WO2017166299A1 - 上行信号在多载波间传输的方法、用户设备、基站及系统 - Google Patents

上行信号在多载波间传输的方法、用户设备、基站及系统 Download PDF

Info

Publication number
WO2017166299A1
WO2017166299A1 PCT/CN2016/078343 CN2016078343W WO2017166299A1 WO 2017166299 A1 WO2017166299 A1 WO 2017166299A1 CN 2016078343 W CN2016078343 W CN 2016078343W WO 2017166299 A1 WO2017166299 A1 WO 2017166299A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
carrier
mode
signaling
present
Prior art date
Application number
PCT/CN2016/078343
Other languages
English (en)
French (fr)
Inventor
张莉莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20216273.1A priority Critical patent/EP3860167A1/en
Priority to CN202110460525.3A priority patent/CN113365237B/zh
Priority to US16/090,344 priority patent/US10979868B2/en
Priority to CN201680081117.4A priority patent/CN108605208B/zh
Priority to EP16896078.9A priority patent/EP3425937B1/en
Priority to ES16896078T priority patent/ES2870041T3/es
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202110460229.3A priority patent/CN113365236A/zh
Priority to JP2018551220A priority patent/JP6856226B2/ja
Priority to PCT/CN2016/078343 priority patent/WO2017166299A1/zh
Publication of WO2017166299A1 publication Critical patent/WO2017166299A1/zh
Priority to US17/177,981 priority patent/US11622246B2/en
Priority to US18/168,129 priority patent/US11997569B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, a user equipment, a base station, and a system for transmitting uplink signals between multiple carriers.
  • Channel estimation refers to the process of estimating the model parameters of a certain channel model assumed in the received data.
  • channel sounding reference information Sounding Reference Signal, English abbreviation: SRS
  • channel reciprocity for channel estimation.
  • the user equipment (English name: User Equipment, English abbreviation: UE) can usually aggregate a larger number of downlink carriers.
  • some downlink carriers with downlink transmission cannot perform uplink transmission, such as transmission of uplink SRS signals.
  • channel reciprocity cannot be effectively utilized.
  • the embodiments of the present invention provide a method, a user equipment, a base station, and a system for transmitting an uplink signal between multiple carriers, which can effectively utilize channel reciprocity.
  • the first aspect of the present invention provides a method for transmitting an uplink signal between multiple carriers, including:
  • a method for transmitting uplink signals between multiple carriers refers to a frequency division duplex (English name: Frequency Division Duplex, English abbreviation: FDD) or time division duplex (English full name: Time Division Duplex, English abbreviation: TDD)
  • the downlink subframe of the carrier may be converted into a subframe having a specific subframe format, and may be used for uplink channel detection or channel state information reporting, and the converted downlink subframe includes at least one uplink signal; or, one One uplink subframe of the FDD or TDD carrier is converted into a subframe containing transmission of at least one uplink signal; or, one special subframe of one FDD or TDD carrier is converted into a subframe containing transmission of at least one uplink signal.
  • the transmission including the uplink signal is performed on the target subframe of the corresponding target carrier according to the indication signaling.
  • the uplink signal may be for a UE that has a transmission requirement for an uplink signal.
  • the beneficial effect is that the transmission including the uplink signal is performed on the target subframe of the target carrier according to the received indication signaling.
  • the target carrier is a downlink transmission
  • the downlink subframe or the uplink subframe of the carrier can be transmitted by using the indication signaling, and the present invention obviously makes the channel Reciprocity is effectively utilized.
  • a first embodiment of the first aspect of the invention comprises:
  • the indication signaling is signaling indicating carrier and/or subframe conversion.
  • the second embodiment of the first aspect of the present invention comprises:
  • the indication signaling includes carrier indication information and/or subframe indication information.
  • the third embodiment of the first aspect of the invention comprises:
  • the indication signaling further includes at least one of a bandwidth occupied by the uplink signal, a transmission mode, a transmission port, a cyclic shift, a timing advance, and a power control parameter.
  • the indication signaling is wrapped by a specific cyclic redundancy code CRC.
  • the fourth embodiment of the first aspect of the invention comprises:
  • the carrier indication information includes a carrier index before conversion and/or a converted carrier index; the subframe indication information includes a subframe number before conversion and/or a converted subframe number.
  • the first embodiment of the first aspect of the present invention, the second embodiment of the first aspect of the present invention, the fifth embodiment of the first aspect of the present invention includes:
  • the target carrier is a converted carrier
  • the target subframe is a converted subframe
  • a first embodiment of the first aspect of the present invention a second embodiment of the first aspect of the present invention, a third embodiment of the first aspect of the present invention, and a fourth embodiment of the first aspect of the present invention
  • the sixth embodiment of the first aspect of the present invention comprises:
  • the uplink signal includes at least one of a channel sounding reference signal SRS, a preamble, and a code division multiple access CDMA.
  • the seventh embodiment of the first aspect of the present invention comprises:
  • the SRS is a plurality of combinations of pre-configured SRS sequences, and/or the transmission mode of the SRS is a plurality of combinations of pre-configured SRS patterns.
  • a first embodiment of the first aspect of the present invention, a second embodiment of the first aspect of the present invention, a third embodiment of the first aspect of the present invention, and a fourth embodiment of the first aspect of the present invention A fifth embodiment of the first aspect of the present invention, a sixth embodiment of the first aspect of the present invention, and a seventh embodiment of the first aspect of the present invention, the eighth embodiment of the first aspect of the present invention includes:
  • the target subframe performs transmission including downlink control information and/or downlink data information and/or uplink signals; and/or, the target subframe performs uplink control information and/or uplink data information and/or uplink signals.
  • the uplink signal includes uplink control information, and the target subframe performs transmission including downlink control information and/or downlink data information and/or uplink control information.
  • a first embodiment of the first aspect of the present invention, a second embodiment of the first aspect of the present invention, a third embodiment of the first aspect of the present invention, and a fourth embodiment of the first aspect of the present invention A fifth embodiment of the first aspect of the present invention, a sixth embodiment of the first aspect of the present invention, a seventh embodiment of the first aspect of the present invention, an eighth embodiment of the first aspect of the present invention, and a first aspect of the present invention
  • the ninth embodiment includes:
  • the method further includes:
  • the time and/or frequency domain location and/or the occupied symbol length of the uplink signal and/or uplink control information are configured.
  • the ninth embodiment of the first aspect of the present invention includes:
  • the uplink control information is used for at least one of uplink channel detection, channel state information CSI feedback, and hybrid automatic repeat request HARQ feedback.
  • a first embodiment of the first aspect of the invention, a first aspect of the invention A second embodiment of the first aspect of the present invention, a fourth embodiment of the first aspect of the present invention, a fifth embodiment of the first aspect of the present invention, and a sixth embodiment of the first aspect of the present invention, A seventh embodiment of the first aspect of the present invention, an eighth embodiment of the first aspect of the present invention, a ninth embodiment of the first aspect of the present invention, a tenth embodiment of the first aspect of the present invention, and a first aspect of the present invention
  • the eleventh embodiment includes:
  • the target subframe includes downlink and uplink
  • there is a guard interval between the downlink and the uplink and the length of the guard interval is configurable.
  • the downlink control information, the downlink data information, the guard interval, and the uplink signal or the downlink control information, the downlink data information, the guard interval, and the uplink control information, or the downlink control information and the downlink data information, in turn Interval, uplink control information and uplink signal.
  • the downlink to uplink guard interval GP1 length may be configured.
  • the uplink to downlink guard interval GP2 may be 0 in length.
  • a first embodiment of the first aspect of the present invention, a second embodiment of the first aspect of the present invention, a third embodiment of the first aspect of the present invention, and a fourth embodiment of the first aspect of the present invention A fifth embodiment of the first aspect of the present invention, a sixth embodiment of the first aspect of the present invention, a seventh embodiment of the first aspect of the present invention, an eighth embodiment of the first aspect of the present invention, and a first aspect of the present invention
  • the indication signaling is signaled by self-carrier or cross-carrier signaling.
  • a first embodiment of the first aspect of the present invention, a second embodiment of the first aspect of the present invention, a third embodiment of the first aspect of the present invention, and a fourth embodiment of the first aspect of the present invention A fifth embodiment of the first aspect of the present invention, a sixth embodiment of the first aspect of the present invention, a seventh embodiment of the first aspect of the present invention, an eighth embodiment of the first aspect of the present invention, and a first aspect of the present invention
  • a ninth embodiment of the first aspect of the present invention, an eleventh embodiment of the first aspect of the present invention, a twelfth embodiment of the first aspect of the present invention, and a thirteenth aspect of the first aspect of the present invention Implementations include:
  • the indication signaling is dynamically configured or semi-statically configured.
  • the fourteenth embodiment of the first aspect of the present invention The formula includes:
  • the indication signaling is dynamically configured or semi-statically configured to: at least one of dynamic configuration or semi-static configuration indication signaling by using broadcast signaling, high-layer radio resource control RRC signaling, and physical layer signaling.
  • the fourteenth embodiment of the first aspect of the present invention comprises:
  • the semi-static configuration includes that the carrier and/or subframe mode is semi-statically configured.
  • the sixteenth embodiment of the first aspect of the present invention comprises:
  • the carrier and/or subframe mode is subject to a pre-configured sequence design when migrating between carriers and/or sub-frames.
  • a seventeenth embodiment of the first aspect of the invention includes:
  • the semi-static configuration has a configurable pot life.
  • the eighteenth embodiment of the first aspect of the present invention comprises:
  • the semi-static configuration is dynamically activated or deactivated.
  • a nineteenth embodiment of the first aspect of the invention includes:
  • the carrier and/or subframe mode is a periodic mode or an aperiodic mode, and carriers and/or subframes in the carrier and/or subframe mode are a uniform mode or a non-uniform mode.
  • the twentieth embodiment of the first aspect of the present invention comprises:
  • subframes in the subframe mode have the same or different periods on different carriers.
  • a nineteenth embodiment of the first aspect of the present invention, the twentieth embodiment of the first aspect of the present invention, the twenty-first embodiment of the first aspect of the present invention comprises:
  • the carrier and/or subframe mode is determined by interface signaling between base stations, the carrier and/or subframe modes interacting between base stations.
  • a second aspect of the present invention provides a method for transmitting an uplink signal between multiple carriers, including:
  • the indication signaling is sent to the user equipment, so that the user equipment performs transmission including the uplink signal in the target subframe of the corresponding target carrier according to the indication signaling.
  • the first embodiment of the second aspect of the invention comprises:
  • the indication signaling is signaling indicating carrier and/or subframe conversion.
  • the second embodiment of the second aspect of the present invention comprises:
  • the indication signaling includes carrier indication information and/or subframe indication information.
  • the third embodiment of the second aspect of the invention comprises:
  • the indication signaling further includes at least one of a bandwidth occupied by the uplink signal, a transmission mode, a transmission port, a cyclic shift, a timing advance, and a power control parameter.
  • the fourth embodiment of the second aspect of the present invention comprises:
  • the carrier indication information includes a carrier index before conversion and/or a converted carrier index; the subframe indication information includes a subframe number before conversion and/or a converted subframe number.
  • a fifth embodiment of the second aspect of the invention includes:
  • the sending the indication signaling to the user equipment includes:
  • the indication signaling is sent by self-carrier or cross-carrier signaling.
  • the sixth embodiment of the second aspect of the present invention comprises:
  • the configuration indication signaling includes:
  • the seventh embodiment of the second aspect of the present invention comprises:
  • the dynamic configuration or semi-static configuration indication signaling includes:
  • At least one of dynamic configuration or semi-static configuration indication signaling is controlled by broadcast signaling, high layer radio resource control RRC signaling and physical layer signaling.
  • the sixth embodiment of the second aspect of the present invention includes:
  • the semi-static configuration includes that the carrier and/or subframe mode is semi-statically configured.
  • the ninth embodiment of the second aspect of the present invention comprises:
  • the carrier and/or subframe mode is subject to a pre-configured sequence design when migrating between carriers and/or sub-frames.
  • a seventh embodiment of the second aspect of the present invention, an eighth embodiment of the second aspect of the present invention, a ninth embodiment of the second aspect of the present invention, and a second aspect of the present invention includes:
  • the semi-static configuration has a configurable trial period.
  • the eleventh embodiment of the second aspect of the present invention comprises:
  • the semi-static configuration is dynamically activated or deactivated.
  • a ninth embodiment of the second aspect of the present invention, a tenth embodiment of the second aspect of the present invention, an eleventh embodiment of the second aspect of the present invention, and a second aspect of the present invention A twelfth embodiment of the aspect includes:
  • the carrier and/or subframe mode is a periodic mode or an aperiodic mode, and carriers and/or subframes in the carrier and/or subframe mode are a uniform mode or a non-uniform mode.
  • the thirteenth embodiment of the second aspect of the present invention comprises:
  • subframes in the subframe mode have the same or different periods on different carriers.
  • a third aspect of the present invention provides a user equipment UE, including:
  • a receiving module configured to receive indication signaling sent by the base station
  • a transmitting module configured to perform, according to the indication signaling, a transmission including an uplink signal in a target subframe of the corresponding target carrier.
  • the beneficial effect is that the transmission including the uplink signal is performed on the target subframe of the target carrier according to the obtained indication signaling.
  • the target carrier is a downlink transmission
  • the downlink subframe or the uplink subframe of the carrier can be transmitted by using the indication signaling, and the present invention obviously makes the channel Reciprocity is effectively utilized.
  • the first embodiment of the third aspect of the invention comprises:
  • the indication signaling is signaling indicating carrier and/or subframe conversion.
  • the second embodiment of the third aspect of the present invention comprises:
  • the indication signaling includes carrier indication information and/or subframe indication information.
  • the third embodiment of the third aspect of the present invention comprises:
  • the indication signaling further includes at least one of a bandwidth occupied by the uplink signal, a transmission mode, a transmission port, a cyclic shift, a timing advance, and a power control parameter.
