WO2017166311A1 - 一种上行信息的传输方法及设备、系统 - Google Patents

一种上行信息的传输方法及设备、系统 Download PDF

Info

Publication number
WO2017166311A1
WO2017166311A1 PCT/CN2016/078374 CN2016078374W WO2017166311A1 WO 2017166311 A1 WO2017166311 A1 WO 2017166311A1 CN 2016078374 W CN2016078374 W CN 2016078374W WO 2017166311 A1 WO2017166311 A1 WO 2017166311A1
Authority
WO
WIPO (PCT)
Prior art keywords
time unit
time
length
uplink
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2016/078374
Other languages
English (en)
French (fr)
Inventor
郑娟
官磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to PCT/CN2016/078374 priority Critical patent/WO2017166311A1/zh
Priority to CN201680080973.8A priority patent/CN108605319A/zh
Publication of WO2017166311A1 publication Critical patent/WO2017166311A1/zh
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to the field of wireless communications technologies, and in particular, to a method, device, and system for transmitting uplink information.
  • the Long Term Evolution (LTE) system can be in the unlicensed band (also known as “unlicensed” Data transmission on the band ”) resources, and data transmission on the unlicensed band resources can be carried out by carrier aggregation (CA) technology, dual connectivity (DC, Dual Connectivity) technology or on unlicensed spectrum resources.
  • CA carrier aggregation
  • DC dual connectivity
  • LAA-LTE Licensed-Assisted Evolution Long Term Evolution
  • the unlicensed carrier on multiple unlicensed band resources is configured to communicate, so that the licensed carrier can inherit the advantages of traditional wireless communication in mobility, security, quality of service, and simultaneous multi-user scheduling. It is possible to use the unlicensed carrier to achieve the purpose of splitting the transmitted data amount, thereby reducing the load of the licensed carrier.
  • the communication device needs to follow the LBT (Listen Before Talk) rule, and the LBT rule requires the communication device to use the unlicensed band resource.
  • LBT Listen Before Talk
  • the LBT rule requires the communication device to use the unlicensed band resource.
  • the LBT rule Before the data transmission, it first listens to whether the corresponding channel is idle. If yes, the data transmission on the corresponding channel and the data transmission time on the corresponding channel are limited. If not, the data cannot be performed on the corresponding channel. Transmission, which makes the transmission of data on the unlicensed band resources of the communication equipment in the LTE system both opportunistic.
  • the access network device in the LTE system performs downlinking by preempting the unlicensed band resources. After the information is transmitted, the terminal equipment in the LTE system needs to be able to quickly preempt the unlicensed band resources and transmit the uplink information. Therefore, it is particularly important to determine the length of the first time unit for transmitting the uplink information.
  • the terminal device can determine the length of time of the first time unit for transmitting uplink information by using the frequency band configuration, or for the LTE system using Time Division Duplex (TDD), the terminal device
  • the length of time of the first time unit for transmitting uplink information can be determined by a semi-static high layer signaling configuration. It can be seen that the length of time of the first determined time unit for transmitting uplink information is fixed and cannot be flexibly configured.
  • the embodiment of the invention discloses a method, a device and a system for transmitting uplink information, which can flexibly configure the length of time of the first time unit for transmitting uplink information.
  • a first aspect of the embodiments of the present invention discloses a method for transmitting uplink information, where the method may include the following operations:
  • the terminal device receives the first indication information sent by the access network device, and determines the length of time of the second time unit according to the first indication information, that is, the first indication information is used to indicate the length of time of the second time unit, and the second time unit is a first time unit for uplink information transmission after the third time unit, the third time unit being the last downlink time unit for downlink information transmission before the second time unit, and the terminal device is in the second time unit and/or Or uplink information is sent in an uplink time unit after the second time unit.
  • the index of the second time unit is equal to the index of the third time unit when the time length of the second time unit is less than or equal to the preset time length, and the time length of the second time unit is greater than or equal to the preset time.
  • the length of the second time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the third
  • An index of the time unit when the time length of the second time unit is greater than the preset time length, the index of the second time unit is greater than the index of the third time unit, wherein the index of the time unit is used to indicate the corresponding time
  • the unit may be specifically configured to indicate a location of the corresponding time unit on the unlicensed band resource, and the index of the time unit may be represented by a subframe index of the subframe in which the time unit is located. In this way, the first indication information sent by the access network device dynamically configures the length of time of the first time
  • the foregoing first time unit may carry common control information, and the common control information Used to indicate the end time of the downlink burst to which the first time unit belongs.
  • the common control information may be carried in a physical layer common control channel.
  • the terminal device can determine the first time unit by detecting the presence or absence of the common control information, and the reliability when detecting the presence of the first time unit is relatively high.
  • carrying the first indication information in the first time unit enables the terminal device to accurately and reliably determine the first time unit including the first indication information.
  • the common control information may include the foregoing first indication information, that is, the first indication information may be carried in the redundant bits of the common control information, so that the second time can be dynamically configured by using the first indication information. At the same time as the length of the unit, the overhead of signaling is reduced.
  • the foregoing first indication information may be carried in a physical layer control channel
  • the physical layer control channel may include at least one of: a physical downlink control channel (PDCCH) and an enhanced physical downlink control channel
  • the first indication information may be specifically carried in the physical layer common control channel, so that the time length of the second time unit can be dynamically configured by using the first indication information, Reduce the overhead of signaling.
  • the first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the third time unit belongs to the second downlink burst, A downlink burst is located before the second downlink burst, and L downlink bursts are included between the first downlink burst and the second downlink burst, L ⁇ 0 and L is an integer.
  • the downlink burst to which the third time unit belongs and the uplink burst to which the second time unit belongs may be in the same transmission opportunity (TxOP, Transmission Opportunity), or may be in two adjacent TxOPs.
  • the preset time length is less than or equal to 1 ms.
  • the preset time length is equal to 1 ms.
  • the preset time length may be equal to a length of time between an end time of the third time unit and an end boundary of the subframe where the third time unit is located; or The preset time length may be equal to the length of time between the end time of the third time unit and the end boundary of the subframe in which the third time unit is located, and then the length of time for removing the transceiving conversion time, or equal to the end of the third time unit.
  • the length of time between the end of the sub-frame in which the third time unit is located is removed, and the length of time for transmitting and receiving the conversion time and the actual length of time or maximum time required for the terminal device to perform channel evaluation are removed.
  • the method for transmitting the uplink information may further include the following operations:
  • the terminal device determines the time length of the fourth time unit according to the first indication information, where the fourth time unit is the last time unit for transmitting the uplink information in the uplink burst to which the second time unit belongs.
  • the access network device needs to perform channel evaluation before the downlink burst after the uplink burst to which the second time unit belongs, so that the time length of the fourth time unit can be dynamically changed by the indication of the foregoing first indication information. Therefore, a certain time range can be reserved for the access network device to perform channel evaluation.
  • a second aspect of the embodiment of the present invention discloses another method for transmitting uplink information, where the method may include the following operations:
  • the first network unit sends the first indication information to the terminal device, where the first indication information is used to indicate the length of time of the second time unit, and the second time unit is the first one after the third time unit.
  • the first indication information is used to indicate the length of time of the second time unit
  • the second time unit is the first one after the third time unit.
  • a time unit for uplink information transmission the third time unit being a last time unit for downlink information transmission before the second time unit;
  • the access network device receives uplink information sent by the terminal device in the uplink time unit after the second time unit and/or the second time unit.
  • the index of the second time unit is equal to the index of the third time unit when the time length of the second time unit is less than or equal to the preset time length, and the time length of the second time unit is greater than or equal to the preset time.
  • the length of the second time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the third
  • An index of the time unit when the time length of the second time unit is greater than the preset time length, the index of the second time unit is greater than the index of the third time unit, wherein the index of the time unit is used to indicate the corresponding time
  • the unit may be specifically configured to indicate a location of the corresponding time unit on the unlicensed band resource, and the index of the time unit may be represented by a subframe index of the subframe in which the time unit is located. In this way, the first indication information sent by the access network device dynamically configures the length of time of the first time
  • the first time unit may be configured to carry common control information, and the common control information is used to indicate an end time of a downlink burst to which the first time unit belongs.
  • the common control information may include the foregoing first indication information, that is, the first indication information may be carried in the redundant bits of the common control information, so that the second time can be dynamically configured by using the first indication information. At the same time as the length of the unit, the overhead of signaling is reduced.
  • the foregoing first indication information may be carried in a physical layer control channel
  • the physical layer control channel may include at least one of: a physical downlink control channel (PDCCH) and an enhanced physical downlink control channel
  • the first indication information may be specifically carried in the physical layer common control channel, so that the time length of the second time unit can be dynamically configured by using the first indication information, Reduce the overhead of signaling.
  • the first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the third time unit belongs to the second downlink burst, A downlink burst is located before the second downlink burst, and L downlink bursts are included between the first downlink burst and the second downlink burst, L ⁇ 0 and L is an integer.
  • the downlink burst to which the third time unit belongs and the uplink burst to which the second time unit belongs may be in the same transmission opportunity (TxOP, Transmission Opportunity), or may be in two adjacent TxOPs.
  • the preset time length is less than or equal to 1 ms.
  • the preset time length is equal to 1 ms.
  • the preset time length may be equal to a length of time between an end time of the third time unit and an end boundary of the subframe where the third time unit is located; or The preset time length may be equal to the length of time between the end time of the third time unit and the end boundary of the subframe in which the third time unit is located, and then the length of time for removing the transceiving conversion time, or equal to the end of the third time unit.
  • the length of time between the end of the sub-frame in which the third time unit is located is removed, and the length of time for transmitting and receiving the conversion time and the actual length of time or maximum time required for the terminal device to perform channel evaluation are removed.
  • the first indication information may be used to indicate a time unit of the last one of the uplink bursts to which the second time unit belongs to send uplink information.
  • the access network device needs to perform channel evaluation before the downlink burst after the uplink burst to which the second time unit belongs, so that the time length of the fourth time unit can be dynamically changed by the indication of the foregoing first indication information. Therefore, a certain time range can be reserved for the access network device to perform channel evaluation.
  • a third aspect of the embodiments of the present invention discloses a terminal device, where the terminal device includes a module for performing a method for transmitting uplink information disclosed in the first aspect of the embodiment of the present invention.
  • a fourth aspect of the embodiments of the present invention discloses an access network device, where the access network device includes A module for transmitting a uplink information disclosed in a second aspect of the embodiments of the present invention.
  • the fifth aspect of the embodiment of the present invention discloses another terminal device, which may include a processor, a memory, a transmitter, and a receiver, where:
  • a receiver configured to receive first indication information sent by the access network device in the first time unit
  • a set of program code is stored in the memory, and the processor is used to call the program code stored in the memory to perform the following operations:
  • a transmitter configured to send uplink information in an uplink time unit after the second time unit and/or the second time unit;
  • the index of the second time unit when the time length of the second time unit is less than the preset time length, the index of the second time unit is equal to the index of the third time unit, and when the time length of the second time unit is greater than or equal to the preset time length, the second The index of the time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the index of the third time unit, when the second time unit When the length of time is greater than the preset time length, the index of the second time unit is greater than the index of the third time unit.
  • the first time unit may be configured to carry common control information, and the common control information is used to indicate an end time of a downlink burst to which the first time unit belongs.
  • the common control information may include the foregoing first indication information, that is, the first indication information may be carried in the redundant bits of the common control information, so that the second time can be dynamically configured by using the first indication information. At the same time as the length of the unit, the overhead of signaling is reduced.
  • the foregoing first indication information may be carried in a physical layer common control channel, so that the signaling time is reduced while the time length of the foregoing second time unit is dynamically configured by using the first indication information.
  • the first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the third time unit belongs to the second downlink burst, A downlink burst is located before the second downlink burst, and L downlink bursts are included between the first downlink burst and the second downlink burst, L ⁇ 0 and L is an integer.
  • the downlink of the third time unit mentioned above The burst and the uplink burst to which the second time unit belongs may be in the same transmission opportunity (TxOP, Transmission Opportunity), or may be in two adjacent TxOPs.
  • the preset time length is less than or equal to 1 ms.
  • the preset time length is equal to 1 ms.
  • the preset time length may be equal to a length of time between an end time of the third time unit and an end boundary of the subframe where the third time unit is located; or The preset time length may be equal to the length of time between the end time of the third time unit and the end boundary of the subframe in which the third time unit is located, and then the length of time for removing the transceiving conversion time, or equal to the end of the third time unit.
  • the length of time between the end of the sub-frame in which the third time unit is located is removed, and the length of time for transmitting and receiving the conversion time and the actual length of time or maximum time required for the terminal device to perform channel evaluation are removed.
  • the processor is configured to call program code stored in the memory, and is also used to perform the following operations:
  • the receiver may be further configured to receive the second indication information sent by the access network device.
  • the processor is used to call the program code stored in the memory, and is also used to perform the following operations:
  • a sixth aspect of the embodiments of the present invention discloses an access network device, where the access network device may include a transmitter and a receiver, where:
  • a transmitter configured to send first indication information to the terminal device in the first time unit, where the first indication information is used to indicate a time length of the second time unit, and the second time unit is the first one after the third time unit a time unit for uplink information transmission, where the third time unit is the last time unit for downlink information transmission before the second time unit;
  • a receiver configured to receive uplink information sent by the terminal device in an uplink time unit after the second time unit and/or the second time unit;
  • the index of the second time unit when the time length of the second time unit is less than the preset time length, the index of the second time unit is equal to the index of the third time unit, and when the time length of the second time unit is greater than or equal to the preset time length, the second The index of the time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the index of the third time unit, when the second time unit The second time list when the length of time is greater than the preset time length The index of the meta is greater than the index of the third time unit.
  • the first time unit may be configured to carry the common control information, and the common control information is used to indicate the end time of the downlink burst to which the first time unit belongs, and optionally, the common control information may include the foregoing An indication information that the first indication information can be carried in the redundant bits of the common control information, so that the signaling overhead can be reduced while the time length of the second time unit is dynamically configured by the first indication information.
  • the foregoing first indication information may be carried in a physical layer control channel
  • the physical layer control channel may include at least one of: a physical downlink control channel (PDCCH) and an enhanced physical downlink control channel
  • the first indication information may be specifically carried in the physical layer common control channel, so that the time length of the second time unit can be dynamically configured by using the first indication information, Reduce the overhead of signaling.
  • the first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the third time unit belongs to the second downlink burst, A downlink burst is located before the second downlink burst, and L downlink bursts are included between the first downlink burst and the second downlink burst, L ⁇ 0 and L is an integer.
  • the downlink burst to which the third time unit belongs and the uplink burst to which the second time unit belongs may be in the same transmission opportunity (TxOP, Transmission Opportunity), or may be in two adjacent TxOPs.
  • the preset time length is less than or equal to 1 ms.
  • the preset time length is equal to 1 ms.
  • the preset time length may be equal to a length of time between an end time of the third time unit and an end boundary of the subframe where the third time unit is located; or The preset time length may be equal to the length of time between the end time of the third time unit and the end boundary of the subframe in which the third time unit is located, and then the length of time for removing the transceiving conversion time, or equal to the end of the third time unit.
  • the length of time between the end of the sub-frame in which the third time unit is located is removed, and the length of time for transmitting and receiving the conversion time and the actual length of time or maximum time required for the terminal device to perform channel evaluation are removed.
  • the foregoing first indication message is further configured to indicate a time length of the fourth time unit, where the fourth time unit is the last one of the uplink bursts to which the second time unit belongs to use for uplink information transmission. unit.
  • the transmitter may be further configured to send the second indication information to the terminal device, where the second indication information is used to indicate the length of time of the fourth time unit.
  • the access network device may further include a processor and a memory, where the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory, to perform the following operations:
  • the received uplink information is processed according to actual uplink service requirements.
  • a seventh aspect of the embodiments of the present invention discloses a transmission system for uplink information, where the transmission system includes the foregoing terminal device and an access network device.
  • the terminal device receives the first indication information sent by the access network device in the first time unit, and determines the time length of the second time unit according to the first indication information, where the second time unit is the third time unit.
  • the third time unit is the last downlink time unit before the second time unit, and the terminal device sends the uplink information in the uplink time unit after the second time unit and/or the second time unit,
  • the index of the second time unit is equal to the index of the third time unit when the determined length of time is less than the preset time length.
  • the index of the second time unit is greater than The index of the third time unit.
  • FIG. 1 is a schematic structural diagram of an application architecture disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for transmitting uplink information according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to an embodiment of the present invention
  • FIG. 4 is a downlink signal sent by an LTE system on an unlicensed band resource according to an embodiment of the present invention. Schematic diagram of the frame structure of the information transmission;
  • FIG. 5 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another LTE system according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a partial frame structure when a second time unit and a third time unit index are the same according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a partial frame structure when an index of a second time unit is greater than an index of a third time unit according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a frame structure for performing downlink information transmission on an unlicensed band resource according to another LTE system according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a subframe in which a third time unit is located according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present invention.
  • 15 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present invention.
  • 16 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of an access network device according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of another access network device according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of an uplink information transmission system according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram showing the positional relationship of a time unit according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an application architecture according to an embodiment of the present invention.
  • the application architecture may include a terminal device and an access network device, where the terminal device and the access network device can communicate by using the licensed band resource and the unlicensed band resource.
  • the LBT rules are followed when communicating with unlicensed band resources.
  • the application architecture can be deployed in a LAA-LTE system in which licensed carriers on licensed band resources and unlicensed carriers on unlicensed band resources are aggregated by CA technology, ie, licensed band resources or licensed band resources
  • the licensed carrier or the cell working on the licensed band resource is used as the primary cell (PCell, Primary Cell), and the unlicensed carrier on the unlicensed band resource or the unlicensed band resource or the cell working on the unlicensed band resource is used as the auxiliary a serving cell (SCell, Secondary Cell), wherein the primary serving cell and the secondary serving cell may be deployed in a common station or non-co-located, and an ideal backhaul path exists between the primary serving cell and the secondary serving cell;
  • It can also be deployed in an LTE system in which licensed carriers on licensed band resources and unlicensed carriers on unlicensed band resources are used together by DC technology, that is, there is no ideal return path between the primary serving cell and the secondary serving cell.
  • the application architecture can also be deployed in a standalone LTE system operating on unlicensed band resources
  • Cell service may be provided directly independently access function, secondary cell does not require working on the licensed band resource.
  • the access network device may be a device for communicating with the mobile station, and may be an access point (AP, Access Point) in a wireless local area network (WLAN), or a global mobile communication system (GSM, Global).
  • AP access point
  • WLAN wireless local area network
  • GSM global mobile communication system
  • the terminal device may also be called a user equipment (UE, User Equipment), a mobile station, an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, and a wireless communication.
  • UE User Equipment
  • a device, a user agent, or a user device, etc. which may be a station (ST, Station), a cellular phone, a cordless phone, a Session Initiation Protocol (SIP), a wireless local loop (WLL, Wireless Local) in a WLAN. Loop) station, personal digital processing (PDA, Personal Digital Assistant), handheld devices with wireless communication capabilities, computing devices Any of other processing devices connected to the wireless modem, an in-vehicle device, a wearable device, a mobile station in a future 5G network, and a terminal device in a future evolved PLMN network.
  • a base station Whether it is a licensed band resource or an unlicensed band resource, one or more carriers may be included in the present invention, and one or more licensed carriers on the licensed band resource and one or more unlicensed carriers on the unlicensed band resource Carrier aggregation may be performed; the cell mentioned in the present invention may be a cell corresponding to the base station, and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include a metro cell.
  • the carrier in the present invention can have multiple cells working at the same frequency at the same time.
  • the concept of the carrier and the cell can be considered to be equal.
  • the secondary carrier when the secondary carrier is configured for the terminal device, Carrying the carrier index of the secondary carrier and the cell identifier (Cell ID, Cell Indentify) of the secondary cell working in the secondary carrier, where In this case, the carrier is equivalent to the concept of the cell.
  • the terminal device accesses one carrier and accesses one cell.
  • the present invention is introduced in the concept of a cell.
  • a device capable of data communication with a base station is provided.
  • the present invention can be understood as a terminal device.
  • the present invention will be described in a general sense.
  • a time unit can be understood as a time unit of one transmission, for example, one subframe, one time slot, and one or more. Any of the symbols.
  • FIG. 2 is a schematic flowchart diagram of a method for transmitting uplink information according to an embodiment of the present invention. As shown in FIG. 2, the method for transmitting the uplink information may include the following operations:
  • the access network device sends the first indication information to the terminal device in the first time unit.
  • the access network device may send first indication information indicating a time length of the second time unit to the terminal device according to the specific uplink service requirement, where the second time unit is the third time unit A time unit for uplink information transmission, and the third time unit is the last time unit for downlink information transmission before the second time unit.
  • the frequency point where the first time unit is located may be the same as or different from the frequency point of the second time unit, for example, when both the first time unit and the second time unit are time units on the unlicensed band resource.
  • the frequency points of the two may be the same or different.
  • the frequency point at which the second time unit is located may be the same as or different from the frequency point at which the third time unit is located.
  • the second time unit and the third time unit are time units on the unlicensed band resource
  • the frequency of the two may be the same or different, and is not limited in the embodiment of the present invention.
  • the second time unit and the third time unit are both time units on the unlicensed band resource.
  • the second time unit is the first after the third time unit.
  • the time unit for uplink information transmission can be understood as: in time, the second time unit is the first time unit for uplink information transmission after the third time unit; or, it can be understood that The second time unit is a first time unit for uplink information transmission after a specific time unit, the frequency point of the specific time unit is the same as the frequency point of the second time unit, and the specific time unit The position of the third time unit is the same in the time position.
  • FIG. 23 is a schematic diagram of a positional relationship of a time unit according to an embodiment of the present invention, where CC1/CC2 respectively indicate a frequency point where the third time unit/second time unit is located or a carrier where the second time unit is located.
  • the index of the third time unit may be the same as the index of the specific time unit.
  • the terminal device receives the first indication information sent by the access network device in the first time unit.
  • the terminal device determines, according to the first indication information, a length of time of the second time unit.
  • the terminal device sends uplink information to the access network device in the uplink time unit after the second time unit and/or the second time unit.
  • the access network device receives uplink information sent by the terminal device in the uplink time unit after the second time unit and/or the second time unit.
  • the uplink information may include at least one of the uplink service data, the uplink control data, and the uplink reference signal, where the downlink information may include at least one of downlink service data, downlink control data, and downlink service data, and is implemented by the present invention.
  • the uplink information it may include at least one of the following: service data that can be carried on a Physical Uplink Shared Channel (PUSCH), control data that can be carried on the PUSCH, and can be carried in physical uplink control.
