WO2017166958A1 - 一种下行数据传输及检测方法、装置、相关设备和系统 - Google Patents

一种下行数据传输及检测方法、装置、相关设备和系统 Download PDF

Info

Publication number
WO2017166958A1
WO2017166958A1 PCT/CN2017/074457 CN2017074457W WO2017166958A1 WO 2017166958 A1 WO2017166958 A1 WO 2017166958A1 CN 2017074457 W CN2017074457 W CN 2017074457W WO 2017166958 A1 WO2017166958 A1 WO 2017166958A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
information
occupied
ues
time
Prior art date
Application number
PCT/CN2017/074457
Other languages
English (en)
French (fr)
Inventor
徐晓东
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610204325.0A external-priority patent/CN107295661A/zh
Priority claimed from CN201610204175.3A external-priority patent/CN107295682B/zh
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2017166958A1 publication Critical patent/WO2017166958A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a downlink data transmission method, apparatus, related device and system.
  • the PDCCH Physical Downlink Control Channel
  • the PDCCH may occupy 1-3 OFMD symbols for a system with a large bandwidth (the downlink system is greater than 10 physical resource blocks (PRBs));
  • PRBs physical resource blocks
  • the system (the downlink system is less than or equal to 10 PRBs) occupies 2-4 OFDM symbols, since the number of subcarriers per OFDM symbol is small, so more symbols are needed to carry the control information in the PDCCH. As shown in FIG.
  • FIG. 1 it is a schematic diagram of PDCCH and data channel OFDM symbol occupation in traditional LTE, where the abscissa represents the OFDM symbol sequence number and the ordinate represents the frequency domain resource.
  • the PDCCH occupies 3 OFDM symbols.
  • eMMB enhanced mobile broadband
  • mMTC massive low-power connection
  • URLLC low-latency and high-reliability connections
  • the first scheme is to divide different services into different frequency resources, and the design scheme has low utilization rate for frequency domain resources; The two options are not to fund Source partitioning, mixing all available resources for different services.
  • the resource utilization is high, the data transmission delay requirements are different for different services.
  • the URLLC requires a high delay and needs to be scheduled at any time. Therefore, when a URLLC service needs to be scheduled, Even if the current resource has been allocated to other user equipments (for the sake of description, the UE is an eMMB UE (UE)), the allocated resources need to be occupied to ensure the transmission of the URLLC service, thus causing resource collision. problem.
  • the PDCCH is transmitted before the Physical Downlink Shared Channel (PDSCH) transmission in the existing downlink data transmission scheme. The UE first detects the PDCCH to obtain the resource scheduling and allocation information of the PDSCH, and then performs data detection, but if there is a URLLC service.
  • PDSCH Physical Downlink Shared Channel
  • the resources allocated to the eMMB UE are occupied, causing a resource collision. If the eMMB UE still detects the resource to receive the downlink data, the received downlink data may be incorrect, which affects the downlink data reception of the UE. reliability.
  • the embodiments of the present invention provide a method, an apparatus, and a related device and a system for downlink data transmission, which are used to ensure the reliability of downlink data reception of a UE that allocates resources first when resource collision occurs in different UE services.
  • the embodiment of the invention provides a downlink data transmission method, including:
  • the resource allocation indication information includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes resource information indicating resources allocated for the UE and occupied by other UEs.
  • the embodiment of the invention provides a downlink data detection method, including:
  • resource allocation indication information includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes a resource for indicating allocation to the UE, and is occupied by another UE.
  • Resource information of resources includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes a resource for indicating allocation to the UE, and is occupied by another UE.
  • a resource bit indicated by the initial resource allocation indication information according to the resource allocation indication information Data detection is performed on a resource location other than the resource location occupied by other UEs.
  • the embodiment of the invention provides a downlink data transmission device, including:
  • a transmission unit configured to send resource allocation indication information to the user terminal UE, where the resource allocation indication information includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes a resource for indicating allocation to the UE, And resource information of resources occupied by other UEs.
  • Embodiments of the present invention provide a base station, including the foregoing downlink data transmission apparatus.
  • An embodiment of the present invention provides a downlink data detecting apparatus, including:
  • a receiving unit configured to receive resource allocation indication information that is sent by the network, where the resource allocation indication information includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes a resource for indicating allocation to the UE, Resource information of resources occupied by other UEs;
  • a detecting unit configured to perform data detection on a resource location other than the resource location occupied by the other UE in the resource location indicated by the initial resource allocation indication information according to the resource allocation indication information.
  • An embodiment of the present invention provides a terminal, including the foregoing downlink data detecting apparatus.
  • Embodiments of the present invention provide a downlink data transmission system, including the foregoing base station and terminal.
  • the resource allocation indication information sent by the network side terminal at least includes the supplementary resource allocation indication information, where the supplementary resource allocation indication information includes The resource information of the resource occupied by the UE by the UE, so that the terminal obtains the resource information allocated to itself but occupied by the other UE according to the supplementary resource allocation indication information, so that the terminal may not detect the resource occupied by other UEs when performing data detection.
  • the location is detected, which avoids the terminal obtaining incorrect data by detecting the resource location occupied by other UEs, thereby improving the reliability of terminal data reception.
  • 1 is a schematic diagram of OFDM symbol occupation of a PDCCH and a data channel in an LTE system in the prior art
  • 2-1 is a schematic flowchart 1 of an implementation flow of a downlink data transmission method according to an embodiment of the present invention
  • FIG. 2-2 is a schematic flowchart 2 of an implementation flow of a downlink data transmission method according to an embodiment of the present invention
  • 3a is a schematic diagram of a first resource information indication manner occupied by resources of other UEs according to an embodiment of the present invention
  • FIG. 3b is a schematic diagram of a second resource information indication manner occupied by resources of other UEs according to an embodiment of the present disclosure
  • 3c is a schematic diagram of time-frequency resources allocated by the network side to the UE at the initial time according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a first extended resource occupation according to an embodiment of the present invention.
  • FIG. 3e is a schematic diagram of a second extended resource occupation according to an embodiment of the present invention.
  • FIG. 3f is a schematic diagram of a third extended resource occupation according to an embodiment of the present invention.
  • 4-1 is a schematic flowchart 1 of an implementation process of a downlink data detecting method according to an embodiment of the present invention
  • 4-2 is a schematic flowchart 2 of an implementation process of a downlink data detecting method according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a downlink data transmission apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a downlink data detecting apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a downlink data transmission system according to an embodiment of the present invention.
  • the embodiments of the present invention provide a downlink data transmission method, apparatus, related device, and system, in order to ensure the reliability of terminal data reception in an application scenario in which a resource collision occurs.
  • the resource allocation indication information sent by the network side terminal to the terminal includes at least supplementary resource allocation indication information (PDCCH-sup).
  • the initial resource allocation indication information (PDCCH-head) and the supplementary resource allocation indication information (PDCCH-sup) may be included.
  • the PDCCH-head part includes the basic functions of the existing PDCCH, including resource scheduling and allocation, and hybrid automatic repeat request (HARQ), and the PDCCH-sup is included to indicate that the UE is used by other UEs.
  • Resource information of the resource occupies, based on this, if the resource originally allocated to the UE is occupied by other UEs, the UE may be instructed by the supplementary resource allocation indication information, so that the UE can learn that the resource originally allocated to the UE is occupied by other UEs, so that The UE does not need to detect resources occupied by other UEs to receive data, thereby avoiding data reception errors caused by the UE detecting data for resources allocated to other UEs, thereby ensuring reliability of UE data reception.
  • the downlink data transmission method may include the following steps:
  • the network side sends resource allocation indication information to the UE.
  • the resource allocation indication information sent by the network side to the UE includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes resources for indicating resources allocated to the UE and occupied by other UEs. information.
  • the UE performs data detection according to the resource allocation indication information sent by the network.
  • the UE may perform data detection on the resource location other than the resource location occupied by the other UE in the resource location indicated by the initial resource allocation indication information according to the resource allocation indication information sent by the network side.
  • the network side may further determine whether the resource initially allocated by the UE is occupied by other UEs, and if it is determined that the resource originally allocated for the UE is occupied by other UEs. Then, step S21 is performed again. For example, when the network side determines that the resource originally allocated to the UE is occupied by scheduling resources for the URLLC UE, step S21 is performed, that is, the network side sends resource allocation indication information including the supplementary resource indication information to the UE. If the resource allocated to the UE is not occupied, the network side may send the PDCCH to the user according to the prior art.
  • the resource information of the resources occupied by the other UEs included in the supplementary resource allocation indication information may include the location information of the occupied resources.
  • the location information of the occupied resources may include the location of the time-frequency resource block of the occupied resources. The starting or ending number of the OFDM symbol of the information or occupied resource.
  • the frequency domain resource set allocated for the UE is denoted as Fset
  • the OFDM symbol allocated for the UE is denoted as Oset
  • the network side needs to allocate resources for the URLLC UE, and the frequency domain resources ⁇ f 8 , f 15 , f 16 , f 17 ⁇ , OFDM symbols ⁇ K+4, K+5, K+6 ⁇
  • the corresponding resource is scheduled to the URLLC UE, and the network side may send the supplementary resource allocation indication information to the UE to learn the resources allocated to the URLLC UE.
  • the UE may indicate the resource location information occupied by the URLLC UE in the supplementary resource allocation indication information.
  • the network side can indicate the resource location information occupied by the URLLC UE in any of the following manners: the network side can indicate the specific time-frequency resource block location information of the terminal, that is, the frequency domain resource ⁇ f 8 , f 15 , f 16 , f 17 ⁇ and the OFDM symbol ⁇ K+4, K+5, K+6 ⁇ determine the time-frequency resource block, as shown in Figure 3a (the gray part in Figure 3a), the network side may also only indicate that the UE is URLLC UE The starting and ending number of the occupied OFDM symbol, that is, ⁇ K+4, K+5, K+6 ⁇ , as shown in Fig. 3b (the gray portion in Fig. 3b).
  • the network side may also schedule compensation resources for the UE to supplement the UE to transmit data transmitted by resources occupied by other UEs.
  • the supplementary resource allocation indication information may further include an allocation for the UE.
  • the resource information of the compensation resource may include the scheduling time-frequency resource information of the compensation resource, so that the terminal performs data detection on the corresponding time-frequency resource according to the scheduled time-frequency resource information to receive the data.
  • the network side may use the PDCCH to transmit the supplementary resource allocation indication information, that is, the network side may use the unoccupied resource in the PDCCH to transmit the supplementary resource allocation indication information; or use the ePDCCH (Enhanced Physical Downlink Control Channel) to transmit the foregoing.
