WO2017166306A1 - 反馈信息的发送、接收方法、终端设备及接入网设备 - Google Patents

反馈信息的发送、接收方法、终端设备及接入网设备 Download PDF

Info

Publication number
WO2017166306A1
WO2017166306A1 PCT/CN2016/078361 CN2016078361W WO2017166306A1 WO 2017166306 A1 WO2017166306 A1 WO 2017166306A1 CN 2016078361 W CN2016078361 W CN 2016078361W WO 2017166306 A1 WO2017166306 A1 WO 2017166306A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
downlink
terminal device
access network
network device
Prior art date
Application number
PCT/CN2016/078361
Other languages
English (en)
French (fr)
Inventor
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680083068.8A priority Critical patent/CN108702260B/zh
Priority to PCT/CN2016/078361 priority patent/WO2017166306A1/zh
Priority to EP16896085.4A priority patent/EP3413491A4/en
Publication of WO2017166306A1 publication Critical patent/WO2017166306A1/zh
Priority to US16/148,539 priority patent/US10700842B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for transmitting and receiving feedback information, a terminal device, and an access network device.
  • the Long Term Evolution (LTE) system is based on Orthogonal Freq Terminal Multiple Access (OFDMA) technology, and the time-frequency resources are divided into OFDM symbols and frequencies in the time domain dimension.
  • the OFDM subcarrier on the domain dimension, and the smallest resource granularity is called a Resource Element (RE), that is, an OFDM symbol in the time domain and a time-frequency grid point of one OFDM subcarrier on the frequency domain.
  • the transmission of services in the LTE system is based on base station scheduling.
  • the basic time unit of scheduling is one subframe, and the length of time is 1 millisecond.
  • a subframe with a normal cyclic prefix includes 14 OFDM symbols, and a subframe with an extended cyclic prefix. Includes 12 OFDM symbols. It is of course not excluded that the LTE system or other wireless systems that continue to evolve in the future adopt shorter subframes, such as the length of time of the future subframe is equivalent to the length of time of the current one OFDM symbol.
  • the specific scheduling procedure in the LTE system is that the base station sends a control channel, and the control channel can carry scheduling information of the data channel.
  • the control channel may be a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH).
  • the data channel may be a Physical Downlink Shared Channel (PDSCH) or a Physical Uplink Shared Channel (PUSCH).
  • the scheduling information includes control information such as resource allocation information and adjustment coding mode.
  • LTE also supports carrier aggregation technology, that is, the base station configures multiple carriers to one UE to increase the data rate of the UE.
  • carrier aggregation When carrier aggregation is performed, multiple carriers transmitted by the base station are synchronously transmitted, that is, the subframe boundaries of the multiple carriers are aligned, and the UE may separately receive the PDCCH and the corresponding PDSCH on each carrier, each carrier.
  • the detection process is similar to the single carrier case described above.
  • the concept of the carrier and the serving cell in the LTE system is equivalent. For example, the UE accesses one carrier and accesses one serving cell is equivalent. The following is introduced in terms of the concept of the serving cell.
  • the LTE system adopts a hybrid automatic repeat request (Hybrid Automatic Repeat Request) mechanism.
  • Hybrid Automatic Repeat Request For example, the following data transmission is performed by the UE, and the UE decodes the PDSCH sent by the base station. If the decoding is correct, for example, the Cyclic Redundancy Check (CRC) passes, the UE sends a confirmation to the base station (Acknowledge). , ACK) information; if the decoding is wrong, such as the CRC fails, the UE will feed back to the base station Nacknowledge (NACK) information.
  • CRC Cyclic Redundancy Check
  • NACK Nacknowledge
  • the subframe interval between the subframe in which the UE receives the PDSCH and the subframe in which the UE feeds back the ACK or NACK corresponding to the PDSCH is predefined, thus ensuring feedback of the UE to the ACK or the NACK and the base station Reception of ACK or NACK.
  • the spectrum deployed by the serving cell of the existing LTE system is the licensed spectrum, that is, it can only be used by the carrier network that purchased the licensed spectrum.
  • the unlicensed spectrum is becoming more and more popular, because unlicensed spectrum does not need to be purchased and can be used by any operator, so certain regulations need to be met to solve the coexistence problem between different operators.
  • there will be an increasing shortage of spectrum resources which limits the service capabilities of LTE systems based on licensed spectrum.
  • WiFi can use a large amount of unlicensed spectrum to enhance its service capabilities, it also brings great competition challenges to the LTE camp. Therefore, the LTE system uses an unlicensed spectrum as an evolution direction, and an LTE system deployed on an unlicensed spectrum is called an Unlicensed-LTE (U-LTE) system.
  • U-LTE Unlicensed-LTE
  • the current mainstream of U-LTE system deployment The technology is to perform carrier aggregation on the U-LTE serving cell deployed on the unlicensed spectrum as the secondary serving cell and the primary serving cell deployed on the licensed spectrum to serve the UE; nor to exclude the future U-LTE serving cell from serving the UE independently, that is, not The serving cell that needs to grant the spectrum is assisted.
  • LBT Listen-Before-Talk
  • CCA Clear Channel Assessment
  • the base station or the UE can send a signal on the channel, and even in some cases, the base station or the UE needs to perform a random backoff, and the channel is idle only during the random backoff time. Only then can the signal be sent on this channel.
  • the U-LTE serving cell does not use a fixed number of TDD uplink and downlink configurations in the existing LTE, but a flexible uplink and downlink configuration, which makes U-LTE have no way to use the fixed 4 subframe intervals of the FDD.
  • the uplink ACK or NACK feedback timing relationship cannot use the fixed uplink ACK or NACK feedback timing relationship under the current TDD uplink and downlink configurations.
  • Embodiments of the present invention provide a method for transmitting and receiving feedback information, a terminal device, and an access network device, which can solve the problem of transmitting feedback information on an unlicensed spectrum.
  • an embodiment of the present invention provides a method for sending feedback information, including:
  • the terminal device receives the downlink subframe in the downlink subframe set in the downlink burst. Downlink data sent by the network access device;
  • the terminal device determines, in the at least one uplink burst, a transmission subframe for transmitting feedback information corresponding to the downlink data, where the downlink subframe set is a set of downlink subframes associated with the transmission subframe. a subset, the at least one uplink burst, after the downlink burst, each of the at least one uplink burst includes at least one uplink subframe;
  • the terminal device sends the feedback information to the access network device in the sending subframe.
  • the terminal device determines the transmission subframe from the candidate transmission subframe set.
  • the method further includes: determining, by the terminal device, the candidate transmit subframe set in the at least one uplink burst according to the signaling of the access network device.
  • the signaling is a common downlink control signaling
  • the terminal device receives the common downlink control signaling in a second-to-last and/or a first-last downlink subframe in the downlink burst.
  • the terminal device determines the sending subframe from the candidate sending subframe set according to a hybrid automatic repeat request HARQ timing relationship.
  • the method before the sending, by the terminal device, the feedback information to the access network device in the sending subframe, the method further includes:
  • the terminal device receives an index indication sent by the access network device in each downlink subframe of the at least one downlink subframe in the downlink subframe set, where the value of the index indication is according to any of the following Information is determined:
  • the index indicates a first subframe sequence number of the downlink subframe in the downlink burst
  • the index indicates a first subframe sequence number of the downlink subframe from the first start scheduling subframe in the downlink burst, and the first start scheduling subframe is the terminal device in the downlink burst.
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set from the second start scheduling subframe, and the second start scheduling subframe is the downlink of the terminal device.
  • the method further includes:
  • the terminal device generates a codebook of the feedback information, where the original bits of the feedback information corresponding to the at least one first downlink subframe and/or the at least one second downlink subframe in the downlink subframe set are respectively
  • the codebook is sorted according to the value indicated by the index, where the first downlink subframe and the second downlink subframe are downlink data received by the terminal device in the downlink subframe set, respectively.
  • the downlink subframe and the downlink subframe that does not receive the downlink data;
  • the terminal device performs channel coding on the feedback information according to the codebook
  • the terminal device generates a codebook of the feedback information according to the index indication and the common downlink control signaling, where the common downlink control signaling is a countdown of the terminal device in the downlink burst. Signaling received from the access network device in the second and/or bottom-down downlink subframes.
  • an embodiment of the present invention provides a method for receiving feedback information, including:
  • the access network device sends downlink data to the terminal device in a downlink subframe in the downlink subframe set in the downlink burst;
  • the access network device determines, in the at least one uplink burst, a receiving subframe for receiving feedback information corresponding to the downlink data, where the downlink subframe set is formed by a downlink subframe associated with the receiving subframe a subset of the set, the at least one uplink burst after the downlink burst, each of the at least one uplink burst includes At least one uplink subframe;
  • the access network device receives the feedback information in the receiving subframe.
  • the access network device determines the received subframe from the set of candidate receiving subframes.
  • the method further includes: the access network device notifying the terminal device of the candidate receiving subframe set by sending signaling.
  • the signaling is a common downlink control signaling
  • the access network device sends the public downlink control signal in a second-to-last and/or a first-last downlink subframe in the downlink burst. make.
  • the access network device determines the receiving subframe from the candidate receiving subframe set according to a hybrid automatic repeat request HARQ timing relationship.
  • the access network device before receiving the feedback information in the receiving subframe, further includes:
  • the access network device sends an index indication to the terminal device in each of the downlink subframes of the at least one downlink subframe in which the terminal device performs downlink data transmission in the downlink subframe set, where The value indicated by the index is determined according to any of the following information:
  • the index indicates a first subframe sequence number of the downlink subframe in the downlink burst
  • the index indicates a first subframe sequence number of the downlink subframe from the first start scheduling subframe in the downlink burst, and the first start scheduling subframe is the terminal device in the downlink burst.
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set from the second start scheduling subframe, where the second initial scheduling subframe is the terminal The first subframe in which the device is scheduled by the access network device in the downlink subframe set.
  • the access network device After receiving the feedback information in the receiving subframe, the access network device further includes:
  • the access network device performs channel decoding on the received feedback information according to the size of the codebook of the feedback information
  • the access network device parses the codebook of the channel information after the channel decoding, and the feedback corresponding to the at least one first downlink subframe and/or the at least one second downlink subframe in the downlink subframe set respectively
  • the original bits of the information are sorted according to the value indicated by the index in the codebook, where the first downlink subframe and the second downlink subframe are respectively And a downlink subframe in which the terminal device performs downlink data transmission in the downlink subframe set and a downlink subframe in which the terminal device does not perform downlink data transmission.
  • the index indication and the common downlink control signaling are used to indicate, to the terminal device, a codebook of the feedback information, where the common downlink control signaling is that the access network device is in the downlink burst. Signaling sent in the penultimate and/or penultimate downlink subframe in the middle.
  • an embodiment of the present invention provides a terminal device, where the terminal device includes:
  • a receiving unit configured to receive, by the terminal device, downlink data sent by the access network device in a downlink subframe in a downlink subframe set in the downlink burst;
  • a determining unit configured to determine, in the at least one uplink burst, a sending subframe for transmitting feedback information corresponding to the downlink data received by the receiving unit, where the downlink subframe set is the sending a subset of the set of downlink subframes associated with the subframe, the at least one uplink burst after the downlink burst, each uplink burst in the at least one uplink burst includes at least one uplink subframe ;
  • a sending unit configured to send, by the terminal device, the feedback information to the access network device in the sending subframe determined by the determining unit.
  • the determining unit is configured to determine, by the terminal device, a candidate transmit subframe set in the at least one uplink burst, where the candidate transmit subframe set includes at least one candidate transmit subframe;
  • the determining unit is configured to determine, by the terminal device, the sending subframe from the candidate sending subframe set determined by the determining unit.
  • the determining unit is configured to determine, by the terminal device, the candidate transmit subframe set in the at least one uplink burst according to the signaling of the access network device.
  • the signaling is a common downlink control signaling
  • the receiving unit is configured to receive, by the terminal device, a second and/or a last-numbered downlink subframe in the downlink burst.
  • the public downlink control signaling is described.
  • the determining unit is configured to determine, by the terminal device, the sending subframe from the set of candidate transmission subframes determined by the determining unit according to a hybrid automatic repeat request HARQ timing relationship.
  • the method before the sending, by the terminal device, the feedback information to the access network device in the sending subframe, the method further includes:
  • the receiving unit is further configured to receive, by the terminal device, an index indication sent by the access network device in each downlink subframe in the at least one downlink subframe in the downlink subframe set, where the index is The value of the indication is determined according to any of the following information:
  • the index indicates a first subframe sequence number of the downlink subframe in the downlink burst
  • the index indicates a first subframe sequence number of the downlink subframe from the first start scheduling subframe in the downlink burst, and the first start scheduling subframe is the terminal device in the downlink burst.
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set from the second start scheduling subframe, and the second start scheduling subframe is the downlink of the terminal device.
  • the terminal device further includes:
  • a coding unit configured to generate, by the terminal device, the codebook of the feedback information, where the feedback information corresponding to the at least one first downlink subframe and/or the at least one second downlink subframe in the downlink subframe set respectively
  • the original bits are sorted according to the value indicated by the index in the codebook, where the first downlink subframe and the second downlink subframe are respectively the downlink device set of the terminal device. a downlink subframe in which downlink data is received and a downlink subframe in which downlink data is not received;
  • the coding unit is configured to: the terminal device performs channel coding on the feedback information according to the codebook generated by the coding unit;
  • the sending unit is configured to send, by the terminal device, the feedback information after performing the channel coding according to the coding unit to the access network device in the sending subframe.
  • the coding unit is configured to generate, by the terminal device, a codebook of the feedback information according to the index indication and the common downlink control signaling, where the public downlink control signaling is Signaling received from the access network device in the penultimate and/or penultimate downlink subframe in the downlink burst.
  • an embodiment of the present invention provides an access network device, where the access network device includes:
  • a sending unit configured to send, by the access network device, downlink data to the terminal device in a downlink subframe in the downlink subframe set in the downlink burst;
  • a determining unit configured to determine, in the at least one uplink burst, a receiving subframe for receiving feedback information corresponding to the downlink data sent by the sending unit, where the downlink subframe set is Transmitting a subset of the set of downlink subframes associated with the subframe, the at least one uplink burst, after the downlink burst, each uplink burst of the at least one uplink burst includes at least one uplink Subframe
  • a receiving unit configured to receive, by the access network device, the feedback information in the receiving subframe determined by the determining unit.
  • the determining unit is configured to determine, by the access network device, a candidate receiving subframe set in the at least one uplink burst, where the candidate receiving subframe set includes One less candidate receiving subframe;
  • the determining unit is further configured to determine, by the access network device, the receiving subframe from the set of candidate receiving subframes determined by the determining unit.
  • the sending unit is configured to notify, by the access network device, the candidate receiving subframe set determined by the determining unit to the terminal device by sending signaling.
  • the signaling is a common downlink control signaling, where the sending unit is used by the access network device in a second-to-last and/or countdown first downlink subframe in the downlink burst. Sending the common downlink control signaling.
  • the determining unit is configured to determine, by the access network device, the receiving subframe from the candidate receiving subframe set determined by the determining unit according to a hybrid automatic repeat request HARQ timing relationship.
  • the access network device before receiving the feedback information in the receiving subframe, further includes:
  • the sending unit is configured to: in the downlink subframe set, each of the at least one downlink subframe in the at least one downlink subframe in which the terminal device performs downlink data transmission in the downlink subframe set, respectively
  • the terminal device sends an index indication, and the value indicated by the index is determined according to any one of the following information:
  • the index indicates a first subframe sequence number of the downlink subframe in the downlink burst
  • the index indicates a first subframe sequence number of the downlink subframe from the first start scheduling subframe in the downlink burst, and the first start scheduling subframe is the terminal device in the downlink burst.
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set from the second start scheduling subframe, and the second start scheduling subframe is the downlink of the terminal device.
  • the determining unit is further configured to determine a size of the codebook of the feedback information after receiving the feedback information in the receiving subframe.
  • a decoding unit configured to: the access network device performs channel decoding on the received feedback information according to a size of a codebook of the feedback information;
  • a parsing unit configured to parse, by the access network device, a codebook of the channel decoded feedback information, at least one first downlink subframe and/or at least one second downlink subgroup in the downlink subframe set
  • the original bits of the feedback information corresponding to the frames are respectively sorted according to the value indicated by the index in the codebook, where the first downlink subframe and the second downlink subframe are respectively the access
  • the network device schedules, in the downlink subframe set, a downlink subframe in which the terminal device performs downlink data transmission, and a downlink subframe in which the terminal device does not schedule downlink data transmission.
  • the index indication and the common downlink control signaling are used to indicate, to the terminal device, a codebook of the feedback information, where the common downlink control signaling is that the access network device is in the downlink burst. Signaling sent in the penultimate and/or penultimate downlink subframe in the middle.
  • the method for transmitting and receiving feedback information, the terminal device, and the access network device receive the downlink data sent by the access network device in the downlink subframe in the downlink subframe set in the downlink burst by the terminal device. And the terminal device determines, in the at least one uplink burst, a transmission subframe for transmitting feedback information corresponding to the downlink data, where the downlink subframe set is a downlink subframe associated with the transmission subframe. a subset of the set, the at least one uplink burst, after the downlink burst, each of the at least one uplink burst includes at least one uplink subframe, and the terminal device is in the transmitter
  • the feedback information is sent to the access network device in a frame.
  • the solution provided by the embodiment of the present invention is suitable for transmitting feedback information, and can solve the problem of sending feedback information on the unlicensed spectrum.
  • FIG. 1 is a flowchart of a method for sending feedback information according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a relationship between a downlink burst, a downlink subframe set, and an uplink burst according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a downlink burst, a downlink subframe, and a downlink subframe according to an embodiment of the present invention; A schematic diagram of the relationship between sending subframes;
  • FIG. 4 is another schematic diagram of a relationship between a downlink burst, a downlink subframe set, and a transmission subframe according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of another method for sending feedback information according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another method for sending feedback information according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a method for setting a value of an index indication according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of a method for receiving feedback information according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of another method for receiving feedback information according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of another method for receiving feedback information according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a logical structure of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a logical structure of another terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a logical structure of an access network device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a logical structure of another access network device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a logical structure of a terminal device in a method for sending feedback information according to an embodiment of the present disclosure
  • FIG. 16 is a schematic diagram of a logical structure of an access network device in a method for receiving feedback information according to an embodiment of the present invention.
  • the LTE system is taken as an example in the foregoing background, the person skilled in the art should know that the present invention is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as the Global System for Global System (Global System for Mobile System). Mobile Communication, GSM), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA) system, and new network systems.
  • GSM Global System for Global System
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • the terminal device may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the access network device in the embodiment of the present invention may be a base station, or an access point, or may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface.
  • the base station can be used to exchange received air frames and IP packets with each other.
  • the conversion as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network may comprise an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • the LTE system supports two types of duplex modes: Frequency Division Multiplexing (FDD) and Time Duplexing Division (TDD).
  • FDD Frequency Division Multiplexing
  • TDD Time Duplexing Division
  • the downlink and uplink are transmitted in different carriers; for TDD systems, the uplink and downlink are transmitted at different times of the same carrier.
  • a TDD carrier includes a downlink subframe, an uplink subframe, and a special subframe, where the special subframe includes a Downlink Pilot Time Slot (DwPTS), a Guard Period (GP), and an Uplink Guide.
  • Uplink Pilot Time Slot (UpPTS) has three parts, of which GP is mainly used for downlink to uplink device conversion time and propagation delay compensation.
  • the downlink data can be transmitted in the DwPTS.
  • the uplink data cannot be transmitted in the UpPTS of the LTE system. Therefore, the special subframe can be regarded as a downlink subframe.
  • LTE currently supports seven different TDD uplink and downlink configurations, as shown in Table 1, where D represents a downlink subframe, S represents a special subframe, and U represents an uplink subframe.
  • the feedback timing of PDSCH to ACK or NACK is predefined. Specifically, for the FDD, after receiving the information of the PDSCH bearer in the subframe n-4, the terminal device feeds back the ACK or NACK corresponding to the PDSCH in the subframe n.
  • the timing relationship or timing relationship of the PDSCH and its corresponding ACK or NACK is as shown in Table 2.
  • the subframe of the standard number is the uplink subframe n for feeding back ACK or NACK, and the number of the identifier is indicated in the uplink subframe n.
  • LTE also supports CA technology, that is, the base station configures multiple carriers for the terminal device to improve the data transmission rate of the terminal device.
  • CA the multiple carriers sent by the base station are synchronized in time, and the terminal device can separately detect the PDCCH and the corresponding PDSCH for each carrier, where the specific detection process of each carrier is similar to the single carrier case, where No longer.
  • the LTE system supports FDD CA, TDD CA, and FDD+TDD CA.
  • TDD CA For the TDD CA, it is further divided into a TDD CA with the same uplink and downlink configuration and a TDD CA with different uplink and downlink configurations.
  • the PUCCH carrying the ACK or the NACK may be configured on the primary carrier of the terminal device, or the PUCCH may be simultaneously configured on the primary carrier and one of the secondary carriers.
  • the PUCCH transmission mode in the single carrier or CA mode includes various modes, such as a bonding mode, a channel selection mode, and a codebook multiplexing mode. Among them, a codebook multiplexing mode is commonly used.
  • the codebook multiplexing mode is described by taking the TDD uplink and downlink configuration 2 of the mainstream deployment in the current network as an example.
  • the uplink subframe 2 of one carrier can support 4 ACK or NACK bits.