  • PUSCH Physical Uplink Shared Channel
  • the control data of the channel (PUCCH, Physical Uplink Control Channel), the data that can be carried in the Physical Random Access Channel (PRACH), the Demodulation Reference Signal (DMRS), and the sounding reference signal ( SRS (Sounding Reference Signal), wherein the control data may include Channel State Information (CSI), and the CSI may be periodic or aperiodic, and may also include a scheduling request (SR, Scheduling Request), hybrid automatic Re-delivery confirmation (HARQ-ACK, Hybrid Automatic Repeat Request-Acknowledgment).
  • SR Scheduling Request
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgment
  • the HARQ-ACK may include ACK (Acknowledgment) information or Negative Acknowledgement (NACK) information.
  • the downlink physical channel may include at least one of: a Physical Downlink Shared Channel (PDSCH), Physical Broadcast Channel (PBCH), Physical Multicast Channel (PMCH), Physical Control Format Indicator Channel (PCFICH), Physical Downlink Control Channel (PDCCH) , Physical Hybrid ARQ Indicator Channel (PHICH), Enhanced Physical Downlink Control Channel An EPDCCH (Enhanced Physical Downlink Control Channel) and an MTC Physical Downlink Control Channel (MPDCCH), wherein the downlink reference signal includes at least one of the following: a cell-specific reference signal (CRS) , MBSFN (Multimedia Broadcast Multicast Service Single Frequency Network Reference Signal), User Equipment Specific Reference Signal (US-RS, UE-specific Reference Signal) for demodulating PDSCH bearer data And a reference signal (DM-RS, DeModulation Reference Signal), a positioning reference signal (PRS), and a channel state information reference signal (CSI-RS
  • the index of the second time unit when the time length of the second time unit is less than the preset time length, the index of the second time unit is equal to the index of the third time unit, when the time length of the second time unit is greater than or equal to The index of the second time unit is greater than the index of the third time unit, or the index of the second time unit when the time length of the second time unit is less than or equal to the preset time length. And an index equal to the third time unit, when the time length of the second time unit is greater than the preset time length, the index of the second time unit is greater than the index of the third time unit.
  • the index of the time unit is used to indicate the corresponding time unit.
  • the index of the time unit may be specifically used to indicate the specific location of the corresponding time unit on the unlicensed band resource, optionally, the time unit.
  • the index can be represented by a sub-frame index.
  • the index of the second time unit is equal to the index of the third time unit, that is, the subframe index corresponding to the second time unit and the foregoing
  • the subframe index corresponding to the third time unit is the same; when the time length of the second time unit is greater than or equal to (or greater than) the preset time length, the index of the second time unit is greater than the index of the third time unit, that is, the foregoing
  • the subframe index corresponding to the second time unit is greater than the subframe index corresponding to the third time unit.
  • one subframe includes two time slots
  • the subframe index corresponding to the second time unit and the third time unit are not mentioned.
  • the corresponding subframe index is the same, but the slot index corresponding to the second time unit may be the same as or different from the slot index corresponding to the third time unit.
  • the embodiment of the present invention can flexibly configure the length of time of the first time unit for uplink information transmission based on the indication of the first indication information sent by the access network device, so as to ensure that the uplink information is in the unlicensed band resource.
  • the listening time or the larger listening energy threshold is used to detect whether the channel corresponding to the unlicensed band resource is available. Therefore, on the unlicensed band resource, the sending opportunity of the uplink information carried on the second time unit may be Guaranteed in the case where the terminal device does not perform the channel evaluation mechanism or in the terminal device A case where a channel other than the access network evaluation mechanism of the device is assured as a length of the second time unit in the embodiment of flexible based embodiment of the present invention, this can ensure that uplink information transmission needs of different lengths.
  • the uplink information sent in the second time unit is a sounding reference signal (SRS)
  • the time length of the second time unit may be an orthogonal frequency division multiplexing (OFDM, Orthogonal).
  • OFDM orthogonal frequency division multiplexing
  • the frequency division) symbol for example, when the uplink information sent in the second time unit is information included in a physical random access channel (PRACH), the length of the PRACH carrying the information in time It can be less than 1ms or equal to 1ms
  • the channel evaluation mechanism of the terminal device may be an LBT mechanism that does not include a random back-off contention window, such as a one shot channel evaluation mechanism in the LBT mechanism, and the channel evaluation mechanism of the access network device includes a random backoff.
  • the LBT mechanism of the competition window such as the normal LBT evaluation mechanism in the LBT mechanism.
  • the time unit may be a time unit including uplink information transmission or downlink information transmission.
  • the time unit can be understood as a time unit of one transmission.
  • the access network device schedules the terminal device to receive downlink information by using Downlink Control Information (DCI), and the time unit in which the downlink information is located can be understood as a time unit.
  • DCI Downlink Control Information
  • the basic time unit of scheduling may be 1 subframe, whether it is downlink information transmission or uplink information transmission.
  • the time length of the time unit is 1 ms, or it can be understood that the time unit is used for downlink information transmission or uplink information transmission for a length of 1 ms; or, if the downlink information transmission is a normal cyclic prefix (NCP, Normal Cyclic Prefix)
  • NCP Normal Cyclic Prefix
  • the time length of the time unit for information transmission is 14 OFDM symbols; or, if the downlink information transmission is an Extended Cyclic Prefix (ECP) configuration, the time length of the time unit for information transmission is 12 OFDM symbols.
  • ECP Extended Cyclic Prefix
  • the scheduled basic time unit includes a partial subframe in addition to 1 subframe, for example, for downlink information transmission of TDD, scheduled
  • the basic time unit includes 1 subframe and 1 downlink pilot slot (DwPTS, Downlink Pilot Time Slot).
  • DwPTS Downlink Pilot Time Slot
  • the scheduled basic time unit includes 1 subframe and 1 uplink pilot slot. (UpPTS, Uplink Pilot Time Slot), wherein the length of time for one sub-frame for information transmission is 1 ms, the length of time for one DwPTS for downlink information transmission is less than 1 ms, and the length of time for one UpPTS for uplink information transmission is less than 1ms.
  • one subframe, one DwPTS, or one UpPTS may correspond to one time unit; for an FDD system, if an S-TTI frame structure is supported, the time length of a time unit for information transmission may be from 1ms is shortened to 1 OFDM symbol to 0.5ms, which may include 1 OFDM symbol and 0.5ms; for TDD system, if S-TTI frame structure is supported, in addition to one-time information transmission like FDD system The time length of the time unit is shortened from 1 ms to 1 OFDM symbol to 0.5 ms, and the time length of the time unit of one transmission can be shortened shorter than DwPTS or UpPTS.
  • the frame structure of the uplink and downlink information transmission on the unlicensed band resource of the LTE system is not fixed, that is, the access network device (such as a base station or a cell) may be based on downlink traffic load and/or uplink traffic load or other considerations.
  • the factor determines the duration of the downlink information transmission and/or the length of the uplink information transmission after the unlicensed band resources are preempted.
  • the frame structure of the uplink and downlink information transmission by the LTE system on the unlicensed band resources can be as shown in FIG. 3, FIG. It is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource of an LTE system according to an embodiment of the present invention. As shown in FIG.
  • TxOP Transmission Opportunity
  • DL Burst Downlink Burst
  • UL Burst Uplink Burst
  • a downlink burst can also be understood as a downlink transmission burst (DL transmission burst), and an uplink burst (UL burst) can also be understood as an uplink transmission burst (UL). Transmission burst).
  • the "downlink burst" can be understood as: the access network device (for example, the base station eNB or the cell cell under the base station, etc.) does not need to pass the competition mechanism (such as the LBT mechanism) but directly after preempting the unlicensed band resources.
  • the downlink information is transmitted by using the unlicensed band resource, and the length of a downlink burst is not greater than the maximum time that the access network device can continuously transmit through the contention mechanism without using the competition mechanism, and the maximum time is also It can be called Maximum Channel Occupied Time (MCOT).
  • MCOT can be related to regional regulations. For example, in Japan, MCOT can be equal to 4ms.
  • MCOT can be equal to 8ms, 10ms or 13ms.
  • MCOT can also be related to the competition mechanism adopted by listening equipment (such as base station and user equipment). For example, the shorter the listening time, the shorter the MCOT; the MCOT may also be related to the service level of the data transmission, which is not limited in the embodiment of the present invention.
  • the above-mentioned "no need to pass the competition mechanism" can be understood as: the time when the access network device (such as a base station or a cell) actually transmits the downlink information on the unlicensed band resource after preempting the unlicensed band resource. There is no need to evaluate whether the channel corresponding to the unlicensed band resource is idle or not within the MCOT. For example, as shown in FIG. 3, taking the downlink burst included in the first TxOP as an example, starting from the second subframe included in the downlink burst, the access network device does not need to evaluate the license-free through the contention mechanism.
  • the access network device (such as the base station or the cell) after preempting the unlicensed band resource, on the unlicensed band resource
  • the access network device may adopt a competition mechanism without considering coexistence with the different system, but may consider a coexistence with the same system and adopt a competition mechanism, where “the same system
  • the coexistence of the competition mechanism can be understood as the specific time unit (or idle time unit) can be included in the time when the downlink information is actually transmitted or after the pre-emption of the unlicensed band resource.
  • the access network device can stop downlink information transmission (or can stop sending downlink data), which can facilitate the same system. Its equipment is in the evaluation of the unlicensed band resources corresponding to In the process of whether the channel is idle, there will be no impact on the evaluation results of devices in the same system.
  • the access network device may also perform channel sounding to re-evaluate whether the channel corresponding to the unlicensed band resource is idle, or may not perform channel sensing but in the specific After the time unit, the downlink information is continuously transmitted within the time period during which the downlink information is transmitted or within the MCOT.
  • FIG. 4 is a schematic structural diagram of a frame structure for performing downlink information transmission on an unlicensed band resource of an LTE system according to an embodiment of the present invention, as shown in FIG.
  • the access network device can stop sending downlink information for a period of time (corresponding to the idle time unit in FIG. 4) at any time position, so that other devices in the same system and the access network device can Band resource reuse on the unlicensed band resources.
  • the non-LTE system may be referred to as a different system, such as a Wireless Local Area Network (WLAN) system or a system using Wi-Fi Wireless Fidelity technology, and the LTE system may It is called the same system.
  • WLAN Wireless Local Area Network
  • the LTE system may It is called the same system.
  • only the LTE systems belonging to the same carrier can be called the same system; or the LTE system belonging to the same carrier or the LTE system belonging to different operators can be called the same system.
  • uplink burst can be understood as: the terminal device (such as the UE) does not need to pass the competition mechanism (for example, the LBT mechanism) after preempting the unlicensed band resource, but directly uses the unlicensed band resource to perform uplink information.
  • the length of the uplink burst is not greater than the MCOT of the terminal device on the unlicensed band resource, or the length of the uplink burst may be otherwise limited.
  • the uplink burst may include transmission of uplink information of a single user, and may also include transmission of uplink information of multiple users. From the access network device side, the uplink burst may be an uplink information transmission included in the TxOP.
  • the same system can be understood as a terminal device having the same serving cell or the same serving base station as the terminal device.
  • FIG. 5 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource of an LTE system according to an embodiment of the present invention.
  • the downlink burst includes four downlink subframes. If each downlink subframe includes uplink scheduling indication information, such as uplink grant UL grant indication information, the terminal device may follow 4 ms for the FDD system. That is, the time delay of 4 subframes is used to determine the time range corresponding to the uplink burst. As shown in Figure 5, correspondingly, The time range (3 subframes in FIG. 5) between the first uplink subframe and the last uplink subframe is determined as the time range corresponding to the uplink burst.
  • uplink scheduling indication information such as uplink grant UL grant indication information
  • the length of the TxOP in the foregoing description may be no longer than the maximum transmission time allowed by the downlink burst, or not greater than the maximum transmission time allowed by the uplink burst, and may not be greater than the maximum transmission allowed by the downlink burst.
  • the length of time and the maximum length of time allowed for the uplink burst; or, the length of one TxOP may be no greater than the MCOT on the unlicensed band resource. For example, for a given device, whether it is an access network device, a terminal device, or other devices, after preempting the unlicensed band resources, the maximum length of time that data can be transmitted through the contention mechanism is 8 ms (here 8 ms corresponds to the above).
  • the maximum transmission time length of a TxOP is also 8 ms. This can ensure that the uplink burst transmission can adopt some competition mechanism that easily preempts the unlicensed band resources.
  • the length of a downlink burst in the foregoing description may be not greater than the maximum transmission time allowed on the unlicensed band resource, for example, the MCOT on the unlicensed band resource; the length of an uplink burst may be no greater than the license-free period.
  • the maximum transmission time allowed on the band resource such as the MCOT on the unlicensed band resource.
  • the frame structure of the uplink and downlink information transmission on the unlicensed band resource of the LTE system is not fixed, and the frame structure has at least one basic feature: different TxOPs (adjacent or non-adjacent TxOPs) include The length of the downlink bursts may be different; the length of the uplink bursts included in different TxOPs may be different; the lengths of different TxOPs may be different. For example, as shown in FIG. 3 above, the lengths of different downlink bursts may be different, and the lengths of different uplink bursts may also be different.
  • the area corresponding to "execution of LBT before downlink information transmission”, the area corresponding to "LBT before uplink information transmission”, and the time unit of idle are only examples, which are all for illustration.
  • the network access device/terminal device needs to confirm whether the channel corresponding to the unlicensed band resource is idle through the LBT mechanism.
  • the LBT mechanism is specifically implemented at the specific location.
  • the subframe is used as a time unit for information transmission.
  • the information transmission time unit may also be one time slot or N OFDM symbols, where
  • N can be an integer less than 7
  • N can be an integer less than 6.
  • FIG. 6 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present invention, where a label corresponding to “1” is used.
  • the time length of the time unit for downlink information transmission is less than 1 ms, and the time length of the time unit corresponding to the standard "2" for uplink information transmission is also less than 1 ms.
  • the index of the second time unit is equal to the index of the third time unit, that is, the second time unit corresponds to
  • the subframe index is the same as the subframe index corresponding to the third time unit.
  • the frame structure of the uplink and downlink information transmission on the unlicensed band resource of the LTE system may be as shown in FIG. 7, and FIG. 7 is an embodiment of the present invention.
  • FIG. 7 A schematic diagram of a structure of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource of another LTE system disclosed. As shown in FIG.
  • the index of the second time unit and the index of the third time unit are the index n corresponding to the subframe n.
  • the partial frame structure of the frame structure shown in FIG. 7 can be as shown in FIG. 10 is a schematic structural diagram of a partial frame structure when a second time unit and a third time unit index are the same as disclosed in the embodiment of the present invention.
  • a subframe index corresponding to the second time unit and the third time unit is shown in FIG. The same, but since the time length of the third time unit for information transmission is greater than one time slot (ie, 0.5 ms), the time slot index corresponding to the third time unit includes two, and the time slot index corresponding to the second time unit only one.
  • the frame structure in FIG. 7 ignores the timing advance (TA, Timing Advance) between the access network device and the terminal device, or neglects between the access network device and the terminal device.
  • the propagation delay has an effect on the time when the access network device transmits downlink information and/or receives uplink information, and the time when the terminal device receives downlink information and/or transmits uplink information. Therefore, in FIG. 7, the access network device sends The start time of the downlink information is the same as the start time of the downlink information received by the terminal device, and the start time of the uplink information received by the access network device is the same as the start time of the uplink information sent by the terminal device.
  • TA Timing Advance
  • the time unit is used as an example, and the terminal device receives the downlink.
  • the subframe boundary of the information lags behind the subframe boundary at which the access network device sends the downlink information, and the subframe boundary at which the terminal device sends the uplink information is ahead of the subframe boundary at which the access network device receives the uplink information. As shown in FIG.
  • a part between a downlink burst and an uplink burst includes at least a transition time when downlink information is sent to uplink information reception; for a terminal device, a downlink burst and an uplink burst
  • the portion between the transmissions may include at least the conversion time at which the downlink information is received for the uplink information transmission.
  • the terminal device performs channel evaluation according to the LBT mechanism before transmitting the uplink information.
  • the downlink burst where the third time unit is located is adjacent to the uplink burst where the second time unit is located, and belongs to the same TxOP.
  • FIG. 8 is a schematic structural diagram of a frame structure of uplink and downlink information transmission on the unlicensed band resource of the LTE system according to another embodiment of the present invention.
  • the frame structure of the LTE system for uplink and downlink information transmission on the unlicensed band resource may be as shown in FIG. 9.
  • FIG. 9 is another LTE system for performing uplink and downlink information on the unlicensed band resource according to the embodiment of the present invention. Schematic diagram of the structure of the transmitted frame. As shown in FIG.
  • the index of the second time unit is greater than the index of the third time unit, that is, the index of the second time unit is the index n+1 corresponding to the subframe n+1, and the index of the third time unit is
  • the index n corresponding to the subframe n may refer to the description of the frame structure in FIG. 7 and FIG. 8 described above, and details are not described herein again.
  • the partial frame structure of the frame structure shown in FIG. 9 may be as shown in FIG. 11.
  • FIG. 11 is a partial frame structure when the index of the second time unit is larger than the index of the third time unit disclosed in the embodiment of the present invention. Schematic.
  • the time length of the time unit for one transmission may be 1 ms or less than 1 ms.
  • the time length of the first three time units included in the downlink burst is 1 ms, or the time length of the first three time units for downlink information transmission is 1 ms
  • the last time unit (corresponding to the implementation of the present invention)
  • the time length of the third time unit in the example is less than 1 ms, or the time length of the last time unit for downlink information transmission is less than 1 ms
  • the first time list included in the uplink burst The time length of the element is less than 1 ms, or the time length of the first time unit in the uplink burst for uplink information transmission is less than 1 ms, and the time length of the last four time units included in the uplink burst is 1 ms, or The length of time for each time unit in the last four time units for uplink information transmission
  • the foregoing first time unit may carry common control information, and the common control information is used to indicate an end time of a downlink burst to which the first time unit belongs.
  • the common control information may be scrambled by using a Radio Network Temporary Identifier (RNTI).
  • RNTI Radio Network Temporary Identifier
  • the common control information may be public.
  • a Common Cell-Radio Network Temporary Identifier (CC-RNTI) and the common control information may be carried in a physical layer common control channel.
  • the common control information may also be carried in a Common Search Space (CSS) or in a UE-specific Search Space (USS).
  • CCS Common Search Space
  • USS UE-specific Search Space
  • the common control information includes the foregoing first indication information, that is, the first indication information may be set in redundant bits of the common control information. In this way, the signaling overhead can be reduced while the time length of the second time unit is dynamically configured by the first indication information.
  • the first indication information may be carried in a physical layer control channel, and the physical layer control channel may include at least one of: a physical downlink control channel (PDCCH) and a physical downlink control channel (PDCCH) An Enhanced Physical Downlink Control Channel (EPDCCH) is enhanced.
  • the first indication information is specifically carried in a physical layer common control channel.
  • the first indication information may be scrambled by a Public Network Temporary Identifier (RNTI).
  • RNTI Public Network Temporary Identifier
  • the public RNTI may be public.
  • CC-RNTI Cell-Radio Network Temporary Identifier
  • the first indication information may be specifically carried in a Common Search Space (CSS) or a UE-specific Search Space (USS). In this way, the manner in which the first indication information is carried on the physical layer common control channel can save signaling overhead.
  • CSS Common Search Space
  • USS UE-specific Search Space
  • the foregoing first indication information may also be carried in a radio resource control (RCC) signaling or a medium access control (MAC) signaling.
  • RRC radio resource control
  • MAC medium access control
  • the first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the second time unit belongs to the second downlink burst.
  • the first downlink burst is located before the second downlink burst, that is, the first downlink burst is earlier than the second downlink burst, and between the first downlink burst and the second downlink burst.
  • L downlink bursts, L ⁇ 0 and L is an integer.
  • the first indication information included in the first time unit may indicate the first uplink time unit after the end of the downlink burst
  • the length of time optionally, the first time unit may be a third time unit; when the first time unit and the third time unit belong to different downlink bursts, the first indication information included in the first time unit may be And indicating a length of time of the first uplink time unit after the end of the L+1th downlink burst after the end of the downlink burst, where L may be indicated by the first indication information, or may be indicated by other indication information, It may also be configured by high layer signaling, such as RRC signaling or MAC signaling.
  • the first time unit belongs to the first downlink burst
  • the second time unit belongs to the second downlink burst
  • the frame structure of the downlink information transmission on the unlicensed band resource in the LTE system may be as shown in FIG. 12
  • FIG. 12 is a frame of another LTE system for performing downlink information transmission on the unlicensed band resource according to the embodiment of the present invention. Schematic diagram of the structure.
  • the first time unit is the last one of the downlink bursts or the second last downlink time unit.
  • the downlink time unit is a time unit for transmitting downlink information
  • the uplink time unit is a time unit for transmitting uplink information.
  • the preset time length is less than or equal to 1 ms.
  • the preset time length is equal to 1 ms.
  • the preset time length may be equal to the end time of the third time unit to the subframe where the third time unit is located. End time length between boundaries; or, the preset time length may be equal to the length of time between the end time of the third time unit and the end boundary of the subframe in which the third time unit is located, and then the time of transmitting and receiving conversion time is removed.
  • the length, or the length of time between the end time of the third time unit and the end boundary of the subframe in which the third time unit is located, and the length of time for transmitting and receiving the conversion time and the actual length of time required for the terminal device to perform channel evaluation The maximum length of time, or may be determined by other means, is not specifically limited in the embodiment of the present invention.
  • the time required for the terminal device to perform channel evaluation (which can be understood as the actual time length) is the time corresponding to one shot, for example, may be 25 ⁇ s, when the terminal device adopts the normal LBT channel evaluation.
  • the time required for the terminal device to perform channel evaluation (which can be understood as the maximum time length) may be the product of CWmax and a listening time slot, wherein CWmax is a random back-off competition window when the terminal device uses the normal LBT channel evaluation mechanism.
  • the maximum window length may be the product of CWmax and a listening time slot, wherein CWmax is a random back-off competition window when the terminal device uses the normal LBT channel evaluation mechanism.
  • FIG. 13 is a schematic structural diagram of a subframe in which a third time unit is disclosed according to an embodiment of the present invention.
  • the preset time length may also be represented by an integer number of OFDM symbols.
  • the length of time for the downlink information transmission of the last downlink time unit of a downlink burst may be the same as the length of the downlink pilot time slot (DwPTS, Downlink Pilot Time Slot), and therefore, the downlink burst
  • the length of time between the end time of the last downlink time unit sent to the end boundary of the subframe where the downlink time unit is located may be any one of the following: 1 OFDM, 2 OFDM symbols, 3 OFDM symbols, 4 OFDM Symbol, 5 OFDM symbols, 8 OFDM symbols, and 11 OFDM symbols.
  • the foregoing preset time length may be any one of the following: 1 OFDM symbol, 2 OFDM symbols, 3 OFDM symbols, 4 OFDM symbols, 5 OFDM symbols, 8 OFDM symbols, and 11 OFDM symbols.
  • the index of the second time unit is equal to the index of the third time unit; when the second time unit is When the length of time is greater than the preset length of time, the index of the second time unit is greater than the index of the third time unit.
  • the method for transmitting the uplink information may further include the following operations:
  • Determining, by the terminal device, the length of time of the fourth time unit according to the foregoing first indication information that is, the foregoing first indication information may further be used to indicate a length of time of the fourth time unit;
  • the terminal device receives the second indication message sent by the access network device, and determines the length of time of the fourth time unit according to the second indication message.
  • the fourth time unit is a time unit of the last uplink burst to which the second time unit belongs to send uplink information. In this way, it is possible to determine the time range in which the access network device needs to perform channel evaluation before the downlink burst after the uplink burst to which the second time unit belongs.
  • the terminal device determines, according to the first indication information, that the length of time of the second time unit may include:
  • the terminal device parses the length of time in the first indication information, and determines the length of the parsed time as the length of time of the second time unit; or
  • the terminal device parses the first indication information, obtains the index information, determines the length of time corresponding to the index information according to the relationship between the preset time length index information and the length of time, and determines the length of time corresponding to the index information as the first The length of time of the second time unit.
  • the first indication information may be used to indicate a specific time length of the second time unit, for example, the first indication information may indicate that the time length of the second time unit is an integer number of OFDM symbols or 1 ms, or the like; or When the specific length of time indicated in the first indication information is 0, the terminal device determines that the time length of the second time unit is 1 ms or other pre-configured time length, in this case, the second The index of the time unit is greater than the index of the third time unit; or the correspondence between the index information and the specific time length may be pre-stored in the terminal device (can be understood as the correspondence between the pre-configured index information and the specific time length, for example, Corresponding relationship between the index information configured by the access network device and the specific time length configured by the access network device through the high layer signaling, and the first indication information may include an index information, where the terminal device parses the foregoing After the index information in the first indication information is pre-stored from the terminal device The corresponding relationship between the stored index information and the specific time
  • the time length corresponding to the index information in the first indication information is used as the time length of the second time unit; or the terminal device may determine the time of the second time unit by detecting the presence or absence of the first indication information. Length, such as when the terminal device is not When the first indication information is detected, the terminal device may determine that the time length of the second time unit is 1 ms, which is not limited in the embodiment of the present invention.