  • the indication signaling is wrapped by a specific cyclic redundancy code CRC.
  • the fourth embodiment of the third aspect of the present invention comprises:
  • the carrier indication information includes a carrier index before conversion and/or a converted carrier index; the subframe indication information includes a subframe number before conversion and/or a converted subframe number.
  • the first embodiment of the third aspect of the present invention, the second embodiment of the third aspect of the present invention, the fifth embodiment of the third aspect of the present invention includes:
  • the target carrier is a converted carrier
  • the target subframe is a converted subframe
  • a first embodiment of the third aspect of the present invention, a second embodiment of the third aspect of the present invention, a third embodiment of the third aspect of the present invention, and a fourth embodiment of the third aspect of the present invention According to a fifth embodiment of the third aspect of the present invention, the sixth embodiment of the third aspect of the present invention comprises:
  • the uplink signal includes at least one of a channel sounding reference signal SRS, a preamble, and a code division multiple access CDMA.
  • the seventh embodiment of the third aspect of the present invention comprises:
  • the SRS is a plurality of combinations of pre-configured SRS sequences, and/or the transmission mode of the SRS is a plurality of combinations of pre-configured SRS patterns.
  • a first embodiment of the third aspect of the present invention, a second embodiment of the third aspect of the present invention, a third embodiment of the third aspect of the present invention, and a fourth embodiment of the third aspect of the present invention A fifth embodiment of the third aspect of the present invention, a sixth embodiment of the third aspect of the present invention, and a seventh embodiment of the third aspect of the present invention, the eighth embodiment of the third aspect of the present invention includes:
  • the transmitting module is specifically configured to: perform transmission including downlink control information and/or downlink data information and/or uplink signals in a target subframe of the corresponding target carrier according to the indication signaling; and/or perform uplink control including Transmission of information and/or uplink data information and/or uplink signals; and/or the uplink signal includes uplink control information for transmission including downlink control information and/or downlink data information and/or uplink control information.
  • a third aspect of the present invention a first embodiment of the third aspect of the present invention, a second embodiment of the third aspect of the present invention, a third embodiment of the third aspect of the present invention, and a fourth embodiment of the third aspect of the present invention
  • the ninth embodiment of the three aspects includes:
  • the UE further includes:
  • a configuration module configured to configure a time or frequency domain location and/or a symbol length of the uplink signal and/or uplink control information.
  • the ninth embodiment of the third aspect of the present invention includes:
  • the uplink control information is used for at least one of uplink channel detection, channel state information CSI feedback, and hybrid automatic repeat request HARQ feedback.
  • a first embodiment of the third aspect of the present invention, a second embodiment of the third aspect of the present invention, a third embodiment of the third aspect of the present invention, and a fourth embodiment of the third aspect of the present invention A fifth embodiment of the third aspect of the present invention, a sixth embodiment of the third aspect of the present invention, a seventh embodiment of the third aspect of the present invention, an eighth embodiment of the third aspect of the present invention, and a third aspect of the present invention
  • a ninth embodiment of the third aspect of the present invention, the eleventh embodiment of the third aspect of the present invention comprises:
  • the target subframe includes downlink and uplink
  • there is a guard interval between the downlink and the uplink and the length of the guard interval is configurable.
  • a first embodiment of the third aspect of the present invention, a second embodiment of the third aspect of the present invention, a third embodiment of the third aspect of the present invention, and a fourth embodiment of the third aspect of the present invention A fifth embodiment of the third aspect of the present invention, a sixth embodiment of the third aspect of the present invention, a seventh embodiment of the third aspect of the present invention, an eighth embodiment of the third aspect of the present invention, and a third aspect of the present invention
  • a ninth embodiment of the third aspect of the present invention, an eleventh embodiment of the third aspect of the present invention, the twelfth embodiment of the third aspect of the present invention includes:
  • the indication signaling is signaled by self-carrier or cross-carrier signaling.
  • a first embodiment of the third aspect of the present invention, a second embodiment of the third aspect of the present invention, a third embodiment of the third aspect of the present invention, and a fourth embodiment of the third aspect of the present invention A fifth embodiment of the third aspect of the present invention, a seventh embodiment of the third aspect of the present invention, a seventh embodiment of the third aspect of the present invention, and an eighth embodiment of the present invention
  • the thirteen implementations include:
  • the indication signaling is dynamically configured or semi-statically configured.
  • the fourteenth embodiment of the third aspect of the present invention comprises:
  • the indication signaling is dynamically configured or semi-statically configured to: at least one of dynamic configuration or semi-static configuration indication signaling by using broadcast signaling, high-layer radio resource control RRC signaling, and physical layer signaling.
  • the fourteenth embodiment of the third aspect of the present invention comprises:
  • the semi-static configuration includes that the carrier and/or subframe mode is semi-statically configured.
  • the sixteenth embodiment of the third aspect of the present invention comprises:
  • the carrier and/or subframe mode is subject to a pre-configured sequence design when migrating between carriers and/or sub-frames.
  • a seventeenth embodiment of the third aspect of the invention includes:
  • the semi-static configuration has a configurable pot life.
  • the eighteenth embodiment of the third aspect of the present invention comprises:
  • the semi-static configuration is dynamically activated or deactivated.
  • a nineteenth embodiment of the third aspect of the invention includes:
  • the carrier and/or subframe mode is a periodic mode or an aperiodic mode, and carriers and/or subframes in the carrier and/or subframe mode are a uniform mode or a non-uniform mode.
  • the twentieth embodiment of the third aspect of the present invention comprises:
  • subframes in the subframe mode have the same or different periods on different carriers.
  • a nineteenth embodiment of the third aspect of the present invention, the twentieth embodiment of the third aspect of the present invention, the twenty-first embodiment of the third aspect of the present invention comprises:
  • the carrier and/or subframe mode is determined by interface signaling between base stations, the carrier and/or subframe modes interacting between base stations.
  • a fourth aspect of the present invention provides a base station, including:
  • a configuration module configured to configure indication signaling
  • a sending module configured to send the indication signaling to the user equipment, so that the user equipment performs the transmission including the uplink signal in the target subframe of the corresponding target carrier according to the indication signaling.
  • the first embodiment of the fourth aspect of the invention comprises:
  • the indication signaling is signaling indicating carrier and/or subframe conversion.
  • the second embodiment of the fourth aspect of the present invention includes:
  • the indication signaling includes carrier indication information and/or subframe indication information.
  • the third embodiment of the fourth aspect of the present invention comprises:
  • the indication signaling further includes at least one of a bandwidth occupied by the uplink signal, a transmission mode, a transmission port, a cyclic shift, a timing advance, and a power control parameter.
  • a fourth embodiment package of the fourth aspect of the present invention include:
  • the carrier indication information includes a carrier index before conversion and/or a converted carrier index; the subframe indication information includes a subframe number before conversion and/or a converted subframe number.
  • a fifth embodiment of the fourth aspect of the present invention includes:
  • the sending module is specifically configured to send the indication signaling by self-carrier or cross-carrier signaling.
  • the sixth embodiment of the fourth aspect of the present invention comprises:
  • the configuration module is specifically configured to dynamically configure or semi-static configuration indication signaling.
  • the seventh embodiment of the fourth aspect of the present invention comprises:
  • the configuration module is specifically configured to perform at least one of dynamic configuration or semi-static configuration indication signaling by using broadcast signaling, high-layer radio resource control, and RRC signaling and physical layer signaling.
  • a sixth embodiment of the fourth aspect of the present invention includes:
  • the semi-static configuration includes that the carrier and/or subframe mode is semi-statically configured.
  • the ninth embodiment of the fourth aspect of the present invention comprises:
  • the carrier and/or subframe mode is subject to a pre-configured sequence design when migrating between carriers and/or sub-frames.
  • a seventh embodiment of the fourth aspect of the present invention, an eighth embodiment of the fourth aspect of the present invention, a ninth embodiment of the fourth aspect of the present invention, and a fourth aspect of the present invention includes:
  • the semi-static configuration has a configurable trial period.
  • the eleventh embodiment of the fourth aspect of the present invention comprises:
  • the semi-static configuration is dynamically activated or deactivated.
  • a ninth embodiment of the fourth aspect of the present invention, a tenth embodiment of the fourth aspect of the present invention, an eleventh embodiment of the fourth aspect of the present invention, and a fourth aspect of the present invention A twelfth embodiment of the aspect includes:
  • the carrier and/or subframe mode is a periodic mode or an aperiodic mode, and carriers and/or subframes in the carrier and/or subframe mode are a uniform mode or a non-uniform mode.
  • the thirteenth embodiment of the fourth aspect of the present invention comprises:
  • subframes in the subframe mode have the same or different periods on different carriers.
  • a fifth aspect of the present invention provides a system for transmitting an uplink signal between multiple carriers, including the user equipment provided by the third aspect of the present invention and the base station provided by the fourth aspect of the present invention.
  • the transmission including the uplink signal is performed on the target subframe of the target carrier according to the received indication signaling.
  • the target carrier is a downlink transmission
  • the downlink subframe or the uplink subframe of the carrier can be transmitted by using the indication signaling, and the present invention obviously makes the channel Reciprocity is effectively utilized.
  • FIG. 1 is a schematic diagram of a customized hybrid subframe and an inverted subframe according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an embodiment of a method for transmitting an uplink signal between multiple carriers according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a uniform mode in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a non-uniform mode in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a method for transmitting an uplink signal between multiple carriers according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an embodiment of a user equipment UE in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a system according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a server according to an embodiment of the present invention.
  • an indication of signaling is indicated.
  • the hybrid subframe refers to: 1. Converting the last downlink symbol of the downlink subframe into an uplink symbol, for uplink signal transmission, such as SRS transmission, uplink channel detection, and channel state information (English name: Channel State Information) , English abbreviation: CSI) feedback or hybrid automatic repeat request (English full name: Hybrid Automatic Repeat Request, English abbreviation: HARQ) feedback; in the hybrid subframe, guard interval GP1 for downlink to uplink conversion, guard interval GP2 For uplink to downlink conversion; or 2, the uplink symbol position and length are flexible, that is, not limited to the last symbol, more guard intervals are used for downlink to Upstream conversion.
  • FIG. 1 is a schematic diagram of a customized hybrid subframe and a reverse subframe to indicate three hybrid subframes and one reverse subframe.
  • the guard interval GP1 in FIG. 1 is used for downlink-to-uplink conversion, and the length can be configured.
  • GP2 is used for uplink-to-down conversion, and the length can be configured, for example, it can be 0.
  • the first uplink (left side) may be a physical uplink shared channel (English full name: Physical Uplink Shared Channel, English abbreviation: PUSCH), and the second uplink (right side) ) is SRS.
  • an embodiment of a method for transmitting an uplink signal between multiple carriers in an embodiment of the present invention includes:
  • the indication signaling may be signaling indicating carrier and/or subframe conversion.
  • the indication signaling includes carrier indication information and/or subframe indication information.
  • the indication signaling further includes at least one of a bandwidth occupied by the uplink signal, a transmission mode, a transmission port, a cyclic shift, a timing advance, and a power control parameter.
  • the carrier indication information includes a carrier index before conversion and/or a converted carrier index
  • the subframe indication information includes a subframe number before conversion and/or a converted subframe number
  • the target carrier and the target subframe of the target carrier are determined by the indication signaling, and the transmission including the uplink signal is performed on the target subframe of the target carrier.
  • the target carrier is converted. After the carrier, the target subframe is the converted subframe.
  • the target subframe of the target carrier can perform the following information transmission in addition to the transmission including the uplink signal, optionally:
  • the target subframe further performs transmission including downlink control information and downlink data information; or, the target subframe further performs transmission including uplink control information and uplink data information.
  • the method further includes: performing, according to the indication signaling, transmission of at least one of downlink control information, downlink data information, uplink control information, and uplink data information in a target subframe of the corresponding target carrier.
  • the step 102 is specifically: performing, according to the indication signaling, the transmission of the downlink control information and/or the downlink data information and/or the uplink control information in the target subframe of the corresponding target carrier. .
  • the downlink control information, the downlink data information, the guard interval, and the uplink signal or the downlink control information, the downlink data information, the guard interval, and the uplink control information, or the downlink control information and the downlink data information, in turn Interval, uplink control information and uplink signal.
  • the uplink control information, the uplink data information, the guard interval, and the uplink signal or the uplink control information, the uplink data information, the guard interval, the uplink signal, and the uplink data information.
  • the transmission including the uplink signal in the target subframe may be: 1.
  • the uplink signal does not include uplink control information, and the uplink subframe and other information are transmitted in the target subframe; 2.
  • the uplink signal includes uplink control information.
  • the transmission of the uplink control information and other information is performed in the target subframe.
  • the target subframe only performs uplink transmission, it indicates that the target subframe at this time may correspond to the reverse subframe described above, and if the target subframe performs both uplink transmission and downlink transmission, It is explained that the target subframe at this time corresponds to the aforementioned hybrid subframe.
  • the embodiment of the present invention may further include:
  • the time or frequency domain location and/or the occupied symbol length of the uplink signal and/or uplink control information is configured.
  • the target subframe includes a downlink and an uplink, and a guard interval GP is provided between the downlink and the uplink, and the length of the guard interval can be matched.
