WO2016070436A1 - 数据传输方法和数据传输设备 - Google Patents

数据传输方法和数据传输设备 Download PDF

Info

Publication number
WO2016070436A1
WO2016070436A1 PCT/CN2014/090655 CN2014090655W WO2016070436A1 WO 2016070436 A1 WO2016070436 A1 WO 2016070436A1 CN 2014090655 W CN2014090655 W CN 2014090655W WO 2016070436 A1 WO2016070436 A1 WO 2016070436A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
signal
cell
time
length
Prior art date
Application number
PCT/CN2014/090655
Other languages
English (en)
French (fr)
Inventor
郑娟
吴作敏
官磊
李强
马莎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14905500.6A priority Critical patent/EP3200515B1/en
Priority to PCT/CN2014/090655 priority patent/WO2016070436A1/zh
Priority to CN201480034372.4A priority patent/CN105850194B/zh
Priority to KR1020177012868A priority patent/KR101923114B1/ko
Publication of WO2016070436A1 publication Critical patent/WO2016070436A1/zh
Priority to US15/588,417 priority patent/US10491263B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7087Carrier synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • Embodiments of the present invention relate to the field of mobile communications, and more particularly, to a data transmission method and a data transmission device.
  • the spectrum is the basis of wireless communication.
  • a Long Term Long (LTE) system and a non-LTE system device for example, a Wireless Fidelity (WiFi) device
  • WiFi Wireless Fidelity
  • the LTE system may use the form of a secondary cell configuration or independently use the unlicensed spectrum.
  • LTE Long Term Long
  • WiFi Wireless Fidelity
  • Embodiments of the present invention provide a data transmission method and a data transmission device, which can improve resource utilization.
  • the first aspect provides a data transmission device, including: a detecting unit, configured to detect a first signal in a first cell; and a determining unit, configured to determine a reference time according to the detected first sequence of the first signal a point, wherein the reference time point is in a first subframe of the first cell; the determining unit is further configured to determine a location of the data channel according to the determined reference time point; and a receiving unit, configured to The location of the data channel receives control data and/or traffic data carried on the data channel.
  • the determining unit is specifically configured to determine the reference time point according to a one-to-one correspondence between the sequence information of the first sequence and the reference time point.
  • the determining unit is specifically configured to determine a reference time point according to a symbol index that is closest to a location of the first sequence on the first cell.
  • the determining unit is specifically configured to determine, according to a symbol index closest to a location of the first sequence on the second cell, At the time of the test, the second cell and the first cell are deployed on different spectrum resources.
  • the location of the first sequence includes: a start position of the first sequence in time or a termination of time of the first sequence position.
  • the determining unit is specifically configured to: if a length of time between the determined reference time point and an end boundary of the first subframe is not less than X1, determining that the location of the data channel is in the first subframe; X1 is a length of time not less than zero.
  • the determining unit is specifically configured to:
  • the second subframe is the same as the first The next sub-frame adjacent to a sub-frame;
  • the length of time between the determined reference time point and the end boundary of the first subframe is less than X2, determining that the location of the data channel is located in the third subframe, where the third subframe is in the second cell
  • the second cell and the first cell are deployed on different spectrum resources in a next subframe that is adjacent to the first subframe in time;
  • the X2 is a length of time not less than zero.
  • the determining unit is further configured to: if a length of time between the determined reference time point and an end boundary of the first subframe is not If less than Y1, determining that the length of the second signal in time is Z1, wherein the second signal includes the first signal, Z1 belongs to a set of lengths ⁇ L 1 , L 2 , . . . L n ⁇ , and the second The end position of the signal in time is at the end boundary of the first subframe, where n is an integer not less than one, Y1 is a length of time that is not equal to X2 and not less than zero.
  • the determining unit is further configured to: if a length of time between the determined reference time point and an end boundary of the first subframe is less than Y2, determining that the length of the second signal in time is Z2, wherein the second signal comprises the first signal, Z2 belongs to a set of lengths ⁇ L 1 ', L' 2 , ... L' n ⁇ , and The end position of the second signal in time is located in the second subframe on the first cell, and the second subframe is the next subframe adjacent to the first subframe, where n is not less than 1.
  • Y2 is a length of time that is not equal to X2 and not less than zero.
  • the determining unit is further configured to: if a length of time between the determined reference time point and an end boundary of the first subframe is less than Y3, determining that the length of the second signal in time is Z3, wherein the second signal includes the first signal, Z3 is smaller than M2, and the end position of the second signal in time is located in the first subframe End boundary, M2 is the minimum length of the preset second signal in time, and Y3 is the length of time not equal to X2 and not less than zero.
  • the determining unit is specifically configured to: if a length of time between the determined reference time point and an end boundary of the first subframe is less than X3 And determining, by the time interval between the determined reference time point and the end boundary of the first subframe, that the time length is greater than Y4, determining that the location of the data channel is located in the first subframe, where X3, Y4 are not The length of time is less than zero and Y4 is not greater than X3.
  • the data channel carries data scheduling information of a second subframe on a first cell, where the second subframe is the first The next subframe adjacent to the subframe.
  • the reference time point has a corresponding relationship with the location of the data channel, where each of the reference time points corresponds to an index, and each of the The index corresponds to the location of one of the data channels.
  • the location of the data channel includes at least one of: controlling a location of a data channel, and a location of a traffic data channel.
  • the first cell is a cell on an unlicensed spectrum.
  • a second aspect provides a data transmission device, including: a determining unit, configured to determine a reference time point, wherein the reference time point is in a first subframe of a first cell; and the determining unit is further configured to Determining, by the reference time point, a sending position of the first signal; the sending unit, configured to send the first signal at a sending position of the first signal; the determining unit is further configured to use the reference time according to the reference time Point, determining a location of the data channel; the sending unit is further configured to send control data and/or service data carried on the data channel at a location of the data channel.
  • the determining unit is specifically configured to determine the reference time point according to a symbol index that is closest to a time when the spectrum resource of the first cell is preempted.
  • the first signal includes or carries a first sequence
  • the determining unit is further configured to determine the first sequence according to the reference time point.
  • the determining unit is specifically configured to determine, according to a one-to-one correspondence between the sequence information of the first sequence and the reference time point. The first sequence is described.
  • the determining unit is specifically configured to: if a time length between the reference time point and an end boundary of the first subframe is not less than X1, Then determining that the location of the data channel is in the first subframe; X1 is a length of time not less than zero.
  • the determining unit is further configured to determine that a length of the second signal is M1 in time, and the second signal includes the first signal, where M1 is the minimum length of the second signal in time.
  • the determining unit is specifically configured to:
  • the second subframe is the first subframe The next subframe adjacent to the frame;
  • the length of time between the reference time point and the end boundary of the first subframe is less than X2, determining that the location of the data channel is located in the third subframe, and the third subframe is in the second cell at time And the second cell adjacent to the first subframe, where the second cell and the first cell are deployed on different spectrum resources;
  • the X2 is a length of time not less than zero.
  • the determining unit is further configured to: if a time length between the reference time point and an end boundary of the first subframe is not less than Y1 Determining, the length of the second signal in time is Z1, wherein the second signal comprises the first signal, Z1 belongs to a set of lengths ⁇ L 1 , L 2 , ... L n ⁇ , and the second signal is The end position in time is located at the end boundary of the first subframe, where n is an integer not less than one, Y1 is a length of time that is not equal to X2 and not less than zero.
  • the determining unit is further configured to: if a length of time between the reference time point and an end boundary of the first subframe is less than Y2, Determining that the length of the second signal in time is Z2, wherein the second signal includes the first signal, Z2 belongs to a set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the second The end position of the signal in time is located in a second subframe on the first cell, and the second subframe is a next subframe adjacent to the first subframe, where n is an integer not less than 1.
  • Y2 is a length of time that is not equal to X2 and not less than zero.
  • the determining unit is further configured to: if a length of time between the reference time point and an end boundary of the first subframe is less than Y3, Determining that the length of the second signal in time is Z3, wherein the second signal includes the first signal, Z3 is less than M2, and the end position of the second signal in time is at the end of the first subframe
  • M2 is the minimum length of the second signal in time
  • Y3 is the length of time not equal to X2 and not less than zero.
  • the determining unit is specifically configured to: if a length of time between the reference time point and an end boundary of the first subframe is less than X3, And the time length between the reference time point and the end boundary of the first subframe is greater than Y4, determining that the location of the data channel is located in the first subframe, where X3, Y4 are not less than zero. The length of time and Y4 is not greater than X3.
  • the data channel carries data scheduling information of a second subframe on a first cell, where the second subframe is the first The next subframe adjacent to the subframe.
  • the reference time point has a corresponding relationship with the location of the data channel, where each of the reference time points corresponds to an index, and each of the The index corresponds to the location of one of the data channels.
  • the location of the data channel includes at least one of: controlling a location of a data channel, and a location of a traffic data channel.
  • the first cell is a cell on an unlicensed spectrum.
  • a third aspect provides a data transmission method, including: detecting a first signal in a first cell; determining a reference time point according to the detected first sequence of the first signal, where the reference time point is Determining, in the first subframe of the first cell, determining a location of the data channel according to the determined reference time point; and receiving control data and/or service data carried on the data channel according to the location of the data channel.
  • the determining, according to the detected first sequence, determining a reference time point comprising: according to a sequence between the sequence information of the first sequence and the reference time point A correspondence relationship determines the reference time point.
  • the determining, according to the detected first sequence, determining a reference time point including: according to the distance from the first cell to the first sequence The location of the nearest symbol index determines the reference time point.
  • the determining, according to the detected first sequence, determining a reference time point including: according to the location of the first sequence from the second cell The nearest symbol index determines a reference time point, and the second cell and the first cell are deployed on different spectrum resources.
  • the location of the first sequence includes: a starting position of the first sequence in time or a termination of the first sequence in time position.
  • the determining, according to the determined reference time point, determining a location of the data channel includes: if the determined reference time point and the first The length of time between the end boundaries of the subframe is not less than X1, and it is determined that the location of the data channel is located in the first subframe; X1 is a length of time not less than zero.
  • the method further includes: determining that a length of the second signal is M1 in time, and the second signal includes the first signal, where M1 Is the minimum length of the second signal in time.
  • the determining, according to the determined reference time point, determining a location of the data channel includes: if the determined reference time point and the first If the length of time between the end boundaries of the subframe is less than X2, it is determined that the location of the data channel is located in the second subframe, and the second subframe is the next subframe adjacent to the first subframe; Or if the length of time between the determined reference time point and the end boundary of the first subframe is less than X2, determining that the location of the data channel is located in the third subframe, and the third subframe is the second cell
  • the next subframe that is temporally adjacent to the first subframe, the second cell and the first cell are deployed on different spectrum resources; and the X2 is a length of time not less than zero.
  • the method further includes: if a length of time between the determined reference time point and an end boundary of the first subframe is not less than Y1 Determining, the length of the second signal in time is Z1, wherein the second signal comprises the first signal, Z1 belongs to a set of lengths ⁇ L 1 , L 2 , ... L n ⁇ , and the second signal is The end position in time is located at the end boundary of the first subframe, where n is an integer not less than one, Y1 is a length of time that is not equal to X2 and not less than zero.
  • the method further includes: if a length of time between the determined reference time point and an end boundary of the first subframe is less than Y2, Determining that the length of the second signal in time is Z2, wherein the second signal includes the first signal, Z2 belongs to a set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the second The end position of the signal in time is located in a second subframe on the first cell, and the second subframe is a next subframe adjacent to the first subframe, where n is an integer not less than 1.
  • Y2 is a length of time that is not equal to X2 and not less than zero.
  • the method further includes: if a length of time between the determined reference time point and an end boundary of the first subframe is less than Y3, Determining that the length of the second signal in time is Z3, wherein the second signal includes the first signal, Z3 is less than M2, and the end position of the second signal in time is at the end of the first subframe
  • M2 is the minimum length of the preset second signal in time
  • Y3 is the length of time not equal to X2 and not less than zero.
  • the determining, according to the determined reference time point, determining a location of the data channel includes: if the determined reference time point and the first Determining that the length of time between the end boundaries of the subframe is less than X3, and the length of time between the determined reference time point and the end boundary of the first subframe is greater than Y4, determining that the location of the data channel is located In the first subframe, where X3, Y4 are the length of time not less than zero and Y4 is not greater than X3.
  • the data channel carries data scheduling information of a second subframe on a first cell, where the second subframe is The next subframe adjacent to a subframe.
  • the reference time point has a corresponding relationship with the location of the data channel, where each of the reference time points corresponds to an index, and each of the The index corresponds to the location of one of the data channels.
  • the location of the data channel includes at least one of: controlling a location of a data channel, a location of a traffic data channel.
  • the first cell is a cell on an unlicensed spectrum.
  • a fourth aspect provides a data transmission method, including: determining a reference time point, wherein the reference time point is in a first subframe of a first cell; determining, according to the reference time point, a sending position of the first signal And transmitting, at the transmitting position of the first signal, the first signal; determining a location of the data channel according to the reference time point, and transmitting the data channel at a location of the determined data channel Control data and/or business data carried on.
  • the determining a reference time point includes: determining the reference time point according to a symbol index that is closest to a time when the spectrum resource of the first cell is preempted.
  • the determining a reference time point includes: determining a reference according to a symbol index that is closest to a time at which the spectrum resource of the first cell is preempted in the second cell At a time point, the second cell and the first cell are deployed on different spectrum resources.
  • the first signal includes or carries a first sequence
  • the method further includes: determining the first sequence according to the reference time point.
  • the determining, according to the reference time point, the first sequence includes: performing sequence information according to the first sequence and the reference time The first sequence is determined by a one-to-one correspondence between the points.
  • the determining, according to the reference time point, determining a location of the data channel includes: if the reference time point and the end of the first subframe If the length of time between the boundaries is not less than X1, it is determined that the location of the data channel is located in the first subframe; X1 is a length of time not less than zero.
  • the method further includes: determining that a length of the second signal is M1 in time, and the second signal includes the first signal, where M1 Is the minimum length of the second signal in time.
  • determining the location of the data channel according to the reference time point includes:
  • the second subframe is the first subframe The next subframe adjacent to the frame;
  • the length of time between the reference time point and the end boundary of the first subframe is less than X2, determining that the location of the data channel is located in the third subframe, and the third subframe is in the second cell at time And the second cell adjacent to the first subframe, where the second cell and the first cell are deployed on different spectrum resources;
  • the X2 is a length of time not less than zero.
  • the method further includes: if a length of time between the reference time point and an end boundary of the first subframe is not less than Y1, Determining that the length of the second signal in time is Z1, wherein the second signal comprises the first signal, Z1 belongs to a set of lengths ⁇ L 1 , L 2 , . . . L n ⁇ , and the second signal is in time The end position is located at the end boundary of the first subframe, where n is an integer not less than 1, Y1 is a length of time that is not equal to X2 and not less than zero.
  • the method further includes: determining, if a time length between the reference time point and an end boundary of the first subframe is less than Y2, determining The length of the second signal in time is Z2, wherein the second signal comprises the first signal, Z2 belongs to a set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the second signal is The end position in time is located in a second subframe on the first cell, and the second subframe is a next subframe adjacent to the first subframe, where n is an integer not less than 1.
  • Y2 is a length of time that is not equal to X2 and not less than zero.
  • the method further includes: determining, if a time length between the reference time point and an end boundary of the first subframe is less than Y3, determining The second signal has a length Z3 in time, wherein the second signal includes the first signal, Z3 is smaller than M2, and the end position of the second signal in time is located at an end boundary of the first subframe, M2 is the minimum length of the second signal in time, and Y3 is not equal to X2 and is not small The length of time in zero.
  • the determining, according to the reference time point, determining a location of the data channel includes: if the reference time point and the end of the first subframe Determining that the length of time between the boundaries is less than X3, and the length of time between the reference time point and the end boundary of the first subframe is greater than Y4, determining that the location of the data channel is located in the first subframe, Where X3 and Y4 are lengths of time not less than zero and Y4 is not greater than X3.
  • the data channel carries data scheduling information of a second subframe on a first cell, where the second subframe is the first The next subframe adjacent to the subframe.
  • the reference time point has a corresponding relationship with the location of the data channel, where each of the reference time points corresponds to an index, and each of the The index corresponds to the location of one of the data channels.
  • the location of the data channel includes at least one of: controlling a location of a data channel, a location of a traffic data channel.
  • the first cell is a cell on an unlicensed spectrum.
  • the embodiment of the present invention When determining the location of the data channel, the embodiment of the present invention considers the reference time point in the subframe to receive the data channel according to the location of the data channel. Compared with the way in which the LTE device preempts the use opportunity until the next subframe starts data transmission, the spectrum resource of the subframe in which the reference time point is located can be fully utilized, thereby improving the spectrum use efficiency.
  • FIG. 1 is a schematic diagram of transmitting a pre-occupied signal on a preempted unlicensed spectrum resource.
  • FIG. 2 is a schematic flow chart of a data transmission method according to an embodiment of the present invention.
  • 3a and 3b are schematic diagrams of determining a transmission position of a first signal according to an embodiment of the present invention.
  • 4a and 4b are schematic illustrations of signal locations in accordance with one embodiment of the present invention.
  • FIG. 5 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • Figure 6 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • FIG. 7 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • Figure 8 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • Figure 9 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • Figure 10 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of a data transmission method according to another embodiment of the present invention.
  • Figure 13 is a schematic block diagram of a data transmission device in accordance with another embodiment of the present invention.
  • Figure 14 is a schematic block diagram of a communication device in accordance with one embodiment of the present invention.
  • Figure 15 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a User Equipment which may also be called a Mobile Terminal, a mobile user equipment, or the like, may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device,
  • the wireless access network exchanges languages and/or data, and may also be a relay.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB in LTE). Or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • the invention is not limited.
  • the application scenario of the embodiment of the present invention includes an LTE system for licensed Lens-Assisted Access (LAA), that is, a LAA-LTE system.
  • LAA Lens-Assisted Access
  • the LTE system that permits spectrum-assisted access refers to an LTE system that uses licensed spectrum and unlicensed spectrum together by CA or non-CA.
  • the carrier included in the licensed spectrum or the licensed spectrum or the cell working on the licensed spectrum is used as the primary serving cell
  • the carrier included in the license-free spectrum or the license-free spectrum or the cell working on the unlicensed spectrum is used as the secondary serving cell.
  • the primary serving cell and the secondary serving cell may be deployed in a common station or a non-common station, and an ideal backhaul path between the two serving cells.
  • the embodiment of the present invention is not limited to the scenario of the foregoing CA, and may be applied to other deployment scenarios, for example, a scenario where there is no ideal backhaul path between two serving cells (the primary serving cell and the secondary serving cell), where the delay is returned due to Larger, resulting in the inability to quickly coordinate information between the two serving cells.
  • either the licensed spectrum or the unlicensed spectrum may include one or more carriers.
  • Carrier aggregation of the licensed spectrum and the unlicensed spectrum may include carrier aggregation of one or more carriers included in the licensed spectrum and one or more carriers included in the unlicensed spectrum.
  • the cell mentioned may be a cell corresponding to the base station, for example, the cell may belong to the macro base station, or may belong to the base station corresponding to the small cell.
  • the small cell here may include: a metro cell, a micro cell, a pico cell, a femto cell, and the like. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the concept of the carrier and the cell in the LTE system is basically the same.
  • the UE accesses one carrier and accesses one cell.
  • the description of the embodiment of the present invention is unified by the concept of a cell.
  • unlicensed or unlicensed spectrum resources are larger than authorized or licensed spectrum resources.
  • the main technology used on the unlicensed spectrum is WiFi, but WiFi is in mobility, security, quality of service (QoS), and at the same time.
  • QoS quality of service
  • LTE equipment to the unlicensed spectrum can not only effectively utilize the unlicensed spectrum resources, but also provide more efficient wireless access and meet the needs of the growing mobile broadband services.
  • LTE devices and WiFi devices will exist simultaneously on the unlicensed spectrum.
  • it can maintain the advantages of mobility, security, quality of service and simultaneous multi-user scheduling with respect to WiFi.
  • Carrier Aggregation CA
  • CA Carrier Aggregation
  • the licensed spectrum and the unlicensed spectrum are aggregated together, that is, the LTE device can use the licensed spectrum as the primary component carrier (PCC) or the primary cell (PC).
  • the unlicensed spectrum is used as a secondary component carrier (SCC) or a secondary cell (SCell), so that the LTE device can inherit the traditional advantages of the LTE device for wireless communication through the licensed spectrum, for example, in mobility,
  • SCC secondary component carrier
  • SCell secondary cell
  • the unlicensed spectrum has no constraints on the use of the wireless communication system and the operator, that is, multiple operators having multiple communication systems want to occupy the same spectrum, in order to realize the use of the spectrum by different wireless communication systems on the unlicensed spectrum.
  • Fairness, in some regions, wireless communication devices need to follow specific regulatory rules when used on unlicensed spectrum, such as ETSI EN 301 893 issued by the European Telecommunications Standards Institute (ETSI) for unlicensed spectrum use.
  • ETSI EN 301 893 issued by the European Telecommunications Standards Institute (ETSI) for unlicensed spectrum use.
  • the rules specify the Listen Before Talk (LBT) and the channel bandwidth occupation requirements.
  • the wireless communication device needs to use the LBT rule when occupying the unlicensed spectrum communication, that is, the device first monitors whether the channel is idle or available before using the channel, and can use the unlicensed spectrum resource if the channel is available. Used for data transmission, but the time occupied by the channel is limited. After the time limit for occupying the channel reaches the maximum limit, the unlicensed spectrum must be released for a period of time, that is, the data transmission is stopped for a period of time on the unlicensed spectrum; the channel must be monitored again before the next time the data is to be transmitted using the unlicensed spectrum resource. it's usable or not.
  • the device can perform Clear Channel Assessment (CCA) through energy detection to determine whether the listening channel is free or available.
  • CCA Clear Channel Assessment
  • ETSI EN 301 893 when the wireless communication device is used on the unlicensed spectrum, it needs to meet the frame-based equipment (FBE) of the listening mechanism or the load-based equipment (Load Based Equipment, LBE) first listened to the mechanism requirements.
  • FBE frame-based equipment
  • LBE load-based equipment
  • the LTE device determines that the unlicensed spectrum resource is available (determining whether the license-free spectrum resource is available under the condition of regulatory constraints), the data can be transmitted, so LTE The time at which the device transmits data on the unlicensed spectrum is also always available.
  • the LTE device can determine that the unlicensed spectrum resource is available, and the LTE device can determine that the unlicensed spectrum resource is available, if the energy received is determined to be less than a certain threshold by energy detection within a specified time range.
  • the LTE device determines that the channel unlicensed spectrum resource is available, and may also perform signal parsing, for example, by detecting whether a signal indicating that the unlicensed spectrum resource is occupied, or detecting a network allocation vector (NAV). .
  • NAV network allocation vector
  • NAV indicates that the device occupying the unlicensed spectrum occupies the time of the license-free spectrum.
  • the LTE device for example, the LTE base station, once preempts the use opportunity on the unlicensed spectrum, that is, the time at which the current opportunity is preempted to be used as a subframe boundary, and performs data communication with other LTE devices, such as an LTE UE. That is, at this time, the unlicensed spectrum may be inconsistent with the time synchronization information provided by the reference time source, for example, the subframe boundary of the unlicensed spectrum and the subframe boundary of the licensed spectrum are not aligned, or the time information on the unlicensed spectrum and the licensed spectrum. Can be out of sync.
  • the reference time source here may be a licensed spectrum that is aggregated with the unlicensed spectrum through the CA, or a Global Positioning System (GPS), or a wired network clock synchronization protocol such as the IEEE 1588 protocol, or an air interface synchronization ( Synchronization source base station in Radio-interface based synchronization, RIBS)
  • the step source base station is a base station that can provide synchronization signals for other base stations.
  • the reference time source is a licensed spectrum that is aggregated with the unlicensed spectrum through the CA.
  • the time information on the license-free spectrum and the licensed spectrum are not synchronized, and may include, the time unit boundary of the license-free spectrum and The time unit boundary of the licensed spectrum is not aligned or there is no fixed offset.
  • the time unit boundary herein may include an Orthogonal Frequency Division Multiplexing (OFDM) symbol boundary, a Slot boundary, a Subframe boundary, a Radio Frame boundary, and a Super Frame (Super). Frame) borders, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the temporal location of data transmission on the unlicensed spectrum is determined based on the opportunity for the LTE device to preempt the use of the unlicensed spectrum resources and is therefore random. If the time information of the unlicensed spectrum and the time information provided by the reference time source are not synchronized, it not only brings additional complexity to the user's time information of the license-free spectrum, but also does not help to implement some beneficial technologies on the unlicensed spectrum. Such as fast discovery, enhanced multi-broadcast multi-service (eMBMS), advanced receiver (Advanced Receiver) and so on.
  • eMBMS enhanced multi-broadcast multi-service
  • Advanced Receiver Advanced Receiver
  • the subframe boundary of the unlicensed spectrum can be determined based on the time information provided by the reference time source.
  • the reference time source here is the same as above, and will not be described here.
  • An LTE device eg, an LTE base station
  • After preempting the use of the unlicensed spectrum sends a pre-occupied signal (padding) starting from the next subframe, and other LTE devices, before the next subframe boundary arrives.
  • an LTE user equipment User Equipment, UE
  • Data communication herein may include communication of control data and traffic data.
  • FIG. 1 is a schematic diagram of transmitting a pre-occupation signal on a preempted unlicensed spectrum resource.
  • the LTE device sends padding as an example for description. It is assumed that the LTE device has already communicated data over the licensed spectrum. As shown in the upper side of FIG. 1, it is assumed that the data communication of the licensed spectrum is a transmission unit with a subframe of a length of 1 ms.
  • the lower side of Fig. 1 shows the signal transmission process on the unlicensed spectrum.
  • the absolute time coordinates of the signals of the two spectra on the upper side and the lower side of Fig. 1 are synchronized.
  • the reference time source is a licensed spectrum that is aggregated with the unlicensed spectrum through the CA.
  • the “synchronization” between different spectrums refers to the alignment of subframe boundaries of different spectrums or a fixed offset. the amount.
  • the backoff phase on the unlicensed spectrum indicates that the LTE device performs CCA within the range, and determines whether the currently detected unlicensed spectrum is determined by energy detection and/or signal analysis. Available. If available, the LTE device transmits a pre-occupied signal from the determination of successful preemption of the channel to the arrival of the next subframe boundary.
  • the subframe boundary here may indicate the location where the data channel transmission can be detected by the UE, or the location where the control data channel can be detected by the UE, which has the advantage that the LTE device, such as the LTE base station, is preempting the unlicensed spectrum.
  • the unlicensed spectrum can be occupied, and the time information of the unlicensed spectrum can be aligned with the reference time source, for example, aligned with the subframe boundary of the licensed spectrum, so that LTE is used.
  • the base station can use the content carried by the control channel of the licensed spectrum to indicate the transmission format of the data channel of the unlicensed spectrum, thereby reducing the blind detection of the UE.
  • the blind detection includes detecting whether the data channel transmission on the unlicensed spectrum starts. .
  • the subframe boundary may also be other time units, such as a time unit that the LTE device can identify for data transmission, such as one OFDM symbol, a fractional OFDM symbol, and other time units that can be supported in the LTE system, for example, The reciprocal of the sampling rate in the LTE system.
  • a time unit that the LTE device can identify for data transmission such as one OFDM symbol, a fractional OFDM symbol, and other time units that can be supported in the LTE system, for example, The reciprocal of the sampling rate in the LTE system.
  • an LTE base station can start padding from the preemption to the use of the unlicensed spectrum, to the next subframe boundary where the data can be scheduled to arrive.
  • the padding may only indicate that the LTE device preempts the use of the unlicensed spectrum, and does not carry signals and/or channels related to data scheduling, such as spectrum identification of the unlicensed spectrum, and data transmission using the unlicensed spectrum resource.
  • Cell ID Physical Downlink Control Channel (PDCCH), Physical Control Format Indicator Channel (PCFICH), Physical Hybrid ARQ Indicator Channel (PHICH), physical broadcast (Physical Broadcast Channel, PBCH), Physical Downlink Shared Channel (PDSCH), Enhanced Physical Downlink Control Channel (EPDCCH), Physical Multicast Channel (PMCH), Reference Signals such as Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), Cell-specific Reference Signal (CRS), and number of PDSCHs According to the demodulated UE-specific reference signal (UE-specific Reference Signal), Demodulation Reference Signal (DM-RS) for EPDCCH demodulation, Positioning Reference Signal (PRS), channel state information Reference Signal (CSI-RS), Discovery Reference Signal (DRS) Wait.
  • DM-RS Demo
  • the padding may also carry the foregoing signals and/or channels, but other LTE devices (eg, LTE UEs) served by the LDP device that sends the padding do not demodulate or receive the signals and/or channels of the padding bearer. That is, one of the features of padding is that no other LTE device served by the LTE device transmitting the signal does not need to demodulate the signal, or further, the LTE device that transmits the signal, regardless of the specific content of the signal bearer. Other LTE devices serving may also not receive the signal, and a signal satisfying such characteristics may be referred to as a pre-occupied signal. After the pre-occupation signal transmission ends, the base station and the UE start data communication. In this way, since the data communication between the base station and the UE starts from the next subframe, synchronization between the unlicensed spectrum and the reference time source (for example, the licensed spectrum) can be achieved.
  • the reference time source for example, the licensed spectrum
  • the above solution does not consider the influence of the time position at which the fallback phase ends on the position of the data channel. In other words, regardless of where in the subframe the backoff phase ends in the subframe, the data channel starts transmitting from the beginning of the next subframe, which also leads to waste of unlicensed spectrum resources.
  • FIG. 2 is a schematic flow chart of a data transmission method according to an embodiment of the present invention.
  • the method of Figure 2 is performed by a receiving end (e.g., an LTE device, such as an LTE base station or UE).
  • a receiving end e.g., an LTE device, such as an LTE base station or UE.
  • the embodiment of the present invention When determining the location of the data channel, the embodiment of the present invention considers the reference time point in the subframe to receive the data channel according to the location of the data channel. Compared with the way in which the LTE device preempts the use opportunity until the next subframe starts data transmission, the spectrum resource of the subframe in which the reference time point is located can be fully utilized, thereby improving the spectrum use efficiency.
  • the receiving end detects the first signal sent on the unlicensed spectrum, And determining a reference time point according to the first sequence of the detected first signal, and then determining a receiving position of the data channel by referring to a position of the time point in the subframe, so that the detection signal is sent on the preempted unlicensed spectrum resource and
  • the data channel can fully utilize the preempted unlicensed spectrum resources and improve resource utilization.
  • first means that the two signals may refer to different signal carriers.
  • second signal means that the two signals may also refer to the same signal carrier, but in any case, It indicates that the first signal is temporally located before the second signal. If there is a prioritized relationship, it will be specifically pointed out in the description of the present invention.
  • the implicit manner may be used to indicate whether the first signal is sent or not to indicate whether the transmitting end preempts the unlicensed spectrum resource.
  • the action of sending the first signal indicates that the transmitting end has preempted the unlicensed spectrum resource.
  • the first signal can be used for other purposes, such as for synchronizing or passing other useful information.
  • the first signal includes or carries the first sequence.
  • the first sequence has N different sequence forms, and then any sequence form of the first sequence may be included in the first signal.
  • the UE may determine a sequence form of the first sequence included in the first signal by detecting the first signal, which may be referred to as a first sequence of the detected first signal. More specifically, for example, if the PSS in the existing LTE system is used as the first signal, the first sequence may be a Zadoff-Chu sequence constituting the PSS, and the UE may determine which bearer is detected in the PSS by detecting the PSS.
  • the first sequence is a Zadoff-Chu sequence; for example, if the SSS of the existing LTE system is used as the first signal, then the first sequence may be 168 sequences constituting the SSS, and any one of the 168 sequences is A combination of two binary sequences of length 31.
  • the first signal includes a first sequence, and a part of the first signal includes a first sequence, for example, the first signal occupies multiple time units (eg, A OFDM symbols) in time, and carries the first sequence.
  • the data channel may be independent of the first signal, for example, after the first signal; the data channel may also occupy the same time resource as the first signal, for example, by orthogonal methods such as frequency division, space division or code division.
  • the time resource occupied by the first signal may also be part of the time resource occupied by the data channel.
  • the time resource occupied by the data channel is 3 OFDM symbols, specifically the 3rd OFDM symbol in one subframe to the 5th. OFDM symbols, then the time resource occupied by the first signal may be any one or more of the three OFDM symbols.
  • the data channel can be used to carry control data and/or traffic data.
  • control data examples include, but are not limited to, PDCCH, EPDCCH, PBCH, PHICH, data carried by PCFICH, etc.
  • service data examples include, but are not limited to, PDSCH, data carried by PMCH, and the like.
  • the detecting operation of the first signal by the receiving end may be blind detection in real time, for example, detecting whether there is a first signal while receiving the signal, or first buffering the first signal, and then detecting The first signal.
  • the transmitting end is an LTE base station and the receiving end is an LTE UE is taken as an example, that is, when the first signal and the data channel are downlink
  • the example is described.
  • the case where the first signal and the data channel are uplinks can be similarly designed or modified. Such designs or modifications are still within the scope of embodiments of the invention.
  • the foregoing other control information may include: information that enables the UE to determine that the first cell preempts the unlicensed spectrum use opportunity, cell identification of the first cell, synchronization information of the first cell, and public land mobile network of the first cell (Public Lands Mobile) Network, PLMN) identification code, or more generally, the necessary control information for supporting data transmission (including control data transmission and/or service data transmission) in the current LTE system, such as information carried in the PBCH, system information block (System Information) Information carried in Block, SIB).
  • the foregoing other control information may be carried in the signal and/or the channel.
  • the synchronization information of the first cell may be carried by the synchronization signal sent by the first cell.
  • the bearer carrying the other control information is referred to as a second signal, and may also be referred to as a second channel.
  • the second signal may be in the form of a preamble, and the foregoing control information is carried by the preamble.
  • the embodiment of the present invention does not limit the form or specific name of the second signal.
  • the term "signal” is used primarily in the context of the present invention, but can equally be extended to the use of the term "channel”, such extensions falling within the scope of embodiments of the present invention.
  • the second signal sent by the first cell may occupy multiple time units in time, where the time unit may be the length of one OFDM symbol, or may occupy the length of the OFDM symbol, or other lengths related to the OFDM symbol length.
  • the second signal may occupy X OFDM symbols in time, wherein X may be any positive integer, in view of satisfying the synchronization requirement of normal data communication.
  • the signal carried by the first OFDM symbol can enable the UE to know whether the first cell preempts the spectrum of the unlicensed spectrum.
  • Resource use opportunities In this case, the UE can detect whether the first cell preempts the spectrum resource of the unlicensed spectrum by performing energy detection on the first OFDM symbol or parsing (demodulating) the signal of the first OFDM bearer. Use opportunities.
  • the length of time that the second signal occupies in time can be determined by satisfying the function provided by the second signal.
  • the first signal may be part of the second signal or may be the second signal.
  • the first signal may include only the first OFDM symbol of the second signal in time, and the UE may determine whether the first cell preempts the spectrum use opportunity of the unlicensed spectrum by detecting the first signal.
  • the reference time point and the length of the second signal are determined according to the first sequence of the detected first signal.
  • the first signal is a second signal, and the first sequence of detected first signals can include the detected signal carrying the first sequence, wherein the signal carrying the first sequence is part of the first signal.
  • Determining a reference time point according to the detected first sequence of the first signal and specifically including at least one of: determining a reference time point according to a position of the signal carrying the first sequence in time; Determining the reference time point according to the position of the sequence signal in time and the relative relationship between the signal carrying the first sequence and the position of the first signal in time; according to the position of the signal carrying the first sequence in time and the bearer
  • the relative time relationship between a sequence of signals and the reference time point determines the reference time point.
  • the reference time point when the reference time point is determined according to the detected first sequence in step 202, the reference time point may be determined according to a one-to-one correspondence between the sequence information of the first sequence and the reference time point. .
  • sequence information of the first sequence may be a one-to-one correspondence between the sequence information of the first sequence and the reference time point (for example, in the form of a table), so that it is convenient to determine the corresponding reference time point according to the detected sequence information of the first sequence. .
  • the reference time point of the first cell on the unlicensed spectrum is indicated by designing the first sequence.
  • the reference time point may be indicated by an OFDM symbol position, or may be indicated by a fractional OFDM symbol position, or more generally, an integer multiple of Ts, or a time identifiable by the LTE system. Expressed as an integer multiple of the unit.
  • different OFDM symbol positions may be indicated by different OFDM symbol indices.
  • the correspondence between the OFDM symbol position and the OFDM symbol index can be as described in Table 1, wherein the symbol index is an example of sequence information.
  • the reference time point may be indicated in fractional OFDM symbol positions.
  • the fractional OFDM symbol positions (eg, 1/4 OFDM symbol positions) may be jointly determined by an OFDM symbol index and a position (or index) of the fractional OFDM symbols within one OFDM symbol, or may also be passed in one time unit
  • the location (or index) of the fractional OFDM symbols that are globally ordered is determined, and the time unit may be a subframe, a time slot, a radio frame, or a time unit that other LTE UEs can recognize, such as a reciprocal of the sampling rate Ts. Integer multiple.
  • 3a and 3b are schematic diagrams of determining a transmission position of a first signal according to an embodiment of the present invention.
  • the reference time source is from the second cell, where the second cell is the cell that is aggregated with the first cell by the CA.
  • the second cell and the first cell may be deployed on the same base station or may be deployed on different base stations.
  • the second cell and the first cell The sub-frame boundaries are aligned or there is little time error, such as 260 nanoseconds. In this way, the second cell can determine the symbol position of the second cell according to the symbol position of the first cell.