  • the frame structure of the uplink and downlink information transmission on the unlicensed band resource of the LTE system may at least include The following structural changes. among them:
  • the first frame structure may be: the time length of the second time unit is the time length of one subframe, and the index of the second time unit is different from the index of the third time unit, and the last time of the uplink burst where the second time unit is located
  • the length of time of a time unit is equal to the length of time of 1 subframe.
  • the index of the second time unit is greater than the index of the third time unit, and the difference between the indexes is 1. It should be noted that, if the index of the time unit is represented by a subframe index and the value of the subframe index is any one of 0-9, the index of the previous subframe of the subframe with the index of 0 may be 9.
  • FIG. 14 is a schematic structural diagram of a frame structure of uplink and downlink information transmission on an unlicensed band resource of another LTE system according to an embodiment of the present invention.
  • the terminal device transmits its uplink information with a certain timing advance, wherein the "certain timing advance" herein is independent of the propagation delay between the access network device and the terminal device.
  • the start boundary of the subframe n+1 is advanced from the end boundary of the subframe n.
  • the terminal device may determine whether the uplink information needs to be sent in a certain timing advance amount before the time boundary of the downlink information is received, and the indication information may be carried in the physical layer signaling.
  • the bearer is carried in RRC signaling and can also be carried in MAC signaling.
  • the indication information may also be carried in the physical layer common control channel. That is, if the propagation delay between the access network device and the terminal device is not considered, the starting time at which the terminal device receives the downlink information is the same as the starting time at which the access network device sends the downlink information, and the terminal device sends the uplink.
  • the start time of the information is the same as the start time of the access network device receiving the uplink information.
  • the timing advance (TA, Timing Advance) determined according to the propagation delay is zero.
  • the terminal device may also transmit its uplink information before receiving the time boundary of the downlink information with a certain timing advance; if considering the access network device and The propagation delay between the terminal devices, and the start time at which the terminal device receives the downlink information.
  • the start time of the uplink information sent by the terminal device is earlier than the start time of the uplink information received by the access network device, in this case, according to the prior art,
  • the TA determined according to the propagation delay is not zero.
  • the terminal device may further consider “a certain timing advance amount” based on the TA determined by the propagation delay, and determine according to the sum of the "certain timing advance amount” and the TA.
  • the start time of the uplink information transmission before the start time of receiving the downlink information wherein the time interval between the start time of the uplink information transmission and the "start time of receiving the downlink information" is "a certain timing advance amount”
  • the sum with TA is that the time range of the LBT can be set for the downlink information transmission included in the first downlink time unit in the next downlink burst, thereby ensuring the first downlink time unit in the next downlink burst.
  • the length of time is the length of time of one subframe, that is, 1 ms. In FIG. 14, the length of time of the last time unit in the uplink burst is also the length of time of one subframe, that is, equal to 1 ms;
  • the second frame structure may be: the length of time of the second time unit is the length of time of one subframe, and the index of the second time unit is different from the index of the third time unit, and the uplink burst of the second time unit is The length of the last time unit is less than the length of one subframe.
  • the length of the first time unit included in the downlink burst after the uplink burst may be less than the length of time of one subframe, that is, less than 1 ms, in consideration of the fact that the access network device needs to perform the LBT before transmitting the downlink information.
  • the terminal device may also determine whether it is required to transmit its uplink information with a certain timing advance before receiving the time boundary of the downlink information. As shown in FIG. 15, FIG. 15, FIG.
  • FIG. 15 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present invention.
  • the start boundary of the subframe n+1 is advanced to the end boundary of the subframe n, wherein a certain timing advance is the same as the above description, and details are not described herein.
  • FIG. 16 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present invention.
  • the time length of the second time unit is less than the time length of one subframe, and the index of the second time unit is the same as the index of the third time unit, and the last one of the uplink bursts where the second time unit is located.
  • the length of time unit is equal to the length of time of one subframe.
  • the length of the first time unit included in the downlink burst after the uplink burst may be less than the length of time of one subframe, that is, less than 1 ms, in consideration of the fact that the access network device needs to perform the LBT before transmitting the downlink information.
  • the terminal device may also determine whether it is necessary to provide a certain timing before receiving the time boundary of the downlink information.
  • the pre-quantity sends its upstream information. In FIG. 16, the terminal device does not need to transmit its uplink information with "a certain timing advance amount", that is, the start boundary of the subframe n+1 coincides with the end boundary of the subframe n.
  • the terminal device may also send the uplink information by using “a certain timing advance amount” on the basis of the frame structure shown in FIG. 16 , which has the advantage of making the uplink burst where the second time unit is located as much as possible.
  • the length of the first downlink time unit of the subsequent downlink burst is equal to the length of time of one subframe.
  • FIG. 17 is a schematic structural diagram of a frame structure for performing uplink and downlink information transmission on an unlicensed band resource according to another embodiment of the present invention.
  • the time length of the second time unit is less than the time length of one subframe, and the index of the second time unit is the same as the index of the third time unit, and the last one of the uplink bursts where the second time unit is located.
  • the time length of the time unit is less than the time length of one subframe, which is advantageous in that the time length of the first downlink time unit of the downlink burst after the uplink burst in which the second time unit is located may be equal to the time of one subframe. length.
  • the terminal device may also determine whether it is required to transmit its uplink information with a certain timing advance before receiving the time boundary of the downlink information. If the terminal device determines that it needs to send its uplink information with a certain timing advance, more time resources may be reserved for downlink information transmission for performing LBT. In FIG. 17, the terminal device does not need to transmit its uplink information with a certain timing advance amount, and the start boundary of the subframe n+1 coincides with the end boundary of the subframe n, wherein a certain timing advance amount is the same as described above. I will not repeat them here.
  • the frame structure of the uplink and downlink information transmission of the LTE system in the unlicensed band resource may have other forms, which is not limited in the embodiment of the present invention.
  • the end time of the downlink burst and the start time of the uplink burst may include, in addition to the transition time of the downlink sending to the uplink receiving, the terminal device.
  • Pre-occupied signal (such as padding), the pre-occupied signal is used to occupy the unlicensed band resource before transmitting the uplink information in the second time unit.
  • FIG. 18 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device may include a receiving module 1801, a processing module 1802, and a sending Module 1803, wherein:
  • the receiving module 1801 is configured to receive the first indication information sent by the access network device in the first time unit.
  • the processing module 1802 is configured to determine, according to the first indication information received by the receiving module 1801, a time length of the second time unit, where the second time unit is a first time unit for uplink information transmission after the third time unit The third time unit is the last time unit for downlink information transmission before the second time unit.
  • the sending module 1803 is configured to send uplink information in the uplink time unit after the second time unit and/or the second time unit.
  • the index of the second time unit is equal to the index of the third time unit, and the time length of the second time unit is greater than or equal to the preset time length.
  • the index of the second time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the third time unit.
  • the index of the second time unit is greater than the index of the third time unit when the time length of the second time unit is greater than the preset time length.
  • the foregoing first time unit carries common control information, where the common control information is used to indicate an end time of a downlink burst to which the first time unit belongs.
  • the public control information may further include the foregoing first indication information.
  • the foregoing first indication information may be carried in a physical layer common control channel.
  • first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the third time unit belongs to the second downlink burst.
  • the first downlink burst is located before the second downlink burst, and the L downlink bursts are included between the first downlink burst and the second downlink burst, L ⁇ 0 and L is an integer.
  • the preset time length is less than or equal to 1 ms. Preferably, the preset time length is equal to 1 ms.
  • processing module 1802 is further configured to determine, according to the first indication information received by the receiving module 1801, a time length of the fourth time unit, where the fourth time unit is the foregoing The last one of the uplink bursts to which the second time unit belongs is used to transmit the uplink information.
  • the receiving module 1801 is further configured to receive second indication information that is sent by the access network device, where the second indication information is used to indicate a length of time of the fourth time unit, and the processing module 1802 is further configured to determine a length of time of the fourth time unit according to the second indication information received by the receiving module 1801.
  • the specific manner that the processing module 1802 determines the length of time of the second time unit according to the foregoing first indication information may be:
  • the first indication information is parsed to obtain the index information, and the length of the index information is determined according to the relationship between the preset time length index information and the length of time, and the length of time corresponding to the index information is determined as the second time.
  • the length of time of the unit is parsed to obtain the index information, and the length of the index information is determined according to the relationship between the preset time length index information and the length of time, and the length of time corresponding to the index information is determined as the second time.
  • the first indication information may be used to indicate a specific time length of the second time unit, for example, the first indication information may indicate that the time length of the second time unit is an integer number of OFDM symbols or 1 ms, or the like; or The processing module 1802 determines that the time length of the second time unit is 1 ms; or, the terminal device may pre-store the access network device to pass the high-level letter when the specific length of the time indicated by the first indication information is 0.
  • Corresponding relationship between the configured index information and the specific time length, and the first indication information may include an index information.
  • the processing module 1802 parses the index information in the first indication information, the pre-configured from the terminal device Querying, by the processing module 1802, the time length corresponding to the index information in the first indication information, as the length of time of the second time unit; or the processing module 1802 may also detect the first indication information. Whether there is a determination to determine the length of time of the second time unit, such as when When measured in the first indication information, the processing module 1802 may determine that the longitudinal section of the second time is 1ms, the invention is not limited in the present embodiment.
  • the embodiment of the present invention can flexibly configure the length of time of the first time unit for uplink information transmission based on the indication of the first indication information sent by the access network device, so that the time length can be guaranteed.
  • FIG. 19 is a schematic structural diagram of another terminal device according to an embodiment of the present invention.
  • the terminal device may include: a processor 1901, a memory 1902, a transmitter 1903, and a receiver 1904.
  • the memory 1902 may be a high-speed RAM memory or a non-volatile memory, such as At least one disk storage, optionally, the memory 1902 may also be at least one storage device located away from the aforementioned processor 1901. among them:
  • the receiver 1904 is configured to receive the first indication information sent by the access network device in the first time unit.
  • a set of program codes is stored in the memory 1902, and the processor 1901 is configured to call the program code stored in the memory 1902 for performing the following operations:
  • the transmitter 1903 is configured to transmit uplink information in an uplink time unit after the second time unit and/or the second time unit.
  • the index of the second time unit is equal to the index of the third time unit when the time length of the second time unit is less than or equal to the preset time length, and the time length of the second time unit is greater than or equal to the preset time.
  • the length of the second time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the third time unit
  • the index of the second time unit is greater than the index of the third time unit when the time length of the second time unit is greater than the preset time length.
  • the foregoing first time unit carries common control information, where the common control information is used to indicate an end time of a downlink burst to which the first time unit belongs.
  • the public control information may further include the foregoing first indication information.
  • the foregoing first indication information may be carried in a physical layer common control channel.
  • the first time unit and the third time unit belong to the same downlink
  • the first time unit belongs to the first downlink burst
  • the third time unit belongs to the second downlink burst
  • the first downlink burst is located before the second downlink burst
  • the first downlink burst L downlink bursts are included between the transmission and the second downlink burst, L ⁇ 0 and L is an integer.
  • the preset time length is less than or equal to 1 ms. Preferably, the preset time length is equal to 1 ms.
  • the processor 1901 is configured to call the program code stored in the memory 1902, and can also be used to perform the following operations:
  • the receiver 1904 can also receive the second indication information sent by the access network device, and the processor 1901 is configured to invoke the program code stored in the memory 1902, and can also be used to perform the following operations:
  • the length of time of the fourth time unit is determined according to the second indication information received by the receiver 1904.
  • the specific manner in which the processor 1901 determines the time length of the second time unit according to the foregoing first indication information may be:
  • the first indication information is parsed to obtain the index information, and the length of the index information is determined according to the relationship between the preset time length index information and the length of time, and the length of time corresponding to the index information is determined as the second time.
  • the length of time of the unit is parsed to obtain the index information, and the length of the index information is determined according to the relationship between the preset time length index information and the length of time, and the length of time corresponding to the index information is determined as the second time.
  • the first indication information may be used to indicate a specific time length of the second time unit, for example, the first indication information may indicate that the time length of the second time unit is an integer number of OFDM symbols or 1 ms, or the like; or The processor 1901 determines that the time length of the second time unit is 1 ms; or, the terminal device may pre-store the access network device through the high-level letter when the specific length of time indicated by the first indication information is 0.
  • Corresponding relationship between the configured index information and the specific time length, and the first indication information may include an index information, and after the processor 1901 parses the index information in the first indication information, the pre-configured from the terminal device Querying the index information in the first indication information by the correspondence between the index information and the specific time length Corresponding time length, as the length of time of the second time unit; or the processor 1901 may determine the length of time of the second time unit by detecting the presence or absence of the first indication information, such as when the foregoing The processor 1901 may determine that the time length of the second time unit is 1 ms, which is not limited in the embodiment of the present invention.
  • the embodiment of the present invention can flexibly configure the length of time of the first time unit for uplink information transmission based on the indication of the first indication information sent by the access network device, so as to ensure that the uplink information is in the unlicensed band resource. Effective transmission on.
  • FIG. 20 is a schematic structural diagram of an access network device according to an embodiment of the present invention.
  • the access network device may include a sending module 2001 and a receiving module 2002, where:
  • the sending module 2001 is configured to send first indication information to the terminal device in the first time unit, where the first indication information is used to indicate a time length of the second time unit, and the second time unit is the first one after the third time unit In the time unit of uplink information transmission, the third time unit is the last time unit for downlink information transmission before the second time unit.
  • the receiving module 2002 is configured to receive uplink information sent by the terminal device in an uplink time unit after the second time unit and/or the second time unit determined by the terminal device according to the first indication information.
  • the index of the second time unit when the time length of the second time unit is less than the preset time length, the index of the second time unit is equal to the index of the third time unit, and when the time length of the second time unit is greater than or equal to the preset time length, the second The index of the time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the index of the third time unit, when the second time unit When the length of time is greater than the preset time length, the index of the second time unit is greater than the index of the third time unit.
  • the first time unit may be configured with common control information, where the common control information is used to indicate an end time of the downlink burst to which the first time unit belongs.
  • the public control information may further include the foregoing first indication information.
  • the first indication information may be carried in a physical layer common control channel.
  • first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the third time unit belongs to the second downlink burst.
  • the first downlink burst is located before the second downlink burst, and the L downlink bursts are included between the first downlink burst and the second downlink burst, L ⁇ 0 and L is an integer.
  • the preset time length is less than or equal to 1 ms. Preferably, the preset time length is equal to 1 ms.
  • the first indication information may be further used to indicate a time length of the fourth time unit, where the fourth time unit is the last one of the uplink bursts to which the second time unit belongs to be used for the access network device.
  • the time unit for sending upstream information may be further used to indicate a time length of the fourth time unit, where the fourth time unit is the last one of the uplink bursts to which the second time unit belongs to be used for the access network device.
  • the sending module 2001 is further configured to send the second indication information to the terminal device, where the second indication information is used to indicate the length of time of the fourth time unit.
  • the embodiment of the present invention can flexibly configure the length of time of the first time unit for uplink information transmission based on the indication of the first indication information sent by the access network device, so as to ensure that the uplink information is in the unlicensed band resource. Effective transmission on.
  • FIG. 21 is a schematic structural diagram of another access network device according to an embodiment of the present invention.
  • the access network device may include: a transmitter 2103 and a receiver 2104.
  • the access network device may further include a processor 2101 and a memory 2102, where the memory
  • the 2102 may be a high-speed RAM memory or a non-volatile memory, such as at least one disk storage.
  • the memory 2102 may be at least one storage device located away from the processor 2101. among them:
  • the transmitter 2103 is configured to send first indication information to the terminal device in the first time unit, where the first indication information is used to indicate a time length of the second time unit, and the second time unit is the first one after the third time unit The time unit of uplink information transmission, the third time unit is before the second time unit The last time unit for downlink information transmission.
  • the receiver 2104 is configured to receive uplink information sent by the terminal device in an uplink time unit after the second time unit and/or the second time unit;
  • the index of the second time unit when the time length of the second time unit is less than the preset time length, the index of the second time unit is equal to the index of the third time unit, and when the time length of the second time unit is greater than or equal to the preset time length, the second The index of the time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the index of the third time unit, when the second time unit When the length of time is greater than the preset time length, the index of the second time unit is greater than the index of the third time unit.
  • the first time unit may be configured with common control information, where the common control information is used to indicate an end time of the downlink burst to which the first time unit belongs.
  • the public control information may further include the foregoing first indication information.
  • the first indication information may be carried in a physical layer common control channel.
  • first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the third time unit belongs to the second downlink burst.
  • the first downlink burst is located before the second downlink burst, and the L downlink bursts are included between the first downlink burst and the second downlink burst, L ⁇ 0 and L is an integer.
  • the preset time length is less than or equal to 1 ms. Preferably, the preset time length is equal to 1 ms.
  • the first indication information may be further used to indicate a time length of the fourth time unit, where the fourth time unit is the last one of the uplink bursts to which the second time unit belongs to be used for the access network device.
  • the time unit for sending upstream information may be further used to indicate a time length of the fourth time unit, where the fourth time unit is the last one of the uplink bursts to which the second time unit belongs to be used for the access network device.
  • the transmitter 2103 is further configured to send the second indication information to the terminal device, where the second indication information is used to indicate the length of time of the fourth time unit.
  • the processor 2101 is configured to call the program code stored in the memory 2102, and is configured to perform the following operations:
  • the downlink information that needs to be sent to the terminal device is processed, and the processed downlink information is sent to the transmitter 2103.
  • the embodiment of the present invention can flexibly configure the length of time of the first time unit for uplink information transmission based on the indication of the first indication information sent by the access network device, so as to ensure that the uplink information is in the unlicensed band resource. Effective transmission on.
  • FIG. 22 is a schematic structural diagram of an uplink information transmission system according to an embodiment of the present invention.
  • the transmission system of the uplink information may include a terminal device and an access network device, where:
  • the access network device is configured to send the first indication information to the terminal device in the first time unit, where the first indication information is used to indicate the time length of the second time unit, and the second time unit is the first time after the third time unit In the time unit of uplink information transmission, the third time unit is the last time unit for downlink information transmission before the second time unit.
  • the terminal device is configured to receive the first indication information in the first time unit, determine the time length of the second time unit according to the first indication information, and send the uplink in the uplink time unit after the second time unit and/or the second time unit information.
  • the access network device is further configured to receive uplink information sent by the terminal device in an uplink time unit after the second time unit and/or the second time unit;
  • the index of the second time unit when the time length of the second time unit is less than the preset time length, the index of the second time unit is equal to the index of the third time unit, and when the time length of the second time unit is greater than or equal to the preset time length, the second The index of the time unit is greater than the index of the third time unit; or, when the time length of the second time unit is less than or equal to the preset time length, the index of the second time unit is equal to the index of the third time unit, when the second time unit When the length of time is greater than the preset time length, the index of the second time unit is greater than the index of the third time unit.
  • the first time unit may be configured with common control information, where the common control information is used to indicate an end time of the downlink burst to which the first time unit belongs.
  • the public control information may further include the foregoing first indication information.
  • the first indication information may be carried in a physical layer common control channel.
  • first time unit and the third time unit belong to the same downlink burst; or the first time unit belongs to the first downlink burst, and the third time unit belongs to the second downlink burst.
  • the first downlink burst is located before the second downlink burst, and the L downlink bursts are included between the first downlink burst and the second downlink burst, L ⁇ 0 and L is an integer.
  • the preset time length is less than or equal to 1 ms. Preferably, the preset time length is equal to 1 ms.
  • the first indication information may be further used to indicate a time length of the fourth time unit, where the fourth time unit is the last one of the uplink bursts to which the second time unit belongs to be used for the access network device.
  • the time unit for sending upstream information may be further used to indicate a time length of the fourth time unit, where the fourth time unit is the last one of the uplink bursts to which the second time unit belongs to be used for the access network device.
  • the terminal device may be further configured to determine a length of time of the fourth time unit according to the first indication information.
  • the access network device may be further configured to send the second indication information to the terminal device, where the second indication information is used to indicate the length of time of the fourth time unit.
  • the terminal device may further determine the length of time of the fourth time unit according to the second indication information.
  • the specific manner that the terminal device determines the length of time of the second time unit according to the first indication information may be:
  • the terminal device parses the length of time in the first indication information, and determines the length of the parsed time as the length of time of the second time unit; or
  • the terminal device parses the first indication information, obtains the index information, determines the length of time corresponding to the index information according to the relationship between the preset time length index information and the length of time, and determines the length of time corresponding to the index information as the first The length of time of the second time unit.
  • the first indication information may be used to indicate a specific time length of the second time unit, for example, the first indication information may indicate that the time length of the second time unit is an integer number of OFDM symbols or 1 ms, or the like; or When the specific length of time indicated in the first indication information is 0, the terminal device determines that the time length of the second time unit is 1 ms; or The end device may pre-store the mapping between the index information configured by the access network device and the specific time length, and the first indication information may include an index information, where the terminal device parses the first indication information.
  • the time length corresponding to the index information in the first indication information is queried as the time length of the second time unit from the corresponding relationship between the index information and the specific time length in the terminal device; or
  • the terminal device may determine the time length of the second time unit by detecting the presence or absence of the first indication information. For example, when the terminal device does not detect the first indication information, the terminal device may determine the time of the second time unit.
  • the length is 1 ms, which is not limited in the embodiment of the present invention.
  • the embodiment of the present invention can flexibly configure the length of time of the first time unit for uplink information transmission based on the indication of the first indication information sent by the access network device, so as to ensure that the uplink information is in the unlicensed band resource. Effective transmission on.
  • the modules in the device of the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • the module in the embodiment of the present invention may be implemented by a general-purpose integrated circuit, such as a CPU (Central Processing Unit) or an ASIC (Application Specific Integrated Circuit).
  • a general-purpose integrated circuit such as a CPU (Central Processing Unit) or an ASIC (Application Specific Integrated Circuit).
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行信息的传输方法及设备、系统,该方法包括终端设备接收接入网设备发送的第一指示信息,并根据第一指示信息确定第二时间单元的时间长度,第二时间单元为第三时间单元之后的第一个上行时间单元,第三时间单元为第二时间单元之前的最后一个下行时间单元,终端设备在第二时间单元和/或第二时间单元之后的上行时间单元中发送上行信息,其中,当确定出的时间长度小于预设时间长度时,第二时间单元与第三时间单元的索引相等,当确定出的时间长度大于或等于预设时间长度时,第二时间单元的索引大于第三时间单元的索引。实施本发明实施例能够灵活配置用于传输上行信息的第一个时间单元的时间长度。