  • Supplementing the resource allocation indication information; or transmitting the supplementary resource allocation indication information by using the specific time-frequency resource, for example, the foregoing supplementary resource allocation indication information may be transmitted by using the resource agreed by the network and the UE, which is not performed by the embodiment of the present invention. limited.
  • the resource information included in the supplementary resource allocation indication information for indicating that the UE is occupied by resources of other UEs and the resource information of the compensation resources that are compensated for the UE may be simultaneously indicated to the UE, or may not be indicated at the same time.
  • the UE is not limited in this embodiment of the present invention.
  • the scheduling indication information sent by the network side for the terminal includes the initial resource allocation indication information and the supplementary resource allocation indication information, where the supplementary resource allocation indication information is used to indicate that the UE originally allocated the The resource information of the UE, but is allocated to the resources used by other UEs for some reason, so that the UE can determine which resources are occupied by other UEs according to the resource information of other UEs occupying resources indicated in the supplementary resource allocation indication information.
  • the UE can avoid resources occupied by other UEs, avoid receiving erroneous data, and affect the reliability of UE data reception.
  • the network side may also schedule compensation resources for the terminal at other scheduling moments to transmit the resources transmitted by other UEs.
  • the network side may further include resource information of the compensation resource in the supplementary resource allocation indication information sent to the terminal, where the resource information of the compensation resource may include scheduling time information and resource location information of the compensation resource, so that the UE according to the data
  • the scheduling time information arrives at the corresponding scheduling time, data detection may be performed on the resource location corresponding to the resource location information to complete data reception.
  • an embodiment of the present invention further provides a downlink data detection method
  • the data transmission and detection device, the related device and the system, the method, the device, the related device and the system solve the problem are similar to the above-mentioned downlink data transmission method, so the implementation of the above method, device, related device and system can be referred to the downlink
  • the implementation of the data transmission method will not be repeated here.
  • the network side sending the resource allocation indication information to the UE may include the following steps:
  • the downlink data generated in step S211 includes at least supplementary resource allocation indication information; wherein the supplementary resource allocation The indication information further includes identification data for identifying a time-frequency resource allocated to the UE and occupied by other UEs.
  • the downlink data generated in step S211 may be mapped to a time-frequency resource scheduled for the UE.
  • the time-frequency resource here should be a time-frequency resource other than the time-frequency resource occupied by other UEs.
  • transmitting, that is, in step S212, the downlink data transmitted by the network side to the UE includes identification data for identifying a time-frequency resource allocated for the UE but occupied by other UEs.
  • the network side may further determine whether the resource allocated by the UE is occupied by another UE, and if it is determined that the resource allocated for the UE is occupied by another UE, The downlink data of the identification data is transmitted to the terminal.
  • the network side determines that the resource allocated to the UE is occupied by scheduling resources for the URLLC UE, the downlink data including the identification data is generated in step S211, and the generated downlink data is sent to the terminal in step S212. If the resources allocated to the UE are not occupied, the network side may send the PDCCH to the user according to the prior art.
  • the embodiment of the present invention provides the following two implementation manners for identifying time-frequency resources occupied by other UEs, which are separately introduced below.
  • the identifier data is used to identify the starting and ending position of the time-frequency resource occupied by other UEs.
  • the network side may use a specific symbol sequence or a specific symbol feature agreed with the UE to identify time-frequency resources occupied by other UEs.
  • the frequency domain resource set originally allocated to the UE is denoted as Fset
  • the OFDM symbol allocated to the UE is denoted as Oset
  • the network side needs to allocate resources for the URLLC UE, and the frequency domain resources ⁇ f 3 , f 4 , f 5 ...
  • the corresponding resource is scheduled to the URLLC UE, and the network side can identify the resource location occupied by other UEs by using a specific symbol sequence agreed with the UE.
  • the resource area occupied by the URLLC UE is a rectangle (the grid pattern area in FIG. 3a), and the network side can identify the resource position of the rectangle or the four top corners to make the UE aware. Time-frequency resources assigned to the URLLC UE.
  • the network side separately identifies the resource block corresponding to the frequency domain resource f 16 and the OFDM symbol sequence K+6, and the resource block corresponding to the frequency domain resource f 2 and the OFDM symbol sequence K+4 (such as the gray pattern in FIG. 3a). Or the network side separately identifies the resource block corresponding to the frequency domain resource f 16 and the OFDM symbol number K+4, the frequency domain resource f 16 and the resource block corresponding to the OFDM symbol sequence K+6, and the frequency domain resource f 2 and The resource block corresponding to the OFDM symbol number K+4 and the resource block corresponding to the frequency domain resource f 2 and the OFDM symbol sequence K+6 (shown in the gray pattern in FIG. 3b, the grid pattern area in FIG. 3b is the URLLC UE) Occupied resources). In this way, when detecting the received downlink data, the UE may skip the rectangular area of the network side identifier to detect the remaining area.
  • the identification data uses a specific symbol sequence or a specific symbol feature agreed with the UE and uses different transmission power transmissions for the identification data.
  • the network side can use different transmission powers to transmit identification data and other downlink data. That is, in the second embodiment, the basis of the first embodiment
  • the identification data i.e., the specific symbol sequence or the specific symbol feature in the first embodiment
  • the transmission power of the identification data may be greater than the transmission power of the downlink data transmitted by the UE, that is, the network side uses the first power transmission identification data
  • the second power transmission downlink data includes the downlink data except the identification data, first. The power is greater than the second power.
  • the network side may also allocate compensation resources for the UE to supplement the downlink transmission of the time-frequency resources occupied by other UEs to the UE. data. Based on this, the network side may also indicate, by using the identification data, information that needs to be transmitted for the UE or that cannot be reliably detected.
  • the network side may perform corresponding extension on the time-frequency resource allocated to the UE according to the time-frequency information of the resources occupied by the other UE, and the compensation transmission is occupied by other UEs.
  • the time-frequency information of other UEs occupying resources includes time domain information and frequency domain information of resources occupied by other UEs.
  • the time-frequency resources allocated by the network for the UE are OFDM numbers from (K+3) to (K+4), and the frequency domain occupies f1-f9 as an example.
  • the resources occupied by other UEs are shown in Figure 3c (the grid area in Figure 3c).
  • the network side can perform corresponding extension on the time-frequency resources allocated to the UE.
  • the network side can extend the time-frequency resources allocated for the UE to the OFDM symbol, that is, the network-side extended time-frequency resources of the UE.
  • the frequency domain occupies f1-f9.
  • a schematic diagram of the extended resource occupancy is shown in Figure 3d (Fig. 3d gray part).
  • the network side may extend the time-frequency resources allocated to the UE to the corresponding length of time according to the time domain information of the resources occupied by the other UEs, that is, the length of time occupied by the extended time-frequency resources and the initial allocation time.
  • the frequency resource takes the same length of time. That is, the network side may perform corresponding expansion on the time domain based on the time domain information of the occupied resource. For example, if the network side initially allocates 2 OFDM symbols in the UE to be occupied, the network side allocates resources for the UE. Automatically extend 2 symbol lengths for transmitting data that should be transmitted by resources occupied by other UEs.
  • the resource allocated by the network to the UE is still exemplified by the resource allocation diagram shown in Figure 3c. If some of the resources are occupied by other UEs, the network side can extend the time-frequency resources allocated for the UE to 2 OFDM symbols.
  • the time-frequency resources extended by the network side for the UE are OFDM sequence numbers from (K+14) to (K+15), and the frequency domain occupied resources may be f1-f9, and the extended resource allocation diagram is shown in Figure 3e. 3e gray part).
  • the network side also extends the frequency domain resources allocated to the UE backward according to the frequency domain information of the initial resource allocated to the UE, and the length of the extended time is the total resource occupied by other UEs and the frequency allocated by the UE. Domain resources are determined.
  • the resources allocated by the network for the UE are still taken as an example of the resource allocation diagram shown in Figure 3c.
  • the number of resource blocks that need to be compensated on the network side is preferentially extended on the frequency. After the entire frequency bandwidth is full, the next symbol is extended.
  • a schematic diagram of the resource allocation after the extension is shown in Figure 3f (Fig. 3f gray part).
  • the downlink data sent to the UE includes the time frequency that the user identifier is occupied by other UEs.
  • the identification data of the resource so that the UE can determine which resources are occupied by other UEs according to the identification data, so that when performing data detection, the UE can avoid resources occupied by other UEs, avoid receiving erroneous data, and affect UE data. Reliability of reception.
  • the network side may also schedule compensation resources for the terminal to transmit data transmitted by resources occupied by other UEs, based on the data.
  • the identifier data may also be used to indicate the resource information that the UE compensates for. If the TTI of the UE is not fixed, the network side may perform corresponding extension in the time domain, and the resources allocated for the UE are automatically extended in the time domain to Transmit data transmitted by resources occupied by other UEs.
  • the embodiment of the present invention further provides a downlink data detecting method, a downlink data transmission and detecting device, a related device, and a system, and the foregoing method, device, related device, and system solve the problem and the above-mentioned downlink
  • the data transmission methods are similar. Therefore, the implementation of the foregoing methods, apparatuses, related devices, and systems can be referred to the implementation of the downlink data transmission method, and the repeated description is not repeated.
  • FIG. 4-1 it is a schematic flowchart of an implementation process of a downlink data detection method provided by an embodiment of the present invention, which may include the following steps:
  • the resource allocation indication information sent by the network side to the UE includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes resources used to indicate resources allocated to the UE and occupied by other UEs. Resource information.
  • the network side may send the resource allocation indication information including the compensation resource allocation indication information to the UE after determining that the resource allocated to the UE is occupied by other UEs.
  • the detected data can be used as useful information and auxiliary information for subsequent data detection.
  • the UE can combine the detected data with the data transmitted by the subsequent compensation resources to obtain complete data.
  • the UE may perform data detection on the resource location other than the resource location occupied by other UEs in the resource location indicated by the initial resource allocation indication information according to the resource allocation indication information received in step S41, instead of the original allocation.
  • the resources that are occupied by themselves and occupied by other UEs are detected to avoid receiving erroneous data, thereby ensuring the reliability of UE data reception.
  • the supplementary resource allocation indication information received in the step S41 further includes resource information of the compensation resource that is compensated for the UE, and the resource information of the compensation resource may include the scheduled time-frequency resource information of the compensation resource.