  • the CA of the TDD uplink and downlink configuration 2 of the 5 carriers can support the feedback of 20 ACK or NACK bits.
  • the downlink subframe set associated with the uplink subframe 2 can be regarded as the above configuration 5 for the terminal device. Downlink subframes 4, 5, 6, and 8 in the carrier.
  • the codebook generation of the ACK or NACK that needs to be fed back in the uplink subframe 2 is determined based on the downlink subframe set associated with the uplink subframe 2, and the codebook of the ACK or NACK is the code.
  • the original ACK or NACK original bit is arranged in a certain order.
  • the ACK or NACK codebook size is 20, and the specific ordering may be the order of the carrier after the first subframe, that is, the carrier 1 is arranged first.
  • the ACK or NACK bits corresponding to the subframes 4, 5, 6, and 8 are arranged, and the ACK or NACK bits corresponding to the subframes 4, 5, 6, and 8 of the carrier 2 are rearranged, and the subframes corresponding to the remaining carriers are continuously arranged according to the foregoing manner.
  • ACK or NACK bit Specifically, for the unscheduled downlink subframe, or the ACK or NACK bit position corresponding to the downlink subframe in which the terminal device does not receive the downlink data, padding NACK information is required.
  • the ACK or NACK corresponding to the PDSCH transmitted on the serving cell on the unlicensed spectrum may be transmitted on the current serving cell of the unlicensed spectrum or other serving cell of the unlicensed spectrum.
  • the timing relationship of the above-mentioned predefined PDSCH to ACK or NACK is difficult to guarantee on the serving cell of the unlicensed spectrum.
  • the terminal device performs LBT before sending an ACK or NACK on the unlicensed spectrum. If the channel is not idle, the terminal device cannot send an ACK or a NACK on a certain uplink.
  • the uplink and downlink subframe configuration on the unlicensed spectrum may be flexible.
  • a burst transmission of the U-LTE system includes consecutive N downlink subframes, followed by a special subframe, or no special subframe but only a GP. Then, followed by M uplink subframes, N and M are flexibly selected by the base station for each burst transmission, which may result in failure to follow the timing relationship of some previous TDD uplink and downlink configuration, that is, the timing in Table 2 cannot be followed. relationship.
  • the method for sending the feedback information provided by the embodiment of the present invention is applied to the terminal device. As shown in FIG. 1 , the method includes:
  • the terminal device is in a downlink subframe in a downlink subframe set in a downlink burst. Receive downlink data sent by the access network device.
  • the downlink subframe includes a normal downlink subframe, such as a subframe including 14 OFDM symbols in a normal cyclic prefix configuration in the LTE system, and may also include some special subframes.
  • the portion for downlink transmission may be less than 14 OFDM symbols.
  • the other OFDM symbols of the special subframe may be used for transmitting uplink information or used as guard time; nor is it excluded that the portion of the special subframe used for downlink transmission is less than 14 OFDM symbols and there are no other remaining OFDM symbols, that is, the special sub- The length of the frame is less than 14 OFDM symbols.
  • the downlink burst generally refers to multiple downlink subframes that are continuously occupied in time.
  • a sending node such as an access network device (such as a base station) or a terminal device
  • the length of time that a transmission on an unlicensed spectrum can continuously occupy a channel is limited, and is generally limited by local regulations.
  • the maximum occupation time is different depending on the priority of the transmitted service. In general, the higher the service priority, the shorter the maximum occupancy time and vice versa.
  • the Internet telephony service as an example, if the service has a higher priority, it can generally occupy 2 milliseconds in a row.
  • the data transmission service is used, such as file downloading, the service has a lower priority, and generally can occupy 8 or 10 milliseconds continuously. .
  • the access network device transmits information on the carrier of the unlicensed spectrum in the form of one-time burst.
  • the downlink burst in this step there may be only one downlink subframe set, or multiple downlink subframe sets; in addition, the downlink burst may continue to follow another downlink burst, or may follow an uplink burst.
  • the invention is not limited in any way.
  • the receiving, by the terminal device, the downlink data sent by the access network device in the downlink subframe in the downlink subframe set in the downlink burst may include the following steps:
  • the terminal device detects the downlink control channel.
  • the terminal device may detect the downlink control channel in each downlink subframe in the downlink subframe set in the downlink burst, or may detect in a downlink subframe in the downlink subframe set in the downlink burst. Downlink control channel.
  • the downlink data message scheduled by the terminal device on the detected downlink control channel is configured.
  • the downlink data channel is received in the channel, and the downlink data channel may also be referred to as a physical downlink shared channel in the LTE system, and the downlink data channel or the physical downlink shared channel carries downlink data.
  • the downlink control channel and its scheduled downlink data channel are generally in the same downlink subframe, and are of course not excluded in different downlink subframes.
  • the terminal device may receive downlink data in each downlink subframe in the downlink subframe set in the downlink burst, or may receive in a downlink subframe in the downlink subframe set in the downlink burst. Downstream data.
  • the terminal device After receiving the downlink data in the downlink data channel, the terminal device needs to feed back the ACK or NACK corresponding to the downlink data.
  • the downlink data in each downlink data channel corresponds to one ACK or NACK, and it is of course not excluded that multiple downlink data carried in multiple downlink data channels respectively correspond to one ACK or NACK.
  • the present invention is described by taking an example in which downlink data in each downlink data channel corresponds to one ACK or NACK, respectively.
  • the terminal device determines, in the at least one uplink burst, a sending subframe that is used to send feedback information corresponding to the downlink data, where the downlink subframe set is a downlink subframe that is associated with the sending subframe. a subset of the set, the at least one uplink burst, after the downlink burst, each of the at least one uplink burst includes at least one uplink subframe.
  • the transmission subframe of the feedback information is in the at least one uplink burst, and the feedback information sent in the transmission subframe is corresponding to the downlink data previously received in the downlink subframe set, so the at least one uplink The burst must be after the downlink burst.
  • an uplink burst including the transmitting subframe may be followed by the downlink burst; or, as shown in FIG. 4, an uplink burst 2 including the transmitting subframe is followed by The uplink burst of the downlink burst 2, and the uplink burst 2 including the transmission subframe is not in a close relationship with the downlink burst 1, but there are other uplink bursts and/or downlinks. Sudden.
  • the downlink subframe set is a subset of the set of downlink subframes associated with the sending subframe. It should be noted that the subset includes a corpus or a true subset. Specific, such as As shown in FIG. 3, the downlink subframe set 1 is the same as the set of the downlink subframes associated with the transmission subframe 1, that is, the subset is equivalent to the complete set at this time; similarly, the downlink subframe set 2 and the transmit subframe 2 are The set of associated downlink subframes is the same, that is, the subset is equivalent to the full set at this time. As shown in FIG.
  • the downlink subframe set 3 is the same as the set of the downlink subframes associated with the transmit subframe 2, that is, the subset is equivalent to the complete set at this time; and the downlink subframe associated with the transmit subframe 1 is composed.
  • the set is the union of the downlink subframe set 1 and the downlink subframe set 2, so the downlink subframe set 1 is a true subset of the set of downlink subframes associated with the transmit subframe 1, and the downlink subframe set 2 is also sent.
  • the association relationship may be pre-configured, for example, by a preset HARQ timing relationship, where the HARQ timing relationship may be: a subframe in which downlink data is located and a subframe in which feedback information corresponding to the downlink data is sent.
  • the interval between the downlink data is not less than a certain threshold.
  • the threshold is 4, that is, the terminal device can transmit the feedback information of the downlink data in the subframe n+4 at the earliest time when the downlink data is received in the subframe n;
  • the association relationship may also be determined by the access network device before the terminal device is notified, for example, by public signaling or terminal device specific signaling.
  • the terminal device sends the feedback information to the access network device in the sending subframe.
  • the method before sending the feedback information, the method further includes determining, in the sending subframe, a resource used to send the feedback information.
  • the terminal device receives the high layer signaling sent by the access network device, such as RRC (Radio Resource Control) signaling, and obtains, from the RRC signaling, a PUCCH resource set configured by the access network device for the terminal device, where the PUCCH
  • the resource set includes at least one PUCCH resource.
  • the PUCCH in the PUCCH resource set may have the same format, and may also include at least two PUCCH formats.
  • the terminal device receives the resource indication information sent by the access network device.
  • the physical resource for carrying the feedback information is determined from the PUCCH resource set according to the resource indication information. It should be noted that the above It is just a way of indicating resources. Other specific methods are not limited.
  • the sending subframe of the feedback information needs to be determined. Therefore, in another implementation manner provided by the embodiment of the present invention, how is the terminal device As shown in FIG. 5, the foregoing step 102 may be specifically implemented as steps 1021 to 1022:
  • the terminal device determines, in the at least one uplink burst, a candidate transmission subframe set, where the candidate transmission subframe set includes at least one candidate transmission subframe.
  • each of the uplink subframes may be used to send feedback information.
  • the feedback information corresponding to the downlink data in the three downlink subframes in the downlink subframe set 2 may be respectively sent in the last three uplinks in the uplink burst. In the sub-frame.
  • one obvious disadvantage of doing this is that the resource overhead of the feedback information is large.
  • the feedback information in the current LTE system is generally transmitted in a physical uplink control channel in a certain transmission subframe, and the physical uplink control channel generally occupies one resource block in the frequency domain, and the resource overhead is not high at this time.
  • the information transmission on the carrier of the unlicensed spectrum needs to occupy a certain proportion of frequency domain resources.
  • an access network device or a terminal device needs to occupy at least 80% of information on a carrier of an unlicensed spectrum.
  • the frequency domain resource range taking a total of 100 resource blocks of the carrier as an example, requires 80% of the frequency domain resource range.
  • the information transmission on the unlicensed spectrum is also limited by the power spectral density.
  • the transmission power in the 1 MHz bandwidth cannot exceed 10 dBm. Therefore, in order to improve the power efficiency of information transmission, and the above 80% frequency domain resource occupation range
  • a frequency domain resource occupation mode is that one physical uplink control channel occupies 10 resource blocks, and the adjacent resource resource blocks of the 10 resource blocks in the frequency domain are 10 resource blocks.
  • the resource occupation overhead of one physical uplink control channel on the unlicensed spectrum is significantly higher than that of the current LTE system.
  • the terminal device determines the candidate transmission in the at least one uplink burst. And sending a subframe set, where the candidate transmit subframe set includes at least one candidate transmit subframe. For example, as shown in FIG. 3, only two of the four uplink subframes in the uplink burst are determined as candidate transmission subframes, and the other two uplink subframes have no feedback information for the terminal device at least. Resources. In this way, the resource cost of the feedback information can be reduced. For example, the feedback information corresponding to the downlink subframe set 1 is sent in the transmission subframe 1, and the feedback information corresponding to the downlink subframe set 2 is sent in the transmission subframe 2.
  • the terminal device determines, in the at least one uplink burst, a candidate transmit subframe set according to the signaling of the access network device.
  • the signaling is a common downlink control signaling
  • the terminal device receives the common downlink control signaling in a second-to-last and/or a first-last downlink subframe in the downlink burst.
  • the terminal device is notified by using the common downlink control signaling, and the resources of the feedback information of any terminal device are not reserved for some uplink subframes in the uplink burst.
  • the common downlink control signaling may be control information in the common physical downlink control channel, so that the candidate transmission subframe set in the subsequent uplink burst may be dynamically notified based on each downlink burst, and the scheme is flexible.
  • the terminal device determines the sending subframe from the candidate sending subframe set.
  • the terminal device determines the sending subframe from the candidate transmission subframe set according to a hybrid automatic repeat request HARQ timing relationship.
  • the sending subframe may be determined from the candidate transmission subframe set by a preset HARQ timing relationship.
  • the HARQ timing relationship may be that the interval between the subframe in which the downlink data is located and the subframe in which the downlink data is sent is not less than a certain threshold.
  • the threshold is 4, that is, the terminal device is in the subframe.
  • the transmission of the feedback information of the downlink data may be performed at the earliest subframe n+4. The values of other thresholds are not excluded.
  • the index indication needs to be received, and the codebook of the feedback information is generated, so another implementation manner provided by the embodiment of the present invention is provided.
  • the further party is illustrated
  • the method, as shown in FIG. 6, is in addition to the method steps shown in FIGS. 1 and 5, and includes the following steps:
  • the terminal device receives an index indication sent by the access network device in each downlink subframe in the at least one downlink subframe in the downlink subframe set.
  • the value indicated by the index is determined by the access network device according to any one of the following information:
  • the index indicates a first subframe sequence number of the downlink subframe in the downlink burst
  • the index indicates a first subframe sequence number of the downlink subframe from the first start scheduling subframe in the downlink burst, and the first start scheduling subframe is the terminal device in the downlink burst.
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set from the second start scheduling subframe, and the second start scheduling subframe is the downlink of the terminal device.
  • the terminal device generates a codebook of the feedback information, where original bits of feedback information corresponding to at least one first downlink subframe and/or at least one second downlink subframe in the downlink subframe set respectively
  • the codebook is sorted according to the value indicated by the index, where the first downlink subframe and the second downlink subframe are respectively received by the terminal device in the downlink subframe set.
  • the access network device may separately send a common downlink control signaling in the last two subframes of the downlink burst to indicate the end position of the downlink burst.
  • the terminal device In order to determine the downlink subframe set in the downlink burst associated with the foregoing sending subframe, for example, according to the HARQ timing relationship, the terminal device further needs to determine the starting subframe of the downlink burst or the downlink device in the downlink burst. The first subframe to be scheduled.
  • the terminal device can determine which sub-burst is from a blind detection by blindly detecting a reference signal in each downlink subframe, such as a cell-specific reference signal. Frame start.
  • the blind detection by the existence of the reference signal is sometimes unreliable. For example, when the signal to noise ratio is low, the false alarm probability is high, which may result in a certain transmission subframe between the terminal device and the access network device.
  • the understanding of the associated downlink subframe set is inconsistent, which leads to inconsistent understanding of the codebooks of the feedback information, which ultimately leads to incorrect reception of the feedback information by the access network device, resulting in a significant drop in system performance.
  • the downlink burst of the access network device starts from the subframe n, but the terminal device does not detect the reference signal on the subframe n and detects the reference signal on the subframe n+1, so the terminal device considers the downlink The burst starts from the subframe n+1, which may cause the terminal device to understand that the downlink subframe set associated with a certain transmission subframe is one subframe less than the access network device understands, so the codebook of the feedback information It is understood that one bit is lost, and finally the access network device incorrectly receives the feedback information corresponding to the downlink data in all the downlink subframes in the entire downlink subframe set.
  • the downlink burst of the access network device starts from the subframe n, and no downlink information is sent in the subframe n-1, but the terminal device detects the reference signal in the subframe n-1, so the terminal The device considers that the downlink burst starts from the subframe n-1, which may cause the terminal device to understand that the downlink subframe set associated with a certain transmission subframe is one more subframe than the access network device understands, so the feedback information The understanding of the codebook is one bit difference, and finally the access network device incorrectly receives the feedback information corresponding to the downlink data in all the downlink subframes in the entire downlink subframe set.
  • the present invention provides a solution to the problem that the codebook of the foregoing feedback information is inconsistent in understanding the potential occurrence of the access network device and the terminal device, that is, the access network device will be in each scheduled downlink subframe of the terminal device.
  • An index indication is sent, for example, in a physical downlink control channel for scheduling downlink data, and the specific indication may be a displayed bit indication, or may be an implicit indication, such as using a different mask scrambling on the CRC, etc.
  • the codebook used to assist the terminal device to determine the feedback information to be sent in the current transmission subframe is consistent with the actual scheduling situation of the access network device.
  • the setting method of the value indicated by the index has the following four types:
  • the assumptions are given, including the downlink burst, the downlink subframe set, and the scheduling of the corresponding downlink data. It should be noted that the fake The condition is only a specific example, and the setting method of the four index indications of the present invention is not limited to the assumption.
  • the downlink burst starts from subframe 1 to the end of subframe 9, and the downlink burst is followed by an uplink burst, and the uplink burst includes 4 uplink subframes, two of which are A candidate transmission subframe for transmitting feedback information, that is, a transmission subframe 1 and a transmission subframe 2.
  • the association between the downlink subframe set and the transmission subframe determined according to the foregoing HARQ timing relationship is: the downlink subframe set 1 composed of the downlink subframe 1 to the downlink subframe 6 is associated with the transmission subframe 1, and the downlink subframe 7 to the downlink subframe
  • the downlink subframe set 2 composed of the frame 9 is associated with the transmission subframe 2.
  • the access network device performs downlink data scheduling on the terminal device in the downlink subframes 2, 3, 4, 6, 8, and 9, for example, each physical downlink control channel and its corresponding downlink data are sent; the access network device is in the The downlink data scheduling is not performed on the terminal device in the downlink subframes 1, 5, and 7.
  • the terminal device receives the scheduled physical downlink control channel and the corresponding downlink data in the downlink subframes 2, 3, 6, 8, and 9, but does not receive the scheduled physical downlink control in the downlink subframe 4.
  • the channel and the corresponding downlink data that is, for the downlink subframe 4, the terminal device has a missed detection.
  • the index indication is described by using the bit indication:
  • the index indication method is set one:
  • the value of the index indication is determined by the access network device according to the following information: the index indicates a first subframe sequence number of the downlink subframe in the downlink burst.
  • the downlink subframes scheduled by the terminal device are 2, 3, 4, 6, 8, and 9, so the access network device sets the values of the corresponding index indications separately. It is 2, 3, 4, 6, 8, and 9.
  • the values of the index indications received by the terminal device are 2, 3, 6, 8, and 9, respectively, in consideration of the missed detection of the downlink subframe 4.
  • the terminal device receives the last two subframes of the downlink burst, that is, at least one common downlink control channel in the downlink subframes 8 and 9, and further determines that the downlink subframe 9 is the last subframe of the downlink burst, and then determines that the downlink subframe 9 is the last subframe of the downlink burst, and then In combination with the index indication received by the terminal device, the terminal device determines that the feedback information corresponding to the first, fourth, fifth, and seventh subframes of the downlink burst needs to be fed back into a NACK, that is, the downlink subframe that the terminal device does not receive the downlink scheduling.
  • a NACK that is, the downlink subframe that the terminal device does not receive the downlink scheduling.
  • Corresponding feedback letter The bit position of the bit is occupied by NACK.
  • the terminal device may generate the codebook of the feedback information sent in the transmission subframe 1 in sequence as 011001, and the terminal device may sequentially generate the feedback information sent in the transmission subframe 2.
  • the codebook is 011, where 0 represents NACK and 1 represents ACK.
  • the setting method of the index indication is two:
  • the value of the index indication is determined by the access network device according to the following information: the index indicates a first subframe sequence number of the downlink subframe in the downlink burst starting from the first start scheduling subframe,
  • the first initial scheduling subframe is a first subframe that is scheduled by the terminal device by the access network device in the downlink burst.
  • the downlink subframes scheduled by the terminal device are 2, 3, 4, 6, 8, and 9, so the access network device sets the values of the corresponding index indications separately.
  • 1, 2, 3, 5, 7 and 8 that is, the value of the index indication is set from the start of counting by the terminal device in the downlink burst by the first scheduled downlink subframe.
  • the values of the index indications received by the terminal device are 1, 2, 5, 7, and 8, respectively, in consideration of the missed detection of the downlink subframe 4.
  • the terminal device receives the last two subframes of the downlink burst, that is, at least one common downlink control channel in the downlink subframes 8 and 9, and further determines that the downlink subframe 9 is the last subframe of the downlink burst, and then determines that the downlink subframe 9 is the last subframe of the downlink burst, and then In combination with the index indication received by the terminal device, the terminal device determines that the bit position of the downlink burst indication value of the downlink burst is 2 bits and the bit position of the feedback information corresponding to the two downlink subframes is occupied by the NACK, and the index indicates the value.
  • the bit position of the feedback information corresponding to the downlink subframe between 5 and 7 is occupied by the NACK, that is, the bit position of the feedback information corresponding to the downlink subframe in which the terminal device does not receive the downlink scheduling is occupied by the NACK;
  • the terminal device may further determine that the codebook of the feedback information starts from the feedback information corresponding to the downlink subframe whose index indicates 1, and the terminal device does not care about the downlink subframe before the downlink subframe with the index indication value of 1. The case of the downlink subframe. If the received downlink data corresponds to the ACK, the terminal device may sequentially generate the codebook of the feedback information sent in the subframe 1 to be 11001, and the terminal device may sequentially generate the feedback information sent in the transmission subframe 2.
  • the codebook is 011, where 0 represents NACK and 1 represents ACK. It can be seen that the codebook size of the feedback information sent in the transmission subframe 1 is corresponding to that obtained based on the foregoing method 1.
  • the codebook has one bit less, so the method 2 can not only solve the problem that the terminal device and the access network device have inconsistent understanding of the codebook, and the method 2 can further save the overhead or improve the transmission performance of the feedback information compared with the method 1.
  • the setting method of the index indication is three:
  • the value of the index indication is determined by the access network device according to the following information: the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set.
  • the downlink subframes scheduled by the terminal device are 2, 3, 4, and 6, in the downlink subframe set 2 in the downlink burst.
  • the downlink subframes scheduled by the terminal device are 8 and 9, so the access network device sets the values of the corresponding index indications to 2, 3, 4, 6, 2, and 3, respectively.
  • the values of the index indications received by the terminal device are 2, 3, 6, 2, and 3, respectively, in consideration of the missed detection of the downlink subframe 4.
  • the terminal device receives the last two subframes of the downlink burst, that is, at least one common downlink control channel in the downlink subframes 8 and 9, and further determines that the downlink subframe 9 is the last subframe of the downlink burst, and then determines that the downlink subframe 9 is the last subframe of the downlink burst, and then In combination with the index indication received by the terminal device, the terminal device determines that the feedback information corresponding to the first, fourth, fifth, and seventh subframes of the downlink burst needs to be fed back into a NACK, that is, the downlink subframe that the terminal device does not receive the downlink scheduling. The bit position of the corresponding feedback information is occupied by NACK.
  • the terminal device may generate the codebook of the feedback information sent in the transmission subframe 1 in sequence as 011001, and the terminal device may sequentially generate the feedback information sent in the transmission subframe 2.
  • the codebook is 011, where 0 represents NACK and 1 represents ACK.
  • the setting method of the index indication is four:
  • the value of the index indication is determined by the access network device according to the following information: the index indicates a second subframe in which the downlink subframe is in the downlink subframe set from the second start scheduling subframe.
  • the second initial scheduling subframe is a first subframe that is scheduled by the terminal device by the access network device in the downlink subframe set.
  • the downlink subframes scheduled by the terminal device are 2, 3, 4, and 6, and the downlink subframe set 2 in the downlink burst.
  • the downlink subframes in which the terminal device is scheduled are 8 and 9, so the access network device sets the values of the corresponding index indications to 1, 2, 3, 5, 1, and 2, respectively.
  • the values of the index indications received by the terminal device are 1, 2, 5, 1, and 2, respectively, in consideration of the missed detection of the downlink subframe 4.
  • the terminal device receives the last two subframes of the downlink burst, that is, at least one common downlink control channel in the downlink subframes 8 and 9, and further determines that the downlink subframe 9 is the last subframe of the downlink burst, and then determines that the downlink subframe 9 is the last subframe of the downlink burst, and then In combination with the index indication received by the terminal device, the terminal device determines that the bit position of the feedback information corresponding to the two downlink subframes between the index of the downlink burst is 2, and the bit position of the feedback information is occupied by the NACK, that is, for the terminal device.
  • the bit position of the feedback information corresponding to the downlink subframe that has not received the downlink scheduling is occupied by the NACK. It should be noted that the terminal device may further determine that the codebook of the feedback information starts from the feedback information corresponding to the downlink subframe whose index indicates 1, and the terminal device does not care that the index indication value in the downlink subframe set 1 is 1 The case of the downlink subframe before the downlink subframe and the downlink subframe of the downlink subframe set 2 before the downlink subframe whose index indicates the value is 1. If the received downlink data corresponds to the ACK, the terminal device may sequentially generate the codebook of the feedback information sent in the subframe 1 to be 11001, and the terminal device may sequentially generate the feedback information sent in the transmission subframe 2.
  • the codebook is 11, where 0 represents NACK and 1 represents ACK. It can be seen that the codebook size of the feedback information sent in the transmission subframe 1 and the transmission subframe 2 is one bit less than the corresponding codebook obtained according to the foregoing method 1. Therefore, the method 2 can solve the terminal device and the access network device. For the problem that the codebook is inconsistent, the method 2 can further save the overhead or improve the transmission performance of the feedback information compared to the method 1.
  • the modulo mode may be adopted to cause the index to indicate the indication of the subframe number.
  • the four states of the two bits are '00', '01', '10', and '11', respectively, which may represent 1, 2, 3, and 4, respectively, or 0, 1, 2, and 3, respectively.
  • the cycle counting can be performed by means of modulo, ie 1, 2, 3, 4, 1 (5), 2 (6), 3 (7), 4 (8)... .
  • Y (X-1) mod 4+1, where X is the actual accumulated count value.
  • X is the actual accumulated count value.
  • Y is the value after the cycle modulo, that is, corresponding to the above 1, 2, 3, 4, 1, 2, 3, 4....
  • the value indicated by the index shown in Fig. 7 is the actually accumulated count value.
  • the first subframe sequence number refers to the sequence number value sorted from the beginning in the downlink burst, or the de novo from the start scheduling subframe in the downlink burst.
  • the sorted sequence number values such as the sequence in Figure 7 is sorted from 1 or sorted from other values, such as 0.
  • the first subframe number may also be an absolute subframe number in the downlink burst, that is, a subframe number related to the frame structure.
  • the second subframe sequence number can also adopt a similar rule, and details are not described herein again.
  • the terminal device performs channel coding on the feedback information according to the codebook.
  • the terminal device After the terminal device determines the codebook of the feedback information, the terminal device needs to perform channel coding according to the codebook.
  • the type of the channel coding may be a linear block coding, a convolutional code, or a Turbo code.
  • the present invention does not limit the type of channel coding. If the current block coding, such as the Reed Muller code, is used, it is generally not necessary to add a CRC (Cyclical Redundancy Check) before the coding, and if a convolutional code or a Turbo code is used, the terminal device can be used before the coding. Add a CRC bit to the codebook of the feedback information.
  • CRC Cyclical Redundancy Check
  • Step 103 in the method flow shown in FIG. 1 or FIG. 5 is further as follows: Step 1031:
  • the terminal device sends the channel-coded feedback information to the access network device in the sending subframe.
  • the terminal device In combination with the method shown in FIG. 6, the terminal device generates a codebook of the feedback information according to the index indication and the common downlink control signaling, where the public downlink control signaling is The signaling received from the access network device in the penultimate and/or penultimate downlink subframe in the downlink burst.
  • the method for transmitting feedback information can not only solve the problem of sending feedback information on the unlicensed spectrum, but also further introduce candidate transmission.
  • the concept of sending a set of subframes is used to reduce the resource overhead occupied by the feedback information. Further, by introducing the index indication, the access network device and the terminal device maintain the same codebook understanding of the feedback information, improve the robustness of the system, and further improve the receiving performance of the feedback information by reducing the codebook size. .
  • the embodiment of the present invention further provides a method for receiving feedback information, where the method is applied to an access network device, where the access network device may be a base station or a radio network controller.
  • the access network device may be a base station or a radio network controller.
  • the access network device sends downlink data to the terminal device in a downlink subframe in the downlink subframe set in the downlink burst.
  • the access network device determines, in the at least one uplink burst, a receiving subframe for receiving feedback information corresponding to the downlink data.
  • the access network device receives the feedback information in the receiving subframe.
  • the method of the method shown in FIG. 8 is used to determine the receiving subframe for receiving the feedback information before the access network device receives the feedback information. Therefore, in another implementation manner provided by the embodiment of the present invention, how to determine the access network device is determined. As shown in FIG. 9, the foregoing step 802 may be specifically implemented as steps 8021 to 8022:
  • the access network device determines, in the at least one uplink burst, a candidate receiving subframe set, where the candidate receiving subframe set includes at least one candidate receiving subframe.
  • the access network device notifies the terminal device of the candidate receiving subframe set by sending signaling.
  • the signaling is a common downlink control signaling
  • the access network device sends the public downlink control signal in a second-to-last and/or a first-last downlink subframe in the downlink burst. make.
  • the terminal device is notified by using the common downlink control signaling, and the resources of the feedback information of any terminal device are not reserved for some uplink subframes in the uplink burst.
  • the common downlink control signaling may be control information in the common physical downlink control channel, so that the candidate transmission subframe set in the subsequent uplink burst may be dynamically notified based on each downlink burst, and the scheme is flexible.
  • the access network device determines the connection from the candidate receiving subframe set. Receive sub-frames.
  • the access network device determines the receiving subframe from the candidate receiving subframe set according to a hybrid automatic repeat request HARQ timing relationship.
  • the access network device also needs to send an index indication to the terminal device, and decode the codebook of the feedback information sent by the terminal device, so another embodiment provided by the embodiment of the present invention is provided.
  • the further method is illustrated in the implementation, as shown in FIG. 10, in addition to the method steps shown in FIGS. 8 and 9, including the following steps:
  • the access network device sends an index indication to each terminal device in each downlink subframe in the at least one downlink subframe in which the terminal device performs downlink data transmission in the downlink subframe set. .
  • the value indicated by the index is determined by the access network device according to any one of the following information:
  • the index indicates a first subframe sequence number of the downlink subframe in the downlink burst
  • the index indicates a first subframe sequence number of the downlink subframe from the first start scheduling subframe in the downlink burst, and the first start scheduling subframe is the terminal device in the downlink burst.
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set from the second start scheduling subframe, and the second start scheduling subframe is the downlink of the terminal device.
  • the access network device determines a size of a codebook of the feedback information.
  • the access network device performs channel decoding on the received feedback information according to the size of the codebook of the feedback information.
  • the access network device parses a codebook of the channel decoded feedback information, and at least one first downlink subframe and/or at least one second downlink in the downlink subframe set
  • the original bits of the feedback information corresponding to the subframes are respectively sorted according to the value indicated by the index in the codebook, where the first downlink subframe and the second downlink subframe are respectively
  • the network access device schedules, in the downlink subframe set, a downlink subframe in which the terminal device performs downlink data transmission, and a downlink subframe in which the terminal device does not schedule downlink data transmission.
  • the method for receiving the feedback information provided by the embodiment of the present invention can not only solve the problem of transmitting feedback information on the unlicensed spectrum, but also further reduce the resource overhead occupied by the feedback information by introducing the concept of the candidate transmission subframe set. Further, by introducing the index indication, the access network device and the terminal device maintain the same codebook understanding of the feedback information, improve the robustness of the system, and further improve the receiving performance of the feedback information by reducing the codebook size. .
  • the embodiment of the present invention further provides a terminal device.
  • the terminal device includes:
  • the receiving unit 1101 is configured to receive downlink data sent by the access network device in the downlink subframe in the downlink subframe set in the downlink burst.
  • a determining unit 1102 configured to: in the at least one uplink burst, the determining, by the terminal device, a sending subframe for sending feedback information corresponding to the downlink data received by the receiving unit, where the downlink subframe set is the Transmitting, by the subset of the downlink subframes associated with the subframe, the at least one uplink burst, after the downlink burst, each uplink burst in the at least one uplink burst includes at least one uplink subframe frame.
  • the sending unit 1103 is configured to send, by the terminal device, the feedback information to the access network device in the sending subframe determined by the determining unit.
  • the determining unit further includes: the determining unit, configured to determine, by the terminal device, a candidate transmit subframe set in the at least one uplink burst, where the candidate transmit subframe set includes at least one candidate transmit And determining, by the terminal device, the sending subframe from the set of candidate transmission subframes determined by the determining unit.
  • the determining unit is configured to determine, by the terminal device, the candidate transmit subframe set in the at least one uplink burst according to the signaling of the access network device.
  • the signaling is a common downlink control signaling
  • the receiving unit is configured to receive, by the terminal device, a second and/or a last-numbered downlink subframe in the downlink burst.
  • the public downlink control signaling is described.
  • the determining unit is configured to determine, by the terminal device, the sending subframe from the set of candidate transmission subframes determined by the determining unit according to a hybrid automatic repeat request HARQ timing relationship.
  • the method before the sending, by the terminal device, the feedback information to the access network device in the sending subframe, the method further includes:
  • the receiving unit is further configured to receive, by the terminal device, an index indication sent by the access network device in each downlink subframe in the at least one downlink subframe in the downlink subframe set, where the index is The value of the indication is determined by the access network device according to any of the following information:
  • the index indicates a first subframe sequence number of the downlink subframe in the downlink burst
  • the index indicates a first subframe sequence number of the downlink subframe from the first start scheduling subframe in the downlink burst, and the first start scheduling subframe is the terminal device in the downlink burst.
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set from the second start scheduling subframe, and the second start scheduling subframe is the downlink of the terminal device.
  • the terminal device further includes:
  • the encoding unit 1201 is configured to generate, by the terminal device, a codebook of the feedback information, where the terminal device performs channel coding on the feedback information according to the codebook generated by the coding unit.
  • the sending unit is further configured to send, by the terminal device, the feedback information after performing the channel coding according to the coding unit to the access network device in the sending subframe.
  • the terminal device provided by the embodiment of the present invention can not only solve the problem of sending feedback information on the unlicensed spectrum, but also further reduce the resource overhead occupied by the feedback information by introducing the concept of the candidate transmission subframe set. Further, by introducing the index indication, the access network device and the terminal device maintain the same codebook understanding of the feedback information, improve the robustness of the system, and further improve the receiving performance of the feedback information by reducing the codebook size. .
  • the embodiment of the invention further provides an access network device, such as a base station or a radio network controller.
  • an access network device such as a base station or a radio network controller.
  • the embodiment of the corresponding receiving method is the same, and the specific description may be referred to in the foregoing, and the details are not described in this embodiment.
  • the access network device includes:
  • the sending unit 1301 is configured to send the downlink data to the terminal device in the downlink subframe in the downlink subframe set in the downlink burst.
  • a determining unit 1302 configured to determine, in the at least one uplink burst, a receiving subframe for receiving feedback information corresponding to the downlink data sent by the sending unit, where the downlink subframe set is Receiving, in the subset of the set of downlink subframes associated with the subframe, the at least one uplink burst, after the downlink burst, each uplink burst in the at least one uplink burst includes at least one Uplink subframe.
  • the receiving unit 1303 is configured to receive, by the access network device, the feedback information in the receiving subframe determined by the determining unit.
  • the determining unit further includes: the determining unit, configured to determine, by the access network device, a candidate receiving subframe set in the at least one uplink burst, where the candidate receiving subframe set includes at least one a candidate receiving subframe; and configured to determine, by the access network device, the receiving subframe from the candidate receiving subframe set determined by the determining unit.
  • the sending unit is configured to notify, by the access network device, the candidate receiving subframe set determined by the determining unit to the terminal device by sending signaling.
  • the signaling is a common downlink control signaling, where the sending unit is used by the access network device in a second-to-last and/or countdown first downlink subframe in the downlink burst. Sending the common downlink control signaling.
  • the determining unit is configured to determine, by the access network device, the receiving subframe from the candidate receiving subframe set determined by the determining unit according to a hybrid automatic repeat request HARQ timing relationship.
  • the access network device before receiving the feedback information in the receiving subframe, further includes:
  • the sending unit is configured to: in the downlink subframe set, each of the at least one downlink subframe in the at least one downlink subframe in which the terminal device performs downlink data transmission in the downlink subframe set, respectively
  • the terminal device sends an index indication.
  • the value indicated by the index is determined by the access network device according to any one of the following information:
  • the index indicates a first subframe sequence number of the downlink subframe in the downlink burst
  • the index indicates a first subframe sequence number of the downlink subframe from the first start scheduling subframe in the downlink burst, and the first start scheduling subframe is the terminal device in the downlink burst.
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set
  • the index indicates a second subframe sequence number of the downlink subframe in the downlink subframe set from the second start scheduling subframe, where the second initial scheduling subframe is the terminal The first subframe in which the device is scheduled by the access network device in the downlink subframe set.
  • the terminal device further includes:
  • the decoding unit 1401 is configured to perform channel decoding on the received feedback information according to the size of the codebook of the feedback information by the access network device.
  • the parsing unit is further configured to: the access network device parses the codebook of the channel decoded feedback information, and at least one first downlink subframe in the downlink subframe set and/or Or the original bits of the feedback information corresponding to the at least one second downlink subframe are respectively sorted according to the value indicated by the index in the codebook, where the first downlink subframe and the second downlink subframe
  • the frame is a downlink subframe in which the access network device schedules the terminal device to perform downlink data transmission in the downlink subframe set, and a downlink subframe in which the terminal device is not scheduled to perform downlink data transmission.
  • the access network device provided by the embodiment of the present invention can not only solve the problem of sending feedback information on the unlicensed spectrum, but also further reduce the resource overhead occupied by the feedback information by introducing the concept of the candidate transmission subframe set. Further, by introducing the index indication, the access network device and the terminal device maintain the same codebook understanding of the feedback information, improve the robustness of the system, and further improve the receiving performance of the feedback information by reducing the codebook size. .
  • FIG. 15 is a schematic diagram of a hardware structure of the terminal device described in FIG. 11 or 12.
  • the terminal device may include a memory 1501, a transceiver 1502, and a processor 1503.
  • the memory 1501, the transceiver 1502, and the processor 1503 are communicatively connected.
  • the memory 1501 may be a read only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory 1501 can store an operating system and other applications.
  • the program code for implementing the technical solution provided by the embodiment of the present invention is stored in the memory 1501 and executed by the processor 1503.
  • the transceiver 1502 is used for communication between the device and other devices or communication networks such as, but not limited to, Ethernet, Radio Access Network (RAN), Wireless Local Area Network (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Network
  • the processor 1503 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for executing related programs.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FIG. 15 only shows the memory 1501, the transceiver 1502, and the processor 1503, in a specific implementation process, those skilled in the art should understand that the terminal also needs to implement the normal operation. Other devices. At the same time, those skilled in the art will appreciate that hardware devices that implement other functions may also be included, depending on the particular needs.
  • the transceiver 1502 in the device is used for the downlink subframe set of the terminal device in the first downlink burst.
  • the downlink data in the downlink subframe receives the downlink data sent by the access network device.
  • the processor 1503 is coupled to the memory 1501 and the receiver, and is configured to control execution of the program instruction, where the terminal device is configured to determine, in the at least one uplink burst, the downlink that is received by the receiving unit. a transmission subframe of the feedback information corresponding to the data, the downlink subframe set is a subset of the set of downlink subframes associated with the transmission subframe, and the at least one uplink burst is in the first downlink After transmitting, each of the at least one uplink burst includes at least one uplink subframe.
  • the transceiver 1502 is further configured to send, by the terminal device, the feedback information to the access network device in the sending subframe determined by the determining unit.
  • the processor 1503 is further configured to: determine, by the terminal device, a candidate transmit subframe set in the at least one uplink burst, where the candidate transmit subframe set includes at least one candidate transmit subframe And determining, by the terminal device, the sending subframe from the set of candidate sending subframes determined by the determining unit; and further configured to notify, by the terminal device, according to signaling of the access network device Said at least one upstream Determining a candidate transmission subframe set in a burst; and further determining, by the terminal device, the transmission subframe from the candidate transmission subframe set determined by the determining unit according to a hybrid automatic repeat request HARQ timing relationship.
  • the processor 1503 is further configured to: the terminal device generates a codebook of the feedback information; and is further configured to: the codebook that is generated by the terminal device according to the coding unit Feedback information for channel coding;
  • the transceiver 3402 is further configured to receive, by the terminal device, an index indication sent by the access network device in each of the at least one downlink subframe in the downlink subframe set.
  • the terminal device includes: a transmitter, a receiver, and a processor.
  • the transmitter can implement the function of the receiving unit 1101 in the previous embodiment
  • the receiver can implement the function of the transmitting unit 1103 in the previous embodiment
  • the processor can implement the function of the determining unit 1102 in the previous embodiment.
  • FIG. 16 is a schematic diagram of a hardware structure of the access network device described in FIG. 13 or 14.
  • the access network device may include a memory 1601, a transceiver 1602, and a processor 1603, wherein the memory 1601, the transceiver 1602, and the processor 1603 are communicatively coupled.
  • Transceiver 1602 is used for communication between the device and other devices or communication networks.
  • the processor 1603 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for executing related programs.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FIG. 16 only shows the memory 1601, the transceiver 1602, and the processor 1603, in the specific implementation process, those skilled in the art should understand that the terminal also needs to implement the normal operation. Other devices. At the same time, those skilled in the art will appreciate that hardware devices that implement other functions may also be included, depending on the particular needs.
  • the access network device shown in FIG. 16 is used to implement the embodiment of FIG. 13 or 14.
  • the transceiver 1602 in the device is configured to: the access network device sends downlink data to the terminal device in a downlink subframe in the downlink subframe set in the first downlink burst;
  • the access network device receives the feedback information in the receiving subframe determined by the determining unit, and is further configured to use, by the access network device, the candidate receiving subframe set determined by the determining unit by sending signaling Notify the terminal device.
  • the processor 1603 is coupled to the memory 1601 and the transceiver 1602 for controlling execution of program instructions, specifically for determining, by the access network device, at least one uplink burst for receiving. a receiving subframe of the feedback information corresponding to the downlink data sent by the sending unit, where the downlink subframe set is a subset of the set of downlink subframes associated with the receiving subframe, and the at least one uplink After the first downlink burst, each of the at least one uplink burst includes at least one uplink subframe.
  • the processor 1603 is further configured to: determine, by the access network device, a candidate receiving subframe set in the at least one uplink burst, where the candidate receiving subframe set includes at least one candidate receiving a subframe, configured to determine, by the access network device, the receiving subframe from the candidate receiving subframe set determined by the determining unit; and further configured to, by the access network device, a HARQ according to a hybrid automatic repeat request Determining, by the determining unit, the receiving subframe from the set of candidate receiving subframes determined by the determining unit; and determining, by the access network device, a size of a codebook of the feedback information; The network access device performs channel decoding on the received feedback information according to the size of the codebook of the feedback information; and is further used by the access network device to parse the codebook of the channel decoded feedback information.
  • the transceiver 1602 is further configured to: in the downlink subframe set, the at least one downlink subframe in which the terminal device performs downlink data transmission in the downlink subframe set. An index indication is sent to the terminal device in each of the downlink subframes.
  • an access network device includes: a transmitter, a receiver, and a processor.
  • the transmitter can implement the function of the receiving unit 1303 in the previous embodiment
  • the receiver can implement the function of the sending unit 1301 in the previous embodiment
  • the processor can To implement the function of the determining unit 1302 in the previous embodiment.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium. , including several instructions All or part of the steps of the method of the various embodiments of the present invention are performed by a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种反馈信息的发送、接收方法、终端设备及接入网设备,涉及通信技术领域,可以解决非授权频谱上的发送反馈信息的问题。本发明实施例通过终端设备在下行突发中的下行子帧集合中的下行子帧中接收接入网设备发送的下行数据,进而所述终端设备在至少一个上行突发中确定用于发送所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧,所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息。本发明实施例提供的方案适于发送反馈信息时采用。