Description

一种上行信息的传输方法及设备、系统 技术领域
本发明实施例涉及无线通信技术领域,具体涉及一种上行信息的传输方法及设备、系统。
背景技术
当前,为了解决日益增长的传输数据量与有限的许可频段(又称“授权频段”)资源之间的矛盾,长期演进(LTE,Long Term Evolution)系统可以在免许可频段(又称“非授权频段”)资源上实现数据的传输,且在免许可频段资源上实现数据的传输可以通过载波聚合(CA,Carrier Aggregation)技术、双连接(DC,Dual Connectivity)技术以或者免许可频谱资源上的独立LTE系统来实现。以许可辅助接入长期演进(LAA-LTE,Licensed-Assisted Evolution Long Term Evolution)系统为例,其主要思想是利用现有LTE系统中CA的配置和结构,以配置运营商许可频段资源上的许可载波进行通信为基础,配置多个免许可频段资源上的免许可载波进行通信,这样既可以通过许可载波继承传统无线通信在移动性、安全性、服务质量以及同时处理多用户调度的优势,又能够利用免许可载波达到传输数据量分流的目的,进而减小许可载波的负载。
在实际应用中,对于使用免许可频段资源进行数据传输的LTE系统而言,其通信设备需遵循先听后说(LBT,Listen Before Talk)规则,LBT规则要求通信设备在使用免许可频段资源进行数据传输之前先侦听对应的信道是否空闲,若是,则在对应的信道上进行数据传输且在对应信道上进行数据传输的时间是有限制的,若否,则无法在对应的信道上进行数据传输,这使得LTE系统中通信设备在免许可频段资源上的数据传输均是机会性的。为了能够在机会性数据传输的情况下有效的利用抢占到的免许可频段资源进而保证数据传输的有效性和可靠性,在LTE系统中的接入网设备通过抢占到的免许可频段资源进行下行信息的传输之后,LTE系统中的终端设备需能够快速的抢占该免许可频段资源并进行上行信息的传输,因此,确定用于传输上行信息的第一个时间单元的长度显得尤为重要。对于使用频分双工(FDD,Frequency Division Duplex) 的LTE系统来说,终端设备可以通过频带配置来确定用于传输上行信息的第一个时间单元的时间长度,或者对于使用时分双工(TDD,Time Division Duplex)的LTE系统来说,终端设备可以通过半静态的高层信令配置来确定用于传输上行信息的第一个时间单元的时间长度。可见,当前确定出的用于传输上行信息的第一个时间单元的时间长度是固定的,无法灵活配置。
发明内容
本发明实施例公开了一种上行信息的传输方法及设备、系统,能够灵活配置用于传输上行信息的第一个时间单元的时间长度。
本发明实施例第一方面公开了一种上行信息的传输方法,该方法可以包括以下操作:
终端设备接收接入网设备发送的第一指示信息,并根据第一指示信息确定第二时间单元的时间长度,即第一指示信息用于指示第二时间单元的时间长度,第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,第三时间单元为第二时间单元之前的最后一个用于下行信息传输的下行时间单元,终端设备在第二时间单元和/或第二时间单元之后的上行时间单元中发送上行信息。
其中,当上述第二时间单元的时间长度小于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于或等于上述预设时间长度时,上述第二时间单元的索引大于上述第三时间单元的索引;或者,当上述第二时间单元的时间长度小于或等于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于上述预设时间长度时,上述第二时间单元的索引大于上述第三时间单元的索引,其中,时间单元的索引用于指示对应的时间单元,具体可以用于指示对应的时间单元在免许可频段资源上的位置,且时间单元的索引可以用时间单元所处子帧的子帧索引来表示。这样通过接入网设备发送的第一指示信息动态的配置第一个用于上行信息传输的时间单元的时间长度,进而保证了在免许可频段资源上进行上行信息传输的有效性和可靠性。
可选的,上述第一时间单元可以承载有公共控制信息,且该公共控制信息 用于指示第一时间单元所属的下行突发的结束时刻。其中,该公共控制信息可以承载在物理层公共控制信道中。这样,终端设备可以通过检测该公共控制信息的有无来确定第一时间单元,且检测第一时间单元存在时的可靠性比较高。在这种情况下,将第一指示信息承载在该第一时间单元中能够实现终端设备准确可靠地确定包括第一指示信息的第一时间单元。进一步可选的,该公共控制信息可以包括上述第一指示信息,即上述第一指示信息可以承载在公共控制信息的冗余比特中,这样能够在实现通过第一指示信息动态配置上述第二时间单元的时间长度的同时,减少信令的开销。
可选的,上述第一指示信息可以承载在物理层控制信道中,且该物理层控制信道可以包括以下至少一项:物理下行控制信道(PDCCH,Physical Downlink Control Channel)以及增强物理下行控制信道(EPDCCH,Enhanced Physical Downlink Control Channel),进一步的,上述第一指示信息具体可以承载在物理层公共控制信道中,这样能够在实现通过第一指示信息动态配置上述第二时间单元的时间长度的同时,减少信令的开销。
可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。且上述第三时间单元所属的下行突发与上述第二时间单元所属的上行突发可以在同一个传输机会(TxOP,Transmission Opportunity),也可以分别在两个相邻的TxOP中。
可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。具体的,当上述预设时间长度小于1ms时,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度;或者,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度,或者等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度和终端设备进行信道评测所需要的实际时间长度或最大时间长度。
可选的,该上行信息的传输方法还可以包括以下操作:
终端设备根据上述第一指示信息确定第四时间单元的时间长度,其中,该第四时间单元为上述第二时间单元所属的上行突发中最后一个用于发送上行信息的时间单元。由于在上述第二时间单元所属的上行突发之后的下行突发之前,接入网设备需要执行信道评测,因此,通过上述第一指示信息的指示,可以使得第四时间单元的时间长度动态改变,从而可以为接入网设备执行信道评测预留一定的时间范围。
本发明实施例第二方面公开了另一种上行信息的传输方法,该方法可以包括以下操作:
接入网设备在第一时间单元向终端设备发送第一指示信息,该第一指示信息用于指示第二时间单元的时间长度,该第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,该第三时间单元为第二时间单元之前的最后一个用于下行信息传输的时间单元;
接入网设备接收终端设备在上述第二时间单元和/或上述第二时间单元之后的上行时间单元中发送的上行信息。
其中,当上述第二时间单元的时间长度小于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于或等于上述预设时间长度时,上述第二时间单元的索引大于上述第三时间单元的索引;或者,当上述第二时间单元的时间长度小于或等于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于上述预设时间长度时,上述第二时间单元的索引大于上述第三时间单元的索引,其中,时间单元的索引用于指示对应的时间单元,具体可以用于指示对应的时间单元在免许可频段资源上的位置,且时间单元的索引可以用时间单元所处子帧的子帧索引来表示。这样通过接入网设备发送的第一指示信息动态的配置第一个用于上行信息传输的时间单元的时间长度,进而保证了在免许可频段资源上进行上行信息传输的有效性和可靠性。
可选的,上述第一时间单元可以承载有公共控制信息,且该公共控制信息用于指示第一时间单元所属的下行突发的结束时刻。进一步可选的,该公共控制信息可以包括上述第一指示信息,即上述第一指示信息可以承载在公共控制信息的冗余比特中,这样能够在实现通过第一指示信息动态配置上述第二时间 单元的时间长度的同时,减少信令的开销。
可选的,上述第一指示信息可以承载在物理层控制信道中,且该物理层控制信道可以包括以下至少一项:物理下行控制信道(PDCCH,Physical Downlink Control Channel)以及增强物理下行控制信道(EPDCCH,Enhanced Physical Downlink Control Channel),进一步的,上述第一指示信息具体可以承载在物理层公共控制信道中,这样能够在实现通过第一指示信息动态配置上述第二时间单元的时间长度的同时,减少信令的开销。
可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。且上述第三时间单元所属的下行突发与上述第二时间单元所属的上行突发可以在同一个传输机会(TxOP,Transmission Opportunity),也可以分别在两个相邻的TxOP中。
可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。具体的,当上述预设时间长度小于1ms时,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度;或者,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度,或者等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度和终端设备进行信道评测所需要的实际时间长度或最大时间长度。
可选的,上述第一指示信息还可以用于指示上述第二时间单元所属的上行突发中最后一个用于发送上行信息的时间单元。由于在上述第二时间单元所属的上行突发之后的下行突发之前,接入网设备需要执行信道评测,因此,通过上述第一指示信息的指示,可以使得第四时间单元的时间长度动态改变,从而可以为接入网设备执行信道评测预留一定的时间范围。
本发明实施例第三方面公开了一种终端设备,该终端设备包括用于执行本发明实施例第一方面公开的上行信息的传输方法的模块。
本发明实施例第四方面公开了一种接入网设备,该接入网设备包括用于执 行本发明实施例第二方面公开的上行信息的传输方法的模块。
本发明实施例第五方面公开了另一种终端设备,该终端设备可以包括处理器、存储器、发射器以及接收器,其中:
接收器,用于在第一时间单元接收接入网设备发送的第一指示信息;
存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
根据第一指示信息,确定第二时间单元的时间长度,第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,第三时间单元为第二时间单元之前的最后一个用于下行信息传输的时间单元;
发射器,用于在第二时间单元和/或第二时间单元之后的上行时间单元中发送上行信息;
其中,当第二时间单元的时间长度小于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于或等于预设时间长度时,第二时间单元的索引大于第三时间单元的索引;或者,当第二时间单元的时间长度小于或等于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于预设时间长度时,第二时间单元的索引大于第三时间单元的索引。
可选的,上述第一时间单元可以承载有公共控制信息,且该公共控制信息用于指示第一时间单元所属的下行突发的结束时刻。进一步可选的,该公共控制信息可以包括上述第一指示信息,即上述第一指示信息可以承载在公共控制信息的冗余比特中,这样能够在实现通过第一指示信息动态配置上述第二时间单元的时间长度的同时,减少信令的开销。
可选的,上述第一指示信息可以承载在物理层公共控制信道中,这样能够在实现通过第一指示信息动态配置上述第二时间单元的时间长度的同时,减少信令的开销。
可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。且上述第三时间单元所属的下行 突发与上述第二时间单元所属的上行突发可以在同一个传输机会(TxOP,Transmission Opportunity),也可以分别在两个相邻的TxOP中。
可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。具体的,当上述预设时间长度小于1ms时,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度;或者,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度,或者等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度和终端设备进行信道评测所需要的实际时间长度或最大时间长度。
可选的,处理器用于调用存储器中存储的程序代码,还用于执行以下操作:
根据第一指示信息确定第四时间单元的时间长度,第四时间单元为第二时间单元所属的上行突发中最后一个用于发送上行信息的时间单元。
可选的,接收器还可以用于接收接入网设备发送的第二指示信息。且处理器用于调用存储器中存储的程序代码,还用于执行以下操作:
根据第二指示信息确定第四时间单元的时间长度。
本发明实施例第六方面公开了一种接入网设备,该接入网设备可以包括发射器和接收器,其中:
发射器,用于在第一时间单元向终端设备发送第一指示信息,第一指示信息用于指示第二时间单元的时间长度,第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,第三时间单元为第二时间单元之前的最后一个用于下行信息传输的时间单元;
接收器,用于接收终端设备在第二时间单元和/或第二时间单元之后的上行时间单元中发送的上行信息;
其中,当第二时间单元的时间长度小于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于或等于预设时间长度时,第二时间单元的索引大于第三时间单元的索引;或者,当第二时间单元的时间长度小于或等于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于预设时间长度时,第二时间单 元的索引大于第三时间单元的索引。
可选的,上述第一时间单元可以承载有公共控制信息,且该公共控制信息用于指示第一时间单元所属的下行突发的结束时刻,进一步可选的,该公共控制信息可以包括上述第一指示信息,即上述第一指示信息可以承载在公共控制信息的冗余比特中,这样能够在实现通过第一指示信息动态配置上述第二时间单元的时间长度的同时,减少信令的开销。
可选的,上述第一指示信息可以承载在物理层控制信道中,且该物理层控制信道可以包括以下至少一项:物理下行控制信道(PDCCH,Physical Downlink Control Channel)以及增强物理下行控制信道(EPDCCH,Enhanced Physical Downlink Control Channel),进一步的,上述第一指示信息具体可以承载在物理层公共控制信道中,这样能够在实现通过第一指示信息动态配置上述第二时间单元的时间长度的同时,减少信令的开销。
可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。且上述第三时间单元所属的下行突发与上述第二时间单元所属的上行突发可以在同一个传输机会(TxOP,Transmission Opportunity),也可以分别在两个相邻的TxOP中。
可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。具体的,当上述预设时间长度小于1ms时,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度;或者,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度,或者等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度和终端设备进行信道评测所需要的实际时间长度或最大时间长度。
可选的,上述第一指示消息还可以用于指示第四时间单元的时间长度,其中,该第四时间单元为上述第二时间单元所属的上行突发中最后一个用于上行信息传输的时间单元。
可选的,发射器还可以用于向终端设备发送第二指示信息,其中,该第二指示信息用于指示上述第四时间单元的时间长度。
可选的,该接入网设备还可以包括处理器和存储器,其中,存储器中存储有一组程序代码,处理器用于调用存储器中存储的程序代码,用于执行以下操作:
根据实际的上行业务需求对接收到的上行信息进行处理。
本发明实施例第七方面公开了一种上行信息的传输系统,其中,该传输系统包括上述的终端设备和接入网设备。
本发明实施例中,终端设备在第一时间单元接收接入网设备发送的第一指示信息,并根据该第一指示信息确定第二时间单元的时间长度,第二时间单元为第三时间单元之后的第一个上行时间单元,第三时间单元为第二时间单元之前的最后一个下行时间单元,终端设备在第二时间单元和/或第二时间单元之后的上行时间单元中发送上行信息,其中,当确定出的时间长度小于预设时间长度时,第二时间单元与第三时间单元的索引相等,当确定出的时间长度大于或等于预设时间长度时,第二时间单元的索引大于第三时间单元的索引。可见,本发明实施例通过接入网设备发送的第一指示信息动态的配置第一个用于上行信息传输的时间单元的时间长度,进而保证了上行信息传输的有消息和可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种应用架构的架构示意图;
图2是本发明实施例公开的一种上行信息的传输方法的流程示意图;
图3是本发明实施例公开的一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图4是本发明实施例公开的一种LTE系统在免许可频段资源上进行下行信 息传输的帧结构的结构示意图;
图5是本发明实施例公开的另一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图6是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图7是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图8是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图9是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图10是本发明实施例公开的一种第二时间单元与第三时间单元索引相同时部分帧结构的结构示意图;
图11是本发明实施例公开的一种第二时间单元的索引大于第三时间单元的索引时部分帧结构的结构示意图;
图12是本发明实施例公开的另一种LTE系统在免许可频段资源上进行下行信息传输的帧结构的结构示意图;
图13是本发明实施例公开的第三时间单元所在子帧的结构示意图;
图14是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图15是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图16是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图17是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图;
图18是本发明实施例公开的一种终端设备的结构示意图;
图19是本发明实施例公开的另一种终端设备的结构示意图;
图20是本发明实施例公开的一种接入网设备的结构示意图;
图21是本发明实施例公开的另一种接入网设备的结构示意图;
图22是本发明实施例公开的一种上行信息的传输系统的结构示意图;
图23是本发明实施例公开的一种时间单元的位置关系示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好的理解本发明实施例公开的一种上行信息的传输方法及设备、系统,下面首先对本发明实施例适用的应用架构进行描述。请参阅图1,图1是本发明实施例公开的一种应用架构的架构示意图。如图1所示,该应用架构可以可以包括终端设备和接入网设备,其中,终端设备与接入网设备之间既可以利用许可频段资源进行通信,又能够利用免许可频段资源进行通信,且在使用免许可频段资源进行通信时需遵循LBT规则。该应用架构可以部署在将许可频段资源上的许可载波以及免许可频段资源上的免许可载波通过CA技术聚合在一起使用的LAA-LTE系统中,即:将许可频段资源或者许可频段资源上的许可载波或者工作在许可频段资源上的小区作为主服务小区(PCell,Primary Cell),并将免许可频段资源或免许可频段资源上的免许可载波或者工作在免许可频段资源上的小区作为辅服务小区(SCell,Secondary Cell),其中,主服务小区和辅服务小区可以共站部署,也可以非共站部署,且主服务小区和辅服务小区之间有理想的回传路径;该应用架构也可以部署在将许可频段资源上的许可载波以及免许可频段资源上的免许可载波通过DC技术在一起使用的LTE系统中,即:主服务小区与辅服务小区之间没有理想的回传路径;该应用架构还可以部署在独立的LTE系统中,工作在免许可频段资源上的服务小区可以直接提供独立接入功能,不需要工作在许可频段资源上小区的辅助。其中,接入网设备可以是用于与移动台通信的设备,具体可以是无线局域网(WLAN,Wireless Local Area Networks)中的接入点(AP,Access Point)、全球移动通信系统(GSM,Global System for Mobile Communication)或码分多址(CDMA,Code Division  Multiple Access)中的基站收发信台(BTS,Base Transceiver Station)、宽带码分多址(WCDMA,Wideband Code Division Multiple Access)中的基站(NB,NodeB)、LTE系统中的演进型基站(eNB,Evolutional Node B)、中继站或接入点、车载设备、可穿戴设备、未来5G网络中的接入网设备以及未来演进的公共陆地移动网络(PLMN,Public Land Mobile Network)中的接入网设备等中的任意一种;终端设备也可以称为用户设备(UE,User Equipment)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置等,其具体可以是WLAN中的站点(ST,Station)、蜂窝电话、无绳电话、会话启动协议(SIP,Session Initiation Protocol)电话、无线本地环路(WLL,Wireless Local Loop)站、个人数字处理(PDA、Personal Digital Assistant)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的PLMN网络中的终端设备等中的任意一种。
在介绍本发明的具体实施例之前,首先对本发明中可能涉及到的基站、小区、频段及载波等概念进行一些简单说明。无论是许可频段资源还是免许可频段资源,在本发明中都可以包括一个或多个载波,且许可频段资源上的一个或多个许可载波和非许可频段资源上的一个或多个免许可载波可以进行载波聚合;本发明中提到的小区可以是基站对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)以及毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务的场景;本发明中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为载波与小区的概念等同,例如,在CA场景下,当为终端设备配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell ID,Cell Indentify),在这种情况下,载波与小区的概念等同,比如终端设备接入一个载波和接入一个小区是等同的,本发明中将以小区的概念来介绍;本发明中,能够和基站进行数据通信的设备均可以理解为终端设备,本发明将以一般意义上的终端设备来介绍;本发明中,时间单元,可以理解为一次传输的时间单位,例如可以是一个子帧、一个时隙以及一个或多 个符号中的任意一种。
请参阅图2,图2是本发明实施例公开的一种上行信息的传输方法的流程示意图。如图2所示,该上行信息的传输方法可以包括以下操作:
201、接入网设备在第一时间单元向终端设备发送第一指示信息。
本发明实施例中,接入网设备可以根据具体的上行业务需求向终端设备发送用于指示第二时间单元的时间长度的第一指示信息,该第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,且该第三时间单元为该第二时间单元之前的最后一个用于下行信息传输的时间单元。
其中,第一时间单元所在的频点与第二时间单元所在的频点可以相同,也可以不相同,例如,当第一时间单元与第二时间单元都为免许可频段资源上的时间单元时,二者频点可以相同,也可以不相同,又例如,当第一时间单元为许可频段资源上的时间单元且第二时间单元为免许可频段资源上的时间单元时,二者频点不同。且第二时间单元所在的频点与第三时间单元所在的频点可以相同,也可以不相同,例如,当第二时间单元与第三时间单元都为免许可频段资源上的时间单元时,二者频点可以相同,也可以不相同,本发明实施例不做限定。可选地,上述第二时间单元和上述第三时间单元都为免许可频段资源上的时间单元。
在本发明实施例中,需要说明的是,如果上述第二时间单元所在的频点与上述第三时间单元所在的频点不同,则“该第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元”可以理解为:在时间上,该第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元;或者,也可以理解为,该第二时间单元为特定的时间单元之后的第一个用于上行信息传输的时间单元,该特定的时间单元所在的频点与上述第二时间单元所在的频点相同,且该特定的时间单元在时间位置上与上述第三时间单元的位置相同。举例来说,当上述第二时间单元所在的频点与上述第三时间单元所在的频点不同时,第三时间单元、特定的时间单元以及第二时间单元的位置关系可以如图23所示,图23是本发明实施例公开的一种时间单元的位置关系示意图,其中,CC1/CC2分别表示第三时间单元/第二时间单元所在的频点或者所在的载波。 可选地,第三时间单元的索引与特定的时间单元的索引可以相同。
202、终端设备在上述第一时间单元接收接入网设备发送的第一指示信息。
203、终端设备根据上述第一指示信息,确定上述第二时间单元的时间长度。
204、终端设备在上述第二时间单元和/或上述第二时间单元之后的上行时间单元中向接入网设备发送上行信息。
205、接入网设备接收终端设备在上述第二时间单元和/或上述第二时间单元之后的上行时间单元中发送的上行信息。
