WO2017166253A1 - 发送随机接入前导序列的方法、终端设备和接入网设备 - Google Patents

发送随机接入前导序列的方法、终端设备和接入网设备 Download PDF

Info

Publication number
WO2017166253A1
WO2017166253A1 PCT/CN2016/078221 CN2016078221W WO2017166253A1 WO 2017166253 A1 WO2017166253 A1 WO 2017166253A1 CN 2016078221 W CN2016078221 W CN 2016078221W WO 2017166253 A1 WO2017166253 A1 WO 2017166253A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
prach resource
resource
preamble sequence
access preamble
Prior art date
Application number
PCT/CN2016/078221
Other languages
English (en)
French (fr)
Inventor
吴作敏
马莎
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680084048.2A priority Critical patent/CN108886812B/zh
Priority to PCT/CN2016/078221 priority patent/WO2017166253A1/zh
Publication of WO2017166253A1 publication Critical patent/WO2017166253A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method, a terminal device, and an access network device for transmitting a random access preamble sequence.
  • spectrum resources are mainly divided into licensed spectrum resources and unlicensed spectrum resources.
  • LTE Long Term Evolution
  • the spectrum resources used by operators are mainly licensed spectrum. Resources.
  • existing licensed spectrum resources have been difficult to meet the needs of operators' existing services.
  • operators are turning their attention to the unlicensed spectrum resources. It is expected that the use of unlicensed spectrum resources will be used to achieve network capacity diversion and improve service quality.
  • the random access preamble sequence (also referred to as a random access preamble) is transmitted by using a power ramp. That is, when accessing the base station for the first time, the terminal device determines the initial power, the power offset, the power increment factor, and the maximum number of transmissions N for transmitting the random access preamble sequence.
  • the power used by the terminal device is the initial power + power offset. If the first random access fails, the power used by the terminal device is the initial power during the second random access.
  • the present application provides a method for transmitting a random access preamble sequence, a terminal device, and an access network device, which can enable a terminal device to increase the maximum transmit power when the random access preamble sequence is transmitted on the unlicensed spectrum resource. Demodulation performance of the random access preamble sequence.
  • the application provides a method for transmitting a random access preamble sequence, the method comprising: determining, by a terminal device, a first random access preamble sequence, and determining a first PRACH from a first physical random access channel PRACH resource group a resource, the first PRACH resource group includes at least one PRACH resource for performing an nth random access, where the first PRACH resource includes at least one basic resource unit, and the basic resource unit can carry the terminal device in a random connection.
  • the terminal device transmits the first random access preamble sequence on the first PRACH resource;
  • the terminal device determines a second random access preamble sequence, and determines a second PRACH resource from the second PRACH resource group, where the second PRACH resource group is included for performing At least one PRACH resource of the n+1th random access, the second PRACH resource includes at least one basic resource unit, and the basic resource included in the second PRACH resource Number of cells is greater than or substantially equal to the first PRACH resources comprise a resource unit number; the second terminal device transmits the random access preamble sequence in the second PRACH resource.
  • the random access preamble is transmitted in the process of the physical random access channel (PRACH) on the licensed spectrum resource, and the terminal device is successfully accessed. Each time a failure occurs, the power of the next random access preamble sequence is increased.
  • PRACH physical random access channel
  • PRACH physical random access channel
  • the power of the next random access preamble sequence is increased.
  • licensed spectrum resources are becoming more and more scarce. More and more operators are turning their attention to license-free spectrum resources, and it is expected to achieve network capacity diversion through license-free spectrum resources.
  • communication equipment that uses license-free spectrum resources only needs to meet the requirements of transmission power and power spectral density, so that unlicensed spectrum resources can be used free of charge. Therefore, if the random access preamble sequence is transmitted on the unlicensed spectrum resource by continuing the power ramping in the prior art, the maximum transmit power of the terminal device may be limited due to regulatory restrictions on the transmit power.
  • the method for transmitting a random access preamble sequence when a terminal device transmits a random access preamble sequence on an unlicensed spectrum resource, in a case where the maximum transmission power is limited, by adding in the retransmission process
  • the transmission of the time domain resource or the frequency domain resource of the access preamble sequence can improve the demodulation performance of the random access preamble sequence.
