WO2017166981A1 - 一种信息处理方法、装置及存储介质 - Google Patents

一种信息处理方法、装置及存储介质 Download PDF

Info

Publication number
WO2017166981A1
WO2017166981A1 PCT/CN2017/075895 CN2017075895W WO2017166981A1 WO 2017166981 A1 WO2017166981 A1 WO 2017166981A1 CN 2017075895 W CN2017075895 W CN 2017075895W WO 2017166981 A1 WO2017166981 A1 WO 2017166981A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
port
type
resource
configuration
Prior art date
Application number
PCT/CN2017/075895
Other languages
English (en)
French (fr)
Inventor
李永
陈艺戬
李儒岳
鲁照华
肖华华
王瑜新
吴昊
蔡剑兴
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/089,619 priority Critical patent/US11082106B2/en
Publication of WO2017166981A1 publication Critical patent/WO2017166981A1/zh
Priority to US17/357,280 priority patent/US11646775B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present invention relates to the field of communications, and in particular, to an information processing method, apparatus, and storage medium.
  • the Cell-specific Reference Signal can be used for both channel state measurement and channel coefficient estimation when receiving demodulation.
  • the overhead increases sharply.
  • the CRS is no longer used to measure the channel state, and the channel state measurement pilot (CSI-RS, CSI reference signal) with low pilot density and low overhead is used instead.
  • CSI-RS channel state measurement pilot
  • a CSI-RS resource with a large number of ports is aggregated by a CSI-RS configuration with a small number of ports, and a CSI-RS signal with a large number of transmission ports and a CSI with a small number of transmission ports are required.
  • the -RS signal in order not to consume more resources, the following scheme is usually adopted: a CSI-RS signal having a large number of resource transmission ports is used, and one component of the transmission signal is used as a small number of ports to be transmitted.
  • CSI-RS signal in order not to consume more resources, the following scheme is usually adopted: a CSI-RS signal having a large number of resource transmission ports is used, and one component of the transmission signal is used as a small number of ports to be transmitted.
  • CSI-RS signal in order not to consume more resources, the following scheme is usually adopted: a CSI-RS signal having a large number of resource transmission ports is used, and one component of the transmission signal is used as a small number of ports to be transmitted.
  • the embodiments of the present invention are directed to providing an information processing method, apparatus, and storage medium, to solve at least the problem of multiple CSI-RS transmission requirements that cannot satisfy different port numbers in one CSI-RS resource overhead in the related art. .
  • an information processing method that is, a configuration.
  • the method for the channel state measurement process includes: generating signaling including configuration information of a channel state measurement process CSI process; transmitting the signaling including configuration information of a CSI process; wherein, the configuration information of the CSI process includes: a channel state
  • the CSI-RS resource configuration information is measured, and the CSI-RS resource configuration information includes: CSI-RS resource port number, channel state measurement pilot resource configuration CSI-RS configuration number, CSI-RS configuration port number, CSI -RS configuration number, CSI-RS configuration aggregation number, port numbering method.
  • an information processing apparatus that is, an apparatus for configuring a channel state measurement process CSI process, comprising: a processing module configured to generate a configuration information including a channel state measurement process CSI process And a sending module, configured to send the signaling that includes the configuration information of the CSI process, where the configuration information of the CSI process includes: channel state measurement pilot resource CSI-RS resource configuration information, the CSI-RS resource
  • the configuration information includes: CSI-RS resource port number, channel state measurement pilot resource configuration CSI-RS configuration number, CSI-RS configuration port number, CSI-RS configuration sequence number, CSI-RS configuration aggregation sequence number, and port number mode.
  • an information processing method that is, a method for parsing configuration information of a channel state measurement process, includes: receiving signaling of configuration information including a channel state measurement process CSI process sent by a base station; And the configuration information of the CSI process includes: channel state measurement pilot resource CSI-RS resource configuration information, where the configuration information of the CSI-RS resource includes: CSI- Number of RS resource ports, channel state measurement pilot resource configuration CSI-RS configuration number, CSI-RS configuration port number, CSI-RS configuration sequence number, CSI-RS configuration aggregation sequence number, port number mode.
  • an information processing apparatus that is, a device for analyzing configuration information of a channel state measurement process, comprising: a receiving module configured to receive a base The signaling sent by the station includes the configuration information of the channel state measurement process CSI process; the parsing module is configured to parse the signaling including the configuration information of the CSI process; wherein the configuration information includes: a channel state measurement pilot resource CSI - RS resource configuration information, the CSI-RS resource configuration information includes: CSI-RS resource port number, channel state measurement pilot resource configuration CSI-RS configuration number, CSI-RS configuration port number, CSI-RS configuration sequence number, CSI-RS configuration aggregation number, port numbering mode.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program configured to execute the above information processing method of the embodiment of the present invention.
  • signaling for generating configuration information including a channel state measurement process CSI process is used, and then signaling including configuration information of a CSI process is transmitted, and configuration information in the CSI process includes: channel state measurement pilot resource CSI- RS resource configuration information, CSI-RS resource configuration information includes: CSI-RS resource port number, channel state measurement pilot resource configuration CSI-RS configuration number, CSI-RS configuration port number, CSI-RS configuration sequence number, CSI-RS
  • the configuration aggregation sequence number can be used to correctly reflect the port space position and polarization attribute of the CSI-RS configuration by the codebook.
  • the port space position and polarization attribute of the aggregated CSI-RS resource are correctly reflected by the codebook, so that one can be used.
  • the CSI-RS port number corresponding to the CSI-RS configuration with a small number of CSI-RSs and the number of CSI-RSs with a small number of CSI-RSs is the same as the CSI-RS port number of the CSI-RS resource with a large number of ports.
  • the CSI-RS resource overhead satisfies the problem of multiple CSI-RS transmission requirements of different port numbers. Resource overhead savings achieved technical effect.
  • FIG. 1 is a schematic diagram of a first type of frame structure in the related art
  • FIG. 2 is a schematic diagram of a second type of frame structure in the related art
  • FIG. 3 is a schematic diagram of a downlink resource grid in the related art
  • FIG. 4 is a schematic diagram of a resource pattern of a CSI-RS with a port number of 4 on one RB pair in the related art
  • FIG. 5 is a schematic diagram of a resource pattern of a CSI-RS with a port number of 8 on one RB pair in the related art
  • FIG. 6 is a schematic diagram of spatial position and polarization attributes of a port antenna corresponding to a CSI-RS signal with a port number of 16 in the related art
  • FIG. 7 is a schematic diagram of spatial position and polarization attributes of a port antenna corresponding to a CSI-RS signal with a port number of 8 in the related art
  • FIG. 8 is a schematic diagram of spatial locations and polarization attributes corresponding to a component having a port number of 8 extracted from a CSI-RS signal of a configured port number of 16 in the related art;
  • FIG. 9 is a flowchart of a method for configuring a channel state measurement process according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for parsing configuration information of a channel state measurement process according to an embodiment of the present invention
  • FIG. 11 is a structural block diagram of an apparatus for configuring a channel state measurement process CSI process according to an embodiment of the present invention
  • Fig. 12 is a block diagram showing the configuration of a device for analyzing configuration information of a channel state measurement process according to an embodiment of the present invention.
  • LTE/LTE-A Long Term Evolution/LTE-Advanced (LTE-A) technology is the mainstream fourth-generation mobile communication technology (4G).
  • LTE/LTE-A is divided into two different duplex modes: FDD (Frequency Division Duplex) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the frame structure of the frequency division duplex mode is called a frame structure type 1 (Frame structure type 1)
  • the frame structure of the time division duplex mode is called a frame structure type 2 (Frame structure type 2).
  • the terminal UE, User Equipment
  • the full-duplex FDD mode there is no such limitation.
  • each field consists of 5 subframes
  • the uplink-downlink configuration change of a cell occurs between frames, and the uplink and downlink transmission occurs on a subframe of a frame.
  • the uplink and downlink configuration of the current frame is obtained by high layer signaling.
  • UpPTS uplink pilot time slot
  • LTE/LTE-A technology downlink transmission adopts Orthogonal Frequency Division Multiplexing (OFDM) modulation technology
  • data is modulated on a subcarrier of a frequency domain, and then converted to a time domain to add an upper cyclic prefix to form a
  • the complete time domain transmits OFDM symbols.
  • the cyclic prefix (CP) is used to resist symbol interference generated by the multipath in the time domain and inter-subcarrier interference generated in the frequency domain.
  • CPs There are two types of CPs in the LTE/LTE-A system, one is a normal CP (NCP) and the other is an extended cyclic (ECP). Extended CP applications are used in scenarios where multipath delays are extended.
  • NCP normal CP
  • ECP extended cyclic
  • Extended CP applications are used in scenarios where multipath delays are extended.
  • the subcarrier spacing is 15 kHz; in the case of an extended CP, there are two subcarrier spacings, 15 kHz and 7.5
  • the signal transmitted in each time slot is described by one or more resource grids, and the resource grid is composed of Subcarriers and OFDM symbols are constructed. among them, Representing the number of Physical Resource Blocks (PRBs) or Resource Blocks (RBs), Represents the number of subcarriers in the resource block, Represents the number of OFDM symbols in a slot.
  • PRBs Physical Resource Blocks
  • RBs Resource Blocks
  • Table 2 shows the physical resource block parameters. The number of OFDM symbols and the number of subcarriers on one RB are shown in Table 2.
  • Table 3 shows the OFDM symbol parameters, and the length of the cyclic prefix is as shown in Table 3.
  • Number of physical resource blocks It is determined by the downlink transmission bandwidth configured by the cell, and has a minimum value of 6 and a maximum value of 110.
  • the same PRB on two consecutive time slots in the same subframe is called a PRB pair.
  • each unit in a resource grid is called a resource element (RE, Resource Element), and is marked with an index pair (k, l), where Indicates the subcarrier number in the frequency domain. Indicates the OFDM symbol number on the time domain.
  • An antenna port is defined as the channel through which symbols transmitted on this antenna port pass, and can be guessed by the channel through which other symbols transmitted on the same port pass.
  • An antenna port is also defined with a corresponding sequence number to distinguish between antenna ports and an index of the antenna port.
  • the Downlink Physical Channel corresponds to a set of resource units for carrying information from the upper layer.
  • the downlink physical information includes: Physical Downlink Shared Channel (PDSCH), Physical Multicast Channel (PMCH), Physical Broadcast Channel (PBCH), Physical Control Channel (PBCH), Physical Control Format Indicator Channel (PCFICH, Physical) Control Format Indicator Channel), Physical Downlink Control Channel (PDCCH), Physical Hybrid ARQ Indicator Channel (PHICH), Enhanced Physical Downlink Control Channel (EPDCCH, Enhanced Physical Downlink Control Channel) ).
  • the downlink physical signal corresponds to a set of resource elements, which are used by the physical layer and are not used to carry upper layer information.
  • the downlink physical signals include: a pilot signal (RS, a reference signal), a synchronization signal, and a discovery signal.
  • Pilot signals also known as pilots, are of the following types: CRS, MBSFN (Multimedia Broadcast Single Frequency Network) pilot (MBSFN reference signals), UE-specific pilot (demodulation pilot (DMRS, Demodulation Reference Signal)), Positioning Reference Signal, CSI-RS.
  • the UE-specific pilots have the following two types: UE-specific reference signals associated with PDSCH and Demodulation reference signals associated with EPDCCH.
  • CSI-RS Channel State Measurement Pilot
  • NZP CSI-RS non-zero power CSI-RS
  • ZP CSI-RS zero-power CSI-RS
  • the corresponding resource unit set is a Zero Power CSI-RS Resource.
  • CSI-IM Resource Channel-State Information-Interference Measurement Resource
  • the CSI-RS configuration (CSI-RS configuration) is used to indicate the RE mapped by the CSI-RS, that is, the RE used for transmitting the CSI-RS, and the CSI-RS configuration sequence number is used to distinguish different CSI-RS configurations.
  • a CSI reference signal subframe configuration is used to indicate a subframe in which a CSI-RS transmission is located.
  • a CSI-RS configuration is a CSI-RS configuration with a certain number of antenna ports, for example, a CSI-RS configuration with a configuration number of 0 with an antenna port number of 8.
  • the serial number is the index number.
  • the current number of CSI-RS support ports is 1, 2, 4, 8, 12, 16.
  • the number of CSI-RS resource patterns of these ports is repeated on each PRB pair of the bandwidth range on the transmission subframe.
  • the CSI-RS resource with the port number of 1, 2, 4, and 8 is composed of a single CSI-RS resource, and the CSI-RS resources with the port number of 12 and 16 are configured by multiple CSI-RSs. Aggregated.
  • the base station or the terminal usually measures the channel state through a channel state measurement process (CSI Process).
  • CSI Process channel state measurement process
  • One CSI-RS resource is usually configured in one CSI process, and the terminal feeds back according to the measurement of the CSI-RS.
  • FIG. 4 is a resource pattern of a CSI-RS with a port number of 4 on one RB pair in the related art
  • FIG. 5 is a resource pattern of a CSI-RS with a port number of 8 on one RB pair in the related art.
  • the port is divided into multiple groups, groups
  • the internal ports are code division multiplexed.
  • the base station notifies the terminal about the CSI-RS by using upper layer signaling, and the information includes: a CSI-RS resource configuration identifier, a CSI-RS port number, a CSI-RS configuration, and a CSI-RS subframe. Configuration.
  • a CSI-RS resource with a large number of ports is aggregated by a CSI-RS configuration with a small number of ports.
  • One solution use a CSI-RS signal with a large number of resource transmission ports, and then use a CSI-RS signal with a small number of resource transmission ports, which will consume more resources.
  • Another scheme use a CSI-RS signal with a large number of resource transmission ports, and use one component of the transmission signal as the CSI-RS signal with a small number of ports to be transmitted.
  • the advantage of this scheme is that the resource overhead is saved, but the disadvantage is that the same CSI-RS signal is used as a component of a larger number of CSI-RS signals and as a CSI-RS signal with a smaller number of independent ports.
  • the codeword vector in the codebook cannot reflect the spatial position and polarization properties of such a port, so that the codeword in the codebook cannot reflect the channel coefficient of such an antenna port. That is, scheme 2 cannot meet multiple CSI-RS transmission requirements of different port numbers with one CSI-RS resource overhead.
  • a CSI-RS signal with a port number of 16 and a CSI-RS signal with a port number of 8 are taken as an example to illustrate the problem of the second solution.
  • FIG. 6 is a spatial position and polarization attribute of a port antenna corresponding to a CSI-RS signal with a port number of 16 in the related art. As shown in FIG. 6, a CSI-RS signal with a port number of 16, a corresponding end Port antenna spatial position and polarization properties.
  • the elements of the column vector in the codeword of the feedback channel coefficient correspond to the ports 15 to 30 from the 1st to the 16th.
  • FIG. 7 is a spatial position and polarization attribute of a port antenna corresponding to a CSI-RS signal with a port number of 8 in the related art. As shown in FIG. 7, a CSI-RS signal with a port number of 8, a corresponding port antenna spatial position and a pole Attributes.
  • the column vector elements of the code words of the feedback channel coefficients correspond to the ports 15 to 22 from the first to the eighth ones.
  • FIG. 8 is a diagram showing a spatial position and polarization attribute corresponding to a component having a port number of 8 from a CSI-RS signal having a port number of 16 configured in the related art, as shown in FIG.
  • the CSI-RS signal extracts a component with a port number of 8, corresponding to the spatial location and polarization properties.
  • the spatial position and polarization properties of the port are inconsistent with the port spatial position and polarization properties corresponding to the 8-antenna port codeword column vector element, that is, the 8-antenna port codeword column vector cannot reflect the channel coefficient of such a port antenna.
  • the related technologies have the following problems: the port space location and polarization attributes of the aggregated CSI-RS resource, the port space location and polarization attributes of the CSI-RS configuration participating in the aggregation cannot be correctly reflected by the respective codebooks, and thus cannot be A CSI-RS resource overhead meets multiple CSI-RS transmission requirements for different port numbers.
  • FIG. 9 is a flowchart of a method for configuring a channel state measurement process, which may be applied to a network side network element, such as a base station, according to an embodiment of the present invention. As shown in FIG. 9, the process includes the following steps:
  • Step 902 Generate signaling including configuration information of a channel state measurement process CSI process.
  • this step also determines the configuration information of the channel state measurement process CSI process.
  • Step 904 Send signaling including configuration information of the CSI process.
  • signaling or bearer data including configuration information may also be generated, and configuration information of the channel state measurement process CSI process is transmitted by signaling or carrying data.