  • the downlink data detection method provided by the embodiment of the present invention may further include the following steps: performing data detection on a resource location corresponding to the scheduled time-frequency resource information in the compensation resource allocation indication information.
  • FIG. 4-2 it is a schematic flowchart of a specific processing procedure for receiving resource allocation indication information sent by a network side according to an embodiment of the present invention, which may include the following steps:
  • the downlink data transmitted by the network side to the UE includes identifier data for identifying time-frequency resources occupied by other UEs.
  • the UE may perform data detection on the resource location other than the resource location occupied by other UEs in the resource location initially allocated by the network according to the identifier data received in step S411, instead of assigning itself to the resource location.
  • the resources occupied by other UEs are detected to avoid receiving erroneous data, thereby ensuring the reliability of UE data reception.
  • the identifier data received in step S411 may be used to identify a start and end location of a time-frequency resource occupied by other UEs.
  • the UE may perform data detection on the time-frequency resource location initially allocated by the network side and skip the time-frequency resource location occupied by other UEs according to the start and end positions of the time-frequency resources occupied by other UEs.
  • the network side may use a specific symbol sequence or a specific symbol feature agreed by the UE to identify the start and end position of the time-frequency resource occupied by other UEs; or the network side uses the specific symbol sequence or the specific symbol feature,
  • the downlink data of the downlink data is different from the identification data, and the specific symbol sequence and the specific symbol feature are transmitted.
  • the transmission power of the network side transmission identifier data may be greater than other downlink data, so that the UE can determine the initial allocation.
  • the identification data may also be used to indicate that the information that needs to be compensated for the UE transmission or the data that cannot be reliably detected.
  • the data detection method provided by the embodiment of the present invention may further include the following steps: detecting, according to time-frequency information of resources occupied by other UEs, extending the corresponding resource location based on the initial resource location allocated by the network side, detecting the network Side compensated for information that is occupied by other UEs but not transmitted or that cannot be reliably detected.
  • the time-frequency information of the resources occupied by other UEs may be determined according to the time-frequency resource locations occupied by other UEs indicated by the identifier data.
  • the time-frequency information of the resources occupied by the other UEs includes the time domain information of the resources occupied by the other UEs, and based on the time domain information of the resources occupied by the other UEs, the initial resource positions allocated based on the network side may be extended backward. Detecting network side compensation transmission on the resource location of the corresponding time length Information that is not occupied by other UEs or that cannot be reliably detected.
  • the time domain information of the resources occupied by other UEs may be determined according to the time-frequency resource locations occupied by other UEs indicated by the identifier data.
  • the network side compensation transmission is detected on the time-frequency resource location extended based on the initial resource location allocated by the network side, and is occupied by other UEs. Information that is not transmitted or that cannot be reliably detected.
  • the length of the extended area is determined by the total resources occupied by other UEs and the frequency domain resources allocated by the UE.
  • a schematic structural diagram of a downlink data transmission apparatus may include:
  • the transmitting unit 51 is configured to send resource allocation indication information to the user terminal UE.
  • the resource allocation indication information includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes resource information indicating resources allocated for the UE and occupied by other UEs.
  • the supplementary resource allocation indication information further includes resource information of the compensation resource compensated for the UE.
  • the resource information of the compensation resource includes scheduling time-frequency resource information of the compensation resource.
  • the resource indication information allocated by the UE and allocated by the UE may include location information of the occupied resource.
  • the location information of the occupied resource includes time-frequency resource block location information of the occupied resource or a start and stop sequence number of the OFDM symbol of the occupied resource.
  • the network side may use the PDCCH to transmit the supplementary resource allocation indication information; or use the ePDCCH to transmit the supplementary resource allocation indication information; or transmit the supplementary resource allocation indication information by using a specific time-frequency resource.
  • the downlink data transmission apparatus may further include a determining unit 52, where:
  • the determining unit 52 is configured to determine, before the transmitting unit 51 sends the resource allocation indication information to the UE, whether the resource allocated by the UE is occupied by another UE;
  • the transmitting unit 51 is specifically configured to send the resource allocation indication information to the UE if the resource allocated to the UE is occupied by other UEs.
  • the downlink data transmission apparatus may further include:
  • the data generating unit 53 is configured to generate downlink data to be transmitted for the UE.
  • the transmitting unit 51 is configured to transmit downlink data on a time-frequency resource that is scheduled by the UE.
  • the downlink data to be transmitted includes identifier data for identifying a time-frequency resource allocated to the UE but occupied by other UEs.
  • the identification data can be used to identify the starting and ending position of the time-frequency resource occupied by other UEs.
  • the identification data may include a specific symbol sequence or a specific symbol feature agreed with the UE.
  • the network side may transmit the particular sequence of symbols or specific symbol features described above using a different power than transmitting other downlink data.
  • the identifier data may also be used to indicate that information required to be compensated for the UE or information that cannot be reliably detected.
  • the downlink data transmission method provided by the embodiment of the present invention may further include:
  • the resource extension unit is configured to perform corresponding extension on the time-frequency resources allocated to the UE according to the time-frequency information of the resources occupied by the other UEs, to compensate for the information that is not occupied by the other UEs or that cannot be reliably detected. .
  • the time-frequency information of the resources occupied by the other UEs includes time domain information of resources occupied by other UEs, and the resource extension unit is specifically configured to allocate time-frequency resources allocated to the UE according to time domain information of resources occupied by other UEs. Extend the corresponding length of time backwards.
  • the resource extension unit is further configured to extend the time-frequency resource allocated to the UE to be extended according to the frequency domain information of the allocated resource of the UE, where the extended time length is the total resource occupied by other UEs and the UE.
  • the allocated frequency domain resources are determined. .
  • the determining unit 52 is configured to determine, before the transmitting unit 51 transmits downlink data to the UE, whether the resource allocated by the UE is occupied by another UE;
  • the transmitting unit 51 is specifically configured to: if resources allocated for the UE are occupied by other UEs, And transmitting the downlink data to the UE.
  • the above parts are respectively divided into modules (or units) according to functions.
  • the functions of the various modules (or units) may be implemented in one or more software or hardware in the practice of the invention.
  • the downlink data transmission device provided by the embodiment of the present invention may be disposed in a base station.
  • FIG. 6 is a schematic structural diagram of a downlink data detecting apparatus according to an embodiment of the present invention, which may include:
  • the receiving unit 61 is configured to receive resource allocation indication information that is sent by the network side, where the resource allocation indication information includes at least supplementary resource allocation indication information, where the supplementary resource allocation indication information includes resources used to indicate allocation to the UE. Resource information of resources occupied by other UEs;
  • the detecting unit 62 is configured to perform data detection on a resource location other than the resource location occupied by the other UE in the resource location indicated by the initial resource allocation indication information according to the resource allocation indication information.
  • the detected data can be used as useful information and auxiliary information for subsequent data detection.
  • the supplementary resource allocation indication information further includes resource information of the compensation resource that is compensated for the UE, and the resource information of the compensation resource includes scheduling time-frequency resource information of the compensation resource.
  • the detecting unit 62 is further configured to perform data detection on a resource location corresponding to the scheduled time-frequency resource information.
  • the receiving unit 61 is configured to receive downlink data that is transmitted by the network side, where the downlink data includes identifier data used to identify time-frequency resources occupied by other UEs;
  • the detecting unit 62 is configured to perform data detection on the time-frequency resource location other than the time-frequency resource occupied by other UEs in the time-frequency resource location initially allocated by the network side according to the identifier data.
  • the identification data is used to identify the starting and ending position of the time-frequency resource occupied by other UEs.
  • the detecting unit 62 is configured to: perform data detection on the time-frequency resource location initially occupied by the network side and skip the time-frequency resource location occupied by other UEs according to the start and end position of the time-frequency resource occupied by the other UEs. .
  • the identification data includes a specific symbol sequence or a specific symbol feature agreed with the network side; or a specific symbol sequence used by the identification data or a transmission power of a specific symbol feature and other downlink data in the downlink data.
  • the transmission power is different.
  • the identifier data may also be used to indicate that information that needs to be compensated for transmission by the UE or data that cannot be reliably detected.
  • the detecting unit 62 is further configured to: according to time-frequency information of resources occupied by other UEs, perform network-side compensation transmission on the corresponding resource location based on the initial resource location allocated by the network side, and Information that the UE occupies but does not transmit or information that cannot be reliably detected.
  • the time-frequency information of the resources occupied by the other UEs includes time domain information of resources occupied by other UEs;
  • the detecting unit 62 is configured to detect, according to the time domain information of the resources occupied by the other UEs, the network side compensation transmission, based on the initial resource position allocated by the network side, and the resource position of the corresponding time length Information that other UEs do not transmit or that cannot be reliably detected.
  • the detecting unit 62 may be further configured to: according to the frequency domain information of the initial resource allocated by the network side, detect the network side compensation transmission on the time-frequency resource location extended based on the initial resource location allocated by the network side, and The information that the UE occupies but does not transmit or the information that cannot be reliably detected, wherein the length of the extended area is determined by the total resources occupied by other UEs and the frequency domain resources allocated by the network side.
  • the above parts are respectively divided into modules (or units) according to functions.
  • the functions of the various modules (or units) may be implemented in one or more software or hardware in the practice of the invention.
  • the downlink data detecting apparatus provided by the embodiment of the present invention may be disposed in the terminal.
  • FIG. 7 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention, including a base station 71 and a terminal 72.
  • the base station 71 is provided with a downlink data transmission device shown in FIG. 5, and the terminal 72 is provided with a map.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种下行数据传输方法、装置、相关设备和系统,其中方法包括:向用户终端UE发送资源分配指示信息;所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息。