  • the first cell determines the spectrum resource of the unlicensed spectrum at the end boundary of the 4th OFDM symbol, and may use Then, the first cell may determine that the starting position of the first signal transmission is located at a starting boundary of the fifth OFDM symbol, or that the first symbol of the first signal in time may be transmitted from the fifth OFDM symbol.
  • the first cell may successfully seize the first signal before the fifth OFDM symbol starts to transmit the first signal.
  • a padding preempted signal
  • the first cell determines the reference time point, and then determines the first sequence according to the one-to-one correspondence between the reference time point and the first sequence, thereby determining the content of the first signal transmission.
  • the signal used is PSS.
  • the sequence Zadoff-Chu sequence constituting the PSS has four different forms (the current LTE system adopts three of them), so the first sequence of the first signal can have up to four different sequence forms, Indicates 4 different reference time points.
  • within one subframe there are 14 different states of reference time points if viewed from the perspective of the OFDM symbol index.
  • the first signal occupies the length of two OFDM symbols in time, the first OFDM
  • the signal carried by the symbol is used by the UE to determine the spectrum resource usage opportunity of the first cell to preempt the unlicensed spectrum.
  • the PSS may be used to perform energy detection and/or signal analysis on the PSS to determine whether the first cell preempts the unlicensed spectrum.
  • the spectrum resource usage opportunity; the content sent by the signal carried by the second OFDM symbol corresponds to the reference time point one by one. That is to say, the content of the signal carried by the second OFDM symbol is the first sequence.
  • the first sequence is only a part of the first signal, the UE can detect the first sequence by detecting the first signal.
  • the sequences constituting the SSS have a total of 168 different sequence forms, so that 14 different sequence forms of the sequences constituting the SSS can be selected to represent 14 different reference time points.
  • the first cell may determine a transmission location of the first sequence included in the first signal according to the determined reference time point, for example, the initial transmission location of the first signal.
  • the first cell may determine the reference time point according to the relationship between the time of preempting the unlicensed spectrum use opportunity and the synchronization information of the second cell.
  • the transmission position of the first sequence is located at the second OFDM symbol position of the first signal, and the appropriate sequence is selected according to the correspondence between the transmission position of the first sequence and the different sequence forms constituting the SSS, as the first The content of the signal carried by the second OFDM symbol of the signal.
  • the UE detects the first signal according to a time unit that can represent the reference time point, where, as described above, the reference time point may be indicated by an OFDM symbol position, or may be a fractional OFDM.
  • the symbol position is indicated, or more generally, may also be indicated by a time unit that the LTE system can support, such as an integer multiple of the reciprocal Ts of the sampling rate.
  • the determined reference time point may be the OFDM symbol position transmitted by the first sequence; or, if the second OFDM symbol of the first signal is sent
  • the content is the first sequence
  • the determined reference time point may be the OFDM symbol position transmitted by the first sequence, or may be the initial transmission position of the first signal.
  • the correspondence between the reference time point and the sequence and the reference time point are corresponding to the initial sending position of the first signal or other data sending positions, which may be predefined or standard specifications, or may be included by the base station where the first cell is located. Any cell is notified to the UE by means of signaling.
  • the UE may also directly use the understanding of the second cell symbol boundary to determine the understanding of the first cell symbol boundary, symbol by symbol or symbol by symbol. The way to detect the first signal. Further, the UE may first cache the data of a certain length on the first cell, and then perform detection.
  • the UE may determine the synchronization information of the first cell according to the synchronization information of the second cell, and may further determine the synchronization information of the first cell according to the historical synchronization information of the first cell, that is, work in the license-free spectrum.
  • the first cell the use of unlicensed spectrum resources is opportunistic. If the UE is served by the first cell when the first cell obtains the unlicensed spectrum resource, the UE may determine the synchronization information on the current first cell according to the synchronization information when the first cell is served.
  • the one-to-one correspondence between the sequence information of the first sequence and the reference time point may be that the sequence information of the first sequence is directly used to indicate the reference time point, or is the first There is a certain relationship between the time position indicated by the sequence information of the sequence and the reference time point, for example, spacing several OFDM symbols, or spacing several OFDM symbols, etc., so that the time position indicated by the first sequence and the The relationship between the time position indicated by the sequence information of the sequence and the reference time point determines the reference time point.
  • sequence information of the same first sequence may indicate multiple different reference time points, and may also indicate a reference time point; on the other hand, multiple different first sequences Sequence letter
  • the information may indicate a reference time point or may indicate a plurality of different reference time points.
  • sequence information of the first sequence represents the time position of the signal carrying the first sequence, and the signal carrying the first sequence is Part of the first signal.
  • reference time point is defined as the starting position of the first signal in time
  • the one-to-one correspondence between the sequence information of the first sequence and the reference time point can be understood as being first by the first sequence.
  • the sequence information determines a time position of the signal carrying the first sequence, and then determines a starting position of the first signal in time based on the position of the signal carrying the first sequence in the first signal, ie determining the reference time point.
  • the first signal occupies 2 OFDM symbols in time, and the time position of the signal carrying the first sequence in the first signal is the 2nd OFDM symbol, if the first sequence is determined by the sequence information of the first sequence.
  • the signal is located in the Cth OFDM symbol, and then it can be known that the starting position of the first signal is located in the (C-1)th OFDM symbol.
  • the time position of the signal carrying the first sequence in the first signal is the starting position of the first signal in time, that is, the time position of the signal carrying the first sequence in the first signal is the first The OFDM symbol, then the start position of the first signal in time can be directly determined according to the sequence information of the first sequence.
  • the symbol position and symbol index within one subframe refer to Table 1.
  • the reference time point is assumed to be the start position of the first signal in time (the start position may be represented by an OFDM symbol index), except the description of the above embodiment, the reference time point It may also be another position of the first signal in time, such as the end position of the first signal in time, or one or more positions between the start position and the end position of the first signal in time.
  • the first signal occupies W OFDM symbols in time
  • the positions of the W OFDM symbols in one subframe can be indexed by OFDM symbols such as #w, #(w+1), ...#(w+W- 1)
  • the reference time point may represent any one or more of the OFDM symbol index set ⁇ #w, #(w+1), ...
  • the position of the first signal in time may be other than the symbol index, for example, in units of fractional OFDM symbols, such as 1/Z OFDM symbols, where Z is preferably a positive integer.
  • the reference time point can also be used as a unit of fractional symbols.
  • the OFDM symbol position or index is represented, for example, the 1/Z OFDM symbol, the 2/Z OFDM symbol, and the like.
  • the position of the first signal in time may also be expressed in units of time that the cell and/or the user equipment UE in the LTE system can recognize, for example, the reciprocal Ts of the sampling rate, and the position of the first signal in time may be It is represented by an integer number of Ts.
  • the reference time point may also be any one or more time points in the first subframe of the first cell, may be represented by an absolute time, or may be used in the first subframe. Representing relative time, such as the first OFDM symbol, the first time slot, etc.; or may be represented by a relative time in a long time (one or an integer number of radio frames, a wireless superframe), for example, The first OFDM symbol, the first time slot, the first subframe, and the like are located in a long time range. In this case, as described above, as long as the one-to-one correspondence between the sequence information of the first sequence and the reference time point is known, the time point indicated by the sequence information of the first sequence is the reference time point.
  • the time point indicated by the sequence information of the first sequence and the reference time point have a specific time relationship, and the reference time point may be determined by detecting the sequence information of the first sequence.
  • the sequence information of the first sequence may include one or more of a time resource, a frequency resource, and a code resource carrying the first sequence, different forms of one or more of the time resource, the frequency resource, and the code resource of the first sequence and/or Or different combinations may correspond one-to-one with the reference time point.
  • the time resource of the first sequence may include an OFDM symbol carrying a first sequence, a time slot, a subframe, a radio frame, and the like.
  • the time resource of the first sequence may further include A sequence of time slots, subframes, and radio frames; further, the time resource carrying the first sequence may also be a fractional OFDM symbol.
  • the frequency resource of the first sequence may include resources that occupy the frequency of the signal of the first sequence, for example, a subcarrier, a resource element (Resource Element, RE), a resource block (RB), and a physical resource block ( Physical Resource Block (PRB) and Virtual Resource Block (VRB) are used to represent.
  • the code resources of the first sequence may include sequences that constitute the first sequence.
  • the code resource of the first sequence includes one or more of the three Zadeoff-Chu (ZC) sequences.
  • Zadeoff can be used.
  • One sequence (ZC1) in the -Chu sequence corresponds to one reference time point
  • another sequence (ZC2) in the Zadeoff-Chu sequence corresponds to another reference time point, and so on.
  • the sequence constituting the first sequence is a sequence constituting an SSS in the current LTE system
  • the code resource of the first sequence is one or more of the sequence constituting the SSS, that is, the m sequence.
  • the first sequence of code resources can be current Sequences used in LTE systems, such as ZC sequences, binary sequences, m sequences, and the like.
  • the one-to-one correspondence between the sequence information of the first sequence and the reference time point may be well-known between the base station and the UE, for example, the correspondence between the sequence information of the first sequence and the reference time point.
  • the one-to-one correspondence between the sequence information of the first sequence and the reference time point can be known by the UE through predefined, standard specifications, signaling, and factory settings.
  • the corresponding relationship can also be known to the base station by means of predefined, standard specifications, signaling interaction, and factory setting.
  • the content that is required to be learned by the base station or the UE can be known by a pre-defined, standard specification, signaling interaction, factory setting, etc., that is, the base station of the present invention Or the way the UE knows the content is not limited.
  • the reference time point when the reference time point is determined according to the detected first sequence in step 202, the reference time point may be determined according to a symbol index closest to the first sequence on the first cell. .
  • the relative positions of the symbol index and the symbol in one subframe may be one-to-one correspondence, as shown in Table 1.
  • the first cell may obtain the synchronization information of the first cell according to the method of GPS, wired network synchronization protocol, or the like, or listen by means of air interface synchronization.
  • the synchronization reference signal of the other cell obtains the synchronization information of the first cell itself, and further determines the subframe boundary, the slot boundary, the symbol boundary, the frame boundary, the super frame boundary, and the like of the first cell.
  • the first cell preempts the use of the unlicensed spectrum resource, starting from the symbol index position closest to the time after the time or starting from the symbol index position having a certain distance from the time after the time, sending the first The signal, wherein the first signal carries the first sequence, and the specific distance may be a predefined, standard specification, or signaling interaction manner to make the cell and/or the UE aware.
  • the time at which the first cell preempts the use of the unlicensed spectrum resource is not the starting boundary of the first cell, such as a symbol boundary, the first cell may start from the preemption to the unlicensed spectrum resource use opportunity to the first signal. Send padding before starting to send.
  • the UE acquires time information of the first cell according to the synchronization information of the first cell, for example, a radio frame index, a subframe index, a slot index, a symbol index, and the like of the first cell.
  • UE can pass the first small
  • the tracking of the area synchronization signal acquires the foregoing information, for example, the UE may read the synchronization reference signal sent by the first cell, for example, PSS, SSS, CRS, UE-specific reference signal for PDSCH data demodulation, Acquiring reference information DM-RS, PRS, CSI-RS, DRS, and Multicast Broadcast Single Frequency Network Reference Signal (MBSFN RS) for EPDCCH demodulation to obtain synchronization information of the first cell .
  • MBSFN RS Multicast Broadcast Single Frequency Network Reference Signal
  • the sending of the data is opportunistic, so when the UE determines the reference time point according to the synchronization information of the first cell, the synchronization of the first cell saved in the history may also be performed.
  • the information serves as synchronization information for the first cell for determining the reference time point.
  • the UE may determine the OFDM symbol position on the first cell by using the history-preserved synchronization information of the first cell. For example, the UE may have synchronization information of the first cell saved in history, but there is an error between the actual synchronization information of the first cell, and the UE may further determine the time synchronization information on the first cell by using the detected first sequence.
  • the UE may detect the first signal according to the obtained time information of the first cell. Detection is performed, for example, in units of OFDM symbols.
  • deformation means that if the reference time point refers to the initial transmission position of the first signal, and the first sequence is not the content of the signal transmitted by the first signal in the first OFDM symbol, then the determination is determined. After the time position of the first sequence is reached, the reference time point needs to be determined based on the symbol position of the signal carrying the first sequence in the first signal.
  • the reference time point is represented by the OFDM symbol position in the first subframe
  • the time position corresponding to the reference time point is a time position close to the signal carrying the first sequence, for example, carrying the first sequence.
  • the time position of the signal in the first subframe is the Dth OFDM symbol in the first subframe, or is represented by an OFDM symbol whose symbol index is #(D-1) in the first subframe,
  • the symbol index closest to the location of the first sequence may be the (D-1)th OFDM symbol, the Dth OFDM symbol, or the (D+1)th OFDM symbol.
  • the first signal includes a plurality of OFDM symbols
  • the reference time point is a starting position of the first signal in time, and may be represented by a time position of the first OFDM symbol carrying the first signal, and carries the first sequence.
  • the signal is the second OFDM symbol in the first signal.
  • determining the reference time point according to the detected first sequence including, according to the detected first sequence and the signal carrying the first sequence.
  • the reference time point is determined by the relationship between the time position and the time position represented by the reference time point, in this example, the symbol index of the first cell before the detected first sequence position and closest to the first sequence position. As a time reference point.
  • the OFDM symbol position or the OFDM symbol index is used as an example to indicate the reference time point, the position of the first sequence of the detected first signal in time, and the position of the first signal in time ( Including one or more of a start time position, an end time position, and a start time position to an end time position of the first signal, but the techniques of the embodiments of the present invention are also applicable to utilizing other time information such as a score.
  • OFDM symbol position or fractional OFDM symbol index or using the reciprocal of the signal sampling rate and/or the signal sampling rate to indicate the reference time point, the position of the first sequence of the detected first signal in time, the first signal at time
  • the above positions and the like are all within the scope of the embodiments of the present invention.
  • the determining the reference time point according to the detected first sequence may further include: performing, according to the symbol index closest to the location of the first sequence on the first cell. And determining a reference time point by the relative position of the signal carrying the first sequence in the first signal.
  • the reference time point is defined as any one of the start position to the end position of the first signal in time, and the symbol index closest to the position of the first sequence on the first cell may be regarded as the first bearer.
  • the position of the sequence signal in time, and then combined with the position of the signal carrying the first sequence in time and the relative position of the signal carrying the first sequence in the first signal, can be determined by using the OFDM symbol index
  • the first signal is in any one of the starting position to the ending position in time, thereby determining the reference time point.
  • the determining the reference time point according to the detected first sequence may further include: performing, according to the symbol index closest to the location of the first sequence on the first cell, and The reference time point is determined by a relative relationship between the signal carrying the first sequence and the reference time point.
  • the reference time point is defined as the Eth OFDM symbol in the first subframe, and the symbol index closest to the location of the first sequence on the first cell is the Fth OFDM symbol in the first subframe. Then, according to the detected temporal position of the Fth OFDM symbol (which can be represented by the symbol position) and the relative relationship between E and F (for example, a difference of several OFDM symbols), it can be determined The time position of the Eth OFDM symbol in the first subframe, thereby determining the temporal position of the reference time point, or determining the reference time point.
  • the second cell as the reference time source may be deployed on a different spectrum resource than the first cell.
  • the first cell can operate in an unlicensed spectrum while the second cell operates in a licensed spectrum.
  • the embodiment is similar to the foregoing embodiment of determining the reference time point according to the time synchronization information of the first cell, except that the time synchronization information according to the first cell in the foregoing embodiment is replaced with the time according to the second cell. Synchronization information.
  • the symbol index closest to the detected first sequence position on the second cell may be determined as a reference time point.
  • the second cell here can also be replaced with other reference time sources.
  • the reference time source is not limited to the cell that uses the licensed spectrum for data transmission, and may be other forms, such as GPS, or a wired network clock synchronization protocol, such as the IEEE 1588 protocol, or a synchronization source base station in the RIBS. Substitutions still fall within the scope of embodiments of the invention.
  • the first sequence, determining the reference time point further includes: determining a reference time point according to a symbol index closest to the location of the first sequence on the second cell and a time offset between the first cell and the second cell.
  • the time offset between the first cell and the second cell may be represented by an integer number of OFDM symbols, or may be represented by an integer number of time slots, or may be represented by other time units, such as mentioned in the foregoing embodiment.
  • the reciprocal Ts of the LTE sampling rate may be represented by an integer number of OFDM symbols, or may be represented by an integer number of time slots, or may be represented by other time units, such as mentioned in the foregoing embodiment.
  • the time offset between the first cell and the second cell may be obtained by the UE, for example, the UE may determine the first cell and the second cell by using the obtained time synchronization information of the first cell and time synchronization information of the second cell.
  • the time offset between the first cell and the second cell may also be made known to the UE by means of signaling, for example, the first cell and the second cell are co-located, or by a backhaul such as X2.
  • the S1 interface, or through the Mobility Management Entity (MME), or through the air interface signaling interaction, or through the air interface to listen to the synchronization signal can learn the time synchronization information of each other, so as to know that the time synchronization information of the other party is synchronized with its own time. Time offset between the information, so that the first cell and/or the second cell can The offset is notified to the UE.
  • MME Mobility Management Entity
  • the first cell determines synchronization information of the first cell according to the synchronization information of the second cell.
  • the first cell determines, according to the synchronization information of the second cell, a subframe boundary, a symbol boundary, a slot boundary, a frame boundary, a super frame boundary, and the like of the first cell, where the first cell may be aligned with a time boundary of the second cell, for example, a sub-cell Frame alignment, time slot alignment, symbol alignment, frame alignment, superframe alignment may also have a fixed time offset from the time boundary of the second cell.
  • the first cell sends a first signal according to the time when the preemptive use of the unlicensed spectrum resource is used, starting from the symbol index position closest to the time after the time or from the symbol index position having a specific distance from the time.
  • the first signal carries the first sequence, and the specific distance may be a predefined, standard specification, or signaling interaction manner to make the cell and/or the UE aware.
  • the first cell carries the signal of the first sequence in time.
  • the position and the position or the deformation of the position is determined as the reference time point.
  • the UE may use a symbol index on the second cell that is before the detected first sequence position and is closest to the detected location as a reference time point; or the UE may use the first sequence detected on the second cell.
  • the UE may determine the first time according to the time information of the second cell and the time offset of the first cell and the second cell in time comprehension
  • the time information of a cell is further used as a reference time point according to the time information of the first cell, the symbol index closest to the detected first sequence position or the symbol index having a specific distance relationship.
  • the location of the first sequence includes a starting position of the first sequence in time.
  • the starting position of the first sequence in time that is, the OFDM symbol position occupied by the signal carrying the first sequence
  • the symbol index of the OFDM symbol is represented. If the signal carrying the first sequence occupies a plurality of OFDM symbols in time, for example, a first signal occupying a plurality of OFDM symbols, in the embodiment of the present invention, the starting position of the first sequence in time may be The starting position of a signal, or more generally, the position of the first sequence may also refer to any one or more of the starting position to the ending position of the first signal in time.
  • the embodiment of the present invention does not limit the specific form of the location of the first sequence.
  • the position of the first sequence may also be the end position of the first sequence in time. If the length of the first sequence in time is known or preset, then the start of the first sequence at the beginning of time and the termination of the first sequence in time Locations can be derived from each other.
  • the problem that the UE determines the ambiguity of the first sequence start position is also solved.
  • the UE determines the reference time point of the first cell by using the time information of the second cell
  • the following problem may occur: the signal sent by the first cell and the time sent by the second cell to the UE side are different, which may result in The UE generates an erroneous determination on the reference time point of the first cell.
  • the first cell is a cell deployed on the unlicensed spectrum
  • the second cell is a cell deployed on the licensed spectrum
  • the CA (inter-band CA) definition between different frequency bands is according to the current LTE protocol specification.
  • the synchronization requirement is that the synchronization error between cells aggregated together in the CA mode is no more than 260 nanoseconds.
  • the signals simultaneously transmitted by the cells aggregated by the CA mode reach the UE side, and the allowed synchronization error is not more than 30.26 microseconds. 30.26 microseconds is close to the length of half an OFDM symbol, and therefore, on the UE side, if the OFDM symbol boundary of the first cell is determined based on the OFDM symbol boundary of the second cell, there may be judgment confusion.
  • the initial transmission position of the first signal in the first cell is the kth OFDM symbol, and the kth OFDM symbol of the first cell is aligned with the symbol boundary of the kth OFDM symbol of the second cell, the first cell and the second
  • the symbol boundary of the first cell received by the UE is not aligned with the symbol boundary of the second cell, and the difference is 30.26 microseconds.
  • the UE determines the first cell according to the symbol boundary of the second cell.
  • the UE can clearly know that the OFDM index number of the first cell accurately determines the location of the first signal, for example, the starting position of the first signal in time.
  • X1 is a length of time not less than zero.
  • the end boundary of a subframe can be understood as the end time point of the last symbol of the subframe, and can also be understood as the start time point of the next subframe of the subframe, or can be understood as the subframe and its next sub-frame. The point in time between the frames.
  • X1 may be preset, for example, X1 may be predefined, or configured by a network, or notified by a base station or a UE by signaling, for example, through a backhaul link (X2 interface, S1 connection)
  • the base station is made aware of the base station, or the UE is informed by signaling (physical layer signaling, high layer signaling, MAC signaling).
  • X1 may represent the number of OFDM symbols (or fractional OFDM) that can be used in the first subframe to support data transmission between the first cell and the UE and control information required to support the data transmission. The number of symbols).
  • the data transmission between the first cell and the UE includes control data transmission and/or service data transmission
  • the control data includes, for example, control data carried in at least one control channel in the LTE system: PDCCH, EPDCCH, PCFICH, PHICH, PBCH
  • the data carried in the data includes, for example, the service data carried in at least one of the following data channels in the LTE system: data carried by the PDSCH and the PMCH.
  • the control information required to support the data transmission may include at least one of the following: a spectrum identifier of the unlicensed spectrum, a cell identifier of the first cell, and a Public Lands Mobile Network (PLMN) identification of the first cell.
  • PLMN Public Lands Mobile Network
  • the code, the synchronization information of the first cell, and the information that the first cell uses the unlicensed spectrum for data transmission (for example, by detecting the presence or absence of the information, it may be determined whether the first cell uses the unlicensed spectrum for data transmission), where the first cell
  • the synchronization information may be implemented by using a reference signal sent by the first cell, and may include: PSS, SSS, CRS, DMRS, CSI-RS, PRS, UE-specific reference signal, and DRS. The following description will be described by taking the number of OFDM symbols as an example.
  • X1 may be represented as Xa+Xb, where Xa may be represented as OFDM for data transmission that the LTE system can support in one subframe.
  • the signal carried by the first OFDM symbol can be used to determine whether the first cell uses the unlicensed spectrum for data transmission, and can perform energy detection and/or signal analysis on the signal carried by the first OFDM symbol.
  • any one or more of the signals carried by the first OFDM symbol to the fourth OFDM symbol may be used to determine a reference time point, in the signal carried by the first OFDM symbol to the fourth OFDM symbol
  • Any one or more may be used to determine synchronization information of the first cell, for example, to enable the UE to acquire time synchronization and/or frequency synchronization of the first cell. If the length of time between the determined reference time point and the first subframe boundary is not less than X1, the fact is as follows: starting from the successful use of the unlicensed spectrum, until the end of the first subframe, the first child The number of OFDM symbols included in the frame within this range can support normal data transmission between the first cell and the UE.
  • the normal data transmission described herein means that the number of OFDM symbols included in the first subframe in the above range can help the UE. Acquiring necessary information for data demodulation (such as the control information mentioned above to support the data transmission) and performing data transmission (for example, control data transmission and/or service data between the first cell and the UE mentioned above) transmission).
  • FIGS. 4a and 4b are schematic illustrations of signal locations in accordance with one embodiment of the present invention.
  • the reference time point is the symbol index corresponding to the start position of the first signal.
  • the reference time point is located in the first subframe, that is, in the first cell subframe in which the second cell subframe #N is aligned as shown in FIGS. 4a and 4b.
  • the starting position of the first signal is from 0 (as shown in Fig. 4a) to 7 (Fig. 4b), and the position of the data channel can be located in the first subframe.
  • the first signal may occupy only 1 OFDM symbol in time, such as the black-filled OFDM symbol in FIG. 4a and 4b; the first signal may also occupy multiple OFDM symbols in time, for example, including The black filled OFDM symbols in Figures 4a and 4b and the 1, 2 or 3 OFDM symbols following the OFDM symbol. At least one of the OFDM symbols occupied by the first signal in time carries the first sequence described above.
  • X1 may also include only Xa, does not include Xb, or Xa and Xb have overlapping OFDM symbol parts, that is, OFDM symbols carrying necessary control information (the number may be represented by Xb) ) may overlap with an OFDM symbol carrying the data transmission (the number may be represented by Xa), and the necessary control information and the data transmission may be time division multiplexed, frequency division multiplexed, code division multiplexed, and spatially divided within X1 OFDM symbols Multiplexing, etc., more specifically, in the embodiment of the present invention, the OFDM symbol carrying the first signal may overlap with the OFDM symbol used to control data transmission and/or service data transmission.
  • the three OFDM symbols can all be used for PDCCH transmission, wherein On the time-frequency resources included in the three OFDM symbols, some specific REs may be used to carry necessary control information, such as reference signals, mapping rules of the reference signals on time-frequency resources and references supported by existing LTE systems.
  • the signal mapping rule is similar. It is assumed that the starting position of the PDCCH is the time when the first cell starts to occupy the unlicensed spectrum.
  • the starting position of the PDCCH can be regarded as the first OFDM symbol in one subframe.
  • the starting position of the PDCCH may also be mapped in the symbol position in the first subframe. For example, assume that the starting position of the PDCCH is at the 10th of the first subframe.
  • the PDCCH occupies the 10th OFDM symbol, the 11th OFDM symbol, and the 12th OFDM symbol in the first subframe, and carries necessary control information at this time
  • the symbol may overlap with the three OFDM symbols, for example, the reference signal may be carried on any one or more of the three OFDM symbols, and the mapping rule of the reference signal on the time-frequency resource may be
  • the first OFDM symbol, the second OFDM symbol, and the third OFDM symbol in one subframe of the LTE system are mapped, and the 10th OFDM symbol and the 11th OFDM symbol in one subframe of the existing LTE system may be used.
  • the 12th OFDM symbol is mapped. More generally, the mapping rules of the reference signals in the three OFDM symbols can also be redefined, and the mapping rules can be made known to the UE by means of predefined, standard specifications, signaling.
  • the first signal can be detected, possibly with possible control data and/or
  • the service data format detects signals carried on the unlicensed spectrum, including signal analysis and/or energy detection.
  • the signal in the unlicensed spectrum may be detected in a format of a possible PDCCH bearer information, that is, a Downlink Control Information (DCI) format, where the first cell preempts the data transmission opportunity on the unlicensed spectrum.
  • DCI Downlink Control Information
  • the signal carried on the unlicensed spectrum may include: transmitted control data and/or service data; if the first cell does not preempt the data transmission opportunity on the unlicensed spectrum, the signal carried on the unlicensed spectrum does not include The signal transmitted on the unlicensed spectrum of the first cell; the first sequence of the detected first signal may include a DCI format that matches the signal carried by the detected PDCCH. If a matching DCI format is detected, the first cell may be preempted to the unlicensed spectrum, or if the energy detection result of the DCI format exceeds a certain threshold, the first cell may also be considered to preempt the unlicensed spectrum.
  • the reference time point is determined according to the first sequence of the detected first signal, and the reference time point may be determined according to any one or more of the OFDM symbol positions in time.
  • the first signal may be a DCI of a specific format or a DCI carried on a specific time-frequency resource; in addition, the first signal may be a DCI common to the first cell, or may be a UE-specific DCI, or may be a certain A group of UE-specific DCIs. Obviously, the UE needs to know the format of the first signal before detecting the first signal.
  • the first signal can be detected, which can be at a specific time frequency. Detecting the presence or absence of a specific signal on a resource, the specific signal can be packaged Including: one or more of PSS, SSS, CRS, DMRS, CSI-RS, PRS, UE-specific reference signal, and DRS, the channel carrying the data transmission may be time-frequency resources other than the time-frequency resource carrying the specific signal. Map on.
  • detecting the first signal may be detecting the presence or absence of the specific signal by using related energy detection or other detection methods; the first sequence of the detected first signal may be a sequence included in the detected specific signal, for example, constituting Sequence of PSS, SSS, CRS, DMRS, CSI-RS, PRS, UE-specific reference signal, DRS. Based on the first sequence, the reference time point is determined.
  • the first signal may also be part of a data channel, for example the first signal is a control data channel.
  • the length of the first signal and the second signal are different, for example, when the second signal includes the first signal, the length of the second signal in time may also be determined.
  • the receiving end may further determine that the length of the second signal is M1 in time, and the second signal includes the first signal, where M1 is the time of the second signal. Minimum length.
  • M1 may be equal to 4, that is, the minimum length of the preset second signal in time may support the number of OFDM symbols occupied by the control information required for data transmission.
  • M1 can correspond to the above parameter Xa.
  • the UE can determine that the length of the second signal in time is four.
  • the second signal includes the first signal.
  • the UE may detect the first signal according to the format of the first signal, for example, the length of the first signal in time and/or the content of the bearer.
  • the UE may determine the reference time point according to the first sequence of the detected first signal, thereby determining the data channel position and the length of the second signal.
  • the second signal may be determined according to the determined reference time point. Whether the length is equal to M1.
  • the first signal is the second signal.
  • the UE may detect the first signal according to the format of the first signal, for example, the length of the first signal. At this time, for the UE, it is equivalent to the length of the second signal has been determined. If the UE detects the first sequence of the first signal, the UE may determine that the first cell sends the first signal.
  • the UE has considered the length of the first signal in time when detecting the first signal, so once the UE determines that the first cell sends the first signal, it can determine the length of the first signal in time. , which is equal to the length of the second signal in time.
  • the detection process of the UE can be simplified, that is, the length of each possible first signal does not need to be detected, thereby simplifying Implementation complexity on the UE side.
  • the second signal is in time.
  • the length may be the length of the control data channel transmission in time and/or the length of the traffic data channel transmission over time.
  • the reference time point is the starting position of the first signal in time , expressed by the OFDM symbol index.
  • the reference time point may also be represented as the time when the first cell successfully preempts the use of the unlicensed spectrum resource, or more generally, in the embodiment of the present invention, the reference time point may be in the first subframe. The time position represented by any one of the time units.
  • the length of the second signal, as well as the location of the data channel, can be determined by the above steps.
  • the information carried by the first signal and the second signal may be known in advance by the UE, so that the UE detects the first signal and the second signal.
  • the known manner may be a predefined, standard specification, network configuration, and signaling method, which is not limited by the embodiment of the present invention.
  • the UE may obtain some control information for data channel demodulation according to the second signal, and may include, for example, at least one of the following: a spectrum identifier of the unlicensed spectrum, a cell identifier of the first cell, synchronization information of the first cell, and a first The information that the cell uses the unlicensed spectrum for data transmission, and other control information for supporting data transmission between the first cell and the UE. After that, the UE can receive and detect according to the starting position of the data channel.
  • Data channel may include a control data channel, which is used to indicate a service data transmission format in the current subframe, or may also indicate a service data transmission format in the non-subframe, which is not limited herein.
  • the UE first detects a control data channel, such as a PDCCH, an EPDCCH, a PCFICH, a PHICH, etc., and acquires a service data transmission format indicated by the control channel.
  • a control data channel such as a PDCCH, an EPDCCH, a PCFICH, a PHICH, etc.
  • the data channel may not include the control data channel, but only the service data channel.
  • the service data transmission format corresponding to the service data carried by the service data channel may be predefined or notified in advance on the licensed spectrum. Even if there is no control data channel, the UE can receive and detect the service data channel according to the learned service data transmission format. It should be noted that the current LTE system also considers the influence of the difference in the number of OFDM symbols used for data transmission on the UE data rate matching when supporting data transmission.
  • TDD Time Division Duplexing
  • DwPTS Downlink Pilot Time Slot
  • different coefficients are considered when performing rate matching, for example, 0.75 and 0.375.
  • the LTE device utilizes the unlicensed spectrum for data transmission
  • the number of OFDM symbols used for data transmission is more diverse due to the randomization of the unlicensed spectrum use resources.
  • it may be considered to introduce New rate matching table, or introduce new rate matching coefficients, such as real numbers greater than 0 and less than 0.375, or real numbers between 0.375 and 0.75, or real numbers between 0.75 and 1, or other values, This is not limited.
  • X2 is a length of time not less than zero.
  • the normal data transmission refers to the necessary information that can help the UE acquire data demodulation and the number of OFDM symbols that minimize data transmission.
  • the normal data transmission may also be the OFDM symbol with the smallest data transmission between the first cell and the UE.
  • the data transmission here includes control data and service data transmission, such as data carried by one or more channels in the PDCCH, PCFICH, PHICH, EPDCCH, PDSCH, and PMCH.
  • control data and service data transmission such as data carried by one or more channels in the PDCCH, PCFICH, PHICH, EPDCCH, PDSCH, and PMCH.
  • the data channel may be located in the next subframe adjacent to the first subframe in the first cell.
  • the data channel herein may include a traffic data channel and a control data channel, or may only include a traffic data channel, or only include a control data channel.
  • the format of the service data transmission channel is predefined or notified in advance by the licensed spectrum, that is, the control data channel supported by the service data transmission channel demodulation is carried. The content is known by the UE in a predefined or advance notification manner so that the UE can demodulate the traffic data channel.
  • Figure 6 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • the location of the data channel is determined according to the determined reference time point in step 203, if the determined reference time point and the end boundary of the first subframe are If the length of time is less than X2, it is determined that the location of the data channel is located in the third subframe, wherein the third subframe is the next subframe in the second cell that is temporally adjacent to the first subframe.
  • the second cell and the first cell are deployed on different spectrum resources.
  • X2 is a length of time not less than zero.
  • the data channel herein can include a traffic data channel and a control data channel.
  • the normal data transmission may also be the minimum number of OFDM symbols for data transmission between the first cell and the UE, where the data transmission includes control data and service data transmission, such as PDCCH, PCFICH, PHICH, EPDCCH, Data carried by one or more channels in the PDSCH and PMCH.
  • control data and service data transmission such as PDCCH, PCFICH, PHICH, EPDCCH, Data carried by one or more channels in the PDSCH and PMCH.
  • the control data channel may be carried only in the next subframe adjacent to the first subframe, for example, by means of cross-carrier scheduling, so that the control data channel carried on the second cell
  • the transport format of the traffic data channel carried on the first cell is indicated such that the UE can demodulate the traffic data channel.
  • the symbols of the remaining first subframe may be used for repetition.
  • the content of the second signal is either used to transmit a pre-occupied signal (eg, padding or preamble).
  • the end position of the second signal in time may be located at the end boundary of the first subframe.
  • the determined length of the second signal may be 6 OFDM symbols, 5 OFDM symbols, or 4 OFDM symbols, where 4, 5, 6 may correspond to the above-mentioned length set ⁇ L 1 , L 2 , ... L n ⁇ each element.
  • a signal larger than 4 OFDM symbols may be formed by repeating a second signal having a length of 4 OFDM symbols, or alternatively, a pre-occupied signal (padding) may be transmitted after a second signal having a length of 4 OFDM symbols until The end boundary of the first subframe.
  • the UE has a corresponding detection procedure for various cases in which the number of OFDM symbols occupied by the first signal in time is the same as the number of OFDM symbols occupied by the second signal in time.
  • the difference is that when the length of the first signal and the length of the second signal are the same, since the length of the second signal varies according to the time reference point, the UE can utilize the possible length of all the second signals (ie The possible length of the first signal is detected by the first signal, and once the first sequence of the first signal is detected, the length of the second signal can be determined.
  • the length of time between the determined reference time point and the end boundary of the first subframe is less than Y2, determining that the length of the second signal in time is Z2, where the second signal The first signal is included, Z2 belongs to the set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the end position of the second signal in time is located in the second subframe on the first cell.
  • the second subframe is a next subframe adjacent to the first subframe, where n is an integer not less than one, Y2 is a length of time not less than zero. Further, Y2 may be a length of time that is not equal to X2 and not less than zero.
  • the normal length of the second signal generally refers to the minimum length of time that satisfies the control information transmission requirements.
  • Y2 can represent the minimum length of the second signal in time, and if the length of time between the determined reference time point and the end boundary of the first subframe is less than Y2, then The symbol length of the second signal is greater than or equal to Y2, that is, the length of the second signal may belong to the set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , for example, 4, 5, 6, etc. may be taken.
  • the second signal needs to be extended to the next subframe of the first cell adjacent to the first subframe (ie, the second subframe described above). From the end of the second signal, the transmission of the data channel can be performed in the first cell.
  • the control data channel may be transmitted from the start boundary of the next subframe adjacent to the first subframe (ie, the third subframe), or may be from the third A location contained in a sub-frame begins to transmit.
  • the data channel carried by the second subframe may also start from the start boundary of the second subframe.
  • the transmission is performed, and the information carried on the OFDM symbol that the second signal overlaps with the data channel carried by the second subframe at this time may be multiplexed with the data channel.
  • the second signal occupies 4 OFDM symbols in time, wherein the latter two symbols carry reference signals such as CRS, CSI-RS, PRS, DMRS, etc., which can provide synchronization information
  • the data channel that the two subframes start to transmit is a control data channel, such as a PDCCH, and the information carried by the second two signals may be multiplexed with the PDCCH, that is, the PDCCH may start from the start boundary of the second subframe. transmission.