  • the terminal device determines the first The random access preamble sequence includes: the terminal device determines the first random access preamble sequence from the first random access preamble sequence group, where the first random access preamble sequence group is included for performing the nth time At least one random access preamble sequence that is randomly accessed; and the terminal device determines the second random access preamble sequence, including: the terminal device determining the second random access preamble sequence from the second random access preamble sequence group
  • the second random access preamble sequence group includes at least one random access preamble sequence for performing n+1th random access, the first random access preamble sequence group and the second random access
  • the random access preamble sequences included in the preamble sequence group are different.
  • the method further includes:
  • the application provides a method for sending a random access preamble sequence, where the method includes:
  • the access network device Receiving, by the access network device, a second random access preamble sequence sent by the first terminal device on the second PRACH resource, where the second random access preamble sequence is that the first terminal device is on the first PRACH resource And the first PRACH resource is determined by the first terminal device from the first PRACH resource group, where the first network access device fails to send the first random access preamble sequence, and the first PRACH resource is determined by the first PRACH resource group.
  • the first PRACH resource group includes at least one PRACH resource for performing an nth random access
  • the first PRACH resource includes at least one basic resource unit
  • the second PRACH resource is the first terminal device Determining, in the second PRACH resource group, the second PRACH resource group includes at least one PRACH resource for performing n+1th random access, and the second PRACH resource includes at least one basic resource unit,
  • the number of basic resource units included in the second PRACH resource is greater than or equal to the number of basic resource units included in the first PRACH resource.
  • the method when the access network device receives the first random access preamble sequence sent by the first terminal on the first PRACH resource, the method further includes The access network device receives, on the third PRACH resource, a third random access preamble sequence transmitted by the second terminal device, where the third PRACH resource is determined by the second terminal device from the second PRACH resource group.
  • the third PRACH resource satisfies at least one of the following conditions: the third PRACH resource occupies at least the first PRACH resource in the time domain Resources occupied; the third PRACH
  • the resource occupied by the resource in the frequency domain includes at least the resource occupied by the first PRACH resource in the frequency domain.
  • the method further includes: configuring, by the access network device, a plurality of random access preamble sequence groups, where any two random access preamble sequence groups are included
  • the random access preamble sequence is different, and the multiple random access preamble sequence groups are in one-to-one correspondence with multiple sequence detection formats, and each sequence detection format is used to detect a random access preamble sequence in the corresponding random access preamble sequence group.
  • the first random access preamble sequence group in the plurality of random access preamble sequence groups includes at least one sequence for performing the nth random access, and the second random number of the plurality of random access preamble groups
  • the access preamble sequence group includes at least one sequence for performing the n+1th random access.
  • the access network device may divide the available random access preamble sequences into multiple groups, and preset a detection format for each. In this way, when the base station detects the random access preamble sequence, the random access preamble sequence belonging to the same group uses the same detection format, which can improve the detection efficiency of the access network device.
  • the method further includes: when the access network device detects the second random access preamble sequence on the second PRACH resource, the access Determining, by the network device, the temporary identifier of the random access wireless network corresponding to the second PRACH resource according to the time domain or the frequency domain location of the basic resource unit included in the second PRACH resource;
  • the access network device sends a random access response to the first terminal device.
  • the number of basic resource units included in the second PRACH resource is greater than the number of basic resource units included in the first PRACH resource, and includes at least one of the following: the second The number of basic resource units included in the time domain of the PRACH resource is greater than the number of basic resource units included in the time domain of the first PRACH resource; the number of basic resource units included in the frequency domain of the second PRACH resource More than the number of basic resource units included in the frequency domain of the first PRACH resource.
  • the number of basic resource units included in the second PRACH resource is equal to the number of basic resource units included in the first PRACH resource, and the first PRACH resource includes at least one basic resource.
  • the unit is located in the P frequency domain unit group, and the at least one basic resource unit included in the second PRACH resource is located in the Q frequency domain unit group, where each frequency domain unit group includes R consecutive resource blocks RB, P ⁇ 1, Q>P, R ⁇ 1.
  • the first PRACH resource and the second PRACH resource At least one of the following conditions is met: the first PRACH resource and the second PRACH resource do not overlap in the time domain; the first PRACH resource and the second PRACH resource do not overlap in the frequency domain.
  • the first PRACH resource group and the second PRACH resource group meet at least one of the following conditions: the first PRACH resource group and the second PRACH resource group are in a time domain. The first PRACH resource group and the second PRACH resource group do not overlap in the frequency domain.