本发明实施例中,上行信息可以包括上行业务数据、上行控制数据以及上行参考信号中的至少一种,下行信息可以包括下行业务数据、下行控制数据以及下行业务数据的至少一种,本发明实施例不做限定。例如,对于上行信息而言,其可以包括以下至少一项:可以承载在物理上行共享信道(PUSCH,Physical Uplink Shared Channel)的业务数据、可以承载在PUSCH上的控制数据、可以承载在物理上行控制信道(PUCCH,Physical Uplink Control Channel)的控制数据、可以承载在物理随机接入信道(PRACH,Physical Random Access Channel)中的数据、上行解调参考信号(DMRS,Demodulation Reference Signal)以及探测参考信号(SRS,Sounding Reference Signal),其中,控制数据可以包括信道状态信息(CSI,Channel State Information),CSI可以是周期的,也可以是非周期的,还可以包括调度请求(SR,Scheduling Request)、混合自动重传确认(HARQ-ACK,Hybrid Automatic Repeat Request-Acknowledgment)。其中,HARQ-ACK可以包括确认应答(ACK,Acknowledgment)信息或否认应答(NACK,Negative Acknowledgement)信息。又例如对于下行信息而言,其可以包括承载在下行物理信道中的数据和/或下行参考信号,该下行物理信道可以包括以下至少一项:物理下行共享信道(PDSCH,Physical Downlink Shared Channel)、物理广播信道(PBCH,Physical Broadcast Channel)、物理多播信道(PMCH,Physical Multicast Channel)、物理控制格式指示信道(PCFICH,Physical Control Format Indicator Channel)、物理下行控制信道(PDCCH,Physical Downlink Control Channel)、物理混合自动重传请求指示信道(PHICH,Physical Hybrid ARQ Indicator Channel)、增强物理下行控制信 道(EPDCCH,Enhanced Physical Downlink Control Channel)以及MTC物理下行控制信道(MPDCCH,MTC Physical Downlink Control Channel),其中,下行参考信号包括以下至少一项:小区特定参考信号(CRS,Cell-specific Reference Signal)、多媒体广播多播服务单频网络参考信号(MBSFN RS,Multimedia Broadcast Multicast Service Single Frequency Network Reference Signal)、用于解调PDSCH承载数据的用户设备特定参考信号(US-RS,UE-specific Reference Signal)、用于解调EPDCCH或MPDCCH承载数据的参考信号(DM-RS,DeModulation Reference Signal)、定位参考信号(PRS,Positioning Reference Signal)以及信道状态信息参考信号(CSI-RS,CSI Reference Signal)等。
本发明实施例中,当上述第二时间单元的时间长度小于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于或等于上述预设时间长度时,上述第二时间单元的索引大于上述第三时间单元的索引;或者,当上述第二时间单元的时间长度小于或等于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于上述预设时间长度时,上述第二时间单元的索引大于上述第三时间单元的索引。
本发明实施例中,时间单元的索引用于指示对应的时间单元,例如,时间单元的索引可以具体用于指示对应的时间单元在免许可频段资源上的具体位置,可选地,时间单元的索引可以用子帧索引表示。当上述第二时间单元的时间长度小于(或小于等于)预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,即上述第二时间单元对应的子帧索引与上述第三时间单元对应的子帧索引相同;当上述第二时间单元的时间长度大于等于(或大于)预设时间长度时,上述第二时间单元的索引大于上述第三时间单元的索引,即上述第二时间单元对应的子帧索引大于上述第三时间单元对应的子帧索引相同。需要说明的是,由于一个子帧包括两个时隙,因此,当上述第二时间单元的时间长度小于预设时间长度时,尽管上述第二时间单元对应的子帧索引与上述第三时间单元对应的子帧索引相同,但上述第二时间单元对应的时隙索引与上述第三时间单元对应的时隙索引可能相同,也可能不同。
可见,实施本发明实施例能够基于接入网设备发送的第一指示信息的指示,灵活的配置第一个用于上行信息传输的时间单元的时间长度,这样能够保证上行信息在免许可频段资源上的有效传输,且由于上述第二时间单元以及上述第三时间单元均为免许可频段资源上的时间单元,若上述第二时间单元所属的上行突发紧挨着一个下行突发,则终端设备可以在不执行信道评测的情况下直接使用该免许可频段资源,或者可以采用不同于接入网设备的信道评测机制来侦听免许可频段资源对应的信道是否可用,如终端设备使用更短的侦听时间或采用更大的侦听能量门限来侦听免许可频段资源对应的信道是否可用等,因此,在免许可频段资源上,上述第二时间单元上承载的上行信息的发送机会可以在终端设备不执行信道评测机制的情况下被保证或者在终端设备采用了不同于接入网设备的信道评测机制的情况下尽可能的被保证,本发明实施例中的第二时间单元的时间长度可以灵活变化,这样能够保证不同长度需求的上行信息的发送。举例来说,当在上述第二时间单元中发送的上行信息为探测参考信号(SRS,Sounding Reference Signal)时,上述第二时间单元的时间长度可以为一个正交频分复用(OFDM,Orthogonal Frequency Division)符号,又如,当在上述第二时间单元中发送的上行信息为物理随机接入信道(PRACH,Physical Random Access Channel)包括的信息时,则承载该信息的PRACH在时间上的长度可以小于1ms,也可以等于1ms。
需要说明的是,上述描述中的“采用不同于接入网设备的信道评测机制来侦听免许可频段资源对应的信道是否可用”可以理解为:基于终端设备的信道评测机制评测出免许可频段资源对应信道空闲的概率大于接入网设备的信道评测机制评测出的免许可频段资源对应信道空闲的概率。可选的,终端设备的信道评测机制可以是不包括随机回退竞争窗的LBT机制,如LBT机制中的one shot信道评测机制等,而接入网设备的信道评测机制则是包括随机回退竞争窗的LBT机制,如LBT机制中的normal LBT评测机制等。
需要说明的是,时间单元可以是包括用于上行信息传输或下行信息传输的时间单元。在本发明实施例中,时间单元可以理解为一次传输的时间单位。例如,接入网设备通过下行控制信息(DCI,Downlink Control Information)调度终端设备接收下行信息,则该下行信息所在的时间单位可以理解为时间单元。 对于FDD系统而言,如果不支持短传输时间间隔(S-TTI,Short Transmission Time Interval)的帧结构,无论是下行信息传输还是上行信息传输,调度的基本时间单位可以是1个子帧,此时,该时间单元的时间长度为1ms,或者可以理解为,该时间单元用于下行信息传输或者上行信息传输的时间长度为1ms;或者,如果下行信息传输为正常循环前缀(NCP,Normal Cyclic Prefix)配置,则该时间单元用于信息传输的时间长度为14个OFDM符号;或者,如果下行信息传输为扩展循环前缀(ECP,Extended Cyclic Prefix)配置,则该时间单元用于信息传输的时间长度为12个OFDM符号。另一方面,对于TDD系统而言,如果其不支持S-TTI传输,则调度的基本时间单元除了包括1个子帧之外还包括部分子帧,例如对于TDD的下行信息传输而言,调度的基本时间单位包括1个子帧以及1个下行导频时隙(DwPTS,Downlink Pilot Time Slot),对于TDD的上行信息传输而言,调度的基本时间单位包括1个子帧以及1个上行导频时隙(UpPTS,Uplink Pilot Time Slot),其中,1个子帧用于信息传输的时间长度为1ms,1个DwPTS用于下行信息传输的时间长度小于1ms,1个UpPTS用于上行信息传输的时间长度小于1ms。对于TDD系统而言,1个子帧、1个DwPTS或者1个UpPTS都可以对应一个时间单元;对于FDD系统,如果支持S-TTI帧结构,则一次用于信息传输的时间单位的时间长度可以从1ms缩短为1个OFDM符号(symbol)到0.5ms之间,其中可以包括1个OFDM符号以及0.5ms;对于TDD系统,如果支持S-TTI帧结构,除了可以像FDD系统一样将一次信息传输的时间单位的时间长度从1ms缩短为1个OFDM符号到0.5ms之间,还可以将一次传输的时间单位的时间长度缩短的比DwPTS或UpPTS还短。
需要说明的是,LTE系统在免许可频段资源上进行上下行信息传输的帧结构不固定,即接入网设备(如基站或小区等)可以根据下行业务负载和/或上行业务负载或者其它考虑因素等决定在抢占到免许可频段资源之后下行信息传输时长和/或上行信息传输时长,其中,LTE系统在免许可频段资源上进行进行上下行信息传输的帧结构可以图3所示,图3是本发明实施例公开的一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。如图3所示,为了便于描述LTE系统在免许可频段资源上进行上下行信息传输的帧结构,在本发明实施例中引入了传输机会(TxOP,Transmission Opportunity) 的概念,且TxOP又可称为一个突发数据传输,且一个TxOP内可以包括下行突发(DL Burst,Downlink Burst)和/或上行突发(UL Burst,Uplink Burst)。
需要说明的是,在本发明实施例中,下行突发(DL Burst)也可以理解为下行传输突发(DL transmission burst),上行突发(UL burst)也可以理解为上行传输突发(UL transmission burst)。
其中,“下行突发”可以理解为:接入网设备(例如基站eNB或基站下的小区Cell等)在抢占到免许可频段资源之后,不需要再通过竞争机制(如LBT机制)而是直接利用该免许可频段资源进行下行信息的传输,且一个下行突发的时间长度不大于该接入网设备在该免许可频段资源上无需再通过竞争机制可以连续传输的最大时间,该最大时间也可以称为最大信道占用时间(MCOT,Maximum Channel Occupied Time)。其中,MCOT可以与地域法规约束有关,例如在日本,MCOT可以等于4ms,在欧洲,MCOT可以等于8ms、10ms或者13ms;MCOT也可以与侦听设备(例如基站、用户设备)采用的竞争机制有关,例如,侦听时间越短,MCOT越短;MCOT还可以与数据传输的业务等级有关,本发明实施例不做限定。
其中,上述提到的“不需要再通过竞争机制”可以理解为:接入网设备(如基站或小区)在抢占到免许可频段资源之后,在该免许可频段资源上实际发送下行信息的时间内或在上述MCOT内不需要再通过竞争机制评估该免许可频段资源对应的信道是否空闲。例如,如上图3所示,以第一个TxOP中包括的下行突发为例,从该下行突发中包括的第二个子帧开始,接入网设备不需要再通过竞争机制评估该免许可频段资源对应的信道是否空闲;或者,上述“不需要再通过竞争机制”还可以理解为:接入网设备(如基站或小区)在抢占到免许可频段资源之后,在该免许可频段资源上实际发送下行信息的时间内或在上述MCOT内,接入网设备可以不需要考虑与异系统的共存而采用竞争机制,但是可以考虑与同系统的共存而采用竞争机制,其中,“与同系统的共存而采用竞争机制”可以理解为在抢占到该免许可频段资源之后,在实际发送下行信息的时间内或上述MCOT内可以包括特定的时间单位(或空闲的时间单位),在此特定的时间单位内,接入网设备可以停止下行信息传输(或可以停止发送下行数据),这样可以便于同系统的其它设备在评测该免许可频段资源对应的 信道是否空闲的过程中,不会因存在同系统中的设备对其评测结果有所影响。可选的,在该特定的时间单位内,接入网设备也可以进行信道侦听来重新评测该免许可频段资源对应的信道是否空闲,或者还可以不进行信道侦听而是在该特定的时间单位之后,在发送下行信息的时间内或上述MCOT内继续发送下行信息。
举例来说,如图4所示,图4是本发明实施例公开的一种LTE系统在免许可频段资源上进行下行信息传输的帧结构的结构示意图,如图4所示,从该下行突发开始到结束的时间范围内,接入网设备可以在任意时间位置停止发送下行信息一段时间(对应图4中空闲的时间单位),以便同系统的其他设备可以和该接入网设备在该免许可频段资源上实现频段资源复用。此时,对于LTE系统而言,非LTE系统可以称为异系统,例如无线局域网(WLAN,Wireless Local Area Network)系统或者采用无线保真(Wi-Fi Wireless Fidelity)技术的系统,且LTE系统可以称为同系统,进一步可选的,只有属于相同运营商的LTE系统才可以称为同系统;或者,无论是属于相同运营商的LTE系统还是属于不同运营商的LTE系统,都可以称为同系统。
其中,上述“上行突发”可以理解为:终端设备(如UE等)在抢占到免许可频段资源后无需再通过竞争机制(例如LBT机制),而是直接利用该免许可频段资源进行上行信息传输,且上行突发的时间长度不大于该终端设备在该免许可频段资源上的MCOT,或者,上行突发的时间长度也可以有其它限定。上行突发可以包括单个用户的上行信息的传输,也可以包括多个用户的上行信息的传输。从接入网设备侧来说,上行突发可以是TxOP内包括的上行信息传输。对于“不需要再通过竞争机制”的理解,和接入网设备侧相同,在此不做赘述。其中,对于终端设备而言,同系统可以理解为与该终端设备具有相同服务小区或相同服务基站的终端设备。
举例来说,如图5所示,图5是本发明实施例公开的一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。如图5所示,下行突发中包括4个下行子帧,如果每个下行子帧包括上行调度指示信息,例如上行授权UL grant指示信息,则对于FDD系统而言,终端设备可以按照4ms(即4个子帧)的时间延迟来确定上行突发对应的时间范围。如图5所示,相应地, 将第一个上行子帧到最后一个上行子帧之间的时间范围(图5中为3个子帧)确定为该上行突发对应的时间范围。
其中,上述描述中的一个TxOP的时间长度可以不大于下行突发允许的最大传输时间长度,也可以不大于上行突发可以允许的最大传输时间长度,还可以不大于下行突发允许的最大传输时间长度与上行突发允许的最大时间长度之和;或者,一个TxOP的时间长度可以不大于该免许可频段资源上的MCOT。例如,对于一个给定设备,无论是接入网设备、终端设备或其它设备,在抢占到免许可频段资源之后,不需要再通过竞争机制可以传输数据的最大时间长度为8ms(这里8ms对应上面提到的MCOT),那么一个TxOP即使同时包括上行突发和下行突发,一个TxOP的最大传输时间长度也是8ms。这样能够保证上行突发传输可以采用一些容易抢占到免许可频段资源的竞争机制。
其中,上述描述中的一个下行突发的时间长度可以不大于免许可频段资源上允许的最大传输时间长度,例如该免许可频段资源上的MCOT;一个上行突发的时间长度可以不大于免许可频段资源上允许的最大传输时间长度,例如该免许可频段资源上的MCOT。
结合上述描述可知,LTE系统在免许可频段资源上进行上下行信息传输的帧结构不固定,该帧结构具有以下至少一种基本特征:不同的TxOP(相邻的或不相邻的TxOP)包括的下行突发的时间长度可以不同;不同的TxOP包括的上行突发的时间长度可以不同;不同的TxOP的时间长度可以不同。举例来说,如上述图3所示,不同的下行突发的时间长度可以不同,且不同的上行突发的时间长度也可以不同。
需要说明的是,图3-图5中,“下行信息传输前执行LBT”对应的区域、“上行信息传输前的LBT”对应的区域以及空闲的时间单位只是示例,其都是为了说明在接入网设备/终端设备在信息传输之前,需要先通过LBT机制确认免许可频段资源对应的信道是否空闲,至于具体在什么位置执行LBT机制,本发明不做具体限定。此外,图3-图5中,以子帧作为信息传输的时间单位进行描述,对于免许可频段资源上的信息传输,信息传输时间单位还可以是一个时隙或者N个OFDM符号,其中,对于正常循环前缀配置,N可以为小于7的整数,对于扩展循环前缀配置,N可以为小于6的整数。需要说明的是,在本发明实施例 中涉及到的其它示意图主要侧重于说明免许可频段资源上的帧结构以及如何确定调度时序,因此示意图都是按照连续的信息传输进行绘制的,而没有明确标注接入网设备和/或终端设备执行信道空闲评测(CCA,Clear Channel Assessment)(如LBT机制)的具体位置。另外,为了便于说明,本发明实施例给出的示意图的时间单元都是以子帧为例进行说明,且在免许可频段资源上,无论是上行信息传输还是下行信息传输,其信息传输的时间长度可以不是1ms,例如小于1ms。举例来说,如图6所示,图6是本发明实施例公开的另一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图,其中,标注“1”对应的时间单元用于下行信息传输的时间长度小于1ms,标准“2”对应的时间单元用于上行信息传输的时间长度也小于1ms。
本发明实施例中,当上述第二时间单元的时间长度小于(或小于等于)预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,即上述第二时间单元对应的子帧索引与上述第三时间单元对应的子帧索引相同,此时,LTE系统在免许可频段资源上进行上下行信息传输的帧结构可以如图7所示,图7是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。其中,如图7所示,第二时间单元的索引和第三时间单元的索引都为子帧n对应的索引n,此时,图7所示的帧结构的部分帧结构可以如图10所示,图10是本发明实施例公开的一种第二时间单元与第三时间单元索引相同时部分帧结构的结构示意图,图10中,第二时间单元与第三时间单元对应的子帧索引相同,但由于第三时间单元用于信息传输的时间长度大于一个时隙(即0.5ms),因此,第三时间单元对应的时隙索引包括两个,而第二时间单元对应的时隙索引只有一个。需要说明的是,为了便于描述,图7中的帧结构忽略了接入网设备与终端设备之间的定时提前(TA,Timing Advance),或者说,忽略了接入网设备与终端设备之间的传播时延对接入网设备发送下行信息和/或接收上行信息的时间以及对终端设备接收下行信息和/或发送上行信息的时间的影响,因此,在图7中,接入网设备发送下行信息的起始时刻与终端设备接收下行信息的起始时刻相同,接入网设备接收上行信息的起始时刻与终端设备发送上行信息的起始时刻相同。如果考虑接入网设备与终端设备之间的传播时延,以时间单位为子帧为例,则终端设备接收到的下行 信息的子帧边界滞后于接入网设备发送该下行信息的子帧边界,且终端设备发送上行信息的子帧边界提前于接入网设备接收到该上行信息的子帧边界。如图7所示,对于接入网设备而言,下行突发与上行突发之间的部分至少包括下行信息发送到上行信息接收的转换时间;对于终端设备而言,下行突发与上行突发之间的部分可以至少包括下行信息接收到上行信息发送的转换时间。进一步地,在下行突发和上行突发之间的部分,该终端设备在发送上行信息之前按照LBT机制进行信道评测。又进一步可选的,上述第三时间单元所在的下行突发与上述第二时间单元所在的上行突发相邻且属于相同的TxOP,此时,LTE系统在免许可频段资源上进行上下行信息传输的帧结构可以如图8所示,图8是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。
本发明实施例中,当上述第二时间单元的时间长度大于等于(或小于)预设时间长度时,上述第二时间单元的索引大于上述第三时间单元的索引,即上述第二时间单元对应的子帧索引大于上述第三时间单元对应的子帧索引。此时,LTE系统在免许可频段资源上进行上下行信息传输的帧结构可以如图9所示,图9是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。其中,如图9所示,第二时间单元的索引大于第三时间单元的索引,即第二时间单元的索引为子帧n+1对应的索引n+1,且第三时间单元的索引为子帧n对应的索引n,关于图9中的帧结构的其它描述可以参考针对上述图7以及图8中帧结构的描述,在此不再赘述。此时,图9所示的帧结构的部分帧结构可以如图11所示,图11是本发明实施例公开的一种第二时间单元的索引大于第三时间单元的索引时部分帧结构的结构示意图。
综上所述,在免许可频段资源上,无论上行信息传输还是下行信息传输,一次传输的时间单位用于信息传输的时间长度可以是1ms,也可以小于1ms。如图7所示,下行突发中包括的前三个时间单元的时间长度为1ms,或者说前三个时间单元用于下行信息传输的时间长度为1ms,最后一个时间单元(对应本发明实施例中的第三时间单元)的时间长度小于1ms,或者说最后一个时间单元用于下行信息传输的时间长度小于1ms;上行突发中包括的第一个时间单 元的时间长度小于1ms,或者说上行突发中的第一个时间单元用于上行信息传输的时间长度小于1ms,该上行突发中包括的后四个时间单元的时间长度为1ms,或者说后四个时间单元中每个时间单元用于上行信息传输的时间长度为1ms。又如图9所示,下行突发中时间单元的理解与图7相同,上行突发中包括的四个时间单元中每个时间单元用于上行信息传输的时间长度均为1ms。
作为一种可选的实施方式,上述第一时间单元可以承载有公共控制信息,且该公共控制信息用于指示第一时间单元所属的下行突发的结束时刻。
具体的,该公共控制信息可以使用公共无线网络临时标识(RNTI,Radio Network Temporary Identifier)加扰,例如当上述第一时间单元为免许可频段资源上的时间单元时,该公共控制信息可以是公共小区无线网络临时标识(CC-RNTI,Common Cell-Radio Network Temporary Identifier),且该公共控制信息可以承载在物理层公共控制信道中。可选地,该公共控制信息也可以承载在公共搜索空间(CSS,Common Search Space)或者承载在用户设备特定的搜索空间(USS,UE-specific Search Space)中。
在该可选的实施方式中,进一步可选的,上述公共控制信息包括上述第一指示信息,即上述第一指示信息可以设置在上述公共控制信息的冗余比特中。这样能够在实现通过第一指示信息动态配置上述第二时间单元的时间长度的同时,减少信令的开销。
作为另一种可选的实施方式,上述第一指示信息可以承载在物理层控制信道中,且该物理层控制信道可以包括以下至少一项:物理下行控制信道(PDCCH,Physical Downlink Control Channel)以及增强物理下行控制信道(EPDCCH,Enhanced Physical Downlink Control Channel)。进一步的,上述第一指示信息具体承载在物理层公共控制信道中,此时,上述第一指示信息可以用公共无线网络临时标识(RNTI,Radio NetworkTemporaryIdentifier)加扰,具体的,公共RNTI可以是公共小区无线网络临时标识(CC-RNTI,Common Cell-Radio Network Temporary Identifier)。又进一步的,上述第一指示信息可以具体承载在公共搜索空间(CSS,Common Search Space)或者终端设备特定的搜索空间(USS,UE-specific Search Space)。这样将第一指示信息承载在物理层公共控制信道的方式能够节省信令开销。
作为又一种可选的实施方式,上述第一指示信息还可以承载在无线资源控制(RCC,Radio Resource Control)信令或者媒体介入控制(MAC,Medium Access Control)信令中,此时,上述第二时间单元所在的频点与上述第三时间单元所在的频点均为免许可频段资源上的频点,二者频点可以相同,也可以不同。
进一步可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第二时间单元属于第二下行突发,上述第一下行突发位于上述第二下行突发之前,即上述第一下行突发早于上述第二下行突发,且上述第一下行突发与上述第二下行突发之间包括L个下行突发,L≥0且L为整数。
具体的,当上述第一时间单元与上述第三时间单元属于同一个下行突发时,上述第一时间单元包括的第一指示信息可以指示该下行突发结束之后的第一个上行时间单元的时间长度,可选地,第一时间单元可以为第三时间单元;当上述第一时间单元与上述第三时间单元属于不同的下行突发时,上述第一时间单元包括的第一指示信息可以指示该下行突发结束之后的第L+1个下行突发结束之后的第一个上行时间单元的时间长度,其中,L可以是第一指示信息指示的,也可以通过其它指示信息指示的,还可以是通过高层信令,例如RRC信令或者MAC信令等配置的。
举例来说,上述第一时间单元属于第一下行突发,上述第二时间单元属于第二下行突发,且上述第一时间单元与上述第二时间单元之间不存在其它下行突发时,LTE系统中在免许可频段资源上进行下行信息传输的帧结构可以如图12所示,图12是本发明实施例公开的另一种LTE系统在免许可频段资源上进行下行信息传输的帧结构的结构示意图。
又进一步可选的,上述第一时间单元为其所在的下行突发中的最后一个或者倒数第二个下行时间单元。在本发明实施例中,下行时间单元是用于传输下行信息的时间单元,且上行时间单元是用于传输上行信息的时间单元。
又进一步可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。具体的,当上述预设时间长度小于1ms时,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的 结束边界之间的时间长度;或者,上述预设时间长度可以等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度,或者等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度再除去收发转换时间的时间长度和终端设备进行信道评测所需要的实际时间长度或最大时间长度,或者也可以通过其它方式确定,本发明实施例不做具体限定。例如,当终端设备采用one shot信道评测机制时,终端设备进行信道评测所需要的时间(可以理解为实际时间长度)为one shot对应的时间,例如可以是25μs,当终端设备采用normal LBT信道评测机制时,终端设备进行信道评测所需要的时间(可以理解为最大时间长度)可以是CWmax与一个侦听时隙的乘积,其中,CWmax为终端设备使用normal LBT信道评测机制时随机回退竞争窗的最大窗长。
举例来说,当上述预设时间长度等于上述第三时间单元的结束时刻到上述第三时间单元所在的子帧的结束边界之间的时间长度时,第三时间单元所在子帧的帧结构可以如图13所示,图13是本发明实施例公开的第三时间单元所在子帧的结构示意图。
本发明实施例中,上述预设时间长度还可以用整数个OFDM符号来表示。例如从简化设计考虑,一个下行突发的最后一个下行时间单元用于下行信息传输的时间长度可以与下行导频时隙(DwPTS,Downlink Pilot Time Slot)对应的时间长度相同,因此,该下行突发的最后一个下行时间单元的结束时刻到该下行时间单元所在子帧的结束边界之间的时间长度可以为以下任意一项:1个OFDM、2个OFDM符号、3个OFDM符号、4个OFDM符号、5个OFDM符号、8个OFDM符号以及11个OFDM符号。或者,也可以理解为,上述预设时间长度可以为以下任意一项:1个OFDM符号、2个OFDM符号、3个OFDM符号、4个OFDM符号、5个OFDM符号、8个OFDM符号以及11个OFDM符号。