  • Fig. 7 is a diagram showing a case where the second signal portion occupies the second subframe.
  • Figure 7 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • the first subframe is a first cell subframe aligned with the second cell subframe #N
  • the second subframe is a first cell subframe aligned with the second cell subframe #N+1.
  • the third subframe is the second cell subframe #N+1.
  • the length of the second signal is 4 OFDM symbols, that is, 4 symbols starting from the black-filled symbol in FIG.
  • the data transmission of the first cell in the second subframe starts transmission at the end position of the second signal. If cross-carrier scheduling is employed, control data can also be transmitted starting at the beginning of the third subframe.
  • Y3 determining that the length of the second signal in time is Z3, where the second signal Contains the first signal.
  • Z3 is smaller than M2 and the end position of the second signal in time is located at the end boundary of the first subframe.
  • M2 is the minimum length of the second signal in time
  • Y3 is the length of time not less than zero. More specifically, Y3 may be a preset length of time that is not equal to X2 and not less than zero.
  • the length of the second signal when the length of time between the reference time point and the end boundary of the first subframe is shorter than the normal length of the second signal, the length of the second signal can be appropriately truncated.
  • the minimum length of the second signal is designed to take into account the need to satisfy the functionality provided by the second signal, for example if the function of the second signal is to pass the second signal before the first cell and the UE transmit data using the unlicensed spectrum.
  • the minimum length of the second signal is 4.
  • the method of truncating the second signal may affect the data transmission between the first cell and the UE on the unlicensed spectrum, for example, the accuracy of tracking the first cell synchronization information by the UE may be reduced.
  • FIG. 8 shows a schematic diagram of the case of truncating the second signal.
  • FIG. 8 is another embodiment of the present invention. Schematic diagram of the signal position of an embodiment.
  • the first subframe is a first cell subframe aligned with the second cell subframe #N
  • the second subframe is a first cell subframe aligned with the second cell subframe #N+1.
  • the third subframe is the second cell subframe #N+1.
  • the receiving end determines that the length of the second signal is truncated to 2 or 3 OFDM symbols, respectively, according to the length between the reference time point and the end boundary of the first subframe.
  • the receiving end may determine that the location of the data channel is located in the first subframe, where X3 and Y4 are not less than zero. Length and Y4 is not greater than X3.
  • the symbols of the remaining first subframe may be used to transmit the data channel.
  • Figure 9 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • the determined reference time point is the start position of the first signal
  • the first subframe is the first cell subframe aligned with the second cell subframe #N.
  • the second subframe is a first cell subframe aligned with the second cell subframe #N+1.
  • the reference time point may also be the location where the unlicensed spectrum preemption to the spectrum usage opportunity begins data transmission.
  • the location of the data channel such as the traffic data channel, may also be located in the first subframe, wherein the control information used to demodulate the information carried by the traffic data channel may be predefined or indicated in advance by the licensed spectrum.
  • Figure 10 is a schematic illustration of signal locations in accordance with another embodiment of the present invention.
  • the respective parameters in the embodiment of Fig. 10 are the same as those of Fig. 9, and therefore the description will not be repeated.
  • the location of the data channel (eg, the control data channel PDCCH) may be located at In a subframe, the control data channel can simultaneously carry data scheduling information of the second subframe, thereby implementing cross-subframe scheduling or multi-subframe scheduling.
  • the first subframe is a first cell subframe aligned with the second cell subframe #N
  • the second subframe is a first cell subframe aligned with the second cell subframe #N+1.
  • the manner of determining the length of the second channel can be similar to the previous embodiments, and thus the description will not be repeated.
  • the relationship between the determined reference time point and the position of the data channel can be stored in the form of a table or the like on the transmitting end and the receiving end, which can improve the calculation efficiency.
  • the reference time point has a correspondence with the location of the data channel, where each reference time point corresponds to one index, and each index corresponds to a location of one data channel.
  • a typical correspondence is expressed in the form of a table.
  • An example of a configuration table of correspondences that can be employed in the embodiments of the present invention will be described below with reference to specific examples. However, it should be noted that the examples are merely illustrative, and equivalent forms or equivalent expressions of the tables may be readily obtained by those skilled in the art, and such equivalents fall within the scope of the embodiments of the present invention.
  • the correspondence table is One form is shown in Table 2.
  • Table 2 A configuration example of the correspondence between the reference time point and the data channel
  • Table 2 can be further simplified as shown in Table 3 below.
  • Table 3 can be further extended to a more general form, such as shown in Table 4.
  • K is an integer not less than 0 and not more than 12.
  • the time unit in the first subframe may be further divided into G sets, and the complete set of elements included in the G sets are all time units included in the first subframe, for example, the time unit is represented by an OFDM symbol, then All time units in the first subframe are the symbol index of 14 OFDM symbols, or the position of the 14 OFDM symbols in the first subframe.
  • the elements included in the G sets may have an intersection, or may have no intersection, and are not limited.
  • the time unit included in a part of the G sets corresponds to a case where the data channel is in the same subframe as the reference time point; the other time set in the G sets corresponds to the time unit: the data channel and the reference time Points are in different sub-frames.
  • the example that the reference time point is in a different subframe may include: the reference time point and the location of the data channel are all located in the same cell, but are located in different subframes; or, the reference time point and the location of the data channel are different.
  • a cell, but located in a subframe having the same subframe index number; or, the reference time point and the location of the data channel are located in different cells, and are located in subframes having different subframe index numbers.
  • the table content may further include other information, such as a data channel.
  • the control data channel included in the method is used for at least one of: scheduling and controlling data channels are located in a service data channel of the same subframe, and scheduling and controlling data channels are located in service data channels of different subframes (cross-subframe scheduling, multi-subframe scheduling)
  • the scheduling and control data channels are located in different cell traffic data channels (cross-cell scheduling, cross-carrier scheduling).
  • the table contents may further include other information such as the length of the first signal, the length of the second signal, and the like.
  • the content in the table that reflects the correspondence between the reference time point and the data channel may also be a dynamic change or a semi-static change, or may be predefined.
  • the network or the cell may determine the content of the table according to the traffic load, the interference level of the license-free spectrum, and the like, and notify the UE in time. For example, the network or the cell side configures multiple tables in advance, and the UE may be informed of which table is valid by using trigger signaling.
  • the LTE device sends the first signal after preempting the spectrum usage opportunity, so the starting position of the first signal is related to the time of the spectrum usage opportunity preempted by the LTE device. Further, it may also be related to the time granularity of the CCA performed by the LTE device.
  • the LTE device can start to perform CCA at each OFDM symbol boundary, so that once the LTE device preempts the spectrum use opportunity of the unlicensed spectrum,
  • the data transmission start time on the unlicensed spectrum may start from the OFDM symbol boundary, and correspondingly, the UE detects the first signal, and may also detect the symbol by symbol on the OFDM symbol boundary.
  • the time for the LTE device to perform one CCA is a fractional OFDM, for example, 1/4 OFDM
  • the LTE device may also divide the OFDM symbol into 4 equal parts, each of which may be divided into 4 OFDM symbols.
  • the time corresponding to one CCA is equally divided.
  • data transmission can be started from the time position of the fractional OFDM.
  • the advantage of using fractional OFDM lengths is that the implementation complexity of the UE can be simplified, because the UE can receive the signals of the fractional OFDM symbols transmitted on the unlicensed spectrum, that is, the signals carried by the fractional OFDM symbols, or further detect by oversampling.
  • the position of the fractional OFDM symbols transmitted on the unlicensed spectrum that is, the signal carried by the fractional OFDM symbols. If the UE side knows the OFDM symbol boundary of the unlicensed spectrum, the possible starting time of the data on the unlicensed spectrum can be known.
  • the time for the LTE device to perform one CCA may also be any time less than one OFDM symbol length, and the above process is also effective.
  • the length of the CCA performed by the LTE device when preempting the unlicensed spectrum and the boundary of the CCA are enforced, if other LTE devices that detect data transmission on the unlicensed spectrum can be made (or more broadly, other work is exempt).
  • the spectrum-capable device is known to help detect whether there are other LTE devices with data transmission on the unlicensed spectrum, determine the possible starting position for detecting the first signal, or the possible starting time for data transmission on the unlicensed spectrum.
  • the LTE device in this embodiment may be the control entity of the first cell in the embodiment of the present invention, and the other LTE device is the UE in the embodiment of the present invention.
  • the LTE device may be informed of the information for reducing the blind detection in advance, including at least one of the following: the CCA length is performed when the LTE device preempts the unlicensed spectrum, and the boundary of the CCA performed by the LTE device (for example, OFDM) a symbol boundary, or a fractional OFDM symbol boundary within one OFDM symbol, etc., a data transmission unit after the LTE device preempts the unlicensed spectrum, a possible starting position of the data transmission, a possible starting position of the first signal, and a second signal
  • the location, the possible starting position of the second signal, the information can be made known to the UE by means of predefined, standard specifications, network configuration, signaling.
  • FIG. 11 is a schematic flow chart of a data transmission method according to another embodiment of the present invention.
  • the method of Figure 11 is performed by a transmitting end (e.g., an LTE device, such as an LTE base station or UE).
  • a transmitting end e.g., an LTE device, such as an LTE base station or UE.
  • first means that the two signals may refer to different signal carriers.
  • second signal means that the two signals may also refer to the same signal carrier, but in any case, It indicates that the first signal is temporally located before the second signal. If there is a prioritized relationship, it will be specifically pointed out in the description of the present invention.
  • the first cell may be a cell on the unlicensed spectrum.
  • the first signal may be used to indicate that the transmitting end has preempted the spectrum resource of the first cell on the unlicensed spectrum.
  • the preemption operation in the embodiment of the present invention may include a preemption operation performed according to the backoff process of FIG. 1, and may also include other forms of preemption operations, such as a pre-set unlicensed spectrum resource pattern according to a protocol.
  • the first signal may indicate to the receiving end in an explicit manner or in an implicit manner that the transmitting end has preempted the spectrum resources on the unlicensed spectrum.
  • the explicit manner may mean that the first signal may carry a specific flag field or the like indication field, and whether the pre-emption spectrum resource is preempted by different flag values.
  • the implicit manner may be used to indicate whether the first signal is sent or not to indicate whether the transmitting end preempts the unlicensed spectrum resource.
  • the action of sending the first signal indicates that the transmitting end has preempted the unlicensed spectrum resource.
  • the first signal can be used for other purposes, such as for synchronizing or passing other useful information.
  • the first cell of the embodiment of the present invention may be a cell deployed on the unlicensed spectrum.
  • One of the functions of the first signal is that whether the first cell transmitting the first signal has data transmission on the spectrum deployed by the first cell can be determined by the receiving end detecting the first signal. For example, when the first cell is deployed on the unlicensed spectrum, by detecting the first signal, it can be determined whether the first cell starts to use the unlicensed spectrum or whether the first cell preempts the spectrum resource usage opportunity on the unlicensed spectrum.
  • the first signal may be a reference signal, for example, may be one of the following reference signals: PSS, SSS, CRS, CSI-RS, PRS, DRS, DMRS, and UE-specific reference signals for PDSCH demodulation.
  • the first signal in the embodiment of the present invention may also be a channel carrying data, such as one of the following channels: PDCCH, PDSCH, EPDCCH, and the like.
  • the first signal includes or carries the first sequence.
  • the first sequence has N different sequence forms, and then any sequence form of the first sequence may be included in the first signal.
  • the UE may determine the first sequence included in the first signal by detecting the first signal (such as the sequence of the first sequence) Column form), this may be referred to as the first sequence of detected first signals. More specifically, for example, if the PSS in the existing LTE system is used as the first signal, the first sequence may be a Zadoff-Chu sequence constituting the PSS, and the UE may determine which bearer is detected in the PSS by detecting the PSS.
  • the first sequence is a Zadoff-Chu sequence; for example, if the SSS of the existing LTE system is used as the first signal, then the first sequence may be 168 sequences constituting the SSS, and any one of the 168 sequences is A combination of two binary sequences of length 31.
  • the first signal may also be a channel that includes or carries the first sequence.
  • the term signal or channel may refer to a carrier that occupies a specific time-frequency resource for carrying specific information or data.
  • the data channel may be independent of the first signal, for example, after the first signal; the data channel may also occupy the same time resource as the first signal, for example, by orthogonal methods such as frequency division, space division or code division. use.
  • the data channel can be used to carry control data and/or traffic data. Examples of control data include, but are not limited to, PDCCH, EPDCCH, PBCH, PHICH, data carried by PCFICH, etc. Examples of service data include, but are not limited to, PDSCH, data carried by PMCH, and the like.
  • the detecting operation of the first signal by the receiving end may be blind detection in real time, for example, detecting whether there is a first signal while receiving the signal, or first buffering the first signal, and then detecting The first signal.
  • the transmitting end is an LTE base station and the receiving end is an LTE UE is taken as an example, that is, the case where the first signal and the data channel are downlink is taken as an example for description.
  • the case where the first signal and the data channel are uplinks can be similarly designed or modified. Such designs or modifications are still within the scope of embodiments of the invention.
  • the first cell In order to implement data communication between the first cell and the UE on the unlicensed spectrum, once the first cell preempts the use opportunity on the unlicensed spectrum, it may be sent before the control data and/or service data transmission with the UE.
  • the control data and/or other control information for the service data detection, or the UE needs to know other control information for controlling the data and/or service data detection before communicating with the UE for the control data and/or the service data.
  • the foregoing other control information may include: information that enables the UE to determine that the first cell preempts the unlicensed spectrum use opportunity, cell identification of the first cell, synchronization information of the first cell, and public land mobile network of the first cell (Public Lands Mobile) Network, PLMN) identification code, or more generally, the necessary control information for supporting data transmission in the current LTE system, such as information carried in the PBCH, information carried in a System Information Block (SIB), and the like.
  • SIB System Information Block
  • the above other control information can be carried in the letter In the number and/or channel, for example, the synchronization information of the first cell may be carried by the synchronization signal transmitted by the first cell.
  • the bearer carrying the other control information is referred to as a second signal, and may also be referred to as a second channel.
  • the second signal may be in the form of a preamble, and the foregoing control information is carried by the preamble.
  • the embodiment of the present invention does not limit the form or specific name of the second signal.
  • the term "signal” is used primarily in the context of the present invention, but can equally be extended to the use of the term "channel”, such extensions falling within the scope of embodiments of the present invention.
  • the second signal may occupy X OFDM symbols in time, wherein X may be any positive integer, in view of satisfying the synchronization requirement of normal data communication.
  • the signal carried by the first OFDM symbol can enable the UE to know whether the first cell preempts the spectrum of the unlicensed spectrum. Resource use opportunities.
  • the UE can determine whether the first cell preempts the spectrum resource usage opportunity of the unlicensed spectrum by performing energy detection on the first OFDM symbol or parsing (demodulating) the signal of the first OFDM bearer.
  • the length of time that the second signal occupies in time can be determined by satisfying the function provided by the second signal.
  • the first signal may be part of the second signal or may be the second signal.
  • the first signal may include only the first OFDM symbol of the second signal in time, and the UE may determine whether the first cell preempts the spectrum use opportunity of the unlicensed spectrum by detecting the first signal.
  • the reference time point and the length of the second signal are determined according to the first sequence of the detected first signal.
  • the first signal is a second signal, and the first sequence of detected first signals can include the detected signal carrying the first sequence, wherein the signal carrying the first sequence is part of the first signal.
  • the transmitting end may determine a reference time point according to a symbol index that is closest to the time of the spectrum resource of the first cell, for example, FIG. 3a and FIG. 3b.
  • the symbol index can also be replaced by a score.
  • Other forms, such as a symbol index or an integer multiple of the reciprocal of the sampling rate, are within the scope of embodiments of the present invention.
  • the transmitting end may send a pre-occupation signal (padding).
  • the sending end may determine the reference time point according to the symbol index closest to the time at which the spectrum resource of the first cell is preempted in the second cell.
  • the second cell and the first cell are deployed on different spectrum resources.
  • the first cell may be an unlicensed spectrum and the second cell may be a licensed spectrum or other reference time source.
  • the symbol index may also be replaced with other forms such as a fractional symbol index or an integer multiple of the reciprocal of the sampling rate, and these alternative embodiments are all within the scope of the embodiments of the present invention.
  • the transmitting end may send a pre-occupation signal (padding).
  • the first signal may include or carry the first sequence.
  • the transmitting end may also determine the first sequence according to the reference time point.
  • the transmitting end may determine the first sequence according to a one-to-one correspondence between the sequence information of the first sequence and the reference time point.
  • there may be a one-to-one correspondence between the sequence information of the first sequence and the reference time point (for example, in the form of a table), so that the sequence information of the corresponding first sequence is determined according to the reference time point.
  • X1 is a length of time not less than zero.
  • the transmitting end may further determine that the length of the second signal is M1 in time, wherein the second signal includes the first signal, and M1 is the second signal. The minimum length in time.
  • the location of the data channel is determined according to the reference time point in step 1103, if the time length between the reference time point and the end boundary of the first subframe is less than X2 And determining that the location of the data channel is located in the third subframe, and the third subframe is the next subframe in the second cell that is temporally adjacent to the first subframe. a second cell and the first cell Deployed on different spectrum resources.
  • X2 is a length of time not less than zero.
  • determining that the length of the second signal in time is Z1
  • the second signal comprises the first signal
  • Z1 belongs to a set of lengths ⁇ L 1 , L 2 , . . . L n ⁇ , and the end position of the second signal in time is located at the end boundary of the first subframe, where n is not An integer less than 1
  • Y1 is a length of time that is not equal to X2 and not less than zero.
  • the length of the second signal in time is Z2, where
  • the second signal includes the first signal, Z2 belongs to a set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the end position of the second signal in time is located in a second subframe with the first cell
  • the second subframe is a next subframe adjacent to the first subframe, where n is an integer not less than 1.
  • Y2 is a length of time that is not equal to X2 and not less than zero.
  • the length of time between the reference time point and the end boundary of the first subframe is less than Y3, it is determined that the length of the second signal in time is Z3, where The second signal includes the first signal, Z3 is smaller than M2, and the end position of the second signal in time is located at the end boundary of the first subframe, M2 is the minimum length of the second signal in time, and Y3 is not equal to X2 and The length of time not less than zero.
  • the location of the data channel is determined according to the reference time point in step 1103, if the time length between the reference time point and the end boundary of the first subframe is less than X3 And the time length between the reference time point and the end boundary of the first subframe is greater than Y4, determining that the location of the data channel is located in the first subframe, where X3, Y4 are lengths of time not less than zero and Y4 is not greater than X3 .
  • the data channel may carry data scheduling information of the second subframe on the first cell, where the second subframe is the first sub-frame The next subframe adjacent to the frame.
  • the reference time point has a corresponding relationship with the location of the data channel, where each reference time point corresponds to one index, and each index corresponds to a location of one data channel, such as described in Table 2-4 above. .
  • the location of the data channel may include at least one of: controlling a location of the data channel, a location of the traffic data channel.
  • the determining the location of the data channel according to the reference time point Can include at least one of the following:
  • the control data channel can be used for scheduling across subframes, that is, the control data channel can be used to schedule a traffic data channel other than the first subframe, such as the first sub-frame a service data channel of other subframes after the frame, where other subframes may be in the same cell as the first subframe;
  • control data channel Determining that the location of the control data channel is in the same subframe as the reference time point, and the control data channel can be used for both the first subframe scheduling and the cross subframe scheduling;
  • the control data channel may be used for scheduling across subframes, ie, controlling The data channel can be used to schedule a traffic data channel other than the first subframe, such as a traffic data channel of other subframes after the first subframe, where other subframes can be in the same cell as the first subframe.
  • a traffic data channel occupies 3 OFDM symbols in time, according to the reference time point, the first two OFDM symbols of the control data channel may be in the first subframe, and the latter OFDM symbol may be adjacent to the first subframe.
  • the control data channel may indicate a service data transmission format in a next subframe of the first cell adjacent to the first subframe;
  • Determining that the location of the service data channel is in the same subframe or different subframe as the reference time point, and the information indicating the transport format of the service data channel may be carried by the control data channel, or by pre-defining or pre-indicating by the licensed spectrum. The way the cell and/or UE are known.
  • dynamic signaling may be used to instruct the UE to perform cross-carrier detection, so that the UE can quickly switch from detecting the channel of the first cell to detecting.
  • the channel of the two cells may be used to instruct the UE to perform cross-carrier detection, so that the UE can quickly switch from detecting the channel of the first cell to detecting.
  • the PDCCH format detected by the UE may be a set of certain PDCCH formats or a PDCCH format supported by all LTE systems.
  • the PDCCH format may be valid for a specific UE or may be valid for a specific group of UEs, for example having an unlicensed spectrum
  • the UE of data communication capability may also be valid for all UEs accessing the cell.
  • the PDSCH format detected by the UE may be indicated by the PDCCH.
  • the data transmission time is less than 1 ms, the data transmission of the UE can be supported by rate matching.
  • the format of the PDCCH and the rate matching rule can be made known to the UE by means of signaling, pre-defined, network configuration, and the like.
  • Figure 12 is a schematic block diagram of a data transmission device in accordance with one embodiment of the present invention.
  • the data transmission device 120 of FIG. 12 includes a detecting unit 121, a determining unit 122, and a receiving unit 123.
  • the detecting unit 121 is configured to detect the first signal in the first cell.
  • the determining unit 122 is configured to determine a reference time point according to the first sequence of the detected first signals, where the reference time point is in the first subframe of the first cell.
  • the determining unit 122 is further configured to determine the location of the data channel according to the determined reference time point.
  • the receiving unit 123 is configured to receive control data and/or service data carried on the data channel according to the location of the data channel.
  • the embodiment of the present invention When determining the location of the data channel, the embodiment of the present invention considers the reference time point in the subframe to receive the data channel according to the location of the data channel. Compared with the way in which the LTE device preempts the use opportunity until the next subframe starts data transmission, the spectrum resource of the subframe in which the reference time point is located can be fully utilized, thereby improving the spectrum use efficiency.
  • the various units of the data transmission device 120 may implement the various processes of the methods of FIGS. 2-10, and are not described in detail to avoid repetition.
  • the determining unit 122 may determine the reference time point according to a one-to-one correspondence between the sequence information of the first sequence and the reference time point.
  • the determining unit 122 may determine the reference time point according to the symbol index closest to the location of the first sequence on the first cell.
  • the determining unit 122 may determine, according to the symbol index closest to the location of the first sequence on the second cell, the reference time point, where the second cell and the first cell are deployed on different spectrum resources.
  • the location of the first sequence includes: a starting position of the first sequence in time or a termination position of the first sequence in time.
  • the determining unit 122 may determine that the location of the data channel is located in the first subframe if the length of time between the determined reference time point and the end boundary of the first subframe is not less than X1; X1 is a length of time not less than zero.
  • the determining unit 122 may further determine the second signal in time.
  • the length is M1
  • the second signal contains the first signal, where M1 is the minimum length of the second signal in time.
  • the determining unit 122 may determine that the location of the data channel is located in the second subframe, The second subframe is a next subframe adjacent to the first subframe; or if the length of time between the determined reference time point and the end boundary of the first subframe is less than X2, the determining unit 122 may determine the location of the data channel Located in the third subframe, the third subframe is the next subframe in the second cell that is adjacent to the first subframe in time, and the second cell and the first cell are deployed on different spectrum resources; X2 is not Time length less than zero.
  • the determining unit 122 may determine that the length of the second signal in time is Z1, wherein the second signal comprises the first signal, Z1 belongs to the set of lengths ⁇ L 1 , L 2 , . . . L n ⁇ , and the end position of the second signal in time is located at the end boundary of the first subframe, where n is not less than 1 Integer, Y1 is a length of time that is not equal to X2 and not less than zero.
  • the determining unit 122 may determine that the length of the second signal in time is Z2, where
  • the second signal includes a first signal, Z2 belongs to a set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the end position of the second signal in time is located in the second subframe on the first cell,
  • the second subframe is a next subframe adjacent to the first subframe, where n is an integer not less than one, Y2 is a length of time that is not equal to X2 and not less than zero.
  • the determining unit 122 may determine that the length of the second signal in time is Z3, where The second signal includes a first signal, Z3 is smaller than M2, and the end position of the second signal in time is located at the end boundary of the first subframe, and M2 is the minimum length of the preset second signal in time, and Y3 is not equal to X2. And not less than the length of time.
  • the determining unit 122 may determine that the location of the data channel is located in the first subframe, where X3, Y4 are a length of time not less than zero and Y4 is not greater than X3.
  • the data channel may carry data scheduling information of the second subframe on the first cell, where the second subframe is a next subframe adjacent to the first subframe.
  • the reference time point has a correspondence with the location of the data channel, where each reference time point corresponds to one index, and each index corresponds to a location of one data channel.
  • the location of the data channel may include at least one of: controlling a location of the data channel, a location of the traffic data channel.
  • the first cell may be a cell on the unlicensed spectrum.
  • Figure 13 is a schematic block diagram of a data transmission device in accordance with one embodiment of the present invention.
  • the data transmission device 130 includes a determination unit 131 and a transmission unit 132.
  • the determining unit 131 is configured to determine a reference time point, wherein the reference time point is in the first subframe of the first cell.
  • the determining unit 131 is further configured to determine a sending position of the first signal according to the reference time point.
  • the transmitting unit 132 is configured to send the first signal at the sending position of the first signal.
  • the determining unit 131 is further configured to determine the location of the data channel according to the reference time point.
  • the sending unit 132 is further configured to send control data and/or service data carried on the data channel at a location of the data channel.
  • the embodiment of the present invention When determining the location of the data channel, the embodiment of the present invention considers the reference time point in the subframe to receive the data channel according to the location of the data channel. Compared with the way in which the LTE device preempts the use opportunity until the next subframe starts data transmission, the spectrum resource of the subframe in which the reference time point is located can be fully utilized, thereby improving the spectrum use efficiency.
  • the various units of the data transmission device 130 may implement the various processes of the methods of FIGS. 3-11, and are not described in detail to avoid repetition.
  • the determining unit 131 may determine the reference time point according to a symbol index that is closest to the time at which the spectrum resource of the first cell is preempted.
  • the determining unit 131 may determine a reference time point according to a symbol index that is closest to a time when the spectrum resource of the first cell is preempted in the second cell, where the second cell is deployed differently from the first cell. On the spectrum resources.
  • the first signal may include or carry the first sequence
  • the determining unit 131 may determine the first sequence according to the reference time point.
  • the determining unit 131 may determine the first sequence according to a one-to-one correspondence between the sequence information of the first sequence and the reference time point.
  • the determining unit 131 may determine that the location of the data channel is located at the first In the subframe; X1 is the length of time not less than zero.
  • the determining unit 131 may further determine that the length of the second signal is M1 in time, and the second signal includes the first signal, where M1 is the minimum length of the second signal in time.
  • the determining unit 131 may determine that the location of the data channel is located in the second subframe, the second sub A frame is the next subframe adjacent to the first subframe.
  • the determining unit 131 may determine that the location of the data channel is located in the third subframe, and the third subframe is the time in the second cell.
  • the next subframe adjacent to the first subframe, the second cell and the first cell are deployed on different spectrum resources.
  • X2 is a length of time not less than zero.
  • the determining unit 131 may determine that the length of the second signal in time is Z1, where The two signals comprise a first signal, Z1 belongs to a set of lengths ⁇ L 1 , L 2 , ... L n ⁇ , and the end position of the second signal in time is at the end boundary of the first subframe, where n is an integer not less than one , Y1 is a length of time that is not equal to X2 and not less than zero.
  • the determining unit 131 may determine that the length of the second signal in time is Z2, where the second The signal includes a first signal, Z2 belongs to a set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the end position of the second signal in time is located in the second subframe on the first cell, and the second The subframe is a next subframe adjacent to the first subframe, where n is an integer not less than one, Y2 is a length of time that is not equal to X2 and not less than zero.
  • the determining unit 131 may determine that the length of the second signal in time is Z3, where the second The signal comprises a first signal, Z3 is smaller than M2 and the end position of the second signal in time is at the end boundary of the first subframe, M2 is the minimum length of the second signal in time, and Y3 is not equal to X2 and not less than zero. length of time.
  • the determining unit 131 may determine that the location of the data channel is located in the first subframe, where X3, Y4 are a length of time not less than zero and Y4 is not greater than X3.
  • the data channel carries data scheduling information of the second subframe on the first cell, where the second subframe is a next subframe adjacent to the first subframe.
  • the reference time point may have a corresponding relationship with the location of the data channel, where each reference time point corresponds to one index, and each index corresponds to a location of one data channel.
  • the location of the data channel may include at least one of: controlling a location of the data channel, a location of the traffic data channel.
  • the first cell may be a cell on the unlicensed spectrum.
  • FIG. 14 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
  • the communication device 140 includes a processor 141, a memory 142, a receiving circuit 143, and a transmitting circuit 144.
  • the processor 141, the memory 142, the receiving circuit 143, and the transmitting circuit 144 are connected by a bus system 149.
  • the communication device 140 may further include an antenna 145 or the like.
  • the processor 141 controls the operation of the communication device 140.
  • Memory 142 can include read only memory and random access memory and provides instructions and data to processor 141.
  • a portion of the memory 142 may also include non-volatile random access memory (NVRAM).
  • transmit circuitry 144 and receive circuitry 143 can be coupled to antenna 145.
  • the various components of communication device 140 are coupled together by a bus system 149, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 149 in the figure.
  • Processor 141 may be an integrated circuit chip with signal processing capabilities.
  • the processor 141 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component. The methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 141 reads the information in the memory 142 and controls the various components of the modulation device 140 in conjunction with its hardware.
  • FIGS. 2-10 may be implemented in the communication device 140 of FIG. 14, or the data transmission device of FIG. 13 may be implemented by the communication device 140 of FIG.
  • An example of a communication device 140 is a user equipment or base station. To avoid repetition, it will not be described in detail.
  • the receiving circuit 143 can detect the first signal in the first cell.
  • the processor 141 may determine a reference time point according to the first sequence of the detected first signals, where the reference time point is at the first In the first subframe of the cell.
  • the receiving circuit 143 can detect the first signal by detecting the energy of the first signal.
  • the receiving circuit 143 may simply buffer the first signal, and the processor 141 performs a detection process on the first signal.
  • the processor 141 can also determine the location of the data channel based on the determined reference time point.
  • the receiving circuit 143 can receive control data and/or service data carried on the data channel according to the location of the data channel.
  • the embodiment of the present invention When determining the location of the data channel, the embodiment of the present invention considers the reference time point in the subframe to receive the data channel according to the location of the data channel. Compared with the way in which the LTE device preempts the use opportunity until the next subframe starts data transmission, the spectrum resource of the subframe in which the reference time point is located can be fully utilized, thereby improving the spectrum use efficiency.
  • the processor 141 may determine the reference time point according to a one-to-one correspondence between the sequence information of the first sequence and the reference time point.
  • the processor 141 may determine a reference time point according to a symbol index closest to the first sequence on the first cell.
  • the processor 141 may determine, according to a symbol index closest to the location of the first sequence on the second cell, a reference time point, where the second cell and the first cell are deployed on different spectrum resources.
  • the location of the first sequence includes: a starting position of the first sequence in time or a termination position of the first sequence in time.
  • the processor 141 may determine that the location of the data channel is located in the first subframe if the length of time between the determined reference time point and the end boundary of the first subframe is not less than X1; X1 is a length of time not less than zero.
  • the processor 141 may further determine that the length of the second signal is M1 in time, and the second signal includes the first signal, where M1 is the minimum length of the second signal in time.
  • the processor 141 may determine that the location of the data channel is located in the second subframe, The second subframe is a next subframe adjacent to the first subframe; or if the length of time between the determined reference time point and the end boundary of the first subframe is less than X2, the processor 141 may determine the location of the data channel Located in the third subframe, the third subframe is in time and the first sub-cell in the second cell The next subframe adjacent to the frame, the second cell and the first cell are deployed on different spectrum resources; and X2 is a length of time not less than zero.
  • the processor 141 may determine that the length of the second signal in time is Z1, wherein the second signal comprises the first signal, Z1 belongs to the set of lengths ⁇ L 1 , L 2 , . . . L n ⁇ , and the end position of the second signal in time is located at the end boundary of the first subframe, where n is not less than 1 Integer, Y1 is a length of time that is not equal to X2 and not less than zero.
  • the processor 141 may determine that the length of the second signal in time is Z2, where
  • the second signal includes a first signal, Z2 belongs to a set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the end position of the second signal in time is located in the second subframe on the first cell,
  • the second subframe is a next subframe adjacent to the first subframe, where n is an integer not less than one, Y2 is a length of time that is not equal to X2 and not less than zero.
  • the processor 141 may determine that the length of the second signal in time is Z3, where The second signal includes a first signal, Z3 is smaller than M2, and the end position of the second signal in time is located at the end boundary of the first subframe, and M2 is the minimum length of the preset second signal in time, and Y3 is not equal to X2. And not less than the length of time.
  • the processor 141 may determine that the location of the data channel is in the first subframe, where X3, Y4 are a length of time not less than zero and Y4 is not greater than X3.
  • the data channel may carry data scheduling information of the second subframe on the first cell, where the second subframe is a next subframe adjacent to the first subframe.
  • the location of the data channel may include at least one of: controlling a location of the data channel, a location of the traffic data channel.
  • the first cell may be a cell on the unlicensed spectrum.
  • the communication device 150 may further include an antenna 155 or the like.
  • the processor 151 controls the operation of the communication device 150.
  • Memory 152 can include read only memory and random access memory and provides instructions and data to processor 151. A portion of the memory 152 may also include non-volatile random access memory (NVRAM).
  • transmit circuitry 154 and receive circuitry 153 can be coupled to antenna 155.
  • the various components of communication device 150 are coupled together by a bus system 159, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 159 in the figure.
  • Processor 151 may be an integrated circuit chip with signal processing capabilities.
  • the processor 151 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 151 reads the information in the memory 152 and controls the various components of the modulation device 150 in conjunction with its hardware.
  • the method of FIGS. 3-11 may be implemented in the communication device 150 of FIG. 15, or the data transmission device of FIG. 13 may be implemented by the communication device 150 of FIG.
  • An example of communication device 150 is a user equipment or base station. To avoid repetition, it will not be described in detail.
  • the processor 151 may determine a reference time point, wherein the reference time point is in the first subframe of the first cell.
  • the processor 151 can also determine the transmission location of the first signal according to the reference time point.
  • the transmitting circuit 154 can transmit the first signal at the transmitting position of the first signal.
  • the processor 151 can also determine the location of the data channel based on the reference time point.
  • the embodiment of the present invention When determining the location of the data channel, the embodiment of the present invention considers the reference time point in the subframe to receive the data channel according to the location of the data channel. Compared with the way in which the LTE device preempts the use opportunity until the next subframe starts data transmission, the spectrum resource of the subframe in which the reference time point is located can be fully utilized, thereby improving the spectrum use efficiency.
  • the determining unit 131 may preempt the first cell according to the distance.
  • the processor 151 may determine a reference time point according to a symbol index that is closest to the time of pre-empting the spectrum resource of the first cell in the second cell, where the second cell is deployed differently from the first cell. On the spectrum resources.
  • the first signal may include or carry the first sequence
  • the processor 151 may determine the first sequence according to the reference time point.
  • the processor 151 may determine that the location of the data channel is located in the second subframe, the second sub A frame is the next subframe adjacent to the first subframe.
  • the processor 151 may determine that the location of the data channel is located in the third subframe, and the third subframe is the time in the second cell.
  • the next subframe adjacent to the first subframe, the second cell and the first cell are deployed on different spectrum resources.
  • X2 is a length of time not less than zero.
  • the processor 151 may determine that the length of the second signal in time is Z1, where The two signals comprise a first signal, Z1 belongs to a set of lengths ⁇ L 1 , L 2 , ... L n ⁇ , and the end position of the second signal in time is at the end boundary of the first subframe, where n is an integer not less than one , Y1 is a length of time that is not equal to X2 and not less than zero.
  • the processor 151 may determine that the length of the second signal in time is Z2, where the second The signal includes a first signal, Z2 belongs to a set of lengths ⁇ L' 1 , L' 2 , ... L' n ⁇ , and the end position of the second signal in time is located in the second subframe on the first cell, and the second The subframe is a next subframe adjacent to the first subframe, where n is an integer not less than one, Y2 is the length of time that is not equal to X2 and not less than zero.
  • the processor 151 may determine that the length of the second signal in time is Z3, where the second The signal comprises a first signal, Z3 is smaller than M2 and the end position of the second signal in time is at the end boundary of the first subframe, M2 is the minimum length of the second signal in time, and Y3 is not equal to X2 and not less than zero. length of time.
  • the processor 151 can then determine that the location of the data channel is in the first subframe, where X3, Y4 are the length of time not less than zero and Y4 is not greater than X3.
  • the data channel carries data scheduling information of the second subframe on the first cell, where the second subframe is a next subframe adjacent to the first subframe.
  • the reference time point may have a corresponding relationship with the location of the data channel, where each reference time point corresponds to one index, and each index corresponds to a location of one data channel.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • Another point that is shown or discussed between each other The coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据传输方法和数据传输设备。该数据传输设备包括:检测单元,用于在第一小区检测第一信号;确定单元,用于根据检测到的所述第一信号的第一序列,确定参考时间点,其中所述参考时间点在所述第一小区的第一子帧中;所述确定单元,还用于根据所述确定的参考时间点,确定数据信道的位置;接收单元,用于根据所述数据信道的位置,接收所述数据信道上承载的控制数据和/或业务数据。本发明实施例能够提高资源利用率。