Description

一种下行数据传输及检测方法、装置、相关设备和系统 技术领域
本发明涉及无线通信技术领域,尤其涉及一种下行数据传输方法、装置、相关设备和系统。
背景技术
在长期演进(LTE,Long Time Evolution)R8/R9/R10系统中,一个传输时间间隔(TTI,Transmission Time Internal)里,前面几个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号用于物理下行控制信道(PDCCH,Physical Downlink Control Channel)的传输,后面的OFDM符号用于数据的传输。传统LTE系统中,根据系统配置的不同,对于带宽较大的系统(下行系统大于10个物理资源块(PRB,Physical Resource Block)),PDCCH可能占用1-3个OFMD符号;对于带宽较小的系统(下行系统小于等于10个PRB),占用2-4个OFDM符号,这是由于每个OFDM符号上子载波的数目较少,因此需要更多的符号来承载PDCCH中的控制信息。如图1所示,为传统LTE中,PDCCH和数据信道OFDM符号占用示意图,其中,横坐标表示OFDM符号序号,纵坐标表示频域资源,图1中,PDCCH占用3个OFDM符号。
随着移动通信技术的发展,在第五代移动通信技术(5G)通信系统中,要求支持增强型移动宽带(eMMB)业务、海量低功耗连接(mMTC)业务和低时延高可靠连接(URLLC)业务等,这些业务对数据传输时延的敏感性不同,URLLC业务要求非常高的实时性,而eMMB业务对于传输时延相对不敏感,但为了保证通信系统对各业务的兼容性和简化未来通信网络建设及运营,提出了以下两种统一的空口设计方案:第一种方案是将不同的业务划分到不同的频率资源上,这种设计方案对于频域资源的利用率较低;第二种方案是不进行资 源划分,不同业务混合使用所有可用的资源。第二种设计方案中,虽然资源利用率较高,但是由于不同业务对于数据传输时延要求不同,例如,URLLC对于时延要求很高,要求随时调度,因此,当有URLLC业务需要调度时,即使当前资源已被分配给其他用户设备(为了便于描述,假设该UE为eMMB UE(UE,User Equipment)),也需要占用该被分配的资源以保证URLLC业务的传输,这样带来了资源碰撞问题。由于现有下行数据传输方案中是在物理下行共享信道(PDSCH,Physical Downlink Shared Channel)传输前发送PDCCH,UE先检测PDCCH获得PDSCH的资源调度和分配信息,然后进行数据检测,但是如果有URLLC业务需要调度时,会占用已分配给eMMB UE的资源,造成了资源碰撞,而如果eMMB UE仍然对该资源进行检测以接收下行数据,则可能造成接收的下行数据错误,影响了UE下行数据接收的可靠性。
发明内容
本发明实施例提供了一种下行数据传输方法、装置、相关设备和系统,用于在不同的UE业务发生资源碰撞时,保证先分配资源的UE下行数据接收的可靠性。
本发明实施例提供一种下行数据传输方法,包括:
向用户终端UE发送资源分配指示信息;
所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息。
本发明实施例提供一种下行数据检测方法,包括:
接收网络侧发送的资源分配指示信息,所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息;
根据所述资源分配指示信息,在所述初始资源分配指示信息指示的资源位 置中、除被其他UE占用的资源位置以外的资源位置上进行数据检测。
本发明实施例提供一种下行数据传输装置,包括:
传输单元,用于向用户终端UE发送资源分配指示信息,所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息。
本发明实施例提供一种基站,包括上述的下行数据传输装置。
本发明实施例提供一种下行数据检测装置,包括:
接收单元,用于接收网络侧发送的资源分配指示信息,所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息;
检测单元,用于根据所述资源分配指示信息,在所述初始资源分配指示信息指示的资源位置中、除被其他UE占用的资源位置以外的资源位置上进行数据检测。
本发明实施例提供一种终端,包括上述的下行数据检测装置。
本发明实施例提供一种下行数据传输系统,包括上述的基站和终端。
本发明实施例提供的下行数据传输及检测方法、装置、相关设备和系统,网络侧向终端发送的资源分配指示信息至少包括补充资源分配指示信息,其中,补充资源分配指示信息中包含用于指示UE被其他UE占用资源的资源信息,使得终端根据补充资源分配指示信息获得分配给自身但是被其他UE占用资源的资源信息,这样,终端在进行数据检测时,可以不对检测被其他UE占用的资源位置进行检测,避免了终端由于检测被其他UE占用的资源位置而获得错误的数据,从而提高了终端数据接收的可靠性。
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中,LTE系统中PDCCH和数据信道OFDM符号占用示意图;
图2-1为本发明实施例中,下行数据传输方法的实施流程示意图1;
图2-2为本发明实施例中,下行数据传输方法的实施流程示意图2;
图3a为本发明实施例中,第一种被其他UE占用资源的资源信息指示方式示意图;
图3b为本发明实施例中,第二种被其他UE占用资源的资源信息指示方式示意图;
图3c为本发明实施例中,初始时,网络侧为UE分配的时频资源示意图;
图3d为本发明实施例中,第一种延展的资源占用示意图;
图3e为本发明实施例中,第二种延展的资源占用示意图;
图3f为本发明实施例中,第三种延展的资源占用示意图;
图4-1为本发明实施例中,下行数据检测方法的实施流程示意图1;
图4-2为本发明实施例中,下行数据检测方法的实施流程示意图2;
图5为本发明实施例中,下行数据传输装置的结构示意图;
图6为本发明实施例中,下行数据检测装置的结构示意图;
图7为本发明实施例中,下行数据传输系统的结构示意图。
具体实施方式
为了在发生资源碰撞的应用场景下,保证终端数据接收的可靠性,本发明实施例提供了一种下行数据传输方法、装置、相关设备和系统。
以下结合说明书附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明,并且在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明实施例提供的下行数据传输方法中,网络侧向终端发送的资源分配指示信息中至少包括有补充资源分配指示信息(PDCCH-sup)。具体来说,可以包括初始资源分配指示信息(PDCCH-head)和补充资源分配指示信息(PDCCH-sup)两部分。
其中,PDCCH-head部分包含现有的PDCCH的基本功能,包括资源调度和分配以及混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)等相关信息,PDCCH-sup中包含用于指示UE被其他UE占用资源的资源信息,基于此,如果初始分配给某UE的资源被其他UE占用时,可以通过补充资源分配指示信息中指示UE,使得UE可以获知原分配给其的资源被其他UE占用,使得UE无需对被其他UE占用的资源进行检测以接收数据,由此,避免了UE由于对分配给其他UE的资源进行数据检测而造成数据接收错误,从而保证了UE数据接收的可靠性。
在介绍了本发明的原理之后,以下结合图2对本发明实施例提供的下行数据传输方法的实施流程进行说明。
如图2-1所示,本发明实施例提供的下行数据传输方法可以包括以下步骤:
S21、网络侧向UE发送资源分配指示信息。
其中,网络侧向UE发送的资源分配指示信息中至少包含补充资源分配指示信息;所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息。
S22、UE根据网络侧发送的资源分配指示信息进行数据检测。
具体实施时,UE可以根据网络侧发送的资源分配指示信息,在初始资源分配指示信息指示的资源位置中、除被其他UE占用资源的资源位置以外的资源位置上进行数据检测。
较佳的,具体实施时,网络侧在向UE发送资源分配指示信息之前,还可以判断为该UE初始分配的资源是否被其他UE占用,如果判断出初始为该UE分配的资源被其他UE占用时,再执行步骤S21。例如,网络侧确定初始分配给该UE的资源由于需要为URLLC UE调度资源而被占用时,再执行步骤S21,即网络侧向该UE发送包含补充资源指示信息的资源分配指示信息。如果分配给该UE的资源没有被占用时,网络侧可以按照现有技术向该用户发送PDCCH即可。
较佳的,补充资源分配指示信息中包含的被其他UE占用资源的资源信息可以包括被占用资源的位置信息,具体实施时,被占用资源的位置信息可以包括被占用资源的时频资源块位置信息或者被占用资源的OFDM符号的起止序号。
为了便于描述,将为该UE分配的频域资源集合记为Fset,为该UE分配的OFDM符号记为Oset,以图1为例,Fset={f1,f2,……f16,f17},Oset={K,K+1,K+2,……K+13}。在某个调度时刻,网络侧由于需要为URLLC UE调度资源,而将频域资源{f8,f15,f16,f17}、OFDM符号{K+4,K+5,K+6}对应的资源调度给URLLC UE,则网络侧可以通过向该UE发送补充资源分配指示信息以使其获知被分配给URLLC UE的资源。具体的,UE可以在补充资源分配指示信息指示被URLLC UE占用的资源位置信息。较佳的,网络侧可以通过以下任一方式指示被URLLC UE占用的资源位置信息:网络侧可以指示终端具体的时频资源块位置信息,即频域资源{f8,f15,f16,f17}和OFDM符号{K+4,K+5,K+6}确定出的时频资源块,如图3a所示(图3a中灰色部分),网络侧也可以仅指示UE被URLLC UE占用的OFDM符号的起止序号,即{K+4,K+5,K+6},如图3b所示(图3b中灰色部分)。
