WO2017167220A1 - 内燃机阿特金森循环进气量的计算方法以及系统 - Google Patents
内燃机阿特金森循环进气量的计算方法以及系统 Download PDFInfo
- Publication number
- WO2017167220A1 WO2017167220A1 PCT/CN2017/078754 CN2017078754W WO2017167220A1 WO 2017167220 A1 WO2017167220 A1 WO 2017167220A1 CN 2017078754 W CN2017078754 W CN 2017078754W WO 2017167220 A1 WO2017167220 A1 WO 2017167220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intake
- cylinder
- stagnation point
- mass
- engine
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
- F02D41/182—Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0269—Controlling the valves to perform a Miller-Atkinson cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/023—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
- F02D35/024—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0402—Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/009—Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the invention relates to the technical field of internal combustion engines, in particular to a method and a system for calculating an intake air quantity of an internal combustion engine Atkinson cycle.
- Hybrid vehicles have electric motors to power the wheels at low speeds or high speeds, and the engines are generating electricity for most of the time, so the engine can run at the most economical speed of fuel consumption, which is the maximum thermal efficiency of the Atkinson cycle.
- the place of merit Therefore, under the pressure of fuel consumption regulations, domestic and foreign automobile companies have begun to study the Atkinson cycle. It can be said that the Atkinson cycle is one of the key technologies of hybrid vehicles.
- the calculation of intake air volume is a key issue in Atkinson cycle control, because in engine control, the adjustment of engine output torque, fuel injection amount, ignition angle, throttle opening and other parameters are calculated with accurate intake air amount.
- Basic At present, there are two main methods for calculating the intake air volume of existing internal combustion engine applications: one is based on the intake air mass flow sensor calculation method, which uses the mass flow signal of the sensor to calculate the entry into the engine cylinder. The amount of fresh gas, but due to the large-scale reflow of the Atkinson cycle under some conditions, the method has a deviation of the mass flow signal, resulting in inaccurate calculation. Another method is based on the method of the intake pressure sensor.
- the pressure in the cylinder is approximately equal to the intake pressure. Thereby, the state of the cylinder at the time of closing the intake valve is obtained, and the amount of fresh gas entering the cylinder is calculated.
- the Atkinson cycle intake valve closing point is far from the intake bottom dead center, and the cylinder internal pressure and the intake pressure are quite different. Therefore, the above method based on the intake pressure sensor is not suitable for calculating the Atkinson cycle intake air amount.
- the present invention provides a calculation method and system for the Atkinson cycle intake air amount of an internal combustion engine, which can automatically and accurately calculate the Atkinson cycle intake air amount.
- Embodiments of the present invention provide a method for calculating an intake air quantity of an internal combustion engine Atkinson cycle, which includes: determining an intake stagnation point and a corresponding engine crank angle when the internal combustion engine piston is at an intake stagnation point; when the internal combustion engine piston is located At the stagnation point, the mass and partial pressure of the exhaust gas in the cylinder, the mass and partial pressure of the fresh gas are calculated according to the engine crank angle; from the intake stagnation point to the intake valve closing time period, according to the calculated exhaust gas in the cylinder The mass and partial pressure, the mass and partial pressure of the fresh gas obtain the mass ratio of the amount of gas pushed out by the piston from the cylinder to the total amount of gas in the cylinder at the stagnation point; the intake valve is closed according to the obtained mass ratio The amount of fresh air intake in the cylinder.
- the embodiment of the invention further provides a calculation system for the internal combustion engine Atkinson cycle intake air amount, comprising: an intake stagnation point determination module, configured to determine the intake stagnation point and the internal combustion engine piston is located at the intake stagnation point Engine crankshaft angle; mass and partial pressure determination module for calculating the mass and partial pressure of the exhaust gas in the cylinder, the mass and partial pressure of the fresh gas according to the engine crank angle when the piston of the internal combustion engine is at the intake stagnation point; a module for taking the amount of gas pushed out of the cylinder by the piston according to the calculated mass and partial pressure of the exhaust gas in the cylinder, the mass of the fresh gas and the partial pressure from the intake stagnation point to the intake valve closing period The mass ratio of the total gas amount in the cylinder at the stagnation point; the intake air amount acquisition module is configured to calculate the amount of fresh air intake air in the cylinder when the intake valve is closed according to the obtained mass ratio.
- an intake stagnation point determination module configured to determine the intake stagnation point and the internal combustion engine piston is located at the
- the present invention determines the intake stagnation point and the corresponding engine crank angle when the internal combustion engine piston is at the intake stagnation point; when the internal combustion engine piston is at the intake stagnation point, the in-cylinder exhaust gas is calculated according to the engine crank angle.
- Mass and partial pressure, mass and partial pressure of fresh gas from the intake stagnation point to the intake valve closing time period, according to the calculated mass and partial pressure of the exhaust gas in the cylinder, fresh gas
- the mass and the partial pressure obtain the mass ratio of the amount of gas pushed out by the piston from the cylinder to the total gas amount in the cylinder when the intake stagnation point is obtained; and the amount of fresh air in the cylinder when the intake valve is closed is calculated according to the obtained mass ratio .
- the invention utilizes the method of calculating the intake air amount of the Atkinson cycle by using the stagnation point of the intake air, and can accurately calculate the intake air quantity of the Atkinson cycle by using only the sensors commonly used in the existing engine without adding additional sensors. With the potential for a wide range of applications.
- the intake air amount of the engine during the Atkinson cycle is accurately calculated, accurate control of parameters such as engine torque, fuel injection amount, and ignition angle can be achieved, thereby improving performance in terms of engine power, fuel consumption, and emissions.
- the method is based on the widely used engine intake pressure sensor, and can be applied to an existing real vehicle environment.
- FIG. 1 is a flow chart showing the steps of a method for calculating an Atkinson cycle intake air amount of an internal combustion engine according to a first embodiment of the present invention
- Figure 2 is a schematic diagram of the Otto cycle intake process and the Atkinson cycle intake process
- FIG. 3 is a main structural block diagram of a calculation system for an Atkinson cycle intake air amount of an internal combustion engine according to a second embodiment of the present invention.
- FIG. 1 is a flow chart showing the steps of a method for calculating an Atkinson cycle intake air amount of an internal combustion engine according to a first embodiment of the present invention.
- Figure 2 is a schematic diagram of the Otto cycle intake process and the Atkinson cycle intake process.
- the calculation method of the Atkinson cycle intake air amount of the internal combustion engine of the embodiment of the present invention can automatically and accurately obtain the Atkinson cycle intake air amount.