  • the basic resource unit includes N RBs in the frequency domain, N ⁇ 2, and the location relationship of the N RBs includes at least one of the following: the N RBs are in the frequency The domain is consecutive; at least two of the N RBs are discontinuous; the frequency domain spacing between any two adjacent RBs of the N RBs is equal.
  • the distribution manner of the first PRACH resource and the second PRACH resource in the frequency domain includes at least one of the following conditions: the first PRACH resource is occupied by the frequency domain.
  • the frequency domain interval between the RB and the last RB is greater than or equal to the preset frequency domain interval; the frequency domain interval between the first RB and the last RB occupied by the second PRACH resource in the frequency domain is greater than or equal to Preset frequency domain interval.
  • the method further includes: transmitting, by the terminal device, the second random access preamble sequence on the second PRACH resource, that the transmit power is greater than the terminal device on the first PRACH resource. Transmit the transmit power used by the first random access preamble sequence.
  • the second random access preamble sequence is the same as the first random access preamble sequence.
  • the present application provides a terminal device for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the terminal device comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides an access network device for performing the method in any of the possible implementations of the second aspect or the second aspect.
  • the access network device comprises means for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • the application provides a terminal device, where the terminal device includes: a processor, a transceiver, and a memory.
  • the device further includes a bus system, wherein the transceiver, the memory, and the processor are connected by a bus system, the memory is configured to store instructions, the processor is configured to execute instructions stored in the memory, to control the transceiver to receive or transmit signals, and When the processor performs a memory storage In a matter of time, the method of causing the processor to perform the first aspect or any of the possible implementations of the first aspect is performed.
  • the application provides an access network device, where the access network device includes: a processor, a transceiver, and a memory.
  • the device further includes a bus system, wherein the receiver, the transceiver, the memory, and the processor are connected by a bus system, the memory is configured to store instructions, and the processor is configured to execute instructions stored in the memory to control the transceiver to receive or send.
  • the signal, and when the processor executes the instructions stored in the memory performs a method in the processor that performs the second aspect or any of the possible implementations of the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 is an application scenario of a method for transmitting a random access preamble sequence according to an embodiment of the present invention.
  • FIG. 2 shows a schematic interaction diagram of a method of transmitting a random access preamble sequence according to an embodiment of the present invention.
  • FIG. 3 shows a schematic diagram of PRACH resources used by a UE in a random access procedure.
  • FIG. 4 shows another schematic diagram of PRACH resources used by a UE in a random access procedure.
  • FIG. 5 shows still another schematic diagram of PRACH resources used by the UE in the random access procedure.
  • FIG. 6 shows still another schematic diagram of PRACH resources used by the UE.
  • FIG. 7 shows still another schematic diagram of PRACH resources used by the UE.
  • FIG. 8 shows a schematic diagram of PRACH resources used by multiple UEs.
  • FIG. 9 is a schematic diagram showing a manner in which a PRACH resource used by a UE is distributed over a system bandwidth in a random access procedure.
  • FIG. 10 shows a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 11 shows a schematic block diagram of an access network device in accordance with another embodiment of the present invention.
  • FIG. 12 is a block diagram showing a schematic configuration of a terminal device according to an embodiment of the present invention.
  • FIG. 13 is a block diagram showing a schematic structure of an access network device according to an embodiment of the present invention.
  • the technical solution of the embodiment of the present invention can be applied to various communication systems of a wireless cellular network, for example, a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access Wireless (WCDMA) system, General Packet Radio Service (GPRS) system, LTE system, Universal Mobile Telecommunications System (UMTS), future 5G
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the technical solution of the embodiment of the present invention is mainly applied to a Long Term Evolution (LTE) system and an evolved system thereof, in particular, a License-Assisted Access (LTE-LA) system.
  • LTE Long Term Evolution
  • LTE-LA License-Assisted Access
  • the network elements involved are an access network device (also referred to as a network device) and a terminal device (also referred to as a user device).
  • the present invention is described in connection with a terminal device.
  • the terminal device may be referred to as a user equipment (User Equipment, UE), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc., and the terminal device may be connected via a wireless device.
  • the Radio Access Network (RAN) communicates with one or more core networks.
  • the terminal device may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., and the terminal device may also be a portable, portable, handheld, computer built-in or in-vehicle mobile device and a future 5G network. Terminal devices in which they exchange voice or data with a wireless access network.
  • the access network device may be a Long Term Evolution (LTE) system or an evolved base station (Evolutional Node B) in an Authorized Auxiliary Access Long-term Evolution (LAA-LTE) system.