Description

反馈信息的发送、接收方法、终端设备及接入网设备 技术领域
本发明涉及通信技术领域,尤其涉及反馈信息的发送、接收方法、终端设备及接入网设备。
背景技术
长期演进(Long Term Evolution,LTE)系统基于正交频分复用多址接入(Orthogonal Freq终端设备ncy Division Multiplexing Access,OFDMA)技术,时频资源被划分成时间域维度上的OFDM符号和频率域维度上的OFDM子载波,而最小的资源粒度叫做一个资源单位(Resource Element,RE),即表示时间域上的一个OFDM符号和频率域上的一个OFDM子载波的时频格点。LTE系统中业务的传输是基于基站调度的,调度的基本时间单位是一个子帧,时间长度为1毫秒,一个具有正常循环前缀的子帧包括14个OFDM符号,一个具有扩展循环前缀的子帧包括12个OFDM符号。当然也不排除将来继续演进的LTE系统或其他无线系统采用更短的子帧,比如将来的子帧的时间长度与当前的一个OFDM符号的时间长度相当。
LTE系统中具体的调度流程是基站发送控制信道,该控制信道可以承载数据信道的调度信息。控制信道可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH)或增强型物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)。数据信道可以为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。该调度信息包括比如资源分配信息,调整编码方式等控制信息。UE跟基站同步后,就基于子帧边界,在子帧中检 测控制信道,并根据检测出的控制信道中承载的调度信息来进行下行数据信道的接收或上行数据信道的发送。LTE还支持载波聚合技术,即基站把多个载波配置给一个UE来提升UE的数据速率。进行载波聚合时,基站侧发送的多个载波时间上是同步发送的,即该多个载波的子帧边界是对齐的,UE可以在每个载波个分别接收PDCCH和相应的PDSCH,每个载波的检测过程与上述单载波情况类似。需要说明一下,LTE系统中的载波和服务小区的概念等同,比如UE接入一个载波和接入一个服务小区是等同的,下面统一以服务小区的概念来介绍。
LTE系统采用混合自动重传请求(Hybrid Automatic Repeat Request)机制。具体的以下行数据传输为例,UE对接收到基站发送的PDSCH进行译码,如果译码正确,比如循环冗余校验(Cyclic Redundancy Check,CRC)通过,则UE会向基站反馈确认(Acknowledge,ACK)信息;如果译码错误,比如CRC未通过,则UE会向基站反馈不确认(Nacknowledge,NACK)信息。当前的LTE中,UE接收PDSCH的子帧与UE反馈该PDSCH相应的ACK或NACK的子帧之间的子帧间隔是预先定义好的,因此保证了UE对ACK或NACK的反馈以及基站对该ACK或NACK的接收。
现有LTE系统的服务小区所部署的频谱都是授权频谱,即只可以被购买了该授权频谱的运营商网络使用。非授权频谱的关注度日益提升,因为非授权频谱不需要购买且任何运营商都可以使用,因此需要满足一定的法规以解决不同运营商之间的共存问题。将来频谱资源会越来越短缺,使得基于授权频谱的LTE系统的服务能力受限。考虑到WiFi可以大量使用非授权频谱来提升其服务能力,也给LTE阵营带来了极大的竞争挑战。因此,LTE系统使用非授权频谱是一个演进方向,部署在非授权频谱上的LTE系统称为非授权长期演进(Unlicensed-LTE,U-LTE)系统。目前U-LTE系统部署的主流 技术就是把非授权频谱上部署的U-LTE服务小区作为辅服务小区与授权频谱上部署的主服务小区进行载波聚合来服务UE;也不排除将来U-LTE服务小区独立来服务UE,即不需要授权频谱的服务小区进行辅助。
考虑到非授权频谱上的多系统友好共存,比如U-LTE与WiFi系统之间,或多运营商的U-LTE系统之间,因此在使用非授权频谱时需要遵循一些共存法规的限制,比如先检测后发送(Listen-Before-Talk,LBT)的法规。具体的,基站或UE在U-LTE服务小区所在信道上发送信号之前,需要对该服务小区所在的信道进行信道空闲评估(Clear Channel Assessment,CCA),一旦检测到的接收功率超过某阈值,则该基站或UE暂时不能在该信道上发送信号。直到发现该信道空闲,基站或UE才可以在该信道上发送信号,甚至在某些情况下,基站或UE还需要进行随机回退,只有在该随机回退的时间内该信道都是空闲的,才可以在该信道上发送信号。
此外,U-LTE服务小区上不会采用现有LTE中的固定的几种TDD上下行配置,而是灵活的上下行配置,这就使得U-LTE既没有办法使用FDD的固定4个子帧间隔的上行ACK或NACK反馈定时关系,也没法使用当前各TDD上下行配置下的固定的上行ACK或NACK反馈定时关系。
综上,如何进行非授权频谱上的U-LTE服务小区上的上行ACK或NACK的传输是本发明亟待解决的问题。
发明内容
本发明的实施例提供反馈信息的发送、接收方法、终端设备及接入网设备,可以解决非授权频谱上反馈信息的发送问题。
第一方面,本发明实施例提供一种反馈信息的发送方法,包括:
终端设备在下行突发中的下行子帧集合中的下行子帧中接收接 入网设备发送的下行数据;
所述终端设备在至少一个上行突发中确定用于发送所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧;
所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息。
在第一种可能的实施例中,结合第一方面,包括:
所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,所述候选发送子帧集合包括至少一个候选发送子帧;
所述终端设备从所述候选发送子帧集合中确定所述发送子帧。
可选的,所述方法还包括:所述终端设备根据所述接入网设备的信令通知在所述至少一个上行突发中确定候选发送子帧集合。
可选的,所述信令为公共下行控制信令,所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中接收所述公共下行控制信令。
可选的,所述终端设备根据混合自动重传请求HARQ定时关系从所述候选发送子帧集合中确定所述发送子帧。
可选的,所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息之前还包括:
所述终端设备在所述下行子帧集合中的至少一个下行子帧中的每个下行子帧中分别接收所述接入网设备发送的索引指示,所述索引指示的取值根据如下任一种信息所确定:
所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
可选的,该方法还包括:
所述终端设备生成所述反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述终端设备在所述下行子帧集合中接收到下行数据的下行子帧和没有接收到下行数据的下行子帧;
所述终端设备根据所述码本对所述反馈信息进行信道编码;
所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息,包括:
所述终端设备在所述发送子帧中向所述接入网设备发送所述信道编码后的反馈信息。
可选的,所述终端设备根据所述索引指示和公共下行控制信令生成所述反馈信息的码本,所述公共下行控制信令为所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中从所述接入网设备接收的信令。
第二方面,本发明实施例提供一种反馈信息的接收方法,包括:
接入网设备在下行突发中的下行子帧集合中的下行子帧中向终端设备发送下行数据;
所述接入网设备在至少一个上行突发中确定用于接收所述下行数据对应的反馈信息的接收子帧,所述下行子帧集合为所述接收子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括 至少一个上行子帧;
所述接入网设备在所述接收子帧中接收所述反馈信息。
在第一种可能的实施例中,结合第一方面,包括:
所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合,所述候选接收子帧集合包括至少一个候选接收子帧;
所述接入网设备从所述候选接收子帧集合中确定所述接收子帧。
可选的,所述方法还包括:所述接入网设备通过发送信令将候选接收子帧集合通知给所述终端设备。
可选的,所述信令为公共下行控制信令,所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送所述公共下行控制信令。
可选的,所述接入网设备根据混合自动重传请求HARQ定时关系从所述候选接收子帧集合中确定所述接收子帧。
可选的,所述接入网设备在所述接收子帧中接收所述反馈信息之前还包括:
所述接入网设备在所述下行子帧集合中的实际调度所述终端设备进行下行数据传输的至少一个下行子帧中的每个下行子帧中分别向所述终端设备发送索引指示,所述索引指示的取值根据如下任一种信息所确定:
所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端 设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
可选的,包括:
所述接入网设备在所述接收子帧中接收所述反馈信息之后还包括:
所述接入网设备确定所述反馈信息的码本的大小;
所述接入网设备根据所述反馈信息的码本的大小对接收到的所述反馈信息进行信道译码;
所述接入网设备解析所述信道译码后的反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述接入网设备在所述下行子帧集合中调度所述终端设备进行下行数据传输的下行子帧和没有调度所述终端设备进行下行数据传输的下行子帧。
可选的,所述索引指示和公共下行控制信令用于向所述终端设备指示所述反馈信息的码本,所述公共下行控制信令为所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送的信令。
第三方面,本发明实施例提供一种终端设备,所述终端设备包括:
接收单元,用于终端设备在下行突发中的下行子帧集合中的下行子帧中接收接入网设备发送的下行数据;
确定单元,用于所述终端设备在至少一个上行突发中确定用于发送通过所述接收单元接收的所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧;
发送单元,用于所述终端设备在所述确定单元确定的所述发送子帧中向所述接入网设备发送所述反馈信息。
可选的,所述确定单元,用于所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,所述候选发送子帧集合包括至少一个候选发送子帧;
所述确定单元,用于所述终端设备从所述确定单元确定的所述候选发送子帧集合中确定所述发送子帧。
可选的,所述确定单元,用于所述终端设备根据所述接入网设备的信令通知在所述至少一个上行突发中确定候选发送子帧集合。
可选的,所述信令为公共下行控制信令,所述接收单元,用于所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中接收所述公共下行控制信令。
可选的,所述确定单元,用于所述终端设备根据混合自动重传请求HARQ定时关系从所述确定单元确定的所述候选发送子帧集合中确定所述发送子帧。
可选的,所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息之前还包括:
所述接收单元,还用于所述终端设备在所述下行子帧集合中的至少一个下行子帧中的每个下行子帧中分别接收所述接入网设备发送的索引指示,所述索引指示的取值根据如下任一种信息所确定:
所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
可选的,该终端设备还包括:
编码单元,用于所述终端设备生成所述反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述终端设备在所述下行子帧集合中接收到下行数据的下行子帧和没有接收到下行数据的下行子帧;
所述编码单元,用于所述终端设备根据所述编码单元生成的所述码本对所述反馈信息进行信道编码;
所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息,包括:
所述发送单元,用于所述终端设备在所述发送子帧中向所述接入网设备发送根据所述编码单元进行所述信道编码后的反馈信息。
可选的,所述编码单元,用于所述终端设备根据所述索引指示和公共下行控制信令生成所述反馈信息的码本,所述公共下行控制信令为所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中从所述接入网设备接收的信令。
第四方面,本发明实施例提供一种接入网设备,所述接入网设备包括:
发送单元,用于接入网设备在下行突发中的下行子帧集合中的下行子帧中向终端设备发送下行数据;
确定单元,用于所述接入网设备在至少一个上行突发中确定用于接收通过所述发送单元发送的所述下行数据对应的反馈信息的接收子帧,所述下行子帧集合为所述接收子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧;
接收单元,用于所述接入网设备在所述确定单元确定的所述接收子帧中接收所述反馈信息。
可选的,所述确定单元,用于所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合,所述候选接收子帧集合包括至 少一个候选接收子帧;
所述确定单元,还用于所述接入网设备从所述确定单元确定的所述候选接收子帧集合中确定所述接收子帧。
可选的,所述发送单元,用于所述接入网设备通过发送信令将所述确定单元确定的所述候选接收子帧集合通知给所述终端设备。
可选的,所述信令为公共下行控制信令,所述发送单元,用于所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送所述公共下行控制信令。
可选的,所述确定单元,用于所述接入网设备根据混合自动重传请求HARQ定时关系从所述确定单元确定的所述候选接收子帧集合中确定所述接收子帧。
可选的,所述接入网设备在所述接收子帧中接收所述反馈信息之前还包括:
所述发送单元,用于所述接入网设备在所述下行子帧集合中的实际调度所述终端设备进行下行数据传输的至少一个下行子帧中的每个下行子帧中分别向所述终端设备发送索引指示,所述索引指示的取值根据如下任一种信息所确定:
所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
可选的,所述确定单元,还用于在所述接收子帧中接收所述反馈信息之后,确定所述反馈信息的码本的大小;
译码单元,用于所述接入网设备根据所述反馈信息的码本的大小对接收到的所述反馈信息进行信道译码;
解析单元,用于所述接入网设备解析所述信道译码后的反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述接入网设备在所述下行子帧集合中调度所述终端设备进行下行数据传输的下行子帧和没有调度所述终端设备进行下行数据传输的下行子帧。
可选的,所述索引指示和公共下行控制信令用于向所述终端设备指示所述反馈信息的码本,所述公共下行控制信令为所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送的信令。
本发明实施例提供的反馈信息的发送、接收方法、终端设备及接入网设备,通过终端设备在下行突发中的下行子帧集合中的下行子帧中接收接入网设备发送的下行数据,进而所述终端设备在至少一个上行突发中确定用于发送所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧,所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息。本发明实施例提供的方案适于发送反馈信息时采用,可以解决非授权频谱上的发送反馈信息的问题。
附图说明
图1为本发明实施例提供的一种反馈信息的发送方法的流程图;
图2为本发明实施例提供的一种下行突发、下行子帧集合以及上行突发之间关系的示意图;
图3为本发明实施例提供的一种下行突发、下行子帧集合以及 发送子帧之间关系的一种示意图;
图4为本发明实施例提供的一种下行突发、下行子帧集合以及发送子帧之间关系的另一种示意图;
图5为本发明实施例提供的另一种反馈信息的发送方法的流程图;
图6为本发明实施例提供的另一种反馈信息的发送方法的流程图;
图7为本发明实施例提供的一种索引指示的取值的设定方法的示意图;
图8为本发明实施例提供的一种反馈信息的接收方法的流程图;
图9为本发明实施例提供的另一种反馈信息的接收方法的流程图;
图10为本发明实施例提供的另一种反馈信息的接收方法的流程图;
图11为本发明实施例提供的一种终端设备的逻辑结构示意图;
图12为本发明实施例提供的另一种终端设备的逻辑结构示意图;
图13为本发明实施例提供的一种接入网设备的逻辑结构示意图;
图14为本发明实施例提供的另一种接入网设备的逻辑结构示意图;
图15为本发明实施例提供的反馈信息的发送方法中的终端设备的逻辑结构示意图;
图16为本发明实施例提供的反馈信息的接收方法中的接入网设备的逻辑结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明 一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
虽然在前述背景技术部分以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本发明不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM),移动通信系统(Universal Mobile Telecommunications Systemc,UMTS),码分多址接入(Code Division Multiple Access,CDMA)系统,以及新的网络系统等。下面以LTE系统为例进行具体实施例的介绍。
本发明实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本发明实施例所涉及的接入网设备,可以是基站,或者接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互 转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本申请并不限定。
LTE系统支持频分双工(Frequency Duplexing Division,FDD)和时分双工(Time Duplexing Division,TDD)两种双工方式。对于FDD系统,下行和上行在不同的载波中传输;对于TDD系统,上行和下行在同一载波的不同时间上传输。一个TDD载波中具体包括下行子帧,上行子帧和特殊子帧,其中,特殊子帧中包括下行导频时隙(Downlink Pilot Time Slot,DwPTS),保护时间(Guard Period,GP)和上行导频时隙(Uplink Pilot Time Slot,UpPTS)三个部分,其中GP主要用于下行到上行的器件转换时间和传播时延的补偿。此外,DwPTS中可以传输下行数据,但目前LTE系统的UpPTS中不可以传输上行数据,因此特殊子帧可以看作为下行子帧。LTE当前支持7种不同的TDD上下行配置,如表1所示,其中D表示下行子帧,S表示特殊子帧,U表示上行子帧。