- the internal combustion engine Atkinson cycle intake air amount of the present embodiment is The calculation method includes the following steps 101-107.
- Step 101 Determine an intake stagnation point and a corresponding engine crank angle when the internal combustion engine piston is at the intake stagnation point.
- a general internal combustion engine is mostly a four-stroke internal combustion engine, which is divided into an intake stroke, a compression stroke, a power stroke, and an exhaust stroke.
- the process of moving from one end of the cylinder to the other when the piston reciprocates within the cylinder is called a stroke.
- the combustion chamber of the cylinder can be filled with fresh air through an intake valve and exhausted through the exhaust valve.
- the intake valve is arranged such that the intake port of the cylinder is opened or closed according to the position of the intake valve, and the exhaust valve is disposed such that the exhaust port of the cylinder is opened or closed according to the position of the exhaust valve.
- the airflow flows from the intake pipe through the intake port to the cylinder combustion chamber, and flows out of the cylinder combustion chamber through the exhaust port.
- a throttle valve is provided in the intake pipe of the internal combustion engine to control the flow of air into the intake pipe.
- the internal combustion engine is operated to introduce external fresh air into the cylinder, which is realized by the intake stroke of the internal combustion engine.
- the Atkinson cycle has an additional gas introduction process after the intake stroke. In the gas introduction phase shown in Figure 2, in the Atkinson cycle, after the gas enters the cylinder, some of the gas is pushed out of the cylinder.
- the method for determining the intake stagnation point includes, but is not limited to, the following three types:
- the first method is a computational fluid dynamics simulation (CFD) method: pre-establishing a CFD model of the intake process of the engine, and simulating the gas flow during cylinder intake according to the CFD model (ie, in the CFD model) , summarizing the correspondence between the stagnation point of the intake air and the pressure in the cylinder of the engine The relationship is corrected by using the actually collected in-cylinder pressure signal to obtain the intake stagnation point.
- CFD model is an existing model.
- the second method is the engine one-dimensional simulation method: according to the physical parameters of the engine, mainly including intake pressure, intake air temperature, throttle opening, exhaust pressure, exhaust temperature, engine speed, intake valve opening angle, row
- a one-dimensional simulation model of the engine is pre-established by data such as valve opening/closing angle (referred to as physical parameters in the full text), pressure in the cylinder, etc., according to the one-dimensional simulation model (ie, in the one-dimensional simulation model)
- the gas flow is simulated, and the corresponding relationship between the intake stagnation point and the engine cylinder pressure is summarized, and the correspondingly collected in-cylinder pressure signal is used to correct the corresponding relationship to obtain the intake stagnation point.
- the one-dimensional simulation model is also an existing model, and the above physical parameters can be measured by sensors.
- the intake air temperature can be measured by a temperature sensor disposed in the intake pipe.
- the third method is the engine bench test method: the transient inlet pressure sensor and the engine cylinder pressure sensor are used to measure the inlet pressure and the cylinder pressure respectively, and the pressures of the two are filtered and compared, and the pressure values of the two are compared.
- the change process determines the stagnation point of the intake.
- the step 101 may further include: after determining the intake stagnation point by the above three methods, the engine crankshaft rotation angle corresponding to the engine stagnation point may be further determined as the input engine map. .
- the above-mentioned map is inquired according to the actual engine speed and the actual intake pressure, and the actual intake air temperature and the actual throttle opening degree are used for correction to obtain the corresponding intake stagnation point in the current Atkinson cycle.
- Engine crank angle is:
- ⁇ F ⁇ (N engine ,P intake )+ ⁇ (T intake )+ ⁇ (X throttle ), where ⁇ is the engine crank angle corresponding to the intake stagnation point in the Atkinson cycle, and N engine is the engine speed.
- P intake is the intake pressure
- T intake is the intake air temperature
- X throttle is the throttle opening
- F ⁇ (N engine , P intake ) is an existing function for T intake and X throttle .
- Step 103 When the piston of the internal combustion engine is located at the stagnation point of the intake air, the mass and partial pressure of the exhaust gas in the cylinder, the mass and the partial pressure of the fresh gas are calculated according to the crank angle of the engine.
- the physical parameters measured by the various sensors of the engine mainly include intake pressure, intake air temperature, throttle opening, exhaust pressure, exhaust temperature, engine speed, intake valve opening angle, exhaust valve opening/closing angle Etc. (the full text is referred to as the physical parameter), combined with the calculation calculated in step 101.
- the crank angle corresponding to the stagnation point is calculated, and the mass and partial pressure of the exhaust gas in the engine cylinder corresponding to the intake stagnation point, the mass and partial pressure of the fresh gas are calculated.
- the ideal gas state equation is used to calculate the amount of exhaust gas corresponding to the intake stagnation point, and the ideal gas state equation and energy conservation are used to calculate the corresponding exhaust gas temperature at the intake stagnation point, and the ideal is utilized.
- the gas state equation calculates the corresponding partial pressure of the exhaust gas when the intake stagnation point is calculated.
- the ideal gas state equation is used to calculate the corresponding fresh air pressure partial pressure at the intake stagnation point, and the heat exchange equation is used to calculate the corresponding fresh air stagnation point.
- the intake air temperature is calculated using the ideal gas state equation to calculate the corresponding fresh intake air mass at the intake stagnation point.
- Step 105 from the intake stagnation point to the intake valve closing time period, according to the calculated mass and partial pressure of the exhaust gas in the cylinder, the mass of the fresh gas and the partial pressure, the amount of gas pushed out by the piston from the cylinder accounts for the intake air.
- the total gas amount in the cylinder at the intake stagnation point can be obtained according to the mass of the exhaust gas at the intake stagnation point calculated in step 103 and the mass of the fresh gas, and then the stagnation from the intake air is calculated according to the physical parameters of the engine.
- the mass ratio of the amount of gas that is pushed out from the cylinder into the intake manifold to the total amount of gas in the cylinder at the intake stagnation point during the intake valve closing period (referred to as the actual gas extrusion ratio).
- the actual gas ejection ratio is calculated by experimentally calibrating the launch ratio according to the real-time physical parameters of the engine and the measured intake air flow rate in the Atkinson operating condition range of the engine, and determining the engine speed and the intake air.
- the door closing angle is the input
- the basic push-out ratio is the output map. Then query the above-mentioned map according to the engine speed and the intake valve closing angle to obtain the basic launch ratio under the current working conditions, and use the intake air temperature, the valve overlap angle and the throttle opening degree to correct the basic launch ratio to obtain Actual gas launch ratio.