在这种情况下,可选地,当上述第二时间单元的时间长度等于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引;当所述第二时间单元的时间长度大于该预设时间长度时,所述第二时间单元的索引大于所述第三时间单元的索引。
又进一步可选的,该上行信息的传输方法还可以包括以下操作:
终端设备根据上述第一指示信息确定第四时间单元的时间长度,即上述第一指示信息还可以用于指示第四时间单元的时间长度;或者
终端设备接收接入网设备发送的第二指示消息,并根据该第二指示消息确定第四时间单元的时间长度。
其中,第四时间单元为上述第二时间单元所属的上行突发最后一个用于发送上行信息的时间单元。这样能够确定出在上述第二时间单元所属的上行突发之后的下行突发之前接入网设备需要执行信道评测的时间范围。
又进一步可选的,终端设备根据上述第一指示信息,确定第二时间单元的时间长度可以包括:
终端设备解析上述第一指示信息中的时间长度,并将解析出的时间长度确定为第二时间单元的时间长度;或者,
终端设备解析上述第一指示信息,得到索引信息,根据预设的时间长度索引信息与时间长度之间的关系,确定该索引信息对应的时间长度,并将该索引信息对应的时间长度确定为第二时间单元的时间长度。
具体的,上述第一指示信息可以用于指示上述第二时间单元的具体的时间长度,例如,上述第一指示信息可以指示上述第二时间单元的时间长度为整数个OFDM符号或者1ms等;或者,当上述第一指示信息中指示的具体的时长长度为0时,终端设备则确定上述第二时间单元的时间长度为1ms或者是其它预配置的时间长度,在这种情况下,上述第二时间单元的索引大于上述第三时间单元的索引;或者,终端设备中可以预先存储索引信息与具体时间长度的对应关系(可以理解为预配置索引信息与具体时间长度之间的对应关系,例如可以通过标准协议规范),或者由接入网设备通过高层信令为终端设备配置的索引信息与具体时间长度的对应关系,且上述第一指示信息中可以包括一个索引信息,当终端设备解析出上述第一指示信息中的索引信息后,从终端设备中预先存储的索引信息与具体时间长度的对应关系查询出(或确定出)上述第一指示信息中的索引信息对应的时间长度,或者根据高层信令配置的索引信息与具体时间长度的对应关系,确定出上述第一指示信息中的索引信息对应的时间长度,作为上述第二时间单元的时间长度;或者,终端设备也可以通过检测上述第一指示信息的有无来确定上述第二时间单元的时间长度,如当终端设备未 检测到上述第一指示信息时,终端设备可以确定上述第二时间单元的时间长度为1ms,本发明实施例不做限定。
需要说明的是,根据上述发明实施例中针对LTE系统在免许可频段资源上进行上下行信息传输的帧结构的描述,LTE系统在免许可频段资源进行上下行信息传输的帧结构至少还可以包括以下几种结构的变化。其中:
第一种帧结构可以为:第二时间单元的时间长度为一个子帧的时间长度,且第二时间单元的索引与第三时间单元的索引不同,第二时间单元所在的上行突发的最后一个时间单元的时间长度等于1个子帧的时间长度。可选地,第二时间单元的索引大于第三时间单元的索引,且索引之间的差值为1。需要说明的是,如果时间单元的索引用子帧索引表示且子帧索引的取值范围为0-9中的任意一个整数时,索引为0的子帧的前一个子帧的索引可以为9,在这种情况下,如果第三时间单元的索引为9,则第二时间单元的索引为0。可选地,终端设备还可以确定是否需要在接收下行信息的时间边界之前以一定的定时提前量发送其上行信息。如图14所示,图14是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。图14中,终端设备以一定的定时提前量发送其上行信息,其中,这里的“一定的定时提前量”与接入网设备和终端设备之间的传播时延无关。如图14所示,子帧n+1的起始边界提前于子帧n的结束边界。在实际应用中,可以通过信息指示的方式使终端设备确定是否需要在接收下行信息的时间边界之前以一定的定时提前量发送其上行信息,该指示信息可以承载在物理层信令中,也可以承载在RRC信令中,还可以承载在MAC信令中等。可选地,当承载在物理层信令中时,该指示信息还可以承载在物理层公共控制信道中。也就是说,如果不考虑接入网设备和终端设备之间的传播时延,则终端设备接收下行信息的起始时刻与接入网设备发送该下行信息的起始时刻相同,终端设备发送上行信息的起始时刻与接入网设备接收该上行信息的起始时刻相同,在这种情况下,按照现有技术,根据传播时延确定的定时提前量(TA,Timing Advance)为0。结合上述描述的“一定的定时提前量”,在这种情况下,终端设备也可以以“一定的定时提前量”在接收下行信息的时间边界之前发送其上行信息;如果考虑接入网设备和终端设备之间的传播时延,则终端设备接收下行信息的起始时刻 滞后于接入网设备发送该下行信息的起始时刻,终端设备发送上行信息的起始时刻提前于接入网设备接收该上行信息的起始时刻,在这种情况下,按照现有技术,根据传播时延确定的TA不为零。结合上述描述的“一定的定时提前量”,终端设备还可以在根据传播时延确定的TA基础上,进一步考虑“一定的定时提前量”,根据“一定的定时提前量”与TA的总和确定在接收下行信息的起始时刻之前上行信息发送的起始时刻,其中,上行信息发送的起始时刻与该“接收下行信息的起始时刻”之间的时间间隔为“一定的定时提前量”与TA的总和。这样做的好处在于:可以为下一个下行突发中的第一个下行时间单元中包括的下行信息传输留出LBT的时间范围,进而保证下一个下行突发中的第一个下行时间单元的时间长度为一个子帧的时间长度,即1ms。在图14中,上行突发中的最后一个时间单元的时间长度也是一个子帧的时间长度,即等于1ms;
第二种帧结构可以为:,第二时间单元的时间长度为一个子帧的时间长度,且第二时间单元的索引与第三时间单元的索引不同,第二时间单元所在的上行突发中的最后一个时间单元的时间长度小于一个子帧的时间长度。考虑到接入网设备在发送下行信息之前需要进行LBT,因此,上行突发之后的下行突发包括的第一个时间单元的时间长度可以小于1个子帧的时间长度,即小于1ms。可选地,终端设备还可以确定是否需要在接收下行信息的时间边界之前以一定的定时提前量发送其上行信息。如图15所示,图15是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。在图15中,子帧n+1的起始边界提前于子帧n的结束边界,其中,一定的定时提前量与上述描述相同,在此不做赘述。
第三种帧结构可以如图16所示,图16是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。如图16所示,第二时间单元的时间长度小于一个子帧的时间长度,且第二时间单元的索引与第三时间单元的索引相同,第二时间单元所在的上行突发中的最后一个时间单元的时间长度等于一个子帧的时间长度。考虑到接入网设备在发送下行信息之前需要进行LBT,因此,上行突发之后的下行突发包括的第一个时间单元的时间长度可以小于1个子帧的时间长度,即小于1ms。可选地,终端设备还可以确定是否需要在接收下行信息的时间边界之前以一定的定时提 前量发送其上行信息。图16中,终端设备不需要以“一定的定时提前量”发送其上行信息,即子帧n+1的起始边界与子帧n的结束边界重合。可选地,终端设备还可以在图16所示的帧结构基础上,以“一定的定时提前量”发送其上行信息,这样做的好处在于,尽可能使第二时间单元所在的上行突发之后的下行突发的第一下行时间单元的时间长度等于1个子帧的时间长度,当终端设备以“一定的定时提前量”发送其上行信息时,子帧n+1的起始边界提前于子帧n的结束边界,其中,一定的定时提前量与上述描述相同,在此不做赘述;
第四种帧结构可以如图17所示,图17是本发明实施例公开的又一种LTE系统在免许可频段资源上进行上下行信息传输的帧结构的结构示意图。如图17所示,第二时间单元的时间长度小于一个子帧的时间长度,且第二时间单元的索引与第三时间单元的索引相同,第二时间单元所在的上行突发中的最后一个时间单元的时间长度小于一个子帧的时间长度,这样做的好处在于保证第二时间单元所在的上行突发之后的下行突发的第一个下行时间单元的时间长度可以等于一个子帧的时间长度。可选地,终端设备还可以确定是否需要在接收下行信息的时间边界之前以一定的定时提前量发送其上行信息。如果终端设备确定需要以一定的定时提前量发送其上行信息,则可以为下行信息传输预留更多的时间资源用于执行LBT。图17中,终端设备不需要以“一定的定时提前量”发送其上行信息,子帧n+1的起始边界与子帧n的结束边界重合,其中,一定的定时提前量与上述描述相同,在此不做赘述。
需要说明的是,除了上述实施例中提到的帧结构之外,LTE系统在免许可频段资源进行上下行信息传输的帧结构还可以有其它形式,本发明实施例不作限定。
需要说明的是,在本发明实施例中,下行突发的结束时刻与上行突发的起始时刻之间,除了至少包括下行发送到上行接收的转换时间之外,还可以包括终端设备发送的预占用信号(例如padding),该预占用信号用于在第二时间单元传输上行信息之前,先占据免许可频段资源。
请参阅图18,图18是本发明实施例公开的一种终端设备的结构示意图。如图18所示,该终端设备可以包括接收模块1801、处理模块1802以及发送 模块1803,其中:
接收模块1801用于在第一时间单元接收接入网设备发送的第一指示信息。
处理模块1802用于根据接收模块1801接收到的第一指示信息,确定第二时间单元的时间长度,其中,第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,第三时间单元为第二时间单元之前的最后一个用于下行信息传输的时间单元。
发送模块1803用于在上述第二时间单元和/或上述第二时间单元之后的上行时间单元中发送上行信息。
其中,当上述第二时间单元的时间长度小于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于或等于预设时间长度时,上述第二时间单元的索引大于第三时间单元的索引;或者,当上述第二时间单元的时间长度小于或等于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于预设时间长度时,上述第二时间单元的索引大于第三时间单元的索引。
作为一种可选的实施方式,上述第一时间单元承载有公共控制信息,该公共控制信息用于指示第一时间单元所属的下行突发的结束时刻。
在该可选的实施方式中,进一步可选的,上述公共控制信息可以包括上述第一指示信息。
作为另一种可选的实施方式,上述第一指示信息可以承载在物理层公共控制信道中。
进一步可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。
又进一步可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。
又进一步可选的,处理模块1802还可以用于根据接收模块1801接收到的第一指示信息确定第四时间单元的时间长度,其中,该第四时间单元为上述第 二时间单元所属的上行突发中最后一个用于发送上行信息的时间单元。
作为又一种可选的实施方式,接收模块1801还可以用于接收接入网设备发送的第二指示信息,其中,该第二指示信息用于指示上述第四时间单元的时间长度,处理模块1802还可以用于根据接收模块1801接收到的第二指示信息确定第四时间单元的时间长度。
可选的,处理模块1802根据上述第一指示信息确定上述第二时间单元的时间长度的具体方式可以为:
解析上述第一指示信息中的时间长度,并将解析出的时间长度确定为第二时间单元的时间长度;或者,
解析上述第一指示信息,得到索引信息,根据预设的时间长度索引信息与时间长度之间的关系,确定该索引信息对应的时间长度,并将该索引信息对应的时间长度确定为第二时间单元的时间长度。
具体的,上述第一指示信息可以用于指示上述第二时间单元的具体的时间长度,例如,上述第一指示信息可以指示上述第二时间单元的时间长度为整数个OFDM符号或者1ms等;或者,当上述第一指示信息中指示的具体的时长长度为0时,处理模块1802则确定上述第二时间单元的时间长度为1ms;或者,终端设备中可以预先存储有接入网设备通过高层信令配置的索引信息与具体时间长度的对应关系,且上述第一指示信息中可以包括一个索引信息,当处理模块1802解析出上述第一指示信息中的索引信息后,从终端设备中预先配置的索引信息与具体时间长度的对应关系查询出上述第一指示信息中的索引信息对应的时间长度,作为上述第二时间单元的时间长度;或者,处理模块1802也可以通过检测上述第一指示信息的有无来确定上述第二时间单元的时间长度,如当未检测到上述第一指示信息时,处理模块1802可以确定上述第二时间单元的时间长度为1ms,本发明实施例不做限定。
需要说明的是,本发明实施例中针对时间单元、时间单元的索引、下行突发、上行突发、第一指示信息以及预设时间长度等的相关描述可以参考上述实施例中的相关描述,在此不再赘述。
可见,实施本发明实施例能够基于接入网设备发送的第一指示信息的指示,灵活的配置第一个用于上行信息传输的时间单元的时间长度,这样能够保证上 行信息在免许可频段资源上的有效传输。
请参阅图19,图19是本发明实施例公开的另一种终端设备的结构示意图。如图19所示,该终端设备可以包括:处理器1901、存储器1902、发射器1903以及接收器1904,存储器1902可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器1902还可以是至少一个位于远离前述处理器1901的存储装置。其中:
接收器1904用于在第一时间单元接收接入网设备发送的第一指示信息。
存储器1902中存储一组程序代码,且处理器1901用于调用存储器1902中存储的程序代码,用于执行以下操作:
根据上述第一指示信息,确定第二时间单元的时间长度,该第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,该第三时间单元为第二时间单元之前的最后一个用于下行信息传输的时间单元。
发射器1903用于在第二时间单元和/或第二时间单元之后的上行时间单元中发送上行信息。
其中,当上述第二时间单元的时间长度小于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于或等于上述预设时间长度时,第二时间单元的索引大于第三时间单元的索引;或者,当上述第二时间单元的时间长度小于或等于预设时间长度时,上述第二时间单元的索引等于上述第三时间单元的索引,当上述第二时间单元的时间长度大于上述预设时间长度时,第二时间单元的索引大于第三时间单元的索引。
作为一种可选的实施方式,上述第一时间单元承载有公共控制信息,该公共控制信息用于指示第一时间单元所属的下行突发的结束时刻。
在该可选的实施方式中,进一步可选的,上述公共控制信息可以包括上述第一指示信息。
作为另一种可选的实施方式,上述第一指示信息可以承载在物理层公共控制信道中。
进一步可选的,上述第一时间单元以及上述第三时间单元属于同一个下行 突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。
又进一步可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。
又进一步可选的,处理器1901用于调用存储器1902中存储的程序代码,还可以用于执行以下操作:
根据上述第一指示信息确定第四时间单元的时间长度,该第四时间单元为上述第二时间单元所属的上行突发中最后一个用于发送上行信息的时间单元。
作为又一种可选的实施方式,接收器1904还可以接收接入网设备发送的第二指示信息,且处理器1901用于调用存储器1902中存储的程序代码,还可以用于执行以下操作:
根据接收器1904接收到的第二指示信息确定上述第四时间单元的时间长度。
可选的,处理器1901根据上述第一指示信息确定上述第二时间单元的时间长度的具体方式可以为:
解析上述第一指示信息中的时间长度,并将解析出的时间长度确定为第二时间单元的时间长度;或者,
解析上述第一指示信息,得到索引信息,根据预设的时间长度索引信息与时间长度之间的关系,确定该索引信息对应的时间长度,并将该索引信息对应的时间长度确定为第二时间单元的时间长度。
具体的,上述第一指示信息可以用于指示上述第二时间单元的具体的时间长度,例如,上述第一指示信息可以指示上述第二时间单元的时间长度为整数个OFDM符号或者1ms等;或者,当上述第一指示信息中指示的具体的时长长度为0时,处理器1901则确定上述第二时间单元的时间长度为1ms;或者,终端设备中可以预先存储有接入网设备通过高层信令配置的索引信息与具体时间长度的对应关系,且上述第一指示信息中可以包括一个索引信息,当处理器1901解析出上述第一指示信息中的索引信息后,从终端设备中预先配置的索引信息与具体时间长度的对应关系查询出上述第一指示信息中的索引信息 对应的时间长度,作为上述第二时间单元的时间长度;或者,处理器1901也可以通过检测上述第一指示信息的有无来确定上述第二时间单元的时间长度,如当未检测到上述第一指示信息时,处理器1901可以确定上述第二时间单元的时间长度为1ms,本发明实施例不做限定。
需要说明的是,本发明实施例中针对时间单元、时间单元的索引、下行突发、上行突发、第一指示信息以及预设时间长度等的相关描述可以参考上述方法实施例中的相关描述,在此不再赘述。
可见,实施本发明实施例能够基于接入网设备发送的第一指示信息的指示,灵活的配置第一个用于上行信息传输的时间单元的时间长度,这样能够保证上行信息在免许可频段资源上的有效传输。
请参阅图20,图20是本发明实施例公开的一种接入网设备的结构示意图。如图20所示,该接入网设备可以包括发送模块2001以及接收模块2002,其中:
发送模块2001用于在第一时间单元向终端设备发送第一指示信息,该第一指示信息用于指示第二时间单元的时间长度,第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,第三时间单元为第二时间单元之前的最后一个用于下行信息传输的时间单元。
接收模块2002用于接收终端设备在终端设备根据上述第一指示信息确定出的第二时间单元和/或第二时间单元之后的上行时间单元中发送的上行信息。
其中,当第二时间单元的时间长度小于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于或等于预设时间长度时,第二时间单元的索引大于第三时间单元的索引;或者,当第二时间单元的时间长度小于或等于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于预设时间长度时,第二时间单元的索引大于第三时间单元的索引。
作为一种可选的实施方式,第一时间单元可以承载有公共控制信息,该公共控制信息用于指示上述第一时间单元所属的下行突发的结束时刻。
在该可选的实施方式中,进一步可选的,上述公共控制信息可以包括上述第一指示信息。
作为另一种可选的实施方式,第一指示信息可以承载在物理层公共控制信道中。
进一步可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。
又进一步可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。
又进一步可选的,上述第一指示信息还可以用于指示第四时间单元的时间长度,该第四时间单元为上述第二时间单元所属的上行突发中最后一个用于向接入网设备发送上行信息的时间单元。
作为又一种可选的实施方式,发送模块2001还可以用于向终端设备发送第二指示信息,其中,该第二指示信息用于指示上述第四时间单元的时间长度。
需要说明的是,本发明实施例中针对时间单元、时间单元的索引、下行突发、上行突发、第一指示信息以及预设时间长度等的相关描述可以参考上述方法实施例中的相关描述,在此不再赘述。
可见,实施本发明实施例能够基于接入网设备发送的第一指示信息的指示,灵活的配置第一个用于上行信息传输的时间单元的时间长度,这样能够保证上行信息在免许可频段资源上的有效传输。
请参阅图21,图21是本发明实施例公开的另一种接入网设备的结构示意图。如图21所示,该接入网设备可以包括:发射器2103以及接收器2104,可选的,如图21所示,该接入网设备还可以包括处理器2101以及存储器2102,其中,存储器2102可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),如至少一个磁盘存储器,可选的,存储器2102还可以是至少一个位于远离前述处理器2101的存储装置。其中:
发射器2103用于在第一时间单元向终端设备发送第一指示信息,第一指示信息用于指示第二时间单元的时间长度,第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,第三时间单元为第二时间单元之前的 最后一个用于下行信息传输的时间单元。
接收器2104用于接收终端设备在第二时间单元和/或第二时间单元之后的上行时间单元中发送的上行信息;
其中,当第二时间单元的时间长度小于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于或等于预设时间长度时,第二时间单元的索引大于第三时间单元的索引;或者,当第二时间单元的时间长度小于或等于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于预设时间长度时,第二时间单元的索引大于第三时间单元的索引。
作为一种可选的实施方式,第一时间单元可以承载有公共控制信息,该公共控制信息用于指示上述第一时间单元所属的下行突发的结束时刻。
在该可选的实施方式中,进一步可选的,上述公共控制信息可以包括上述第一指示信息。
作为另一种可选的实施方式,第一指示信息可以承载在物理层公共控制信道中。
进一步可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。
又进一步可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。
又进一步可选的,上述第一指示信息还可以用于指示第四时间单元的时间长度,该第四时间单元为上述第二时间单元所属的上行突发中最后一个用于向接入网设备发送上行信息的时间单元。
作为又一种可选的实施方式,发射器2103还可以用于向终端设备发送第二指示信息,其中,该第二指示信息用于指示上述第四时间单元的时间长度。
其中,处理器2101用于调用存储器2102中存储的程序代码,用于执行以下操作:
对接收器2104接收到的上行信息进行处理;以及,
对需要发送至终端设备的下行信息进行处理,并将处理后的下行信息发送至发射器2103。
需要说明的是,本发明实施例中针对时间单元、时间单元的索引、下行突发、上行突发、第一指示信息以及预设时间长度等的相关描述可以参考上述方法实施例中的相关描述,在此不再赘述。
可见,实施本发明实施例能够基于接入网设备发送的第一指示信息的指示,灵活的配置第一个用于上行信息传输的时间单元的时间长度,这样能够保证上行信息在免许可频段资源上的有效传输。
请参阅图22,图22是本发明实施例公开的一种上行信息的传输系统的结构示意图。如图22所示,该上行信息的传输系统可以包括终端设备以及接入网设备,其中:
接入网设备用于在第一时间单元向终端设备发送第一指示信息,第一指示信息用于指示第二时间单元的时间长度,第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,第三时间单元为第二时间单元之前的最后一个用于下行信息传输的时间单元。
终端设备用于在第一时间单元接收第一指示信息,根据第一指示信息确定第二时间单元的时间长度,并在第二时间单元和/或第二时间单元之后的上行时间单元中发送上行信息。
接入网设备还用于接收终端设备在第二时间单元和/或第二时间单元之后的上行时间单元中发送的上行信息;
其中,当第二时间单元的时间长度小于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于或等于预设时间长度时,第二时间单元的索引大于第三时间单元的索引;或者,当第二时间单元的时间长度小于或等于预设时间长度时,第二时间单元的索引等于第三时间单元的索引,当第二时间单元的时间长度大于预设时间长度时,第二时间单元的索引大于第三时间单元的索引。
作为一种可选的实施方式,第一时间单元可以承载有公共控制信息,该公共控制信息用于指示上述第一时间单元所属的下行突发的结束时刻。
在该可选的实施方式中,进一步可选的,上述公共控制信息可以包括上述第一指示信息。
作为另一种可选的实施方式,第一指示信息可以承载在物理层公共控制信道中。
进一步可选的,上述第一时间单元以及上述第三时间单元属于同一个下行突发;或者,上述第一时间单元属于第一下行突发,上述第三时间单元属于第二下行突发,第一下行突发位于第二下行突发之前,且第一下行突发与第二下行突发之间包括L个下行突发,L≥0且L为整数。
又进一步可选的,上述预设时间长度小于等于1ms,优选的,上述预设时间长度等于1ms。
又进一步可选的,上述第一指示信息还可以用于指示第四时间单元的时间长度,该第四时间单元为上述第二时间单元所属的上行突发中最后一个用于向接入网设备发送上行信息的时间单元。
终端设备还可以用于根据上述第一指示信息确定上述第四时间单元的时间长度。
作为又一种可选的实施方式,接入网设备还可以用于向终端设备发送第二指示信息,其中,该第二指示信息用于指示上述第四时间单元的时间长度。终端设备还可以根据该第二指示信息确定上述第四时间单元的时间长度。
可选的,终端设备根据上述第一指示信息确定上述第二时间单元的时间长度的具体方式可以为:
终端设备解析上述第一指示信息中的时间长度,并将解析出的时间长度确定为第二时间单元的时间长度;或者,
终端设备解析上述第一指示信息,得到索引信息,根据预设的时间长度索引信息与时间长度之间的关系,确定该索引信息对应的时间长度,并将该索引信息对应的时间长度确定为第二时间单元的时间长度。
具体的,上述第一指示信息可以用于指示上述第二时间单元的具体的时间长度,例如,上述第一指示信息可以指示上述第二时间单元的时间长度为整数个OFDM符号或者1ms等;或者,当上述第一指示信息中指示的具体的时长长度为0时,终端设备则确定上述第二时间单元的时间长度为1ms;或者,终 端设备中可以预先存储有接入网设备通过高层信令配置的索引信息与具体时间长度的对应关系,且上述第一指示信息中可以包括一个索引信息,当终端设备解析出上述第一指示信息中的索引信息后,从终端设备中预先配置的索引信息与具体时间长度的对应关系查询出上述第一指示信息中的索引信息对应的时间长度,作为上述第二时间单元的时间长度;或者,终端设备也可以通过检测上述第一指示信息的有无来确定上述第二时间单元的时间长度,如当终端设备未检测到上述第一指示信息时,终端设备可以确定上述第二时间单元的时间长度为1ms,本发明实施例不做限定。
需要说明的是,本发明实施例中针对时间单元、时间单元的索引、下行突发、上行突发、第一指示信息以及预设时间长度等的相关描述可以参考上述方法实施例中的相关描述,在此不再赘述。
可见,实施本发明实施例能够基于接入网设备发送的第一指示信息的指示,灵活的配置第一个用于上行信息传输的时间单元的时间长度,这样能够保证上行信息在免许可频段资源上的有效传输。
需要说明的是,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例设备中的模块可以根据实际需要进行合并、划分和删减。
本发明实施例中所述模块,可以通过通用集成电路,例如CPU(Central Processing Unit,中央处理器),或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
总之,以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保 护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (49)