  • the uplink signal is used for uplink channel detection
  • the uplink control information is used for at least one of uplink channel detection, channel state information CSI feedback, and hybrid automatic repeat request (Hybrid Automatic Repeat Request, English abbreviation: HARQ) feedback.
  • Hybrid Automatic Repeat Request English abbreviation: HARQ
  • the uplink signal includes at least one of a sounding reference signal SRS, a preamble, and a code division multiple access (English full name: Code Division Multiple Access, English abbreviation: CDMA).
  • SRS sounding reference signal
  • preamble preamble
  • code division multiple access English full name: Code Division Multiple Access, English abbreviation: CDMA
  • the SRS is a plurality of combinations of pre-configured SRS sequences, and the transmission mode of the SRS is multiple combinations of pre-configured SRS modes.
  • the goal is to ensure that the full bandwidth detection capability exceeds the detection threshold.
  • the indication signaling is notified by self-carrier or cross-carrier signaling.
  • the configuration can be notified by cross-carrier signaling, that is, the converted subframes of all carriers are notified on one primary carrier or the secondary carrier; that is, when multiple carriers have a common converted subframe mode, only need to pass Signaling a set of common conversion subframe modes and carrying the relevant carrier sets at the same time; it may also be a certain mode that satisfies the jump between multiple carriers or obey a certain jump sequence.
  • the indication signaling is dynamically configured or semi-statically configured.
  • the indication signaling is dynamically configured or semi-statically configured to: at least one of broadcast signaling, high-level radio resource control (English full name: Radio Resource Control, English abbreviation: RRC) signaling, and physical layer signaling. Dynamic configuration or semi-static configuration indication signaling.
  • the semi-static configuration includes: the carrier and/or subframe mode is semi-statically configured.
  • the carrier and/or subframe mode is subject to a pre-configured sequence design when migrating between carriers and/or sub-frames.
  • the semi-static configuration has a configurable trial period.
  • the semi-static configuration is dynamically activated or deactivated.
  • the carrier and/or subframe mode is a periodic mode or an aperiodic mode
  • the carrier and/or the subframe in the carrier and/or subframe mode is a uniform mode or a non-uniform mode.
  • FIG. 3 For a specific drawing of the uniform mode, reference may be made to FIG. 3.
  • FIG. 4 For a specific drawing of the non-uniform mode, reference may be made to FIG. 4, and the subframes in FIG. 3 and FIG. 4 are represented by switching subframes.
  • the subframes in the subframe mode have the same or different periods on different carriers.
  • the carrier and/or subframe mode is determined by interface signaling between the base stations, and the carrier and/or subframe modes are exchanged between the base stations.
  • the carrier and/or subframe mode needs to be aligned between the base stations to cope with the interference of the base station, and the interface between the base stations may be an X2 interface.
  • the transmission including the uplink signal is performed on the target subframe of the target carrier according to the obtained indication signaling.
  • the target carrier is a downlink transmission
  • the downlink subframe or the uplink subframe of the carrier can be transmitted by using the indication signaling, and the present invention obviously makes the channel Reciprocity is effectively utilized.
  • the method for transmitting the uplink signal of the present invention between multiple carriers is described above from the user equipment side.
  • the following describes the method for transmitting the uplink signal of the present invention between multiple carriers from the base station side:
  • another embodiment of a method for transmitting an uplink signal between multiple carriers in an embodiment of the present invention includes:
  • the indication signaling is signaling indicating carrier and/or subframe conversion.
  • the indication signaling includes carrier indication information and/or subframe indication information.
  • the indication signaling further includes at least one of a bandwidth occupied by the uplink signal, a transmission mode, a transmission port, a cyclic shift, a timing advance, and a power control parameter.
  • the carrier indication information includes a carrier index before conversion and/or a converted carrier index;
  • the subframe indication information includes a subframe number before conversion and/or a converted subframe number.
  • the configuration indication signaling includes:
  • At least one of dynamic configuration or semi-static configuration indication signaling is performed by using broadcast signaling, high-layer radio resource control, and RRC signaling and physical layer signaling.
  • the semi-static configuration includes: the carrier and/or the subframe mode is semi-statically configured.
  • the carrier and/or subframe mode obeys a pre-configured sequence design when migrating between carriers and/or subframes.
  • the semi-static configuration has a configurable trial period, the semi-static configuration being dynamically activated or deactivated.
  • the carrier and/or subframe mode is a periodic mode or an aperiodic mode
  • the carrier and/or the subframe in the carrier and/or subframe mode is a uniform mode or a non-uniform mode.
  • the subframes in the subframe mode have the same or different periods on different carriers.
  • sending the indication signaling to the user equipment includes:
  • the indication signaling is sent by self-carrier or cross-carrier signaling.
  • the transmission including the uplink signal is performed on the target subframe of the target carrier according to the obtained indication signaling.
  • the target carrier is a downlink transmission
  • the downlink subframe or the uplink subframe of the carrier can be transmitted by using the indication signaling, and the present invention obviously makes the channel Reciprocity is effectively utilized.
  • an embodiment of a user equipment UE in an embodiment of the present invention includes:
  • the receiving module 301 is configured to receive indication signaling sent by the base station
  • the transmitting module 302 is configured to perform transmission including the uplink signal in the target subframe of the corresponding target carrier according to the indication signaling.
  • the indication information is signaling indicating carrier and/or subframe conversion.
  • the indication signaling further includes at least one of a bandwidth occupied by the uplink signal, a transmission mode, a transmission port, a cyclic shift, a timing advance, and a power control parameter.
  • the indication signaling is wrapped by a specific cyclic redundancy code CRC.
  • the carrier indication information includes a carrier index before conversion and/or a converted carrier index
  • the subframe indication information includes a subframe number before conversion and/or a converted subframe number
  • the target carrier and the target subframe of the target carrier are determined by the indication signaling, and the transmission including the uplink signal is performed on the target subframe of the target carrier.
  • the target carrier is converted. After the carrier, the target subframe is the converted subframe.
  • the target subframe of the target carrier can perform the following information transmission in addition to the transmission including the uplink signal, optionally:
  • the target subframe further performs transmission including downlink control information and downlink data information; or, the target subframe further performs transmission including uplink control information and uplink data information.
  • the transmitting module 302 is further configured to perform downlink control information, downlink data information, uplink control information, and uplink number in a target subframe of the corresponding target carrier according to the indication signaling. According to the transmission of at least one of the information.
  • the transmitting module 302 is configured to perform downlink control information and/or downlink data information and/or uplink control information according to the indication signaling in the target subframe of the corresponding target carrier. Transmission.
  • the transmission including the uplink signal in the target subframe may be: 1.
  • the uplink signal does not include uplink control information, and the uplink subframe and other information are transmitted in the target subframe; 2.
  • the uplink signal includes uplink control information.
  • the transmission of the uplink control information and other information is performed in the target subframe.
  • the target subframe only performs uplink transmission, it indicates that the target subframe at this time may correspond to the reverse subframe described above, and if the target subframe performs both uplink transmission and downlink transmission, It is explained that the target subframe at this time corresponds to the aforementioned hybrid subframe.
  • the target subframe further performs transmission including uplink control information
  • the configuration module is configured to configure a time or frequency domain position of the uplink signal and/or the uplink control information and/or a symbol length occupied.
  • the target subframe includes a downlink and an uplink, and a guard interval GP is provided between the downlink and the uplink, and the length of the guard interval can be matched.
  • the uplink signal is used for uplink channel detection
  • the uplink control information is used for at least one of uplink channel detection, channel state information CSI feedback, and hybrid automatic repeat request HARQ feedback.
  • the uplink signal includes at least one of a sounding reference signal SRS, a preamble, and a code division multiple access CDMA.
  • the SRS is a plurality of combinations of pre-configured SRS sequences, and the transmission mode of the SRS is multiple combinations of pre-configured SRS modes.
  • the goal is to ensure that the full bandwidth detection capability exceeds the detection threshold.
  • the indication signaling is notified by self-carrier or cross-carrier signaling.
  • the configuration can be notified by cross-carrier signaling, that is, the converted subframes of all carriers are notified on one primary carrier or the secondary carrier; that is, when multiple carriers have a common converted subframe mode, only need to pass Signaling a set of common conversion subframe patterns and carrying the associated carrier set at the same time; It may be a certain pattern that is satisfied when a plurality of carriers jump, or a certain jump sequence.
  • the indication signaling is dynamically configured or semi-statically configured.
  • the indication signaling is dynamically configured or the semi-static configuration is specifically: at least one of dynamic configuration or semi-static configuration indication signaling by using broadcast signaling, high-layer radio resource control RRC signaling, and physical layer signaling.
  • the semi-static configuration includes: the carrier and/or subframe mode is semi-statically configured.
  • the carrier and/or subframe mode is subject to a pre-configured sequence design when migrating between carriers and/or sub-frames.
  • the semi-static configuration has a configurable trial period.
  • the semi-static configuration is dynamically activated or deactivated.
  • the carrier and/or subframe mode is a periodic mode or an aperiodic mode
  • the carrier and/or the subframe in the carrier and/or subframe mode is a uniform mode or a non-uniform mode.
  • the subframes in the subframe mode have the same or different periods on different carriers.
  • the carrier and/or subframe mode is determined by interface signaling between the base stations, and the carrier and/or subframe modes are exchanged between the base stations.
  • the carrier and/or subframe mode needs to be aligned between the base stations to cope with the interference of the base station, and the interface between the base stations may be an X2 interface.
  • the transmission including the uplink signal is performed on the target subframe of the target carrier according to the received indication signaling.
  • the target carrier is a downlink transmission
  • the downlink subframe or the uplink subframe of the carrier can be transmitted by using the indication signaling, and the present invention obviously makes the channel Reciprocity is effectively utilized.
  • an embodiment of a base station in an embodiment of the present invention includes:
  • a configuration module 401 configured to configure indication signaling
  • the sending module 402 is configured to send the indication signaling to the user equipment, so that the user equipment performs the transmission including the uplink signal in the target subframe of the corresponding target carrier according to the indication signaling.
  • the indication signaling is signaling indicating a carrier and/or subframe conversion.
  • the indication signaling includes carrier indication information and/or subframe indication information.
  • the indication signaling further includes a bandwidth occupied by the uplink signal, a transmission mode, a sending port, and At least one of a cyclic shift, a timing advance, and a power control parameter.
  • the carrier indication information includes a carrier index before conversion and/or a converted carrier index;
  • the subframe indication information includes a subframe number before conversion and/or a converted subframe number.
  • the sending module 402 is specifically configured to send the indication signaling by using self-carrier or cross-carrier signaling.
  • the configuration module 401 is specifically configured to dynamically configure or semi-static configuration indication signaling.
  • the configuration module 401 is specifically configured to perform at least one of dynamic configuration or semi-static configuration indication signaling by using broadcast signaling, high-layer radio resource control, and RRC signaling and physical layer signaling.
  • the semi-static configuration includes: the carrier and/or the subframe mode is semi-statically configured.
  • the carrier and/or subframe mode is subject to a pre-configured sequence design when migrating between carriers and/or sub-frames.
  • the semi-static configuration has a configurable trial period, and the semi-static configuration is dynamically activated or deactivated.
  • the carrier and/or subframe mode is a periodic mode or an aperiodic mode
  • the carrier and/or the subframe in the carrier and/or subframe mode is a uniform mode or a non-uniform mode.
  • the subframes in the subframe mode have the same or different periods on different carriers.
  • the transmission including the uplink signal is performed on the target subframe of the target carrier according to the received indication signaling.
  • the target carrier is a downlink transmission
  • the downlink subframe or the uplink subframe of the carrier can be transmitted by using the indication signaling, and the present invention obviously makes the channel Reciprocity is effectively utilized.
  • an embodiment of the system in the embodiment of the present invention includes:
  • the base station 501 is configured to configure indication signaling, and send the indication signaling to a user equipment.
  • the user equipment 502 is configured to receive the indication signaling sent by the base station, and perform the transmission including the uplink signal in the target subframe of the corresponding target carrier according to the indication signaling.
  • the transmission including the uplink signal is performed on the target subframe of the target carrier according to the received indication signaling.
  • the target carrier is downlink transmission, for a larger number of downlink transmissions
  • the carrier in the middle enables the downlink subframe or the uplink subframe of the carrier to perform transmission including the uplink signal by indicating signaling, and the present invention obviously makes the channel reciprocity effectively utilized.
  • an embodiment of the server in the embodiment of the present invention includes:
  • FIG. 9 is a schematic structural diagram of a server according to an embodiment of the present invention.
  • the server 600 may have a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 601 (for example, One or more processors), one or more storage media 604 that store application 602 or data 603 (eg, one or one storage device in Shanghai).
  • the storage medium 604 can be short-lived or persistent.
  • the program stored on storage medium 604 may include one or more modules (not shown), each of which may include a series of instruction operations in the switch.
  • central processor 601 can be configured to communicate with storage medium 604, executing a series of instruction operations in storage medium 604 on server 600.
  • Server 600 may also include one or more power sources 605, one or more wired or wireless network interfaces 606, one or more output interfaces 607, and/or one or more operating systems 608, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 608 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the steps performed by the UE, the base station, and the system in the above embodiments may be based on the server structure shown in FIG.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了上行信号在多载波间传输的方法、用户设备、基站及系统,能够有效的利用信道互易性,本发明实施例方法包括:接收基站发送的指示信令;根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。