较佳的,具体实施时,如果初始分配给该UE的资源被其他UE占用,则网络侧还可以为该UE调度补偿资源,以向该UE补充传输被其他UE占用的资源所传输的数据。基于此,补充资源分配指示信息中还可以包括为UE分配的 补偿资源的资源信息。其中,补偿资源的资源信息可以包括补偿资源的调度时频资源信息,以使终端根据调度时频资源信息在相应的时频资源上进行数据检测以接收数据。
具体实施时,网络侧可以使用PDCCH传输上述的补充资源分配指示信息,即网络侧可以使用PDCCH中未被占用的资源传输补充资源分配指示信息;或者使用ePDCCH(增强物理下行控制信道)传输上述的补充资源分配指示信息;或者使用特定的时频资源传输上述的补充资源分配指示信息,例如,可以使用网络侧与UE约定的资源传输上述的补充资源分配指示信息,本发明实施例对此不进行限定。
需要说明的是,具体实施时,补充资源分配指示信息中包含的用于指示UE被其他UE占用资源的资源信息和为UE补偿的补偿资源的资源信息可以同时指示给UE,也可以不同时指示给UE,本发明实施例对此不进行限定。
本发明实施例提供的下行数据传输方法中,网络侧为终端发送的调度指示信息中包含初始资源分配指示信息和补充资源分配指示信息,其中,补充资源分配指示信息用于指示UE原本分配给该UE、但是由于某种原因被分配给其他UE使用的资源的资源信息,使得UE可以根据补充资源分配指示信息中指示的、其他UE占用资源的资源信息,确定哪些资源被其他UE被占用,这样,UE在进行数据检测时,可以避开被其他UE占用的资源,避免接收到错误数据,而影响UE数据接收的可靠性。另外,本发明实施例提供的下行数据传输方法中,如果分配给某UE的资源被其他UE占用,网络侧还可以在其他调度时刻为终端调度补偿资源,以传输被其他UE占用资源所传输的数据,基于此,网络侧在向终端发送的补充资源分配指示信息中还可以包括补偿资源的资源信息,补偿资源的资源信息可以包括补偿资源的调度时间信息和资源位置信息,这样,UE根据其中的调度时间信息在相应的调度时间到达时,可以在资源位置信息对应的资源位置上进行数据检测以完成数据接收。
基于同一发明构思,本发明实施例中还提供了一种下行数据检测方法、下 行数据传输及检测装置、相关设备和系统,由于上述方法、装置、相关设备及系统解决问题的原理与上述的下行数据传输方法相似,因此上述方法、装置、相关设备及系统的实施可以参见下行数据传输方法的实施,重复之处不再赘述。
在介绍了本发明的原理之后,以下结合图2对本发明实施例提供的下行数据传输方法的实施流程进行说明。
如图2-2所示,本发明实施例提供的下行数据传输方法中,网络侧向UE发送资源分配指示信息具体可以包括以下步骤:
S211、为UE生成待传输的下行数据。
如果网络侧确定分配给该UE的时频资源由于需要为其他UE调度而被占用时,则在步骤S211中生成的所述下行数据中至少包含补充资源分配指示信息;其中,所述补充资源分配指示信息中还包括有用于标识分配给所述UE、且被其他UE所占用的时频资源的标识数据。
S212、在UE被调度的时频资源上传输下行数据。
具体的,步骤S212中,可以将步骤S211中生成的下行数据映射到为UE调度的时频资源(应当理解,这里的时频资源应为除被其他UE占用的时频资源以外的时频资源)上进行传输,亦即步骤S212中,网络侧向UE传输的下行数据中包含有用于标识为该UE分配但被其他UE占用的时频资源的标识数据。
可选的,具体实施时,网络侧执行步骤S211之前,还可以判断为该UE分配的资源是否被其他UE占用,如果判断出为该UE分配的资源被其他UE占用时,则在生成包含上述的标识数据的下行数据并传输给终端。
例如,网络侧确定分配给该UE的资源由于需要为URLLC UE调度资源而被占用时,在步骤S211中生成包含标识数据的下行数据,并在步骤S212中将生成的下行数据发送给终端。如果分配给该UE的资源没有被占用,网络侧可以按照现有技术向该用户发送PDCCH即可。
较佳的,本发明实施例提供如下两种标识被其他UE占用的时频资源的实施方式,以下分别进行介绍。
第一种实施方式、标识数据用于标识被其他UE占用的时频资源的起止位置
这种实施方式下,网络侧可以使用与UE约定的特定符号序列或者特定符号特征来标识被其他UE占用的时频资源。
为了便于描述,将原本为UE分配的频域资源集合记为Fset,为UE分配的OFDM符号记为Oset,以图1为例,假设Fset={f1,f2,……f16,f17},Oset={K,K+1,K+2,……K+13}。在某个调度时刻,网络侧由于需要为URLLC UE调度资源,将频域资源{f3,f4,f5……f14,f15}、OFDM符号{K+4,K+5,K+6}对应的资源调度给URLLC UE,则网络侧可以使用与UE约定的特定符号序列对被其他UE占用的资源位置进行标识。以网络侧将频域资源{f3,f4,f5……f14,f15}、OFDM符号{K+4,K+5,K+6}对应的资源调度给URLLC UE为例,如图3a所示,被URLLC UE占用的资源区域为矩形(图3a中网格图案区域),则网络侧可以通过对矩形的对角线或者四个顶角的资源位置进行标识以使UE获知被分配给URLLC UE的时频资源。
例如,网络侧分别标识频域资源f16和OFDM符号序号为K+6对应的资源块与频域资源f2和OFDM符号序号为K+4对应的资源块(如图3a中的灰色图案所示);或者网络侧分别标识频域资源f16和OFDM符号序号为K+4对应的资源块、频域资源f16和OFDM符号序号为K+6对应的资源块、频域资源f2和OFDM符号序号为K+4对应的资源块以及频域资源f2和OFDM符号序号为K+6对应的资源块(如图3b中的灰色图案所示,图3b中网格图案区域为URLLC UE占用的资源)。这样,UE在对接收到的下行数据进行检测时,可以跳过网络侧标识的矩形区域对其余区域进行检测。
第二种实施方式、标识数据使用与UE约定的特定符号序列或者特定符号特征且对标识数据使用不同的传输功率传输。
这种实施方式下,可以通过如下方式实现:网络侧使用不同的传输功率传输标识数据和其他下行数据。即第二种实施方式中,在第一种实施方式的基础 上,将标识数据(即第一种实施方式中的特定符号序列或者特定符号特征)使用与其他下行数据不同的传输功率传输。例如,标识数据的传输功率可以大于为UE传输的下行数据的传输功率,即网络侧使用第一功率传输标识数据,而使用第二功率传输下行数据中除标识数据以外的其余下行数据,第一功率大于第二功率。
较佳的,具体实施时,如果分配给该UE的资源被其他UE占用,则网络侧还可以为该UE调度补偿资源,以向该UE补充传输被其他UE占用的时频资源所传输的下行数据。基于此,网络侧还可以通过标识数据指示需要为UE为补偿传输的信息或者不能可靠检测的数据。
具体实施时,如果UE的TTI不固定,则网络侧还可以根据其他UE占用资源的时频信息,将为该UE分配的时频资源进行相应的延展,用于补偿传输被其他UE占用而未传输的信息或不能可靠检测的信息。其他UE占用资源的时频信息包括其他UE占用资源的时域信息和频域信息。
以初始时,网络侧为UE分配的时频资源为OFDM序号从(K+3)~(K+4),频域占用f1-f9为例,则UE的资源分配示意图如图1所示,被其他UE占用的资源如图3c所示(图3c中的网格区域)。网络侧可以对分配给该UE的时频资源进行相应的延展,本例中,网络侧可以将为UE分配的时频资源向后延展2个OFDM符号,即网络侧为UE延展的时频资源为OFDM序号从(K+14)~(K+15),频域占用f1-f9。延展的资源占用示意图如图3d所示(图3d灰色部分)。
较佳的,网络侧可以根据其他UE占用资源的时域信息,将为所述UE分配的时频资源向后延展相应的时间长度,即延展的时频资源占用的时间长度与初始分配的时频资源占用的时间长度相同。即网络侧可以基于被占用资源的时域信息,在时域上做相应的扩展,例如,如果网络侧初始分配给该UE中的2个OFDM符号被占用,则网络侧为该UE分配的资源自动延展2个符号长度,用于传输被其他UE占用的资源所应传输的数据。
网络侧初始为UE分配的资源仍然以图3c所示的资源分配示意图为例,如果其中部分资源被其他UE占用,网络侧可以将为UE分配的时频资源向后延展2个OFDM符号,即网络侧为UE延展的时频资源为OFDM序号从(K+14)~(K+15),而频域占用资源可以为f1-f9,则延展后的资源分配示意图如图3e所示(图3e灰色部分)。
当然,网络侧也根据为该UE分配的初始资源的频域信息,将为所述UE分配的频域资源向后进行延展,延展的时间长度由被其它UE占用的总资源和UE分配的频域资源决定。
网络侧初始为UE分配的资源仍然以图3c所示的资源分配示意图为例,网络侧根据需要补偿的资源块数量优先在频率上进行延展,整个频率带宽占满后再向下一符号延展,延展后的资源分配示意图如图3f所示(图3f灰色部分)。
本发明实施例提供的下行数据传输方法中,如果网络侧确定初始为UE分配的资源中被调度给其他UE使用时,则在向UE发送的下行数据中包含用户标识被其他UE占用的时频资源的标识数据,使得UE可以根据标识数据,确定哪些资源被其他UE被占用,这样,UE在进行数据检测时,可以避开被其他UE占用的资源,避免接收到错误数据,而影响UE数据接收的可靠性。另外,本发明实施例提供的下行数据传输方法中,如果分配给某UE的资源被其他UE占用,网络侧还可以为终端调度补偿资源,以传输被其他UE占用资源所传输的数据,基于此,标识数据还可以用于指示UE为其补偿的资源信息,如果UE的TTI不固定,则网络侧可以在时域上做相应的扩展,将为UE分配的资源在时域上自动延展,以传输被其他UE占用资源所传输的数据。
基于同一发明构思,本发明实施例中还提供了一种下行数据检测方法、下行数据传输及检测装置、相关设备和系统,由于上述方法、装置、相关设备及系统解决问题的原理与上述的下行数据传输方法相似,因此上述方法、装置、相关设备及系统的实施可以参见下行数据传输方法的实施,重复之处不再赘述。
如图4-1所示,其为本发明实施例提供的下行数据检测方法的实施流程示意图,可以包括以下步骤:
S41、接收网络侧发送的资源分配指示信息。