- Step 107 Calculate the amount of fresh air intake air and/or the amount of exhaust gas in the cylinder when the intake valve is closed according to the obtained mass ratio.
- the step may further include: calculating the intake valve according to the actual gas ejection ratio in the cylinder calculated in step 105, the mass of the exhaust gas in the engine cylinder and the mass of the fresh gas when the intake stagnation point calculated in step 103 is calculated.
- the quality of the exhaust gas in the cylinder and the quality of the fresh gas when shutting down, wherein the mass of fresh gas in the cylinder when the intake valve is closed is the amount of intake air of the Atkinson cycle, the quality of the exhaust gas in the cylinder when the intake valve is closed, and the quality of the fresh gas.
- the quality of the exhaust gas in the cylinder, the quality of the fresh gas, m residualIvc , m freshIvc are the mass of the exhaust gas in the cylinder and the quality of the fresh gas when the intake valve is closed.
- the calculation method of the Atkinson cycle intake air amount of the internal combustion engine determines the corresponding engine crank angle by determining the intake stagnation point and the piston of the internal combustion engine at the intake stagnation point;
- the intake stagnation point is calculated, the mass and partial pressure of the exhaust gas in the cylinder, the mass and partial pressure of the fresh gas are calculated according to the engine crank angle; and the calculated exhaust gas in the cylinder is calculated from the intake stagnation point to the intake valve closing time period.
- the mass and partial pressure, the mass of the fresh gas and the partial pressure obtain the mass ratio of the amount of gas pushed out by the piston from the cylinder to the total gas amount in the cylinder at the stagnation point; the intake valve is calculated based on the obtained mass ratio The amount of fresh air intake in the cylinder when closed.
- the invention utilizes the method of calculating the intake air amount of the Atkinson cycle by using the stagnation point of the intake air, and can accurately calculate the intake air quantity of the Atkinson cycle by using only the sensors commonly used in the existing engine without adding additional sensors. With the potential for a wide range of applications.
- the intake air amount of the engine during the Atkinson cycle is accurately calculated, accurate control of parameters such as engine torque, fuel injection amount, and ignition angle can be achieved, thereby improving performance in terms of engine power, fuel consumption, and emissions.
- the method is based on the widely used engine intake pressure sensor, and can be applied to an existing real vehicle environment.
- the calculation system of the internal combustion engine Atkinson cycle intake air amount includes: an intake stagnation point determination module 301 , a mass and partial pressure determination module 303 , a mass ratio determination module 305 , and an intake air amount acquisition module 307 .
- the intake stagnation point determining module 301 is configured to determine an intake stagnation point and a corresponding engine crank angle when the internal combustion engine piston is located at the intake stagnation point;
- the mass and partial pressure determining module 303 is configured to calculate the mass and partial pressure of the exhaust gas in the cylinder, the mass and the partial pressure of the fresh gas according to the crank angle of the engine when the piston of the internal combustion engine is located at the intake stagnation point;
- the mass ratio determining module 305 is configured to be pushed out from the cylinder by the piston according to the calculated mass and partial pressure of the exhaust gas in the cylinder, the mass of the fresh gas and the partial pressure from the intake stagnation point to the intake valve closing period.
- the intake air amount obtaining module 307 is configured to calculate, according to the obtained mass ratio, a fresh air intake air amount in the cylinder when the intake valve is closed.
- the intake stagnation point determination module 301 is further configured to pre-establish a CFD model of the intake process of the engine, simulate the gas flow during the cylinder intake process according to the CFD model, and summarize the intake stagnation point and the engine. Corresponding relationship between the pressures in the cylinders, and correcting the corresponding relationship by using the actually collected intra-cylinder pressure signals to obtain an intake stagnation point; or
- the utility model is characterized in that the intake port pressure and the in-cylinder pressure sensor are respectively used to measure the inlet port pressure and the in-cylinder pressure, and the pressures of the two are filtered and compared, and the change of the pressure values of the two can be used to determine the intake stagnation point. .
- the mass ratio determination module 305 is further configured to calculate the total amount of gas in the cylinder when the intake stagnation point is based on the calculated mass of the exhaust gas in the cylinder and the mass of the fresh gas at the calculated intake stagnation point, and then according to the physics of the engine.
- the parameter obtains a mass ratio of the amount of gas pushed out from the cylinder to the total gas amount in the cylinder at the intake stagnation point from the intake stagnation point to the intake valve closing period, wherein the mass ratio is the actual gas Launch ratio.
- the intake air amount acquisition module 307 is further configured to calculate the exhaust gas in the cylinder when the intake valve is closed according to the obtained mass ratio, the calculated mass of the exhaust gas in the engine cylinder and the mass of the fresh gas at the intake stagnation point.
- the mass of the fresh gas in the cylinder when the intake valve is closed is the amount of the Atkinson cycle intake air.
- the quality of the quality, fresh gas, m residualIvc , m freshIvc are the mass of the exhaust gas in the cylinder and the quality of the fresh gas when the intake valve is closed.
- the calculation system of the Atkinson cycle intake air amount of the internal combustion engine determines the intake crank lag point and the corresponding engine crank angle when the internal combustion engine piston is located at the intake stagnation point; when the internal combustion engine piston is located When the intake stagnation point is calculated, the mass and partial pressure of the exhaust gas in the cylinder, the mass and partial pressure of the fresh gas are calculated according to the engine crank angle; and the calculated exhaust gas in the cylinder is calculated from the intake stagnation point to the intake valve closing time period.
- the mass and partial pressure, the mass of the fresh gas and the partial pressure obtain the mass ratio of the amount of gas pushed out by the piston from the cylinder to the total gas amount in the cylinder at the stagnation point; the intake valve is calculated based on the obtained mass ratio The amount of fresh air intake in the cylinder when closed.
- the invention utilizes the method of calculating the intake air amount of the Atkinson cycle by using the stagnation point of the intake air, and can accurately calculate the intake air quantity of the Atkinson cycle by using only the sensors commonly used in the existing engine without adding additional sensors. With the potential for a wide range of applications.
- the intake air amount of the engine during the Atkinson cycle is accurately calculated, accurate control of parameters such as engine torque, fuel injection amount, and ignition angle can be achieved, thereby improving performance in terms of engine power, fuel consumption, and emissions.
- the method is based on the widely used engine intake pressure sensor, and can be applied to an existing real vehicle environment.