  • the configuration information of the CSI process includes at least one of the following information: CSI-RS resource configuration information of the channel state measurement pilot resource, and the configuration information of the CSI-RS resource includes: CSI-RS resource port number, channel state measurement pilot resource configuration The number of CSI-RS configurations, the number of CSI-RS configuration ports, the CSI-RS configuration sequence number, the CSI-RS configuration aggregation number, and the port numbering method.
  • the configuration information of the channel state measurement process CSI process is determined, and then the configuration information of the CSI process is transmitted.
  • the configuration information in the CSI process includes: channel state measurement pilot resource CSI-RS resource configuration information, CSI-RS resource
  • the configuration information includes: CSI-RS resource port number, channel state measurement pilot resource configuration CSI-RS configuration number, CSI-RS configuration port number, CSI-RS configuration sequence number, CSI-RS configuration aggregation sequence number, which can reach CSI-RS
  • the port space location and polarization attribute of the configuration are correctly reflected by the codebook, and the port space location and polarization attribute of the aggregated CSI-RS resource are correctly reflected by the codebook, so that the CSI-RS resource overhead can be simultaneously transmitted.
  • a CSI-RS port number corresponding to a CSI-RS configuration with a smaller number of CSI-RS configurations and a CSI-RS resource with a larger number of ports which solves the problem that the number of different ports cannot be met by one CSI-RS resource overhead in the related art.
  • the candidate manner of the port numbering manner includes but is not limited to:
  • the first half of the port sorting is the port number of each CSI-RS configuration.
  • the first half of the ports are arranged in the CSI-RS configuration aggregation sequence ascending order.
  • the second half of the port sorting is the port number of each CSI-RS configuration.
  • Half of the ports are arranged in ascending order of the CSI-RS configuration aggregation number; the ports are consecutively numbered according to the arrangement order. among them,
  • the port number of the CSI-RS configuration is an even number.
  • Manner 3 According to the CSI-RS configuration aggregation sequence ascending order, one port is taken out from each CSI-RS configuration, and the ports in each CSI-RS configuration are taken out in ascending order until all the ports are arranged; the ports are arranged in order. Numbering.
  • Another embodiment of the present embodiment is that the number of CSI-RS resource ports is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type of port numbering manner, and the second set of CSI-RSs The resource port adopts the second type of port numbering.
  • the first type of port numbering is different from the second type of port numbering.
  • the port numbering mode is related to the number of CSI-RS resource ports.
  • the number of CSI-RS resource ports indicates the port numbering mode.
  • Another embodiment of the present embodiment is that the number of CSI-RS resource ports is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type of port numbering manner, and the second set of CSI-RSs The resource port adopts the first type of port numbering mode or the second type of port numbering mode.
  • the first type of port numbering mode is different from the second type of port numbering mode.
  • the port numbering mode is related to the number of CSI-RS resource ports.
  • the number of CSI-RS resource ports indicates the port numbering mode.
  • the number of corresponding CSI-RS resource ports and port numbering mode can reach CSI.
  • the port space position and polarization attribute of the -RS configuration are correctly reflected by the codebook, and the port space position and polarization attribute of the CSI-RS resource are correctly reflected by the codebook.
  • Another embodiment of the present embodiment is that the number of CSI-RS configuration ports is divided into two sets, and the CSI-RS resource ports corresponding to the first set adopt the first type of port numbering mode, and the second set of CSI-RSs.
  • the resource port adopts the second type of port numbering.
  • the first type of port numbering is different from the second type of port numbering.
  • the port numbering mode is related to the number of CSI-RS configuration ports.
  • the number of CSI-RS configuration ports indicates the port numbering mode, and the corresponding The number of CSI-RS configuration ports and the port numbering mode can be correctly reflected by the code space of the CSI-RS configuration.
  • the port space location and polarization attributes of the CSI-RS resource are correctly reflected by the codebook. .
  • Another embodiment of the present embodiment is: (CSI-RS configuration port number, CSI-RS configuration number) array is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type port numbering manner, The CSI-RS resource port in the two sets uses the second type of port numbering.
  • the first type of port numbering is different from the second type of port numbering.
  • the port numbering mode is related to the (CSI-RS configuration port number, CSI-RS configuration number) array, and the array prompts the port numbering mode, and the corresponding array and port numbering manner can be used to reach the CSI-RS.
  • the port space position and polarization attribute of the configuration are correctly reflected by the codebook, and the port space position and polarization attribute of the CSI-RS resource are correctly reflected by the codebook.
  • the configuration information of the CSI process further includes information indicating that the CSI-RS is periodic or aperiodic, and the CSI-RS resource port corresponding to the periodic CSI-RS adopts a first type of port numbering manner.
  • the CSI-RS resource port corresponding to the aperiodic CSI-RS adopts the second type of port numbering mode, and the first type of port numbering mode is different from the second type of port numbering mode.
  • the port numbering mode is related to the periodic attribute of the CSI-RS, and the periodic attribute of the CSI-RS indicates the numbering mode of the port.
  • the configuration information of the CSI process further includes codebook configuration mode information, where the codebook configuration mode is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first In the port numbering mode, the CSI-RS resource port in the second set uses the second type of port numbering.
  • the first type of port numbering is different from the second type of port numbering.
  • the port numbering mode is related to the codebook configuration mode, and the codebook configuration mode indicates the port numbering mode.
  • the configuration information of the CSI process further includes information about a CSI-RS resource port and a codeword column vector element.
  • the port spatial position and polarization attribute of the CSI-RS configuration are correctly reflected by the codebook, and the port space position of the CSI-RS resource is The polarization property is correctly reflected by the codebook.
  • Another embodiment of the present embodiment is that the CSI-RS resource port and the codeword column vector element are divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type of port numbering manner.
  • the CSI-RS resource port in the two sets uses the second type of port numbering.
  • the first type of port numbering is different from the second type of port numbering.
  • the CSI-RS resource port and the codeword column vector element corresponding manner indicate the port numbering manner, and the CSI-RS resource port and the codeword column vector element corresponding manner and the corresponding port numbering manner can reach the CSI-RS.
  • the port space position and polarization attribute of the configuration are correctly reflected by the codebook, and the port space position and polarization attribute of the CSI-RS resource are correctly reflected by the codebook.
  • Manner 2 The number of consecutive N/2 ports in ascending order is a group, totaling 2 ⁇ K groups, numbered in ascending order; in consecutive order, each consecutive N/2 number of codeword columns vector element number is One group, totaling 2 ⁇ K groups, numbered each group in ascending order; K pairs of even-numbered port groups and K codeword column vector element groups with the first number are in ascending order one by one, K odd-numbered ports
  • the K codeword column vector element groups of the group and the number are corresponding one-to-one in ascending order; or, the K pairs of port numbers and the K codeword column vector element groups of the number are in ascending order one by one, K odd-numbered port groups and numbered K codeword column vector element groups in ascending order One-to-one correspondence; where K is the number of CSI-RS configurations and N is the number of CSI-RS configuration ports.
  • Manner 3 The number of consecutive N/2 ports in ascending order is a group, totaling 2 ⁇ K groups, numbered in ascending order; in consecutive order, each consecutive N/2 number of codeword columns vector element number is A group, totaling 2 ⁇ K groups, numbered in ascending order for each group; K pairs of codeword column vector element groups and K port groups with the first number are in one-to-one correspondence in ascending order, K odd-numbered codes
  • the word vector element group and the numbered K port groups are in one-to-one correspondence in ascending order; or, the K even-numbered code word column vector element group and the numbered K port group are in one-to-one correspondence in ascending order,
  • the k code number column vector element group corresponds to the numbered K port groups in ascending order; wherein K is the number of CSI-RS configurations and N is the number of CSI-RS configuration ports.
  • Manner 4 in ascending order, the number of consecutive N number of ports is a group, total K groups, consecutive grouping numbers in ascending order; in the ascending order, the vector elements of N codeword columns of each K element are grouped, total K The group consecutively groups the numbers in ascending order; the port number group and the code word column vector element group number correspond one-to-one in ascending order; wherein K is the number of CSI-RS configurations and N is the number of CSI-RS configuration ports.
  • the aggregation number is arranged in a group, and the code element column vector element even number is in one-to-one correspondence; all the CSI-RS configuration port numbers are arranged in the second half of the port according to the CSI-RS configuration aggregation number ascending order.
  • the odd number of the vector element of the code word column is in one-to-one correspondence in ascending order.
  • the CSI-RS resource configuration information further includes a port code division multiplexing type, and the port code division multiplexing type is divided into two sets, and the first set corresponds to the CSI-RS.
  • the resource port corresponds to the codeword column vector element in the first type
  • the CSI-RS resource port corresponding to the second set corresponds to the codeword column vector element in the second type, and the first type is different from the second type.
  • the type of the port code division multiplexing indicates the corresponding mode of the CSI-RS resource port and the codeword column vector element.
  • Another embodiment of the present embodiment is that the number of CSI-RS resource ports is divided into two sets, and the CSI-RS resource port corresponding to the first set corresponds to the codeword column vector element in the first type manner, and the second set The corresponding CSI-RS resource port corresponds to the codeword column vector element in the second type, and the first type is different from the second type.
  • the number of CSI-RS resource ports indicates the manner in which the CSI-RS resource port corresponds to the codeword column vector element.
  • Another embodiment of the present embodiment is that the number of CSI-RS resource ports is divided into two sets, and the CSI-RS resource port corresponding to the first set corresponds to the codeword column vector element in the first type manner, and the second set The CSI-RS resource port in the first type or the second type corresponds to the code word column vector element, and the first type port numbering manner is different from the second type port numbering manner.
  • the number of CSI-RS resource ports indicates the manner in which the CSI-RS resource port corresponds to the codeword column vector element.
  • Another embodiment of the present embodiment is that the number of CSI-RS configuration ports is divided into two sets, and the CSI-RS resource port corresponding to the first set corresponds to the codeword column vector element in the first type, and the second set The corresponding CSI-RS resource port corresponds to the codeword column vector element in the second type, and the first type is different from the second type.
  • the port corresponds to the codeword column vector element.
  • Another embodiment of the present embodiment is: (CSI-RS configuration port number, CSI-RS configuration number) array is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type manner and the code word column.
  • the CSI-RS resource port corresponding to the second set corresponds to the codeword column vector element in the second type, and the first type is different from the second type.
  • the (CSI-RS configuration port number, CSI-RS configuration number) array indicates the CSI-RS resource port and the codeword column vector element corresponding manner.
  • the configuration information of the CSI process further includes information indicating that the CSI-RS is periodic or aperiodic, and the CSI-RS resource port corresponding to the periodic CSI-RS adopts the first type of mode and the codeword.
  • the CSI-RS resource port corresponding to the aperiodic CSI-RS corresponds to the codeword column vector element in the first type manner, and the first type mode is different from the second type mode.
  • the periodic attribute of the CSI-RS indicates the manner in which the CSI-RS resource port corresponds to the codeword column vector element.
  • the configuration information of the CSI process further includes codebook configuration mode information, where the codebook configuration mode is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first The class mode corresponds to the codeword column vector element, and the CSI-RS resource port corresponding to the second set corresponds to the codeword column vector element in the second type manner, and the first class mode is different from the second class mode.
  • codebook configuration mode prompts the CSI-RS resource port and the codeword column vector element corresponding manner.
  • the CSI-RS resource port numbering manner is divided into two sets, and the CSI-RS resource port corresponding to the first set is corresponding to the codeword column vector element in the first type manner, and the second set is used.
  • the corresponding CSI-RS resource port adopts the second type of mode and code.
  • the word vector element corresponds to the first type and the second type is different.
  • the CSI-RS resource port numbering mode indicates the corresponding mode of the CSI-RS resource port and the codeword column vector element.
  • FIG. 10 is a flowchart of a method for parsing configuration information of a channel state measurement process according to an embodiment of the present invention, which may be applied to a terminal side. As shown in FIG. 10, the steps of the method include:
  • Step S1002 Receive signaling of configuration information including a CSI process sent by the base station;
  • Step S1004 Parse the signaling including the configuration information of the CSI process.
  • the configuration information of the CSI process includes at least one of the following information: CSI-RS resource configuration information of the channel state measurement pilot resource, and the configuration information of the CSI-RS resource includes: CSI-RS resource port number, channel state measurement pilot resource configuration The number of CSI-RS configurations, the number of CSI-RS configuration ports, the CSI-RS configuration sequence number, the CSI-RS configuration aggregation number, and the port numbering method.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, magnetic).
  • the disc, the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • An apparatus for configuring a channel state measurement process CSI process is also provided in this embodiment.
  • the device is configured to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 11 is a structural block diagram of an apparatus for configuring a channel state measurement process CSI process according to an embodiment of the present invention. As shown in FIG. 11, the device includes:
  • the processing module 110 is configured to generate signaling including configuration information of the CSI process
  • the sending module 112 is configured to send the signaling that includes the configuration information of the CSI process.
  • the configuration information of the CSI process includes at least one of the following information: CSI-RS resource configuration information of the channel state measurement pilot resource, and the configuration information of the CSI-RS resource includes: CSI-RS resource port number, channel state measurement pilot resource configuration The number of CSI-RS configurations, the number of CSI-RS configuration ports, the CSI-RS configuration sequence number, the CSI-RS configuration aggregation number, and the port numbering method.
  • FIG. 12 is a structural block diagram of a device for analyzing configuration information of a channel state measurement process according to an embodiment of the present invention. As shown in FIG. 12, the device includes:
  • the receiving module 122 is configured to receive signaling that is sent by the base station and includes configuration information of the CSI process.
  • the parsing module 124 is configured to parse the signaling including the configuration information of the CSI process.
  • the configuration information includes at least one of the following information: channel state measurement pilot resource CSI-RS resource configuration information, and CSI-RS resource configuration information includes: CSI-RS resource port number, channel state measurement pilot resource configuration CSI-RS Number of configurations, number of CSI-RS configuration ports, CSI-RS configuration number, CSI-RS configuration aggregation number, and port numbering mode.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • the base station first determines the configuration information of the CSI process, and then generates the CSI. Signaling of the configuration information of the process, and then transmitting signaling including configuration information of the CSI process.
  • the port number information is represented by a bit, the bit number indicates the number of CSI-RS configurations, the c bit indicates the number of CSI-RS configuration ports, the d bit indicates the CSI-RS configuration sequence number, and the e bit indicates the CSI-RS configuration aggregation.
  • bit may be used to indicate the port number information
  • b bit is the CSI-RS configuration number
  • c bit is the CSI-RS configuration port number
  • d bit is the CSI-RS configuration sequence number and the CSI-RS configuration aggregation number.
  • a bit may be used to indicate the joint number of the port number information, the number of CSI-RS configurations, and the number of CSI-RS configuration ports, and the b bit indicates the joint coding of the CSI-RS configuration sequence number and the CSI-RS configuration aggregation sequence number.
  • a bit may be used to indicate the joint number of the port number information and the port number mode
  • b bit is the number of CSI-RS configuration ports
  • c bit is the number of CSI-RS configuration ports
  • d bit is the CSI-RS configuration number.