Description

上行信号在多载波间传输的方法、用户设备、基站及系统 技术领域
本发明涉及通信技术领域,尤其涉及上行信号在多载波间传输的方法、用户设备、基站及系统。
背景技术
长期演进(英文全称:Long Term Evolution,英文缩写:LTE)系统中,信道估计是有必要的,信道估计指的是接收数据中将假定的某个信道模型的模型参数估计出来的过程。
目前,对于既支持上行又支持下行的载波,利用信道探测参考信息(英文全称:Sounding Reference Signal,英文缩写:SRS)及信道互易性进行信道估计是有利的。
然而,比起上行载波,用户设备(英文全称:User Equipment,英文缩写:UE)通常能聚合更多数量的下行载波。结果在上行传输紧张的情况下,一些具有下行传输的下行载波不能进行上行传输,比如上行SRS信号的传输,显然对于这些下行载波,信道互易性不能得到有效的利用。
发明内容
本发明实施例提供了上行信号在多载波间传输的方法、用户设备、基站及系统,能够有效的利用信道互易性。
有鉴于此,本发明第一方面提供了一种上行信号在多载波间传输的方法,包括:
一种上行信号在多载波间传输的方法,指的是在一个频分双工(英文全称:Frequency Division Duplex,英文缩写:FDD)或时分双工(英文全称:Time Division Duplex,英文缩写:TDD)载波的下行子帧可以被转换为一种具有特定子帧格式的子帧,可以用于上行信道检测或信道状态信息汇报,被转换后的下行子帧中至少包含一个上行信号;或者,一个FDD或TDD载波的一个上行子帧被转换为包含至少一个上行信号的传输的子帧;或者,一个FDD或TDD载波的一个特殊子帧被转换为包含至少一个上行信号的传输的子帧。由此:
接收基站发送的指示信令;
根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
可选的,上行信号可以针对部分有上行信号的传输需求的UE。
其有益效果是:根据接收到的指示信令在目标载波的目标子帧进行包含上行信号的传输。显然,当目标载波为下行传输时,对于数量更多的处于下行传输中的载波,通过指示信令使得该载波的下行子帧或上行子帧能够进行包含上行信号的传输,本发明显然使得信道互易性得到有效的利用。
结合本发明第一方面,本发明第一方面的第一实施方式包括:
所述指示信令为指示载波和/或子帧转换的信令。
结合本发明第一方面,本发明第一方面的第一实施方式,本发明第一方面的第二实施方式包括:
所述指示信令包含载波指示信息和/或子帧指示信息。
结合本发明第一方面的第二实施方式,本发明第一方面的第三实施方式包括:
所述指示信令还包含所述上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
可选的,所述指示信令被特定的循环冗余码CRC加绕。
结合本发明第一方面的第二实施方式,本发明第一方面的第四实施方式包括:
所述载波指示信息包含转换前的载波索引和/或转换后的载波索引;所述子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
结合本发明第一方面,本发明第一方面的第一实施方式,本发明第一方面的第二实施方式,本发明第一方面的第五实施方式包括:
所述目标载波为转换后的载波,所述目标子帧为转换后的子帧。
结合本发明第一方面,本发明第一方面的第一实施方式,本发明第一方面的第二实施方式,本发明第一方面的第三实施方式,本发明第一方面的第四实施方式,本发明第一方面的第五实施方式,本发明第一方面的第六实施方式包括:
所述上行信号包括信道探测参考信号SRS,前导码和码分多址CDMA中的至少一种。
结合本发明第一方面的第六实施方式,本发明第一方面的第七实施方式包括:
所述SRS为预先配置的SRS序列的多个组合,和/或,所述SRS的传输模式为预先配置的SRS模式的多个组合。
结合本发明第一方面,本发明第一方面的第一实施方式,本发明第一方面的第二实施方式,本发明第一方面的第三实施方式,本发明第一方面的第四实施方式,本发明第一方面的第五实施方式,本发明第一方面的第六实施方式,本发明第一方面的第七实施方式,本发明第一方面的第八实施方式包括:
所述目标子帧进行包含下行控制信息和/或下行数据信息和/或上行信号的传输;和/或,所述目标子帧进行包含上行控制信息和/或上行数据信息和/或上行信号的传输;和/或,所述上行信号包含上行控制信息,所述目标子帧进行包含下行控制信息和/或下行数据信息和/或上行控制信息的传输。
结合本发明第一方面,本发明第一方面的第一实施方式,本发明第一方面的第二实施方式,本发明第一方面的第三实施方式,本发明第一方面的第四实施方式,本发明第一方面的第五实施方式,本发明第一方面的第六实施方式,本发明第一方面的第七实施方式,本发明第一方面的第八实施方式,本发明第一方面的第九实施方式包括:
若所述目标子帧进行包含上行信号和/或上行控制信息的传输,所述方法还包括:
配置所述上行信号和/或上行控制信息的时间和/或频域位置和/或占用的符号长度。
结合本发明第一方面的第八实施方式,本发明第一方面的第九实施方式,本发明第一方面的第十实施方式包括:
所述上行控制信息用于上行信道检测、信道状态信息CSI反馈和混合自动重传请求HARQ反馈中的至少一种。
结合本发明第一方面,本发明第一方面的第一实施方式,本发明第一方面 的第二实施方式,本发明第一方面的第三实施方式,本发明第一方面的第四实施方式,本发明第一方面的第五实施方式,本发明第一方面的第六实施方式,本发明第一方面的第七实施方式,本发明第一方面的第八实施方式,本发明第一方面的第九实施方式,本发明第一方面的第十实施方式,本发明第一方面的第十一实施方式包括:
若所述目标子帧包含下行和上行,则所述下行和上行之间具有保护间隔,所述保护间隔的长度具有可配置性。
可选的,依次为下行控制信息、下行数据信息,保护间隔和上行信号,或者依次为下行控制信息、下行数据信息,保护间隔和上行控制信息,或者依次为下行控制信息、下行数据信息,保护间隔,上行控制信息和上行信号。
可选的,所述下行到上行的保护间隔GP1长度可以被配置。
可选的,所述上行到下行的保护间隔GP2长度可以为0。
结合本发明第一方面,本发明第一方面的第一实施方式,本发明第一方面的第二实施方式,本发明第一方面的第三实施方式,本发明第一方面的第四实施方式,本发明第一方面的第五实施方式,本发明第一方面的第六实施方式,本发明第一方面的第七实施方式,本发明第一方面的第八实施方式,本发明第一方面的第九实施方式,本发明第一方面的第十实施方式,本发明第一方面的第十一实施方式,,本发明第一方面的第十二实施方式包括:
所述指示信令通过自载波或跨载波信令通知。
结合本发明第一方面,本发明第一方面的第一实施方式,本发明第一方面的第二实施方式,本发明第一方面的第三实施方式,本发明第一方面的第四实施方式,本发明第一方面的第五实施方式,本发明第一方面的第六实施方式,本发明第一方面的第七实施方式,本发明第一方面的第八实施方式,本发明第一方面的第九实施方式,本发明第一方面的第十实施方式,本发明第一方面的第十一实施方式,本发明第一方面的第十二实施方式,本发明第一方面的第十三实施方式包括:
所述指示信令被动态配置或者半静态配置。
结合本发明第一方面的第十三实施方式,本发明第一方面的第十四实施方 式包括:
所述指示信令被动态配置或者半静态配置具体为:通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或者半静态配置指示信令。
结合本发明第一方面的第十三实施方式,本发明第一方面的第十四实施方式,本发明第一方面的第十五实施方式包括:
所述半静态配置包括:载波和/或子帧模式被半静态配置。
结合本发明第一方面的第十五实施方式,本发明第一方面的第十六实施方式包括:
所述载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
结合本发明第一方面的第十三实施方式,本发明第一方面的第十四实施方式,本发明第一方面的第十五实施方式,本发明第一方面的第十六实施方式,本发明第一方面的第十七实施方式包括:
所述半静态配置具有可配置的适用期。
结合本发明第一方面的第十三实施方式,本发明第一方面的第十四实施方式,本发明第一方面的第十五实施方式,本发明第一方面的第十六实施方式,本发明第一方面的第十七实施方式,本发明第一方面的第十八实施方式包括:
所述半静态配置被动态激活或去激活。
结合本发明第一方面的第十五实施方式,本发明第一方面的第十六实施方式,本发明第一方面的第十七实施方式,本发明第一方面的第十八实施方式,本发明第一方面的第十九实施方式包括:
所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
结合本发明第一方面的第十九实施方式,本发明第一方面的第二十实施方式包括:
若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
结合本发明第一方面的第十五实施方式,本发明第一方面的第十六实施方式,本发明第一方面的第十七实施方式,本发明第一方面的第十八实施方式,本发明第一方面的第十九实施方式,本发明第一方面的第二十实施方式,本发明第一方面的第二十一实施方式包括:
所述载波和/或子帧模式由基站间的接口信令确定,所述载波和/或子帧模式在基站间交互。
本发明第二方面提供了一种上行信号在多载波间传输的方法,包括:
配置指示信令;
向用户设备发送所述指示信令,以便所述用户设备根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
结合本发明第二方面,本发明第二方面的第一实施方式包括:
所述指示信令为指示载波和/或子帧转换的信令。
结合本发明第二方面,本发明第二方面的第一实施方式,本发明第二方面的第二实施方式包括:
所述指示信令包含载波指示信息和/或子帧指示信息。
结合本发明第二方面的第二实施方式,本发明第二方面的第三实施方式包括:
所述指示信令还包含所述上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
结合本发明第二方面的第二实施方式,本发明第二方面的第四实施方式包括:
所述载波指示信息包含转换前的载波索引和/或转换后的载波索引;所述子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
结合本发明第二方面,本发明第二方面的第一实施方式,本发明第二方面的第二实施方式,本发明第二方面的第三实施方式,本发明第二方面的第四实施方式,本发明第二方面的第五实施方式包括:
所述向用户设备发送所述指示信令包括:
通过自载波或跨载波信令发送所述指示信令。
结合本发明第二方面,本发明第二方面的第一实施方式,本发明第二方面的第二实施方式,本发明第二方面的第三实施方式,本发明第二方面的第四实施方式,本发明第二方面的第五实施方式,本发明第二方面的第六实施方式包括:
所述配置指示信令包括:
动态配置或半静态配置指示信令。
结合本发明第二方面的第六实施方式,本发明第二方面的第七实施方式包括:
所述动态配置或半静态配置指示信令包括:
通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或半静态配置指示信令。
结合本发明第二方面的第五实施方式,本发明第二方面的第六实施方式,本发明第二方面的第八实施方式包括:
若半静态配置指示信令,则所述半静态配置包括:载波和/或子帧模式被半静态配置。
结合本发明第二方面的第八实施方式,本发明第二方面的第九实施方式包括:
所述载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
结合本发明第二方面的第六实施方式,本发明第二方面的第七实施方式,本发明第二方面的第八实施方式,本发明第二方面的第九实施方式,本发明第二方面的第十实施方式包括:
所述半静态配置具有可配置的试用期。
结合本发明第二方面的第六实施方式,本发明第二方面的第七实施方式,本发明第二方面的第八实施方式,本发明第二方面的第九实施方式,本发明第二方面的第十实施方式,本发明第二方面的第十一实施方式包括:
所述半静态配置被动态激活或去激活。
结合本发明第二方面的第八实施方式,本发明第二方面的第九实施方式,本发明第二方面的第十实施方式,本发明第二方面的第十一实施方式,本发明第二方面的第十二实施方式包括:
所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
结合本发明第二方面的第十二实施方式,本发明第二方面的第十三实施方式包括:
若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
本发明第三方面提供了一种用户设备UE,包括:
接收模块,用于接收基站发送的指示信令;
传输模块,用于根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
其有益效果是:根据获取到的指示信令在目标载波的目标子帧进行包含上行信号的传输。显然,当目标载波为下行传输时,对于数量更多的处于下行传输中的载波,通过指示信令使得该载波的下行子帧或上行子帧能够进行包含上行信号的传输,本发明显然使得信道互易性得到有效的利用。
结合本发明第三方面,本发明第三方面的第一实施方式包括:
所述指示信令为指示载波和/或子帧转换的信令。
结合本发明第三方面,本发明第三方面的第一实施方式,本发明第三方面的第二实施方式包括:
所述指示信令包含载波指示信息和/或子帧指示信息。
结合本发明第三方面的第二实施方式,本发明第三方面的第三实施方式包括:
所述指示信令还包含所述上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
可选的,所述指示信令被特定的循环冗余码CRC加绕。
结合本发明第三方面的第二实施方式,本发明第三方面的第四实施方式包括:
所述载波指示信息包含转换前的载波索引和/或转换后的载波索引;所述子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