  1. 一种上行信息的传输方法,其特征在于,所述方法包括:
    终端设备在第一时间单元接收接入网设备发送的第一指示信息;
    所述终端设备根据所述第一指示信息,确定第二时间单元的时间长度,所述第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,所述第三时间单元为所述第二时间单元之前的最后一个用于下行信息传输的时间单元;
    所述终端设备在所述第二时间单元和/或所述第二时间单元之后的上行时间单元中发送上行信息;
    其中,当所述第二时间单元的时间长度小于预设时间长度时,所述第二时间单元的索引等于所述第三时间单元的索引;
    当所述第二时间单元的时间长度大于或等于所述预设时间长度时,所述第二时间单元的索引大于所述第三时间单元的索引。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间单元承载有公共控制信息,所述公共控制信息用于指示所述第一时间单元所属的下行突发的结束时刻。
  3. 根据权利要求2所述的方法,其特征在于,所述公共控制信息包括所述第一指示信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息承载在物理层公共控制信道中。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一时间单元以及所述第三时间单元属于同一个下行突发;或者,
    所述第一时间单元属于第一下行突发,所述第三时间单元属于第二下行突发,所述第一下行突发位于所述第二下行突发之前,且所述第一下行突发与所述第二下行突发之间包括L个下行突发,L≥0。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述预设时间长度小于等于1ms。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一指示信息确定第四时间单元的时间长度,所述第四时间单元为所述第二时间单元所属的上行突发中最后一个用于发送上行信息的时间单元。
  8. 一种上行信息的传输方法,其特征在于,所述方法包括:
    接入网设备在第一时间单元向终端设备发送第一指示信息,所述第一指示信息用于指示第二时间单元的时间长度,所述第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,所述第三时间单元为所述第二时间单元之前的最后一个用于下行信息传输的时间单元;
    所述接入网设备接收所述终端设备在所述第二时间单元和/或所述第二时间单元之后的上行时间单元中发送的上行信息;
    其中,当所述第二时间单元的时间长度小于预设时间长度时,所述第二时间单元的索引等于所述第三时间单元的索引;
    当所述第二时间单元的时间长度大于或等于所述预设时间长度时,所述第二时间单元的索引大于所述第三时间单元的索引。
  9. 根据权利要求8所述的方法,其特征在于,所述第一时间单元承载有公共控制信息,所述公共控制信息用于指示所述第一时间单元所属的下行突发的结束时刻。
  10. 根据权利要求9所述的方法,其特征在于,所述公共控制信息包括所述第一指示信息。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第一指示信息承 载在物理层公共控制信道中。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述第一时间单元以及所述第三时间单元属于同一个下行突发;或者,
    所述第一时间单元属于第一下行突发,所述第三时间单元属于第二下行突发,所述第一下行突发位于所述第二下行突发之前,且所述第一下行突发与所述第二下行突发之间包括L个下行突发,L≥0。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述预设时间长度小于等于1ms。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述第一指示信息还用于指示第四时间单元的时间长度,所述第四时间单元为所述第二时间单元所属的上行突发中最后一个用于向所述接入网设备发送上行信息的时间单元。
  15. 一种终端设备,其特征在于,所述终端设备包括接收模块、处理模块以及发送模块,其中:
    所述接收模块,用于在第一时间单元接收接入网设备发送的第一指示信息;
    所述处理模块,用于根据所述第一指示信息,确定第二时间单元的时间长度,所述第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,所述第三时间单元为所述第二时间单元之前的最后一个用于下行信息传输的时间单元;
    所述发送模块,用于在所述第二时间单元和/或所述第二时间单元之后的上行时间单元中发送上行信息;
    其中,当所述第二时间单元的时间长度小于预设时间长度时,所述第二时间单元的索引等于所述第三时间单元的索引;
    当所述第二时间单元的时间长度大于或等于所述预设时间长度时,所述第二时间单元的索引大于所述第三时间单元的索引。
  16. 根据权利要求15所述的终端设备,其特征在于,所述第一时间单元承载有公共控制信息,所述公共控制信息用于指示所述第一时间单元所属的下行突发的结束时刻。
  17. 根据权利要求16所述的终端设备,其特征在于,所述公共控制信息包括所述第一指示信息。
  18. 根据权利要求15或16所述的终端设备,其特征在于,所述第一指示信息承载在物理层公共控制信道中。
  19. 根据权利要求15-18任一项所述的终端设备,其特征在于,所述第一时间单元以及所述第三时间单元属于同一个下行突发;或者,
    所述第一时间单元属于第一下行突发,所述第三时间单元属于第二下行突发,所述第一下行突发位于所述第二下行突发之前,且所述第一下行突发与所述第二下行突发之间包括L个下行突发,L≥0。
  20. 根据权利要求15-19任一项所述的终端设备,其特征在于,所述预设时间长度小于等于1ms。
  21. 根据权利要求15-20任一项所述的终端设备,其特征在于,所述处理模块,还用于根据所述第一指示信息确定第四时间单元的时间长度,所述第四时间单元为所述第二时间单元所属的上行突发中最后一个用于发送上行信息的时间单元。
  22. 一种接入网设备,其特征在于,所述接入网设备包括发送模块以及接收模块,其中:
    所述发送模块,用于在第一时间单元向终端设备发送第一指示信息,所述第一指示信息用于指示第二时间单元的时间长度,所述第二时间单元为第三时 间单元之后的第一个用于上行信息传输的时间单元,所述第三时间单元为所述第二时间单元之前的最后一个用于下行信息传输的时间单元;
    所述接收模块,用于接收所述终端设备在所述第二时间单元和/或所述第二时间单元之后的上行时间单元中发送的上行信息;
    其中,当所述第二时间单元的时间长度小于预设时间长度时,所述第二时间单元的索引等于所述第三时间单元的索引;
    当所述第二时间单元的时间长度大于或等于所述预设时间长度时,所述第二时间单元的索引大于所述第三时间单元的索引。
  23. 根据权利要求22所述的接入网设备,其特征在于,所述第一时间单元承载有公共控制信息,所述公共控制信息用于指示所述第一时间单元所属的下行突发的结束时刻。
  24. 根据权利要求23所述的接入网设备,其特征在于,所述公共控制信息包括所述第一指示信息。
  25. 根据权利要求22或23所述的接入网设备,其特征在于,所述第一指示信息承载在物理层公共控制信道中。
  26. 根据权利要求22-25任一项所述的接入网设备,其特征在于,所述第一时间单元以及所述第三时间单元属于同一个下行突发;或者,
    所述第一时间单元属于第一下行突发,所述第三时间单元属于第二下行突发,所述第一下行突发位于所述第二下行突发之前,且所述第一下行突发与所述第二下行突发之间包括L个下行突发,L≥0。
  27. 根据权利要求22-26任一项所述的接入网设备,其特征在于,所述预设时间长度小于等于1ms。
  28. 根据权利要求22-27任一项所述的接入网设备,其特征在于,所述第 一指示信息还用于指示第四时间单元的时间长度,所述第四时间单元为所述第二时间单元所属的上行突发中最后一个用于向所述接入网设备发送上行信息的时间单元。
  29. 一种终端设备,包括处理器、存储器、发射器以及接收器,其特征在于,所述接收器,用于在第一时间单元接收接入网设备发送的第一指示信息;
    所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,用于执行以下操作:
    根据所述第一指示信息,确定第二时间单元的时间长度,所述第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,所述第三时间单元为所述第二时间单元之前的最后一个用于下行信息传输的时间单元;
    所述发射器,用于在所述第二时间单元和/或所述第二时间单元之后的上行时间单元中发送上行信息;
    其中,当所述第二时间单元的时间长度小于预设时间长度时,所述第二时间单元的索引等于所述第三时间单元的索引;
    当所述第二时间单元的时间长度大于或等于所述预设时间长度时,所述第二时间单元的索引大于所述第三时间单元的索引。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第一时间单元承载有公共控制信息,所述公共控制信息用于指示所述第一时间单元所属的下行突发的结束时刻。
  31. 根据权利要求30所述的终端设备,其特征在于,所述公共控制信息包括所述第一指示信息。
  32. 根据权利要求29或30所述的终端设备,其特征在于,所述第一指示信息承载在物理层公共控制信道中。
  33. 根据权利要求29-32任一项所述的终端设备,其特征在于,所述第一 时间单元以及所述第三时间单元属于同一个下行突发;或者,
    所述第一时间单元属于第一下行突发,所述第三时间单元属于第二下行突发,所述第一下行突发位于所述第二下行突发之前,且所述第一下行突发与所述第二下行突发之间包括L个下行突发,L≥0。
  34. 根据权利要求29-33任一项所述的终端设备,其特征在于,所述预设时间长度小于等于1ms。
  35. 根据权利要求29-34任一项所述的终端设备,其特征在于,所述处理器用于调用所述存储器中存储的程序代码,还用于执行以下操作:
    根据所述第一指示信息确定第四时间单元的时间长度,所述第四时间单元为所述第二时间单元所属的上行突发中最后一个用于发送上行信息的时间单元。
  36. 一种接入网设备,包括发射器和接收器,其特征在于,所述发射器,用于在第一时间单元向终端设备发送第一指示信息,所述第一指示信息用于指示第二时间单元的时间长度,所述第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,所述第三时间单元为所述第二时间单元之前的最后一个用于下行信息传输的时间单元;
    所述接收器,用于接收所述终端设备在所述第二时间单元和/或所述第二时间单元之后的上行时间单元中发送的上行信息;
    其中,当所述第二时间单元的时间长度小于预设时间长度时,所述第二时间单元的索引等于所述第三时间单元的索引;
    当所述第二时间单元的时间长度大于或等于所述预设时间长度时,所述第二时间单元的索引大于所述第三时间单元的索引。
  37. 根据权利要求36所述的接入网设备,其特征在于,所述第一时间单元承载有公共控制信息,所述公共控制信息用于指示所述第一时间单元所属的下行突发的结束时刻。
  38. 根据权利要求37所述的接入网设备,其特征在于,所述公共控制信息包括所述第一指示信息。
  39. 根据权利要求36或37所述的接入网设备,其特征在于,所述第一指示信息承载在物理层公共控制信道中。
  40. 根据权利要求36-39任一项所述的接入网设备,其特征在于,所述第一时间单元以及所述第三时间单元属于同一个下行突发;或者,
    所述第一时间单元属于第一下行突发,所述第三时间单元属于第二下行突发,所述第一下行突发位于所述第二下行突发之前,且所述第一下行突发与所述第二下行突发之间包括L个下行突发,L≥0。
  41. 根据权利要求36-40任一项所述的接入网设备,其特征在于,所述预设时间长度小于等于1ms。
  42. 根据权利要求36-41任一项所述的接入网设备,其特征在于,所述第一指示信息还用于指示第四时间单元的时间长度,所述第四时间单元为所述第二时间单元所属的上行突发中最后一个用于向所述接入网设备发送上行信息的时间单元。
  43. 一种上行信息的传输系统,其特征在于,所述系统包括终端设备以及接入网设备,其中:
    所述接入网设备,用于在第一时间单元向所述终端设备发送第一指示信息,所述第一指示信息用于指示第二时间单元的时间长度,所述第二时间单元为第三时间单元之后的第一个用于上行信息传输的时间单元,所述第三时间单元为所述第二时间单元之前的最后一个用于下行信息传输的时间单元;
    所述终端设备,用于在所述第一时间单元接收所述第一指示信息,根据所述第一指示信息确定所述第二时间单元的时间长度,并在所述第二时间单元和 /或所述第二时间单元之后的上行时间单元中发送上行信息;
    所述接入网设备,还用于接收所述终端设备在所述第二时间单元和/或所述第二时间单元之后的上行时间单元中发送的所述上行信息;
    其中,当所述第二时间单元的时间长度小于预设时间长度时,所述第二时间单元的索引等于所述第三时间单元的索引;
    当所述第二时间单元的时间长度大于或等于所述预设时间长度时,所述第二时间单元的索引大于所述第三时间单元的索引。
  44. 根据权利要求43所述的系统,其特征在于,所述第一时间单元承载有公共控制信息,所述公共控制信息用于指示所述第一时间单元所属的下行突发的结束时刻。
  45. 根据权利要求44所述的系统,其特征在于,所述公共控制信息包括所述第一指示信息。
  46. 根据权利要求43或44所述的系统,其特征在于,所述第一指示信息承载在物理层公共控制信道中。
  47. 根据权利要求43-46任一项所述的系统,其特征在于,所述第一时间单元以及所述第三时间单元属于同一个下行突发;或者,
    所述第一时间单元属于第一下行突发,所述第三时间单元属于第二下行突发,所述第一下行突发位于所述第二下行突发之前,且所述第一下行突发与所述第二下行突发之间包括L个下行突发,L≥0。
  48. 根据权利要求43-47任一项所述的系统,其特征在于,所述预设时间长度小于等于1ms。
  49. 根据权利要求43-48任一项所述的系统,其特征在于,所述第一指示信息还用于指示第四时间单元的时间长度,所述第四时间单元为所述第二时间 单元所属的上行突发中最后一个用于向所述接入网设备发送上行信息的时间单元;
    所述终端设备,还用于根据所述第一指示信息确定所述第四时间单元的时间长度。
PCT/CN2016/078374 2016-04-01 2016-04-01 一种上行信息的传输方法及设备、系统 Ceased WO2017166311A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/078374 WO2017166311A1 (zh) 2016-04-01 2016-04-01 一种上行信息的传输方法及设备、系统
CN201680080973.8A CN108605319A (zh) 2016-04-01 2016-04-01 一种上行信息的传输方法及设备、系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078374 WO2017166311A1 (zh) 2016-04-01 2016-04-01 一种上行信息的传输方法及设备、系统