  • LTE Long Term Evolution
  • Evolutional Node B evolved base station
  • LAA-LTE Authorized Auxiliary Access Long-term Evolution
  • eNB or e-NodeB macro base station, micro base station (also referred to as "small base station"), pico base station, access point (AP) or transmission point (TP).
  • FIG. 1 shows an application scenario of a method for transmitting a random access preamble sequence according to an embodiment of the present invention.
  • the scenario includes a cell base station 101, a cell base station 102 adjacent to the cell base station 101, and a user equipment 103.
  • the user equipment 103 is smaller than the coverage of the base station 101 and communicates with the cell base station 101.
  • the cell base station 101 and the user equipment 103 are in support of A communication device that communicates on licensed spectrum resources.
  • the frequency band supported by the cell base station 102 may be the same as the cell base station 101.
  • the cell base station 102 may be the same type of communication device as the cell base station 101, or may be a communication device of a different type from the cell base station 101.
  • the cell base station 101 may be a base station of the LTE system
  • the user equipment 103 is a user equipment of the LTE system
  • the cell base station 102 may be a base station of the LTE system, or may be a wireless fidelity (Wi-Fi) system.
  • Wireless routers wireless repeaters, user equipment.
  • the user equipment 103 transmits a signal to the cell base station 102 through the channel of the unlicensed spectrum
  • the user equipment 103 needs to acquire the channel usage right of the unlicensed spectrum, and follows the resource usage on the unlicensed spectrum. Bandwidth requirements.
  • a method of transmitting a random access preamble sequence according to an embodiment of the present invention is described in detail below with reference to FIG. 2 to FIG. 9.
  • FIG. 2 shows a schematic interaction diagram 100 of a method of transmitting a random access preamble sequence in accordance with an embodiment of the present invention.
  • step 101 may be included in the embodiment of the present invention.
  • the base station configures a plurality of physical random access channel physical random access channel (PRACH) resource groups, and the first PRACH resource group of the plurality of PRACH resource groups includes at least one PRACH resource for performing the nth random access.
  • the second PRACH resource group of the multiple PRACH resource groups includes at least one PRACH resource for performing n+1th random access, and each PRACH of the first PRACH resource group and the second PRACH resource group
  • the resource includes at least one basic resource unit capable of carrying all information of a random access preamble sequence transmitted by the terminal device to the access network device in a random access procedure, and the basic resource unit included in the second PRACH resource The number is greater than or equal to the number of basic resource units included in the first PRACH resource, where n ⁇ 1.
  • the basic resource unit refers to a minimum time-frequency resource unit capable of carrying all information of a random access preamble sequence transmitted by the terminal device to the access network device in a random access procedure.
  • a basic resource unit may include one RB or multiple RBs.
  • one basic resource unit includes 6 RBs.
  • one basic resource unit includes 1 RB.
  • PRACH resources include time domain resources, frequency domain resources, and sequence resources.
  • the time domain resource and the frequency domain resource of the PRACH resource are mainly involved.
  • the PRACH resource group is only a logical group.
  • the base station can configure only one PRACH resource group, and the PRACH resource includes multiple PRACH resources for random access.
  • the multiple PRACH resource groups are in one-to-one correspondence with multiple random access procedures, and each PRACH resource group corresponds to a random access.
  • the PRACH resource group to be used in the current random access is selected according to the number of random access failures, and the selected PRACH resource group is selected from the selected PRACH resource group.
  • a PRACH resource is randomly accessed.
  • the terminal device may be based on the scheduling of the access network device (for example, the base station) to select the PRACH resource specified by the access network device (also, based on non-contention).
  • the terminal device may also randomly select one PRACH resource from the corresponding PRACH resource group (ie, based on contention). That is, the manner in which the terminal device selects the PRACH resource is not specifically limited in the embodiment of the present invention.
  • the PRACH resource in the PRACH resource group #1 is used for the second random access
  • the PRACH resource in the PRACH resource group #2 is used for the fourth random access.
  • the first random access of UE#1 ie, an example of the UE
  • UE#1 may determine from multiple PRACH resources in PRACH resource group #1.
  • a PRACH resource for the second random access If the first 3 random accesses of the UE #1 fail, when the UE#1 initiates the 4th random access to the base station, a PRACH resource may be determined from the PRACH resource group #2 for the 4th random access. Access.