结合本发明第三方面,本发明第三方面的第一实施方式,本发明第三方面的第二实施方式,本发明第三方面的第五实施方式包括:
所述目标载波为转换后的载波,所述目标子帧为转换后的子帧。
结合本发明第三方面,本发明第三方面的第一实施方式,本发明第三方面的第二实施方式,本发明第三方面的第三实施方式,本发明第三方面的第四实施方式,本发明第三方面的第五实施方式,本发明第三方面的第六实施方式包括:
所述上行信号包括信道探测参考信号SRS,前导码和码分多址CDMA中的至少一种。
结合本发明第三方面的第六实施方式,本发明第三方面的第七实施方式包括:
所述SRS为预先配置的SRS序列的多个组合,和/或,所述SRS的传输模式为预先配置的SRS模式的多个组合。
结合本发明第三方面,本发明第三方面的第一实施方式,本发明第三方面的第二实施方式,本发明第三方面的第三实施方式,本发明第三方面的第四实施方式,本发明第三方面的第五实施方式,本发明第三方面的第六实施方式,本发明第三方面的第七实施方式,本发明第三方面的第八实施方式包括:
所述传输模块,具体用于根据所述指示信令在相应的目标载波的目标子帧进行包含下行控制信息和/或下行数据信息和/或上行信号的传输;和/或,进行包含上行控制信息和/或上行数据信息和/或上行信号的传输;和/或,所述上行信号包含上行控制信息,进行包含下行控制信息和/或下行数据信息和/或上行控制信息的传输。
结合本发明第三方面,本发明第三方面的第一实施方式,本发明第三方面的第二实施方式,本发明第三方面的第三实施方式,本发明第三方面的第四实 施方式,本发明第三方面的第五实施方式,本发明第三方面的第六实施方式,本发明第三方面的第七实施方式,本发明第三方面的第八实施方式,本发明第三方面的第九实施方式包括:
若传输模块进行包含上行信号和/或上行控制信息的传输,所述UE还包括:
配置模块,用于配置所述上行信号和/或上行控制信息的时间或频域位置和/或占用的符号长度。
结合本发明第三方面的第八实施方式,本发明第三方面的第九实施方式,本发明第三方面的第十实施方式包括:
所述上行控制信息用于上行信道检测、信道状态信息CSI反馈和混合自动重传请求HARQ反馈中的至少一种。
结合本发明第三方面,本发明第三方面的第一实施方式,本发明第三方面的第二实施方式,本发明第三方面的第三实施方式,本发明第三方面的第四实施方式,本发明第三方面的第五实施方式,本发明第三方面的第六实施方式,本发明第三方面的第七实施方式,本发明第三方面的第八实施方式,本发明第三方面的第九实施方式,本发明第三方面的第十实施方式,本发明第三方面的第十一实施方式包括:
若所述目标子帧包含下行和上行,则所述下行和上行之间具有保护间隔,所述保护间隔的长度具有可配置性。
结合本发明第三方面,本发明第三方面的第一实施方式,本发明第三方面的第二实施方式,本发明第三方面的第三实施方式,本发明第三方面的第四实施方式,本发明第三方面的第五实施方式,本发明第三方面的第六实施方式,本发明第三方面的第七实施方式,本发明第三方面的第八实施方式,本发明第三方面的第九实施方式,本发明第三方面的第十实施方式,本发明第三方面的第十一实施方式,,本发明第三方面的第十二实施方式包括:
所述指示信令通过自载波或跨载波信令通知。
结合本发明第三方面,本发明第三方面的第一实施方式,本发明第三方面的第二实施方式,本发明第三方面的第三实施方式,本发明第三方面的第四实 施方式,本发明第三方面的第五实施方式,本发明第三方面的第六实施方式,本发明第三方面的第七实施方式,本发明第三方面的第八实施方式,本发明第三方面的第九实施方式,本发明第三方面的第十实施方式,本发明第三方面的第十一实施方式,本发明第三方面的第十二实施方式,本发明第三方面的第十三实施方式包括:
所述指示信令被动态配置或者半静态配置。
结合本发明第三方面的第十三实施方式,本发明第三方面的第十四实施方式包括:
所述指示信令被动态配置或者半静态配置具体为:通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或者半静态配置指示信令。
结合本发明第三方面的第十三实施方式,本发明第三方面的第十四实施方式,本发明第三方面的第十五实施方式包括:
所述半静态配置包括:载波和/或子帧模式被半静态配置。
结合本发明第三方面的第十五实施方式,本发明第三方面的第十六实施方式包括:
所述载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
结合本发明第三方面的第十三实施方式,本发明第三方面的第十四实施方式,本发明第三方面的第十五实施方式,本发明第三方面的第十六实施方式,本发明第三方面的第十七实施方式包括:
所述半静态配置具有可配置的适用期。
结合本发明第三方面的第十三实施方式,本发明第三方面的第十四实施方式,本发明第三方面的第十五实施方式,本发明第三方面的第十六实施方式,本发明第三方面的第十七实施方式,本发明第三方面的第十八实施方式包括:
所述半静态配置被动态激活或去激活。
结合本发明第三方面的第十五实施方式,本发明第三方面的第十六实施方式,本发明第三方面的第十七实施方式,本发明第三方面的第十八实施方式, 本发明第三方面的第十九实施方式包括:
所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
结合本发明第三方面的第十九实施方式,本发明第三方面的第二十实施方式包括:
若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
结合本发明第三方面的第十五实施方式,本发明第三方面的第十六实施方式,本发明第三方面的第十七实施方式,本发明第三方面的第十八实施方式,本发明第三方面的第十九实施方式,本发明第三方面的第二十实施方式,本发明第三方面的第二十一实施方式包括:
所述载波和/或子帧模式由基站间的接口信令确定,所述载波和/或子帧模式在基站间交互。
本发明第四方面提供了一种基站,包括:
配置模块,用于配置指示信令;
发送模块,用于向用户设备发送所述指示信令,以便所述用户设备根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
结合本发明第四方面,本发明第四方面的第一实施方式包括:
所述指示信令为指示载波和/或子帧转换的信令。
结合本发明第四方面,本发明第四方面的第一实施方式,本发明第四方面的第二实施方式包括:
所述指示信令包含载波指示信息和/或子帧指示信息。
结合本发明第四方面的第二实施方式,本发明第四方面的第三实施方式包括:
所述指示信令还包含所述上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
结合本发明第四方面的第二实施方式,本发明第四方面的第四实施方式包 括:
所述载波指示信息包含转换前的载波索引和/或转换后的载波索引;所述子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
结合本发明第四方面,本发明第四方面的第一实施方式,本发明第四方面的第二实施方式,本发明第四方面的第三实施方式,本发明第四方面的第四实施方式,本发明第四方面的第五实施方式包括:
所述发送模块,具体用于通过自载波或跨载波信令发送所述指示信令。
结合本发明第四方面,本发明第四方面的第一实施方式,本发明第四方面的第二实施方式,本发明第四方面的第三实施方式,本发明第四方面的第四实施方式,本发明第四方面的第五实施方式,本发明第四方面的第六实施方式包括:
所述配置模块,具体用于动态配置或半静态配置指示信令。
结合本发明第四方面的第六实施方式,本发明第四方面的第七实施方式包括:
所述配置模块,具体用于通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或半静态配置指示信令。
结合本发明第四方面的第五实施方式,本发明第四方面的第六实施方式,本发明第四方面的第八实施方式包括:
若半静态配置指示信令,则所述半静态配置包括:载波和/或子帧模式被半静态配置。
结合本发明第四方面的第八实施方式,本发明第四方面的第九实施方式包括:
所述载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
结合本发明第四方面的第六实施方式,本发明第四方面的第七实施方式,本发明第四方面的第八实施方式,本发明第四方面的第九实施方式,本发明第四方面的第十实施方式包括:
所述半静态配置具有可配置的试用期。
结合本发明第四方面的第六实施方式,本发明第四方面的第七实施方式,本发明第四方面的第八实施方式,本发明第四方面的第九实施方式,本发明第四方面的第十实施方式,本发明第四方面的第十一实施方式包括:
所述半静态配置被动态激活或去激活。
结合本发明第四方面的第八实施方式,本发明第四方面的第九实施方式,本发明第四方面的第十实施方式,本发明第四方面的第十一实施方式,本发明第四方面的第十二实施方式包括:
所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
结合本发明第四方面的第十二实施方式,本发明第四方面的第十三实施方式包括:
若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
本发明第五方面还提供了一种上行信号在多载波间传输的系统,包括本发明第三方面提供的用户设备以及本发明第四方面提供的基站。
本发明实施例提供的技术方案中,根据接收到的指示信令在目标载波的目标子帧进行包含上行信号的传输。显然,当目标载波为下行传输时,对于数量更多的处于下行传输中的载波,通过指示信令使得该载波的下行子帧或上行子幀能够进行包含上行信号的传输,本发明显然使得信道互易性得到有效的利用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中自定义的混合子帧和反转子帧示意图;
图2为本发明实施例中上行信号在多载波间传输的方法一个实施例示意图;
图3为本发明实施例中均匀模式的示意图;
图4为本发明实施例中非均匀模式的示意图;
图5为本发明实施例中上行信号在多载波间传输的方法另一个实施例示意图;
图6为本发明实施例中用户设备UE的一个实施例示意图;
图7为本发明实施例中基站的一个实施例示意图;
图8为本发明实施例中系统的一个实施例示意图;
图9为本发明实施例中服务器一个实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明中,通过指示信令的指示。使得对于一个载波上的下行子帧,有两种新的子帧的定义:1、混合子帧,2、反转子帧。其中,混合子帧指的是:1、将下行子帧的最后一个下行符号转换为上行符号,用于上行信号的传输,比如SRS传输、上行信道检测、信道状态信息(英文全称:Channel State Information,英文缩写:CSI)反馈或混合自动重传请求(英文全称:Hybrid Automatic Repeat Request,英文缩写:HARQ)反馈;在该混合子帧中,保护间隔GP1用于下行到上行的转换,保护间隔GP2用于上行到下行的转换;或者,2、上行符号位置及长度灵活可配,即不受限于最后一个符号,更多的保护间隔用于下行到 上行的转换。反转子帧指的是:整个下行子帧都被转换为上行子帧。为了便于理解混合子帧和反转子帧的定义,请参阅图1,图1为自定义的混合子帧和反转子帧示意图,以示意三种混合子帧以及一种反转子帧进行了举例说明,图1中的保护间隔GP1用于下行到上行的转换,长度可以配置,GP2用于上行到下行的转换,长度可以配置,比如可以为0。在图1中示意的一种反转子帧中,第一个上行(左侧)可以为物理上行共享信道(英文全称:Physical Uplink Shared Channel,英文缩写:PUSCH),第二个上行(右侧)为SRS。
为了便于理解本发明技术方案,下面通过具体实施例对本发明中上行信号在多载波间传输的方法进行说明:
请参阅图2,本发明实施例中上行信号在多载波间传输的方法一个实施例包括:
101、接收基站发送的指示信令;
本实施例中,指示信令可以为指示载波和/或子帧转换的信令。
可选的,指示信令包含载波指示信息和/或子帧指示信息。
可选的,指示信令还包含上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
可选的,载波指示信息包含转换前的载波索引和/或转换后的载波索引,子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
102、根据指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
显然,通过指示信令确定目标载波以及目标载波的目标子帧,在目标载波的目标子帧进行包含上行信号的传输。
需要说明的是,若载波指示信息包含转换前的载波索引和/或转换后的载波索引,子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号,则目标载波为转换后的载波,目标子帧为转换后的子帧。
可以理解的是,目标载波的目标子帧除了进行包含上行信号的传输外,还可以进行以下信息的传输,可选的:
目标子帧还进行包含下行控制信息和下行数据信息的传输;或,目标子帧还进行包含上行控制信息和上行数据信息的传输。
具体的,所述方法还包括:根据所述指示信令在相应的目标载波的目标子帧进行包含下行控制信息、下行数据信息、上行控制信息以及上行数据信息中的至少一种的传输。
可选的,若上行信号包含上行控制信息,则步骤102具体为:根据指示信令在相应的目标载波的目标子帧进行包含下行控制信息和/或下行数据信息和/或上行控制信息的传输。
可选的,依次为下行控制信息、下行数据信息,保护间隔和上行信号,或者依次为下行控制信息、下行数据信息,保护间隔和上行控制信息,或者依次为下行控制信息、下行数据信息,保护间隔,上行控制信息和上行信号。
可选的,依次为上行控制信息、上行数据信息,保护间隔和上行信号,或者依次为上行控制信息、上行数据信息,保护间隔,上行信号和上行数据信息。