Publications (1)

Publication Number Publication Date
WO2017166311A1 true WO2017166311A1 (zh) 2017-10-05

Family

ID=59963319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078374 Ceased WO2017166311A1 (zh) 2016-04-01 2016-04-01 一种上行信息的传输方法及设备、系统

Country Status (2)

Country Link
CN (1) CN108605319A (zh)
WO (1) WO2017166311A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116848898A (zh) * 2023-05-11 2023-10-03 北京小米移动软件有限公司 信息传输方法及装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003674A1 (en) * 2014-06-30 2016-01-07 Intel IP Corporation Listen before talk for cellular in unlicensed band
CN105307180A (zh) * 2015-09-25 2016-02-03 宇龙计算机通信科技(深圳)有限公司 一种基于laa系统的数据传输方法及装置
CN105307276A (zh) * 2014-06-08 2016-02-03 上海朗帛通信技术有限公司 一种利用非授权频带传输的方法和装置
WO2016018125A1 (ko) * 2014-07-31 2016-02-04 엘지전자 주식회사 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400081B (zh) * 2007-09-28 2010-06-02 大唐移动通信设备有限公司 Tdd系统中的上行资源调度方法、系统及设备
CN103428786A (zh) * 2012-05-14 2013-12-04 上海贝尔股份有限公司 一种获得上行传输信息的方法及设备
ES2798312T3 (es) * 2014-09-17 2020-12-10 Innovative Sonic Corp Métodos y aparatos para solicitar recursos en un sistema de comunicación inalámbrica

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307276A (zh) * 2014-06-08 2016-02-03 上海朗帛通信技术有限公司 一种利用非授权频带传输的方法和装置
WO2016003674A1 (en) * 2014-06-30 2016-01-07 Intel IP Corporation Listen before talk for cellular in unlicensed band
WO2016018125A1 (ko) * 2014-07-31 2016-02-04 엘지전자 주식회사 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치
CN105307180A (zh) * 2015-09-25 2016-02-03 宇龙计算机通信科技(深圳)有限公司 一种基于laa系统的数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Scheduling design for eLAA", R1-160299'' 3GPPTSG RAN WG1 MEETING #84, 19 February 2016 (2016-02-19), XP051053639 *

Also Published As

Publication number Publication date
CN108605319A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
US11729830B2 (en) Method for transmitting information based on channel access manners, and user equipment
US10856289B2 (en) Uplink information sending method and apparatus and uplink information receiving method and apparatus
CN114340014B (zh) 随机接入的方法和设备
CN107534948B (zh) 用于无争用上行链路同步的装置
CN107624264B (zh) 在许可辅助接入中进行调度
JP2022123101A (ja) 搬送波感知による共用スペクトルにおけるlte波形を送信するための方法及び装置
KR102282754B1 (ko) 데이터 전송 방법, 무선 네트워크 장치, 및 통신 시스템
EP3016427B1 (en) Device of handling service in an unlicensed cell in the context of license assisted lte
CN115362727A (zh) 用于基于突发的副链路传输的方法及设备
CN109644466B (zh) 上行信号的发送方法和终端设备
CN119766407A (zh) 用于上行链路传输的波形配置和指示
CN106900175B (zh) 一种用户设备、基站及数据信道的发送和接收方法
WO2016070436A1 (zh) 数据传输方法和数据传输设备
US10764015B2 (en) Feedback information transmission method, related device, and communications system
CN108353427A (zh) 共享通信介质上的随机接入信道信令
CN109088713A (zh) 一种信息传输方法、用户设备及基站
CN109561496B (zh) 一种laa-lte系统数据传输方法、终端及基站
WO2018103607A1 (zh) 接收上行参考信号的方法和装置
WO2018000196A1 (zh) 免授权频段上的通信方法、终端设备以及网络设备
WO2018082678A1 (zh) 通信方法和通信装置
CN108605353B (zh) 确定竞争窗信息的方法和装置
CN104081698A (zh) 在无线通信系统中收发下行链路控制信道的方法及其设备
US20240340927A1 (en) Sidelink positioning configurations
WO2016045037A1 (zh) 信号发送方法,信号接收方法及其相关设备
CN112997574B (zh) 随机接入的方法、终端设备和网络设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896090

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896090

Country of ref document: EP

Kind code of ref document: A1