- the method and system for calculating the Atkinson cycle intake air amount of the internal combustion engine provided by the present invention, by determining the intake stagnation point and the corresponding engine crank angle when the internal combustion engine piston is at the intake stagnation point; when the internal combustion engine piston is at the intake stagnation point Calculate the mass and partial pressure of the exhaust gas in the cylinder, the mass and partial pressure of the fresh gas according to the engine crank angle; from the intake stagnation point to the intake valve closing time period, according to the calculated mass and partial pressure of the exhaust gas in the cylinder
- the mass and partial pressure of the fresh gas obtain the mass ratio of the amount of gas pushed out by the piston from the cylinder to the total amount of gas in the cylinder when the intake stagnation point is calculated; according to the obtained mass ratio, the cylinder is fresh when the intake valve is closed.
- the amount of gas intake utilizes the method of calculating the intake air amount of the Atkinson cycle by using the stagnation point of the intake air, and can accurately calculate the intake air quantity of the Atkinson cycle by using only the sensors commonly used in the existing engine without adding additional sensors. With the potential for a wide range of applications.
- the intake air amount of the engine during the Atkinson cycle is accurately calculated, accurate control of parameters such as engine torque, fuel injection amount, and ignition angle can be achieved, thereby improving performance in terms of engine power, fuel consumption, and emissions.
- the method is based on the widely used engine intake pressure sensor, and can be applied to an existing real vehicle environment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
一种内燃机阿特金森循环进气量的计算方法,包括确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角,当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。通过该方法能够自动准确计算出阿特金森循环进气量。还公开了一种内燃机阿特金森循环进气量的计算系统。
Description
本发明涉及内燃机技术领域,特别涉及一种内燃机阿特金森循环进气量的计算方法以及系统。
1882年,英国工程师James Atkinson(詹姆斯·阿特金森)在使用奥托循环内燃机的基础上,通过一套复杂的连杆机构,使得发动机的膨胀行程大于压缩行程,这种巧妙的设计,不仅改善了发动机的进气效率,也使得发动机的膨胀比高于压缩比,有效地提高了发动机效率,这种发动机的工作原理被称为阿特金森循环。但是,阿特金森循环在发动机低速时气缸进气量少,扭矩表现差,较长的活塞行程又不利于发动机的高速运转,只在发动机转速的中间阶段才能有效发挥动力,因此在过去那个追求动力性的年代,阿特金森循环发动机的研究被人们所忽略了。
近年来,汽车混合动力技术的发展让阿特金森循环重新走上舞台。混合动力车辆在低速或者高速时都有电动机为车轮提供动力,而发动机大多时段都是在发电,所以发动机可以以油耗最经济的转速运转,这正是能够最大限度发挥阿特金森循环热效率高的优点的地方。所以,在油耗排放法规的压力下,国内外汽车公司又开始了对阿特金森循环进行研究,可以说,阿特金森循环是混合动力汽车的关键技术之一。
进气量计算是阿特金森循环控制中的关键问题,因为在发动机控制中,发动机输出扭矩、喷油量、点火角、节气门开度等参数的调节都是以准确的进气量计算为基础的。目前,现有的实车应用的内燃机进气量计算方法主要分为两种:一种是基于进气质量流量传感器的进气量计算方法,该方法利用传感器的质量流量信号计算进入发动机气缸内的新鲜气体量,但是由于阿特金森循环在部分工况下存在大强度的回流,使得该方法存在质量流量信号偏差,导致计算不准确。另一种方法是基于进气压力传感器的方法,由于传统发动机进气门在进气下止点附近关闭,此时气缸内压力近似等于进气压力,
从而得到进气门关闭时的气缸内状态,进而计算出进入气缸的新鲜气体量。但是阿特金森循环进气门关闭点远离进气下止点,气缸内压力与进气压力相差较大,所以上述基于进气压力传感器的方法并不适用计算阿特金森循环进气量。
发明内容
有鉴于此,本发明提供一种内燃机阿特金森循环进气量的计算方法以及系统,能够自动准确地计算出阿特金森循环进气量。
本发明实施例提供了一种内燃机阿特金森循环进气量的计算方法,其包括:确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。
本发明实施例还提供了一种内燃机阿特金森循环进气量的计算系统,包括:进气滞止点确定模块,用于确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;质量和分压确定模块,用于当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;质量比确定模块,用于从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;进气量获取模块,用于根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。
本发明实施例提供的技术方案带来的有益效果是:
综上所述,本发明通过确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的
质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。本发明利用进气滞止点进行阿特金森循环进气量计算的方法,能够在不增加额外传感器的情况下,仅利用现有发动机上常用的传感器实现阿特金森循环进气量的准确计算,具备大范围应用的潜力。另外,因精确计算了发动机工作在阿特金森循环时的进气量,因此能够实现发动机扭矩、喷油量、点火角等参数的精确控制,从而改善发动机动力、油耗、排放等方面的性能。并且该方法基于已广泛应用的发动机进气压力传感器,能够应用于现有的实车环境。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图概述