  • X-bit may be used to indicate the joint coding of the port number information, the number of CSI-RS configurations, the number of CSI-RS configuration ports, the CSI-RS configuration sequence number, the CSI-RS configuration aggregation sequence number, and the port number mode.
  • the number of ports can be the value in ⁇ 20, 24, 28, 32 ⁇ , CSI-RS configuration
  • the number of ports may be a value in ⁇ 4, 8 ⁇ , and the number of CSI-RS configurations may be a value in ⁇ 3, 4, 5, 6, 7 ⁇ .
  • the candidate for the port numbering mode includes at least one of the following modes:
  • the first half of the port sorting is the port number of each CSI-RS configuration.
  • the first half of the ports are arranged in the CSI-RS configuration aggregation sequence ascending order.
  • the second half of the port sorting is the port number of each CSI-RS configuration.
  • Half of the ports are arranged in ascending order of the CSI-RS configuration aggregation number; the ports are consecutively numbered according to the arrangement order.
  • Manner 3 According to the CSI-RS configuration aggregation sequence ascending order, one port is taken out from each CSI-RS configuration, and the ports in each CSI-RS configuration are taken out in ascending order until all the ports are arranged; the ports are arranged in order. Numbering.
  • the CSI-RS configuration with 4 ports of 8 is aggregated into the port number of the CSI-RS with the port number of 32, as shown in Table 4:
  • the CSI-RS configuration with a port number of 4 is aggregated into the port number of the CSI-RS with a port number of 20, as shown in Table 5:
  • the CSI-RS configuration with the number of ports of 8 is aggregated into the port number of the CSI-RS with the port number of 32, as shown in Table 6.
  • the CSI-RS configuration with the number of ports of 4 is aggregated into the port number of the CSI-RS with the port number of 20, as shown in Table 7:
  • the CSI-RS configuration with four ports of 8 is aggregated into the port number of the CSI-RS with the port number of 32, as shown in Table 8.
  • the CSI-RS configuration with a port number of 4 is aggregated into the port number of the CSI-RS with a port number of 20, as shown in Table 9.
  • the number of CSI-RS resource ports is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type of port numbering manner, and the CSI-RS resource port of the second set adopts the first In the second type of port numbering mode, the first type of port numbering mode is different from the second type of port numbering mode.
  • the number of ports ⁇ 12, 16 ⁇ is a set, which corresponds to port numbering mode one; the number of ports ⁇ 20, 24, 28, 32 ⁇ is a set, which corresponds to port numbering mode two.
  • the number of ports ⁇ 12, 16 ⁇ is a set, which corresponds to port numbering mode 2; the number of ports ⁇ 20, 24, 28, 32 ⁇ is a set, which corresponds to port number mode three.
  • the number of CSI-RS resource ports is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type of port numbering manner, and the CSI-RS resource port of the second set adopts the first
  • the first type of port numbering mode is different from the second type of port numbering mode.
  • the number of ports ⁇ 12, 16 ⁇ is a set, which corresponds to port numbering mode one or port numbering mode two; the number of ports ⁇ 20, 24, 28, 32 ⁇ is a set, which corresponds to port numbering mode three.
  • the number of ports ⁇ 12, 20, 28 ⁇ is a set, which corresponds to port number mode 1 or port number mode 2; the number of ports ⁇ 16, 24, 32 ⁇ is a set, which corresponds to port number mode 2.
  • the number of CSI-RS configuration ports is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type of port numbering manner, and the CSI-RS resource port of the second set adopts the first Type 2 port numbering mode, type 1 port numbering mode Different from the second type of port numbering.
  • the number of CSI-RS configuration ports ⁇ 4 ⁇ is a set, which corresponds to port number mode one; the number of CSI-RS configuration ports ⁇ 8 ⁇ is a set, which corresponds to port number mode two.
  • the number of CSI-RS configuration ports ⁇ 4 ⁇ is a set, which corresponds to port numbering mode 2; the number of CSI-RS configuration ports ⁇ 8 ⁇ is a set, which corresponds to port numbering mode one.
  • the (CSI-RS configuration port number, CSI-RS configuration number) array is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first type of port numbering manner, and the second set is The CSI-RS resource port adopts the second type of port numbering mode, and the first type of port numbering mode is different from the second type of port numbering manner.
  • the array set ⁇ (8,2), (4,3) ⁇ corresponds to port numbering mode one
  • array set ⁇ (8,2), (8,3), (8,4) ⁇ corresponds to port numbering mode 2
  • array set ⁇ (4,3), (4,5 ), (4,7) ⁇ corresponds to port numbering mode one.
  • the configuration information of the CSI process further includes information indicating that the CSI-RS is periodic or aperiodic, and the CSI-RS resource port corresponding to the periodic CSI-RS adopts the first type of port numbering manner, and the aperiodic CSI- The CSI-RS resource port corresponding to the RS adopts the second type of port numbering mode.
  • the first type of port numbering mode is different from the second type of port numbering mode.
  • the periodic CSI-RS corresponds to the port numbering mode 1
  • the aperiodic CSI-RS corresponds to the port numbering mode 2
  • the periodic CSI-RS corresponds to the port numbering mode 2
  • the aperiodic CSI-RS corresponds to the port numbering mode 3.
  • the configuration information of the CSI process further includes codebook configuration mode information, where The codebook configuration mode is divided into two sets.
  • the CSI-RS resource port corresponding to the first set adopts the first type of port numbering manner
  • the CSI-RS resource port of the second set adopts the second type of port numbering manner.
  • One type of port numbering is different from the second type of port numbering.
  • the first set codebook configuration mode corresponds to the port number mode 1
  • the second set code code configuration mode corresponds to the port number mode 2
  • the first set codebook configuration mode corresponds to the port number mode 2
  • the second The set codebook configuration mode corresponds to port number mode three.
  • the configuration information of the CSI process further includes information about a CSI-RS resource port and a codeword column vector element.
  • the g bit indicates the CSI-RS resource port and the codeword column vector element corresponding manner; or, the X bit indicates the port number information, the CSI-RS configuration number, the CSI-RS configuration port number, the CSI-RS configuration sequence number, CSI-RS configuration aggregation number, port numbering mode, joint encoding of CSI-RS resource port and codeword column vector element.
  • the CSI-RS resource port and the codeword column vector element are correspondingly divided into two sets.
  • the CSI-RS resource port corresponding to the first set adopts the first type of port numbering mode, and the second set of CSIs.
  • the RS resource port adopts the second type of port numbering.
  • the first type of port numbering is different from the second type of port numbering.
  • the first CSI-RS resource port and the codeword column vector element corresponding mode set correspond to the port number mode one
  • the second CSI-RS resource port and the codeword column vector element corresponding mode set correspond to the port number mode 2
  • the first CSI-RS resource port and the codeword column vector element corresponding mode set correspond to the port number mode 2
  • the second CSI-RS resource port and the codeword column vector element corresponding mode set correspond to the port number mode three.
  • the candidate manner of the CSI-RS resource port corresponding to the codeword column vector element includes at least one of the following modes:
  • Manner 2 The number of consecutive N/2 ports in ascending order is a group, totaling 2 ⁇ K groups, numbered in ascending order; in consecutive order, each consecutive N/2 number of codeword columns vector element number is One group, totaling 2 ⁇ K groups, numbered each group in ascending order; K pairs of even-numbered port groups and K codeword column vector element groups with the first number are in ascending order one by one, K odd-numbered ports
  • the K codeword column vector element groups of the group and the number are corresponding one-to-one in ascending order; or, the K pairs of port numbers and the K codeword column vector element groups of the number are in ascending order one by one,
  • the K odd-numbered port groups correspond to the numbered K code-word column vector element groups in ascending order; wherein K is the number of CSI-RS configurations and N is the number of CSI-RS configuration ports.
  • Manner 3 The number of consecutive N/2 ports in ascending order is a group, totaling 2 ⁇ K groups, numbered in ascending order; in consecutive order, each consecutive N/2 number of codeword columns vector element number is A group, totaling 2 ⁇ K groups, numbered in ascending order for each group; K pairs of codeword column vector element groups and K port groups with the first number are in one-to-one correspondence in ascending order, K odd-numbered codes
  • the word vector element group and the numbered K port groups are in one-to-one correspondence in ascending order; or, the K even-numbered code word column vector element group and the numbered K port group are in one-to-one correspondence in ascending order,
  • the k code number column vector element group corresponds to the numbered K port groups in ascending order; wherein K is the number of CSI-RS configurations and N is the number of CSI-RS configuration ports.
  • Manner 4 in ascending order, the number of consecutive N number of ports is a group, total K groups, consecutive grouping numbers in ascending order; in the ascending order, the vector elements of N codeword columns of each K element are grouped, total K Group, consecutive grouping numbers in ascending order; port number group and codeword column vector element
  • the prime group numbers correspond one-to-one in ascending order; where K is the number of CSI-RS configurations and N is the number of CSI-RS configuration ports.
  • the aggregation number is arranged in a group, and the code element column vector element even number is in one-to-one correspondence; all the CSI-RS configuration port numbers are arranged in the second half of the port according to the CSI-RS configuration aggregation number ascending order.
  • the odd number of the vector element of the code word column is in one-to-one correspondence in ascending order.
  • the configuration information of the CSI-RS resource further includes a type of port code division multiplexing, and the type of the port code division multiplexing is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts the first
  • the first type corresponds to the codeword column vector element
  • the CSI-RS resource port corresponding to the second set corresponds to the codeword column vector element in the second type, and the first type is different from the second type.
  • the type of port code division multiplexing is divided into a set of code division multiplexing length 2 and a set of code division multiplexing length 4, the first set corresponds to mode 1, and the second set corresponds to mode 2; The first set corresponds to mode three, and the second set corresponds to mode four.
  • the type of port code division multiplexing is divided into a set of code division multiplexing lengths of 2, 4 and a code division multiplexing length of 8, a first set corresponding to mode 1, and a second set corresponding to mode 2;
  • the first set corresponds to mode three, and the second set corresponds to mode four.
  • the number of CSI-RS resource ports is divided into two sets, and the CSI-RS resource port corresponding to the first set corresponds to the codeword column vector element in the first type manner, and the CSI- corresponding to the second set.
  • the RS resource port adopts the second type of method corresponding to the codeword column vector element, and the first type of mode is different from the second type of mode.
  • the number of CSI-RS resource ports is divided into the following two sets, the first set ⁇ 12, 16 ⁇ , the second set ⁇ 20, 24, 28, 32 ⁇ , and the first set corresponds to the first one, the first The two sets correspond to mode two; or, the number of CSI-RS resource ports is divided into the following two sets, the first set ⁇ 12, 20, 28 ⁇ , the second set ⁇ 16, 24, 32 ⁇ , the first set Corresponding to the third method, the second set corresponds to the fourth method.
  • the number of CSI-RS resource ports is divided into two sets, and the CSI-RS resource port corresponding to the first set corresponds to the codeword column vector element in the first type manner, and the CSI- in the second set.
  • the RS resource port corresponds to the codeword column vector element in the first type or the second type.
  • the first type of port numbering mode is different from the second type of port numbering manner.
  • the number of CSI-RS resource ports is divided into the following two sets, the first set ⁇ 12, 16 ⁇ , the second set ⁇ 20, 24, 28, 32 ⁇ , and the first set corresponds to the first one, the first The two sets correspond to mode one or mode two; or, the number of CSI-RS resource ports is divided into the following two sets, the first set ⁇ 12, 20, 28 ⁇ , the second set ⁇ 16, 24, 32 ⁇ , the first One set corresponds to mode three, and the second set corresponds to mode three or mode four.
  • the number of CSI-RS configuration ports is divided into two sets, and the CSI-RS resource port corresponding to the first set corresponds to the codeword column vector element in the first type manner, and the CSI- corresponding to the second set.
  • the RS resource port adopts the second type of method corresponding to the codeword column vector element, and the first type of mode is different from the second type of mode.
  • the number of CSI-RS configuration ports is divided into two sets, a first set ⁇ 4 ⁇ , a second set ⁇ 8 ⁇ , a first set corresponding to mode one, and a second set corresponding to mode two; or
  • the first set corresponds to mode three, and the second set corresponds to mode four.
  • the (CSI-RS configuration port number, CSI-RS configuration number) array is divided into two sets, and the CSI-RS resource port corresponding to the first set corresponds to the codeword column vector element in the first type manner.
  • the CSI-RS resource port corresponding to the second set corresponds to the codeword column vector element in the second type, and the first type is different from the second type.
  • the array is divided into two sets, the first set ⁇ (8, 2), (4, 3) ⁇ , the second set ⁇ (8, 3), (4, 5), (8, 4 ), (4,7) ⁇ , the first set corresponds to mode one, and the second set corresponds to mode two; or, the first set corresponds to mode three, and the second set corresponds to mode four.
  • the first set ⁇ (8,2),(8,3),(8,4) ⁇ , the second set ⁇ (4,3),(4,5),(4,7) ⁇ The first set corresponds to mode one, and the second set corresponds to mode two; or, the first set corresponds to mode three, and the second set corresponds to mode four.
  • the configuration information of the CSI process further includes information indicating that the CSI-RS is periodic or aperiodic, and the CSI-RS resource port corresponding to the periodic CSI-RS corresponds to the codeword column vector element in the first type manner, and The CSI-RS resource port corresponding to the periodic CSI-RS corresponds to the codeword column vector element in the first type, and the first type is different from the second type.
  • the periodic CSI-RS corresponds to mode 1
  • the aperiodic CSI-RS corresponds to mode 2
  • the periodic CSI-RS corresponds to mode 3
  • the aperiodic CSI-RS corresponds to mode 4.
  • the configuration information of the CSI process further includes codebook configuration mode information, where the codebook configuration mode is divided into two sets, and the CSI-RS resource port corresponding to the first set adopts a first type manner and a codeword column.
  • the vector element corresponds to the CSI-RS resource corresponding to the second set.
  • the port adopts the second type of method corresponding to the codeword column vector element, and the first type of mode is different from the second type of mode.
  • the first set codebook configuration mode corresponds to the first mode
  • the second set codebook configuration mode corresponds to the second mode
  • the first set codebook configuration mode corresponds to the second mode
  • the second set codebook configuration mode corresponds to the third method.
  • the CSI-RS resource port numbering manner is divided into two sets, and the CSI-RS resource port corresponding to the first set corresponds to the codeword column vector element in the first type manner, and the CSI- corresponding to the second set in the second set.
  • the RS resource port adopts the second type of method corresponding to the codeword column vector element, and the first type of mode is different from the second type of mode.
  • the port numbering mode set is divided into two sets, the first set ⁇ port numbering mode one, port numbering mode two ⁇ , the second set ⁇ port numbering mode three ⁇ , the first set corresponding mode one, the second The set corresponds to mode two; or, the first set corresponds to mode three, and the second set corresponds to mode four.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • the configuration information of the CSI process includes at least one of the following information: a channel state measurement pilot resource CSI-RS resource configuration information, and the configuration information of the CSI-RS resource includes: a CSI-RS resource port number, and a channel state measurement.
  • the pilot resource is configured with the number of CSI-RS configurations, the number of CSI-RS configuration ports, the CSI-RS configuration sequence number, the CSI-RS configuration aggregation sequence number, and the port number mode.
  • the foregoing storage medium may include, but is not limited to, a U disk, a read-only memory (ROM), and a random access memory (RAM, Random Access). Memory, removable hard disk, disk or optical disk, etc., which can store program code.
  • the processor performs signaling to generate configuration information including a channel state measurement process CSI process according to the stored program code in the storage medium;
  • the processor performs signaling for transmitting the configuration information including the CSI process according to the stored program code in the storage medium
  • the configuration information of the CSI process includes at least one of the following information: a channel state measurement pilot resource CSI-RS resource configuration information, and the configuration information of the CSI-RS resource includes: a CSI-RS resource port number, and a channel state measurement.
  • the pilot resource is configured with the number of CSI-RS configurations, the number of CSI-RS configuration ports, the CSI-RS configuration sequence number, the CSI-RS configuration aggregation sequence number, and the port number mode.
  • modules or steps of the above embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed among multiple computing devices.
  • they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from this
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above information processing method is implemented in the form of a software function module and sold or used as a stand-alone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • Make a computer device (can be a A person computer, server, or network device, etc.) performs all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program is used to execute the information processing method of the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信息处理方法,包括:生成包括信道状态测量过程(CSI process)的配置信息的信令;发送所述包括CSI process的配置信息的信令,通过本发明,解决了相关技术中不能以一份CSI-RS资源开销满足不同端口数目的多个CSI-RS传输需求的问题,进而达到了节省资源开销的技术效果。本发明还同时提供了一种信息处理装置及存储介质。