简而言之,在目标子帧进行包含上行信号的传输可以为:1、上行信号不包含上行控制信息,在目标子帧进行包含上行信号以及其他信息的传输;2、上行信号包含上行控制信息,在目标子帧进行包含上行控制信息以及其他信息的传输。显然,存在两种特殊情况,1、在目标子帧仅进行上行信号的传输;2、在目标子帧仅进行上行控制信息的传输。
需要说明的是,若目标子帧只进行上行的传输,则说明此时的目标子帧可以相当于前述的反转子帧,若目标子帧既进行上行的传输,又进行下行的传输,则说明此时的目标子帧相当于前述的混合子帧。
进一步的,若目标子帧还进行包含上行控制信息的传输,本发明实施例还可以包括:
配置上行信号和/或上行控制信息的时间或频域位置和/或占用的符号长度。
需要说明的是,目标子帧包含下行和上行,下行和上行之间具有保护间隔GP,保护间隔的长度可配。
可选的,上行信号用于上行信道检测,上行控制信息用于上行信道检测、信道状态信息CSI反馈和混合自动重传请求(英文全称:Hybrid Automatic Repeat Request,英文缩写:HARQ)反馈中的至少一种。
可选的,上行信号包含探测参考信号SRS,前导码和码分多址(英文全称:Code Division Multiple Access,英文缩写:CDMA)中的至少一种。
可选的,SRS为预先配置的SRS序列的多个组合,SRS的传输模式为预先配置的SRS模式的多个组合。目的是保证全带宽的检测能力超出检测门限值。
可选的,指示信令通过自载波或跨载波信令通知。
可以理解的是,配置可以通过跨载波信令通知,即在一个主载波或辅载波上通知所有的载波的转换的子帧;即当多个载波具有共同的转换的子帧模式,只需要通过信令通知一套公共的转换子帧模式并同时携带相关的载波集合;也可以是满足多个载波间跳转时具备的一定的模式或服从一定的跳转序列。
可选的,指示信令被动态配置或者半静态配置。
可选的,指示信令被动态配置或者半静态配置具体为:通过广播信令、高层无线资源控制(英文全称:Radio Resource Control,英文缩写:RRC)信令和物理层信令中的至少一种动态配置或者半静态配置指示信令。
可选的,半静态配置包括:载波和/或子帧模式被半静态配置。
可选的,载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
可选的,半静态配置具有可配置的试用期。
可选的,半静态配置被动态激活或去激活。
可选的,载波和/或子帧模式为周期性模式或非周期性模式,载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
其中,均匀模式的一个具体附图可以参见图3,非均匀模式的一个具体附图可以参见图4,图3以及图4中子帧以切换子帧表示。
可选的,若子帧模式为周期性模式,则子帧模式中的子帧在不同的载波上具有相同或不同的周期。
可选的,载波和/或子帧模式由基站间的接口信令确定,载波和/或子帧模式在基站间交互。
需要说明的是,载波和/或子帧模式需要在基站间对齐,以应对基站的干扰,基站间的接口可以为X2接口。
本实施例中,根据获取到的指示信令在目标载波的目标子帧进行包含上行信号的传输。显然,当目标载波为下行传输时,对于数量更多的处于下行传输中的载波,通过指示信令使得该载波的下行子帧或上行子帧能够进行包含上行信号的传输,本发明显然使得信道互易性得到有效的利用。
上面从用户设备侧对本发明上行信号在多载波间传输的方法进行了说明,下面从基站侧对本发明上行信号在多载波间传输的方法进行说明:
请参阅图5,本发明实施例中上行信号在多载波间传输的方法另一个实施例包括:
201、配置指示信令;
本实施例中,可选的,指示信令为指示载波和/或子帧转换的信令。
可选的,指示信令包含载波指示信息和/或子帧指示信息。
可选的,指示信令还包含上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
可选的,载波指示信息包含转换前的载波索引和/或转换后的载波索引;子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
可选的,配置指示信令包括:
动态配置或半静态配置指示信令。
具体的,通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或半静态配置指示信令。
可选的,若半静态配置指示信令,则所述半静态配置包括:载波和/或子帧模式被半静态配置。
可选的,所述载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
可选的,所述半静态配置具有可配置的试用期,所述半静态配置被动态激活或去激活。
可选的,所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
可选的,若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
202、向用户设备发送指示信令,以便用户设备根据指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
本实施例中,可选的,向用户设备发送指示信令包括:
通过自载波或跨载波信令发送指示信令。
本实施例中,根据获取到的指示信令在目标载波的目标子帧进行包含上行信号的传输。显然,当目标载波为下行传输时,对于数量更多的处于下行传输中的载波,通过指示信令使得该载波的下行子帧或上行子帧能够进行包含上行信号的传输,本发明显然使得信道互易性得到有效的利用。
请参阅图6,本发明实施例中用户设备UE的一个实施例包括:
接收模块301,用于接收基站发送的指示信令;
传输模块302,用于根据指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
可选的,指示信息为指示载波和/或子帧转换的信令。
可选的,指示信令还包含上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。所述指示信令被特定的循环冗余码CRC加绕。
可选的,载波指示信息包含转换前的载波索引和/或转换后的载波索引,子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
显然,通过指示信令确定目标载波以及目标载波的目标子帧,在目标载波的目标子帧进行包含上行信号的传输。
需要说明的是,若载波指示信息包含转换前的载波索引和/或转换后的载波索引,子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号,则目标载波为转换后的载波,目标子帧为转换后的子帧。
可以理解的是,目标载波的目标子帧除了进行包含上行信号的传输外,还可以进行以下信息的传输,可选的:
目标子帧还进行包含下行控制信息和下行数据信息的传输;或,目标子帧还进行包含上行控制信息和上行数据信息的传输。
具体的,所述传输模块302,还用于根据所述指示信令在相应的目标载波的目标子帧进行包含下行控制信息、下行数据信息、上行控制信息以及上行数 据信息中的至少一种的传输。
可选的,若上行信号包含上行控制信息,则传输模块302,具体用于根据指示信令在相应的目标载波的目标子帧进行包含下行控制信息和/或下行数据信息和/或上行控制信息的传输。
简而言之,在目标子帧进行包含上行信号的传输可以为:1、上行信号不包含上行控制信息,在目标子帧进行包含上行信号以及其他信息的传输;2、上行信号包含上行控制信息,在目标子帧进行包含上行控制信息以及其他信息的传输。显然,存在两种特殊情况,1、在目标子帧仅进行上行信号的传输;2、在目标子帧仅进行上行控制信息的传输。
需要说明的是,若目标子帧只进行上行的传输,则说明此时的目标子帧可以相当于前述的反转子帧,若目标子帧既进行上行的传输,又进行下行的传输,则说明此时的目标子帧相当于前述的混合子帧。
进一步的,若目标子帧还进行包含上行控制信息的传输,
本实施例还可以包括:
配置模块,用于配置上行信号和/或上行控制信息的时间或频域位置和/或占用的符号长度。
需要说明的是,目标子帧包含下行和上行,下行和上行之间具有保护间隔GP,保护间隔的长度可配。
可选的,上行信号用于上行信道检测,上行控制信息用于上行信道检测、信道状态信息CSI反馈和混合自动重传请求HARQ反馈中的至少一种。
可选的,上行信号包含探测参考信号SRS,前导码和码分多址CDMA中的至少一种。
可选的,SRS为预先配置的SRS序列的多个组合,SRS的传输模式为预先配置的SRS模式的多个组合。目的是保证全带宽的检测能力超过检测门限值。
可选的,指示信令通过自载波或跨载波信令通知。
可以理解的是,配置可以通过跨载波信令通知,即在一个主载波或辅载波上通知所有的载波的转换的子帧;即当多个载波具有共同的转换的子帧模式,只需要通过信令通知一套公共的转换子帧模式并同时携带相关的载波集合;也 可以是满足多个载波间跳转时具备的一定的模式或服从一定的跳转序列。
可选的,指示信令被动态配置或者半静态配置。
可选的,指示信令被动态配置或者半静态配置具体为:通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或者半静态配置指示信令。
可选的,半静态配置包括:载波和/或子帧模式被半静态配置。
可选的,载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
可选的,半静态配置具有可配置的试用期。
可选的,半静态配置被动态激活或去激活。
可选的,载波和/或子帧模式为周期性模式或非周期性模式,载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
可选的,若子帧模式为周期性模式,则子帧模式中的子帧在不同的载波上具有相同或不同的周期。
可选的,载波和/或子帧模式由基站间的接口信令确定,载波和/或子帧模式在基站间交互。
需要说明的是,载波和/或子帧模式需要在基站间对齐,以应对基站的干扰,基站间的接口可以为X2接口。
本实施例中,根据接收到的指示信令在目标载波的目标子帧进行包含上行信号的传输。显然,当目标载波为下行传输时,对于数量更多的处于下行传输中的载波,通过指示信令使得该载波的下行子帧或上行子帧能够进行包含上行信号的传输,本发明显然使得信道互易性得到有效的利用。
请参阅图7,本发明实施例中基站的一个实施例包括:
配置模块401,用于配置指示信令;
发送模块402,用于向用户设备发送指示信令,以便用户设备根据指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
可选的,指示信令为指示载波和/或子帧转换的信令。
可选的,指示信令包含载波指示信息和/或子帧指示信息。
可选的,指示信令还包含上行信号所占用的带宽、传输方式、发送端口、 循环移位、定时提前以及功率控制参数中的至少一种。
可选的,载波指示信息包含转换前的载波索引和/或转换后的载波索引;子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
可选的,发送模块402,具体用于通过自载波或跨载波信令发送指示信令。
可选的,配置模块401,具体用于动态配置或半静态配置指示信令。
可选的,配置模块401,具体用于通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或半静态配置指示信令。
可选的,若半静态配置指示信令,则所述半静态配置包括:载波和/或子帧模式被半静态配置。
可选的,载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
可选的,半静态配置具有可配置的试用期,半静态配置被动态激活或去激活。
可选的,载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
可选的,若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
本实施例中,根据接收到的指示信令在目标载波的目标子帧进行包含上行信号的传输。显然,当目标载波为下行传输时,对于数量更多的处于下行传输中的载波,通过指示信令使得该载波的下行子帧或上行子帧能够进行包含上行信号的传输,本发明显然使得信道互易性得到有效的利用。
本发明实施例还提供一种上行信号在多载波间传输的系统,请参阅图8,本发明实施例中系统的一个实施例包括:
基站501以及用户设备502;
所述基站501用于配置指示信令;向用户设备发送所述指示信令;
所述用户设备502用于接收基站发送的指示信令;根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
本实施例中,根据接收到的指示信令在目标载波的目标子帧进行包含上行信号的传输。显然,当目标载波为下行传输时,对于数量更多的处于下行传输 中的载波,通过指示信令使得该载波的下行子帧或上行子帧能够进行包含上行信号的传输,本发明显然使得信道互易性得到有效的利用。
本发明实施例还提供一种服务器,请参阅图9,本发明实施例中服务器的一个实施例包括:
图9是本发明实施例提供的一种服务器结构示意图,该服务器600可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)601(例如,一个或一个以上处理器),一个或一个以上存储应用程序602或数据603的存储介质604(例如一个或一个以上海量存储设备)。其中,存储介质604可以是短暂存储或持久存储。存储在存储介质604的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对交换机中的一系列指令操作。更进一步地,中央处理器601可以设置为与存储介质604通信,在服务器600上执行存储介质604中的一系列指令操作。
服务器600还可以包括一个或一个以上电源605,一个或一个以上有线或无线网络接口606,一个或一个以上输输出接口607,和/或,一个或一个以上操作系统608,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由UE、基站及系统所执行的步骤可以基于该图9所示的服务器结构。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (72)