表1.LTE系统中不同的TDD上下行配置
Figure PCTCN2016078361-appb-000001
当前LTE系统中,尤其是授权频谱上部署的LTE系统中,PDSCH到ACK或NACK的反馈定时是预定义好。具体的,对于FDD,终端设备在子帧n-4接收到PDSCH承载的信息之后,会在子帧n反馈该PDSCH对应的ACK或NACK。对于TDD,PDSCH与其对应的ACK或NACK的时序关系或定时关系如表2所示,标数字的子帧为用于反馈ACK或NACK的上行子帧n,标识的数字表示在该上行子帧n中需要反馈n-k(k属于K)的下行子帧集合中的PDSCH所对应的ACK或NACK,例如上下行配置为1的子帧标号n=2中的K={7、6}表示上行子帧n=2用来反馈n-7和n-6这两个下行子帧中的PDSCH所对应的ACK或NACK,具体n-7为下行子帧5,n-6为下行子帧6。
表2.TDD系统中PDSCH与其对应的ACK或NACK的时序关系
Figure PCTCN2016078361-appb-000002
LTE还支持CA技术,即基站为终端设备配置多个载波来提升终端设备的数据传输速率。在进行CA时,基站发送的多个载波时间上是同步的,终端设备可以分别检测调度每个载波的PDCCH和相应的PDSCH,其中每个载波的具体检测过程与上述单载波情况类似,此处不再赘述。LTE系统支持FDD CA,TDD CA以及FDD+TDD CA。对于TDD CA,又分为相同上下行配置的TDD CA和不同上下行配置的TDD CA。值得说明的是,CA模式下有一个主载波和至少一个辅载波,且承载ACK或NACK的PUCCH可以被配置在终端设备的主载波上,也可以PUCCH同时配置在主载波和其中一个辅载波上。
单载波或CA模式下的PUCCH发送模式包括多种,比如绑定模式,信道选择模式和码本复用模式等,其中,码本复用模式较为常用。以当前网络中主流部署的TDD上下行配置2为例来阐述码本复用模式,一个载波的上行子帧2可以支持4个ACK或NACK比特的 反馈,5个载波的TDD上下行配置2的CA可以支持20个ACK或NACK比特的反馈,此时可以看作此上行子帧2所关联的下行子帧集合为上述配置给该终端设备的5个载波中的下行子帧4、5、6和8。在码本复用模式下,上行子帧2中需要反馈的ACK或NACK的码本生成是基于该上行子帧2所关联的下行子帧集合来确定的,该ACK或NACK的码本就是编码前的ACK或NACK的原始比特按照一定的顺序进行排列的比特流,该例中的ACK或NACK的码本大小为20,具体的排序可以是先子帧后载波的顺序,即先排列载波1的子帧4、5、6和8对应的ACK或NACK比特,再排列载波2的子帧4、5、6和8对应的ACK或NACK比特,按照上述方式继续排列剩余载波的子帧对应的ACK或NACK比特。特别的,对于未调度的下行子帧,或对于终端设备未接收到下行数据的下行子帧对应的ACK或NACK比特位置需进行填充NACK信息。
对于U-LTE系统,至少非授权频谱上的服务小区上传输的PDSCH对应的ACK或NACK可以在非授权频谱的当前服务小区或非授权频谱的其他服务小区上进行传输。但是,上述预定义的PDSCH到ACK或NACK的定时关系在非授权频谱的服务小区上很难被保证。原因之一为,终端设备在非授权频谱上发送ACK或NACK之前要进行LBT,如果信道不空闲,则该终端设备在预定的某个上行上是无法发送ACK或NACK的。此外,非授权频谱上的上下行子帧配置可以是灵活的,比如U-LTE系统的一次突发传输包括连续N个下行子帧,跟着一个特殊子帧,或者没有特殊子帧而只是一个GP,然后跟着M个上行子帧,N和M是基站每次突发传输时灵活选取的,这样导致没法遵循之前某种TDD上下行配置下的定时关系,即没法遵循表2中的定时关系。
为了解决上述非授权频谱的服务小区上传输ACK或NACK的定时问题,本发明实施例提供的一种反馈信息的发送方法,该方法应用于终端设备,如图1所示,该方法包括:
101、终端设备在下行突发中的下行子帧集合中的下行子帧中 接收接入网设备发送的下行数据。
需要说明的是,在本发明实施例中,下行子帧包括正常的下行子帧,比如LTE系统中的正常循环前缀配置下的包括14个OFDM符号的子帧;还可以包括某些特殊子帧,该特殊子帧中,用于下行传输的部分可以小于14个OFDM符号。该特殊子帧的其他OFDM符号可以用于传输上行信息或用作保护时间;也不排除该特殊子帧用于下行传输的部分小于14个OFDM符号且没有其他剩余的OFDM符号,即该特殊子帧的长度就是小于14个OFDM符号。
还需要说明的是,下行突发一般是指时间上连续占用的多个下行子帧。具体的,一个发送结点,比如一个接入网设备(如基站)或终端设备,在非授权频谱上的一次发送可以连续占用信道的时间长度是有限的,一般是受当地法规的限制。例如,根据发送的业务优先级的不同,最大占用时间长度也是不同的。一般的,业务优先级越高,则最大占用时间越短,反之亦然。以互联网电话业务为例,该业务优先级较高,则一般可以连续占用2毫秒;以数据传输业务为例,比如文件下载等,该业务优先级较低,则一般可以连续占用8或10毫秒。
如图2所示,接入网设备在非授权频谱的载波上是基于一次次的突发的形式进行信息传输的。比如本步骤中的下行突发中可以只有一个下行子帧集合,也可以有多个下行子帧集合;此外,下行突发之后可以继续跟着另一个下行突发,也可以跟着一个上行突发,本发明并不对此做任何限定。
在本步骤中,终端设备在下行突发中的下行子帧集合中的下行子帧中接收接入网设备发送的下行数据具体可以包括以下步骤:
第一步、终端设备检测下行控制信道。
终端设备可能会在下行突发中的下行子帧集合中的每个下行子帧中都检测到下行控制信道,也可能在下行突发中的下行子帧集合中的一部分下行子帧中检测到下行控制信道。
第二步、终端设备在检测到的下行控制信道调度的下行数据信 道中接收下行数据,该下行数据信道在LTE系统中也可以称为物理下行共享信道,该下行数据信道或物理下行共享信道中承载了下行数据。
其中,下行控制信道与其调度的下行数据信道一般在同一下行子帧中,当然也不排除在不同的下行子帧中。
同理,终端设备可能会在下行突发中的下行子帧集合中的每个下行子帧中都接收下行数据,也可能在下行突发中的下行子帧集合中的一部分下行子帧中接收下行数据。
可以理解的是,终端设备在下行数据信道中接收下行数据之后,需要反馈这些下行数据对应的ACK或NACK。其中,每个下行数据信道中的下行数据分别对应一份ACK或NACK,当然也不排除多个下行数据信道中分别承载的多份下行数据对应一份ACK或NACK。本发明以每个下行数据信道中的下行数据分别对应一份ACK或NACK这种情况为例进行描述。
102、所述终端设备在至少一个上行突发中确定用于发送所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧。
考虑到反馈信息的发送子帧在所述至少一个上行突发中,而该发送子帧中发送的反馈信息是对应之前在下行子帧集合中接收到的下行数据的,因此所述至少一个上行突发一定在下行突发之后。具体的,如图3所示,包括所述发送子帧的上行突发可以紧跟着上述下行突发;或者,如图4所示,包括所述发送子帧的上行突发2就是紧跟着下行突发2的上行突发,而包括所述发送子帧的上行突发2与下行突发1之间就不是紧跟的关系,而是之间还有其他上行突发和/或下行突发。这些情况本发明并不做限定。
所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,需要说明的是,该子集包括全集或真子集。具体的,如 图3所示,下行子帧集合1与发送子帧1所关联下行子帧所组成的集合相同,即此时子集就相当于全集;同理,下行子帧集合2与发送子帧2所关联下行子帧所组成的集合相同,即此时子集就相当于全集。如图4所示,下行子帧集合3与发送子帧2所关联下行子帧所组成的集合相同,即此时子集就相当于全集;而发送子帧1所关联下行子帧所组成的集合为下行子帧集合1与下行子帧集合2的并集,因此下行子帧集合1为发送子帧1关联的下行子帧所组成的集合的真子集,且下行子帧集合2也为发送子帧1关联的下行子帧所组成的集合的真子集。
本步骤中的关联的含义为所述下行子帧集合中的部分或全部下行子帧中的下行数据对应的反馈信息需要在所述发送子帧中进行发送。可选的,这种关联关系可以是预配置的,比如由预设的HARQ定时关系来确定,该HARQ定时关系可以为:下行数据所在子帧与发送该下行数据对应的反馈信息的子帧之间的间隔不小于某阈值,在当前LTE系统中,该阈值为4,即终端设备在子帧n接收到下行数据则最早可以在子帧n+4进行该下行数据的反馈信息的发送;可选的,这种关联关系也可以由接入网设备确定后再通知终端设备,比如通过公共信令或终端设备特定的信令来进行通知。
103、所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息。
可选的,发送所述反馈信息之前,还包括确定在发送子帧中用于发送所述反馈信息的资源。比如,终端设备接收接入网设备发送的高层信令,比如RRC(Radio Resource Control,无线资源控制)信令,从RRC信令中获取接入网设备为终端设备配置的PUCCH资源集合,该PUCCH资源集合中包括至少一个PUCCH资源。PUCCH资源集合中的PUCCH可以具有相同的格式,也可以包括至少两种PUCCH格式。然后,终端设备获取资源集合后,会接收到接入网设备发送的资源指示信息。最后,根据资源指示信息从PUCCH资源集合中确定用于承载反馈信息的物理资源。需要注意的是,上述 只是一种资源指示的方式,其他具体方式都不做限定。
结合图1所示的方法流程,在终端设备向接入网设备发送反馈信息之前需要确定发送反馈信息的发送子帧,所以在本发明实施例提供的另一种实现方式中说明了终端设备如何确定发送子帧的方法,如图5所示,上述步骤102具体可以实现为步骤1021至1022:
1021、所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,所述候选发送子帧集合包括至少一个候选发送子帧。
以图3为例,下行突发之后的上行突发中有4个上行子帧,如果以上述阈值为4的HARQ定时关系的预置规则来确定上述发送子帧的话,则该上行突发中的每个上行子帧都可以用来发送反馈信息,比如下行子帧集合2中的3个下行子帧中的下行数据对应的反馈信息可以分别被发送在该上行突发中的后3个上行子帧中。但是,这样做的一个明显的缺点是反馈信息所占的资源开销较大。具体的,当前LTE系统中的反馈信息一般传输在某个发送子帧中的物理上行控制信道中,而该物理上行控制信道在频域上一般占用一个资源块,此时的资源开销不高,考虑到一个20MHz的载波中在频域上有100个资源块。但是,在非授权频谱的载波上的信息发送需要占用一定的频域资源的比例,比如一个接入网设备或一个终端设备在某个非授权频谱的载波上的一次信息发送需要至少占用80%的频域资源范围,以该载波的总共100个资源块为例,则需要占用80%的频域资源范围。此外,非授权频谱上的信息发送还收到功率谱密度的限制,一般在1MHz带宽内的发送功率不可以超过10dBm,因此为了提高信息发送的功率效率,以及上述80%频域资源的占用范围,一种频域资源占用方式为一个物理上行控制信道占用10个资源块,该10个资源块在频域上的相邻资源块间距为10个资源块。这样就导致非授权频谱上的一个物理上行控制信道的资源占用开销较当前LTE系统要显著增加。
因此,考虑到非授权频谱上的反馈信息的资源开销问题,本发明的步骤中,所述终端设备在所述至少一个上行突发中确定候选发 送子帧集合,所述候选发送子帧集合包括至少一个候选发送子帧。具体以图3为例,上行突发中的4个上行子帧只有其中的2个上行子帧被确定为候选发送子帧,而其他2个上行子帧至少对于该终端设备是不存在反馈信息的资源的。这样可以实现降低反馈信息的资源开销,比如下行子帧集合1对应的反馈信息发送在发送子帧1中,下行子帧集合2对应的反馈信息发送在发送子帧2中。
可选的,所述终端设备根据所述接入网设备的信令通知在所述至少一个上行突发中确定候选发送子帧集合。
可选的,所述信令为公共下行控制信令,所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中接收所述公共下行控制信令。使用公共下行控制信令来通知终端设备,可以做到上行突发中的某些上行子帧不会预留任何终端设备的反馈信息的资源。该公共下行控制信令可以为公共物理下行控制信道中的控制信息,这样可以基于每个下行突发来动态通知后面的上行突发中的候选发送子帧集合,方案较为灵活。
1022、所述终端设备从所述候选发送子帧集合中确定所述发送子帧。
结合图1或图5所示的方法流程,可选的,所述终端设备根据混合自动重传请求HARQ定时关系从所述候选发送子帧集合中确定所述发送子帧。
具体的,可以由预设的HARQ定时关系来从所述候选发送子帧集合中确定所述发送子帧。该HARQ定时关系可以为:下行数据所在子帧与发送该下行数据对应的反馈信息的子帧之间的间隔不小于某阈值,在当前LTE系统中,该阈值为4,即终端设备在子帧n接收到下行数据则最早可以在子帧n+4进行该下行数据的反馈信息的发送。其他阈值的取值也不排除。
结合图1或图5所示的方法流程,在终端设备向接入网设备发送反馈信息之前需要接收索引指示,以及生成反馈信息的码本,所以在本发明实施例提供的另一种实现方式中说明了该进一步的方 法,如图6所示,在图1和图5所示的方法步骤之外,包括如下步骤:
601、所述终端设备在所述下行子帧集合中的至少一个下行子帧中的每个下行子帧中分别接收所述接入网设备发送的索引指示。
所述索引指示的取值由所述接入网设备根据如下任一种信息所确定:
所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
602、所述终端设备生成所述反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述终端设备在所述下行子帧集合中接收到下行数据的下行子帧和没有接收到下行数据的下行子帧。
如上述实施例提到,接入网设备可以在下行突发中的最后两个子帧中分别发送一个公共下行控制信令,用来指示该下行突发的结束位置。为了确定上述发送子帧关联的下行突发中的下行子帧集合,比如根据HARQ定时关系为确定,终端设备还需要确定所述下行突发的起始子帧或该终端设备在该下行突发中被调度的第一个子帧。根据当前的LTE系统,终端设备可以通过盲检测每个下行子帧中的参考信号,比如小区特定参考信号,来判断某个下行突发从哪个子 帧起始。但是,通过参考信号的存在性的盲检测有时并不可靠,比如在信噪比较低的情况下虚警概率较高,这样会导致终端设备与接入网设备之间对于某发送子帧与其关联的下行子帧集合的理解不一致,进而导致双方对于反馈信息的码本理解不一致,最终导致接入网设备对于反馈信息的错误接收,造成系统性能大幅下降。
例如,接入网设备的下行突发从子帧n开始,但终端设备没有检测出该子帧n上的参考信号而检测出了子帧n+1上的参考信号,因此终端设备会认为下行突发从子帧n+1开始,这有可能会导致终端设备理解的与某发送子帧关联的下行子帧集合会比接入网设备理解的少一个子帧,因此反馈信息的码本的理解上就会差一个比特,最终导致接入网设备错误的接收整个下行子帧集合中所有下行子帧中的下行数据对应的反馈信息。
再例如,接入网设备的下行突发从子帧n开始,而在子帧n-1中没有发送任何下行信息,但终端设备在子帧n-1中却检测出了参考信号,因此终端设备会认为下行突发从子帧n-1开始,这有可能会导致终端设备理解的与某发送子帧关联的下行子帧集合会比接入网设备理解的多一个子帧,因此反馈信息的码本的理解上就会差一个比特,最终导致接入网设备错误的接收整个下行子帧集合中所有下行子帧中的下行数据对应的反馈信息。
针对上述反馈信息的码本对于接入网设备和终端设备双方潜在出现的理解不一致的问题,本发明提供一种解决方案,即接入网设备在终端设备每个被调度的下行子帧中会分别发送一个索引指示,比如发送在调度下行数据的物理下行控制信道中,具体这个指示可以是显示的比特指示,也可以是隐式指示,比如在CRC上用不同的掩码加扰等隐式方式,用于辅助终端设备确定的当前发送子帧中要发送的反馈信息的码本与接入网设备的实际调度情况一致。具体的,该索引指示的取值的设置方法有如下四种:
在描述上述四种方法前,先给出假设条件,包括下行突发、下行子帧集合以及相应的下行数据的调度情况。需要说明的是,该假 设条件只是一个具体的例子,本发明的四种索引指示的设置方法并不限定在该假设条件下。如图7所示,下行突发从子帧1开始到子帧9结束,该下行突发之后紧跟着一个上行突发,该上行突发中包括4个上行子帧,其中有两个是用于发送反馈信息的候选发送子帧,即发送子帧1和发送子帧2。根据上述HARQ定时关系确定的下行子帧集合与发送子帧的关联关系为:下行子帧1至下行子帧6组成的下行子帧集合1与发送子帧1关联,下行子帧7至下行子帧9组成的下行子帧集合2与发送子帧2关联。接入网设备在下行子帧2、3、4、6、8和9中对终端设备进行了下行数据的调度,比如各发送了一个物理下行控制信道与其对应的下行数据;接入网设备在下行子帧1、5和7中并没有对该终端设备进行下行数据调度。值得注意的是,终端设备接收到了下行子帧2、3、6、8和9中被调度的物理下行控制信道和相应的下行数据,但是没有收到下行子帧4中被调度的物理下行控制信道和相应的下行数据,即对于下行子帧4,该终端设备发生了调度漏检。在上述假设条件下,下面对四种索引指示的设置方法进行一一描述,这里假设索引指示采用比特指示进行描述:
索引指示的设置方法一:
所述索引指示的取值由所述接入网设备根据如下信息所确定:所述索引指示所在下行子帧在所述下行突发中的第一子帧序号。
如图7所示,在下行突发中该终端设备被调度的下行子帧为2、3、4、6、8和9,因此接入网设备会将相应的索引指示的取值分别设定为2、3、4、6、8和9。终端设备接收到的索引指示的取值分别为2、3、6、8和9,考虑到对下行子帧4的调度漏检。因此,考虑到终端设备会接收到下行突发的倒数两个子帧,即下行子帧8和9中至少一个公共下行控制信道,进而确定下行子帧9为下行突发的最后一个子帧,再结合终端设备收到的索引指示,终端设备会确定该下行突发的第1、4、5和7个子帧对应的反馈信息需要反馈成NACK,即对于终端设备没有收到下行调度的下行子帧对应的反馈信 息的比特位置用NACK占位。假设收到的下行数据都对应ACK的话,则终端设备可以按顺序生成发送子帧1中发送的反馈信息的码本为011001,且终端设备可以按顺序生成发送子帧2中发送的反馈信息的码本为011,其中0表示NACK,1表示ACK。
索引指示的设置方法二:
所述索引指示的取值由所述接入网设备根据如下信息所确定:所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧。
如图7所示,在下行突发中该终端设备被调度的下行子帧为2、3、4、6、8和9,因此接入网设备会将相应的索引指示的取值分别设定为1、2、3、5、7和8,即从该终端设备在下行突发中被第一个调度的下行子帧起开始计数来设定索引指示的取值。终端设备接收到的索引指示的取值分别为1、2、5、7和8,考虑到对下行子帧4的调度漏检。因此,考虑到终端设备会接收到下行突发的倒数两个子帧,即下行子帧8和9中至少一个公共下行控制信道,进而确定下行子帧9为下行突发的最后一个子帧,再结合终端设备收到的索引指示,终端设备会确定该下行突发的索引指示取值为2和5之间的两个下行子帧对应的反馈信息的比特位置用NACK占位,索引指示取值为5和7之间的下行子帧对应的反馈信息的比特位置用NACK占位,即对于终端设备没有收到下行调度的下行子帧对应的反馈信息的比特位置用NACK占位;需要注意的是,终端设备还可以确定反馈信息的码本从索引指示为1的下行子帧对应的反馈信息开始,该终端设备并不关心该下行突发中在索引指示取值为1的下行子帧之前的下行子帧的情况。假设收到的下行数据都对应ACK的话,则终端设备可以按顺序生成发送子帧1中发送的反馈信息的码本为11001,且终端设备可以按顺序生成发送子帧2中发送的反馈信息的码本为011,其中0表示NACK,1表示ACK。可以看到,发送子帧1中发送的反馈信息的码本大小比基于上述方法一得到的相应 码本少一个比特,因此方法二不但可以解决终端设备与接入网设备对于码本理解不一致的问题,方法二相比于方法一可以进一步的节省开销或提高反馈信息的传输性能。