Description

一种信息处理方法、装置及存储介质 技术领域
本发明涉及通信领域,尤其涉及一种信息处理方法、装置及存储介质。
背景技术
小区导频(CRS,Cell-specific Reference Signal)既可用于对信道状态的测量,也可用于接收解调时对信道系数的估算,但随着端口数目的增多,开销急剧增大,在端口数目较多(如8个)的情况下不再使用CRS对信道状态进行测量,而改用导频密度低、开销少的信道状态测量导频(CSI-RS,CSI reference signal)。
通常,一个端口数目较大的CSI-RS resource由多个端口数目较小的CSI-RS configuration聚合而成,而在既需传输端口数目较大CSI-RS信号又需要传输端口数目较小的CSI-RS信号的情况下,为了不过多消耗资源,通常采用以下方案:使用一份资源传输端口数目较大的CSI-RS信号,并使用传输信号的一个组成部分作为需要传输的端口数目较小的CSI-RS信号。然而同一CSI-RS信号既作为端口数目较大CSI-RS信号的一个组成部分,又作为独立的端口数目较小的CSI-RS信号,存在着码本中码字矢量不能反映这样端口的空间位置与极化属性的问题,从而不能以一份CSI-RS资源开销满足不同端口数目的多个CSI-RS传输需求。
发明内容
有鉴于此,本发明实施例期望提供一种信息处理方法、装置及存储介质,以至少解决相关技术中不能以一份CSI-RS资源开销满足不同端口数目的多个CSI-RS传输需求的问题。
根据本发明实施例的一个方面,提供了一种信息处理方法,也即配置 信道状态测量过程的方法,包括:生成包括信道状态测量过程CSI process的配置信息的信令;发送所述包括CSI process的配置信息的信令;其中,所述CSI process的配置信息包括:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
根据本发明实施例的另一个方面,提供了一种信息处理装置,也即配置信道状态测量过程CSI process的装置,包括:处理模块,配置为生成包括信道状态测量过程CSI process的配置信息的信令;发送模块,配置为发送所述包括CSI process的配置信息的信令;其中,所述CSI process的配置信息包括:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
根据本发明实施例的一方面,提供了一种信息处理方法,也即信道状态测量过程的配置信息的解析方法,包括:接收基站发送的包括信道状态测量过程CSI process的配置信息的信令;解析所述包括CSI process的配置信息的信令;其中,所述CSI process的配置信息包括:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
根据本发明实施例的另一个方面,提供了一种信息处理装置,也即信道状态测量过程的配置信息的解析装置,包括:接收模块,配置为接收基 站发送的包括信道状态测量过程CSI process的配置信息的信令;解析模块,配置为解析所述包括CSI process的配置信息的信令;其中,所述配置信息包括:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序配置为执行本发明实施例的上述信息处理方法。
通过本发明实施例,采用生成包括信道状态测量过程CSI process的配置信息的信令,然后发送包括CSI process的配置信息的信令,在CSI process的配置信息包括:信道状态测量导频资源CSI-RS resource配置信息,CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,可以达到CSI-RS configuration的端口空间位置与极化属性被码本正确反映,同时聚合后的CSI-RS resource的端口空间位置与极化属性被码本正确反映,从而可以用一份CSI-RS资源开销同时传输端口数目较少的CSI-RS configuration对应的CSI-RS与端口数目较多的CSI-RS resource对应的CSI-RS端口编号方式,解决了相关技术中不能以一份CSI-RS资源开销满足不同端口数目的多个CSI-RS传输需求的问题,进而达到了节省资源开销的技术效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中第一类型帧结构的示意图;
图2是相关技术中第二类型帧结构的示意图;
图3是相关技术中下行资源网格的示意图;
图4是相关技术中端口数目为4的CSI-RS在一个RB对上的资源图案示意图;
图5是相关技术中端口数目为8的CSI-RS在一个RB对上的资源图案示意图;
图6是相关技术中端口数目为16的CSI-RS信号对应的端口天线空间位置与极化属性示意图;
图7是相关技术中端口数目为8的CSI-RS信号对应的端口天线空间位置与极化属性示意图;
图8是相关技术中从端口数目为16的配置的CSI-RS信号中取出一个端口数目为8的组成部分对应的空间位置与极化属性示意图;
图9是本发明实施例的一种配置信道状态测量过程的方法的流程图;
图10是本发明实施例的信道状态测量过程的配置信息的解析方法的流程图;
图11是本发明实施例的配置信道状态测量过程CSI process的装置的结构框图;
图12是本发明实施例的信道状态测量过程的配置信息的解析装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序 或先后次序。
发明人在研究过程中发现,长期演进(LTE,Long Term Evolution)/长期演进升级(LTE-A,LTE-Advanced)技术是主流的第四代移动通信技术(4G)。LTE/LTE-A分以下两种不同的双工方式:频分双工方式(FDD,Frequency Division Duplex)、时分双式方式(TDD,Time Division Duplex)。频分双工方式的帧结构称为第一类型帧结构(Frame structure type 1),时分双工方式的帧结构称为第二类型帧结构(Frame structure type 2)。
图1是相关技术中第一类型帧结构的示意图,如图1所示,第一类型帧结构的说明如下:每个无线帧(radio frame)长为Tf=307200·Ts=10ms(毫秒),由20个时隙(slot)构成,时隙的长度为Tslot=15360·Ts=0.5ms(毫秒),编号从0到19,其中,Ts为时间单位,Ts=1/(15000×2048)秒;子帧(subframe)被定义为由两个连续的时隙构成,即子帧i由时隙2i与2i+1构成;对于FDD双工方式,在10毫秒时间间隔里,10个子帧用于下行传输,10个子帧用于上行传输;上行传输与下行传输分别在不同的频率上进行,在半双工(half-duplex)FDD方式下,终端(UE,User Equipment)不能同时传输与接收,而在全双工FDD方式下,没有这种限制。
图2是相关技术中第二类型帧结构的示意图,如图2所示,第二类型帧结构的说明如下:每个无线帧(radio frame)长为Tf=307200·Ts=10ms,由两个半帧(half-frame)构成,半帧长度为153600·Ts=5ms,每个半帧由5个子帧(subframe)构成,每个子帧长度为30720·Ts=1ms,每个子帧定义为两个时隙(slot)构成,即子帧i由时隙2i与2i+1构成,时隙长度为Tslot=15360·Ts=0.5ms,其中,Ts为时间单位,Ts=1/(15000×2048)秒。
一个小区的上下行配置(uplink-downlink configuration)变化发生在帧之间,上下行传输发生在帧的子帧上。当前帧的上下行配置由高层信令得到。
表1所示的上下行配置(uplink-downlink configuration)共有7种,对于一个无线帧中的每一个子帧,“D”标记一个下行子帧,用于下行传输,“U”标记一个上行子帧,用于上行传输,“S”标记一个特殊子帧。特殊子帧有以下三个区域:下行导频时隙(DwPTS)、保护间隔(GP,Guard Period)以及上行导频时隙(UpPTS)。
Figure PCTCN2017075895-appb-000001
表1
LTE/LTE-A技术下行传输采用正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)调制技术,数据调制在频域的子载波(subcarrier)上,然后转换到时域增加上循环前缀构成一个完整的时域发射OFDM符号。循环前缀(CP,cyclic prefix)用以抵抗多径在时域上产生的符号干扰以及在频域上产生的子载波间干扰。在LTE/LTE-A系统中有两种长度的CP,一种为正常CP(NCP,Normal cyclic prefix),另一种为扩展CP(ECP,Extended cyclic prefix)。扩展CP应用在多径时延扩展更大的场景下。正常CP情况下,子载波间隔为15kHz;扩展CP情况下,子载波间隔有两种,分别为15kHz与7.5kHz。
每个时隙传输的信号用一个或多个资源网格(resource grid)描述,资源网格由
Figure PCTCN2017075895-appb-000002
个子载波与
Figure PCTCN2017075895-appb-000003
个OFDM符号(OFDM symbol)构成。其中,
Figure PCTCN2017075895-appb-000004
代表物理资源块(PRB,Physical Resource Block)或资源块(RB,Resource Block)的数目,
Figure PCTCN2017075895-appb-000005
代表资源块中子载波的数目,
Figure PCTCN2017075895-appb-000006
代表时隙中OFDM符号数目。表2所示为物理资源块参数,在一个RB上的OFDM符号数目与子载波数目如表2所示。
Figure PCTCN2017075895-appb-000007
表2
表3所示为OFDM符号参数,循环前缀的长度如表3所示。
Figure PCTCN2017075895-appb-000008
表3
物理资源块的数目
Figure PCTCN2017075895-appb-000009
由小区配置的下行传输带宽决定,并且最小值为6,最大值为110。
同一个子帧上连续两个时隙上的同一个PRB,称为一个PRB对(PRB pair)。
图3是相关技术中下行资源网格的示意图,如图3所示,资源网格中的每个单元称为资源单元(RE,Resource Element),并用索引对(k,l)标记,其中,
Figure PCTCN2017075895-appb-000010
表示频域上子载波序号,
Figure PCTCN2017075895-appb-000011
表示时域 上的OFDM符号序号。
天线端口定义为在这个天线端口上传输的符号所通过的信道,可以由这个相同端口上传输的其它符号所通过的信道推测。一个天线端口还定义有对应的序号,以进行天线端口之间的区分以及该天线端口的索引。
下行物理信道(Downlink Physical Channel)对应着一些资源单元的集合,用以承载来自于上层的信息。下行物理信息包括:物理下行共享信道(PDSCH,Physical Downlink Shared Channel)、物理多播信道(PMCH,Physical Multicast Channel)、物理广播信道(PBCH,Physical Broadcast Channel)、物理控制格式指示信道(PCFICH,Physical Control Format Indicator Channel)、物理下行控制信道(PDCCH,Physical Downlink Control Channel)、物理混合自动重传请求指示信道(PHICH,Physical Hybrid ARQ Indicator Channel)、增强物理下行控制信道(EPDCCH,Enhanced Physical Downlink Control Channel)。
下行物理信号(Downlink Physical Signal)对应着一套资源单元集合,由物理层使用,不用于承载上层信息。下行物理信号包括:导频信号(RS,Reference signal)、同步信号(Synchronization signal)、发现信号(Discovery signal)。
导频信号也称为导频,有以下种类:CRS、多播/组播单频网络(MBSFN,Multimedia Broadcast Single Frequency Network)导频(MBSFN reference signals)、UE专用导频(解调导频(DMRS,Demodulation Reference Signal))、定位导频(Positioning reference signal)、CSI-RS。其中,UE专用导频又有以下两类:解调PDSCH的UE专用导频(UE-specific reference signals associated with PDSCH)、解调EPDCCH的UE专用导频(Demodulation reference signals associated with EPDCCH)。
信道状态测量导频(CSI-RS)用于终端预测信道状态。采用非零功率 发射的CSI-RS,称为非零功率CSI-RS(NZP CSI-RS);有时为了避免产生干扰,需要避免PDSCH上一些RE上的数据发射,而采用零功率发射CSI-RS方式实现,此时称为零功率CSI-RS(ZP CSI-RS),对应的资源单元集合为零功率CSI-RS资源(Zero Power CSI-RS Resource)。有时为了测量干扰,采用零功率发射CSI-RS,此时对应的资源单元集合称为干扰测量资源(CSI-IM Resource,Channel-State Information-Interference Measurement Resource)。
CSI-RS配置(CSI reference signal configuration,CSI-RS configuration)用以指示CSI-RS所映射的RE,即传输CSI-RS所使用的RE,CSI-RS配置序号用以区分不同的CSI-RS配置。CSI-RS子帧配置(CSI reference signal subframe configuration)用以指示CSI-RS传输所在子帧。
一种CSI-RS配置是一定天线端口数目下的CSI-RS配置,例如天线端口数目为8的配置序号为0的CSI-RS配置。通常配置序号就是索引号。
目前的CSI-RS支持端口数目为1,2,4,8,12,16,这些端口数目的CSI-RS资源图案在传输子帧上在带宽范围的每一个PRB对上重复。
其中,端口数目为1、2、4、8的CSI-RS资源(CSI-RS resource)由单个的CSI-RS配置组成,端口数目为12、16的CSI-RS资源由多个CSI-RS配置聚合而成。
基站或终端通常通过信道状态测量过程(CSI Process)来测量信道状态,一个CSI Process下通常配置一个或多个CSI-RS resource,终端根据对CSI-RS的测量进行反馈。
图4是相关技术中端口数目为4的CSI-RS在一个RB对上的资源图案;图5是相关技术中端口数目为8的CSI-RS在一个RB对上的资源图案。
为了充分利用功率及提高信道测量的精度,端口分成多个小组,小组 内的端口采用码分复用的方式。
基站通过上层信令通知终端关于CSI-RS的信息,这些信息包括:CSI-RS资源配置识别号(CSI-RS resource configuration identity)、CSI-RS端口数目、CSI-RS配置、CSI-RS子帧配置。
但随着端口数目的增多,开销急剧增大,端口数目为8的情况下不再使用CRS对信道状态进行测量,而改用CSI-RS。但是随着技术与需求的发展,需要进一步开发更多数目天线端接应用的技术,例如端口数目为20、24、28、32等,其中涉及到对这些更多数目端口信道状态的测量,但是,目前无法支持端口数目多于16的CSI-RS传输。
通常,一个端口数目较大的CSI-RS resource由多个端口数目较小的CSI-RS configuration聚合而成。经常存在以下的需求:既需传输端口数目较大CSI-RS信号又需要传输端口数目较小的CSI-RS信号的情况下。一种方案:使用一份资源传输端口数目较大的CSI-RS信号,再使用一份资源传输端口数目较小的CSI-RS信号,这种方案会多消耗资源。另一种方案:使用一份资源传输端口数目较大的CSI-RS信号,使用既传输信号的一个组成部分作为需要传输的端口数目较小的CSI-RS信号。这种方案的好处在于节省了资源的开销,但缺点在于同一CSI-RS信号既作为端口数目较大CSI-RS信号的一个组成部分,又作为独立的端口数目较小的CSI-RS信号,存在着码本中码字矢量不能反映这样端口的空间位置与极化属性的问题,从而码本中码字不能反映这样的天线端口的信道系数。即,方案二不能够以一份CSI-RS资源开销满足不同端口数目的多个CSI-RS传输需求。