  1. 一种上行信号在多载波间传输的方法,其特征在于,包括:
    接收基站发送的指示信令;
    根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信令为指示载波和/或子帧转换的信令。
  3. 根据权利要求1或2所述的方法,其特征在于,所述指示信令包含载波指示信息和/或子帧指示信息。
  4. 根据权利要求3所述的方法,其特征在于,所述指示信令还包含所述上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
  5. 根据权利要求3所述的方法,其特征在于,所述载波指示信息包含转换前的载波索引和/或转换后的载波索引;所述子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
  6. 根据权利要求1至3任意一项所述的方法,其特征在于,所述目标载波为转换后的载波,所述目标子帧为转换后的子帧。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,所述上行信号包括信道探测参考信号SRS,前导码和码分多址CDMA中的至少一种。
  8. 根据权利要求7所述的方法,其特征在于,所述SRS为预先配置的SRS序列的多个组合,和/或,所述SRS的传输模式为预先配置的SRS模式的多个组合。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,所述目标子帧进行包含下行控制信息和/或下行数据信息和/或上行信号的传输;和/或,所述目标子帧进行包含上行控制信息和/或上行数据信息和/或上行信号的传输;和/或,所述上行信号包含上行控制信息,所述目标子帧进行包含下行控制信息和/或下行数据信息和/或上行控制信息的传输。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,若所述目标子帧进行包含上行信号和/或上行控制信息的传输,所述方法还包括:
    配置所述上行信号和/或上行控制信息的时间和/或频域位置和/或占用的符号长度。
  11. 根据权利要求9或10所述的方法,其特征在于,所述上行控制信息用于上行信道检测、信道状态信息CSI反馈和混合自动重传请求HARQ反馈中的至少一种。
  12. 根据权利要求1至11任意一项所述的方法,其特征在于,若所述目标子帧包含下行和上行,则所述下行和上行之间具有保护间隔,所述保护间隔的长度具有可配置性。
  13. 根据权利要求1至12任意一项所述的方法,其特征在于,所述指示信令通过自载波或跨载波信令通知。
  14. 根据权利要求1至13任意一项所述的方法,其特征在于,所述指示信令被动态配置或者半静态配置。
  15. 根据权利要求14所述的方法,其特征在于,所述指示信令被动态配置或者半静态配置具体为:通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或者半静态配置指示信令。
  16. 根据权利要求14或15所述的方法,其特征在于,所述半静态配置包括:载波和/或子帧模式被半静态配置。
  17. 根据权利要求16所述的方法,其特征在于,所述载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
  18. 根据权利要求14至17任意一项所述的方法,其特征在于,所述半静态配置具有可配置的适用期。
  19. 根据权利要求14至18任意一项所述的方法,其特征在于,所述半静态配置被动态激活或去激活。
  20. 根据权利要求16至19任意一项所述的方法,其特征在于,所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
  21. 根据权利要求20所述的方法,其特征在于,若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
  22. 根据权利要求16至21任意一项所述的方法,其特征在于,所述载波 和/或子帧模式由基站间的接口信令确定,所述载波和/或子帧模式在基站间交互。
  23. 一种上行信号在多载波间传输的方法,其特征在于,包括:
    配置指示信令;
    向用户设备发送所述指示信令,以便所述用户设备根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
  24. 根据权利要求23所述的方法,其特征在于,所述指示信令为指示载波和/或子帧转换的信令。
  25. 根据权利要求23或24所述的方法,其特征在于,所述指示信令包含载波指示信息和/或子帧指示信息。
  26. 根据权利要求25所述的方法,其特征在于,所述指示信令还包含所述上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
  27. 根据权利要求25所述的方法,其特征在于,所述载波指示信息包含转换前的载波索引和/或转换后的载波索引;所述子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
  28. 根据权利要求23至27所述的方法,其特征在于,所述向用户设备发送所述指示信令包括:
    通过自载波或跨载波信令发送所述指示信令。
  29. 根据权利要求23至28任意一项所述的方法,其特征在于,所述配置指示信令包括:
    动态配置或半静态配置指示信令。
  30. 根据权利要求29所述的方法,其特征在于,所述动态配置或半静态配置指示信令包括:
    通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或半静态配置指示信令。
  31. 根据权利要求29或20所述的方法,其特征在于,若半静态配置指示信令,则所述半静态配置包括:载波和/或子帧模式被半静态配置。
  32. 根据权利要求31所述的方法,其特征在于,所述载波和/或子帧模式 在载波和/或子帧间跳转时服从预先配置的序列设计。
  33. 根据权利要求29至32任意一项所述的方法,其特征在于,所述半静态配置具有可配置的试用期。
  34. 根据权利要求29至33任意一项所述的方法,其特征在于,所述半静态配置被动态激活或去激活。
  35. 根据权利要求31至34任意一项所述的方法,其特征在于,所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
  36. 根据权利要求35所述的方法,其特征在于,若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
  37. 一种用户设备UE,其特征在于,包括:
    接收模块,用于接收基站发送的指示信令;
    传输模块,用于根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
  38. 根据权利要求37所述的UE,其特征在于,所述指示信令为指示载波和/或子帧转换的信令。
  39. 根据权利要求37或38所述的UE,其特征在于,所述指示信令包含载波指示信息和/或子帧指示信息。
  40. 根据权利要求39所述的UE,其特征在于,所述指示信令还包含所述上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
  41. 根据权利要求39所述的UE,其特征在于,所述载波指示信息包含转换前的载波索引和/或转换后的载波索引;所述子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
  42. 根据权利要求37至39任意一项所述的UE,其特征在于,所述目标载波为转换后的载波,所述目标子帧为转换后的子帧。
  43. 根据权利要求37至42任意一项所述的UE,其特征在于,所述上行信号包括信道探测参考信号SRS,前导码和码分多址CDMA中的至少一种。
  44. 根据权利要求43所述的UE,其特征在于,所述SRS为预先配置的SRS序列的多个组合,和/或,所述SRS的传输模式为预先配置的SRS模式的多个组合。
  45. 根据权利要求37至44任意一项所述的UE,其特征在于,所述传输模块,具体用于根据所述指示信令在相应的目标载波的目标子帧进行包含下行控制信息和/或下行数据信息和/或上行信号的传输;和/或,进行包含上行控制信息和/或上行数据信息和/或上行信号的传输;和/或,所述上行信号包含上行控制信息,进行包含下行控制信息和/或下行数据信息和/或上行控制信息的传输。
  46. 根据权利要求37至45任意一项所述的UE,其特征在于,若传输模块进行包含上行信号和/或上行控制信息的传输,所述UE还包括:
    配置模块,用于配置所述上行信号和/或上行控制信息的时间或频域位置和/或占用的符号长度。
  47. 根据权利要求37至46任意一项所述的UE,其特征在于,若所述目标子帧包含下行和上行,则所述下行和上行之间具有保护间隔,所述保护间隔的长度具有可配置性。
  48. 根据权利要求37至47任意一项所述的UE,其特征在于,所述指示信令通过自载波或跨载波信令通知。
  49. 根据权利要求37至48任意一项所述的UE,其特征在于,所述指示信令被动态配置或者半静态配置。
  50. 根据权利要求49所述的UE,其特征在于,所述指示信令被动态配置或者半静态配置具体为:通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或者半静态配置指示信令。
  51. 根据权利要求49或50所述的UE,其特征在于,所述半静态配置包括:载波和/或子帧模式被半静态配置。
  52. 根据权利要求51所述的UE,其特征在于,所述载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
  53. 根据权利要求49至52任意一项所述的UE,其特征在于,所述半静态配置具有可配置的适用期。
  54. 根据权利要求49至53任意一项所述的UE,其特征在于,所述半静态配置被动态激活或去激活。
  55. 根据权利要求51至54任意一项所述的UE,其特征在于,所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
  56. 根据权利要求55所述的UE,其特征在于,若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
  57. 根据权利要求51至56任意一项所述的UE,其特征在于,所述载波和/或子帧模式由基站间的接口信令确定,所述载波和/或子帧模式在基站间交互。
  58. 一种基站,其特征在于,包括:
    配置模块,用于配置指示信令;
    发送模块,用于向用户设备发送所述指示信令,以便所述用户设备根据所述指示信令在相应的目标载波的目标子帧进行包含上行信号的传输。
  59. 根据权利要求58所述的基站,其特征在于,所述指示信令为指示载波和/或子帧转换的信令。
  60. 根据权利要求58或59所述的基站,其特征在于,所述指示信令包含载波指示信息和/或子帧指示信息。
  61. 根据权利要求60所述的基站,其特征在于,所述指示信令还包含所述上行信号所占用的带宽、传输方式、发送端口、循环移位、定时提前以及功率控制参数中的至少一种。
  62. 根据权利要求60所述的基站,其特征在于,所述载波指示信息包含转换前的载波索引和/或转换后的载波索引;所述子帧指示信息包含转换前的子帧编号和/或转换后的子帧编号。
  63. 根据权利要求58至62任意一项所述的基站,其特征在于,所述发送模块,具体用于通过自载波或跨载波信令发送所述指示信令。
  64. 根据权利要求58至63任意一项所述的基站,其特征在于,所述配置模块,具体用于动态配置或半静态配置指示信令。
  65. 根据权利要求64所述的基站,其特征在于,所述配置模块,具体用 于通过广播信令、高层无线资源控制RRC信令和物理层信令中的至少一种动态配置或半静态配置指示信令。
  66. 根据权利要求64或65所述的基站,其特征在于,若半静态配置指示信令,则所述半静态配置包括:载波和/或子帧模式被半静态配置。
  67. 根据权利要求66所述的基站,其特征在于,所述载波和/或子帧模式在载波和/或子帧间跳转时服从预先配置的序列设计。
  68. 根据权利要求64至67任意一项所述的基站,其特征在于,所述半静态配置具有可配置的试用期。
  69. 根据权利要求64至68任意一项所述的基站,其特征在于,所述半静态配置被动态激活或去激活。
  70. 根据权利要求66至69任意一项所述的基站,其特征在于,所述载波和/或子帧模式为周期性模式或非周期性模式,所述载波和/或子帧模式中的载波和/或子帧为均匀模式或非均匀模式。
  71. 根据权利要求70所述的基站,其特征在于,若所述子帧模式为周期性模式,则所述子帧模式中的子帧在不同的载波上具有相同或不同的周期。
  72. 一种上行信号在多载波间传输的系统,包括如权利要求36至56任意一项所述的用户设备UE以及权利要求57至70任意一项所述的基站。
PCT/CN2016/078343 2016-04-01 2016-04-01 上行信号在多载波间传输的方法、用户设备、基站及系统 WO2017166299A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN202110460525.3A CN113365237B (zh) 2016-04-01 2016-04-01 上行信号在多载波间传输的方法、用户设备、基站及系统
US16/090,344 US10979868B2 (en) 2016-04-01 2016-04-01 Method, user equipment, and base station for transmitting uplink signal based on carrier and subframe indication information
CN201680081117.4A CN108605208B (zh) 2016-04-01 2016-04-01 上行信号在多载波间传输的方法、用户设备、基站及系统
EP16896078.9A EP3425937B1 (en) 2016-04-01 2016-04-01 Method and user equipment for transmitting uplink signals between multiple carriers
ES16896078T ES2870041T3 (es) 2016-04-01 2016-04-01 Método y equipo de usuario para transmitir señales de enlace ascendente entre múltiples portadoras
EP20216273.1A EP3860167A1 (en) 2016-04-01 2016-04-01 Method and system for transmitting uplink signal between plurality of carriers, user equipment, and base station
CN202110460229.3A CN113365236A (zh) 2016-04-01 2016-04-01 上行信号在多载波间传输的方法、用户设备、基站及系统
JP2018551220A JP6856226B2 (ja) 2016-04-01 2016-04-01 複数のキャリアの間でアップリンク信号を伝送するための方法、ユーザ機器、基地局およびシステム
PCT/CN2016/078343 WO2017166299A1 (zh) 2016-04-01 2016-04-01 上行信号在多载波间传输的方法、用户设备、基站及系统
US17/177,981 US11622246B2 (en) 2016-04-01 2021-02-17 Methods and apparatus for communication an uplink signaling in a target subframe
US18/168,129 US11997569B2 (en) 2016-04-01 2023-02-13 Base station and system for communication of RRC signaling and an SRS in a target subframe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078343 WO2017166299A1 (zh) 2016-04-01 2016-04-01 上行信号在多载波间传输的方法、用户设备、基站及系统