Description

数据传输方法和数据传输设备 技术领域
本发明实施例涉及移动通信领域,更具体地,涉及数据传输方法和数据传输设备。
背景技术
频谱是无线通信的基础。目前针对频谱使用,存在这样一种设计,即长期演进(Long Term Long,LTE)系统与非LTE系统的设备(例如,无线保真(Wireless Fidelity,WiFi)设备)可以共同使用未授权或免许可(unlicensed)频谱,具体地,LTE系统可以采用辅小区配置的形式或独立使用该免许可频谱。但是采用何种数据传输方法能够保证LTE设备之间正常的数据通信,同时高效利用该免许可频谱,是一项亟待解决的问题。
发明内容
本发明实施例提供一种数据传输方法和数据传输设备,能够提高资源利用率。
第一方面,提供了一种数据传输设备,包括:检测单元,用于在第一小区检测第一信号;确定单元,用于根据检测到的所述第一信号的第一序列,确定参考时间点,其中所述参考时间点在所述第一小区的第一子帧中;所述确定单元,还用于根据所述确定的参考时间点,确定数据信道的位置;接收单元,用于根据所述数据信道的位置,接收所述数据信道上承载的控制数据和/或业务数据。
结合第一方面,在一种实现方式中,所述确定单元具体用于根据所述第一序列的序列信息与所述参考时间点之间的一一对应关系,确定所述参考时间点。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于根据所述第一小区上距离所述第一序列的位置最近的符号索引,确定参考时间点。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于根据第二小区上距离所述第一序列的位置最近的符号索引,确定参 考时间点,所述第二小区与所述第一小区部署在不同的频谱资源上。
结合第一方面及其上述实现方式,在另一种实现方式中,所述第一序列的位置包括:所述第一序列在时间上的起始位置或所述第一序列在时间上的终止位置。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度不小于X1,则确定所述数据信道的位置位于所述第一子帧中;X1为不小于零的时间长度。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元还用于确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于:
如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,所述第二子帧是与所述第一子帧相邻的下一个子帧;或者
如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,所述第三子帧是第二小区中在时间上与所述第一子帧相邻的下一个子帧,所述第二小区与所述第一小区部署在不同的频谱资源上;
所述X2为不小于零的时间长度。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元还用于:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度不小于Y1,则确定第二信号在时间上的长度为Z1,其中所述第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000001
Y1为不等于X2且不小于零的时间长度。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元还用于:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中所述第二信号包含所述第一信号,Z2属于长度集合{L1′,L′2,…L′n},且所述第二信号在时间上的 结束位置位于第一小区上的第二子帧中,所述第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000002
Y2为不等于X2且不小于零的时间长度。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元还用于:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中所述第二信号包含所述第一信号,Z3小于M2且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,M2为预设的第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
结合第一方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X3,且所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度大于Y4,则确定所述数据信道的位置位于所述第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
结合第一方面及其上述实现方式,在另一种实现方式中,所述数据信道承载第一小区上的第二子帧的数据调度信息,其中所述第二子帧为与所述第一子帧相邻的下一个子帧。
结合第一方面及其上述实现方式,在另一种实现方式中,所述参考时间点与所述数据信道的位置存在对应关系,其中每个所述参考时间点对应一个索引,每个所述索引对应一个所述数据信道的位置。
结合第一方面及其上述实现方式,在另一种实现方式中,所述数据信道的位置包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
结合第一方面及其上述实现方式,在另一种实现方式中,所述第一小区为免许可频谱上的小区。
第二方面,提供了一种数据传输设备,包括:确定单元,用于确定参考时间点,其中所述参考时间点在第一小区的第一子帧中;所述确定单元,还用于根据所述参考时间点,确定第一信号的发送位置;发送单元,用于在所述第一信号的发送位置处,发送所述第一信号;所述确定单元,还用于根据所述参考时间点,确定数据信道的位置;所述发送单元,还用于在所述数据信道的位置处,发送在所述数据信道上承载的控制数据和/或业务数据。
结合第二方面,在一种实现方式中,所述确定单元具体用于根据距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定所述参考时间点。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于根据第二小区中距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点,所述第二小区与所述第一小区部署在不同的频谱资源上。
结合第二方面及其上述实现方式,在另一种实现方式中,所述第一信号包括或承载第一序列,所述确定单元还用于根据所述参考时间点,确定所述第一序列。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于根据所述第一序列的序列信息与所述参考时间点之间的一一对应关系,确定所述第一序列。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于如果所述参考时间点与所述第一子帧的结束边界之间的时间长度不小于X1,则确定所述数据信道的位置位于所述第一子帧中;X1为不小于零的时间长度。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元还用于确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于:
如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,所述第二子帧是与所述第一子帧相邻的下一个子帧;或者
如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,所述第三子帧是第二小区中在时间上与所述第一子帧相邻的下一个子帧,所述第二小区与所述第一小区部署在不同的频谱资源上;
所述X2为不小于零的时间长度。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元还用于:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度不 小于Y1,则确定第二信号在时间上的长度为Z1,其中所述第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000003
Y1为不等于X2且不小于零的时间长度。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元还用于:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中所述第二信号包含所述第一信号,Z2属于长度集合{L′1,L′2,…L′n},且所述第二信号在时间上的结束位置位于与第一小区上的第二子帧中,所述第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000004
Y2为不等于X2且不小于零的时间长度。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元还用于:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中所述第二信号包含所述第一信号,Z3小于M2且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,M2为第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
结合第二方面及其上述实现方式,在另一种实现方式中,所述确定单元具体用于:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X3,且所述参考时间点与所述第一子帧的结束边界之间的时间长度大于Y4,则确定所述数据信道的位置位于所述第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
结合第二方面及其上述实现方式,在另一种实现方式中,所述数据信道承载第一小区上的第二子帧的数据调度信息,其中所述第二子帧为与所述第一子帧相邻的下一个子帧。
结合第二方面及其上述实现方式,在另一种实现方式中,所述参考时间点与所述数据信道的位置存在对应关系,其中每个所述参考时间点对应一个索引,每个所述索引对应一个所述数据信道的位置。
结合第二方面及其上述实现方式,在另一种实现方式中,所述数据信道的位置包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
结合第二方面及其上述实现方式,在另一种实现方式中,所述第一小区为免许可频谱上的小区。
第三方面,提供了一种数据传输方法,包括:在第一小区检测第一信号;根据检测到的所述第一信号的第一序列,确定参考时间点,其中所述参考时间点在所述第一小区的第一子帧中;根据所述确定的参考时间点,确定数据信道的位置;根据所述数据信道的位置,接收所述数据信道上承载的控制数据和/或业务数据。
结合第三方面,在一种实现方式中,所述根据检测到的所述第一序列,确定参考时间点,包括:根据所述第一序列的序列信息与所述参考时间点之间的一一对应关系,确定所述参考时间点。
结合第三方面及其上述实现方式,在另一种实现方式中,所述根据检测到的所述第一序列,确定参考时间点,包括:根据所述第一小区上距离所述第一序列的位置最近的符号索引,确定参考时间点。
结合第三方面及其上述实现方式,在另一种实现方式中,所述根据检测到的所述第一序列,确定参考时间点,包括:根据第二小区上距离所述第一序列的位置最近的符号索引,确定参考时间点,所述第二小区与所述第一小区部署在不同的频谱资源上。
结合第三方面及其上述实现方式,在另一种实现方式中,所述第一序列的位置包括:所述第一序列在时间上的起始位置或所述第一序列在时间上的终止位置。
结合第三方面及其上述实现方式,在另一种实现方式中,所述根据所述确定的参考时间点,确定数据信道的位置,包括:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度不小于X1,则确定所述数据信道的位置位于所述第一子帧中;X1为不小于零的时间长度。
结合第三方面及其上述实现方式,在另一种实现方式中,所述方法还包括:确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
结合第三方面及其上述实现方式,在另一种实现方式中,所述根据所述确定的参考时间点,确定数据信道的位置,包括:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,所述第二子帧是与所述第一子帧相邻的下一个子帧; 或者如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,所述第三子帧是第二小区中在时间上与所述第一子帧相邻的下一个子帧,所述第二小区与所述第一小区部署在不同的频谱资源上;所述X2为不小于零的时间长度。
结合第三方面及其上述实现方式,在另一种实现方式中,所述方法还包括:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度不小于Y1,则确定第二信号在时间上的长度为Z1,其中所述第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000005
Y1为不等于X2且不小于零的时间长度。
结合第三方面及其上述实现方式,在另一种实现方式中,所述方法还包括:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中所述第二信号包含所述第一信号,Z2属于长度集合{L′1,L′2,…L′n},且所述第二信号在时间上的结束位置位于第一小区上的第二子帧中,所述第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000006
Y2为不等于X2且不小于零的时间长度。
结合第三方面及其上述实现方式,在另一种实现方式中,所述方法还包括:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中所述第二信号包含所述第一信号,Z3小于M2且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,M2为预设的第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
结合第三方面及其上述实现方式,在另一种实现方式中,所述根据所述确定的参考时间点,确定数据信道的位置,包括:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X3,且所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度大于Y4,则确定所述数据信道的位置位于所述第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
结合第三方面及其上述实现方式,在另一种实现方式中,所述数据信道承载第一小区上的第二子帧的数据调度信息,其中所述第二子帧为与所述第 一子帧相邻的下一个子帧。
结合第三方面及其上述实现方式,在另一种实现方式中,所述参考时间点与所述数据信道的位置存在对应关系,其中每个所述参考时间点对应一个索引,每个所述索引对应一个所述数据信道的位置。
结合第三方面及其上述实现方式,在另一种实现方式中,所述数据信道的位置包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
结合第三方面及其上述实现方式,在另一种实现方式中,所述第一小区为免许可频谱上的小区。
第四方面,提供了一种数据传输方法,包括:确定参考时间点,其中所述参考时间点在第一小区的第一子帧中;根据所述参考时间点,确定第一信号的发送位置,并在所述第一信号的发送位置处,发送所述第一信号;根据所述参考时间点,确定数据信道的位置,并在所确定的数据信道的位置处,发送在所述数据信道上承载的控制数据和/或业务数据。
结合第四方面,在一种实现方式中,所述确定参考时间点,包括:根据距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定所述参考时间点。
结合第四方面及其上述实现方式,在另一种实现方式中,所述确定参考时间点,包括:根据第二小区中距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点,所述第二小区与所述第一小区部署在不同的频谱资源上。
结合第四方面及其上述实现方式,在另一种实现方式中,所述第一信号包括或承载第一序列,所述方法还包括:根据所述参考时间点,确定所述第一序列。
结合第四方面及其上述实现方式,在另一种实现方式中,所述根据所述参考时间点,确定所述第一序列,包括:根据所述第一序列的序列信息与所述参考时间点之间的一一对应关系,确定所述第一序列。
结合第四方面及其上述实现方式,在另一种实现方式中,所述根据所述参考时间点,确定数据信道的位置,包括:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度不小于X1,则确定所述数据信道的位置位于所述第一子帧中;X1为不小于零的时间长度。
结合第四方面及其上述实现方式,在另一种实现方式中,所述方法还包括:确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
结合第四方面及其上述实现方式,在另一种实现方式中,所述根据所述参考时间点,确定数据信道的位置,包括:
如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,所述第二子帧是与所述第一子帧相邻的下一个子帧;或者
如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,所述第三子帧是第二小区中在时间上与所述第一子帧相邻的下一个子帧,所述第二小区与所述第一小区部署在不同的频谱资源上;
所述X2为不小于零的时间长度。
结合第四方面及其上述实现方式,在另一种实现方式中,所述方法还包括:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度不小于Y1,则确定第二信号在时间上的长度为Z1,其中所述第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000007
Y1为不等于X2且不小于零的时间长度。
结合第四方面及其上述实现方式,在另一种实现方式中,所述方法还包括:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中所述第二信号包含所述第一信号,Z2属于长度集合{L′1,L′2,…L′n},且所述第二信号在时间上的结束位置位于与第一小区上的第二子帧中,所述第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000008
Y2为不等于X2且不小于零的时间长度。
结合第四方面及其上述实现方式,在另一种实现方式中,所述方法还包括:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中所述第二信号包含所述第一信号,Z3小于M2且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,M2为第二信号在时间上的最小长度,Y3为不等于X2且不小 于零的时间长度。
结合第四方面及其上述实现方式,在另一种实现方式中,所述根据所述参考时间点,确定数据信道的位置,包括:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X3,且所述参考时间点与所述第一子帧的结束边界之间的时间长度大于Y4,则确定所述数据信道的位置位于所述第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
结合第四方面及其上述实现方式,在另一种实现方式中,所述数据信道承载第一小区上的第二子帧的数据调度信息,其中所述第二子帧为与所述第一子帧相邻的下一个子帧。
结合第四方面及其上述实现方式,在另一种实现方式中,所述参考时间点与所述数据信道的位置存在对应关系,其中每个所述参考时间点对应一个索引,每个所述索引对应一个所述数据信道的位置。
结合第四方面及其上述实现方式,在另一种实现方式中,所述数据信道的位置包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
结合第四方面及其上述实现方式,在另一种实现方式中,所述第一小区为免许可频谱上的小区。
本发明实施例在确定数据信道的位置时,会考虑子帧中的参考时间点,从而根据数据信道的位置接收数据信道。与无论LTE设备在什么时间位置抢占到使用机会都要等到下一个子帧才开始进行数据传输的方式相比,能够充分利用参考时间点所在子帧的频谱资源,从而提高了频谱使用效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是在已抢占的免许可频谱资源上发送预占用信号的示意图。
图2是本发明一个实施例的数据传输方法的示意流程图。
图3a和图3b是本发明一个实施例的确定第一信号的发送位置的示意图。
图4a和图4b是本发明一个实施例的信号位置的示意图。
图5是本发明另一实施例的信号位置的示意图。
图6是本发明另一实施例的信号位置的示意图。
图7是本发明另一实施例的信号位置的示意图。
图8是本发明另一实施例的信号位置的示意图。
图9是本发明另一实施例的信号位置的示意图。
图10是本发明另一实施例的信号位置的示意图。
图11是本发明另一实施例的数据传输方法的示意流程图。
图12是本发明一个实施例的数据传输设备的示意框图。
图13是本发明另一实施例的数据传输设备的示意框图。
图14是本发明一个实施例的通信设备的示意框图。
图15是本发明另一实施例的通信设备的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通信系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)等。
用户设备(UE,User Equipment),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,也可以是中继(Relay)。
基站,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB 或e-NodeB,evolutional Node B),本发明并不限定。
本发明实施例的应用场景包括用于许可频谱辅助接入(Licensed-Assisted Access,LAA)的LTE系统,即LAA-LTE系统。许可频谱辅助接入的LTE系统是指将许可频谱和免许可频谱通过CA或者非CA的方式在一起使用的LTE系统。具体的:将许可频谱或许可频谱包括的载波或工作在许可频谱上的小区作为主服务小区,将免许可频谱或免许可频谱包括的载波或工作在免许可频谱上的小区作为辅服务小区,其中主服务小区和辅服务小区可以共站部署,也可以是非共站部署,两个服务小区之间有理想的回传路径。
但本发明实施例也不限于上述CA的场景,还可以应用于其他部署场景,例如两个服务小区(主服务小区和辅服务小区)之间没有理想回传路径的场景,其中由于回传延迟较大,导致两个服务小区之间可能无法快速地协调信息。
此外,还可以考虑独立部署的工作在免许可频谱上的服务小区,即此时工作在免许可频谱上的服务小区直接可以提供独立接入功能,不需要通过工作在许可频谱上小区的辅助。
在本发明实施例中,无论是许可频谱,还是免许可频谱,都可以包括一个或多个载波。许可频谱和非许可频谱进行载波聚合,可以包括许可频谱包括的一个或多个载波与非许可频谱包括的一个或多个载波进行载波聚合。
本发明实施例中,提到的小区可以是基站对应的小区,例如小区可以属于宏基站,也可以属于小小区(small cell)对应的基站。这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等。这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
本发明实施例中,LTE系统中的载波与小区的概念基本等同,比如UE接入一个载波和接入一个小区是等同的,本发明实施例说明书中将统一以小区的概念来进行描述。
根据联邦通讯委员会(Federal Communications Commission,FCC)最新发布的国际频谱白皮书,未授权或免许可频谱资源要大于授权或许可(licensed)频谱资源。目前,免许可频谱上使用的主要技术是WiFi,但是WiFi在移动性、安全性、服务质量(Quality of Service,QoS)、以及同时处 理多用户调度方面存在缺陷。因此,将LTE设备应用在免许可频谱,不仅可以有效利用免许可频谱资源,还可以提供更为有效的无线接入、满足日益增长的移动宽带服务的需求。在未来的移动通信场景中,免许可频谱上会同时存在LTE设备以及WiFi设备。为了使LTE设备即使工作在免许可频谱上,相对于WiFi,也能保持在移动性、安全性、服务质量以及同时处理多用户调度方面的优势,一种方法是通过载波聚合(Carrier Aggregation,CA)的方式,使许可频谱和免许可频谱聚合在一起,也就是说,LTE设备可以通过CA的方式,将许可频谱作为主成员载波(Primary Component Carrier,PCC)或主小区(Primary Cell,PCell),将免许可频谱作为辅成员载波(Secondary Component Carrier,SCC)或辅小区(Secondary Cell,SCell),这样LTE设备既可以通过许可频谱继承LTE设备用于无线通信的传统优势,例如在移动性、安全性、服务质量以及同时处理多用户调度方面的优势,又可以利用免许可频谱的频谱资源。
由于免许可频谱上对无线通信系统和运营商使用没有约束,即存在多种通信系统的多个运营商都想要占用相同频谱的情况,为了实现免许可频谱上不同无线通信系统对该频谱使用的公平性,在某些地区,无线通信设备在免许可频谱上使用时需要遵循特定的法规规则,例如欧洲电信标准协会(European Telecommunications Standards Institute,ETSI)发布的ETSI EN 301 893中对免许可频谱使用时规定了先听后说(Listen Before Talk,LBT)、信道带宽占用需求等规则。根据ETSI EN 301 893的规定,无线通信设备在占用免许可频谱通信时需使用LBT规则,即设备在使用信道之前,首先监听信道是否空闲或是否可用,如果信道可用则可以使用该免许可频谱资源用于数据传输,但占用该信道的时间是受限制的。在占用该信道的时间达到最大限制后,必须释放该免许可频谱一段时间,也就是说在免许可频谱上停止数据传输一段时间;在下一次要利用免许可频谱资源传输数据之前,必须再次监听信道是否可用。设备可以通过能量检测执行空闲信道评估(Clear Channel Assessment,CCA),判断监听信道是否空闲或是否可用。按照ETSI EN 301 893目前的规定,无线通信设备在免许可频谱上使用时,需要满足基于帧的设备(Frame Based Equipment,FBE)的先听后说机制要求或者基于负载的设备(Load Based Equipment,LBE)的先听后说机制要求。
因此,如果LTE设备想要利用免许可频谱进行数据通信,那么在某些地 区例如欧洲,就需要遵循LBT规则,亦即LTE设备在使用免许可频谱之前,需要先进行CCA,在确定免许可频谱资源可用之后,才能进行数据发送。另一方面,为了能够有更多的频谱资源抢占的机会,LTE设备可以随时发起侦听,这也是法规规则所允许的,也就是说,在免许可频谱上,LTE设备确定频谱资源可用的时刻也是随时的,特别是LTE设备利用LBE的LBT机制,相应地,由于LTE设备确定免许可频谱资源可用之后(满足法规约束的条件下确定免许可频谱资源是否可用),就可以发送数据,因此LTE设备在免许可频谱上数据发送的时刻也是随时的。LTE设备判断免许可频谱资源可用,可以通过能量检测的方式,如果在规定的时间范围内,通过能量检测,确定接收到的能量小于某一门限,则LTE设备可以判断该免许可频谱资源可用;另一方面,LTE设备判断信道免许可频谱资源可用,也可以通过信号解析的方式,例如通过是否检测到表示免许可频谱资源被占用的信号,或者检测到网络分配矢量(Network Allocation Vector,NAV)。这里,NAV表示占用免许可频谱的设备占用免许可频谱的时间,其他设备一旦检测到NAV,如果该其他设备不是发送NAV设备的目标服务设备,则该其他设备在NAV指示的时间范围内,都不能在发送该NAV的设备占用的免许可频谱上发送数据。此外,LTE设备还可以通过能量检测和/或信号解析的方式,判断免许可频谱资源是否可用。
但是,对于LTE系统而言,由于确定免许可频谱资源可用的时刻是随时的,因此数据发送的起始时刻也是随时的,而目前LTE设备的数据发送和接收都是基于子帧边界的,在这种情况下,如何保证LTE设备之间正常的数据通信,是LTE设备工作在免许可频谱需要考虑的问题。
一种方式是免许可频谱和参考时间源不需要同步。在此情况下,LTE设备例如LTE基站一旦在免许可频谱上抢占到使用机会,即将当前抢占到使用机会的时刻作为子帧边界,和其他LTE设备例如LTE UE进行数据通信。即此时,免许可频谱可以和参考时间源提供的时间同步信息不一致,例如免许可频谱的子帧边界和许可频谱的子帧边界不对齐,或者说,免许可频谱和许可频谱上的时间信息可以是不同步的。这里的参考时间源可以是与免许可频谱通过CA聚合在一起的许可频谱,或者是全球定位系统(Global Positioning System,GPS),或者是有线网时钟同步协议例如IEEE 1588协议,或者是空口同步(Radio-interface based synchronization,RIBS)中的同步源基站,同 步源基站即为可以为其他基站提供同步信号的基站。以参考时间源为与免许可频谱通过CA聚合在一起的许可频谱为例,本发明实施例中,免许可频谱和许可频谱上的时间信息不同步,可以包括,免许可频谱的时间单位边界和许可频谱的时间单位边界,不对齐或者不存在固定的偏移量。这里的时间单位边界可以包括正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号边界、时隙(Slot)边界、子帧(Subframe)边界、无线帧(Radio Frame)边界、超帧(Super Frame)边界等。
但是,免许可频谱上数据传输的时间位置根据LTE设备抢占到免许可频谱资源的使用机会确定,因而是随机的。如果免许可频谱的时间信息和参考时间源提供的时间信息不同步,则不仅为用户设别免许可频谱的时间信息带来额外复杂度,而且还无助于实现免许可频谱上的一些有益技术,如快速发现、增强多广播多服务(Enhanced Multi-broadcast Multi-service,eMBMS)、先进接收机(Advanced Receiver)等。
另一种方式是保持免许可频谱和参考时间源之间的同步。在此情况下,可根据参考时间源提供的时间信息,确定免许可频谱的子帧边界。这里的参考时间源同上,在此不做赘述。LTE设备(例如LTE基站)在抢占到免许可频谱的使用机会之后,在下一个子帧边界到来之前,发送预占用信号(padding),该预占用信号表示从下一个子帧开始,和其他LTE设备例如LTE用户设备(User Equipment,UE)进行数据通信。这里的数据通信可包括控制数据和业务数据的通信。
图1是在已抢占的免许可频谱资源上发送预占用信号(padding)的示意图。
以LTE设备发送padding为例进行说明。假设该LTE设备已经在许可频谱上进行数据通信。如图1的上侧所示,假设许可频谱的数据通信以1ms时间长度的子帧为传输单位。
图1下侧表示免许可频谱上的信号传输过程,为便于对比,图1上侧和下侧的两个频谱的信号的绝对时间坐标是同步的。在本发明实施例中,以参考时间源为与免许可频谱通过CA聚合在一起的许可频谱为例,不同频谱之间的“同步”是指不同频谱的子帧边界对齐或存在固定的偏移量。
图1中,免许可频谱上的回退(backoff)阶段表示LTE设备在该范围内进行CCA,通过能量检测和/或信号解析,确定当前检测的免许可频谱是否 可用。如果可用,LTE设备从确定成功抢占信道开始,到下一个子帧边界到来之前发送预占用信号。这里的子帧边界可以表示UE能够检测到的数据信道传输开始的位置,或者说UE能够检测到的控制数据信道开始的位置,这样做的好处在于,LTE设备例如LTE基站在抢占到免许可频谱的使用机会之后,在LTE基站给UE进行数据传输之前,还可以占用免许可频谱,同时可以实现免许可频谱的时间信息可以和参考时间源对齐,例如和许可频谱的子帧边界对齐,这样LTE基站就可以利用许可频谱的控制信道承载的内容指示免许可频谱的数据信道的传输格式,从而可以减少UE的盲检测此时,这里的盲检测包括对免许可频谱上数据信道传输是否开始的检测。
进一步的,这里子帧边界也可以是其他时间单位,例如LTE设备可以识别的用于数据传输的时间单位,例如一个OFDM符号,分数个OFDM符号,以及其他LTE系统中可以支持的时间单位,例如LTE系统中采样率的倒数等。
概括来讲,LTE基站可以从抢占到免许可频谱的使用机会开始,到能够调度数据的下个子帧边界到来之前发送padding。
如果发送padding,该padding可以只表示LTE设备抢占到免许可频谱的使用机会,不承载与数据调度相关的信号和/或信道,例如免许可频谱的频谱标识、利用免许可频谱资源进行数据传输的小区标识、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH)、物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)、物理广播信道(Physical Broadcast Channel,PBCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、增强物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)、物理多播信道(Physical Multicast Channel,PMCH)、参考信号例如主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、小区特定参考信号(Cell-specific Reference Signal,CRS)、用于PDSCH数据解调的UE特定参考信号(UE-specific Reference Signal),用于EPDCCH解调的解调参考信号(DeModulation Reference Signal,DM-RS),定位参考信号(Positioning Reference Signal,PRS),信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),发现参考信号(Discovery Reference Signal,DRS) 等。或者,该padding也可以承载上述信号和/或信道,但是由发送padding的LTE设备服务的其他LTE设备(例如LTE UE)不对该padding承载的信号和/或信道进行解调或者接收。即padding的特征之一是,无论该信号承载的具体内容是什么,由发送该信号的LTE设备服务的其他LTE设备不需要对该信号进行解调,或者进一步的,由发送该信号的LTE设备服务的其他LTE设备也可以不接收该信号,满足这样特性的信号就可以称为预占用信号。预占用信号发送结束之后,基站和UE开始进行数据通信。这种方式下,由于基站和UE的数据通信从下一个子帧开始,因此可以实现免许可频谱和参考时间源(例如许可频谱)之间的同步。
但是,由于padding信号只是为了信道占用,而不会对数据传输作出实质性贡献,导致在发送padding信号的时间段上,已经被抢占的免许可频谱资源被浪费了,降低了资源利用率。
而且,上述方案不考虑回退阶段结束的时间位置对数据信道的位置的影响。换句话说,无论回退阶段在子帧中的哪个位置结束,数据信道均从下一个子帧的起始位置处开始传输,这也会导致免许可频谱资源的浪费。
以图1的情况为例,如果回退阶段结束的时间位置刚好在许可频谱资源的一个子帧的起始时间位置之后,几乎一个子帧的免许可频谱资源只能用于发送padding信号,导致了一个子帧长度的免许可频谱资源被浪费。
图2是本发明一个实施例的数据传输方法的示意流程图。图2的方法由接收端(例如LTE设备,如LTE基站或UE)执行。
201,在第一小区检测第一信号。
202,根据检测到的第一信号的第一序列,确定参考时间点,其中该参考时间点在第一小区的第一子帧中。
203,根据所确定的参考时间点,确定数据信道的位置,所述数据信道用于承载控制数据和/或业务数据。
204,根据数据信道的位置,接收数据信道。
本发明实施例在确定数据信道的位置时,会考虑子帧中的参考时间点,从而根据数据信道的位置接收数据信道。与无论LTE设备在什么时间位置抢占到使用机会都要等到下一个子帧才开始进行数据传输的方式相比,能够充分利用参考时间点所在子帧的频谱资源,从而提高了频谱使用效率。
具体地,在本发明实施例中,接收端检测免许可频谱上发送的第一信号, 并根据检测到的第一信号的第一序列确定参考时间点,然后通过参考时间点在子帧中的位置确定数据信道的接收位置,这样,在已抢占的免许可频谱资源上发送检测信号和数据信道,能够充分利用已抢占的免许可频谱资源,提高资源利用率。
应注意,在本发明说明书中,术语前面的“第一”、“第二”或“第三”等类似定语并非用于限定该术语之间的次序,而仅仅是为了区分的目的。例如,“第一信号”和“第二信号”是指这两个信号可能指代不同的信号载体,换句话说,这两个信号也可能指代相同的信号载体,但无论如何,均不是表示第一信号在时间上位于第二信号之前。如果确实存在先后次序的关系,则本发明说明书中会特别指出。
第一小区可以是免许可频谱上的小区。第一信号可以用于指示发送端已经抢占到免许可频谱上的第一小区的频谱资源。本发明实施例中的抢占操作可以包括按照图1的回退过程执行的抢占操作,也可以包括其他形式的抢占操作,例如根据协议规定预先设置的免许可频谱资源模式(pattern)等。例如,第一信号可以以显式的方式或隐式的方式向接收端指示发送端已经抢占到免许可频谱上的频谱资源。作为一个实施例,显式的方式可以是指第一信号可以携带特定的标志(flag)字段或类似指示字段,通过不同的标志值表示是否抢占到免许可频谱资源。作为另一实施例,隐式的方式可以是指第一信号的发送与否用于指示发送端是否抢占到免许可频谱资源,例如发送第一信号的动作表示发送端已经抢占到免许可频谱资源,同时第一信号可以用于其它用途,例如用于同步或传递其它有用信息。
本发明实施例的第一小区可以是部署在免许可频谱上的小区。第一信号的作用之一,是可以通过由接收端检测第一信号,确定发送第一信号的第一小区是否在第一小区部署的频谱上有数据传输。例如当第一小区部署在免许可频谱上时,通过检测第一信号,可以确定第一小区是否开始使用免许可频谱或者说第一小区是否抢占到免许可频谱上的频谱资源使用机会。第一信号可以是参考信号,例如可以是如下参考信号之一:PSS、SSS、CRS、CSI-RS、PRS、DRS、DMRS以及用于PDSCH解调的UE特定参考信号。作为另一实施例,本发明实施例中的第一信号还可以是承载数据的信道,例如如下信道之一:PDCCH、PDSCH、EPDCCH、PMCH、PBCH、PCFICH、PHICH等。
第一信号中包括或承载了第一序列,例如第一序列有N种不同的序列形式,那么无论第一序列采用哪种序列形式,都可以被包含在第一信号中。UE可以通过检测第一信号,确定第一信号中包括的第一序列的序列形式,这可以称为是检测到的第一信号的第一序列。更为具体的,例如,将现有LTE系统中的PSS作为第一信号,那么第一序列可以是构成PSS的Zadoff-Chu序列,UE通过检测PSS,可以确定检测到的PSS中承载的是哪一个Zadoff-Chu序列即哪一个第一序列;又如,将现有LTE系统的SSS作为第一信号,那么第一序列可以是构成SSS的168个序列,该168个序列中的任一个是由两个长度为31的二进制序列的组合。此外,第一信号中包括第一序列,还可以是第一信号中的一部分包括第一序列,例如第一信号在时间上占用多个时间单位(例如A个OFDM符号),承载第一序列的信号是第一信号的一部分,即从时间上来看,占用第一信号在时间上占用的多个时间单位的一部分(例如B个OFDM符号,其中B小于等于A,并且B个OFDM符号对应的时间位置是A个OFDM符号对应的时间位置的非空子集)。此外,第一信号还可以是包括或承载了第一序列的信道。在本发明实施例中,术语信号或信道可以表示用于承载特定信息或数据的、占据特定时频资源的载体。