图1是本发明第一实施例提供的内燃机阿特金森循环进气量的计算方法的步骤流程图;
图2是奥托循环进气过程和阿特金森循环进气过程示意图;
图3是本发明第二实施例提供的内燃机阿特金森循环进气量的计算系统的主要架构框图。
本发明的较佳实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的内燃机阿特金森循环进气量的计算方法以及系统其具体实施方式、结构、特征及功效,详细说明如后。
有关本发明的前述及其他技术内容、特点及功效,在以下配合参考图式的较佳实施例详细说明中将可清楚的呈现。通过具体实施方式的说明,当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的
了解,然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
第一实施例
图1是本发明第一实施例提供的内燃机阿特金森循环进气量的计算方法的步骤流程图。图2是奥托循环进气过程和阿特金森循环进气过程示意图。本发明实施例的内燃机阿特金森循环进气量的计算方法能够自动准确地得到阿特金森循环进气量,请参考图1及图2,本实施例的内燃机阿特金森循环进气量的计算方法,包括以下步骤101-107。
步骤101,确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角。
通常,普通内燃机大多为四冲程内燃机,它分为进气冲程、压缩冲程、做功冲程和排气冲程。活塞在汽缸内往复运动时,从汽缸的一端运动到另一端的过程,叫做一个冲程。气缸的燃烧室可以通过一个进气门填充新鲜空气,通过排气门排气。进气门的设置使得气缸的进气口根据进气门的位置开启或关闭,排气门的设置使得气缸的排气口根据排气门的位置开启或关闭。在内燃机工作时,气流从进气管通过进气口流到气缸燃烧室,通过排气口从气缸燃烧室流出。节气门设置在内燃机的进气管中以控制进到进气管的气流。其中,内燃机工作时将外部的新鲜气体引入到气缸内,这是通过内燃机的进气冲程实现的,相比于传统内燃机循环,阿特金森循环在进气冲程后又多出了一个气体推出过程,如图2所示的气体推出阶段,即在阿特金森循环中,气体进入气缸后又有部分气体被推出到气缸外。气体进入气缸到被推出气缸的过程中,必然存在一个通过进气门的瞬时气体流量为零的时刻,这是由于气缸内的压力与进气道内的压力在这一时刻相等,该时刻对应的发动机曲轴转角即是活塞位于进气滞止点的时刻。确定进气滞止点,实质是确定阿特金森循环中气缸内压力等于进气压力的时刻,而进气压力和气缸内压力可通过传感器进行测量,于是此时气缸内状态可知。
其中,确定进气滞止点的方法包括但不限于以下三种:
第一种方法是计算流体动力学仿真(简称CFD)方法:预先建立发动机的进气过程的CFD模型,根据该CFD模型(即在该CFD模型中)对气缸进气过程中的气体流动进行仿真,归纳进气滞止点与发动机气缸内压力的对应
关系,并利用实际采集的气缸内压力信号进行校正此对应关系,以得到进气滞止点。其中,CFD模型是现有可以获得的模型。
第二种方法是发动机一维仿真方法:根据发动机的物理参数,主要包括进气压力、进气温度、节气门开度、排气压力、排气温度、发动机转速、进气门开启角度、排气门开启/关闭角度等(全文简称物理参数)、气缸内压力等数据预先建立发动机的一维仿真模型,根据此一维仿真模型(即在该一维仿真模型中)对气缸进气过程中的气体流动进行仿真,归纳进气滞止点与发动机气缸内压力的对应关系,并利用实际采集的气缸内压力信号进行校正此对应关系,以得到进气滞止点。其中,一维仿真模型也是现有可以获得的模型,上述物理参数均可以通过传感器进行测量,例如进气温度可以通过设置在进气管中的温度传感器进行测量。
第三种方法是发动机台架实验方法:利用瞬态进气压力传感器和发动机气缸内压力传感器分别测量进气口压力与气缸内压力,将两者压力滤波后进行对比,对比两者压力值的变化过程可确定进气滞止点。
优选地,步骤101还可包括:通过以上三种方法确定进气滞止点后,可以进一步确定以发动机转速、负荷为输入,进气滞止点对应的发动机理论曲轴转角为输出的脉谱图。发动机运行时,根据发动机的实际转速、实际进气压力查询上述脉谱图,并利用实际进气温度、实际节气门开度进行修正,以得到当前阿特金森循环中进气滞止点对应的发动机曲轴转角。其中,发动机曲轴转角的计算公式为:
θ=Fθ(Nengine,Pintake)+Δ(Tintake)+Δ(Xthrottle),其中,θ为阿特金森循环中进气滞止点对应的发动机曲轴转角,Nengine为发动机的转速,Pintake为进气压力,Tintake为进气温度,Xthrottle为节气门开度,Fθ(Nengine,Pintake)为关于Tintake、Xthrottle的现有函数。
步骤103,当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压。
其中,根据发动机各传感器测量的物理参数,主要包括进气压力、进气温度、节气门开度、排气压力、排气温度、发动机转速、进气门开启角度、排气门开启/关闭角度等(全文简称物理参数),结合步骤101计算得到的进
气滞止点对应的曲轴转角,计算出进气滞止点时对应的发动机气缸内废气的质量和分压、新鲜气体的质量和分压。
本步骤中,可以根据发动机的物理参数,利用理想气体状态方程计算进气滞止点时对应的废气量,利用理想气体状态方程、能量守恒计算进气滞止点时对应的废气温度,利用理想气体状态方程计算进气滞止点时对应的废气分压,利用理想气体状态方程计算进气滞止点时对应的新鲜进气分压,利用热交换方程计算进气滞止点时对应的新鲜进气温度,利用理想气体状态方程计算进气滞止点时对应的新鲜进气质量。本步骤涉及的方程及计算公式和方法均是本领域常用方法,在此不再赘述。
步骤105,从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量(包括废气和新鲜进气)的质量比。
本步骤中可以根据步骤103所计算的进气滞止点时废气的质量、新鲜气体的质量得到进气滞止点时气缸内总的气体量,再根据发动机的物理参数计算从进气滞止点到进气门关闭时间段内,从气缸内推出到进气歧管内的气体量占进气滞止点时气缸内总的气体量的质量比(简称实际气体推出比)。
具体地,实际气体推出比的计算方法为:在该发动机的阿特金森工况范围,根据发动机实时的物理参数以及测量得到的进气流量对推出比进行实验标定,确定以发动机转速、进气门关闭角为输入,基本推出比为输出的脉谱图。再根据发动机的转速、进气门关闭角查询上述脉谱图,得到当前工况下的基本推出比,并利用进气温度、气门重叠角、节气门开度对基本推出比进行修正,以得到实际气体推出比。
上述根据计算的进气滞止点时气缸内废气的质量mresidual、新鲜气体的质量mfresh计算出进气滞止点时气缸内总的气体量mtotal,并根据发动机转速Nengine、进气门关闭角θintakeclose,进气温度Tintake、气门重叠角θoverlap、节气门开度Xthrottle等物理参数计算的实际气体推出比的计算公式为α=Fα(Nengine,θintakeclose)*K1(Tintake)*K2(θoverlap)*K3(Xthrottle),mtotal=mresidual+mfresh,其中,mresidual为进气滞止点时气缸内废气的质量,mfresh为进气滞止点时气缸内新鲜气体的质量,mtotal为进气滞止点时气缸内总的气体量,Nengine为发动机转速,θintakeclose
为进气门关闭角,Tintake为进气温度,θoverlap为气门重叠角,Xthrottle为节气门开度。
步骤107,根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量和/或废气量。