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/090,344 A-371-Of-International US10979868B2 (en) 2016-04-01 2016-04-01 Method, user equipment, and base station for transmitting uplink signal based on carrier and subframe indication information
US201816090344A Continuation 2016-04-01 2018-10-01
US17/177,981 Continuation US11622246B2 (en) 2016-04-01 2021-02-17 Methods and apparatus for communication an uplink signaling in a target subframe

Publications (1)

Publication Number Publication Date
WO2017166299A1 true WO2017166299A1 (zh) 2017-10-05

Family

ID=59963209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078343 WO2017166299A1 (zh) 2016-04-01 2016-04-01 上行信号在多载波间传输的方法、用户设备、基站及系统

Country Status (6)

Country Link
US (3) US10979868B2 (zh)
EP (2) EP3425937B1 (zh)
JP (1) JP6856226B2 (zh)
CN (3) CN113365236A (zh)
ES (1) ES2870041T3 (zh)
WO (1) WO2017166299A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113365236A (zh) * 2016-04-01 2021-09-07 华为技术有限公司 上行信号在多载波间传输的方法、用户设备、基站及系统
US11272504B2 (en) 2018-10-19 2022-03-08 Qualcomm Incorporated Timing adjustment techniques in wireless communications
WO2022085203A1 (ja) * 2020-10-23 2022-04-28 株式会社Nttドコモ 端末及び通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895377A (zh) * 2009-05-22 2010-11-24 中兴通讯股份有限公司 一种反馈信息的传输方法及系统
CN102299765A (zh) * 2011-07-18 2011-12-28 中兴通讯股份有限公司 一种传输控制方法和用户设备
US20130039193A1 (en) * 2011-08-12 2013-02-14 Sharp Laboratories Of America, Inc. Devices for converting a downlink subframe
CN104488206A (zh) * 2012-07-19 2015-04-01 高通股份有限公司 复用具有不同tdd配置的ue以及用于减轻ue对ue和基站对基站的干扰的一些技术

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233398B2 (en) 2007-01-08 2012-07-31 Samsung Electronics Co., Ltd Apparatus and method for transmitting frame information in multi-hop relay broadband wireless access communication system
CN101505485B (zh) 2008-02-05 2014-11-05 三星电子株式会社 Lte tdd系统中发送srs的方法和装置
CN102714869B (zh) 2010-01-08 2016-04-06 夏普株式会社 用于探测参考信号传输的移动通信方法和系统以及基站、用户设备和其中的集成电路
CN101827444B (zh) 2010-03-31 2015-03-25 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
CN107104767B (zh) * 2011-03-11 2020-06-26 Lg电子株式会社 在无线通信系统中设置动态子帧的方法及其设备
US20130010659A1 (en) * 2011-07-08 2013-01-10 Qualcomm Incorporated Sounding reference signals in asymmetric carrier aggregation
US8934424B2 (en) * 2011-09-29 2015-01-13 Sharp Laboratories Of America, Inc. Devices for reconfiguring a subframe allocation
JP6308995B2 (ja) 2012-04-05 2018-04-11 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける搬送波集成方法及び装置
CN103378963A (zh) * 2012-04-27 2013-10-30 北京三星通信技术研究有限公司 支持tdd系统灵活变换子帧的双工方向的方法和设备
JP6014263B2 (ja) * 2012-08-28 2016-10-25 エルジー エレクトロニクス インコーポレイティド 搬送波集成技法が適用された無線通信システムにおいて端末が信号を送受信する方法及びそのための装置
EP2907284A1 (en) 2012-10-15 2015-08-19 Nokia Solutions and Networks Oy Flexible frame structure
US9642140B2 (en) * 2013-06-18 2017-05-02 Samsung Electronics Co., Ltd. Methods of UL TDM for inter-enodeb carrier aggregation
KR102221332B1 (ko) * 2013-11-13 2021-03-02 삼성전자 주식회사 이동 통신 시스템에서 파워 헤드룸 보고 및 하이브리드 자동 재전송을 제어하는 방법 및 장치
CN104796920B (zh) * 2014-01-16 2019-02-12 电信科学技术研究院 数据传输方法、基站以及终端设备
US10182462B2 (en) * 2014-02-20 2019-01-15 Nokia Solutions And Networks Oy Configuring physical channel resources for sounding or discovery in a half duplex communication environment
CN105432121A (zh) 2014-04-23 2016-03-23 华为技术有限公司 随机接入方法、随机接入装置及用户设备
CN105099632B (zh) * 2014-04-23 2019-12-13 北京三星通信技术研究有限公司 一种上行探测参考信号传输的方法和设备
WO2016019522A1 (zh) * 2014-08-06 2016-02-11 富士通株式会社 定位方法、装置以及通信系统
EP3793294A1 (en) * 2015-03-06 2021-03-17 NEC Corporation Configuration for short transmission time interval
TWI720052B (zh) * 2015-11-10 2021-03-01 美商Idac控股公司 無線傳輸/接收單元和無線通訊方法
US10735156B2 (en) * 2016-03-24 2020-08-04 Qualcomm Incorporated Sounding reference signal transmission for enhanced carrier aggregation
CN113365236A (zh) * 2016-04-01 2021-09-07 华为技术有限公司 上行信号在多载波间传输的方法、用户设备、基站及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895377A (zh) * 2009-05-22 2010-11-24 中兴通讯股份有限公司 一种反馈信息的传输方法及系统
CN102299765A (zh) * 2011-07-18 2011-12-28 中兴通讯股份有限公司 一种传输控制方法和用户设备
US20130039193A1 (en) * 2011-08-12 2013-02-14 Sharp Laboratories Of America, Inc. Devices for converting a downlink subframe
CN104488206A (zh) * 2012-07-19 2015-04-01 高通股份有限公司 复用具有不同tdd配置的ue以及用于减轻ue对ue和基站对基站的干扰的一些技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425937A4 *

Also Published As

Publication number Publication date
EP3425937B1 (en) 2021-03-17
US11622246B2 (en) 2023-04-04
US20210258747A1 (en) 2021-08-19
US20230199442A1 (en) 2023-06-22
CN113365237B (zh) 2022-09-16
JP6856226B2 (ja) 2021-04-07
CN108605208B (zh) 2021-05-07
JP2019510433A (ja) 2019-04-11
EP3425937A1 (en) 2019-01-09
US11997569B2 (en) 2024-05-28
ES2870041T3 (es) 2021-10-26
CN113365237A (zh) 2021-09-07
EP3425937A4 (en) 2019-03-06
US10979868B2 (en) 2021-04-13
EP3860167A1 (en) 2021-08-04
CN113365236A (zh) 2021-09-07
CN108605208A (zh) 2018-09-28
US20190116472A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
CN110521175B (zh) 支持多种波形的同步信令设计方法和装置
US11044735B2 (en) Methods and apparatus for supporting frequency division multiplexing of multiple waveforms
EP3116259B1 (en) Terminal device, base station device, communication system, control method, and integrated circuit
US10903965B2 (en) Virtual time-domain multiplexing for reference signals and data with modified cyclic prefix
WO2019137502A1 (zh) 一种uci传输方法及设备
WO2020063630A1 (zh) 一种指示信息的传输方法和装置
US11622246B2 (en) Methods and apparatus for communication an uplink signaling in a target subframe
US20230275631A1 (en) Channel reciprocity for a multi-panel base station
WO2019006267A1 (en) FLOW ADAPTATION BEHAVIOR FOR GROUPED CORESET
EP3491767B1 (en) Apparatus and method for estimating downlink channel conditions at cell-edge
CN115552824A (zh) 用于子带全双工的混合自动重传请求过程
WO2017113206A1 (zh) 一种数据通信的方法、终端设备及网络设备
EP4195762A1 (en) Transmission method for physical uplink control channel, terminal, and base station
WO2023205942A1 (en) Apparatus and method for measuring cross link interference and receiving downlink signal in wireless network
WO2019047902A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018551220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016896078

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896078

Country of ref document: EP

Effective date: 20181005

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896078

Country of ref document: EP

Kind code of ref document: A1