数据信道可以独立于第一信号,例如在第一信号之后发送;数据信道也可以与第一信号占用相同的时间资源,例如通过频分、空分或码分等正交方式实现时间资源的复用;第一信号占用的时间资源也可以是数据信道占用的时间资源的一部分,例如数据信道占用的时间资源为3个OFDM符号,具体的为一个子帧内的第3个OFDM符号到第5个OFDM符号,那么第一信号占用的时间资源可以是这个三个OFDM符号中的任意一个或多个。数据信道可用于承载控制数据和/或业务数据。控制数据的例子包括但不限于PDCCH、EPDCCH、PBCH、PHICH、PCFICH承载的数据等;业务数据的例子包括但不限于PDSCH、PMCH承载的数据等。另外,在本发明实施例中,接收端对第一信号的检测操作可以是实时地盲检测,例如一边接收信号一边检测是否有第一信号,或者也可以先将第一信号缓存,然后再检测第一信号。
下面的实施例中,为了便于说明,主要以发送端是LTE基站、接收端是LTE UE的情况为例进行描述,即,以第一信号和数据信道为下行的情况为 例进行描述。本领域技术人员容易理解,第一信号和数据信道为上行的情况可以类似地进行设计或修改。这样的设计或修改仍落入本发明实施例的范围内。
为了实现免许可频谱上第一小区和UE之间的数据通信,第一小区一旦抢占到免许可频谱上的使用机会,在和UE进行控制数据和/或业务数据传输前,可以先发送用于控制数据和/或业务数据检测的其他控制信息,或者说,在UE对控制数据和/或业务数据通信进行解调之前,UE需要先获知用于控制数据和/或业务数据检测的其他控制信息。例如上述其他控制信息可以包括,使UE确定第一小区抢占到免许可频谱使用机会的信息、第一小区的小区识别、第一小区的同步信息、第一小区的公用陆地移动网络(Public Lands Mobile Network,PLMN)识别码,或者更为一般地,目前LTE系统中支持数据传输(包括控制数据传输和/或业务数据传输)的必要控制信息,例如PBCH中携带的信息、系统信息块(System Information Block,SIB)中携带的信息等。上述其他控制信息可以承载在信号和/或信道中,例如第一小区的同步信息可以通过第一小区发送的同步信号承载。在本发明实施例中,将承载上述其他控制信息的载体称为第二信号,也可以称为第二信道。例如,第二信号可以使用前导(preamble)的形式,由前导承载上述其他控制信息,但本发明实施例对第二信号的形式或具体名称不作限制。本发明实施例中主要使用术语“信号”来进行描述,但可同样地扩展至使用术语“信道”的情况,这样的扩展落入本发明实施例的范围内。第一小区发送的第二信号在时间上可以占用多个时间单位,这里的时间单位可以是一个OFDM符号的长度,或者也可以占据分数个OFDM符号的长度,也可是其他与OFDM符号长度有关的其他长度表示形式,例如采样率的倒数Ts,其中15360*Ts=0.5毫秒,或者更为一般地,可以是LTE系统能够识别的时间单位的整数倍。。为了实现第一小区和UE在免许可频谱上正常的数据通信,从满足正常数据通信的同步需求来看,第二信号在时间上可以占用X个OFDM符号,其中X可以是任意正整数。例如,假设为了实现第一小区和UE在免许可频谱上的频率同步需求,设置X=4,那么其中第一个OFDM符号承载的信号可以使UE获知第一小区是否抢占到免许可频谱的频谱资源使用机会。在此情况下,UE可以通过对第一个OFDM符号的能量检测或对第一个OFDM承载的信号进行解析(解调),获知第一小区是否抢占到免许可频谱的频谱资源 使用机会。当然,第二信号在时间上占用的时间长度,可以以满足第二信号提供的功能来确定。
上述第一信号可以是第二信号的一部分,也可以就是第二信号。例如,第一信号中可以只包括第二信号在时间上的第一个OFDM符号,UE可以通过检测第一信号,确定第一小区是否抢占到免许可频谱的频谱使用机会。相应地,再根据检测到的第一信号的第一序列,确定参考时间点,以及第二信号的长度。又例如,第一信号就是第二信号,检测到的第一信号的第一序列,可以包括检测到的承载第一序列的信号,其中承载第一序列的信号是第一信号的一部分。
根据检测到的所述第一信号的第一序列,确定参考时间点,具体可以包括以下至少一种方式:根据承载第一序列的信号在时间上的位置,确定参考时间点;根据承载第一序列的信号在时间上的位置以及承载第一序列的信号和第一信号在时间上的位置之间的相对关系,确定参考时间点;根据承载第一序列的信号在时间上的位置以及承载第一序列的信号和参考时间点之间的相对时间关系,确定参考时间点。下述将通过具体实施例进行说明。
可选地,作为一个实施例,在步骤202中根据检测到的第一序列确定参考时间点时,可根据第一序列的序列信息与参考时间点之间的一一对应关系,确定参考时间点。
换句话说,第一序列的序列信息和参考时间点之间可以存在一一对应的关系(例如以表格的形式),这样便于根据检测到的第一序列的序列信息来确定对应的参考时间点。
通过对第一序列设计来指示第一小区在免许可频谱上的参考时间点。如上所述,参考时间点可以是以OFDM符号位置来指示,也可以是以分数个OFDM符号位置来指示,或者更为一般地,用Ts的整数倍来表示,或者用LTE系统可以识别的时间单位的整数倍来表示。
在本发明的一个实施例中,假设参考时间点为一个子帧内包括的不同OFDM符号位置,则不同的OFDM符号位置可以用不同的OFDM符号索引来指示。例如,OFDM符号位置与OFDM符号索引之间的对应关系可以如下表1所述,其中符号索引为序列信息的一个例子。
表1一个子帧内符号索引与符号位置之间的对应关系的例子
Figure PCTCN2014090655-appb-000009
在本发明的另一实施例中,参考时间点可以以分数个OFDM符号位置来指示。分数个OFDM符号位置(例如1/4个OFDM符号位置)可以通过OFDM符号索引和在一个OFDM符号内的该分数个OFDM符号的位置(或索引)来联合确定,或者也可以通过在一个时间单位内进行总体排序的分数个OFDM符号的位置(或索引)来确定,所述时间单位可以是子帧、时隙、无线帧,也可以是其他LTE UE可以识别的时间单位,例如采样率倒数Ts的整数倍。
具体地,下面以参考时间点以OFDM符号位置来指示的情况进行说明。根据表1,一个子帧内的参考时间点最多有14个状态。那么,可以采用最多14个不同的第一序列来指示。第一小区一旦抢占到免许可频谱的频谱资源,可以根据抢占到免许可频谱的频谱资源的时间位置与参考时间源时间位置的关系,确定参考时间点;再根据参考时间点,可以确定第一信号的发送起始位置,例如将所确定参考时间点就作为第一信号的发送起始位置。同时根据参考时间点和第一序列的序列信息之间的一一对应关系,确定第一序列,并将第一序列承载在第一信号中进行发送。
图3a和图3b是本发明一个实施例的确定第一信号的发送位置的示意图。
在图3a和图3b的例子中,假设参考时间源来自第二小区,其中第二小区是和第一小区通过CA聚合到一起的小区。第二小区和第一小区可以部署在同一个基站上,也可以部署在不同基站上。另外,第二小区和第一小区的 子帧边界是对齐的,或者存在很小的时间误差,例如260纳秒。这样,第二小区就可以根据第一小区的符号位置确定第二小区的符号位置。
如果第一小区成功抢占免许可频谱的频谱资源使用机会的时刻是OFDM符号的边界,如图3a所示,例如第一小区在第4个OFDM符号的结束边界确定免许可频谱的频谱资源可以使用,那么第一小区可以确定第一信号发送的起始位置位于第5个OFDM符号的起始边界,或者说第一信号在时间上的第一个符号可以从第5个OFDM符号开始传输。
如果第一小区成功抢占免许可频谱的频谱资源使用机会的时刻不是OFDM符号的边界,如图3b所示,那么第一小区可以在第5个OFDM符号开始发送第一信号之前,在成功抢占免许可频谱资源之后,发送padding(预占用信号),该预占用信号可以是第一信号的一部分。扩展来说,就是如果第一小区成功抢占免许可频谱的频谱资源使用机会的时刻可以用系统支持的时间来表示,比如整数个OFDM符号边界,或者是分数个OFDM符号边界,那么第一小区可以从成功抢占免许可频谱之后,直接发送第一信号;但是如果不是可以用系统支持的时间来表示的情况,那么第一小区可以在发送第一信号之前,确定免许可频谱可用之后,发送padding。在图3b的实施例中,虽然发送了padding,但是所发送的padding占用的时间长度很小,不会超过一个符号或者一个分数符号的长度,因此对资源利用率的影响很小。
在发送端,例如LTE基站侧,第一小区确定参考时间点,然后根据参考时间点与第一序列的一一对应关系,确定第一序列,进而确定第一信号发送的内容。例如,假设第一信号在时间上占用一个OFDM符号的长度,采用的信号是PSS。在LTE系统中,构成PSS的序列Zadoff-Chu序列有四种不同的形式(当前LTE系统采用了其中的三种),因此第一信号的第一序列可以有最多四种不同的序列形式,可以指示4种不同的参考时间点。
在本发明的一个实施例中,在一个子帧内,如果按照OFDM符号索引的角度来看,参考时间点有14种不同的状态。
在另一个实施例中,如果对OFDM符号索引进行分类,例如将一个子帧内的OFDM符号索引分为4类,那么也可以认为参考时间点有4种。第一小区可以根据确定的参考时间点和构成PSS的序列之间的对应关系,确定第一序列的序列形式,进而确定第一信号发送的内容。
又例如,第一信号在时间上占用两个OFDM符号的长度,第一个OFDM 符号承载的信号用于UE确定第一小区抢占到免许可频谱的频谱资源使用机会,例如可以采用PSS,通过对PSS进行能量检测和/或信号解析,确定第一小区是否抢占到免许可频谱的频谱资源使用机会;第二个OFDM符号承载的信号(例如SSS)发送的内容与参考时间点一一对应。也就是说,第二个OFDM符号承载的信号发送的内容是第一序列。这种情况下,尽管第一序列只是第一信号的一部分,UE也能够通过检测第一信号从而检测到第一序列。在典型的LTE系统中,构成SSS的序列共有168个不同的序列形式,因此选取出构成SSS的序列其中14个不同的序列形式,就可以用来表示14种不同的参考时间点。
第一小区可以根据确定的参考时间点,例如第一信号的起始发送位置,确定第一信号中包括的第一序列的发送位置。本例中,第一小区可以根据抢占到免许可频谱使用机会的时刻和第二小区的同步信息之间的关系,确定参考时间点。本例中第一序列的发送位置位于第一信号的第二个OFDM符号位置,再根据第一序列的发送位置与构成SSS的不同序列形式之间的对应关系,选择合适的序列,作为第一信号的第二个OFDM符号承载的信号发送的内容。
对于第一小区,除了可以利用第二小区的同步信息来确定自身的同步信息,还可以通过其他方式,例如利用第一小区本身的同步信息。所述第一小区本身的同步信息可以来自与GPS或者有线网同步协议,或者通过侦听其他小区的同步参考信号获得。
此方式下,对于UE侧而言,UE根据可以表示参考时间点的时间单位,检测第一信号,其中如上所述,参考时间点可以是以OFDM符号位置来指示,也可以是以分数个OFDM符号位置来指示,或者更为一般地,也可以采用LTE系统可以支持的时间单位例如采样率的倒数Ts的整数倍来指示。这些指示形式均可以认为是为所述参考时间点在所述第一子帧中的位置。
例如,以参考时间点用OFDM符号位置来指示的情况进行说明。一种情况下,UE利用第一序列的所有可能序列形式,检测第一小区的信号是否包括第一序列以及如果包括第一序列,则进一步确定第一序列的形式,然后再根据第一序列的序列形式和参考时间点之间的对应关系,确定参考时间点。或者,UE也可以先通过第二小区的同步信息,确定第一小区的同步信息,例如根据第一小区的子帧边界确定第二小区的子帧边界等。UE确定第 一小区的子帧边界后,可以以UE自己理解的符号位置的附近以第一信号在时间上的符号长度,检测第一信号,这里,符号位置的附近可以是指UE采用滑动窗的方法,通过检测第一信号,来检测第一小区的符号边界。UE可以用可能的第一序列的不同序列形式和接收到的信号进行相关检测,或者采用其他检测方法。对于检测到的第一序列,UE可以根据该检测到的第一序列和参考时间点之间的对应关系,确定参考时间点。例如,如果第一信号的第一个OFDM符号发送的内容就是第一序列,那么确定的参考时间点可以是第一序列发送的OFDM符号位置;或者,如果第一信号的第二个OFDM符号发送的内容是第一序列,那么确定的参考时间点可以是第一序列发送的OFDM符号位置,也可以是第一信号的起始发送位置。参考时间点与序列之间的对应关系以及参考时间点是对应第一信号的起始发送位置还是其他数据发送位置,可以是预定义或标准规范好的,也可以通过第一小区所在的基站包括的任意小区通过信令的方式通知给UE。如果第一小区和第二小区符号边界在UE侧也是同步的,那么UE还可以直接利用对第二小区符号边界的理解来确定对第一小区符号边界的理解,以逐个符号或逐多个符号的方式检测第一信号。进一步的,UE还可以先将第一小区上一定长度的数据缓存下来,然后再进行检测。
在本发明实施例中,UE除了可以根据第二小区的同步信息确定第一小区的同步信息,还可以根据第一小区的历史同步信息确定第一小区的同步信息,即对于工作在免许可频谱的第一小区,对免许可频谱资源的使用是机会性的。如果上一次第一小区获得免许可频谱资源时,曾经服务过该UE,那么UE可以根据当时被第一小区服务时的同步信息,确定当前第一小区上的同步信息。
更为一般地,在本发明中,第一序列的序列信息与所述参考时间点的一一对应关系,可以是第一序列的序列信息直接用于指示所述参考时间点,或者是第一序列的序列信息指示的时间位置与所述参考时间点之间存在某种关系,例如间隔几个OFDM符号,或者间隔几个分数个OFDM符号等,从而可以利用第一序列指示的时间位置以及第一序列的序列信息指示的时间位置与所述参考时间点之间的关系,确定参考时间点。需要说明的是,在本发明实施例中,同一个第一序列的序列信息可以指示多个不同的参考时间点,也可以指示一个参考时间点;另一方面,多个不同的第一序列的序列信 息可以指示一个参考时间点,也可以指示多个不同的参考时间点。
第一序列的序列信息与所述参考时间之间的一一对应关系,一种理解是,第一序列的序列信息表示承载第一序列的信号的时间位置,所述承载第一序列的信号是第一信号的一部分。如果所述参考时间点定义为第一信号在时间上的起始位置,那么第一序列的序列信息与所述参考时间点之间的一一对应关系,可以理解为,先由第一序列的序列信息确定承载第一序列的信号的时间位置,然后再根据承载第一序列的信号在第一信号中的位置,确定第一信号在时间上的起始位置,即确定所述参考时间点。具体的,例如第一信号在时间上占用2个OFDM符号,承载第一序列的信号在第一信号中的时间位置是第2个OFDM符号,假如通过第一序列的序列信息确定承载第一序列的信号位于第C个OFDM符号,那么可以获知第一信号的起始位置位于第(C-1)个OFDM符号。又或者,如果承载第一序列的信号在第一信号中的时间位置即为第一信号在时间上的起始位置,即承载第一序列的信号在第一信号中的时间位置是第一个OFDM符号,那么根据第一序列的序列信息可以直接确定第一信号在时间上的起始位置。在一个子帧内的符号位置和符号索引,可以参考表1。
第一序列的序列信息与所述参考时间点之间的一一对应关系,另一种解释是,假如参考时间点是第一信号在时间上的起始位置,无论承载第一序列的信号在第一信号中的位置在哪儿,第一序列的序列形式都用来指示第一信号在时间上的起始位置,即直接指示参考时间点。
在本发明实施例中,除了上述实施例描述中将所述参考时间点假设为第一信号在时间上的起始位置(该起始位置可以用OFDM符号索引来表示),所述参考时间点还可以是第一信号在时间上的其他位置,例如第一信号在时间上的终止位置,或者第一信号在时间上的起始位置到终止位置之间的一个或多个位置。例如假设第一信号在时间上占用W个OFDM符号,这W个OFDM符号在一个子帧中的位置可以用OFDM符号索引例如#w,#(w+1),……#(w+W-1)来表示,那么所述参考时间点可以表示OFDM符号索引集合{#w,#(w+1),……#(w+W-1)}中的任意一个或多个值。第一信号在时间上的位置除了可以用符号索引来表示之外,还可以有其他形式,例如以分数个OFDM符号为单位比如1/Z个OFDM符号为单位,其中Z优选地为正整数。相应地,所述参考时间点也可以用以分数个符号为单位 的OFDM符号位置或索引来表示,例如第1/Z个OFDM符号,第2/Z个OFDM符号,等等。又或者,第一信号在时间上的位置也可以以LTE系统中小区和/或用户设备UE可以识别的时间为单位进行表示,例如采样率的倒数Ts,则第一信号在时间上的位置可以用整数个Ts来表示。进一步的,所述参考时间点还可以为所述第一小区的第一子帧中的任意一个或多个时间点,可以用绝对时间来表示,也可以用在所述第一子帧中的相对时间来表示,例如第几个OFDM符号、第几个时隙等;或者也可以在一个长时间(一个或整数多个无线帧、一个无线超帧)中的相对时间来表示,例如在该长时间范围内位于第几个OFDM符号,第几个时隙、第几个子帧等。这种情况下,如前所述,只要知道第一序列的序列信息与所述参考时间点之间的一一对应关系,无论第一序列的序列信息指示的时间点即为所述参考时间点还是第一序列的序列信息指示的时间点和所述参考时间点之间具有特定的时间关系,均可以通过检测到第一序列的序列信息,确定所述参考时间点。第一序列的序列信息可以包括承载第一序列的时间资源、频率资源、码资源中的一个或多个,第一序列的时间资源、频率资源、码资源中一个或多个的不同形式和/或不同组合可以与参考时间点一一对应。第一序列的时间资源,可以包括承载第一序列的OFDM符号、时隙、子帧、无线帧等。另一方面,如果承载第一序列的信号在时间上占用1个OFDM符号,第一序列的时间资源为时隙、子帧、无线帧时,第一序列的时间资源进一步可以是指包括承载第一序列的信号的时隙、子帧、无线帧;进一步地,承载第一序列的时间资源也可以是分数个OFDM符号。第一序列的频率资源,可包括承载第一序列的信号在频率上占用的资源,例如可以用子载波、资源元素(Resource Element,RE)、资源块(Resource Block,RB)、物理资源块(Physical Resource Block,PRB)、虚拟资源块(Virtual Resource Block,VRB)来表示。第一序列的码资源,可以包括构成第一序列采用的序列。例如如果构成第一序列的序列采用的是目前LTE系统中构成PSS的序列,则第一序列的码资源包括3个Zadeoff-Chu(ZC)序列中的一个或多个,此时,可以用Zadeoff-Chu序列中的一个序列(ZC1)对应一个参考时间点,用Zadeoff-Chu序列中的另外一个序列(ZC2)对应另外一个参考时间点,以此类推。又例如如果构成第一序列的序列采用的是目前LTE系统中构成SSS的序列,则第一序列的码资源是构成SSS的序列即m序列中的一个或多个。更为一般地,第一序列的码资源可以是目前 LTE系统中使用的序列,例如ZC序列、二进制序列、m序列等。
在上述过程中,第一序列的序列信息和所述参考时间点之间的一一对应关系可以是基站和UE共知的,例如第一序列的序列信息与所述参考时间点之间的对应关系、承载第一序列的信号在第一信号的时间位置,参考时间点表示的时间位置和检测到的第一序列的序列信息表示的时间位置之间的关系等。对于UE而言,第一序列的序列信息和所述参考时间点之间的一一对应关系,可以通过预定义、标准规范、信令通知、出厂设定等方式使UE获知。对于基站而言,该对应关系,也可以通过预定义、标准规范、信令交互、出厂设定等方式使基站获知。
顺便提及,在本发明实施例中,除非特别指出,需要基站或UE获知的内容,均可通过预定义、标准规范、信令交互、出厂设定等方式获知,即本发明实施例对基站或UE获知内容的方式不作限制。
可选地,作为本发明另一实施例,在步骤202中根据检测到的第一序列确定参考时间点时,可以根据第一小区上距离第一序列的位置最近的符号索引,确定参考时间点。
本发明实施例中,符号索引与符号在一个子帧中的相对位置可以是一一对应的,如表1所示。
以第一信号和数据信道为下行的情况为例,对于基站侧而言,第一小区可以根据GPS、有线网同步协议等方式获得第一小区自身的同步信息,或者通过空口同步的方式侦听其他小区的同步参考信号获得第一小区自身的同步信息,进而确定第一小区的子帧边界、时隙边界、符号边界、帧边界、超帧边界等。之后再根据第一小区抢占到免许可频谱资源使用机会的时刻,从该时刻之后距离该时刻最近的符号索引位置开始或者从该时刻之后距离该时刻具有特定距离的符号索引位置开始,发送第一信号,其中第一信号中承载第一序列,特定距离可以是预定义、标准规范、或者信令交互的方式使小区和/或UE获知。这里,如果第一小区抢占到免许可频谱资源使用机会的时刻不是第一小区可以发送数据的起始边界例如符号边界,那么第一小区可以从抢占到免许可频谱资源使用机会开始到第一信号开始发送之前,发送padding。
UE根据第一小区的同步信息获取第一小区的时间信息,例如第一小区的无线帧索引、子帧索引、时隙索引、符号索引等。UE可以通过对第一小 区同步信号的跟踪获取上述信息,例如UE可以通过读取第一小区发送的同步参考信号,例如PSS、SSS、CRS、用于PDSCH数据解调的UE特定参考信号(UE-specific Reference Signal),用于EPDCCH解调的解调参考信号DM-RS,PRS,CSI-RS、DRS、多播广播单频网络参考信号(Multicast Broadcast Single Frequency Network Reference Signal,MBSFN RS)等获取第一小区的同步信息。或者,考虑到如果第一小区工作在免许可频谱上,数据的发送是机会性的,因此当UE根据第一小区的同步信息确定参考时间点时,还可以将历史保存的第一小区的同步信息作为用于确定参考时间点的第一小区的同步信息。UE可以利用历史保存的第一小区的同步信息确定第一小区上的OFDM符号位置。例如UE可以有历史保存的第一小区的同步信息,但是和第一小区实际的同步信息之间有误差,此时UE可以利用检测到的第一序列,进一步确定第一小区上的时间同步信息,例如OFDM符号边界,OFDM符号位置等,这样就可以准确确定参考时间点的时间位置(例如用OFDM符号索引或OFDM符号位置来表示)。UE可根据获得的第一小区的时间信息,检测第一信号。例如以OFDM符号为单位进行检测。一旦检测到第一序列,由于UE已经获知第一小区的时间信息,那么可以直接获知承载第一序列的信号在时间上的位置,并将该位置或者对该位置的变形,作为参考时间点。这里所述的“变形”是指,如果参考时间点是指第一信号的起始发送位置,而第一序列不是第一信号在第一个OFDM符号发送的信号包含的内容,那么在确定检测到的第一序列的时间位置之后,需要根据承载第一序列的信号在第一信号中的符号位置,来确定参考时间点。
如上所述,假设所述参考时间点,利用第一子帧中的OFDM符号位置来表示,并且参考时间点对应的的时间位置是靠近承载第一序列的信号的时间位置,例如承载第一序列的信号在所述第一子帧中的时间位置是第一子帧中的第D个OFDM符号,或者用在第一子帧中的符号索引为#(D-1)的OFDM符号来表示,那么距离所述第一序列的位置最近的符号索引,可以是第(D-1)个OFDM符号,也可以是第D个OFDM符号,还可以是第(D+1)个OFDM符号。更为一般地,除了可以根据所述第一小区上距离所述第一序列的位置最近的符号索引,确定参考时间点之外,还可以根据所述第一小区上与所述第一序列的位置具有特定时间关系的符号索引,确定参考时间点,其中特定时间关系可以用整数个OFDM符号索引来表示,可以是预定义的,也可以 是通过信令的方式是UE获知。例如第一信号包含多个OFDM符号,所述参考时间点是第一信号在时间上的起始位置,可以用承载第一信号的第一个OFDM符号的时间位置来表示,承载第一序列的信号是第一信号中的第二个OFDM符号,此时,根据检测到的所述第一序列,确定参考时间点,包括,根据检测到的所述第一序列以及承载第一序列的信号的时间位置和参考时间点所体现的时间位置之间的关系,来确定参考时间点,本例中,即将第一小区上在检测到的第一序列位置之前且距离第一序列位置最近的符号索引,作为时间参考点。需要说明的是,本发明实施例是以OFDM符号位置或OFDM符号索引为例指示参考时间点、检测到的第一信号的第一序列在时间上的位置、第一信号在时间上的位置(包括第一信号在时间上的的起始时间位置、终止时间位置、以及起始时间位置至终止时间位置中的一个或多个),但本发明实施例技术还适用于利用其它时间信息例如分数个OFDM符号位置或分数个OFDM符号索引,或者利用信号采样率和/或信号采样率的倒数指示参考时间点、检测到的第一信号的第一序列在时间上的位置、第一信号在时间上的位置等,这些实施方式均落入本发明实施例的范围内。
综上,作为本实施例的扩展,所述根据检测到的所述第一序列,确定参考时间点,还可以包括:根据所述第一小区上距离所述第一序列的位置最近的符号索引,以及承载第一序列的信号在第一信号中的相对位置,确定参考时间点。例如,定义参考时间点为第一信号在时间上的起始位置到终止位置中的任意一个,此时第一小区上距离所述第一序列的位置最近的符号索引,可以认为是承载第一序列的信号在时间上的位置,然后再结合该承载第一序列的信号在时间上的位置和该承载第一序列的信号在第一信号中的相对位置,就可以确定用OFDM符号索引表示的第一信号在时间上的起始位置到终止位置中的任意一个,进而确定了参考时间点。在进一步的扩展实施例中,所述根据检测到的所述第一序列,确定参考时间点,还可以包括:根据所述第一小区上距离所述第一序列的位置最近的符号索引,以及承载第一序列的信号和所述参考时间点之间的相对关系,确定所述参考时间点。例如,定义参考时间点为第一子帧中的第E个OFDM符号,根据所述第一小区上距离所述第一序列的位置最近的符号索引为第一子帧中的第F个OFDM符号,那么根据检测得到的第F个OFDM符号的时间位置(可以用符号位置来表示)以及E和F之间的相对关系(例如相差几个OFDM符号),就可以确定 第一子帧中的第E个OFDM符号的时间位置,进而确定参考时间点的时间位置,或者说确定参考时间点。
可选地,作为另一实施例,在步骤202中根据检测到的第一序列确定参考时间点时,可以根据第二小区上距离第一序列的位置最近的符号索引,确定参考时间点,其中第二小区与第一小区部署在不同的频谱资源上。
例如图3a和图3b的实施例所示,作为参考时间源的第二小区可以与第一小区部署在不同的频谱资源上。例如,第一小区可以工作在免许可频谱,而第二小区工作在许可频谱。
本实施例类似于上述根据第一小区的时间同步信息确定参考时间点的实施例,所不同的是,将上述实施例中的根据第一小区的时间同步信息,替换为根据第二小区的时间同步信息。
例如,可以将第二小区上距离检测到的所述第一序列位置最近的符号索引,确定为参考时间点。这里的第二小区也可以替换为其他参考时间源。本发明实施例中参考时间源不仅仅限于利用许可频谱进行数据传输的小区,也可以是其他形式,例如GPS,或者有线网时钟同步协议例如IEEE 1588协议,或者RIBS中的同步源基站等,这样的替换仍落入本发明实施例的范围内。
这里需要说明的是,如果第一小区和第二小区之间对时间同步的理解存在偏移,例如第一小区和第二小区之间存在固定的时间偏移量,那么根据检测到的所述第一序列,确定参考时间点,还包括:根据第二小区上距离所述第一序列的位置最近的符号索引以及第一小区和第二小区之间的时间偏移量,确定参考时间点。其中第一小区和第二小区之间的时间偏移,可以用整数个OFDM符号来表示,也可以用整数个时隙来表示,也可以用其他时间单位来表示,例如上述实施例中提到的LTE采样率的倒数Ts。第一小区和第二小区之间的时间偏移可以通过UE自行检测得到,例如UE通过获得的第一小区的时间同步信息和第二小区的时间同步信息,可以确定第一小区和第二小区之间的时间偏移。第一小区和第二小区之间的时间偏移还可以通过信令通知的方式使UE获知,例如第一小区和第二小区之间由于共站、或者通过回程链路(backhaul)例如X2、S1接口、或者通过移动管理实体(Mobility Management Entity,MME)、或者通过空口信令交互、或者通过空口彼此侦听同步信号,可以获知彼此的时间同步信息,从而获知对方时间同步信息与自身时间同步信息之间的时间偏移,从而第一小区和/或第二小区可以将此时 间偏移通知给UE。
对于基站侧而言,第一小区根据第二小区的同步信息确定第一小区的同步信息。第一小区根据第二小区的同步信息,确定第一小区的子帧边界、符号边界、时隙边界、帧边界、超帧边界等,第一小区可以和第二小区的时间边界对齐,例如子帧对齐、时隙对齐、符号对齐、帧对齐、超帧对齐,也可以和第二小区的时间边界具有固定的时间偏移量。之后,第一小区再根据抢占到免许可频谱资源使用机会的时刻,从该时刻之后距离该时刻最近的符号索引位置或者从距离该时刻具有特定距离的符号索引位置开始,发送第一信号,其中第一信号中承载第一序列,特定距离可以是预定义、标准规范、或者信令交互的方式使小区和/或UE获知。
对于UE侧而言,可以根据第二小区的时间信息,结合或者不结合第一小区和第二小区在时间理解上的时间偏移量,获知第一小区承载第一序列的信号在时间上的位置,并将该位置或者对该位置的变形,确定为参考时间点。例如,UE可以将第二小区上在检测到的第一序列位置之前且距离该检测到的位置最近的符号索引作为参考时间点;或者,UE可以将第二小区上在检测到的第一序列位置之后且距离该检测到的位置最近的符号索引作为参考时间点;又或者,UE可以根据第二小区的时间信息以及第一小区和第二小区在时间理解上的时间偏移量,确定第一小区的时间信息,再根据第一小区的时间信息,将距离检测到的第一序列位置最近的符号索引或者有特定距离关系的符号索引,作为参考时间点。
可选地,作为另一实施例,上述第一序列的位置包括第一序列在时间上的起始位置。假设承载第一序列的信号在时间上占用1个OFDM符号进行传输,那么所述第一序列在时间上的起始位置,即为承载该第一序列的信号占用的OFDM符号位置,可以用该OFDM符号的符号索引来表示。如果承载第一序列的信号在时间上占用多个OFDM符号,例如为占用多个OFDM符号的第一信号,那么在本发明实施例中,第一序列在时间上的起始位置,可以是第一信号的起始位置,或者更为一般地,所述第一序列的位置还可以指第一信号在时间上的起始位置至终止位置中的任意一个或多个。但是本发明实施例对第一序列的位置的具体形式不作限制。例如,第一序列的位置也可以是第一序列在时间上的终止位置。假如第一序列在时间上的长度是已知的或者预设的,那么第一序列在时间的起始位置和第一序列在时间上的终止 位置是可以相互推导的。上述根据检测到的第一序列确定参考时间点的不同实施方式,除了可以确定参考时间点,还解决了UE对所述第一序列起始位置判断模糊的问题。特别是当UE利用第二小区的时间信息确定第一小区的参考时间点时,会存在如下问题,由于第一小区发送的信号和第二小区发送的信号到达UE侧的时间位置不同,会导致UE对第一小区的参考时间点产生误判断。具体地,假设第一小区为部署在免许可频谱上的小区,第二小区为部署在许可频谱上的小区,根据目前LTE协议规范中,对不同频段之间的CA(inter-band CA)定义的同步需求是,以该CA模式聚合在一起的小区之间的同步误差不大于260纳秒。但是考虑到不同小区到达UE侧,由于传播时延等问题,在UE侧,以该CA方式聚合在一起的小区同时发送的信号到达UE侧,允许的同步误差不大于30.26微秒。30.26微秒接近半个OFDM符号的长度,因此,在UE侧,如果基于第二小区的OFDM符号边界确定第一小区的OFDM符号边界,就可能会存在判断混淆。例如第一信号在第一小区的起始发送位置为第k个OFDM符号,第一小区的第k个OFDM符号与第二小区的第k个OFDM符号的符号边界对齐,第一小区和第二小区的信号到达UE侧的时候,UE接收到的第一小区的符号边界与第二小区的符号边界不对齐,相差为30.26微秒,此时UE根据第二小区的符号边界确定第一小区的第一信号的起始发送位置时,就无法判断接收到的第一小区发送的第一信号的起始发送位置是第k个OFDM符号,还是第(k-1)个OFDM符号,或者第(k+1)个OFDM符号。通过上述实施例的方式,可以使UE清楚地获知,第一小区的OFDM索引号,准确确定第一信号的位置,例如第一信号在时间上的起始位置。
可选地,作为另一实施例,在步骤203中根据所确定的参考时间点确定数据信道的位置时,如果所确定的参考时间点与第一子帧的结束边界之间的时间长度不小于X1,则可确定数据信道的位置位于第一子帧中。X1为不小于零的时间长度。
子帧的结束边界可以理解为该子帧的最后一个符号的结束时间点,也可以理解为该子帧的下一子帧的起始时间点,或者可以理解为该子帧及其下一子帧之间的交界时间点。
这里,X1可以是预设的,例如X1可以是预定义的,或者由网络配置,或者通过信令方式使基站或UE获知,例如通过回程链路(X2接口,S1接 口)使基站获知,或通过信令(物理层信令,高层信令,MAC信令)使UE获知。作为一个实施例,X1可以表示在第一子帧内,能够支持第一小区和UE之间数据传输和为了支持所述数据传输而需要的控制信息所占用的OFDM符号个数(或分数个OFDM符号的个数)。这里第一小区和UE之间的数据传输包括控制数据传输和/或业务数据传输,控制数据例如包括LTE系统中如下至少1个控制信道中承载的控制数据:PDCCH、EPDCCH、PCFICH、PHICH、PBCH中承载的数据,业务数据例如包括LTE系统中如下至少1个数据信道中承载的业务数据:PDSCH、PMCH承载的数据。为了支持所述数据传输而需要的控制信息,可以包括如下至少一种:免许可频谱的频谱标识,第一小区的小区标识,第一小区的公用陆地移动网络(Public Lands Mobile Network,PLMN)识别码,第一小区的同步信息、第一小区利用免许可频谱进行数据传输的信息(例如通过检测此信息的有无,可以判断第一小区是否利用免许可频谱进行数据传输),其中第一小区的同步信息可以通过第一小区发送的参考信号实现,可以包括:PSS、SSS、CRS、DMRS、CSI-RS、PRS、UE特定参考信号、DRS。下述说明以OFDM符号个数为例说明。
假设所确定的参考时间点是第一信号的起始位置对应的符号索引,那么X1可以表示为Xa+Xb,其中Xa可以表示为LTE系统在一个子帧内可以支持的用于数据传输的OFDM符号个数的最小值,Xb可以表示为了支持LTE系统在所述子帧中的数据传输,承载必要控制信息的OFDM符号个数的最小值,例如Xb=4。这4个OFDM符号中,第一个OFDM符号承载的信号可以用来判断第一小区是否利用免许可频谱进行数据传输,可以通过对第一个OFDM符号承载的信号进行能量检测和/或信号解析的方式获得;第一个OFDM符号到第四个OFDM符号承载的信号中的任意一个或多个都可以用来确定参考时间点,第一个OFDM符号到第四个OFDM符号承载的信号中的任意一个或多个都可以用来确定第一小区的同步信息,例如使UE获取第一小区的时间同步和/或频率同步。如果所确定的参考时间点与第一子帧边界之间的时间长度不小于X1,则说明如下事实:从成功抢占免许可频谱的使用机会开始,到第一子帧结束之前,该第一子帧在此范围内包括的OFDM符号个数可以支持第一小区和UE之间正常的数据传输。这里所述正常的数据传输,是指该第一子帧在上述范围内包括的OFDM符号个数可以帮助UE 获取数据解调的必要信息(例如上述提到的为了支持所述数据传输需要的控制信息)和进行数据传输(例如上述提到的第一小区和UE之间的控制数据传输和/或业务数据传输)。
参照图4a和图4b的例子进行详细说明。图4a和图4b是本发明一个实施例的信号位置的示意图。
图4a和图4b的实施例中,假设Xa=3,Xb=4,参考时间点为第一信号的起始位置对应的符号索引。参考时间点位于第一子帧,即如图4a和图4b所示的第二小区子帧#N对齐的第一小区子帧内。那么第一信号的起始位置从0(如图4a)到7(如图4b),数据信道的位置都可以位于第一子帧内。
在本发明实施例中,第一信号在时间上可以只占用1个OFDM符号,如图4a和4b中的黑色填充的OFDM符号;第一信号也可以在时间上占用多个OFDM符号,例如包括图4a和4b中的黑色填充的OFDM符号以及该OFDM符号之后的1个、2个或3个OFDM符号。第一信号在时间上占用的OFDM符号中的至少一个承载上述第一序列。
需要说明的是,在本发明实施例中,X1还可以只包括Xa,不包括Xb,或者Xa和Xb有重叠的OFDM符号部分,亦即承载必要控制信息的OFDM符号(个数可以用Xb表示)可以与承载数据传输的OFDM符号(个数可以用Xa表示)重叠,该必要控制信息和该数据传输可以在X1个OFDM符号内时分复用、频分复用、码分复用、空分复用等,更为具体的,在本发明实施例中,承载第一信号的OFDM符号可以和用于控制数据传输和/或业务数据传输的OFDM符号重叠。
例如假设X1=Xa=3,在此情况下第一信号和数据信道之间有所重叠。通过对这三个OFDM符号中的任意一个或多个的能量检测和/或信号解析,可以判断第一小区是否利用免许可频谱进行数据传输;这三个OFDM符号可以都用于PDCCH传输,其中在这三个OFDM符号包括的时频资源上,某些特定的RE可以用来承载必要的控制信息,例如参考信号,该参考信号在时频资源上的映射规则与现有LTE系统支持的参考信号映射规则类似,假设PDCCH的起始位置即为第一小区开始占用免许可频谱的时刻,那么参考信号映射的时候,既可以将PDCCH的起始位置作为一个子帧内的第一个OFDM符号进行映射,也可以将PDCCH的起始位置在所述第一子帧内的符号位置进行映射。例如,假设PDCCH的起始位置在所述第一子帧的第10 个OFDM符号,并且占用了3个OFDM符号,也就是说PDCCH在所述第一子帧中占用了第10个OFDM符号、第11个OFDM符号、第12个OFDM符号,此时承载必要控制信息的符号可以与这三个OFDM符号重叠,例如参考信号可以承载在这三个OFDM符号中的任意一个或多个包括的RE上,且该参考信号在时频资源上的映射规则既可以按照现有LTE系统一个子帧内第1个OFDM符号、第2个OFDM符号、第3个OFDM符号来映射,也可以按照现有LTE系统一个子帧内第10个OFDM符号、第11个OFDM符号、第12个OFDM符号来映射。更为一般地,参考信号在这三个OFDM符号中的映射规则也可以重新定义,该映射规则可以通过预定义、标准规范、信令通知的方式使UE获知。
当承载必要控制信息的OFDM符号(个数可以用Xb表示)可以与承载数据传输的OFDM符号(个数可以用Xa表示)重叠时,检测第一信号,可以是用可能的控制数据和/或业务数据格式,对免许可频谱上承载的信号进行检测,包括信号解析和/或能量检测。例如可以是用可能的PDCCH承载信息的格式,即下行控制信息(Downlink Control Information,DCI)格式,对免许可频谱上的信号进行检测,这里如果第一小区抢占到免许可频谱上的数据发送机会,那么免许可频谱上承载的信号可以包括:传输的控制数据和/或业务数据;如果第一小区没有抢占到免许可频谱上的数据发送机会,那么免许可频谱上承载的信号,就不包括第一小区该免许可频谱上发送的信号;检测到的第一信号的第一序列,可以包括和被检测的PDCCH承载的信号匹配的DCI格式。如果检测到匹配的DCI格式,可以认为第一小区抢占到免许可频谱,或者如果存在DCI格式的能量检测结果超过某个门限,则也可以认为第一小区抢占到免许可频谱。此时,根据检测到的第一信号的第一序列,确定参考时间点,可以是根据PDCCH在时间上的OFDM符号位置中的任意一个或多个,来确定参考时间点。进一步的,第一信号可以是特定格式的DCI,或者承载在特定时频资源上的DCI;另外,第一信号可以是第一小区公共的DCI,也可以是UE特定的DCI,还可以是某一组UE群特定的DCI。显然,UE需要先获知第一信号的格式,才能检测第一信号。
又或者,当承载必要控制信息的OFDM符号(个数可以用Xb表示)可以与承载数据传输的OFDM符号(个数可以用Xa表示)重叠时,检测第一信号,可以是在特定的时频资源上检测特定信号的有无,该特定信号可以包 括:PSS、SSS、CRS、DMRS、CSI-RS、PRS、UE特定参考信号、DRS中的一个或多个,承载数据传输的信道可以在除去承载特定信号的时频资源之外的时频资源上映射。此时,检测第一信号,可以是通过相关能量检测或者其他检测方法,检测特定信号的有无;检测到的第一信号的第一序列,可以是检测到的特定信号包括的序列,例如构成PSS、SSS、CRS、DMRS、CSI-RS、PRS、UE特定参考信号、DRS的序列。根据第一序列,确定参考时间点。
作为另一实施例,第一信号也可以是数据信道的一部分,例如第一信号就是控制数据信道。
下面的实施例中,除非特别指出,主要以第一信号与数据信道不重叠的例子进行描述。但是这些例子同样可以按照上述方式,修改为第一信号与数据信道部分重叠或全部重叠的实施例,或者说第一信号就是数据信道的一部分,这样的修改仍落入本发明实施例的范围内。
当上述第一信号和第二信号的长度不同时,例如第二信号包含第一信号时,还可以确定第二信号在时间上的长度。
可选地,作为另一实施例,接收端还可以确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
具体地,这里的M1可以是预定义的,或者由网络配置,例如通过回程链路使基站获知,或者通过信令(物理层信令,高层信令,MAC信令)使UE获知。
例如,参照图4a和图4b的实施例,M1可以等于4,即预设的第二信号在时间上的最小长度可以支持数据传输需要的控制信息所占用的OFDM符号个数。换句话说,M1可以和上述参数Xa相对应。对于第一信号的起始位置从0到7的情况,UE都可以确定第二信号在时间上的长度为4。