  • the method further includes:
  • the access network device configures multiple random access preamble sequence groups, and the multiple random access preamble sequence groups are in one-to-one correspondence with multiple sequence detection formats, and each sequence detection format is used to detect corresponding random access preamble sequence groups.
  • a random access preamble sequence where the first random access preamble sequence group in the plurality of random access preamble sequence groups includes at least one sequence for performing the nth random access, the multiple random access preamble sequences
  • the second random access preamble sequence group in the group includes at least one sequence for performing the n+1th random access, and the first random access preamble sequence group and the second random access preamble sequence group are included in the second random access preamble sequence group.
  • the random access preamble sequences are different.
  • time domain resource and frequency occupied by the sequence detection format and the random access preamble sequence need to be explained.
  • the number or location of domain resources corresponds to each other. If the number of time domain resources occupied by the two random access preamble sequences is different, or the number of occupied frequency domain resources is different, the two random access preamble sequences may be considered to correspond to different sequence detection formats.
  • the base station may divide the available random access preamble sequence into multiple groups, where the random access preamble sequence used for the mth transmission and the random access preamble sequence used for the nth transmission belong to different groups. group. Meanwhile, the plurality of random access preamble sequence groups are in one-to-one correspondence with the plurality of sequence detection formats. In this way, when performing sequence detection on the receiving side, the base station only needs to detect the random access preamble sequence in the group corresponding to the format according to different formats. The detection efficiency of the base station can be improved.
  • the terminal device determines a first random access preamble sequence, and determines a first PRACH resource from the first physical random access channel PRACH resource group, where the first PRACH resource group includes, for performing the nth random access.
  • At least one PRACH resource the first PRACH resource includes at least one basic resource unit, and the basic resource unit can carry all the information of the random access preamble sequence transmitted by the terminal device to the access network device in a random access procedure, where , n ⁇ 1.
  • the terminal device determines the first random access preamble sequence
  • the base station sends the indication signaling to the UE, where the indication signaling carries the identifier ID of the first random access preamble sequence, and the UE obtains the set of available random access preamble sequences according to the identifier ID of the first random access preamble sequence.
  • the first random access preamble sequence is determined.
  • the base station triggers the UE to send the random access preamble sequence by signaling, but does not notify the ID of the random access preamble sequence, and the UE randomly selects one of the available random access preamble sequence sets as the determined random access preamble sequence (ie, , corresponding to the first random access preamble sequence).
  • the UE may also randomly determine a random access preamble sequence from the set of available random access preamble sequences (ie, may correspond to the first random access preamble sequence).
  • the UE when determining the first PRACH resource, may also have multiple ways.
  • the system may pre-define PRACH resources that the UE can use when performing the nth random access.
  • the UE initiates the nth random access procedure to the base station, it determines a PRACH resource from the pre-defined PRACH resources for the nth random access (referred to as PRACH resource #1 for convenience of description), and The PRACH resource #1 initiates an nth random access procedure to the base station.
  • the PRACH resource used by the UE to initiate the nth random access procedure to the base station is notified by the base station to the UE by signaling.
  • the UE initiates the nth random access procedure to the base station by using the PRACH resource of the nth random access indicated by the signaling of the base station, where n ⁇ 1.
  • the basic resource unit refers to a minimum time-frequency resource unit capable of carrying all information of a random access preamble sequence transmitted by the terminal device to the access network device in a random access procedure.
  • a basic resource unit may include one RB or multiple RBs.
  • one basic resource unit includes 6 RBs.
  • one basic resource unit includes 1 RB.
  • the basic resource unit includes N RBs in the frequency domain, N ⁇ 2, and the location relationship of the N RBs includes at least one of the following situations:
  • the N RBs are continuous in the frequency domain
  • At least two of the N RBs are discontinuous
  • the frequency domain intervals between any two adjacent RBs of the N RBs are equal.
  • the terminal device transmits a first random access preamble sequence on the first PRACH resource.
  • the terminal device determines a second random access preamble sequence, and determines a second PRACH resource from the second PRACH resource group, where the second PRACH resource group Included in the at least one PRACH resource for performing the (n+1)th random access, where the second PRACH resource includes at least one basic resource unit, where the number of basic resource units included in the second PRACH resource is greater than or equal to the first The number of basic resource units included in the PRACH resource.