其中,本步骤还可包括:根据步骤105计算得到的气缸内实际气体推出比、步骤103计算得出的进气滞止点时发动机气缸内废气的质量和新鲜气体的质量,计算出进气门关闭时气缸内废气的质量、新鲜气体的质量,其中进气门关闭时气缸内新鲜气体的质量即为阿特金森循环进气量,进气门关闭时气缸内废气的质量、新鲜气体的质量的计算公式分别为mresidualIvc=(1-α)*mresidual,mfreshIvc=(1-α)*mfresh,其中,α为质量比,mresidual、mfresh分别为进气滞止点时发动机气缸内废气的质量、新鲜气体的质量,mresidualIvc、mfreshIvc分别为进气门关闭时气缸内废气的质量、新鲜气体的质量。综上所述,本发明实施例提供的内燃机阿特金森循环进气量的计算方法,通过确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。本发明利用进气滞止点进行阿特金森循环进气量计算的方法,能够在不增加额外传感器的情况下,仅利用现有发动机上常用的传感器实现阿特金森循环进气量的准确计算,具备大范围应用的潜力。另外,因精确计算了发动机工作在阿特金森循环时的进气量,因此能够实现发动机扭矩、喷油量、点火角等参数的精确控制,从而改善发动机动力、油耗、排放等方面的性能。并且该方法基于已广泛应用的发动机进气压力传感器,能够应用于现有的实车环境。
以下为本发明的装置实施例,在装置实施例中未详尽描述的细节,可以参考上述对应的方法实施例。
第二实施例
图3是本发明第二实施例提供的内燃机阿特金森循环进气量的计算系统的主要架构框图。请参考图3,内燃机阿特金森循环进气量的计算系统包括:进气滞止点确定模块301、质量和分压确定模块303、质量比确定模块305、进气量获取模块307。
具体地,进气滞止点确定模块301,用于确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;
质量和分压确定模块303,用于当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;
质量比确定模块305,用于从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;
进气量获取模块307,用于根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。
优选地,进气滞止点确定模块301还用于预先建立发动机的进气过程的CFD模型,根据所述CFD模型对气缸进气过程中的气体流动进行仿真,归纳进气滞止点与发动机气缸内压力的对应关系,并利用实际采集的气缸内压力信号进行校正所述对应关系,以得到进气滞止点;或者,
用于根据发动机的物理参数、气缸内压力预先建立发动机的一维仿真模型,根据所述一维仿真模型对气缸进气过程中的气体流动进行仿真,归纳进气滞止点与发动机气缸内压力的对应关系,并利用实际采集的气缸内压力信号进行校正对应关系,以得到进气滞止点;或者,
用于利用瞬态进气压力传感器和发动机气缸内压力传感器分别测量进气口压力与气缸内压力,将两者压力滤波后进行对比,对比两者压力值的变化过程可确定进气滞止点。
优选地,进气滞止点确定模块301还用于确定进气滞止点后,进一步确定以发动机转速、负荷为输入,进气滞止点对应的发动机理论曲轴转角为输出的脉谱图,发动机运行时,根据发动机的实际转速、实际进气压力查询所述脉谱图,并利用实际进气温度、实际节气门开度进行修正,以得到当前阿
特金森循环中进气滞止点对应的发动机曲轴转角。
优选地,质量比确定模块305还用于根据所计算的进气滞止点时气缸内废气的质量、新鲜气体的质量计算进气滞止点时气缸内总的气体量,再根据发动机的物理参数得到从进气滞止点到进气门关闭时间段内,从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比,其中,所述质量比为实际气体推出比。
优选地,进气量获取模块307还用于根据得到的质量比、计算得出的进气滞止点时发动机气缸内废气的质量和新鲜气体的质量,计算出进气门关闭时气缸内废气的质量、新鲜气体的质量,其中,进气门关闭时气缸内新鲜气体的质量即为阿特金森循环进气量,进气门关闭时气缸内废气的质量、新鲜气体的质量的计算公式分别为mresidualIvc=(1-α)*mresidual,mfreshIvc=(1-α)*mfresh,其中,α为质量比,mresidual、mfresh分别为进气滞止点时发动机气缸内废气的质量、新鲜气体的质量,mresidualIvc、mfreshIvc分别为进气门关闭时气缸内废气的质量、新鲜气体的质量。
综上所述,本发明实施例提供的内燃机阿特金森循环进气量的计算系统,通过确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。本发明利用进气滞止点进行阿特金森循环进气量计算的方法,能够在不增加额外传感器的情况下,仅利用现有发动机上常用的传感器实现阿特金森循环进气量的准确计算,具备大范围应用的潜力。另外,因精确计算了发动机工作在阿特金森循环时的进气量,因此能够实现发动机扭矩、喷油量、点火角等参数的精确控制,从而改善发动机动力、油耗、排放等方面的性能。并且该方法基于已广泛应用的发动机进气压力传感器,能够应用于现有的实车环境。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露,然而并非用以限定本发明,任何
熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
本发明提供的内燃机阿特金森循环进气量的计算方法以及系统,通过确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。本发明利用进气滞止点进行阿特金森循环进气量计算的方法,能够在不增加额外传感器的情况下,仅利用现有发动机上常用的传感器实现阿特金森循环进气量的准确计算,具备大范围应用的潜力。另外,因精确计算了发动机工作在阿特金森循环时的进气量,因此能够实现发动机扭矩、喷油量、点火角等参数的精确控制,从而改善发动机动力、油耗、排放等方面的性能。并且该方法基于已广泛应用的发动机进气压力传感器,能够应用于现有的实车环境。
Claims (10)
- 一种内燃机阿特金森循环进气量的计算方法,其特征在于,所述内燃机阿特金森循环进气量的计算方法,包括:确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比;根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。
- 根据权利要求1所述的内燃机阿特金森循环进气量的计算方法,其特征在于,确定进气滞止点,包括:预先建立发动机的进气过程的CFD模型,根据所述CFD模型对气缸进气过程中的气体流动进行仿真,归纳进气滞止点与发动机气缸内压力的对应关系,并利用实际采集的气缸内压力信号进行校正所述对应关系,以得到进气滞止点;或者,根据发动机的物理参数、气缸内压力预先建立发动机的一维仿真模型,根据所述一维仿真模型对气缸进气过程中的气体流动进行仿真,归纳进气滞止点与发动机气缸内压力的对应关系,并利用实际采集的气缸内压力信号进行校正对应关系,以得到进气滞止点;或者,利用瞬态进气压力传感器和发动机气缸内压力传感器分别测量进气口压力与气缸内压力,将两者压力滤波后进行对比,对比两者压力值的变化过程以确定进气滞止点。
- 根据权利要求1所述的内燃机阿特金森循环进气量的计算方法,其特征在于,确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角,还包括:确定进气滞止点后,进一步确定以发动机转速、负荷为输入,进气滞止点对应的发动机理论曲轴转角为输出的脉谱图,发动机运行时, 根据发动机的实际转速、实际进气压力查询所述脉谱图,并利用实际进气温度、实际节气门开度进行修正,以得到当前阿特金森循环中进气滞止点对应的发动机曲轴转角。
- 根据权利要求1所述的内燃机阿特金森循环进气量的计算方法,其特征在于,从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比,还包括:根据所计算的进气滞止点时气缸内废气的质量、新鲜气体的质量计算进气滞止点时气缸内总的气体量,再根据发动机的物理参数得到从进气滞止点到进气门关闭时间段内,从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比,其中,所述质量比为实际气体推出比。