其中,网络侧向UE发送的所述资源分配指示信息中至少包含补充资源分配指示信息;所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息。
较佳的,网络侧可以在判断出分配给该UE的资源被其他UE占用后,向该UE发送包含补偿资源分配指示信息的资源分配指示信息。
S42、根据接收到的资源分配指示信息,在初始资源分配指示信息指示的资源位置中、除被其他UE占用的资源位置以外的资源位置上进行数据检测。
其中,检测的数据可以用作后续数据检测的有用信息和辅助信息,具体的,UE可以将检测的数据与后续补偿资源传输的数据合并得到完整的数据。具体的,UE可以根据步骤S41中接收到的资源分配指示信息,在初始资源分配指示信息指示的资源位置中、除被其他UE占用的资源位置以外的资源位置上进行数据检测,而不对原来分配给自己、而被其他UE占用的资源进行检测,避免接收到错误数据,从而保证了UE数据接收的可靠性。
其中,在步骤S41中接收到的补充资源分配指示信息中还包括为UE补偿的补偿资源的资源信息,该补偿资源的资源信息可以包括补偿资源的调度时频资源信息。基于此,本发明实施例提供的下行数据检测方法,还可以包括以下步骤:在补偿资源分配指示信息中的调度时频资源信息对应的资源位置上进行数据检测。
如图4-2所示,其为本发明实施例提供的接收网络侧发送的资源分配指示信息,的具体处理流程示意图,可以包括以下步骤:
S411、接收网络侧传输的下行数据。
其中,网络侧向UE传输的下行数据中包含用于标识被其他UE占用的时频资源的标识数据。
S412、根据接收到的标识数据,在网络侧初始分配的时频资源位置中、除被其他UE占用的时频资源以外的时频资源位置上进行数据检测。
具体的,UE可以根据步骤S411中接收到的标识数据,在网络侧初始分配的资源位置中、除被其他UE占用的资源位置以外的资源位置上进行数据检测,而不对原来分配给自己、而被其他UE占用的资源进行检测,避免接收到错误数据,从而保证了UE数据接收的可靠性。
具体实施时,步骤S411中接收到的标识数据可以用于标识被其他UE占用的时频资源的起止位置。这样,步骤S412中,UE可以根据被其他UE占用的时频资源的起止位置,在网络侧初始分配的时频资源位置中、跳过被其他UE占用的时频资源位置进行数据检测。
较佳的,网络侧可以使用与UE约定的特定符号序列或者特定符号特征标识被其他UE占用的时频资源的起止位置;或者网络侧在使用了特定符号序列或者特定符号特征的同时,使用与下行数据中除标识数据以外的下行数据不同的功率传输该特定符号序列和特定符号特征,较佳的,网络侧传输标识数据的传输功率可以大于其他的下行数据,以使UE能够确定出初始分配给自身的资源中、被其他UE占用的资源。
具体实施时,标识数据还可以用于指示需要为UE补偿传输的信息或者不能可靠检测的数据。
较佳的,本发明实施例提供的数据检测方法,还可以包括以下步骤:根据其他UE占用资源的时频信息,在基于所述网络侧分配的初始资源位置延展相应的资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息。其中,其他UE占用资源的时频信息可以根据标识数据指示的其他UE占用的时频资源位置确定。
其中,所述其他UE占用资源的时频信息包括其他UE占用资源的时域信息,基于此,可以根据其他UE占用资源的时域信息,在基于所述网络侧分配的初始资源位置向后延展相应的时间长度的资源位置上,检测网络侧补偿传输 的、被其他UE占用而未传输的信息或不能可靠检测的信息。其中,其他UE占用资源的时域信息可以根据标识数据指示的其他UE占用的时频资源位置确定。
具体实施时,还可以根据为网络侧分配的初始资源的频域信息,在基于所述网络侧分配的初始资源位置延展的时频资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息。其中,延展区域的时间长度由被其它UE占用的总资源和UE分配的频域资源决定。
如图5所示,为本发明实施例提供的下行数据传输装置的结构示意图,可以包括:
传输单元51,用于向用户终端UE发送资源分配指示信息。
其中,所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息。
较佳的,补充资源分配指示信息中还包括为所述UE补偿的补偿资源的资源信息。所述补偿资源的资源信息包括所述补偿资源的调度时频资源信息。
较佳的,为所述UE分配的、被其他UE占用的资源指示信息可以包括被占用资源的位置信息。被占用资源的位置信息包括被占用资源的时频资源块位置信息或者被占用资源的OFDM符号的起止序号。
较佳的,具体实施时,网络侧可以使用PDCCH传输所述补充资源分配指示信息;或者使用ePDCCH传输所述补充资源分配指示信息;或者使用特定的时频资源传输所述补充资源分配指示信息。
可选的,本发明实施提供的下行数据传输装置,还可以包括判断单元52,其中:
判断单元52,用于在所述传输单元51在向UE发送资源分配指示信息前,判断为所述UE分配的资源是否被其他UE占用;
所述传输单元51,具体用于如果为所述UE分配的资源被其他UE占用,则向所述UE发送所述资源分配指示信息。
如图5所示,为本发明实施例提供的下行数据传输装置的还可以包括:
数据生成单元53,用于为UE生成待传输的下行数据。
相应的,所述传输单元51,用于在UE被调度的时频资源上传输下行数据。
其中,传输的下行数据中包含用于标识为UE分配、但被其他UE占用的时频资源的标识数据。
较佳的,标识数据可以用于标识被其他UE占用的时频资源的起止位置。标识数据中可以包括与UE约定的特定符号序列或者特定符号特征。
更佳的,网络侧可以使用与传输其他下行数据不同的功率传输上述的特定符号序列或者特定符号特征。
较佳的,具体实施时,标识数据还可以用于指示需要为所述UE补偿传输的信息或者不能可靠检测的信息。
可选的,本发明实施例提供的下行数据传输方法,还可以包括:
资源延展单元,用于根据其他UE占用资源的时频信息,将为所述UE分配的时频资源进行相应的延展,用于补偿传输被其他UE占用而未传输的信息或不能可靠检测的信息。
所述其他UE占用资源的时频信息包括其他UE占用资源的时域信息;以及所述资源延展单元,具体用于根据其他UE占用资源的时域信息,将为所述UE分配的时频资源向后延展相应的时间长度。
或者,资源延展单元,还用于根据所述UE被分配资源的频域信息,将为所述UE分配的时频资源向后进行延展,延展的时间长度由被其它UE占用的总资源和UE分配的频域资源决定。。
可选的,所述判断单元52,用于在所述传输单元51向UE传输下行数据前,判断为所述UE分配的资源是否被其他UE占用;
所述传输单元51,具体用于如果为所述UE分配的资源被其他UE占用时, 则向所述UE传输所述下行数据。
为了描述的方便,以上各部分按照功能划分为各模块(或单元)分别描述。当然,在实施本发明时可以把各模块(或单元)的功能在同一个或多个软件或硬件中实现。例如,本发明实施例提供的下行数据传输装置可以设置于基站中。
如图6所示,为本发明实施例提供的下行数据检测装置的结构示意图,可以包括:
接收单元61,用于接收网络侧发送的资源分配指示信息,所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息;
检测单元62,用于根据所述资源分配指示信息,在所述初始资源分配指示信息指示的资源位置中、除被其他UE占用的资源位置以外的资源位置上进行数据检测。
其中,检测的数据可以用作后续数据检测的有用信息和辅助信息。
所述补充资源分配指示信息中还包括为所述UE补偿的补偿资源的资源信息;所述补偿资源的资源信息包括所述补偿资源的调度时频资源信息。所述检测单元62,还可以用于在所述调度时频资源信息对应的资源位置上进行数据检测。
接收单元61,用于接收网络侧传输的下行数据,所述下行数据中包含用于标识被其他UE占用的时频资源的标识数据;
检测单元62,用于根据所述标识数据,在所述网络侧初始分配的时频资源位置中、除被其他UE占用的时频资源以外的时频资源位置上进行数据检测。
所述标识数据用于标识被其他UE占用的时频资源的起止位置。
所述检测单元62,具体用于根据被其他UE占用的时频资源的起止位置,在所述网络侧初始分配的时频资源位置中、跳过被其他UE占用的时频资源位置进行数据检测。
较佳的,所述标识数据包括与所述网络侧约定的特定符号序列或者特定符号特征;或所述标识数据使用的特定符号序列或者特定符号特征的传输功率与所述下行数据中其他下行数据的传输功率不同。
具体实施时,所述标识数据还可以用于指示需要为UE补偿传输的信息或者不能可靠检测的数据。
较佳的,所述检测单元62,还用于根据其他UE占用资源的时频信息,在基于所述网络侧分配的初始资源位置延展相应的资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息。
所述其他UE占用资源的时频信息包括其他UE占用资源的时域信息;以及
所述检测单元62,具体用于根据其他UE占用资源的时域信息,在基于所述网络侧分配的初始资源位置向后延展相应的时间长度的资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息。
所述检测单元62,还可以用于根据网络侧分配的初始资源的频域信息,在基于所述网络侧分配的初始资源位置延展的时频资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息,其中延展区域的时间长度由被其它UE占用的总资源和网络侧分配的频域资源决定。
为了描述的方便,以上各部分按照功能划分为各模块(或单元)分别描述。当然,在实施本发明时可以把各模块(或单元)的功能在同一个或多个软件或硬件中实现。例如,本发明实施例提供的下行数据检测装置可以设置于终端中。
如图7所示,为本发明实施例提供的数据传输系统的结构示意图,包括基站71和终端72,其中,基站71中设置有图5所示的下行数据传输装置,终端72中设置有图6所示的下行数据检测装置。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (54)