  • the UE when the nth random access procedure fails, the UE needs to initiate the n+1th random access procedure to the base station. Similar to the nth random access procedure, before performing the (n+1)th random access, the UE needs to determine a random access preamble sequence for performing the (n+1)th random access (ie, may correspond to the second random access sequence). The access preamble sequence) and the PRACH resource carrying the random access preamble sequence (ie, may correspond to the second PRACH resource).
  • Determining by the foregoing, a process of determining a second random access preamble sequence for the (n+1)th random access, and determining the first random access preamble sequence for the nth random access and determining the bearer
  • the process of determining the second PRACH resource is similar to the process of determining the first PRACH resource. For the sake of brevity, details are not described herein again.
  • the first PRACH resource and the second PRACH resource both include at least one basic resource unit, where the number of basic resource units included in the second PRACH resource is greater than or equal to the basic resource included in the first PRACH resource. The number of units.
  • the number of basic resource units included in the second PRACH resource is greater than the number of basic resource units included in the first PRACH resource, including the following cases: missing one:
  • the number of basic resource units included in the time domain of the second PRACH resource is greater than the number of basic resource units included in the time domain of the first PRACH resource;
  • the number of basic resource units included in the frequency domain of the second PRACH resource is greater than the number of basic resource units included in the frequency domain of the first PRACH resource.
  • the first PRACH resource is in the frequency domain.
  • the following possibilities are included between the number of basic resource units included and the number of basic resource units included in the frequency domain of the second PRACH resource:
  • the number of basic resource units included in the frequency domain of the first PRACH resource is equal to the number of basic resource units included in the frequency domain of the second PRACH resource.
  • the number of basic resource units included in the frequency domain of the first PRACH resource is greater than the number of basic resource units included in the frequency domain of the second PRACH resource.
  • the number of basic resource units included in the frequency domain of the first PRACH resource is smaller than the number of basic resource units included in the frequency domain of the second PRACH resource, and the first PRACH resource is in the time domain and the frequency domain.
  • the sum of the number of basic resource units included is greater than the sum of the number of basic resource units included in the time domain and the frequency domain of the second PRACH resource.
  • the basic resource unit included in the first PRACH resource in the time domain
  • the number of basic resources and the number of basic resource units included in the time domain of the second PRACH resource are several possibilities between the number of basic resources and the number of basic resource units included in the time domain of the second PRACH resource:
  • the number of basic resource units included in the time domain of the first PRACH resource is equal to the number of basic resource units included in the time domain of the second PRACH resource.
  • the number of basic resource units included in the time domain of the first PRACH resource is greater than the number of basic resource units included in the time domain of the second PRACH resource.
  • the number of basic resource units included in the time domain of the first PRACH resource is smaller than the number of basic resource units included in the time domain of the second PRACH resource, and the first PRACH resource is in the time domain and the frequency domain.
  • the sum of the number of basic resource units included is greater than the sum of the number of basic resource units included in the time domain and the frequency domain of the second PRACH resource.
  • the number of basic resource units included in the second PRACH resource is greater than the number of basic resource units included in the first PRACH resource, and may include two modes:
  • the number of basic resource units included in the second PRACH resource is greater than the number of basic resource units included in the first PRACH resource.
  • the PRACH resource used in the nth transmission random access preamble sequence includes P time domain resource units
  • the n+1th transmission random access preamble sequence includes (P+Q) time domain resource units. That is to say, each time the number of transmissions is increased, the PRACH resources used for transmission are added to Q time domain resource units.
  • the number of increased time domain resource units is the same for each additional retransmission process as an example.
  • the number of added time domain resource units may be different each time a retransmission is made.
  • the time domain resources used in the second random access include (P+Q) time domain resource units
  • the time domain resources used in the third random access include (P+2Q) time domain resource units
  • the time domain resources used for the kth random access include (P+(k-1) ⁇ Q) time domain resource units.
  • FIG. 3 shows a schematic diagram of PRACH resources used by a UE in a random access procedure.
  • the first random access uses one time domain resource unit
  • the second random access uses two time domain resource units, ....
  • the fourth random access uses four time domain resource units. .
  • the UE since the UE transmits the signal on the unlicensed spectrum resource, it follows the rule of Listening Before Talk (LBT). Once the transmitted signal is interrupted, the UE needs to re-listen. Therefore, preferably, the plurality of time domain resource units included in the PRACH resource used by any one random access procedure are consecutive in the time domain.
  • LBT Listening Before Talk
  • each time domain resource unit is further configured to transmit a Cyclic Prefix (CP) of the random access preamble sequence.