索引指示的设置方法三:
所述索引指示的取值由所述接入网设备根据如下信息所确定:所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号。
如图7所示,在下行突发中的下行子帧集合1中该终端设备被调度的下行子帧为2、3、4、和6,在下行突发中的下行子帧集合2中该终端设备被调度的下行子帧为8和9,因此接入网设备会将相应的索引指示的取值分别设定为2、3、4、6、2和3。终端设备接收到的索引指示的取值分别为2、3、6、2和3,考虑到对下行子帧4的调度漏检。因此,考虑到终端设备会接收到下行突发的倒数两个子帧,即下行子帧8和9中至少一个公共下行控制信道,进而确定下行子帧9为下行突发的最后一个子帧,再结合终端设备收到的索引指示,终端设备会确定该下行突发的第1、4、5和7个子帧对应的反馈信息需要反馈成NACK,即对于终端设备没有收到下行调度的下行子帧对应的反馈信息的比特位置用NACK占位。假设收到的下行数据都对应ACK的话,则终端设备可以按顺序生成发送子帧1中发送的反馈信息的码本为011001,且终端设备可以按顺序生成发送子帧2中发送的反馈信息的码本为011,其中0表示NACK,1表示ACK。
索引指示的设置方法四:
所述索引指示的取值由所述接入网设备根据如下信息所确定:所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
如图7所示,在下行突发中的下行子帧集合1中该终端设备被调度的下行子帧为2、3、4、和6,在下行突发中的下行子帧集合2 中该终端设备被调度的下行子帧为8和9,因此接入网设备会将相应的索引指示的取值分别设定为1、2、3、5、1和2。终端设备接收到的索引指示的取值分别为1、2、5、1和2,考虑到对下行子帧4的调度漏检。因此,考虑到终端设备会接收到下行突发的倒数两个子帧,即下行子帧8和9中至少一个公共下行控制信道,进而确定下行子帧9为下行突发的最后一个子帧,再结合终端设备收到的索引指示,终端设备会确定该下行突发的索引指示取值为2和5之间的两个下行子帧对应的反馈信息的比特位置用NACK占位,即对于终端设备没有收到下行调度的下行子帧对应的反馈信息的比特位置用NACK占位。需要注意的是,终端设备还可以确定反馈信息的码本从索引指示为1的下行子帧对应的反馈信息开始,该终端设备并不关心该下行子帧集合1中在索引指示取值为1的下行子帧之前的下行子帧的情况以及该下行子帧集合2中在索引指示取值为1的下行子帧之前的下行子帧的情况。假设收到的下行数据都对应ACK的话,则终端设备可以按顺序生成发送子帧1中发送的反馈信息的码本为11001,且终端设备可以按顺序生成发送子帧2中发送的反馈信息的码本为11,其中0表示NACK,1表示ACK。可以看到,发送子帧1和发送子帧2中发送的反馈信息的码本大小比基于上述方法一得到的相应码本分别少一个比特,因此方法二不但可以解决终端设备与接入网设备对于码本理解不一致的问题,方法二相比于方法一可以进一步的节省开销或提高反馈信息的传输性能。
需要说明的是,考虑到索引指示的比特开销问题,一般会采用2到3个比特来作为该索引指示,当然也不排除其他数量的比特数。以2个比特的索引指示为例,可以采用取模的方式使得该索引指示进行子帧序号的指示。例如,2个比特的4种状态分别为‘00’、‘01’、‘10’和‘11’,可以分别表示1、2、3和4或者分别表示0、1、2和3。对于大于3或4的取值的表示方法可以采用取模的方式进行循环计数,即1,2,3,4,1(5),2(6),3(7),4(8)…。具体可以由公式Y=(X-1)mod 4+1表示,其中,X为实际累计的计数值, 比如上述的1至8,Y为循环取模后的数值,即对应上述1,2,3,4,1,2,3,4…。图7所示的索引指示的取值就是实际累计的计数值。
还需要说明的是,上述四种索引指示取值的设定方法中,第一子帧序号指在下行突发中从头排序的序号值,或下行突发中从起始调度子帧开始的从头排序的序号值,比如图7的实施例中是从1开始排序,也可以从其他值开始排序,比如0。此外,由于LTE系统中有严格的帧结构,因此有绝对子帧序号,比如一个无线帧中的子帧从0到9,然后再到下一个无线帧的从0到9,一直下去。因此,上述第一子帧序号也可以就是下行突发中的绝对子帧序号,即与帧结构相关的子帧序号。同理,第二子帧序号也可以采用类似的规则,这里不再赘述。
603、所述终端设备根据所述码本对所述反馈信息进行信道编码。
在终端设备确定了反馈信息的码本之后,终端设备需根据该码本进行信道编码,信道编码的类型可以为线性块编码、卷积码或Turbo码等,本发明不限定信道编码的类型。如果采用现行块编码,比如里德穆勒码,一般不需在编码前添加CRC(Cyclical Redundancy Check,循环冗余校验),而如果采用卷积码或Turbo码,则终端设备可以在编码前为反馈信息的码本添加CRC比特。
图1或图5所示方法流程中的步骤103进一步为如下步骤1031:
1031、所述终端设备在所述发送子帧中向所述接入网设备发送所述信道编码后的反馈信息。
结合图6所示的方法,可选的,所述终端设备根据所述索引指示和公共下行控制信令生成所述反馈信息的码本,所述公共下行控制信令为所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中从所述接入网设备接收的信令。
本发明实施例提供的反馈信息的发送方法,不仅可以解决非授权频谱上的发送反馈信息的问题,还可以进一步的通过引入候选发 送子帧集合的概念来降低反馈信息占用的资源开销。再进一步的,通过引入索引指示,使得接入网设备与终端设备对于反馈信息的码本理解保持一致,提高系统的鲁棒性,且还可以进一步通过降低码本大小来提高反馈信息的接收性能。
本发明实施例还提供一种反馈信息的接收方法,该方法应用于接入网设备中,接入网设备可以为基站或无线网络控制器等。需要说明的是,本实施例中与上述实施例相同的内容可以参照上文中的描述,本实施例不再赘述。如图8所示,该方法包括:
801、接入网设备在下行突发中的下行子帧集合中的下行子帧中向终端设备发送下行数据。
802、所述接入网设备在至少一个上行突发中确定用于接收所述下行数据对应的反馈信息的接收子帧。
803、所述接入网设备在所述接收子帧中接收所述反馈信息。
结合图8所示的方法流程,在接入网设备接收反馈信息之前需要确定接收反馈信息的接收子帧,所以在本发明实施例提供的另一种实现方式中说明了接入网设备如何确定接收子帧的方法,如图9所示,上述步骤802具体可以实现为步骤8021至8022:
8021、所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合,所述候选接收子帧集合包括至少一个候选接收子帧。
可选的,所述接入网设备通过发送信令将候选接收子帧集合通知给所述终端设备。
可选的,所述信令为公共下行控制信令,所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送所述公共下行控制信令。使用公共下行控制信令来通知终端设备,可以做到上行突发中的某些上行子帧不会预留任何终端设备的反馈信息的资源。该公共下行控制信令可以为公共物理下行控制信道中的控制信息,这样可以基于每个下行突发来动态通知后面的上行突发中的候选发送子帧集合,方案较为灵活。
8022、所述接入网设备从所述候选接收子帧集合中确定所述接 收子帧。
结合图8或图9所示的方法流程,可选的,所述接入网设备根据混合自动重传请求HARQ定时关系从所述候选接收子帧集合中确定所述接收子帧。
结合图8或图9所示的方法流程,接入网设备还需要向终端设备发送索引指示,以及对终端设备发送的反馈信息的码本进行译码,所以在本发明实施例提供的另一种实现方式中说明了该进一步的方法,如图10所示,在图8和图9所示的方法步骤之外,包括如下步骤:
1001、所述接入网设备在所述下行子帧集合中的实际调度所述终端设备进行下行数据传输的至少一个下行子帧中的每个下行子帧中分别向所述终端设备发送索引指示。
所述索引指示的取值由所述接入网设备根据如下任一种信息所确定:
所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
1002、所述接入网设备确定所述反馈信息的码本的大小。
1003、所述接入网设备根据所述反馈信息的码本的大小对接收到的所述反馈信息进行信道译码。
所述接入网设备解析所述信道译码后的反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行 子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述接入网设备在所述下行子帧集合中调度所述终端设备进行下行数据传输的下行子帧和没有调度所述终端设备进行下行数据传输的下行子帧。
本发明实施例提供的反馈信息的接收方法,不仅可以解决非授权频谱上的发送反馈信息的问题,还可以进一步的通过引入候选发送子帧集合的概念来降低反馈信息占用的资源开销。再进一步的,通过引入索引指示,使得接入网设备与终端设备对于反馈信息的码本理解保持一致,提高系统的鲁棒性,且还可以进一步通过降低码本大小来提高反馈信息的接收性能。
对应于上述方法实施例,本发明实施例还提供一种终端设备。需要说明的是,本实施例中与上述对应的发送方法的实施例相同,具体可以参照上文中的描述,本实施例不再赘述。如图11所示,该终端设备包括:
接收单元1101,用于终端设备在下行突发中的下行子帧集合中的下行子帧中接收接入网设备发送的下行数据。
确定单元1102,用于所述终端设备在至少一个上行突发中确定用于发送通过所述接收单元接收的所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧。
发送单元1103,用于所述终端设备在所述确定单元确定的所述发送子帧中向所述接入网设备发送所述反馈信息。
可选的,所述确定单元进一步包括:所述确定单元,用于所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,所述候选发送子帧集合包括至少一个候选发送子帧;还用于所述终端设备从所述确定单元确定的所述候选发送子帧集合中确定所述发送子帧。
可选的,所述确定单元,用于所述终端设备根据所述接入网设备的信令通知在所述至少一个上行突发中确定候选发送子帧集合。
可选的,所述信令为公共下行控制信令,所述接收单元,用于所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中接收所述公共下行控制信令。
可选的,所述确定单元,用于所述终端设备根据混合自动重传请求HARQ定时关系从所述确定单元确定的所述候选发送子帧集合中确定所述发送子帧。
在本发明另一实施例中,所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息之前还包括:
所述接收单元,还用于所述终端设备在所述下行子帧集合中的至少一个下行子帧中的每个下行子帧中分别接收所述接入网设备发送的索引指示,所述索引指示的取值由所述接入网设备根据如下任一种信息所确定:
所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
基于上述实施例,在本发明还另一实施例中,如图12所示,该终端设备还包括:
编码单元1201,用于所述终端设备生成所述反馈信息的码本,所述终端设备根据所述编码单元生成的所述码本对所述反馈信息进行信道编码。
其中,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述终端设备在所述下行子帧集合中接收到下行数据的下行子帧和没有接收到下行数据的下行子帧。
所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息,包括:
所述发送单元,进一步用于所述终端设备在所述发送子帧中向所述接入网设备发送根据所述编码单元进行所述信道编码后的反馈信息。
本发明实施例提供的终端设备,不仅可以解决非授权频谱上的发送反馈信息的问题,还可以进一步的通过引入候选发送子帧集合的概念来降低反馈信息占用的资源开销。再进一步的,通过引入索引指示,使得接入网设备与终端设备对于反馈信息的码本理解保持一致,提高系统的鲁棒性,且还可以进一步通过降低码本大小来提高反馈信息的接收性能。
本发明实施例还提供一种接入网设备,比如基站或无线网络控制器等。需要说明的是,本实施例中与上述对应的接受方法的实施例相同,具体可以参照上文中的描述,本实施例不再赘述。如图13所示,该接入网设备包括:
发送单元1301,用于接入网设备在下行突发中的下行子帧集合中的下行子帧中向终端设备发送下行数据。
确定单元1302,用于所述接入网设备在至少一个上行突发中确定用于接收通过所述发送单元发送的所述下行数据对应的反馈信息的接收子帧,所述下行子帧集合为所述接收子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧。
接收单元1303,用于所述接入网设备在所述确定单元确定的所述接收子帧中接收所述反馈信息。
可选的,所述确定单元进一步包括:所述确定单元,用于所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合,所述候选接收子帧集合包括至少一个候选接收子帧;还用于用于所述接入网设备从所述确定单元确定的所述候选接收子帧集合中确定所述接收子帧。
可选的,所述发送单元,用于所述接入网设备通过发送信令将所述确定单元确定的所述候选接收子帧集合通知给所述终端设备。
可选的,所述信令为公共下行控制信令,所述发送单元,用于所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送所述公共下行控制信令。
可选的,所述确定单元,用于所述接入网设备根据混合自动重传请求HARQ定时关系从所述确定单元确定的所述候选接收子帧集合中确定所述接收子帧。
在本发明另一实施例中,所述接入网设备在所述接收子帧中接收所述反馈信息之前还包括:
所述发送单元,用于所述接入网设备在所述下行子帧集合中的实际调度所述终端设备进行下行数据传输的至少一个下行子帧中的每个下行子帧中分别向所述终端设备发送索引指示。
所述索引指示的取值由所述接入网设备根据如下任一种信息所确定:
所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端 设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
基于上述实施例,在本发明还另一实施例中,如图14所示,该终端设备还包括:
译码单元1401,用于所述接入网设备根据所述反馈信息的码本的大小对接收到的所述反馈信息进行信道译码。
可选的,还可以包括解析单元,用于所述接入网设备解析所述信道译码后的反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述接入网设备在所述下行子帧集合中调度所述终端设备进行下行数据传输的下行子帧和没有调度所述终端设备进行下行数据传输的下行子帧。
本发明实施例提供的接入网设备,不仅可以解决非授权频谱上的发送反馈信息的问题,还可以进一步的通过引入候选发送子帧集合的概念来降低反馈信息占用的资源开销。再进一步的,通过引入索引指示,使得接入网设备与终端设备对于反馈信息的码本理解保持一致,提高系统的鲁棒性,且还可以进一步通过降低码本大小来提高反馈信息的接收性能。
为了提高上行资源利用率,本发明实施例还提供一种反馈信息的传输装置,如图15所示,图15为图11或12描述的终端设备的硬件结构示意图。其中,终端设备可包括存储器1501、收发器1502、处理器1503,其中,存储器1501、收发器1502、处理器1503通信连接。
存储器1501可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器1501可以存储操作系统和其他应用程序。在通过软件或者固件来实现本发明实施例提供的技术方案时,用于实现本发明实施例提供的技术方案的程序代码保存在存储器1501中,并由处理器1503来执行。
收发器1502用于装置与其他设备或通信网络(例如但不限于以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Network,WLAN)等)之间的通信。
处理器1503可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
应注意,尽管图15所示的硬件仅仅示出了存储器1501、收发器1502和处理器1503,但是在具体实现过程中,本领域的技术人员应当明白,该终端还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,还可包含实现其他功能的硬件器件。
具体的,图15所示的终端设备用于实现图11或12实施例所示的装置时,该装置中的收发器1502,用于终端设备在第一下行突发中的下行子帧集合中的下行子帧中接收接入网设备发送的下行数据。
处理器1503,与存储器1501和接收器耦合,用于控制程序指令的执行,具体用于用于所述终端设备在至少一个上行突发中确定用于发送通过所述接收单元接收的所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述第一下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧。
收发器1502,还用于所述终端设备在所述确定单元确定的所述发送子帧中向所述接入网设备发送所述反馈信息。
在本发明另一实施例中,处理器1503,还用于所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,所述候选发送子帧集合包括至少一个候选发送子帧;还用于所述终端设备从所述确定单元确定的所述候选发送子帧集合中确定所述发送子帧;还用于所述终端设备根据所述接入网设备的信令通知在所述至少一个上行 突发中确定候选发送子帧集合;还用于所述终端设备根据混合自动重传请求HARQ定时关系从所述确定单元确定的所述候选发送子帧集合中确定所述发送子帧。
在本发明另一实施例中,处理器1503,还用于所述终端设备生成所述反馈信息的码本;还用于所述终端设备根据所述编码单元生成的所述码本对所述反馈信息进行信道编码;
收发器3402,还用于所述终端设备在所述下行子帧集合中的至少一个下行子帧中的每个下行子帧中分别接收所述接入网设备发送的索引指示。
另一个实施例中,终端设备,包括:发送器,接收器和处理器。其中发送器可以实现上一个实施例中的接收单元1101的功能,接收器可以实现上一个实施例中的发送单元1103的功能,处理器可以实现上一个实施例中的确定单元1102的功能。
为了提高上行资源利用率,本发明实施例还提供一种反馈信息的传输装置,如图16所示,图16为图13或14描述的接入网设备的硬件结构示意图。其中,接入网设备可包括存储器1601、收发器1602和处理器1603,其中,存储器1601、收发器1602和处理器1603通信连接。
收发器1602用于装置与其他设备或通信网络之间的通信。
处理器1603可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
应注意,尽管图16所示的硬件仅仅示出了存储器1601、收发器1602和处理器1603,但是在具体实现过程中,本领域的技术人员应当明白,该终端还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,还可包含实现其他功能的硬件器件。