如果第一信号在时间上占用的OFDM符号个数小于第二信号在时间上占用的OFDM符号个数,例如在本实施例中,第一信号在时间上占用的OFDM符号个数小于4,则第二信号包含第一信号。在此情况下,UE在检测第一信号时,可以根据第一信号的格式,例如第一信号在时间上的长度和/或承载的内容,检测第一信号。然后UE可根据检测到的第一信号的第一序列,确定参考时间点,进而确定数据信道位置和第二信号的长度,在本实施例中,可以根据确定的参考时间点,确定第二信号的长度是否等于M1。
如果第一信号在时间上占用的OFDM符号个数等于第二信号在时间上占用的OFDM符号个数,例如在本实施例中,第一信号在时间上占用的OFDM符号个数等于4,则第一信号即为第二信号。同样地,这种情况下,UE在检测第一信号时,可以根据第一信号的格式,例如第一信号的长度,检测第一信号。此时对于UE而言,相当于已经确定了第二信号的长度。如果UE检测到第一信号的第一序列,则UE可以判断第一小区发送了第一信号。由于在这个过程中,UE在检测第一信号时,已经考虑了第一信号在时间上的长度,因此一旦UE判断第一小区发送了第一信号,就可以确定第一信号在时间上的长度,也就等于第二信号在时间上的长度。
本发明实施例中,如果第一信号和第二信号的符号长度不相同,则可以简化UE的检测过程,即,不需要对每一种可能的第一信号的长度都进行检测,从而可以简化UE侧的实现复杂度。
本发明实施例中,如果第一信号为数据信道传输的一部分,或者说第一信号在时间上占用的时间单位和数据信道传输在时间上占用的时间单位有重叠时,第二信号在时间上的长度可以是控制数据信道传输在时间上的长度和/或业务数据信道传输在时间上的长度。
为了更清楚的目的,下面描述一个具体的实施例。
假设:第一信号的长度和第二信号的长度不相等;第一信号的长度为1,第二信号的长度为4,X1=7;参考时间点为第一信号在时间上的起始位置,用OFDM符号索引来表示。作为其他实施例,参考时间点也可以表示为第一小区成功抢占到免许可频谱资源使用机会的时刻,或者更为一般地,在本发明实施例中,参考时间点可以是第一子帧中的任何一个时间单位表示的时间位置。
对于UE而言,通过如上步骤,可以确定第二信号的长度,以及数据信道的位置。第一信号、第二信号承载的信息可以被UE事先获知,以便于UE检测第一信号、第二信号。该获知的方式可以是预定义、标准规范、网络配置、信令通知的方法,本发明实施例对此不作限制。UE可以根据第二信号,获取用于数据信道解调的一些控制信息,例如可以包括如下至少一种:免许可频谱的频谱标识,第一小区的小区标识,第一小区的同步信息、第一小区利用免许可频谱进行数据传输的信息,支持第一小区和UE之间数据传输的其他控制信息等。之后,UE可以根据数据信道的起始位置接收和检测 数据信道。具体地,在本例中,数据信道可以包括控制数据信道,用来指示在本子帧内的业务数据传输格式,或者也可以指示非本子帧内的业务数据传输格式,在此不做限定。此时UE先检测控制数据信道,例如PDCCH、EPDCCH、PCFICH、PHICH等,获取该控制信道指示的业务数据传输格式。或者,数据信道也可以不包括控制数据信道,而只包括业务数据信道,此时业务数据信道承载的业务数据对应的业务数据传输格式可以是预定义的或者是在许可频谱上提前通知的,这样即使没有控制数据信道,UE也可以根据获知的业务数据传输格式对业务数据信道进行接收和检测。需要说明的是,目前的LTE系统在支持数据传输时,也考虑了用于数据传输的OFDM符号个数的不同对UE数据速率匹配的影响。例如对于时分双工TDD(Time Division Duplexing,TDD)系统,针对下行导频时隙(Downlink Pilot Time Slot,DwPTS)包含的OFDM符号个数,在进行速率匹配时,会考虑引入不同的系数,例如0.75和0.375。当LTE设备利用免许可频谱进行数据传输时,由于免许可频谱使用资源的随机化,使得用于数据传输的OFDM符号个数更加多样化,此时考虑对UE数据速率匹配的影响,可以考虑引入新的速率匹配表格,或者引入新的速率匹配系数,例如大于0且小于0.375的实数,或者介于0.375和0.75之间的实数,或者介于0.75和1之间的实数,或者其他数值,在此不做限定。
图5是本发明另一实施例的信号位置的示意图。
可选地,作为另一实施例,如图5所示,在步骤203中根据所确定的参考时间点确定数据信道的位置时,如果所确定的参考时间点与子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,其中第二子帧是与第一子帧相邻的下一个子帧。X2为不小于零的时间长度。
具体地,在图5的实施例中,第一子帧为与第二小区子帧#N对齐的第一小区子帧,并假设X2=7。
如果所确定的参考时间点与第一子帧边界之间的时间长度小于X2,则说明,从成功抢占免许可频谱的使用机会开始,到第一子帧结束之前,该第一子帧在此范围内包括的OFDM符号个数不足以支持第一小区和UE之间正常的数据传输。这里,所述正常的数据传输,是指可以帮助UE获取数据解调的必要信息和进行数据传输最小的OFDM符号个数。此外,所述正常的数据传输,也可以是第一小区和UE之间进行数据传输最小的OFDM符号个 数,这里的数据传输包括控制数据和业务数据传输,例如PDCCH、PCFICH、PHICH、EPDCCH、PDSCH、PMCH中一个或多个信道承载的数据。这种情况下,为了保证免许可频谱上正常的数据传输,数据信道可以位于第一小区中与第一子帧相邻的下一个子帧内。
如图5所示,假设参考时间点为第一信号的起始位置对应的符号索引,那么第一信号的起始位置为从8到10的任一索引时,数据信道的位置位于第一子帧的下一个子帧内,即,上述第二子帧为与第二小区子帧#N+1对齐的第一小区子帧。这里的数据信道可以包括业务数据信道和控制数据信道,也可以只包括业务数据信道,或者只包括控制数据信道。在数据信道只包括业务数据信道的情况下,该业务数据传输信道的格式是预先定义的或者是通过许可频谱提前通知的,也就是说将支持该业务数据传输信道解调的控制数据信道承载的内容采用预定义或提前通知的方式使UE获知,以使得UE可以对业务数据信道进行解调。
图6是本发明另一实施例的信号位置的示意图。
可选地,作为另一实施例,如图6所示,在步骤203中根据所确定的参考时间点确定数据信道的位置时,如果所确定的参考时间点与第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,其中第三子帧是第二小区中在时间上与第一子帧相邻的下一个子帧。这里第二小区与第一小区部署在不同的频谱资源上。X2为不小于零的时间长度。
具体地,在图6的实施例中,第一子帧为与第二小区子帧#N对齐的第一小区子帧,并假设X2=7。
如果所确定的参考时间点与第一子帧边界之间的时间长度小于X2,则说明,从成功抢占免许可频谱的使用机会开始,到第一子帧结束之前,该第一子帧在此范围内包括的OFDM符号个数不足以支持第一小区和UE之间正常的数据传输。这里,所述正常的数据传输,是指可以帮助UE获取数据解调的必要信息和进行数据传输最小的OFDM符号个数。这里的数据信道可以包括业务数据信道和控制数据信道。此外,所述正常的数据传输,也可以是第一小区和UE之间进行数据传输最小的OFDM符号个数,这里的数据传输包括控制数据和业务数据传输,例如PDCCH、PCFICH、PHICH、EPDCCH、PDSCH、PMCH中一个或多个信道承载的数据。这种情况下,为了保证免许可频谱上正常的数据传输,在第一小区与第一子帧相邻的下一个子帧内, 可以只承载业务数据信道,而控制数据信道可以承载在第二小区与第一子帧相邻的下一个子帧内,例如通过跨载波调度的方式,使承载在第二小区上的控制数据信道指示承载在第一小区上的业务数据信道的传输格式,以使得UE可以对业务数据信道进行解调。
如图6所示,假设参考时间点为第一信号的起始位置对应的符号索引,那么第一信号的起始位置为从8到10的任一索引时,业务数据信道的位置位于第一子帧的下一个子帧内,即,上述第二子帧为与第二小区子帧#N+1对齐的第一小区子帧,同时,上述第三子帧为第二小区子帧#N+1。
可选地,作为另一实施例,如果所确定的参考时间点与第一子帧的结束边界之间的时间长度不小于Y1,则接收端还可以确定第二信号在时间上的长度为Z1,其中第二信号包含第一信号,Z1属于长度集合{L1,L2,…Ln},且第二信号在时间上的结束位置位于第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000010
Y1不小于零的时间长度。更具体的,Y1可以是为不等于X2且不小于零的时间长度。
在本实施例中,当参考时间点与第一子帧的结束边界之间的时间长度比具有最小时间长度的第二信号的长度更长时,剩余的第一子帧的符号可以用于重复第二信号的内容或者用于发送预占用信号(例如padding或者preamble)。
假设所确定的参考时间点为第一信号在时间上起始位置,或者是在免许可频谱上成功抢占到频谱资源的起始时刻,那么Y1可以表示预设的第二信号在时间上的最小长度。假设Y1=4,那么当第一信号的起始位置和所述子帧边界之间的OFDM符号个数小于7且大于等于4时,由于数据信道的传输位置位于与第一子帧相邻的第一小区的下一个子帧(即上述第二子帧)和/或第二小区的下一个子帧(即上述第三子帧)。为了防止其他工作在免许可频谱的设备抢占免许可频谱资源,可以使第二信号在时间上的结束位置位于第一子帧的结束边界。举例来说,参照图6,所确定的第二信号的长度可以是6个OFDM符号、5个OFDM符号或者4个OFDM符号,其中4、5、6可对应于上述长度集合{L1,L2,…Ln}的各个元素。大于4个OFDM符号的信号可通过重复长度为4个OFDM符号的第二信号而构成,或者,也可以是,通过在长度为4个OFDM符号的第二信号之后发送预占用信号(padding)直至第一子帧的结束边界。
类似图4a和图4b的实施例,对于第一信号在时间上占用的OFDM符号个数是否与第二信号在时间上占用的OFDM符号个数相同的各种情况,UE有对应的检测过程。略有不同的是,当第一信号的长度和第二信号的长度相同时,由于这里第二信号的长度根据时间参考点会有所变化,所以UE可以利用所有第二信号的可能长度(即第一信号的可能长度),对第一信号进行检测,一旦检测到第一信号的第一序列,就可以确定第二信号的长度。
可选地,作为另一实施例,如果所确定的参考时间点与第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中第二信号包含第一信号,Z2属于长度集合{L′1,L′2,…L′n},且第二信号在时间上的结束位置位于与第一小区上的第二子帧中。第二子帧为与第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000011
Y2为不小于零的时间长度。进一步地,Y2可以为不等于X2且不小于零的时间长度。
在本实施例中,当参考时间点与第一子帧的结束边界之间的时间长度比第二信号的正常的长度短时,可以将第二信号的一部分延伸至下一子帧继续发送。第二信号的正常长度一般是指满足控制信息传输需求的最小时间长度。
具体地,假设Y2可以表示第二信号在时间上的最小长度,如果所确定的参考时间点与第一子帧的结束边界之间的时间长度小于Y2,那么如果从保证性能角度考虑,可以使第二信号的符号长度大于等于Y2,即第二信号的长度可以属于长度集合{L′1,L′2,…L′n},例如可以取4、5、6等。这种情况下,第二信号就需要延伸到与第一子帧相邻的第一小区的下一个子帧(即,上述第二子帧)中。从第二信号的结束位置开始,在第一小区可以进行数据信道的传输。另外,对于跨载波调度的情况,控制数据信道可以从第二小区与第一子帧相邻的下一个子帧(即上述第三子帧)的起始边界开始传输,也可以从该第三子帧中包含的某个位置开始传输。
作为另一个实施例,如果第二信号的部分OFDM符号与第二子帧承载的数据信道的部分OFDM符号重叠,那么第二子帧承载的数据信道也可以从第二子帧的起始边界开始进行传输,此时第二信号与第二子帧承载的数据信道重复的OFDM符号上承载的信息可以和数据信道一起复用资源。例如假设第二信号在时间上占据4个OFDM符号,其中后两个符号承载了可以提供同步信息的参考信号如CRS、CSI-RS、PRS、DMRS等,另外假设从第 二子帧开始传输的数据信道为控制数据信道如PDCCH,那么第二信号后两个符号承载的信息可以和PDCCH一起复用资源,即,此时PDCCH可以从第二子帧的起始边界开始进行传输。
图7给出了第二信号部分占用第二子帧的情况的示意图。具体地,图7是本发明另一实施例的信号位置的示意图。如图7所示,第一子帧为与第二小区子帧#N对齐的第一小区子帧,第二子帧为与第二小区子帧#N+1对齐的第一小区子帧,第三子帧为第二小区子帧#N+1。在图8中,第二信号的长度为4个OFDM符号,即从图7中黑色填充的符号开始的4个符号。第一小区在第二子帧的数据传输在第二信号的结束位置开始进行传输。如果采用跨载波调度,还可以在第三子帧的起始位置开始传输控制数据。
可选地,作为另一实施例,如果所确定的参考时间点与第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中第二信号包含第一信号。Z3小于M2且第二信号在时间上的结束位置位于第一子帧的结束边界。M2为第二信号在时间上的最小长度,Y3为不小于零的时间长度。更具体的,Y3可以为预设的不等于X2且不小于零的时间长度。
在本实施例中,当参考时间点与第一子帧的结束边界之间的时间长度比第二信号的正常的长度短时,可以适当截短第二信号的长度。
假设M2=4,如果所确定的参考时间点为第一信号在时间上起始位置,或者是在免许可频谱上成功抢占到频谱资源的起始时刻,那么Y3可以表示第二信号在时间上的最小长度,即等于上述参数M2。此时由于从免许可频谱上成功抢占到频谱资源开始,到第一子帧的结束边界,包含的OFDM符号个数不足以支持第二信号的发送,因此可选的一种办法,是减小第二信号的最小长度。一般而言,设计第二信号的最小长度会考虑需要满足第二信号提供的功能,例如如果第二信号的功能是在第一小区和UE利用免许可频谱进行数据传输之前,需要通过第二信号获取第一小区的基本同步信息,那么第二信号的最小长度为4。截短第二信号的方式会对第一小区和UE之间在免许可频谱上的数据传输带来一定影响,例如可能会降低UE对第一小区同步信息跟踪的精度。但是如果UE之前就保存过第一小区的同步信息,例如之前UE和第一小区通过免许可频谱进行通信,并且UE保存了第一小区的历史同步信息,那么此时可以考虑这种截短方案,即减小第二信号的长度。
图8给出了截短第二信号的情况的示意图。具体地,图8是本发明另一 实施例的信号位置的示意图。如图8所示,第一子帧为与第二小区子帧#N对齐的第一小区子帧,第二子帧为与第二小区子帧#N+1对齐的第一小区子帧,第三子帧为第二小区子帧#N+1。接收端根据参考时间点与第一子帧的结束边界之间的长度,确定第二信号的长度分别截短为2或3个OFDM符号。
可选地,作为另一实施例,在步骤203中根据所确定的参考时间点确定数据信道的位置时,如果所确定的参考时间点与第一子帧的结束边界之间的时间长度小于X3,且所确定的参考时间点与第一子帧的结束边界之间的时间长度大于Y4,则接收端可确定数据信道的位置位于第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
在本实施例中,当参考时间点与第一子帧的结束边界之间的时间长度比第二信号的长度更长时,剩余的第一子帧的符号可以用于传输数据信道。
图9是本发明另一实施例的信号位置的示意图。如图9所示,假设X3=7,Y4=4,所确定的参考时间点为第一信号的起始位置,第一子帧为与第二小区子帧#N对齐的第一小区子帧,第二子帧为与第二小区子帧#N+1对齐的第一小区子帧。另外,参考时间点也可以是免许可频谱抢占到频谱使用机会开始进行数据传输的位置。数据信道例如业务数据信道的位置也可以位于第一子帧中,其中用于解调该业务数据信道承载的信息的控制信息可以是预定义的或者通过许可频谱提前指示的。
图10是本发明另一实施例的信号位置的示意图。图10的实施例中各个参数与图9相同,因此不再重复描述。
在图10的实施例中,如果所确定的参考时间点与第一子帧的结束边界的时间长度为5个或6个OFDM符号,那么数据信道(例如控制数据信道PDCCH)的位置可以位于第一子帧中,同时该控制数据信道可以承载第二子帧的数据调度信息,从而实现跨子帧调度或多子帧调度。
图10中,第一子帧为与第二小区子帧#N对齐的第一小区子帧,第二子帧为与第二小区子帧#N+1对齐的第一小区子帧。
对于图9和图10的实施例,确定第二信道的长度的方式可以类似于前面的各个实施例,因此不再重复描述。
上述图4-图10的实施例中,可以将所确定的参考时间点和数据信道的位置之间的关系通过表格等形式存储在发送端和接收端上,这样能够提高计算效率。
可选地,作为另一实施例,参考时间点与数据信道的位置存在对应关系,其中每个参考时间点对应一个索引,每个索引对应一个数据信道的位置。一种典型的对应关系的表达方式是表格。下面结合具体例子,描述本发明实施例可采用的对应关系的配置表格的例子。但是应注意,这些例子仅仅是示意性的,本领域技术人员可以很容易地得到这些表格的等价表格或等价表达方式,这些等价方式均落入本发明实施例的范围内。
假设参考时间点为第一信号发送的起始位置,或者为成功抢占免许可频谱的使用机会的开始时刻,并且参考时间点用一个子帧内的OFDM符号索引来表示,则上述对应关系表格的一种形式如表2所示。
表2:参考时间点和数据信道的对应关系的一个配置例子
Figure PCTCN2014090655-appb-000012
表2可以进一步简化,如下表3所示。
表3:参考时间点和数据信道的对应关系的另一配置例子
Figure PCTCN2014090655-appb-000013
表3可以进一步扩展到更一般的形式,例如表4所示。
表4:参考时间点和数据信道的对应关系的另一配置例子
Figure PCTCN2014090655-appb-000014
其中,K为不小于0且不大于12的整数。
进一步的,还可以将第一子帧中的时间单位分为G个集合,G个集合包括的元素的全集是第一子帧中包括的所有时间单位,例如时间单位用OFDM符号来表示,那么第一子帧中的所有时间单位就是14个OFDM符号的符号索引,或者是这14个OFDM符号在第一子帧中的位置。G个集合中包括的元素可以有交集,也可以没有交集,不做限定。G个集合中的一部分集合中包括的时间单位对应的情况是:数据信道与参考时间点在同一子帧;G个集合中的其他部分集合包括的时间单位对应的情况是:数据信道与参考时间点在不同子帧。
表中,所述与参考时间点在不同子帧的例子,可以包括:参考时间点和数据信道的位置都位于相同小区,但位于不同子帧;或者,参考时间点和数据信道的位置位于不同小区,但位于具有相同子帧索引号的子帧;或者,参考时间点和数据信道的位置位于不同小区,且位于具有不同子帧索引号的子帧。
本发明实施例中,表格内容还可以进一步包括其他信息,例如数据信道 中包括的控制数据信道用于以下至少一项:调度与控制数据信道位于相同子帧的业务数据信道,调度与控制数据信道位于不同子帧的业务数据信道(跨子帧调度、多子帧调度),调度与控制数据信道位于不同小区的业务数据信道(跨小区调度、跨载波调度)。表格内容还可以进一步包括其他信息,如第一信号的长度,第二信号的长度等。
本发明实施例中,进一步的,体现参考时间点和数据信道的对应关系的表格中的内容还可以是动态变化或半静态变化,或者可以是预定义好的。网络或者小区可以根据业务负载、免许可频谱的干扰水平等,来确定表格的内容,并及时地通知给UE。例如网络或者小区侧提前配置多个表格,使用时可以采用触发信令的方式使UE获知哪个表格生效。
需要补充的是,在本发明实施例中,由于LTE设备在抢占到频谱使用机会之后,才会发送第一信号,因此第一信号的起始位置与LTE设备抢占到的频谱使用机会的时刻相关,进一步的,还可以与LTE设备执行的CCA的时间粒度有关。例如LTE设备执行一个CCA的时间是一个OFDM符号,那么优选地,为了简化系统设计,可以使LTE设备在每个OFDM符号边界开始执行CCA,这样一旦LTE设备抢占到免许可频谱的频谱使用机会,在免许可频谱上的数据传输起始时刻可以从OFDM符号边界开始,对应地,UE检测第一信号,也可以在OFDM符号边界逐个符号地检测。又例如,如果LTE设备执行一个CCA的时间是分数个OFDM,例如1/4个OFDM,那么为了简化系统设计,LTE设备也可以以OFDM符号边界,可以将一个OFDM符号划分4等分,每个等分对应一个CCA的时间,在此情况下,LTE设备一旦抢占到免许可频谱的使用机会,就可以从分数个OFDM的时间位置上开始进行数据传输。采用分数个OFDM长度的好处在于,可以简化UE的实现复杂度,因为UE可以通过过采样,接收到免许可频谱上发送的分数个OFDM符号的位置即分数个OFDM符号承载的信号,或者进一步检测到免许可频谱上发送的分数个OFDM符号的位置即分数个OFDM符号承载的信号。如果UE侧获知免许可频谱的OFDM符号边界,就可以获知免许可频谱上数据可能的起始时刻。又例如,LTE设备执行一个CCA的时间也可以是任意小于一个OFDM符号长度的时间,上述过程同样有效。综合来看,LTE设备抢占免许可频谱时执行的CCA长度以及执行CCA的边界,如果可以使检测免许可频谱上是否有数据传输的其他LTE设备(或更宽泛地其他工作在免许 可频谱的设备)获知,则有助于检测免许可频谱上是否有数据传输的其他LTE设备,确定检测第一信号可能的起始位置,或者免许可频谱上数据传输可能的起始时刻。例如这里的LTE设备可以为本发明实施例中的第一小区的控制主体,其他LTE设备为本发明实施例中的UE。为了减少LTE设备的检测复杂度,可以使LTE设备事先获知用于减少盲检测的信息,包括下述至少一项:LTE设备抢占免许可频谱时执行CCA长度、LTE设备执行CCA的边界(例如OFDM符号边界,或者在一个OFDM符号内分数个OFDM符号边界)等、LTE设备抢占到免许可频谱之后数据传输单位、数据传输的可能起始位置、第一信号的可能起始位置、第二信号的位置、第二信号的可能起始位置,该信息可以通过预定义、标准规范、网络配置、信令通知的方式使UE获知。在信令通知的方式下,该信令可以承载在免许可频谱,也可以承载在许可频谱上。为了减少UE盲检测次数以及UE功耗,可以使得免许可频谱和许可频谱OFDM符号对齐(或者说符号边界对齐),时隙对齐(或者说时隙边界对齐),子帧对齐(或者说子帧边界对齐),无线帧对齐(或者说无线帧边界对齐),超帧对齐(或者说超帧边界对齐),免许可频谱和许可频谱的时间单位索引号可以不同也可以相同,例如免许可频谱的第1个OFDM符号对应许可频谱的第2个OFDM符号。
上述图3至图10的实施例可以是相互独立的,也可以相互组合或相互参照。例如,在不同实施例中描述的同类参数,例如X、Y、Z或M等,可以采用相同的值或结构,也可以采用不同的值或结构。这样的组合后的实施例也落入本发明实施例的范围内。
图11是本发明另一实施例的数据传输方法的示意流程图。图11的方法由发送端(例如LTE设备,如LTE基站或UE)执行。
1101,确定参考时间点,其中该参考时间点在第一小区的第一子帧中。
1102,根据参考时间点,确定第一信号的发送位置,并在第一信号的发送位置处,发送第一信号。
1103,根据参考时间点,确定数据信道的位置,并在所确定的数据信道的位置处,发送数据信道。
本发明实施例在确定数据信道的位置时,会考虑子帧中的参考时间点,从而根据数据信道的位置接收数据信道。与无论LTE设备在什么时间位置抢占到使用机会都要等到下一个子帧才开始进行数据传输的方式相比,能够充 分利用参考时间点所在子帧的频谱资源,从而节省了系统开销以及提高了频谱使用效率。
应注意,在本发明说明书中,术语前面的“第一”、“第二”或“第三”等类似定语并非用于限定该术语之间的次序,而仅仅是为了区分的目的。例如,“第一信号”和“第二信号”是指这两个信号可能指代不同的信号载体,换句话说,这两个信号也可能指代相同的信号载体,但无论如何,均不是表示第一信号在时间上位于第二信号之前。如果确实存在先后次序的关系,则本发明说明书中会特别指出。
第一小区可以是免许可频谱上的小区。第一信号可以用于指示发送端已经抢占到免许可频谱上的第一小区的频谱资源。本发明实施例中的抢占操作可以包括按照图1的回退过程执行的抢占操作,也可以包括其他形式的抢占操作,例如根据协议规定预先设置的免许可频谱资源模式(pattern)等。例如,第一信号可以以显式的方式或隐式的方式向接收端指示发送端已经抢占到免许可频谱上的频谱资源。作为一个实施例,显式的方式可以是指第一信号可以携带特定的标志(flag)字段或类似指示字段,通过不同的标志值表示是否抢占到免许可频谱资源。作为另一实施例,隐式的方式可以是指第一信号的发送与否用于指示发送端是否抢占到免许可频谱资源,例如发送第一信号的动作表示发送端已经抢占到免许可频谱资源,同时第一信号可以用于其它用途,例如用于同步或传递其它有用信息。
本发明实施例的第一小区可以是部署在免许可频谱上的小区。第一信号的作用之一,是可以通过由接收端检测第一信号,确定发送第一信号的第一小区是否在第一小区部署的频谱上有数据传输。例如当第一小区部署在免许可频谱上时,通过检测第一信号,可以确定第一小区是否开始使用免许可频谱或者说第一小区是否抢占到免许可频谱上的频谱资源使用机会。第一信号可以是参考信号,例如可以是如下参考信号之一:PSS、SSS、CRS、CSI-RS、PRS、DRS、DMRS以及用于PDSCH解调的UE特定参考信号。作为另一实施例,本发明实施例中的第一信号还可以是承载数据的信道,例如如下信道之一:PDCCH、PDSCH、EPDCCH等。
第一信号中包括或承载了第一序列,例如第一序列有N种不同的序列形式,那么无论第一序列采用哪种序列形式,都可以被包含在第一信号中。UE可以通过检测第一信号,确定第一信号中包括的第一序列(如第一序列的序 列形式),这可以称为是检测到的第一信号的第一序列。更为具体的,例如,将现有LTE系统中的PSS作为第一信号,那么第一序列可以是构成PSS的Zadoff-Chu序列,UE通过检测PSS,可以确定检测到的PSS中承载的是哪一个Zadoff-Chu序列即哪一个第一序列;又如,将现有LTE系统的SSS作为第一信号,那么第一序列可以是构成SSS的168个序列,该168个序列中的任一个是由两个长度为31的二进制序列的组合。此外,第一信号还可以是包括或承载了第一序列的信道。在本发明实施例中,术语信号或信道可以表示用于承载特定信息或数据的、占据特定时频资源的载体。
数据信道可以独立于第一信号,例如在第一信号之后发送;数据信道也可以与第一信号占用相同的时间资源,例如通过频分、空分或码分等正交方式实现时间资源的复用。数据信道可用于承载控制数据和/或业务数据。控制数据的例子包括但不限于PDCCH、EPDCCH、PBCH、PHICH、PCFICH承载的数据等;业务数据的例子包括但不限于PDSCH、PMCH承载的数据等。
另外,在本发明实施例中,接收端对第一信号的检测操作可以是实时地盲检测,例如一边接收信号一边检测是否有第一信号,或者也可以先将第一信号缓存,然后再检测第一信号。
下面的实施例中,为了便于说明,主要以发送端是LTE基站、接收端是LTE UE的情况为例进行描述,即,以第一信号和数据信道为下行的情况为例进行描述。本领域技术人员容易理解,第一信号和数据信道为上行的情况可以类似地进行设计或修改。这样的设计或修改仍落入本发明实施例的范围内。
为了实现免许可频谱上第一小区和UE之间的数据通信,第一小区一旦抢占到免许可频谱上的使用机会,在和UE进行控制数据和/或业务数据传输前,可以先发送用于控制数据和/或业务数据检测的其他控制信息,或者说,在和UE进行控制数据和/或业务数据通信前,UE需要先获知用于控制数据和/或业务数据检测的其他控制信息。例如上述其他控制信息可以包括,使UE确定第一小区抢占到免许可频谱使用机会的信息、第一小区的小区识别、第一小区的同步信息、第一小区的公用陆地移动网络(Public Lands Mobile Network,PLMN)识别码,或者更为一般地,目前LTE系统中支持数据传输的必要控制信息,例如PBCH中携带的信息、系统信息块(System Information Block,SIB)中携带的信息等。上述其他控制信息可以承载在信 号和/或信道中,例如第一小区的同步信息可以通过第一小区发送的同步信号承载。在本发明实施例中,将承载上述其他控制信息的载体称为第二信号,也可以称为第二信道。例如,第二信号可以使用前导(preamble)的形式,由前导承载上述其他控制信息,但本发明实施例对第二信号的形式或具体名称不作限制。本发明实施例中主要使用术语“信号”来进行描述,但可同样地扩展至使用术语“信道”的情况,这样的扩展落入本发明实施例的范围内。第一小区发送的第二信号在时间上可以占用多个时间单位,这里的时间单位可以是一个OFDM符号的长度,或者也可以占据分数个OFDM符号的长度,也可是其他与OFDM符号长度有关的其他长度表示形式,例如采样率的倒数Ts,其中15360*Ts=0.5毫秒。为了实现第一小区和UE在免许可频谱上正常的数据通信,从满足正常数据通信的同步需求来看,第二信号在时间上可以占用X个OFDM符号,其中X可以是任意正整数。例如,假设为了实现第一小区和UE在免许可频谱上的频率同步需求,设置X=4,那么其中第一个OFDM符号承载的信号可以使UE获知第一小区是否抢占到免许可频谱的频谱资源使用机会。在此情况下,UE可以通过对第一个OFDM符号的能量检测或对第一个OFDM承载的信号进行解析(解调),获知第一小区是否抢占到免许可频谱的频谱资源使用机会。当然,第二信号在时间上占用的时间长度,可以以满足第二信号提供的功能来确定。
上述第一信号可以是第二信号的一部分,也可以就是第二信号。例如,第一信号中可以只包括第二信号在时间上的第一个OFDM符号,UE可以通过检测第一信号,确定第一小区是否抢占到免许可频谱的频谱使用机会。相应地,再根据检测到的第一信号的第一序列,确定参考时间点,以及第二信号的长度。又例如,第一信号就是第二信号,检测到的第一信号的第一序列,可以包括检测到的承载第一序列的信号,其中承载第一序列的信号是第一信号的一部分。
下面结合具体实施例,更加详细地描述发送端执行的数据传输方法。应注意,为了简洁,在下面的实施例中,与上述图2-图10的实施例中相同或相应的过程将不再重复描述。
可选地,作为一个实施例,在步骤1101中确定参考时间点时,发送端可根据距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点,例如图3a和图3b的实施例所述。这里,符号索引也可以替换为分数 符号索引或采样率的倒数的整数倍等其他形式,这些替换实施例均落入本发明实施例的范围内。另外,在上述时刻和参考时间点之间的时间段中,发送端可以发送预占用信号(padding)。
可选地,作为一个实施例,在步骤1101中确定参考时间点时,发送端可根据第二小区中距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点。这里,第二小区与第一小区部署在不同的频谱资源上。例如,第一小区可以是免许可频谱,第二小区可以是许可频谱或其他参考时间源。这里,符号索引也可以替换为分数符号索引或采样率的倒数的整数倍等其他形式,这些替换实施例均落入本发明实施例的范围内。另外,在上述时刻和参考时间点之间的时间段中,发送端可以发送预占用信号(padding)。
可选地,作为另一实施例,第一信号可包括或承载第一序列。在此情况下,发送端还可以根据参考时间点,确定第一序列。例如,发送端可根据第一序列的序列信息与参考时间点之间的一一对应关系,确定第一序列。换句话说,第一序列的序列信息和参考时间点之间可以存在一一对应的关系(例如以表格的形式),这样便于根据参考时间点确定对应的第一序列的序列信息。
可选地,作为另一实施例,例如图4a和图4b所示,在步骤1103中根据参考时间点确定数据信道的位置时,如果参考时间点与第一子帧的结束边界之间的时间长度不小于X1,则可确定数据信道的位置位于第一子帧中;X1为不小于零的时间长度。
可选地,作为另一实施例,例如图4a和图4b所示,发送端还可以确定第二信号在时间上的长度为M1,其中第二信号包含第一信号,M1为第二信号在时间上的最小长度。
可选地,作为另一实施例,例如图5所示,在步骤1103中根据参考时间点确定数据信道的位置时,如果参考时间点与第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,第二子帧是与第一子帧相邻的下一个子帧。
可选地,作为另一实施例,例如图6所示,在步骤1103中根据参考时间点确定数据信道的位置时,如果参考时间点与第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,第三子帧是第二小区中在时间上与第一子帧相邻的下一个子帧。第二小区与所述第一小区 部署在不同的频谱资源上。X2为不小于零的时间长度。
可选地,作为另一实施例,例如图6所示,如果参考时间点与第一子帧的结束边界之间的时间长度不小于Y1,则确定第二信号在时间上的长度为Z1,其中第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且第二信号在时间上的结束位置位于第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000015
Y1为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,例如图7所示,如果参考时间点与第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中第二信号包含所述第一信号,Z2属于长度集合{L′1,L′2,…L′n},且第二信号在时间上的结束位置位于与第一小区上的第二子帧中,第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000016
Y2为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,例如图8所示,如果参考时间点与第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中第二信号包含所述第一信号,Z3小于M2且第二信号在时间上的结束位置位于第一子帧的结束边界,M2为第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,例如图9所示,在步骤1103中根据参考时间点确定数据信道的位置时,如果参考时间点与第一子帧的结束边界之间的时间长度小于X3,且参考时间点与第一子帧的结束边界之间的时间长度大于Y4,则确定数据信道的位置位于第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
可选地,作为另一实施例,例如图6、图7和图10所示,数据信道可承载第一小区上的第二子帧的数据调度信息,其中第二子帧为与第一子帧相邻的下一个子帧。
可选地,作为另一实施例,参考时间点与数据信道的位置存在对应关系,其中每个参考时间点对应一个索引,每个索引对应一个数据信道的位置,例如上述表2-4所述。
可选地,作为另一实施例,数据信道的位置可包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
因此,本发明实施例中,所述根据参考时间点,确定数据信道的位置, 可包括以下至少一项方式:
确定数据信道的位置与所述参考时间点在相同子帧;
确定数据信道的位置与所述参考时间点在不同子帧;
确定数据信道的位置与所述参考时间点在不同小区;
确定控制数据信道的位置与所述参考时间点在相同子帧,且控制数据信道用于调度第一子帧的业务数据信道;
确定控制数据信道的位置与所述参考时间点在相同子帧,且控制数据信道可以用于跨子帧调度,即控制数据信道可以用于调度非第一子帧的业务数据信道例如第一子帧之后的其他子帧的业务数据信道,这里其他子帧可以与第一子帧在相同小区;
确定控制数据信道的位置与所述参考时间点在相同子帧,且控制数据信道可以同时用于第一子帧调度和跨子帧调度;
确定控制数据信道一部分的位置与所述参考时间点在相同子帧,控制数据信道另外一部分的位置与所述参考时间点在不同子帧,且控制数据信道可以用于跨子帧调度,即控制数据信道可以用于调度非第一子帧的业务数据信道例如第一子帧之后的其他子帧的业务数据信道,这里其他子帧可以与第一子帧在相同小区。假设控制数据信道在时间上占用3个OFDM符号,根据参考时间点,控制数据信道的前两个OFDM符号可以在第一子帧,后1个OFDM符号可以在与第一子帧相邻的第一小区的下一个子帧,该控制数据信道可以指示与第一子帧相邻的第一小区的下一个子帧中的业务数据传输格式;
确定控制数据信道的位置和所述参考时间点在不同子帧;
确定业务数据信道的位置与所述参考时间点在相同子帧或者不同子帧,用于指示业务数据信道传输格式的信息可以通过控制数据信道承载,或者通过预定义、或者通过许可频谱提前指示的方式使小区和/或UE获知。
本发明实施例中,为了支持UE在不同小区检测数据信道特别是控制数据信道,可以利用动态信令指示UE执行跨载波检测,以使得UE可以快速地从检测第一小区的信道切换为检测第二小区的信道。
本发明实施例中,UE检测的PDCCH格式可以是某些PDCCH格式的集合,或者是所有LTE系统支持的PDCCH格式。该PDCCH格式可以对特定UE有效,也可以对于特定的一组UE有效,例如具有在免许可频谱上具有 数据通信能力的UE,也可以对于接入小区的所有UE有效。UE检测的PDSCH格式可以是由PDCCH指示。当数据传输的时间小于1ms,可以通过速率匹配支持UE的数据传输。PDCCH的格式以及速率匹配规则可以通过信令通知、预定义、网络配置等方式来使UE获知。
图12是本发明一个实施例的数据传输设备的示意框图。如图12所示,图12的数据传输设备120包括检测单元121、确定单元122和接收单元123。
检测单元121用于在第一小区检测第一信号。
确定单元122用于根据检测到的第一信号的第一序列,确定参考时间点,其中参考时间点在第一小区的第一子帧中。
确定单元122还用于根据确定的参考时间点,确定数据信道的位置。
接收单元123用于根据数据信道的位置,接收数据信道上承载的控制数据和/或业务数据。
本发明实施例在确定数据信道的位置时,会考虑子帧中的参考时间点,从而根据数据信道的位置接收数据信道。与无论LTE设备在什么时间位置抢占到使用机会都要等到下一个子帧才开始进行数据传输的方式相比,能够充分利用参考时间点所在子帧的频谱资源,从而提高了频谱使用效率。
数据传输设备120的各个单元可以实现图2-图10的方法的各个过程,为避免重复,不再详细描述。
可选地,作为一个实施例,确定单元122可根据第一序列的序列信息与参考时间点之间的一一对应关系,确定参考时间点。
可选地,作为另一实施例,确定单元122可根据第一小区上距离第一序列的位置最近的符号索引,确定参考时间点。
可选地,作为另一实施例,确定单元122可根据第二小区上距离第一序列的位置最近的符号索引,确定参考时间点,第二小区与第一小区部署在不同的频谱资源上。
可选地,作为另一实施例,第一序列的位置包括:第一序列在时间上的起始位置或第一序列在时间上的终止位置。
可选地,作为另一实施例,确定单元122可如果确定的参考时间点与第一子帧的结束边界之间的时间长度不小于X1,则确定数据信道的位置位于第一子帧中;X1为不小于零的时间长度。
可选地,作为另一实施例,确定单元122还可以确定第二信号在时间上 的长度为M1,第二信号包含第一信号,其中M1为第二信号在时间上的最小长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于X2,则确定单元122可确定数据信道的位置位于第二子帧中,第二子帧是与第一子帧相邻的下一个子帧;或者如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于X2,则确定单元122可确定数据信道的位置位于第三子帧中,第三子帧是第二小区中在时间上与第一子帧相邻的下一个子帧,第二小区与第一小区部署在不同的频谱资源上;X2为不小于零的时间长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度不小于Y1,则确定单元122可以确定第二信号在时间上的长度为Z1,其中第二信号包含第一信号,Z1属于长度集合{L1,L2,…Ln},且第二信号在时间上的结束位置位于第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000017
Y1为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于Y2,则确定单元122可以确定第二信号在时间上的长度为Z2,其中第二信号包含第一信号,Z2属于长度集合{L′1,L′2,…L′n},且第二信号在时间上的结束位置位于第一小区上的第二子帧中,第二子帧为与第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000018
Y2为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于Y3,则确定单元122可以确定第二信号在时间上的长度为Z3,其中第二信号包含第一信号,Z3小于M2且第二信号在时间上的结束位置位于第一子帧的结束边界,M2为预设的第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于X3,且确定的参考时间点与第一子帧的结束边界之间的时间长度大于Y4,则确定单元122可以确定数据信道的位置位于第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