以端口数目为16的CSI-RS信号、端口数目为8的CSI-RS信号为例说明第二种方案存在的问题。
图6是相关技术中端口数目为16的CSI-RS信号对应的端口天线空间位置与极化属性,如图6所示,端口数目为16的CSI-RS信号,对应的端 口天线空间位置与极化属性。反馈信道系数的码字中列矢量的元素从第1个到16个一一与端口15到30对应。
图7是相关技术中端口数目为8的CSI-RS信号对应的端口天线空间位置与极化属性,如图7所示,端口数目为8的CSI-RS信号,对应的端口天线空间位置与极化属性。反馈信道系数的码字中列矢量元素从第1个到8个一一与端口15到22对应。
图8是相关技术中从端口数目为16的配置的CSI-RS信号中取出一个端口数目为8的组成部分对应的空间位置与极化属性,如图8所示,从端口数目为16的配置的CSI-RS信号中取出一个端口数目为8的组成部分,其对应的空间位置与极化属性。
这样端口的空间位置和极化属性与8天线端口码字列矢量元素所对应的端口空间位置和极化属性不一致,即8天线端口码字列矢量不能反映这样的端口天线的信道系数。
相关技术存在以下问题:聚合后的CSI-RS resource的端口空间位置与极化属性、参与聚合的CSI-RS configuration的端口空间位置与极化属性不能同时被各自的码本正确反映,从而不能以一份CSI-RS资源开销满足不同端口数目的多个CSI-RS传输需求。
在本实施例中提供了一种配置信道状态测量过程的方法,图9是根据本发明实施例的一种配置信道状态测量过程的方法的流程图,可以应用在网络侧网元上,如基站,如图9所示,该流程包括如下步骤:
步骤902:生成包括信道状态测量过程CSI process的配置信息的信令。
这里,本步骤也即确定信道状态测量过程CSI process的配置信息。
步骤904:发送包括CSI process的配置信息的信令。
在一实施例中,还可以生成包括配置信息的信令或承载数据,通过信令或承载数据的方式来发射信道状态测量过程CSI process的配置信息。
其中,CSI process的配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
通过本实施例,采用确定信道状态测量过程CSI process的配置信息,然后发射CSI process的配置信息,在CSI process的配置信息包括:信道状态测量导频资源CSI-RS resource配置信息,CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,可以达到CSI-RS configuration的端口空间位置与极化属性被码本正确反映,同时聚合后的CSI-RS resource的端口空间位置与极化属性被码本正确反映,从而可以用一份CSI-RS资源开销同时传输端口数目较少的CSI-RS configuration对应的CSI-RS与端口数目较多的CSI-RS resource对应的CSI-RS端口编号方式,解决了相关技术中不能以一份CSI-RS资源开销满足不同端口数目的多个CSI-RS传输需求的问题,进而达到了节省资源开销的技术效果。
本实施例的一个可选实施方式为:所述端口编号方式的候选方式包括但不限于为:
方式一:按CSI-RS configuration聚合序号升序的方式排列所有CSI-RS configuration端口,并且按照排列秩序连续编号。
方式二:端口排序的前一半为各CSI-RS configuration的端口编号在前的一半端口按CSI-RS configuration聚合序号升序的方式排列,端口排序的后一半为各CSI-RS configuration的端口编号在后的一半端口按CSI-RS configuration聚合序号升序的方式排列;端口按照排列秩序连续编号。其中, CSI-RS configuration的端口编号是偶数个。
方式三:按照CSI-RS configuration聚合序号升序方式轮流从各CSI-RS configuration取出一个端口进行排列,各CSI-RS configuration中的端口按编号升序方式取出,直到所有端口形成排列;端口按照排列秩序连续编号。
本实施例的另一实施方式为:CSI-RS resource端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
需要说明的是,端口编号方式与CSI-RS resource端口的数目相关,CSI-RS resource端口的数目提示了端口的编号方式。
本实施例的另一实施方式为:CSI-RS resource端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第一类端口编号方式或第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
需要说明的是,端口编号方式与CSI-RS resource端口的数目相关,CSI-RS resource端口的数目提示了端口的编号方式,使用对应的CSI-RS resource端口的数目与端口的编号方式可以达到CSI-RS configuration的端口空间位置与极化属性被码本正确反映,同时CSI-RS resource的端口空间位置与极化属性被码本正确反映。
本实施例的另一实施方式为:CSI-RS configuration端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
需要说明的是,端口编号方式与CSI-RS configuration端口的数目相关,CSI-RS configuration端口的数目提示了端口的编号方式,使用对应的 CSI-RS configuration端口的数目与端口的编号方式可以达到CSI-RS configuration的端口空间位置与极化属性被码本正确反映,同时CSI-RS resource的端口空间位置与极化属性被码本正确反映。
本实施例的另一实施方式为:(CSI-RS configuration端口数目,CSI-RS configuration数目)数组分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
需要说明的是,端口编号方式与(CSI-RS configuration端口数目,CSI-RS configuration数目)数组相关,所述数组提示了端口的编号方式,使用对应的数组与端口的编号方式可以达到CSI-RS configuration的端口空间位置与极化属性被码本正确反映,同时CSI-RS resource的端口空间位置与极化属性被码本正确反映。
本实施例的另一实施方式为:所述CSI process的配置信息还包括指示CSI-RS为周期或非周期的信息,周期CSI-RS对应的CSI-RS resource端口采用第一类端口编号方式,非周期CSI-RS对应的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
需要说明的是,端口编号方式与CSI-RS的周期属性相关,CSI-RS的周期属性提示了端口的编号方式。
本实施例的另一实施方式为:所述CSI process的配置信息还包括码本配置方式信息,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
需要说明的是,端口编号方式与码本配置方式相关,码本配置方式提示了端口的编号方式。
本实施例的另一可选实施方式为:所述CSI process的配置信息还包括CSI-RS resource端口与码字列矢量元素对应方式信息。
需要说明的是,通过指示CSI-RS resource端口与码字列矢量元素对应方式,达到CSI-RS configuration的端口空间位置与极化属性被码本正确反映,同时CSI-RS resource的端口空间位置与极化属性被码本正确反映。
本实施例的另一实施方式为:所述CSI-RS resource端口与码字列矢量元素对应方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
需要说明的是,CSI-RS resource端口与码字列矢量元素对应方式提示了端口的编号方式,使用CSI-RS resource端口与码字列矢量元素对应方式与对应端口的编号方式可以达到CSI-RS configuration的端口空间位置与极化属性被码本正确反映,同时CSI-RS resource的端口空间位置与极化属性被码本正确反映。
本实施例的另一可选实施方式为:CSI-RS resource端口与码字列矢量元素对应方式的候选方式至少包括以下方式之一:
方式一:端口编号以升序的方式一一与码字列矢量元素以升序的方式对应。
方式二:以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应;或者,K个偶序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠前的K个码字列矢量元素组按升序方式 一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目。
方式三:以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应;或者,K个偶序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目。
方式四:以升序方式每连续N数目的端口编号为一组,共计K组,以升序方式连续编组号;以升序方式每间隔K个元素的N个码字列矢量元素为一组,共计K组,以升序方式连续编组号;端口编号组与码字列矢量元素组号按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目。
方式五:所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素奇序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素偶序号按升序一一对应;或者,所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素偶序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素奇序号按升序一一对应。
本实施例的另一实施方式为:所述CSI-RS resource的配置信息还包括端口码分复用的类型,端口码分复用的类型分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
需要说明的是,端口码分复用的类型提示CSI-RS resource端口与码字列矢量元素对应方式。
本实施例的另一实施方式为:CSI-RS resource端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
需要说明的是,CSI-RS resource端口的数目提示CSI-RS resource端口与码字列矢量元素对应方式。
本实施例的另一实施方式为:CSI-RS resource端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合下的CSI-RS resource端口采用第一类方式或第二类方式与码字列矢量元素对应,第一类端口编号方式与第二类端口编号方式不同。
需要说明的是,CSI-RS resource端口的数目提示CSI-RS resource端口与码字列矢量元素对应方式。
本实施例的另一实施方式为:CSI-RS configuration端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
需要说明的是,CSI-RS configuration端口的数目提示CSI-RS resource 端口与码字列矢量元素对应方式。
本实施例的另一实施方式为:(CSI-RS configuration端口数目,CSI-RS configuration数目)数组分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
需要说明的是,(CSI-RS configuration端口数目,CSI-RS configuration数目)数组提示CSI-RS resource端口与码字列矢量元素对应方式。
本实施例的另一实施方式为:所述CSI process的配置信息还包括指示CSI-RS为周期或非周期的信息,周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,非周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
需要说明的是,CSI-RS的周期属性提示CSI-RS resource端口与码字列矢量元素对应方式。
本实施例的另一实施方式为:所述CSI process的配置信息还包括码本配置方式信息,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
需要说明的是,码本配置方式提示CSI-RS resource端口与码字列矢量元素对应方式。
本实施例的另一实施方式为:CSI-RS resource端口编号方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码 字列矢量元素对应,第一类方式与第二类方式不相同。
需要说明的是,CSI-RS resource端口编号方式提示CSI-RS resource端口与码字列矢量元素对应方式。
图10是根据本发明实施例的信道状态测量过程的配置信息的解析方法的流程图,可以应用在终端侧,如图10所示,该方法的步骤包括:
步骤S1002:接收基站发送的包括CSI process的配置信息的信令;
步骤S1004:解析所述包括CSI process的配置信息的信令。
其中,CSI process的配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种配置信道状态测量过程CSI process的装置,该装置配置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本发明实施例的配置信道状态测量过程CSI process的装置的结构框图,如图11所示,该装置包括:
处理模块110,配置为生成包括CSI process的配置信息的信令;
发送模块112,配置为发送所述包括CSI process的配置信息的信令。
其中,CSI process的配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
图12是根据本发明实施例的信道状态测量过程的配置信息的解析装置的结构框图,如图12所示,该装置包括:
接收模块122,配置为接收基站发送的包括CSI process的配置信息的信令;
解析模块124,配置为解析所述包括CSI process的配置信息的信令。
其中,配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面通过多个可选的具体实施例对本发明进行说明:
实施例一
在本实施例中,基站先确定CSI process的配置信息,再生成包括CSI  process的配置信息的信令,然后发射包括CSI process的配置信息的信令。其中,例如用a比特(bit)表示端口数目信息,b bit表示CSI-RS configuration数目,c bit表示CSI-RS configuration端口数目,d bit表示CSI-RS configuration序号,e bit表示CSI-RS configuration聚合序号,f bit表示端口编号方式,其中,a+b+c+d+e+f=X。
或者,也可以采用a比特(bit)表示端口数目信息,b bit表示CSI-RS configuration数目,c bit表示CSI-RS configuration端口数目,d bit表示CSI-RS configuration序号与CSI-RS configuration聚合序号的联合编码,e bit表示端口编号方式,其中,a+b+c+d+e=X。
或者,也可以采用a比特(bit)表示端口数目信息、CSI-RS configuration数目、CSI-RS configuration端口数目的联合编码,b bit表示CSI-RS configuration序号与CSI-RS configuration聚合序号的联合编码,c bit表示端口编号方式,其中,a+b+c=X。