- 根据权利要求1所述的内燃机阿特金森循环进气量的计算方法,其特征在于,根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量,包括:根据得到的质量比、计算得出的进气滞止点时发动机气缸内废气的质量和新鲜气体的质量,计算出进气门关闭时气缸内废气的质量、新鲜气体的质量,其中,进气门关闭时气缸内新鲜气体的质量即为阿特金森循环进气量,进气门关闭时气缸内废气的质量、新鲜气体的质量的计算公式分别为mresidualIvc=(1-α)*mresidual,mfreshIvc=(1-α)*mfresh,其中,α为质量比,mresidual、mfresh分别为进气滞止点时发动机气缸内废气的质量、新鲜气体的质量,mresidualIvc、mfreshIvc分别为进气门关闭时气缸内废气的质量、新鲜气体的质量。
- 一种内燃机阿特金森循环进气量的计算系统,其特征在于,其包括:进气滞止点确定模块,用于确定进气滞止点及内燃机活塞位于进气滞止点时对应的发动机曲轴转角;质量和分压确定模块,用于当内燃机活塞位于进气滞止点时,根据发动机曲轴转角计算气缸内废气的质量和分压、新鲜气体的质量和分压;质量比确定模块,用于从进气滞止点到进气门关闭时间段内,根据计算的气缸内废气的质量和分压、新鲜气体的质量和分压得到被活塞从气缸内推 出的气体量占进气滞止点时气缸内总的气体量的质量比;进气量获取模块,用于根据得到的质量比计算出进气门关闭时气缸内新鲜气体进气量。
- 根据权利要求6所述的内燃机阿特金森循环进气量的计算系统,其特征在于,所述进气滞止点确定模块还用于预先建立发动机的进气过程的CFD模型,根据所述CFD模型对气缸进气过程中的气体流动进行仿真,归纳进气滞止点与发动机气缸内压力的对应关系,并利用实际采集的气缸内压力信号进行校正所述对应关系,以得到进气滞止点;或者,用于根据发动机的物理参数、气缸内压力预先建立发动机的一维仿真模型,根据所述一维仿真模型对气缸进气过程中的气体流动进行仿真,归纳进气滞止点与发动机气缸内压力的对应关系,并利用实际采集的气缸内压力信号进行校正对应关系,以得到进气滞止点;或者,用于利用瞬态进气压力传感器和发动机气缸内压力传感器分别测量进气口压力与气缸内压力,将两者压力滤波后进行对比,对比两者压力值的变化过程以确定进气滞止点。
- 根据权利要求6所述的内燃机阿特金森循环进气量的计算系统,其特征在于,所述进气滞止点确定模块还用于确定进气滞止点后,进一步确定以发动机转速、负荷为输入,进气滞止点对应的发动机理论曲轴转角为输出的脉谱图,发动机运行时,根据发动机的实际转速、实际进气压力查询所述脉谱图,并利用实际进气温度、实际节气门开度进行修正,以得到当前阿特金森循环中进气滞止点对应的发动机曲轴转角。
- 根据权利要求6所述的内燃机阿特金森循环进气量的计算系统,其特征在于,所述质量比确定模块还用于根据所计算的进气滞止点时气缸内废气的质量、新鲜气体的质量计算进气滞止点时气缸内总的气体量,再根据发动机的物理参数得到从进气滞止点到进气门关闭时间段内,从气缸内推出的气体量占进气滞止点时气缸内总的气体量的质量比,其中,所述质量比为实际气体推出比。
- 根据权利要求6所述的内燃机阿特金森循环进气量的计算系统,其特征在于,所述进气量获取模块还用于根据得到的质量比、计算得出的进气 滞止点时发动机气缸内废气的质量和新鲜气体的质量,计算出进气门关闭时气缸内废气的质量、新鲜气体的质量,其中,进气门关闭时气缸内新鲜气体的质量即为阿特金森循环进气量,进气门关闭时气缸内废气的质量、新鲜气体的质量的计算公式分别为mresidualIvc=(1-α)*mresidual,mfreshIvc=(1-α)*mfresh,其中,α为质量比,mresidual、mfresh分别为进气滞止点时发动机气缸内废气的质量、新鲜气体的质量,mresidualIvc、mfreshIvc分别为进气门关闭时气缸内废气的质量、新鲜气体的质量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/088,860 US10648418B2 (en) | 2016-03-31 | 2017-03-30 | Method and system for calculating Atkinson cycle intake flowrate of internal combustion engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610195275.4 | 2016-03-31 | ||
CN201610195275.4A CN107288768B (zh) | 2016-03-31 | 2016-03-31 | 内燃机阿特金森循环进气量的计算方法以及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017167220A1 true WO2017167220A1 (zh) | 2017-10-05 |
Family
ID=59963512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/078754 WO2017167220A1 (zh) | 2016-03-31 | 2017-03-30 | 内燃机阿特金森循环进气量的计算方法以及系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10648418B2 (zh) |
CN (1) | CN107288768B (zh) |
WO (1) | WO2017167220A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108319757A (zh) * | 2017-12-29 | 2018-07-24 | 联合汽车电子有限公司 | 阿特金森发动机空燃比计算方法及系统 |
CN114970404A (zh) * | 2022-07-28 | 2022-08-30 | 江铃汽车股份有限公司 | 基于缸内燃烧cfd分析的发动机油耗计算及优化方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4920789A (en) * | 1989-09-19 | 1990-05-01 | General Motors Corporation | Method and means for determining air mass in a crankcase scavenged two-stroke engine |
CN1214104A (zh) * | 1996-03-15 | 1999-04-14 | 西门子公司 | 用于模型辅助地确定在废气外反馈的情况下流入发动机的气缸中的新鲜空气量的方法 |
CN1657755A (zh) * | 2004-02-18 | 2005-08-24 | 日产自动车株式会社 | 气缸进气量确定装置 |
CN1701173A (zh) * | 2003-07-10 | 2005-11-23 | 丰田自动车株式会社 | 内燃机的进气量推测装置 |
CN1823217A (zh) * | 2003-07-17 | 2006-08-23 | 丰田自动车株式会社 | 内燃机的控制装置和内燃机的进气量计算方法 |
JP2010133426A (ja) * | 2010-03-15 | 2010-06-17 | Nissan Motor Co Ltd | エンジンの制御装置 |
CN102062005A (zh) * | 2010-12-30 | 2011-05-18 | 天津锐意泰克汽车电子有限公司 | 一种计算发动机进气量及进气压力的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6308694B1 (en) * | 1999-01-11 | 2001-10-30 | Ford Global Technologies, Inc. | Flow measurement and control |
JP3900080B2 (ja) * | 2002-12-17 | 2007-04-04 | トヨタ自動車株式会社 | 内燃機関の吸入空気量推定装置 |
CN101787933B (zh) * | 2010-01-21 | 2013-01-09 | 上海交通大学 | 阿特金森循环发动机控制系统及其控制方法 |
JP2011236781A (ja) * | 2010-05-07 | 2011-11-24 | Aisin Seiki Co Ltd | 弁開閉時期制御装置 |