可选地,作为另一实施例,数据信道可承载第一小区上的第二子帧的数据调度信息,其中第二子帧为与第一子帧相邻的下一个子帧。
可选地,作为另一实施例,参考时间点与数据信道的位置存在对应关系,其中每个参考时间点对应一个索引,每个索引对应一个数据信道的位置。
可选地,作为另一实施例,数据信道的位置可包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
可选地,作为另一实施例,第一小区可以是免许可频谱上的小区。
图13是本发明一个实施例的数据传输设备的示意框图。如图13所示,数据传输设备130包括确定单元131和发送单元132。
确定单元131用于确定参考时间点,其中参考时间点在第一小区的第一子帧中。
确定单元131还用于根据参考时间点,确定第一信号的发送位置。
发送单元132用于在第一信号的发送位置处,发送第一信号。
确定单元131还用于根据参考时间点,确定数据信道的位置。
发送单元132还用于在数据信道的位置处,发送在数据信道上承载的控制数据和/或业务数据。
本发明实施例在确定数据信道的位置时,会考虑子帧中的参考时间点,从而根据数据信道的位置接收数据信道。与无论LTE设备在什么时间位置抢占到使用机会都要等到下一个子帧才开始进行数据传输的方式相比,能够充分利用参考时间点所在子帧的频谱资源,从而提高了频谱使用效率。
数据传输设备130的各个单元可以实现图3-图11的方法的各个过程,为避免重复,不再详细描述。
可选地,作为一个实施例,确定单元131可以根据距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点。
可选地,作为另一实施例,确定单元131可以根据第二小区中距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点,第二小区与第一小区部署在不同的频谱资源上。
可选地,作为另一实施例,第一信号可包括或承载第一序列,确定单元131可以根据参考时间点,确定第一序列。
可选地,作为另一实施例,确定单元131可以根据第一序列的序列信息与参考时间点之间的一一对应关系,确定第一序列。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度不小于X1,则确定单元131可以确定数据信道的位置位于第一 子帧中;X1为不小于零的时间长度。
可选地,作为另一实施例,确定单元131还可以确定第二信号在时间上的长度为M1,第二信号包含第一信号,其中M1为第二信号在时间上的最小长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度小于X2,则确定单元131可以确定数据信道的位置位于第二子帧中,第二子帧是与第一子帧相邻的下一个子帧。
或者,如果参考时间点与第一子帧的结束边界之间的时间长度小于X2,则确定单元131可以确定数据信道的位置位于第三子帧中,第三子帧是第二小区中在时间上与第一子帧相邻的下一个子帧,第二小区与第一小区部署在不同的频谱资源上。X2为不小于零的时间长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度不小于Y1,则确定单元131可以确定第二信号在时间上的长度为Z1,其中第二信号包含第一信号,Z1属于长度集合{L1,L2,…Ln},且第二信号在时间上的结束位置位于第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000019
Y1为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度小于Y2,则确定单元131可以确定第二信号在时间上的长度为Z2,其中第二信号包含第一信号,Z2属于长度集合{L′1,L′2,…L′n},且第二信号在时间上的结束位置位于与第一小区上的第二子帧中,第二子帧为与第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000020
Y2为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度小于Y3,则确定单元131可以确定第二信号在时间上的长度为Z3,其中第二信号包含第一信号,Z3小于M2且第二信号在时间上的结束位置位于第一子帧的结束边界,M2为第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度小于X3,且参考时间点与第一子帧的结束边界之间的时间长度大于Y4,则确定单元131可以确定数据信道的位置位于第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
可选地,作为另一实施例,数据信道承载第一小区上的第二子帧的数据调度信息,其中第二子帧为与第一子帧相邻的下一个子帧。
可选地,作为另一实施例,参考时间点与数据信道的位置可存在对应关系,其中每个参考时间点对应一个索引,每个索引对应一个数据信道的位置。
可选地,作为另一实施例,数据信道的位置可包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
可选地,作为另一实施例,其特征在于,第一小区可以是免许可频谱上的小区。
图14是本发明另一实施例的通信设备的示意框图。如图14所示,通信设备140包括处理器141、存储器142、接收电路143和发射电路144。处理器141、存储器142、接收电路143和发射电路144通过总线系统149相连。
此外,通信设备140还可以包括天线145等。处理器141控制通信设备140的操作。存储器142可以包括只读存储器和随机存取存储器,并向处理器141提供指令和数据。存储器142的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中,发射电路144和接收电路143可以耦合到天线145。通信设备140的各个组件通过总线系统149耦合在一起,其中总线系统149除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统149。
处理器141可能是一种集成电路芯片,具有信号的处理能力。上述的处理器141可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。处理器141读取存储器142中的信息,结合其硬件控制调制设备140的各个部件。
图2-图10的方法可以在图14的通信设备140中实现,或者图13的数据传输设备可以由图14的通信设备140实现。通信设备140的一个例子是用户设备或基站。为避免重复,不再详细描述。
具体地,接收电路143可以在第一小区检测第一信号。处理器141可根据检测到的第一信号的第一序列,确定参考时间点,其中参考时间点在第一 小区的第一子帧中。
例如,接收电路143可以通过检测第一信号的能量,来检测第一信号。或者作为另一种实现方式,接收电路143也可以简单地缓存第一信号,由处理器141对第一信号进行检测处理。
处理器141还可以根据确定的参考时间点,确定数据信道的位置。
接收电路143可以根据数据信道的位置,接收数据信道上承载的控制数据和/或业务数据。
本发明实施例在确定数据信道的位置时,会考虑子帧中的参考时间点,从而根据数据信道的位置接收数据信道。与无论LTE设备在什么时间位置抢占到使用机会都要等到下一个子帧才开始进行数据传输的方式相比,能够充分利用参考时间点所在子帧的频谱资源,从而提高了频谱使用效率。
可选地,作为一个实施例,处理器141可根据第一序列的序列信息与参考时间点之间的一一对应关系,确定参考时间点。
可选地,作为另一实施例,处理器141可根据第一小区上距离第一序列的位置最近的符号索引,确定参考时间点。
可选地,作为另一实施例,处理器141可根据第二小区上距离第一序列的位置最近的符号索引,确定参考时间点,第二小区与第一小区部署在不同的频谱资源上。
可选地,作为另一实施例,第一序列的位置包括:第一序列在时间上的起始位置或第一序列在时间上的终止位置。
可选地,作为另一实施例,处理器141可如果确定的参考时间点与第一子帧的结束边界之间的时间长度不小于X1,则确定数据信道的位置位于第一子帧中;X1为不小于零的时间长度。
可选地,作为另一实施例,处理器141还可以确定第二信号在时间上的长度为M1,第二信号包含第一信号,其中M1为第二信号在时间上的最小长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于X2,则处理器141可确定数据信道的位置位于第二子帧中,第二子帧是与第一子帧相邻的下一个子帧;或者如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于X2,则处理器141可确定数据信道的位置位于第三子帧中,第三子帧是第二小区中在时间上与第一子 帧相邻的下一个子帧,第二小区与第一小区部署在不同的频谱资源上;X2为不小于零的时间长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度不小于Y1,则处理器141可以确定第二信号在时间上的长度为Z1,其中第二信号包含第一信号,Z1属于长度集合{L1,L2,…Ln},且第二信号在时间上的结束位置位于第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000021
Y1为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于Y2,则处理器141可以确定第二信号在时间上的长度为Z2,其中第二信号包含第一信号,Z2属于长度集合{L′1,L′2,…L′n},且第二信号在时间上的结束位置位于第一小区上的第二子帧中,第二子帧为与第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000022
Y2为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于Y3,则处理器141可以确定第二信号在时间上的长度为Z3,其中第二信号包含第一信号,Z3小于M2且第二信号在时间上的结束位置位于第一子帧的结束边界,M2为预设的第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果确定的参考时间点与第一子帧的结束边界之间的时间长度小于X3,且确定的参考时间点与第一子帧的结束边界之间的时间长度大于Y4,则处理器141可以确定数据信道的位置位于第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
可选地,作为另一实施例,数据信道可承载第一小区上的第二子帧的数据调度信息,其中第二子帧为与第一子帧相邻的下一个子帧。
可选地,作为另一实施例,参考时间点与数据信道的位置存在对应关系,其中每个参考时间点对应一个索引,每个索引对应一个数据信道的位置。
可选地,作为另一实施例,数据信道的位置可包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
可选地,作为另一实施例,第一小区可以是免许可频谱上的小区。
图15是本发明另一实施例的通信设备的示意框图。如图15所示,通信设备150包括处理器151、存储器152、接收电路153和发射电路154。处理 器151、存储器152、接收电路153和发射电路154通过总线系统159相连。
此外,通信设备150还可以包括天线155等。处理器151控制通信设备150的操作。存储器152可以包括只读存储器和随机存取存储器,并向处理器151提供指令和数据。存储器152的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中,发射电路154和接收电路153可以耦合到天线155。通信设备150的各个组件通过总线系统159耦合在一起,其中总线系统159除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统159。
处理器151可能是一种集成电路芯片,具有信号的处理能力。上述的处理器151可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。处理器151读取存储器152中的信息,结合其硬件控制调制设备150的各个部件。
图3-图11的方法可以在图15的通信设备150中实现,或者图13的数据传输设备可以由图15的通信设备150实现。通信设备150的一个例子是用户设备或基站。为避免重复,不再详细描述。
具体地,处理器151可确定参考时间点,其中参考时间点在第一小区的第一子帧中。
处理器151还可以根据参考时间点,确定第一信号的发送位置。
发射电路154可以在第一信号的发送位置处,发送第一信号。
处理器151还可以根据参考时间点,确定数据信道的位置。
发射电路154还可以在数据信道的位置处,发送在数据信道上承载的控制数据和/或业务数据。
本发明实施例在确定数据信道的位置时,会考虑子帧中的参考时间点,从而根据数据信道的位置接收数据信道。与无论LTE设备在什么时间位置抢占到使用机会都要等到下一个子帧才开始进行数据传输的方式相比,能够充分利用参考时间点所在子帧的频谱资源,从而提高了频谱使用效率。
可选地,作为一个实施例,确定单元131可以根据距离抢占到第一小区 的频谱资源的时刻最近的符号索引,确定参考时间点。
可选地,作为另一实施例,处理器151可以根据第二小区中距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点,第二小区与第一小区部署在不同的频谱资源上。
可选地,作为另一实施例,第一信号可包括或承载第一序列,处理器151可以根据参考时间点,确定第一序列。
可选地,作为另一实施例,处理器151可以根据第一序列的序列信息与参考时间点之间的一一对应关系,确定第一序列。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度不小于X1,则处理器151可以确定数据信道的位置位于第一子帧中;X1为不小于零的时间长度。
可选地,作为另一实施例,处理器151还可以确定第二信号在时间上的长度为M1,第二信号包含第一信号,其中M1为第二信号在时间上的最小长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度小于X2,则处理器151可以确定数据信道的位置位于第二子帧中,第二子帧是与第一子帧相邻的下一个子帧。
或者,如果参考时间点与第一子帧的结束边界之间的时间长度小于X2,则处理器151可以确定数据信道的位置位于第三子帧中,第三子帧是第二小区中在时间上与第一子帧相邻的下一个子帧,第二小区与第一小区部署在不同的频谱资源上。X2为不小于零的时间长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度不小于Y1,则处理器151可以确定第二信号在时间上的长度为Z1,其中第二信号包含第一信号,Z1属于长度集合{L1,L2,…Ln},且第二信号在时间上的结束位置位于第一子帧的结束边界,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000023
Y1为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度小于Y2,则处理器151可以确定第二信号在时间上的长度为Z2,其中第二信号包含第一信号,Z2属于长度集合{L′1,L′2,…L′n},且第二信号在时间上的结束位置位于与第一小区上的第二子帧中,第二子帧为与第一子帧相邻的下一个子帧,其中n为不小于1的整数,
Figure PCTCN2014090655-appb-000024
Y2为不等 于X2且不小于零的时间长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度小于Y3,则处理器151可以确定第二信号在时间上的长度为Z3,其中第二信号包含第一信号,Z3小于M2且第二信号在时间上的结束位置位于第一子帧的结束边界,M2为第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
可选地,作为另一实施例,如果参考时间点与第一子帧的结束边界之间的时间长度小于X3,且参考时间点与第一子帧的结束边界之间的时间长度大于Y4,则处理器151可以确定数据信道的位置位于第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
可选地,作为另一实施例,数据信道承载第一小区上的第二子帧的数据调度信息,其中第二子帧为与第一子帧相邻的下一个子帧。
可选地,作为另一实施例,参考时间点与数据信道的位置可存在对应关系,其中每个参考时间点对应一个索引,每个索引对应一个数据信道的位置。
可选地,作为另一实施例,数据信道的位置可包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
可选地,作为另一实施例,其特征在于,第一小区可以是免许可频谱上的小区。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种数据传输设备,其特征在于,包括:
    检测单元,用于在第一小区检测第一信号;
    确定单元,用于根据检测到的所述第一信号的第一序列,确定参考时间点,其中所述参考时间点在所述第一小区的第一子帧中;
    所述确定单元,还用于根据所述确定的参考时间点,确定数据信道的位置;
    接收单元,用于根据所述数据信道的位置,接收所述数据信道上承载的控制数据和/或业务数据。
  2. 如权利要求1所述的数据传输设备,其特征在于,所述确定单元具体用于根据所述第一序列的序列信息与所述参考时间点之间的一一对应关系,确定所述参考时间点。
  3. 如权利要求1所述的数据传输设备,其特征在于,所述确定单元具体用于根据所述第一小区上距离所述第一序列的位置最近的符号索引,确定参考时间点。
  4. 如权利要求1所述的数据传输设备,其特征在于,所述确定单元具体用于根据第二小区上距离所述第一序列的位置最近的符号索引,确定参考时间点,所述第二小区与所述第一小区部署在不同的频谱资源上。
  5. 如权利要求3或4所述的数据传输设备,其特征在于,所述第一序列的位置包括:所述第一序列在时间上的起始位置或所述第一序列在时间上的终止位置。
  6. 如权利要求1-5中任一项所述的数据传输设备,其特征在于,所述确定单元具体用于如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度不小于X1,则确定所述数据信道的位置位于所述第一子帧中;X1为不小于零的时间长度。
  7. 如权利要求6所述的数据传输设备,其特征在于,所述确定单元还用于确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
  8. 如权利要求1-5中任一项所述的数据传输设备,其特征在于,所述确定单元具体用于:
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长 度小于X2,则确定数据信道的位置位于第二子帧中,所述第二子帧是与所述第一子帧相邻的下一个子帧;或者
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,所述第三子帧是第二小区中在时间上与所述第一子帧相邻的下一个子帧,所述第二小区与所述第一小区部署在不同的频谱资源上;
    所述X2为不小于零的时间长度。
  9. 如权利要求8所述的数据传输设备,其特征在于,所述确定单元还用于:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度不小于Y1,则确定第二信号在时间上的长度为Z1,其中所述第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,其中n为不小于1的整数,
    Figure PCTCN2014090655-appb-100001
    1≤i<n,Li<Li+1,Y1为不等于X2且不小于零的时间长度。
  10. 如权利要求8所述的数据传输设备,其特征在于,所述确定单元还用于:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中所述第二信号包含所述第一信号,Z2属于长度集合{L′1,L′2,…L′n},且所述第二信号在时间上的结束位置位于第一小区上的第二子帧中,所述第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
    Figure PCTCN2014090655-appb-100002
    1≤i<n,L′i<L′i+1,Y2为不等于X2且不小于零的时间长度。
  11. 如权利要求8所述的数据传输设备,其特征在于,所述确定单元还用于:如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中所述第二信号包含所述第一信号,Z3小于M2且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,M2为预设的第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
  12. 如权利要求1-5中任一项所述的数据传输设备,其特征在于,所述确定单元具体用于如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X3,且所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度大于Y4,则确定所述数据信道的位置位于所述第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
  13. 如权利要求12所述的数据传输设备,其特征在于,所述数据信道承载第一小区上的第二子帧的数据调度信息,其中所述第二子帧为与所述第一子帧相邻的下一个子帧。
  14. 如权利要求1-13中任一项所述的数据传输设备,其特征在于,所述参考时间点与所述数据信道的位置存在对应关系,其中每个所述参考时间点对应一个索引,每个所述索引对应一个所述数据信道的位置。
  15. 如权利要求1-14中任一项所述的数据传输设备,其特征在于,所述数据信道的位置包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
  16. 如权利要求1-15中任一项所述的数据传输设备,其特征在于,所述第一小区为免许可频谱上的小区。
  17. 一种数据传输设备,其特征在于,包括:
    确定单元,用于确定参考时间点,其中所述参考时间点在第一小区的第一子帧中;
    所述确定单元,还用于根据所述参考时间点,确定第一信号的发送位置;
    发送单元,用于在所述第一信号的发送位置处,发送所述第一信号;
    所述确定单元,还用于根据所述参考时间点,确定数据信道的位置;
    所述发送单元,还用于在所述数据信道的位置处,发送在所述数据信道上承载的控制数据和/或业务数据。
  18. 如权利要求17所述的数据传输设备,其特征在于,所述确定单元具体用于根据距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定所述参考时间点。
  19. 如权利要求17所述的数据传输设备,其特征在于,所述确定单元具体用于根据第二小区中距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点,所述第二小区与所述第一小区部署在不同的频谱资源上。
  20. 如权利要求17-19任一项所述的数据传输设备,其特征在于,所述第一信号包括或承载第一序列,
    所述确定单元还用于根据所述参考时间点,确定所述第一序列。
  21. 如权利要求20所述的数据传输设备,其特征在于,所述确定单元具体用于根据所述第一序列的序列信息与所述参考时间点之间的一一对应 关系,确定所述第一序列。
  22. 如权利要求17-21中任一项所述的数据传输设备,其特征在于,所述确定单元具体用于如果所述参考时间点与所述第一子帧的结束边界之间的时间长度不小于X1,则确定所述数据信道的位置位于所述第一子帧中;X1为不小于零的时间长度。
  23. 如权利要求22所述的数据传输设备,其特征在于,所述确定单元还用于确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
  24. 如权利要求17-21中任一项所述的数据传输设备,其特征在于,所述确定单元具体用于:
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,所述第二子帧是与所述第一子帧相邻的下一个子帧;或者
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,所述第三子帧是第二小区中在时间上与所述第一子帧相邻的下一个子帧,所述第二小区与所述第一小区部署在不同的频谱资源上;
    所述X2为不小于零的时间长度。
  25. 如权利要求24所述的数据传输设备,其特征在于,所述确定单元还用于:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度不小于Y1,则确定第二信号在时间上的长度为Z1,其中所述第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,其中n为不小于1的整数,
    Figure PCTCN2014090655-appb-100003
    1≤i<n,Li<Li+1,Y1为不等于X2且不小于零的时间长度。
  26. 如权利要求24所述的数据传输设备,其特征在于,所述确定单元还用于:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中所述第二信号包含所述第一信号,Z2属于长度集合{L′1,L′2,…L′n},且所述第二信号在时间上的结束位置位于与第一小区上的第二子帧中,所述第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
    Figure PCTCN2014090655-appb-100004
    1≤i<n,L′i<L′i+1,Y2为不等于X2且不小于零的时间长度。
  27. 如权利要求24所述的数据传输设备,其特征在于,所述确定单元还用于:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中所述第二信号包含所述第一信号,Z3小于M2且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,M2为第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
  28. 如权利要求17-21中任一项所述的数据传输设备,其特征在于,所述确定单元具体用于:如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X3,且所述参考时间点与所述第一子帧的结束边界之间的时间长度大于Y4,则确定所述数据信道的位置位于所述第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
  29. 如权利要求28所述的数据传输设备,其特征在于,所述数据信道承载第一小区上的第二子帧的数据调度信息,其中所述第二子帧为与所述第一子帧相邻的下一个子帧。
  30. 如权利要求17-29中任一项所述的数据传输设备,其特征在于,所述参考时间点与所述数据信道的位置存在对应关系,其中每个所述参考时间点对应一个索引,每个所述索引对应一个所述数据信道的位置。
  31. 如权利要求17-30中任一项所述的数据传输设备,所述数据信道的位置包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
  32. 如权利要求17-31中任一项所述的数据传输设备,其特征在于,所述第一小区为免许可频谱上的小区。
  33. 一种数据传输方法,其特征在于,包括:
    在第一小区检测第一信号;
    根据检测到的所述第一信号的第一序列,确定参考时间点,其中所述参考时间点在所述第一小区的第一子帧中;
    根据所述确定的参考时间点,确定数据信道的位置;
    根据所述数据信道的位置,接收所述数据信道上承载的控制数据和/或业务数据。
  34. 如权利要求33所述的方法,其特征在于,所述根据检测到的所述第一序列,确定参考时间点,包括:
    根据所述第一序列的序列信息与所述参考时间点之间的一一对应关系,确定所述参考时间点。
  35. 如权利要求33所述的方法,其特征在于,所述根据检测到的所述第一序列,确定参考时间点,包括:
    根据所述第一小区上距离所述第一序列的位置最近的符号索引,确定参考时间点。
  36. 如权利要求33所述的方法,其特征在于,所述根据检测到的所述第一序列,确定参考时间点,包括:
    根据第二小区上距离所述第一序列的位置最近的符号索引,确定参考时间点,所述第二小区与所述第一小区部署在不同的频谱资源上。
  37. 如权利要求35或36所述的方法,其特征在于,所述第一序列的位置包括:所述第一序列在时间上的起始位置或所述第一序列在时间上的终止位置。
  38. 如权利要求33-37中任一项所述的方法,其特征在于,所述根据所述确定的参考时间点,确定数据信道的位置,包括:
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度不小于X1,则确定所述数据信道的位置位于所述第一子帧中;X1为不小于零的时间长度。
  39. 如权利要求38所述的方法,其特征在于,所述方法还包括:
    确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
  40. 如权利要求33-37中任一项所述的方法,其特征在于,所述根据所述确定的参考时间点,确定数据信道的位置,包括:
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,所述第二子帧是与所述第一子帧相邻的下一个子帧;或者
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,所述第三子帧是第二小区中在时间上与所述第一子帧相邻的下一个子帧,所述第二小区与所述第一小区部署在不同的频谱资源上;
    所述X2为不小于零的时间长度。
  41. 如权利要求40所述的方法,其特征在于,所述方法还包括:
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度不小于Y1,则确定第二信号在时间上的长度为Z1,其中所述第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,其中n为不小于1的整数,
    Figure PCTCN2014090655-appb-100005
    1≤i<n,Li<Li+1,Y1为不等于X2且不小于零的时间长度。
  42. 如权利要求40所述的方法,其特征在于,所述方法还包括:
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中所述第二信号包含所述第一信号,Z2属于长度集合{L′1,L′2,…L′n},且所述第二信号在时间上的结束位置位于第一小区上的第二子帧中,所述第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
    Figure PCTCN2014090655-appb-100006
    1≤i<n,L′i<L′i+1,Y2为不等于X2且不小于零的时间长度。
  43. 如权利要求40所述的方法,其特征在于,所述方法还包括:
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中所述第二信号包含所述第一信号,Z3小于M2且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,M2为预设的第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
  44. 如权利要求33-37中任一项所述的方法,其特征在于,所述根据所述确定的参考时间点,确定数据信道的位置,包括:
    如果所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度小于X3,且所述确定的参考时间点与所述第一子帧的结束边界之间的时间长度大于Y4,则确定所述数据信道的位置位于所述第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
  45. 如权利要求44所述的方法,其特征在于,所述数据信道承载第一小区上的第二子帧的数据调度信息,其中所述第二子帧为与所述第一子帧相邻的下一个子帧。
  46. 如权利要求33-45中任一项所述的方法,其特征在于,所述参考时间点与所述数据信道的位置存在对应关系,其中每个所述参考时间点对应一个索引,每个所述索引对应一个所述数据信道的位置。
  47. 如权利要求33-46中任一项所述的方法,其特征在于,所述数据信道的位置包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
  48. 如权利要求33-47中任一项所述的方法,其特征在于,所述第一小区为免许可频谱上的小区。
  49. 一种数据传输方法,其特征在于,包括:
    确定参考时间点,其中所述参考时间点在第一小区的第一子帧中;
    根据所述参考时间点,确定第一信号的发送位置,并在所述第一信号的发送位置处,发送所述第一信号;
    根据所述参考时间点,确定数据信道的位置,并在所确定的数据信道的位置处,发送在所述数据信道上承载的控制数据和/或业务数据。
  50. 如权利要求49所述的方法,其特征在于,所述确定参考时间点,包括:
    根据距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定所述参考时间点。
  51. 如权利要求49所述的方法,其特征在于,所述确定参考时间点,包括:
    根据第二小区中距离抢占到第一小区的频谱资源的时刻最近的符号索引,确定参考时间点,所述第二小区与所述第一小区部署在不同的频谱资源上。
  52. 如权利要求49-51任一项所述的方法,其特征在于,所述第一信号包括或承载第一序列,
    所述方法还包括:根据所述参考时间点,确定所述第一序列。
  53. 如权利要求5220所述的方法,其特征在于,所述根据所述参考时间点,确定所述第一序列,包括:
    根据所述第一序列的序列信息与所述参考时间点之间的一一对应关系,确定所述第一序列。
  54. 如权利要求49-53中任一项所述的方法,其特征在于,所述根据所述参考时间点,确定数据信道的位置,包括:
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度不小于X1,则确定所述数据信道的位置位于所述第一子帧中;X1为不小于零的 时间长度。
  55. 如权利要求54所述的方法,其特征在于,所述方法还包括:
    确定第二信号在时间上的长度为M1,所述第二信号包含所述第一信号,其中M1为所述第二信号在时间上的最小长度。
  56. 如权利要求49-54中任一项所述的方法,其特征在于,所述根据所述参考时间点,确定数据信道的位置,包括:
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第二子帧中,所述第二子帧是与所述第一子帧相邻的下一个子帧;或者
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X2,则确定数据信道的位置位于第三子帧中,所述第三子帧是第二小区中在时间上与所述第一子帧相邻的下一个子帧,所述第二小区与所述第一小区部署在不同的频谱资源上;
    所述X2为不小于零的时间长度。
  57. 如权利要求56所述的方法,其特征在于,所述方法还包括:
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度不小于Y1,则确定第二信号在时间上的长度为Z1,其中所述第二信号包含所述第一信号,Z1属于长度集合{L1,L2,…Ln},且所述第二信号在时间上的结束位置位于所述第一子帧的结束边界,其中n为不小于1的整数,
    Figure PCTCN2014090655-appb-100007
    1≤i<n,Li<Li+1,Y1为不等于X2且不小于零的时间长度。
  58. 如权利要求56所述的方法,其特征在于,所述方法还包括:
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于Y2,则确定第二信号在时间上的长度为Z2,其中所述第二信号包含所述第一信号,Z2属于长度集合{L′1,L′2,…L′n},且所述第二信号在时间上的结束位置位于与第一小区上的第二子帧中,所述第二子帧为与所述第一子帧相邻的下一个子帧,其中n为不小于1的整数,
    Figure PCTCN2014090655-appb-100008
    1≤i<n,L′i<L′i+1,Y2为不等于X2且不小于零的时间长度。
  59. 如权利要求56所述的方法,其特征在于,所述方法还包括:
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于Y3,则确定第二信号在时间上的长度为Z3,其中所述第二信号包含所述第一信号,Z3小于M2且所述第二信号在时间上的结束位置位于所述第一子帧 的结束边界,M2为第二信号在时间上的最小长度,Y3为不等于X2且不小于零的时间长度。
  60. 如权利要求49-53中任一项所述的方法,其特征在于,所述根据所述参考时间点,确定数据信道的位置,包括:
    如果所述参考时间点与所述第一子帧的结束边界之间的时间长度小于X3,且所述参考时间点与所述第一子帧的结束边界之间的时间长度大于Y4,则确定所述数据信道的位置位于所述第一子帧中,其中X3、Y4为不小于零的时间长度且Y4不大于X3。
  61. 如权利要求60所述的方法,其特征在于,所述数据信道承载第一小区上的第二子帧的数据调度信息,其中所述第二子帧为与所述第一子帧相邻的下一个子帧。
  62. 如权利要求49-61中任一项所述的方法,其特征在于,所述参考时间点与所述数据信道的位置存在对应关系,其中每个所述参考时间点对应一个索引,每个所述索引对应一个所述数据信道的位置。
  63. 如权利要求49-62中任一项所述的方法,所述数据信道的位置包括以下位置中的至少一种:控制数据信道的位置、业务数据信道的位置。
  64. 如权利要求49-63中任一项所述的方法,其特征在于,所述第一小区为免许可频谱上的小区。
PCT/CN2014/090655 2014-11-07 2014-11-07 数据传输方法和数据传输设备 WO2016070436A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14905500.6A EP3200515B1 (en) 2014-11-07 2014-11-07 Data transmission method and data transmission device
PCT/CN2014/090655 WO2016070436A1 (zh) 2014-11-07 2014-11-07 数据传输方法和数据传输设备
CN201480034372.4A CN105850194B (zh) 2014-11-07 2014-11-07 数据传输方法和数据传输设备
KR1020177012868A KR101923114B1 (ko) 2014-11-07 2014-11-07 데이터 전송 방법 및 데이터 전송 장치
US15/588,417 US10491263B2 (en) 2014-11-07 2017-05-05 Data transmission method and data transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090655 WO2016070436A1 (zh) 2014-11-07 2014-11-07 数据传输方法和数据传输设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/588,417 Continuation US10491263B2 (en) 2014-11-07 2017-05-05 Data transmission method and data transmission device