或者,也可以采用a比特(bit)表示端口数目信息、CSI-RS configuration数目、CSI-RS configuration端口数目、端口编号方式的联合编码,b bit表示CSI-RS configuration序号与CSI-RS configuration聚合序号的联合编码,其中,a+b=X。
或者,也可以采用a比特(bit)表示端口数目信息、端口编号方式的联合编码,b bit表示CSI-RS configuration数目,c bit表示CSI-RS configuration端口数目,d bit表示CSI-RS configuration序号,e bit表示CSI-RS configuration聚合序号其中,a+b+c+d+e=X。
或者,也可以采用X比特(bit)表示端口数目信息、CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号、端口编号方式的联合编码。
其中,端口数目可以是{20,24,28,32}中的取值,CSI-RS configuration 端口数目可以是{4,8}中的取值,CSI-RS configuration数目可以是{3,4,5,6,7}中的取值。
实施例二
于本实施例中,端口编号方式的候选方式至少包括以下方式之一:
方式一:按CSI-RS configuration聚合序号升序的方式排列所有CSI-RS configuration端口,并且按照排列秩序连续编号。
方式二:端口排序的前一半为各CSI-RS configuration的端口编号在前的一半端口按CSI-RS configuration聚合序号升序的方式排列,端口排序的后一半为各CSI-RS configuration的端口编号在后的一半端口按CSI-RS configuration聚合序号升序的方式排列;端口按照排列秩序连续编号。
方式三:按照CSI-RS configuration聚合序号升序方式轮流从各CSI-RS configuration取出一个端口进行排列,各CSI-RS configuration中的端口按编号升序方式取出,直到所有端口形成排列;端口按照排列秩序连续编号。
例如,方式一,4个端口数目为8的CSI-RS configuration聚合成端口数目为32的CSI-RS的端口编号,如表4所示:
Figure PCTCN2017075895-appb-000012
Figure PCTCN2017075895-appb-000013
表4
方式一,5个端口数目为4的CSI-RS configuration聚合成端口数目为20的CSI-RS的端口编号,如表5所示:
Figure PCTCN2017075895-appb-000014
Figure PCTCN2017075895-appb-000015
表5
方式二,4个端口数目为8的CSI-RS configuration聚合成端口数目为32的CSI-RS的端口编号,如表6所示:
Figure PCTCN2017075895-appb-000016
Figure PCTCN2017075895-appb-000017
表6
方式二,5个端口数目为4的CSI-RS configuration聚合成端口数目为20的CSI-RS的端口编号,如表7所示:
Figure PCTCN2017075895-appb-000018
表7
方式三,4个端口数目为8的CSI-RS configuration聚合成端口数目为32的CSI-RS的端口编号,如表8所示:
Figure PCTCN2017075895-appb-000019
Figure PCTCN2017075895-appb-000020
表8
方式三,5个端口数目为4的CSI-RS configuration聚合成端口数目为20的CSI-RS的端口编号,如表9所示:
Figure PCTCN2017075895-appb-000021
Figure PCTCN2017075895-appb-000022
表9
实施例三
在本实施例中,CSI-RS resource端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
举例而言,例如端口数目{12,16}为一个集合,它对应端口编号方式一;端口数目{20,24,28,32}为一个集合,它对应端口编号方式二。又例如,端口数目{12,16}为一个集合,它对应端口编号方式二;端口数目{20,24,28,32}为一个集合,它对应端口编号方式三。
实施例四
于本实施例中,CSI-RS resource端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第一类端口编号方式或第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
举例而言,例如端口数目{12,16}为一个集合,它对应端口编号方式一或端口编号方式二;端口数目{20,24,28,32}为一个集合,它对应端口编号方式三。又例如,端口数目{12,20,28}为一个集合,它对应端口编号方式一或端口编号方式二;端口数目{16,24,32}为一个集合,它对应端口编号方式二。
实施例五
于本实施例中,CSI-RS configuration端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式 与第二类端口编号方式不同。
举例而言,例如CSI-RS configuration端口的数目{4}为一个集合,它对应端口编号方式一;CSI-RS configuration端口的数目{8}为一个集合,它对应端口编号方式二。又例如,CSI-RS configuration端口的数目{4}为一个集合,它对应端口编号方式二;CSI-RS configuration端口的数目{8}为一个集合,它对应端口编号方式一。
实施例六
于本实施例中,(CSI-RS configuration端口数目,CSI-RS configuration数目)数组分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
举例而言,数组集合{(8,2),(4,3)}对应端口编号方式一,数组集合{(8,3),(8,4),(4,5),(4,7)}对应端口编号方式二;或者,数组集合{(8,2),(8,3),(8,4)}对应端口编号方式二,数组集合{(4,3),(4,5),(4,7)}对应端口编号方式一。
实施例七
于本实施例中,所述CSI process的配置信息还包括指示CSI-RS为周期或非周期的信息,周期CSI-RS对应的CSI-RS resource端口采用第一类端口编号方式,非周期CSI-RS对应的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
举例而言,周期CSI-RS对应端口编号方式一,非周期CSI-RS对应端口编号方式二;或者,周期CSI-RS对应端口编号方式二,非周期CSI-RS对应端口编号方式三。
实施例八
于本实施例中,所述CSI process的配置信息还包括码本配置方式信息, 所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
举例而言,第一个集合码本配置方式对应端口编号方式一,第二个集合码本配置方式对应端口编号方式二;或者,第一个集合码本配置方式对应端口编号方式二,第二个集合码本配置方式对应端口编号方式三。
实施例九
于本实施例中,所述CSI process的配置信息还包括CSI-RS resource端口与码字列矢量元素对应方式信息。
举例而言,采用g bit表示CSI-RS resource端口与码字列矢量元素对应方式;或者,X bit表示端口数目信息、CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号、端口编号方式、CSI-RS resource端口与码字列矢量元素对应方式的联合编码。
实施例十
于本实施例中,CSI-RS resource端口与码字列矢量元素对应方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
举例而言,第一个CSI-RS resource端口与码字列矢量元素对应方式集合对应端口编号方式一,第二个CSI-RS resource端口与码字列矢量元素对应方式集合对应端口编号方式二;或者,第一个CSI-RS resource端口与码字列矢量元素对应方式集合对应端口编号方式二,第二个CSI-RS resource端口与码字列矢量元素对应方式集合对应端口编号方式三。
实施例十一
于本实施例中,CSI-RS resource端口与码字列矢量元素对应方式的候选方式至少包括以下方式之一:
方式一:端口编号以升序的方式一一与码字列矢量元素以升序的方式对应。
方式二:以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应;或者,K个偶序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目。
方式三:以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应;或者,K个偶序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目。
方式四:以升序方式每连续N数目的端口编号为一组,共计K组,以升序方式连续编组号;以升序方式每间隔K个元素的N个码字列矢量元素为一组,共计K组,以升序方式连续编组号;端口编号组与码字列矢量元 素组号按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目。
方式五:所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素奇序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素偶序号按升序一一对应;或者,所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素偶序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素奇序号按升序一一对应。
举例而言,N=8,K=2,或者N=4,K=3,或者N=8,K=3,或者N=4,K=5,或者N=8,K=4,或者N=4,K=7。
实施例十二
于本实施例中,所述CSI-RS resource的配置信息还包括端口码分复用的类型,端口码分复用的类型分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
举例而言,端口码分复用的类型分为码分复用长度为2的集合与码分复用长度为4的集合,第一个集合对应方式一,第二个集合对应方式2;或者,第一个集合对应方式三,第二个集合对应方式四。再例如,端口码分复用的类型分为码分复用长度为2、4的集合与码分复用长度为8的集合,第一个集合对应方式一,第二个集合对应方式2;或者,第一个集合对应方式三,第二个集合对应方式四。
实施例十三
于本实施例中,CSI-RS resource端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
举例而言,CSI-RS resource端口的数目分成如下两个集合,第一个集合{12,16},第二个集合{20,24,28,32},第一个集合对应方式一,第二个集合对应方式二;或者,CSI-RS resource端口的数目分成如下两个集合,第一个集合{12,20,28},第二个集合{16,24,32},第一个集合对应方式三,第二个集合对应方式四。
实施例十四
于本实施例中,CSI-RS resource端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合下的CSI-RS resource端口采用第一类方式或第二类方式与码字列矢量元素对应,第一类端口编号方式与第二类端口编号方式不同。
举例而言,CSI-RS resource端口的数目分成如下两个集合,第一个集合{12,16},第二个集合{20,24,28,32},第一个集合对应方式一,第二个集合对应方式一或方式二;或者,CSI-RS resource端口的数目分成如下两个集合,第一个集合{12,20,28},第二个集合{16,24,32},第一个集合对应方式三,第二个集合对应方式三或方式四。
实施例十五
于本实施例中,CSI-RS configuration端口的数目分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
举例而言,CSI-RS configuration端口的数目分成如下两个集合,第一个集合{4},第二个集合{8},第一个集合对应方式一,第二个集合对应方式二;或者,第一个集合对应方式三,第二个集合对应方式四。
实施例十六
于本实施例中,(CSI-RS configuration端口数目,CSI-RS configuration数目)数组分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
举例而言,数组分成如下两个集合,第一个集合{(8,2),(4,3)},第二个集合{(8,3),(4,5),(8,4),(4,7)},第一个集合对应方式一,第二个集合对应方式二;或者,第一个集合对应方式三,第二个集合对应方式四。或者,第一个集合{(8,2),(8,3),(8,4)},第二个集合{(4,3),(4,5),(4,7)},第一个集合对应方式一,第二个集合对应方式二;或者,第一个集合对应方式三,第二个集合对应方式四。
实施例十七
于本实施例中,CSI process的配置信息还包括指示CSI-RS为周期或非周期的信息,周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,非周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
举例而言,周期性CSI-RS对应方式一,非周期性CSI-RS对应方式二;或者,周期性CSI-RS对应方式三,非周期性CSI-RS对应方式四。
实施例十八
于本实施例中,CSI process的配置信息还包括码本配置方式信息,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource 端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
举例而言,第一个集合码本配置方式对应方式一,第二个集合码本配置方式对应方式二;或者,第一个集合码本配置方式对应方式二,第二个集合码本配置方式对应方式三。
实施例十九
于本实施例中,CSI-RS resource端口编号方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
举例而言,端口编号方式集合分成两个集合,第一个集合{端口编号方式一,端口编号方式二},第二个集合{端口编号方式三},第一个集合对应方式一,第二个集合对应方式二;或者,第一个集合对应方式三,第二个集合对应方式四。
本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,生成包括CSI process的配置信息的信令;
S2,发送所述包括CSI process的配置信息的信令。
其中,所述CSI process的配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access  Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在本实施例中,处理器根据存储介质中已存储的程序代码执行生成包括信道状态测量过程CSI process的配置信息的信令;
在本实施例中,处理器根据存储介质中已存储的程序代码执行发送所述包括CSI process的配置信息的信令;
其中,所述CSI process的配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号,端口编号方式。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
本发明实施例中,如果以软件功能模块的形式实现上述信息处理方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个 人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序,该计算机程序用于执行本发明实施例的上述信息处理方法。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (64)