具体的,图16所示的接入网设备用于实现图13或14实施例所 示的装置时,该装置中的收发器1602,用于接入网设备在第一下行突发中的下行子帧集合中的下行子帧中向终端设备发送下行数据;还用于所述接入网设备在所述确定单元确定的所述接收子帧中接收所述反馈信息;还用于所述接入网设备通过发送信令将所述确定单元确定的所述候选接收子帧集合通知给所述终端设备。
在本发明另一实施例中,处理器1603,与存储器1601和收发器1602耦合,用于控制程序指令的执行,具体用于所述接入网设备在至少一个上行突发中确定用于接收通过所述发送单元发送的所述下行数据对应的反馈信息的接收子帧,所述下行子帧集合为所述接收子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述第一下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧。
在本发明另一实施例中,处理器1603,还用于所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合,所述候选接收子帧集合包括至少一个候选接收子帧;还用于所述接入网设备从所述确定单元确定的所述候选接收子帧集合中确定所述接收子帧;还用于所述接入网设备根据混合自动重传请求HARQ定时关系从所述确定单元确定的所述候选接收子帧集合中确定所述接收子帧;还用于所述接入网设备确定所述反馈信息的码本的大小;还用于所述接入网设备根据所述反馈信息的码本的大小对接收到的所述反馈信息进行信道译码;还用于所述接入网设备解析所述信道译码后的反馈信息的码本。
在本发明另一实施例中,收发器1602,还用于所述接入网设备在所述下行子帧集合中的实际调度所述终端设备进行下行数据传输的至少一个下行子帧中的每个下行子帧中分别向所述终端设备发送索引指示。
另一个实施例中,接入网设备,包括:发送器,接收器和处理器。其中发送器可以实现上一个实施例中的接收单元1303的功能,接收器可以实现上一个实施例中的发送单元1301的功能,处理器可 以实现上一个实施例中的确定单元1302的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用 以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种反馈信息的发送方法,其特征在于,包括:
    终端设备在下行突发中的下行子帧集合中的下行子帧中接收接入网设备发送的下行数据;
    所述终端设备在至少一个上行突发中确定用于发送所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧;
    所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备在至少一个上行突发中确定用于发送所述下行数据对应的反馈信息的发送子帧,包括:
    所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,所述候选发送子帧集合包括至少一个候选发送子帧;
    所述终端设备从所述候选发送子帧集合中确定所述发送子帧。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,包括:
    所述终端设备根据所述接入网设备的信令通知在所述至少一个上行突发中确定候选发送子帧集合。
  4. 根据权利要求3所述的方法,其特征在于,所述信令为公共下行控制信令,所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中接收所述公共下行控制信令。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述终端设备从所述候选发送子帧集合中确定所述发送子帧,包括:
    所述终端设备根据混合自动重传请求HARQ定时关系从所述候选发送子帧集合中确定所述发送子帧。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述 终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息之前还包括:
    所述终端设备在所述下行子帧集合中的至少一个下行子帧中的每个下行子帧中分别接收所述接入网设备发送的索引指示,所述索引指示的取值由如下任一种信息所确定:
    所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
    所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
    所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
    所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
  7. 根据权利要求6所述的方法,其特征在于,
    所述终端设备生成所述反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述终端设备在所述下行子帧集合中接收到下行数据的下行子帧和没有接收到下行数据的下行子帧;
    所述终端设备根据所述码本对所述反馈信息进行信道编码;
    所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息,包括:
    所述终端设备在所述发送子帧中向所述接入网设备发送所述信道编码后的反馈信息。
  8. 根据权利要求6或7所述的方法,其特征在于,所述终端设备根据所述索引指示和公共下行控制信令生成所述反馈信息的码本,所述公共下行控制信令为所述终端设备在所述下行突发中的倒数第 二和/或倒数第一的下行子帧中从所述接入网设备接收的信令。
  9. 一种反馈信息的接收方法,其特征在于,包括:
    接入网设备在下行突发中的下行子帧集合中的下行子帧中向终端设备发送下行数据;
    所述接入网设备在至少一个上行突发中确定用于接收所述下行数据对应的反馈信息的接收子帧,所述下行子帧集合为所述接收子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧;
    所述接入网设备在所述接收子帧中接收所述反馈信息。
  10. 根据权利要求9所述的方法,其特征在于,所述接入网设备在至少一个上行突发中确定用于接收所述下行数据对应的反馈信息的接收子帧,包括:
    所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合,所述候选接收子帧集合包括至少一个候选接收子帧;
    所述接入网设备从所述候选接收子帧集合中确定所述接收子帧。
  11. 根据权利要求10所述的方法,其特征在于,所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合之后,包括:
    所述接入网设备通过发送信令将候选接收子帧集合通知给所述终端设备。
  12. 根据权利要求11所述的方法,其特征在于,所述信令为公共下行控制信令,所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送所述公共下行控制信令。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述接入网设备从所述候选接收子帧集合中确定所述接收子帧,包括:
    所述接入网设备根据混合自动重传请求HARQ定时关系从所述候选接收子帧集合中确定所述接收子帧。
  14. 根据权利要求9至13任一项所述的方法,其特征在于,所 述接入网设备在所述接收子帧中接收所述反馈信息之前还包括:
    所述接入网设备在所述下行子帧集合中的实际调度所述终端设备进行下行数据传输的至少一个下行子帧中的每个下行子帧中分别向所述终端设备发送索引指示,所述索引指示的取值根据如下任一种信息所确定:
    所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
    所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
    所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
    所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
  15. 根据权利要求14所述的方法,其特征在于,
    所述接入网设备在所述接收子帧中接收所述反馈信息之后还包括:
    所述接入网设备确定所述反馈信息的码本的大小;
    所述接入网设备根据所述反馈信息的码本的大小对接收到的所述反馈信息进行信道译码;
    所述接入网设备解析所述信道译码后的反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述接入网设备在所述下行子帧集合中调度所述终端设备进行下行数据传输的下行子帧和没有调度所述终端设备进行下行数据传输的下行子帧。
  16. 根据权利要求14或15所述的方法,其特征在于,所述索引指示和公共下行控制信令用于向所述终端设备指示所述反馈信息的 码本,所述公共下行控制信令为所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送的信令。
  17. 一种终端设备,其特征在于,所述终端设备包括:
    接收单元,用于终端设备在下行突发中的下行子帧集合中的下行子帧中接收接入网设备发送的下行数据;
    确定单元,用于所述终端设备在至少一个上行突发中确定用于发送通过所述接收单元接收的所述下行数据对应的反馈信息的发送子帧,所述下行子帧集合为所述发送子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧;
    发送单元,用于所述终端设备在所述确定单元确定的所述发送子帧中向所述接入网设备发送所述反馈信息。
  18. 根据权利要求17所述的终端设备,其特征在于,所述终端设备在至少一个上行突发中确定用于发送所述下行数据对应的反馈信息的发送子帧,包括:
    所述确定单元,用于所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,所述候选发送子帧集合包括至少一个候选发送子帧;
    所述确定单元,还用于所述终端设备从所述确定单元确定的所述候选发送子帧集合中确定所述发送子帧。
  19. 根据权利要求18所述的终端设备,其特征在于,所述终端设备在所述至少一个上行突发中确定候选发送子帧集合,包括:
    所述确定单元,用于所述终端设备根据所述接入网设备的信令通知在所述至少一个上行突发中确定候选发送子帧集合。
  20. 根据权利要求19所述的终端设备,其特征在于,所述信令为公共下行控制信令,所述接收单元,用于所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中接收所述公共下行控制信令。
  21. 根据权利要求18至20中任一项所述的终端设备,其特征在 于,所述终端设备从所述候选发送子帧集合中确定所述发送子帧,包括:
    所述确定单元,用于所述终端设备根据混合自动重传请求HARQ定时关系从所述确定单元确定的所述候选发送子帧集合中确定所述发送子帧。
  22. 根据权利要求17至21任一项所述的终端设备,其特征在于,所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息之前还包括:
    所述接收单元,还用于所述终端设备在所述下行子帧集合中的至少一个下行子帧中的每个下行子帧中分别接收所述接入网设备发送的索引指示,所述索引指示的取值根据如下任一种信息所确定:
    所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
    所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
    所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
    所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
  23. 根据权利要求22所述的终端设备,其特征在于,
    编码单元,用于所述终端设备生成所述反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述终端设备在所述下行子帧集合中接收到下行数据的下行子帧和没有接收到下行数据的下行子帧;
    所述编码单元,用于所述终端设备根据所述编码单元生成的所述码本对所述反馈信息进行信道编码;
    所述终端设备在所述发送子帧中向所述接入网设备发送所述反馈信息,包括:
    所述发送单元,用于所述终端设备在所述发送子帧中向所述接入网设备发送根据所述编码单元进行所述信道编码后的反馈信息。
  24. 根据权利要求22或23所述的终端设备,其特征在于,所述编码单元,用于所述终端设备根据所述索引指示和公共下行控制信令生成所述反馈信息的码本,所述公共下行控制信令为所述终端设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中从所述接入网设备接收的信令。
  25. 一种接入网设备,其特征在于,所述接入网设备包括:
    发送单元,用于接入网设备在下行突发中的下行子帧集合中的下行子帧中向终端设备发送下行数据;
    确定单元,用于所述接入网设备在至少一个上行突发中确定用于接收通过所述发送单元发送的所述下行数据对应的反馈信息的接收子帧,所述下行子帧集合为所述接收子帧关联的下行子帧所组成的集合的子集,所述至少一个上行突发在所述下行突发之后,所述至少一个上行突发中的每个上行突发包括至少一个上行子帧;
    接收单元,用于所述接入网设备在所述确定单元确定的所述接收子帧中接收所述反馈信息。
  26. 根据权利要求25所述的接入网设备,其特征在于,所述接入网设备在至少一个上行突发中确定用于接收所述下行数据对应的反馈信息的接收子帧,包括:
    所述确定单元,用于所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合,所述候选接收子帧集合包括至少一个候选接收子帧;
    所述确定单元,还用于所述接入网设备从所述确定单元确定的所述候选接收子帧集合中确定所述接收子帧。
  27. 根据权利要求26所述的接入网设备,其特征在于,所述接入网设备在所述至少一个上行突发中确定候选接收子帧集合之后,包 括:
    所述发送单元,用于所述接入网设备通过发送信令将所述确定单元确定的所述候选接收子帧集合通知给所述终端设备。
  28. 根据权利要求27所述的接入网设备,其特征在于,所述信令为公共下行控制信令,所述发送单元,用于所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送所述公共下行控制信令。
  29. 根据权利要求26至28中任一项所述的接入网设备,其特征在于,所述接入网设备从所述候选接收子帧集合中确定所述接收子帧,包括:
    所述确定单元,用于所述接入网设备根据混合自动重传请求HARQ定时关系从所述确定单元确定的所述候选接收子帧集合中确定所述接收子帧。
  30. 根据权利要求25至29任一项所述的接入网设备,其特征在于,所述接入网设备在所述接收子帧中接收所述反馈信息之前还包括:
    所述发送单元,用于所述接入网设备在所述下行子帧集合中的实际调度所述终端设备进行下行数据传输的至少一个下行子帧中的每个下行子帧中分别向所述终端设备发送索引指示,所述索引指示的取值根据如下任一种信息所确定:
    所述索引指示所在下行子帧在所述下行突发中的第一子帧序号;
    所述索引指示所在下行子帧在所述下行突发中从第一起始调度子帧开始的第一子帧序号,所述第一起始调度子帧为所述终端设备在所述下行突发中被所述接入网设备调度的第一个子帧;
    所述索引指示所在下行子帧在所述下行子帧集合中的第二子帧序号;
    所述索引指示所在下行子帧在所述下行子帧集合中从第二起始调度子帧开始的第二子帧序号,所述第二起始调度子帧为所述终端设备在所述下行子帧集合中被所述接入网设备调度的第一个子帧。
  31. 根据权利要求30所述的接入网设备,其特征在于,
    所述接入网设备在所述接收子帧中接收所述反馈信息之后还包括:
    所述确定单元,用于所述接入网设备确定所述反馈信息的码本的大小;
    译码单元,用于所述接入网设备根据所述反馈信息的码本的大小对接收到的所述反馈信息进行信道译码;
    解析单元,用于所述接入网设备解析所述信道译码后的反馈信息的码本,所述下行子帧集合中的至少一个第一下行子帧和/或至少一个第二下行子帧分别对应的反馈信息的原始比特在所述码本中按照所述索引指示的取值进行排序,其中,所述第一下行子帧和所述第二下行子帧分别为所述接入网设备在所述下行子帧集合中调度所述终端设备进行下行数据传输的下行子帧和没有调度所述终端设备进行下行数据传输的下行子帧。
  32. 根据权利要求30或31所述的接入网设备,其特征在于,所述索引指示和公共下行控制信令用于向所述终端设备指示所述反馈信息的码本,所述公共下行控制信令为所述接入网设备在所述下行突发中的倒数第二和/或倒数第一的下行子帧中发送的信令。
PCT/CN2016/078361 2016-04-01 2016-04-01 反馈信息的发送、接收方法、终端设备及接入网设备 WO2017166306A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680083068.8A CN108702260B (zh) 2016-04-01 2016-04-01 反馈信息的发送、接收方法、终端设备及接入网设备
PCT/CN2016/078361 WO2017166306A1 (zh) 2016-04-01 2016-04-01 反馈信息的发送、接收方法、终端设备及接入网设备
EP16896085.4A EP3413491A4 (en) 2016-04-01 2016-04-01 METHOD FOR SENDING AND RECEIVING FEEDBACK INFORMATION, TERMINAL DEVICE, AND ACCESS NETWORK DEVICE
US16/148,539 US10700842B2 (en) 2016-04-01 2018-10-01 Feedback information sending method, feedback information receiving method, terminal device, and access network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078361 WO2017166306A1 (zh) 2016-04-01 2016-04-01 反馈信息的发送、接收方法、终端设备及接入网设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/148,539 Continuation US10700842B2 (en) 2016-04-01 2018-10-01 Feedback information sending method, feedback information receiving method, terminal device, and access network device