  1. 一种下行数据传输方法,包括:
    向用户终端UE发送资源分配指示信息;
    所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息。
  2. 如权利要求1所述的方法,其中,所述补充资源分配指示信息中还包括分配给所述UE的补偿资源的资源信息。
  3. 如权利要求2所述的方法,其中,所述补偿资源的资源信息包括所述补偿资源的调度时频资源信息。
  4. 如权利要求1所述的方法,其中,所述被其他UE占用资源的资源信息包括被占用资源的位置信息。
  5. 如权利要求4所述的方法,其中,所述被占用资源的位置信息包括被占用资源的时频资源块位置信息或者被占用资源的正交频分复用OFDM符号的起止序号。
  6. 如权利要求1~5任一项所述的方法,其中,所述向用户终端UE发送资源分配指示信息,还包括:
    使用物理下行控制信道PDCCH传输所述补充资源分配指示信息;
    或者使用增强物理下行控制信道ePDCCH传输所述补充资源分配指示信息;
    或者使用特定的时频资源传输所述补充资源分配指示信息。
  7. 如权利要求1所述的方法,其中,在向UE发送资源分配指示信息之前,所述方法还包括:
    判断为所述UE分配的资源是否被其他UE占用;
    如果为所述UE分配的资源被其他UE占用,则向所述UE发送所述补充资 源分配指示信息。
  8. 如权利要求1所述的方法,其中,所述向用户终端UE发送资源分配指示信息,包括:
    在所述UE被调度的时频资源上传输下行数据,所述下行数据中至少包含补充资源分配指示信息;其中,所述补充资源分配指示信息中还包括有用于标识分配给所述UE、且被其他UE所占用的时频资源的标识数据。
  9. 如权利要求8所述的方法,其中,所述标识数据用于标识被其他UE占用的时频资源的起止位置。
  10. 如权利要求9所述的方法,其中,所述标识数据包括与所述UE约定的特定符号序列或特定符号特征。
  11. 如权利要求10所述的方法,其中,所述特定符号序列或所述特定符号特征的传输功率与所述下行数据中的其他下行数据的传输功率不同。
  12. 如权利要求8~11任一项所述的方法,其中,所述标识数据还用于指示需要为所述UE补偿传输的信息或者不能可靠检测的数据。
  13. 如权利要求8所述的方法,其中,还包括:
    根据其他UE占用资源的时频信息,将为所述UE分配的时频资源进行相应的延展,用于补偿传输被其他UE占用而未传输的信息或不能可靠检测的信息。
  14. 如权利要求13所述的方法,其中,所述其他UE占用资源的时频信息包括其他UE占用资源的时域信息;以及
    根据其他UE占用资源的时频信息,将为所述UE分配的时频资源进行相应的延展,具体包括:
    根据其他UE占用资源的时域信息,将为所述UE分配的时频资源向后延展相应的时间长度。
  15. 如权利要求8所述的方法,其中,还包括:
    根据所述UE被分配资源的频域信息,将为所述UE分配的时频资源向后 进行延展,延展的时间长度由被其它UE占用的总资源和UE分配的频域资源决定。
  16. 一种下行数据检测方法,包括:
    接收网络侧发送的资源分配指示信息,所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息;
    根据所述资源分配指示信息,在所述初始资源分配指示信息指示的资源位置中、除被其他UE占用的资源位置以外的资源位置上进行数据检测。
  17. 如权利要求16所述的方法,其中,所述补充资源分配指示信息中还包括分配给所述UE的补偿资源的资源信息。
  18. 如权利要求17所述的方法,其中,所述补偿资源的资源信息包括所述补偿资源的调度时频资源信息;以及
    所述方法还包括:在所述调度时频资源信息对应的资源位置上进行数据检测。
  19. 如权利要求16所述的方法,其中,接收网络侧发送的资源分配指示信息包括:
    接收网络侧传输的下行数据,所述下行数据中至少包含补充资源分配指示信息;其中,所述补充资源分配指示信息中还包括有用于标识分配给所述UE、且被其他UE所占用的时频资源的标识数据;
    根据所述标识数据,在所述网络侧初始分配的时频资源位置中、除被其他UE占用的时频资源以外的时频资源位置上进行数据检测。
  20. 如权利要求19所述的方法,其中,所述标识数据用于标识被其他UE占用的时频资源的起止位置;以及
    根据所述标识数据,在所述网络侧初始分配的时频资源位置中、除被其他UE占用的时频资源以外的时频资源位置上进行数据检测,具体包括:
    根据被其他UE占用的时频资源的起止位置,在所述网络侧初始分配的时 频资源位置中、跳过被其他UE占用的时频资源位置进行数据检测。
  21. 如权利要求19所述的方法,其中,所述标识数据包括与所述网络侧约定的特定符号序列或特定符号特征;或所述标识数据使用的特定符号序列或者特定符号特征的传输功率与所述下行数据中其他下行数据的传输功率不同。
  22. 如权利要求19所述的方法,其中,所述标识数据还用于指示需要补偿的信息或者不能可靠检测的数据。
  23. 如权利要求19所述的方法,其中,还包括:
    根据其他UE占用资源的时频信息,在基于所述网络侧分配的初始资源位置延展相应的资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息。
  24. 如权利要求23所述的方法,其中,所述其他UE占用资源的时频信息包括其他UE占用资源的时域信息;以及
    根据其他UE占用资源的时域信息,在基于所述网络侧分配的初始资源位置延展相应的资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息,具体包括:
    根据其他UE占用资源的时域信息,在基于所述网络侧分配的初始资源位置向后延展相应的时间长度的资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息。
  25. 如权利要求19所述的方法,其中,还包括:
    根据网络侧分配的初始资源的频域信息,在基于所述网络侧分配的初始资源位置延展的时频资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息,其中延展区域的时间长度由被其它UE占用的总资源和UE分配的频域资源决定。
  26. 一种下行数据传输装置,包括:
    传输单元,用于向用户终端UE发送资源分配指示信息,所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含 用于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息。
  27. 如权利要求26所述的装置,其中,所述补充资源分配指示信息中还包括为所述UE补偿的补偿资源的资源信息。
  28. 如权利要求27所述的装置,其中,所述补偿资源的资源信息包括所述补偿资源的调度时频资源信息。
  29. 如权利要求26所述的装置,其中,所述为所述UE分配的、被其他UE占用的资源指示信息包括被占用资源的位置信息。
  30. 如权利要求29所述的装置,其中,所述被占用资源的位置信息包括被占用资源的时频资源块位置信息或者被占用资源的正交频分复用OFDM符号的起止序号。
  31. 如权利要求26~30任一权利要求所述的装置,其中,使用物理下行控制信道PDCCH传输所述补充资源分配指示信息;或者使用增强型物理下行控制信道ePDCCH传输所述补充资源分配指示信息;或者使用特定的时频资源传输所述补充资源分配指示信息。
  32. 如权利要求26所述的装置,其中,还包括判断单元,其中:
    所述判断单元,用于在所述传输单元在向UE发送补充资源分配指示信息前,判断为所述UE分配的资源是否被其他UE占用;
    所述传输单元,具体用于如果为所述UE分配的资源被其他UE占用,则向所述UE发送所述补充资源分配指示信息。
  33. 如权利要求26所述的装置,其中,包括:
    传输单元,用于在所述UE被调度的时频资源上传输下行数据,所述下行数据中至少包含补充资源分配指示信息;其中,所述补充资源分配指示信息中还包括有用于标识分配给所述UE、且被其他UE所占用的时频资源的标识数据。
  34. 如权利要求33所述的装置,其中,所述标识数据用于标识被其他UE占用的时频资源的起止位置。
  35. 如权利要求34所述的装置,其中,所述标识数据包括与所述UE约定 的特定符号序列或特定符号特征。
  36. 如权利要求35所述的装置,其中,所述特定符号序列或所述特定符号特征的传输功率与所述下行数据中的其他下行数据的传输功率不同。
  37. 如权利要求33~36任一权利要求所述的装置,其中,所述标识数据还用于指示为所述UE需要补偿的信息或者不能可靠检测的信息。
  38. 如权利要求33所述的装置,其中,还包括:
    资源延展单元,用于根据其他UE占用资源的时频信息,将为所述UE分配的时频资源进行相应的延展,用于补偿传输被其他UE占用而未传输的信息或不能可靠检测的信息。
  39. 如权利要求38所述的装置,其中,所述其他UE占用资源的时频信息包括其他UE占用资源的时域信息;以及
    所述资源延展单元,具体用于根据其他UE占用资源的时域信息,将为所述UE分配的时频资源向后延展相应的时间长度。
  40. 如权利要求33所述的装置,其中,
    所述资源延展单元,还用于根据所述UE被分配资源的频域信息,将为所述UE分配的时频资源向后进行延展,延展的时间长度由被其它UE占用的总资源和UE分配的频域资源决定。
  41. 如权利要求33所述的装置,其中,还包括判断单元,其中:
    所述判断单元,还用于在所述传输单元向UE传输所述标识数据前,判断为所述UE分配的资源是否被其他UE占用;
    所述传输单元,具体用于如果为所述UE分配的资源被其他UE占用,则向所述UE发送所述标识数据。
  42. 一种基站,其中,包括权利要求26~41任一权利要求所述的装置。
  43. 一种数据检测装置,包括:
    接收单元,用于接收网络侧发送的资源分配指示信息,所述资源分配指示信息中至少包含补充资源分配指示信息,所述补充资源分配指示信息中包含用 于指示为所述UE分配的资源、且被其他UE占用的资源的资源信息;
    检测单元,用于根据所述资源分配指示信息,在所述初始资源分配指示信息指示的资源位置中、除被其他UE占用的资源位置以外的资源位置上进行数据检测。
  44. 如权利要求43所述的装置,其中,所述补充资源分配指示信息中还包括为所述UE补偿的补偿资源的资源信息。
  45. 如权利要求44所述的装置,其中,所述补偿资源的资源信息包括所述补偿资源的调度时频资源信息;以及
    所述检测单元,还用于根据所述调度时频资源信息对应的资源位置上进行数据检测。
  46. 如权利要求43所述的装置,其中,
    接收单元,用于接收网络侧传输的下行数据,所述下行数据中包含用于标识被其他UE占用的时频资源的标识数据;
    检测单元,用于根据所述标识数据,在所述网络侧初始分配的时频资源位置中、除被其他UE占用的时频资源以外的时频资源位置上进行数据检测。
  47. 如权利要求46所述的装置,其中,所述标识数据用于标识被其他UE占用的时频资源的起止位置;以及
    所述检测单元,具体用于根据被其他UE占用的时频资源的起止位置,在所述网络侧初始分配的时频资源位置中、跳过被其他UE占用的时频资源位置进行数据检测。
  48. 如权利要求47所述的装置,其中,所述标识数据包括与所述网络侧约定的特定符号序列或特定符号特征;或者所述标识数据包括与所述网络侧约定的特定符号序列或特定符号特征且所述特定符号序列或所述特定符号特征的传输功率与所述下行数据中其他下行数据的传输功率不同。
  49. 如权利要求46所述的装置,其中,所述标识数据还用于指示需要补偿的信息或者不能可靠检测的信息。
  50. 如权利要求46所述的装置,其中,
    所述检测单元,还用于根据其他UE占用资源的时频信息,在基于所述网络侧分配的初始资源位置延展相应的资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息。
  51. 如权利要求50所述的装置,其中,所述其他UE占用资源的时频信息包括其他UE占用资源的时域信息;以及
    所述检测单元,具体用于根据其他UE占用资源的时域信息,在基于所述网络侧分配的初始资源位置向后延展相应的时间长度的资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息。
  52. 如权利要求46所述的装置,其中,
    所述检测单元,具体用于根据网络侧分配的初始资源的频域信息,在基于所述网络侧分配的初始资源位置延展的时频资源位置上,检测网络侧补偿传输的、被其他UE占用而未传输的信息或不能可靠检测的信息,其中延展区域的时间长度由被其它UE占用的总资源和网络侧分配的频域资源决定。
  53. 一种终端,包括权利要求43-52任一项所述的装置。
  54. 一种下行数据传输系统,包括权利要求42所述的基站和权利要求53所述的终端。
PCT/CN2017/074457 2016-04-01 2017-02-22 一种下行数据传输及检测方法、装置、相关设备和系统 WO2017166958A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610204325.0A CN107295661A (zh) 2016-04-01 2016-04-01 一种下行数据传输及检测方法、装置、相关设备和系统
CN201610204175.3A CN107295682B (zh) 2016-04-01 2016-04-01 一种下行数据传输及检测方法、装置、相关设备和系统
CN201610204325.0 2016-04-01
CN201610204175.3 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017166958A1 true WO2017166958A1 (zh) 2017-10-05