  1. 一种信息处理方法,包括:
    生成包括信道状态测量过程CSI process的配置信息的信令;
    发送所述包括CSI process的配置信息的信令;
    其中,所述CSI process的配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号、端口编号方式。
  2. 根据权利要求1所述的方法,其中,所述端口编号方式包括以下类别至少之一:
    按照CSI-RS configuration聚合序号升序的方式排列所有CSI-RS configuration端口,其中,所述端口按照排列秩序连续编号;
    端口排序的前一半为各CSI-RS configuration的端口编号在前的一半端口按CSI-RS configuration聚合序号升序的方式排列,所述端口排序的后一半为各CSI-RS configuration的端口编号在后的一半端口按CSI-RS configuration聚合序号升序的方式排列,其中,所述端口按照排列秩序连续编号;
    按照CSI-RS configuration聚合序号升序方式轮流从各CSI-RS configuration取出一个端口进行排列,各CSI-RS configuration中的端口按编号升序方式取出,直到所有端口形成排列,其中,端口按照排列秩序连续编号。
  3. 根据权利要求1所述的方法,其中,所述CSI-RS resource端口的数目分成两个集合,其中,第一集合对应的CSI-RS resource端口采用第一类 端口编号方式,第二集合对应的CSI-RS resource端口采用第二类端口编号方式,所述第一类端口编号方式与所述第二类端口编号方式不同。
  4. 根据权利要求1所述的方法,其中,所述CSI-RS configuration端口的数目分成两个集合,第一集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合对应的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  5. 根据权利要求1所述的方法,其中,所述CSI-RS configuration端口数目和所述CSI-RS configuration数目的组合分成两个集合,其中,第一集合对应的CSI-RS resource端口采用第一类端口编号方式,第二集合对应的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  6. 根据权利要求1所述的方法,其中,所述CSI process的配置信息还包括用于指示CSI-RS为周期或非周期的信息,其中,周期CSI-RS对应的CSI-RS resource端口采用第一类端口编号方式,非周期CSI-RS对应的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  7. 根据权利要求1所述的方法,其中,所述CSI process的配置信息还包括码本配置方式信息,其中,所述码本配置方式分成两个集合,第一集合对应的CSI-RS resource端口采用第一类端口编号方式,第二集合对应的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  8. 根据权利要求1所述的方法,其中,所述CSI process的配置信息还包括:CSI-RS resource端口与码字列矢量元素对应方式的信息。
  9. 根据权利要求8所述的方法,其中,所述CSI-RS resource端口与码字列矢量元素对应方式分成两个集合,其中,第一个集合对应的CSI-RS  resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  10. 根据权利要求8所述的方法,其中,所述CSI-RS resource端口与码字列矢量元素对应方式包括以下方式至少之一:
    端口编号以升序的方式一一与码字列矢量元素以升序的方式对应;
    以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应;或者,K个偶序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应,其中,K为所述CSI-RS configuration数目、N为所述CSI-RS configuration端口数目;
    以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应;或者,K个偶序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应;其中,K为所述CSI-RS configuration数目、N为所述CSI-RS configuration端口数目;
    以升序方式每连续N数目的端口编号为一组,共计K组,以升序方式 连续编组号;以升序方式每间隔K个元素的N个码字列矢量元素为一组,共计K组,以升序方式连续编组号;端口编号组与码字列矢量元素组号按升序方式一一对应;其中,K为所述CSI-RS configuration数目、N为所述CSI-RS configuration端口数目;
    所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素奇序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素偶序号按升序一一对应;或者,所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素偶序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素奇序号按升序一一对应。
  11. 根据权利要求1所述的方法,其中,所述CSI-RS resource的配置信息还包括:端口码分复用的类型,其中,所述端口码分复用的类型分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,所述第一类方式与所述第二类方式不相同。
  12. 根据权利要求1所述的方法,其中,所述CSI-RS resource端口数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,所述第一类方式与所述第二类方式不相同。
  13. 根据权利要求1所述的方法,其特征在于,CSI-RS resource端口的数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用 第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第一类方式或第二类方式与码字列矢量元素对应,第一类端口编号方式与第二类端口编号方式不同。
  14. 根据权利要求1所述的方法,其中,所述CSI-RS configuration端口的数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,所述第一类方式与所述第二类方式不同。
  15. 根据权利要求1所述的方法,其中,所述CSI-RS configuration端口数目和所述CSI-RS configuration数目的组合分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,所述第一类方式与所述第二类方式不同。
  16. 根据权利要求1所述的方法,其中,所述CSI process的配置信息还包括:用于指示CSI-RS为周期或非周期的信息,其中,周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,非周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应。
  17. 根据权利要求1所述的方法,其中,所述CSI process的配置信息还包括:码本配置方式信息,其中,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  18. 根据权利要求1所述的方法,其中,所述CSI-RS resource端口编号方式分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用 第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,所述第一类方式与所述第二类方式不相同。
  19. 一种信息处理装置,包括:
    处理模块,配置为生成包括信道状态测量过程CSI process的配置信息的信令;
    发送模块,配置为发送所述包括CSI process的配置信息的信令;
    其中,所述CSI process的配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号、端口编号方式。
  20. 根据权利要求19所述的装置,其中,所述端口编号方式包括以下类别至少之一:
    按照CSI-RS configuration聚合序号升序的方式排列所有CSI-RS configuration端口,其中,所述端口按照排列秩序连续编号;
    端口排序的前一半为各CSI-RS configuration的端口编号在前的一半端口按CSI-RS configuration聚合序号升序的方式排列,所述端口排序的后一半为各CSI-RS configuration的端口编号在后的一半端口按CSI-RS configuration聚合序号升序的方式排列,其中,所述端口按照排列秩序连续编号;
    按照CSI-RS configuration聚合序号升序方式轮流从各CSI-RS configuration取出一个端口进行排列,各CSI-RS configuration中的端口按编号升序方式取出,直到所有端口形成排列,其中,端口按照排列秩序连续编号。
  21. 根据权利要求19所述的装置,其中,所述CSI-RS resource端口的数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,所述第一类端口编号方式与所述第二类端口编号方式不同。
  22. 根据权利要求19所述的装置,其中,所述CSI-RS configuration端口数目和所述CSI-RS configuration数目的组合分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,所述第一类端口编号方式与所述第二类端口编号方式不同。
  23. 根据权利要求19所述的装置,其中,所述CSI process的配置信息还包括:码本配置方式信息,其中,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,所述第一类端口编号方式与所述第二类端口编号方式不同。
  24. 根据权利要求19所述的装置,其中,所述CSI process的配置信息还包括:CSI-RS resource端口与码字列矢量元素对应方式的信息。
  25. 根据权利要求24所述的装置,其中,所述CSI-RS resource端口与码字列矢量元素对应方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,所述第一类端口编号方式与所述第二类端口编号方式不同。
  26. 根据权利要求24所述的装置,其中,所述CSI-RS resource端口与码字列矢量元素对应方式的包括以下方式至少之一:
    端口编号以升序的方式一一与码字列矢量元素以升序的方式对应;
    以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序 方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应;或者,K个偶序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应;或者,K个偶序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    以升序方式每连续N数目的端口编号为一组,共计K组,以升序方式连续编组号;以升序方式每间隔K个元素的N个码字列矢量元素为一组,共计K组,以升序方式连续编组号;端口编号组与码字列矢量元素组号按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素奇序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照 CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素偶序号按升序一一对应;或者,所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素偶序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素奇序号按升序一一对应。
  27. 根据权利要求19所述的装置,其中,所述CSI-RS resource的配置信息还包括:端口码分复用的类型,其中,端口码分复用的类型分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,所述第一类方式与所述第二类方式不相同。
  28. 根据权利要求19所述的装置,其中,所述CSI-RS configuration端口数目和所述CSI-RS configuration数目的组合分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,所述第一类方式与所述第二类方式不相同。
  29. 根据权利要求19所述的装置,其中,所述CSI process的配置信息还包括:用于指示CSI-RS为周期或非周期的信息,其中,周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,非周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应。
  30. 根据权利要求19所述的装置,其中,所述CSI process的配置信息还包括:码本配置方式信息,其中,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量 元素对应,所述第一类方式与所述第二类方式不相同。
  31. 根据权利要求19所述的装置,其中,CSI-RS resource端口编号方式分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,所述第一类方式与所述第二类方式不相同。
  32. 一种信息处理方法,包括:
    接收包括信道状态测量过程CSI process的配置信息的信令;
    解析所述包括CSI process的配置信息的信令;
    其中,所述CSI process的配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号、端口编号方式。
  33. 根据权利要求32所述的方法,其中,所述端口编号方式的包括以下类别至少之一:
    按照CSI-RS configuration聚合序号升序的方式排列所有CSI-RS configuration端口,其中,所述端口按照排列秩序连续编号;
    端口排序的前一半为各CSI-RS configuration的端口编号在前的一半端口按CSI-RS configuration聚合序号升序的方式排列,端口排序的后一半为各CSI-RS configuration的端口编号在后的一半端口按CSI-RS configuration聚合序号升序的方式排列,其中,所述端口按照排列秩序连续编号;
    按照CSI-RS configuration聚合序号升序方式轮流从各CSI-RS configuration取出一个端口进行排列,各CSI-RS configuration中的端口按编号升序方式取出,直到所有端口形成排列,其中,所述端口按照排列秩序 连续编号。
  34. 根据权利要求32所述的方法,其中,CSI-RS resource端口的数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第一类端口编号方式或第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  35. 根据权利要求32所述的方法,其中,CSI-RS configuration端口的数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,所述第一类端口编号方式与所述第二类端口编号方式不同。
  36. 根据权利要求32所述的方法,其中,所述CSI-RS configuration端口数目和所述CSI-RS configuration数目的组合分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,所述第一类端口编号方式与所述第二类端口编号方式不同。
  37. 根据权利要求32所述的方法,其中,所述CSI process的配置信息还包括:用于指示CSI-RS为周期或非周期的信息,其中,周期CSI-RS对应的CSI-RS resource端口采用第一类端口编号方式,非周期CSI-RS对应的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  38. 根据权利要求32所述的方法,其中,所述CSI process的配置信息还包括:码本配置方式信息,其中,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  39. 根据权利要求32所述的方法,其中,所述CSI process的配置信息还包括:CSI-RS resource端口与码字列矢量元素对应方式信息。
  40. 根据权利要求39所述的方法,其中,所述CSI-RS resource端口与码字列矢量元素对应方式分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  41. 根据权利要求39所述的方法,其中,CSI-RS resource端口与码字列矢量元素对应方式包括以下方式至少之一:
    端口编号以升序的方式一一与码字列矢量元素以升序的方式对应;
    以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应;或者,K个偶序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应;或者,K个偶序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应,K 个奇序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    以升序方式每连续N数目的端口编号为一组,共计K组,以升序方式连续编组号;以升序方式每间隔K个元素的N个码字列矢量元素为一组,共计K组,以升序方式连续编组号;端口编号组与码字列矢量元素组号按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素奇序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素偶序号按升序一一对应;或者,所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素偶序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素奇序号按升序一一对应。
  42. 根据权利要求32所述的方法,其中,所述CSI-RS resource的配置信息还包括:端口码分复用的类型,其中,端口码分复用的类型分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  43. 根据权利要求39所述的方法,其中,CSI-RS resource端口的数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用 第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  44. 根据权利要求39所述的方法,其中,CSI-RS resource端口的数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合下的CSI-RS resource端口采用第一类方式或第二类方式与码字列矢量元素对应,第一类端口编号方式与第二类端口编号方式不同。
  45. 根据权利要求39所述的方法,其中,CSI-RS configuration端口的数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  46. 根据权利要求39所述的方法,其中,所述CSI-RS configuration端口数目和所述CSI-RS configuration数目的组合分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  47. 根据权利要求32所述的方法,其中,所述CSI process的配置信息还包括:用于指示CSI-RS为周期或非周期的信息,其中,周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,非周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  48. 根据权利要求32所述的方法,其中,所述CSI process的配置信息还包括:码本配置方式信息,其中,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  49. 根据权利要求39所述的方法,其中,所述CSI-RS resource端口编号方式分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  50. 一种信息处理装置,包括:
    接收模块,配置为接收包括信道状态测量过程CSI process的配置信息的信令;
    解析模块,配置为解析所述包括CSI process的配置信息的信令;
    其中,所述配置信息至少包括以下信息之一:信道状态测量导频资源CSI-RS resource配置信息,所述CSI-RS resource的配置信息包括:CSI-RS resource端口数目、信道状态测量导频资源配置CSI-RS configuration数目、CSI-RS configuration端口数目、CSI-RS configuration序号、CSI-RS configuration聚合序号、端口编号方式。
  51. 根据权利要求50所述的装置,其中,所述端口编号方式包括以下类别至少之一:
    按CSI-RS configuration聚合序号升序的方式排列所有CSI-RS configuration端口,并且按照排列秩序连续编号;
    端口排序的前一半为各CSI-RS configuration的端口编号在前的一半端口按CSI-RS configuration聚合序号升序的方式排列,端口排序的后一半为各CSI-RS configuration的端口编号在后的一半端口按CSI-RS configuration聚合序号升序的方式排列;端口按照排列秩序连续编号;
    按照CSI-RS configuration聚合序号升序方式轮流从各CSI-RS configuration取出一个端口进行排列,各CSI-RS configuration中的端口按编号升序方式取出,直到所有端口形成排列;端口按照排列秩序连续编号。
  52. 根据权利要求50所述的装置,其中,所述CSI-RS resource端口数目分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合对应的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  53. 根据权利要求50所述的装置,其中,所述CSI-RS configuration端口数目和所述CSI-RS configuration数目的组合分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  54. 根据权利要求50所述的装置,其中,所述CSI process的配置信息还包括:码本配置方式信息,其中,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  55. 根据权利要求50所述的装置,其中,所述CSI process的配置信息还包括:CSI-RS resource端口与码字列矢量元素对应方式信息。
  56. 根据权利要求55所述的装置,其中,所述CSI-RS resource端口与码字列矢量元素对应方式分成两个集合,其中,第一个集合对应的CSI-RS resource端口采用第一类端口编号方式,第二个集合下的CSI-RS resource端口采用第二类端口编号方式,第一类端口编号方式与第二类端口编号方式不同。
  57. 根据权利要求55所述的装置,其中,CSI-RS resource端口与码字列矢量元素对应方式包括以下方式至少之一:
    端口编号以升序的方式一一与码字列矢量元素以升序的方式对应;
    以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序 方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应;或者,K个偶序号的端口组与编号靠后的K个码字列矢量元素组按升序方式一一对应,K个奇序号的端口组与编号靠前的K个码字列矢量元素组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    以升序方式每连续N/2数目的端口编号为一组,共计2·K组,以升序方式为每组编号;以升序方式每连续N/2数目的码字列矢量元素编号为一组,共计2·K组,以升序方式为每组编号;K个偶序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应;或者,K个偶序号的码字列矢量元素组与编号靠后的K个端口组按升序方式一一对应,K个奇序号的码字列矢量元素组与编号靠前的K个端口组按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    以升序方式每连续N数目的端口编号为一组,共计K组,以升序方式连续编组号;以升序方式每间隔K个元素的N个码字列矢量元素为一组,共计K组,以升序方式连续编组号;端口编号组与码字列矢量元素组号按升序方式一一对应;其中,K为CSI-RS configuration数目、N为CSI-RS configuration端口数目;
    所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素奇序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照 CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素偶序号按升序一一对应;或者,所有CSI-RS configuration的端口编号靠前一半的端口按照CSI-RS configuration聚合序号升序方式排列成一组,与码字列矢量元素偶序号按升序一一对应;所有CSI-RS configuration的端口编号靠后一半的端口按照CSI-RS configuration聚合序号升序方式排列成另一组,与码字列矢量元素奇序号按升序一一对应。
  58. 根据权利要求50所述的装置,其中,所述CSI-RS resource的配置信息还包括:端口码分复用的类型,端口码分复用的类型分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  59. 根据权利要求55所述的装置,其中,所述CSI-RS configuration端口数目和所述CSI-RS configuration数目的组合分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  60. 根据权利要求50所述的装置,其中,所述CSI process的配置信息还包括:用于指示CSI-RS为周期或非周期的信息,周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,非周期CSI-RS对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  61. 根据权利要求50所述的装置,其中,所述CSI process的配置信息还包括码:码本配置方式信息,所述码本配置方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素 对应,第一类方式与第二类方式不相同。
  62. 根据权利要求55所述的装置,其中,CSI-RS resource端口编号方式分成两个集合,第一个集合对应的CSI-RS resource端口采用第一类方式与码字列矢量元素对应,第二个集合对应的CSI-RS resource端口采用第二类方式与码字列矢量元素对应,第一类方式与第二类方式不相同。
  63. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至18任一项所述的信息处理方法。
  64. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求32至49任一项所述的信息处理方法。
PCT/CN2017/075895 2016-03-28 2017-03-07 一种信息处理方法、装置及存储介质 WO2017166981A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/089,619 US11082106B2 (en) 2016-03-28 2017-03-07 Information processing method and device, and storage medium
US17/357,280 US11646775B2 (en) 2016-03-28 2021-06-24 Information processing method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610184599.8A CN107241128B (zh) 2016-03-28 2016-03-28 一种信息处理方法、装置及存储介质
CN201610184599.8 2016-03-28