Publications (1)

Publication Number Publication Date
WO2017166306A1 true WO2017166306A1 (zh) 2017-10-05

Family

ID=59963297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078361 WO2017166306A1 (zh) 2016-04-01 2016-04-01 反馈信息的发送、接收方法、终端设备及接入网设备

Country Status (4)

Country Link
US (1) US10700842B2 (zh)
EP (1) EP3413491A4 (zh)
CN (1) CN108702260B (zh)
WO (1) WO2017166306A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873423B2 (en) * 2018-02-15 2020-12-22 Huawei Technologies Co., Ltd. Systems and methods for allocation of uplink control channel resources in unlicensed spectrum
WO2021007369A1 (en) * 2019-07-08 2021-01-14 Apple Inc. Fbe framework for nr systems operating on unlicensed spectrum
CN112086097B (zh) * 2020-07-29 2023-11-10 广东美的白色家电技术创新中心有限公司 语音终端的指令响应方法、电子设备及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237312A (zh) * 2008-02-29 2008-08-06 中兴通讯股份有限公司 Hfdd用户对称类型收发模式的harq反馈方法
CN101237279A (zh) * 2008-02-29 2008-08-06 中兴通讯股份有限公司 Hfdd用户对称性收发模式的指配方法
US20090092085A1 (en) * 2007-10-03 2009-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Telecommunications frame structure accomodating differing formats
US20120230216A1 (en) * 2009-10-29 2012-09-13 Electronics And Telecommunications Research Institute Communication method
CN104541471A (zh) * 2012-09-27 2015-04-22 华为技术有限公司 无线通信系统中的方法和节点

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703287B1 (ko) * 2005-07-20 2007-04-03 삼성전자주식회사 통신 시스템에서 자원 할당 정보 송수신 시스템 및 방법
KR20090078723A (ko) * 2008-01-15 2009-07-20 삼성전자주식회사 무선 이동 통신 시스템에서 복합 자동 재송신 요구 방식에 기반한 신호 송수신 방법
KR101758357B1 (ko) * 2009-11-02 2017-07-17 한국전자통신연구원 재전송 방법 및 장치
KR101875611B1 (ko) * 2010-11-22 2018-07-06 엘지전자 주식회사 무선 통신 시스템에서 하향링크 전송에 대한 확인응답의 전송 방법 및 장치
KR101919780B1 (ko) * 2011-03-03 2018-11-19 엘지전자 주식회사 무선 통신 시스템에서 확인응답 정보를 전송하는 방법 및 장치
WO2012124924A2 (ko) * 2011-03-11 2012-09-20 엘지전자 주식회사 반송파 집성 기법이 적용된 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
CN102752085B (zh) * 2011-04-21 2014-09-17 华为技术有限公司 Tdd系统中确认或不确认指示信息发送的方法和设备
CN105229952B (zh) * 2013-05-22 2018-02-16 Lg电子株式会社 在无线通信系统中发送的通信方法和使用该方法的终端
CN104217727B (zh) 2013-05-31 2017-07-21 华为技术有限公司 信号解码方法及设备
EP2993934B1 (en) * 2013-06-04 2018-08-01 Huawei Technologies Co., Ltd. Data transmission method and device, and user equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090092085A1 (en) * 2007-10-03 2009-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Telecommunications frame structure accomodating differing formats
CN101237312A (zh) * 2008-02-29 2008-08-06 中兴通讯股份有限公司 Hfdd用户对称类型收发模式的harq反馈方法
CN101237279A (zh) * 2008-02-29 2008-08-06 中兴通讯股份有限公司 Hfdd用户对称性收发模式的指配方法
US20120230216A1 (en) * 2009-10-29 2012-09-13 Electronics And Telecommunications Research Institute Communication method
CN104541471A (zh) * 2012-09-27 2015-04-22 华为技术有限公司 无线通信系统中的方法和节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413491A4 *

Also Published As

Publication number Publication date
US20190036668A1 (en) 2019-01-31
EP3413491A4 (en) 2019-03-27
EP3413491A1 (en) 2018-12-12
CN108702260A (zh) 2018-10-23
US10700842B2 (en) 2020-06-30
CN108702260B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
JP6192663B2 (ja) フィードバック情報を送受信するためのデバイス
US9948443B2 (en) Terminal device, base station device, communication method, and integrated circuit
US10779265B2 (en) Terminal, base station, integrated circuit, and communication method
WO2017193399A1 (zh) 一种上行控制信息的传输方法和装置
RU2768790C2 (ru) Устройство и способ передачи информации
US10764015B2 (en) Feedback information transmission method, related device, and communications system
CN113383597B (zh) 实现基于微时隙的重复的用户设备、基站装置及通信方法
CN112534917A (zh) 用于上行链路复用的用户设备、基站和方法
CN108029130B (zh) 低成本mtc装置在m-pdcch上的简洁dci中的crc字段的减小的方法
US10972232B2 (en) Retransmission method and device
CN107615697B (zh) 一种信息发送、接收方法及设备
CN113678537A (zh) 用于可配置下行链路控制信息格式的用户设备、基站和方法
EP3013093B1 (en) Terminal device, integrated circuit, and wireless communication method
EP3113537B1 (en) Terminal device, integrated circuit, and radio communication method
US10700842B2 (en) Feedback information sending method, feedback information receiving method, terminal device, and access network device
EP3883161B1 (en) Uplink feedback method, user equipment, and base station
US11382108B2 (en) Data transmission method, and apparatus
US10693614B2 (en) Data transmission method, terminal device, and network device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016896085

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896085

Country of ref document: EP

Effective date: 20180904

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896085

Country of ref document: EP

Kind code of ref document: A1