Publications (1)

Publication Number Publication Date
WO2016070436A1 true WO2016070436A1 (zh) 2016-05-12

Family

ID=55908448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090655 WO2016070436A1 (zh) 2014-11-07 2014-11-07 数据传输方法和数据传输设备

Country Status (5)

Country Link
US (1) US10491263B2 (zh)
EP (1) EP3200515B1 (zh)
KR (1) KR101923114B1 (zh)
CN (1) CN105850194B (zh)
WO (1) WO2016070436A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314604A (zh) * 2016-06-20 2019-02-05 瑞典爱立信有限公司 灵活的传送网
CN111193579A (zh) * 2018-11-13 2020-05-22 维沃移动通信有限公司 参考时间位置确定方法、传输方法、终端及网络设备

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113386A4 (en) * 2014-03-18 2017-04-12 Huawei Technologies Co., Ltd. Network listening method and device
US10103821B2 (en) * 2014-12-02 2018-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Detection of sleeping cells in a communication network
CN112135365A (zh) * 2015-02-03 2020-12-25 日本电气株式会社 用于执行部分子帧传输的方法和装置
WO2016163802A1 (ko) * 2015-04-09 2016-10-13 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 cca를 수행하는 방법 및 이를 지원하는 장치
CN106302269B (zh) * 2015-06-04 2020-06-23 电信科学技术研究院 一种信道状态信息的反馈及其控制方法及装置
CN114070536B (zh) 2015-07-16 2023-07-04 北京三星通信技术研究有限公司 一种信号发送与接收的方法和用户设备
US10651987B2 (en) * 2015-08-31 2020-05-12 Qualcomm Incorporated Operator identification for co-existence on a shared communication medium
US10334546B2 (en) * 2015-08-31 2019-06-25 Qualcomm Incorporated Synchronization signaling coordination for co-existence on a shared communication medium
US10256955B2 (en) 2015-09-29 2019-04-09 Qualcomm Incorporated Synchronization signals for narrowband operation
EP3840279A1 (en) * 2016-02-17 2021-06-23 Samsung Electronics Co., Ltd. Method and device for performing communication in wireless communication system
JP6737526B2 (ja) 2016-11-08 2020-08-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド サブフレームスケジューリング方法及び基地局
US10701644B2 (en) * 2017-06-06 2020-06-30 Qualcomm Incorporated Enhanced macro diversity in new radio (NR)
US10833787B2 (en) * 2017-07-18 2020-11-10 Cable Television Laboratories, Inc. Systems and methods for detection of LTE ingress using LTE signal properties
CN109413722B (zh) 2017-08-18 2021-10-22 华为技术有限公司 发送和接收上行信息的方法和装置
CN109803391A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法和通信装置
US10693582B2 (en) * 2018-02-28 2020-06-23 The Johns Hopkins University Localization of reference symbols in communications systems
CN110324898B (zh) * 2018-03-29 2021-08-27 北京紫光展锐通信技术有限公司 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
US10873440B2 (en) * 2018-07-12 2020-12-22 Qualcomm Incorporated Time division duplexing techniques in shared radio frequency spectrum
EP3902351B1 (en) * 2019-02-11 2023-05-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource indication method, terminal device, and network device
CN110115088B (zh) * 2019-03-28 2022-04-15 北京小米移动软件有限公司 非授权频谱上的资源指示方法、装置、系统及存储介质
CN112911696B (zh) * 2019-11-19 2022-06-10 维沃移动通信有限公司 获取参考时间的方法、指示参考时间的方法和设备
US11464023B2 (en) 2020-02-21 2022-10-04 Semiconductor Components Industries, Llc Termination of wireless transmission of a data frame
EP4191921A4 (en) * 2020-07-29 2023-09-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD AND DEVICE, WIRELESS COMMUNICATION SYSTEM AND DEVICE AND TERMINAL
WO2024076984A1 (en) * 2022-10-07 2024-04-11 Qualcomm Incorporated Sharing a frequency band between licensed access and unlicensed access

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017738A (zh) * 2008-10-31 2011-04-13 联发科技股份有限公司 蜂窝式正交频分复用系统中的毫微微小区的下行链路网络同步机制
WO2013138772A1 (en) * 2012-03-16 2013-09-19 Qualcomm Incorporated Access point synchronization with cooperative mobile devices
CN103348746A (zh) * 2011-02-11 2013-10-09 捷讯研究有限公司 时间提前的随机接入信道发送

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006006A2 (ko) * 2011-07-07 2013-01-10 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
CN103312650B (zh) * 2012-03-16 2016-12-14 华为技术有限公司 数据传输方法、基站和用户设备
CN102739379B (zh) * 2012-06-11 2015-05-20 北京创毅讯联科技股份有限公司 数据传输方法和设备
US8891491B2 (en) * 2012-06-15 2014-11-18 Intel Mobile Communications GmbH Method of processing signals and a signal processor
EP2757850B1 (en) * 2013-01-16 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Radio communication in unlicensed band
CN104301273B (zh) * 2014-08-25 2020-03-10 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
CN105592467A (zh) 2014-11-07 2016-05-18 北京三星通信技术研究有限公司 长期演进通信系统中竞争信道资源的方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017738A (zh) * 2008-10-31 2011-04-13 联发科技股份有限公司 蜂窝式正交频分复用系统中的毫微微小区的下行链路网络同步机制
CN103348746A (zh) * 2011-02-11 2013-10-09 捷讯研究有限公司 时间提前的随机接入信道发送
WO2013138772A1 (en) * 2012-03-16 2013-09-19 Qualcomm Incorporated Access point synchronization with cooperative mobile devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314604A (zh) * 2016-06-20 2019-02-05 瑞典爱立信有限公司 灵活的传送网
US10728890B2 (en) * 2016-06-20 2020-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Flexible transmission grid
CN109314604B (zh) * 2016-06-20 2021-10-19 瑞典爱立信有限公司 灵活的传送网
CN111193579A (zh) * 2018-11-13 2020-05-22 维沃移动通信有限公司 参考时间位置确定方法、传输方法、终端及网络设备

Also Published As

Publication number Publication date
US10491263B2 (en) 2019-11-26
CN105850194B (zh) 2019-05-28
EP3200515A4 (en) 2017-10-25
KR20170069264A (ko) 2017-06-20
CN105850194A (zh) 2016-08-10
KR101923114B1 (ko) 2018-11-28
EP3200515A1 (en) 2017-08-02
US20170237463A1 (en) 2017-08-17
EP3200515B1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
WO2016070436A1 (zh) 数据传输方法和数据传输设备
US11856614B2 (en) Method and apparatus for accessing a wireless network
US10652882B2 (en) Data transmission method, wireless network device, and communications system
JP6812370B2 (ja) 拡張マシンタイプ通信のためのシステム情報
EP3713307A1 (en) Communication system, communication terminal device, and communication node
US10291451B2 (en) PRACH design for larger cell radius
JP7292268B2 (ja) ブロードキャストチャネルのためのレートマッチング
WO2015106715A1 (zh) 信号传输方法和装置
CN109561496B (zh) 一种laa-lte系统数据传输方法、终端及基站
KR20220098406A (ko) 비허가된 라디오 주파수 스펙트럼 대역을 통해 동기화 신호들을 송신 및 수신하기 위한 기술들
WO2018103607A1 (zh) 接收上行参考信号的方法和装置
WO2018082678A1 (zh) 通信方法和通信装置
CN109314958A (zh) 免授权频段上的通信方法、终端设备以及网络设备
CN106031073B (zh) 一种数据传输的方法、用户设备、传输设备及系统
WO2017075822A1 (zh) 数据传输的方法、接入网设备及用户设备
US11882600B2 (en) Conditional uplink grant in unlicensed spectrum
CN107113275A (zh) 一种数据传输方法、装置和系统
KR20200018118A (ko) Nr v2x 시스템을 위한 동기화 절차 수행 방법 및 그 장치
WO2017166311A1 (zh) 一种上行信息的传输方法及设备、系统
CN117999836A (zh) 用于用户装备间协调的技术
CN117694015A (zh) 对由用户装备(ue)或网络发起的信道占用时间(cot)的动态指示
WO2017028045A1 (zh) 一种确定信道质量的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905500

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014905500

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177012868

Country of ref document: KR

Kind code of ref document: A