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/089,619 A-371-Of-International US11082106B2 (en) 2016-03-28 2017-03-07 Information processing method and device, and storage medium
US17/357,280 Continuation US11646775B2 (en) 2016-03-28 2021-06-24 Information processing method and device, and storage medium
US17/357,280 Division US11646775B2 (en) 2016-03-28 2021-06-24 Information processing method and device, and storage medium

Publications (1)

Publication Number Publication Date
WO2017166981A1 true WO2017166981A1 (zh) 2017-10-05

Family

ID=59962554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075895 WO2017166981A1 (zh) 2016-03-28 2017-03-07 一种信息处理方法、装置及存储介质

Country Status (3)

Country Link
US (2) US11082106B2 (zh)
CN (1) CN107241128B (zh)
WO (1) WO2017166981A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3512137B1 (en) * 2017-11-16 2021-10-20 LG Electronics Inc. Pbch transmitting method and transmitting device, and pbch receiving method and receiving device
US11626954B2 (en) * 2020-10-02 2023-04-11 Qualcomm Incorporated Polarization indication signaling for channel state information reference signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081813A (zh) * 2012-01-30 2014-10-01 华为技术有限公司 无线通信测量和csi反馈的系统和方法
US20140334391A1 (en) * 2013-05-09 2014-11-13 Sharp Laboratories Of America, Inc. Channel state measurement and reporting

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757383B1 (ko) * 2010-06-29 2017-07-26 삼성전자주식회사 반송파 결합을 지원하는 셀룰러 무선통신 시스템에서 단말의 csi 전송 방법 및 장치
CN103763071B (zh) 2010-08-02 2017-04-12 华为技术有限公司 通知参考信号配置信息的方法及设备
CN102438312B (zh) * 2010-09-29 2015-06-03 中兴通讯股份有限公司 一种移动通信系统及其信道状态指示参考信号的配置方法
US9252930B2 (en) 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
CN103179664B (zh) * 2011-12-20 2016-09-07 中兴通讯股份有限公司 端口映射、预编码矩阵和调制编码方式选择方法及装置
CN110365382B (zh) * 2012-05-10 2022-06-21 中兴通讯股份有限公司 Csi反馈信令的指示配置方法及基站
WO2014047797A1 (zh) * 2012-09-26 2014-04-03 华为技术有限公司 信道状态信息的测量方法、设备及系统
EP3029847B1 (en) * 2013-07-29 2021-05-12 LG Electronics Inc. Nib comp transmission method and device in wireless communication system
CN103746779B (zh) * 2013-12-31 2017-06-16 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
US10110286B2 (en) * 2015-03-30 2018-10-23 Samsung Electronics Co., Ltd. Method and apparatus for codebook design and signaling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081813A (zh) * 2012-01-30 2014-10-01 华为技术有限公司 无线通信测量和csi反馈的系统和方法
US20140334391A1 (en) * 2013-05-09 2014-11-13 Sharp Laboratories Of America, Inc. Channel state measurement and reporting

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Corrections to RI-inheritance", 3GPP TSG-RAN WG1 MEETING #84 R1-161465, 18 February 2016 (2016-02-18), XP051079382 *
SAMSUNG: "Status Report to TSG", 3GPP TSG RAN MEETING #70 RP-151845, 11 December 2015 (2015-12-11), pages 3, XP051052743 *
ZTE: "Other Issues on CSI-RS Configuration", 3GPP TSG RAN WG1 MEETING #69 R1-122141, 25 May 2012 (2012-05-25), pages 1 - 4, XP050601098 *

Also Published As

Publication number Publication date
US11646775B2 (en) 2023-05-09
CN107241128B (zh) 2022-03-01
US20200304191A1 (en) 2020-09-24
US20210320705A1 (en) 2021-10-14
CN107241128A (zh) 2017-10-10
US11082106B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
US12021778B2 (en) Method and apparatus for receiving signal
CN109314592B (zh) 用于测量参考信号和同步的方法和装置
RU2527930C2 (ru) Способ и устройство предварительного кодирования на основе опорных сигналов демодуляции смешанного мультиплексирования
CN105309030B (zh) 一种报告信道状态信息的方法、用户设备和基站
US11483117B2 (en) Method and device for configuring channel state information reference signal, and method and device for parsing configuring channel state information reference signal
CN110401472B (zh) 一种3d mimo传输方法和装置
US9306652B2 (en) Method and apparatus for transmitting data
WO2017076181A1 (zh) 信道状态测量导频csi-rs的配置方法及装置
CN107371250B (zh) 指令的发送方法及装置、指令的接收方法及装置
WO2017167158A1 (zh) 导频配置信息的传输方法、装置及系统
US11646775B2 (en) Information processing method and device, and storage medium
EP3641211B1 (en) Cdm8 based csi-rs designs for mimo
WO2017133688A1 (zh) 信息的传输、接收方法及装置
US20230318793A1 (en) Method and apparatus for configuring semi-persistent csi-rs resources
WO2018141250A1 (zh) 配置信息处理方法及装置、基站、终端
WO2019085661A1 (zh) 索引获取方法、装置及存储介质和处理器
WO2019158036A1 (zh) 参考信号图样的确定方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773012

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773012

Country of ref document: EP

Kind code of ref document: A1