~150nmであり、好ましくは10nm~50nmである請求項1~9の何れか1項に記載の喫煙物品用フィルター。 The filter for smoking articles according to any one of claims 1 to 9, wherein an average particle diameter of the nanoparticles is 10 nm to 150 nm, preferably 10 nm to 50 nm.
  11.  請求項1~10の何れか1項に記載の喫煙物品用フィルターと、前記喫煙物品用フィルターの一端に接続されたたばこロッドとを含む喫煙物品。 A smoking article comprising the smoking article filter according to any one of claims 1 to 10 and a tobacco rod connected to one end of the smoking article filter.
  12.  ハイドロタルサイト類化合物からなり、1~200nmの平均粒径を有するナノ粒子と、200μm~1000μmの平均粒径を有するコア粒子とを水中に含む懸濁液を撹拌し、その後、前記懸濁液を乾燥させて、前記コア粒子の表面の少なくとも一部の上に前記ナノ粒子が担持された複合粒子を調製すること、および
     得られた複合粒子を喫煙物品用フィルターに組み込むこと
    を含む、喫煙物品用フィルターの製造方法。
    A suspension comprising a hydrotalcite compound-containing nanoparticle having an average particle diameter of 1 to 200 nm and core particles having an average particle diameter of 200 μm to 1000 μm in water is stirred, and then the suspension A composite article having the nanoparticles supported on at least a part of the surface of the core particle, and incorporating the resulting composite particle into a filter for a smoking article. Method for manufacturing filters.
PCT/JP2016/059916 2016-03-28 2016-03-28 Filter for smoking article, smoking article, and process for producing filter for smoking article WO2017168516A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16896736.2A EP3400814A4 (en) 2016-03-28 2016-03-28 Filter for smoking article, smoking article, and process for producing filter for smoking article
PCT/JP2016/059916 WO2017168516A1 (en) 2016-03-28 2016-03-28 Filter for smoking article, smoking article, and process for producing filter for smoking article
JP2018507840A JP6535810B2 (en) 2016-03-28 2016-03-28 Filter for smoking article, smoking article, and method of manufacturing filter for smoking article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059916 WO2017168516A1 (en) 2016-03-28 2016-03-28 Filter for smoking article, smoking article, and process for producing filter for smoking article

Publications (1)

Publication Number Publication Date
WO2017168516A1 true WO2017168516A1 (en) 2017-10-05

Family

ID=59963676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059916 WO2017168516A1 (en) 2016-03-28 2016-03-28 Filter for smoking article, smoking article, and process for producing filter for smoking article

Country Status (3)

Country Link
EP (1) EP3400814A4 (en)
JP (1) JP6535810B2 (en)
WO (1) WO2017168516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347895A (en) * 2019-01-25 2021-09-03 日本烟草产业株式会社 Filter tip for smoking article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056947A1 (en) * 2002-01-08 2003-07-17 Japan Tobacco Inc. Smoking filter and smoking article
WO2006092962A1 (en) * 2005-02-28 2006-09-08 Japan Tobacco Inc. Multi-filter rod inspection device for cigarettes
WO2012066656A1 (en) * 2010-11-17 2012-05-24 日本たばこ産業株式会社 Adsorbent-supported granules and process for production thereof, cigarette filter, and cigarette
JP2012102250A (en) * 2010-11-11 2012-05-31 Daicel Corp Composite particle, cigarette filter and process for producing the same, and cigarette
WO2012090659A1 (en) * 2010-12-27 2012-07-05 日本たばこ産業株式会社 Cigarette filter and cigarette provided with same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525095A (en) * 2014-12-11 2015-04-22 上海烟草集团有限责任公司 Magnesium-aluminum bimetal hydroxide nanosheet material for selectively reducing nitrosamine in cigarette smoke as well as preparation method and application of magnesium-aluminum bimetal hydroxide nanosheet material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056947A1 (en) * 2002-01-08 2003-07-17 Japan Tobacco Inc. Smoking filter and smoking article
WO2006092962A1 (en) * 2005-02-28 2006-09-08 Japan Tobacco Inc. Multi-filter rod inspection device for cigarettes
JP2012102250A (en) * 2010-11-11 2012-05-31 Daicel Corp Composite particle, cigarette filter and process for producing the same, and cigarette
WO2012066656A1 (en) * 2010-11-17 2012-05-24 日本たばこ産業株式会社 Adsorbent-supported granules and process for production thereof, cigarette filter, and cigarette
WO2012090659A1 (en) * 2010-12-27 2012-07-05 日本たばこ産業株式会社 Cigarette filter and cigarette provided with same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3400814A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113347895A (en) * 2019-01-25 2021-09-03 日本烟草产业株式会社 Filter tip for smoking article
JPWO2020153491A1 (en) * 2019-01-25 2021-11-18 日本たばこ産業株式会社 Filter for smoking goods

Also Published As

Publication number Publication date
JPWO2017168516A1 (en) 2018-08-02
JP6535810B2 (en) 2019-06-26
EP3400814A1 (en) 2018-11-14
EP3400814A4 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
KR101617405B1 (en) Methods for increasing mesopores into microporous carbon
JP5570753B2 (en) Filter material made of porous silica and cigarette filter using the same
CN102215706B (en) Adsorbent material impregnated with metal oxide component
JP5623875B2 (en) COMPOSITE PARTICLE, TOBACCO FILTER, ITS MANUFACTURING METHOD, AND TOBACCO
RU2336790C2 (en) Selective filtration of cigarette smoke using chitosan derivatives
WO2005120261A1 (en) Application of mesoporous molecular sieves as selective smoke filtration additives
US9808785B2 (en) High cohesive strength composite materials and, E.G., cigarette filters shaped therefrom
JP6514778B2 (en) Cellulose acetate particle aggregate, preparation method thereof and use thereof
PT2234509E (en) Filter including randomly-oriented fibers for reduction of particle breakthrough
EP2734469A1 (en) Porous carbon and methods of production thereof
JP3895327B2 (en) cigarette
KR20160003337A (en) Composite additive materials
JP2013240345A (en) Smoke filtration
EP2253232B1 (en) Adsorbent for main cigarette smoke components and cigarette filter
JP7150719B2 (en) Smoking article filter with amorphous magnesium carbonate
WO2017168516A1 (en) Filter for smoking article, smoking article, and process for producing filter for smoking article
US3319629A (en) Filter cigarette
WO2012066656A1 (en) Adsorbent-supported granules and process for production thereof, cigarette filter, and cigarette
TWI605765B (en) Filter for smoking article, smoking article, and method of manufacturing filter for smoking article
WO2012172292A1 (en) Tobacco smoke filter with activated carbon
JPH0616699B2 (en) Tobacco smoke filter
JPWO2020153491A1 (en) Filter for smoking goods
JPS5988078A (en) Tobacco filter
JP2008154544A (en) Filter material comprising amino-modified silica gel and cigarette filter using the same
WO2016042307A1 (en) Composite

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507840

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016896736

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896736

Country of ref document: EP

Effective date: 20180809

NENP Non-entry into the national phase

Ref country code: DE