Family

ID=59962543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074457 WO2017166958A1 (zh) 2016-04-01 2017-02-22 一种下行数据传输及检测方法、装置、相关设备和系统

Country Status (1)

Country Link
WO (1) WO2017166958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662305A (zh) * 2018-06-29 2020-01-07 珠海市魅族科技有限公司 上行资源调度方法及装置、网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252919A (zh) * 1997-04-21 2000-05-10 诺基亚流动电话有限公司 通用分组无线电业务中的物理信道的解除分配
CN101180907A (zh) * 2005-05-31 2008-05-14 高通股份有限公司 使用补充指配来递减资源
CN104521306A (zh) * 2012-08-02 2015-04-15 日本电气株式会社 资源分配信令

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252919A (zh) * 1997-04-21 2000-05-10 诺基亚流动电话有限公司 通用分组无线电业务中的物理信道的解除分配
CN101180907A (zh) * 2005-05-31 2008-05-14 高通股份有限公司 使用补充指配来递减资源
CN104521306A (zh) * 2012-08-02 2015-04-15 日本电气株式会社 资源分配信令

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662305A (zh) * 2018-06-29 2020-01-07 珠海市魅族科技有限公司 上行资源调度方法及装置、网络侧设备
CN110662305B (zh) * 2018-06-29 2022-11-29 珠海市魅族科技有限公司 上行资源调度方法及装置、网络侧设备

Similar Documents

Publication Publication Date Title
US10945280B2 (en) User equipments, base stations and methods for uplink transmission without grant
CN105025574B (zh) 一种数据传输方法及装置
US9998944B2 (en) System and method of channel control in a wireless communication system
US11445553B2 (en) Method executed by user equipment, user equipment and base station
TWI699132B (zh) 用於行動通訊系統之基地台及使用者裝置
US11388702B2 (en) Resource determining method, apparatus, network element, and system
JP5613250B2 (ja) 通信システムにおける方法および装置
JP2018536360A (ja) 無線通信方法および装置
JP2018528694A (ja) 低複雑度の狭帯域端末のためのランダムアクセス手順でのharqメッセージに割り当てられたリソースを示すための方法
WO2018233629A1 (zh) 资源指示方法、移动终端及基站
US20200068556A1 (en) Communication system
CN104767595A (zh) Harq-ack反馈信息的传输方法、系统及终端和基站
CN104662978A (zh) 资源分配方法及设备
WO2012048568A1 (zh) 一种解决信道冲突的方法、装置及系统
CN109842939B (zh) 上行链路传输方法、设备和计算机可读介质
CN114451038A (zh) 用于上行链路配置授权传输的上行链路控制信息
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
WO2018171352A1 (zh) 一种数据传输方法及终端
WO2018121052A1 (zh) 上行控制的资源确定方法、装置、发送端和接收端
WO2017031648A1 (zh) 一种上行数据传输方法和装置
WO2019246451A1 (en) User equipments, base stations and methods for time-domain resource allocation
WO2016184365A1 (zh) 上行调度方法、装置、设备和系统
US11252747B2 (en) Communication method and device
US20220256523A1 (en) Data multiplexing transmission method, base station, terminal, and storage medium
US12075418B2 (en) Method and device for reporting uplink control information, storage medium, and user equipment

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17772989

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 29/01/2019 )

122 Ep: pct application non-entry in european phase

Ref document number: 17772989

Country of ref document: EP

Kind code of ref document: A1