JP5409832B2 (ja) * | 2012-03-19 | 2014-02-05 | 三菱電機株式会社 | 内燃機関のシリンダ吸入空気量および内部egr率の推定装置 |
JP2014020265A (ja) * | 2012-07-17 | 2014-02-03 | Honda Motor Co Ltd | 内燃機関の制御装置 |
CN103233789B (zh) * | 2013-05-17 | 2016-08-31 | 朱譞晟 | 应用二冲程阿特金森循环的多模全顶置气门二冲程内燃机 |
-
2016
- 2016-03-31 CN CN201610195275.4A patent/CN107288768B/zh active Active
-
2017
- 2017-03-30 WO PCT/CN2017/078754 patent/WO2017167220A1/zh active Application Filing
- 2017-03-30 US US16/088,860 patent/US10648418B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4920789A (en) * | 1989-09-19 | 1990-05-01 | General Motors Corporation | Method and means for determining air mass in a crankcase scavenged two-stroke engine |
CN1214104A (zh) * | 1996-03-15 | 1999-04-14 | 西门子公司 | 用于模型辅助地确定在废气外反馈的情况下流入发动机的气缸中的新鲜空气量的方法 |
CN1701173A (zh) * | 2003-07-10 | 2005-11-23 | 丰田自动车株式会社 | 内燃机的进气量推测装置 |
CN1823217A (zh) * | 2003-07-17 | 2006-08-23 | 丰田自动车株式会社 | 内燃机的控制装置和内燃机的进气量计算方法 |
CN1657755A (zh) * | 2004-02-18 | 2005-08-24 | 日产自动车株式会社 | 气缸进气量确定装置 |
JP2010133426A (ja) * | 2010-03-15 | 2010-06-17 | Nissan Motor Co Ltd | エンジンの制御装置 |
CN102062005A (zh) * | 2010-12-30 | 2011-05-18 | 天津锐意泰克汽车电子有限公司 | 一种计算发动机进气量及进气压力的方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108319757A (zh) * | 2017-12-29 | 2018-07-24 | 联合汽车电子有限公司 | 阿特金森发动机空燃比计算方法及系统 |
CN108319757B (zh) * | 2017-12-29 | 2021-09-28 | 联合汽车电子有限公司 | 阿特金森发动机空燃比计算方法及系统 |
CN114970404A (zh) * | 2022-07-28 | 2022-08-30 | 江铃汽车股份有限公司 | 基于缸内燃烧cfd分析的发动机油耗计算及优化方法 |
CN114970404B (zh) * | 2022-07-28 | 2022-10-28 | 江铃汽车股份有限公司 | 基于缸内燃烧cfd分析的发动机油耗计算及优化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107288768A (zh) | 2017-10-24 |
CN107288768B (zh) | 2019-08-23 |
US10648418B2 (en) | 2020-05-12 |
US20190112995A1 (en) | 2019-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7269495B2 (en) | Engine output calculation method and engine output calculation apparatus | |
CN101087939B (zh) | 用于运行内燃机的方法 | |
US7318342B2 (en) | Method for model-based determination of the fresh air mass flowing into the cylinder combustion chamber of an internal combustion engine during an intake phase | |
Payri et al. | Experimental analysis of the global energy balance in a DI diesel engine | |
US8265853B2 (en) | Cylinder pressure measurement system and method | |
RU2012131310A (ru) | Способ и устройство для измерения и управления степенью рециркуляции выхлопного газа в двигателе внутреннего сгорания | |
CN102889124B (zh) | 估计内燃机进气充量温度的系统和方法 | |
CN102137995A (zh) | 内燃机系统控制设备 | |
JP2012082766A (ja) | 内燃機関の筒内圧波形推定方法及び推定装置 | |
JP2018178928A (ja) | 内燃機関の制御装置 | |
US7401504B2 (en) | Method of detecting start of combustion in diesel engines using in-cylinder pressure | |
WO2017167220A1 (zh) | 内燃机阿特金森循环进气量的计算方法以及系统 | |
EP1982064A2 (en) | A method of identifying engine gas composition | |
JP2010144647A (ja) | ディーゼルエンジンの燃料制御装置 | |
Martensson et al. | Modeling the effect of variable cam phasing on volumetric efficiency, scavenging and torque generation | |
CN117145642A (zh) | 基于自适应带宽的增压lp-egr发动机空燃比预测抗扰控制方法 | |
JP2015194098A (ja) | 筒内圧力センサ診断方法及び車両動作制御装置 | |
CN107701320B (zh) | 一种多缸发动机缸内燃烧状态的估计方法及系统 | |
CN108005805B (zh) | 一种发动机负荷计算方法、发动机及汽车 | |
CN207420734U (zh) | 一种多缸发动机缸内燃烧状态估计系统 | |
CN112883653B (zh) | 基于人工智能的发动机实时模型的建模方法 | |
CN108626017B (zh) | 一种双vvt增压直喷汽油机的新鲜气量计算方法 | |
CN108266281A (zh) | 车辆的喷油量控制方法、装置及车辆 | |
CN103975153B (zh) | 内燃机的控制装置 | |
Fantenberg | Estimation of air mass flow in engines with variable valve timing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17773250 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17773250 Country of ref document: EP Kind code of ref document: A1 |