  • CP Cyclic Prefix
  • the format of the PRACH channel used by the nth random access and the mth random access is different.
  • the number of basic resource units included in the time domain is different because the PRACH resources used in the nth random access and the mth random access are different.
  • the random access and the mth random access use different random access preamble sequences corresponding to different transmission formats.
  • the number of basic resource units included in the second PRACH resource is greater than the first PRACH The number of basic resource units included in the resource.
  • the PRACH resource used in the nth transmission random access preamble sequence includes R frequency domain resource units
  • the n+1th transmission random access preamble sequence includes (R+S) frequency domain resource units. That is to say, each time the number of transmissions is increased, the PRACH resources used for transmission are increased by S frequency domain resource units.
  • the frequency domain resource corresponding to the system bandwidth is divided into multiple frequency domain resource units, and each frequency domain resource unit includes multiple consecutive resource blocks (RBs).
  • the PRACH resources used for random access occupy (R+(k-1) ⁇ S) frequency domain resource units.
  • one frequency domain resource unit comprises 6 RBs.
  • one frequency domain resource unit includes 1 RB.
  • the number of increased frequency domain resource units is the same for each additional retransmission process as an example.
  • the number of added frequency domain resource units may be different each time the retransmission is performed.
  • FIG. 4 shows a schematic diagram of PRACH resources used by a UE in a random access procedure.
  • the system bandwidth is divided into a plurality of frequency domain units, wherein the four UEs shown in FIG. 4 (ie, UE1, UE2, UE3, and UE4) occupy 16 frequency domain units (ie, , the frequency domain unit corresponding to the label 0 to the label 15).
  • the following uses UE1 as an example to describe the PRACH resources used by UE1 in the process of transmitting 4 random access preamble sequences in a random access procedure.
  • the UE1 uses the frequency domain unit corresponding to the label 0 in the transmission process of the first random access preamble sequence.
  • the UE1 uses the label 0 in the transmission process of the second random access preamble sequence.
  • the frequency domain unit corresponding to the label 4 if the transmission of the first three random access preamble sequences is not successful, the UE1 uses the label 0 and the label 4 in the transmission process of the fourth random access preamble sequence.
  • the PRACH resource used in the nth random access and the mth random access may be different in the frequency domain, and may be considered as the nth time.
  • the transmission format corresponding to the random access preamble sequence for random access and the mth random access is not with.
  • the user equipment increases the access for transmission by using the retransmission process.
  • the time domain resource or the frequency domain resource of the preamble sequence may enable the user equipment to increase the time domain resource of the transmission preamble sequence during the process of retransmitting the random access preamble sequence when the maximum transmit power spectral density is limited.
  • the frequency domain resource is used to increase the copy of the random access preamble sequence, and the base station combines and demodulates the multiple copies of the random access preamble sequence in the retransmission process to improve the detection performance of the random access preamble sequence.
  • the user equipment when transmitting a random access preamble sequence by using one basic resource unit, the user equipment adds a time domain resource unit or a frequency domain resource unit for transmitting a random access preamble sequence in the retransmission process.
  • the random access preamble sequence transmitted on the added time domain resource unit or the added frequency domain resource unit is referred to as a copy of the random access preamble sequence.
  • a random access preamble sequence is transmitted on the frequency domain resource unit corresponding to the label 0. If the first random access fails, during the transmission of the second random access preamble sequence, a random access preamble sequence is respectively transmitted on the frequency domain resource units corresponding to the labels 0 and 4 (ie, including a random connection) A copy of the preamble sequence).
  • the third random access includes two copies of the random access preamble sequence, and the fourth time includes a copy of three random access preamble sequences.
  • the number of the basic resource units included in the second PRACH resource is equal to the number of the basic resource units included in the first PRACH resource, and the at least one basic resource unit included in the first PRACH resource is located.
  • P frequency domain unit groups, the at least one basic resource unit included in the second PRACH resource is located in the Q frequency domain unit groups, wherein each frequency domain unit group includes R consecutive resource blocks RB, P ⁇ 1, Q> P, R ⁇ 1.
  • FIG. 5 shows another schematic diagram of PRACH resources used by a UE in a random access procedure.
  • the frequency domain resource corresponding to the system bandwidth is divided into a plurality of frequency domain unit groups, and each frequency domain unit group includes a plurality of consecutive RBs (for example, six). It is assumed that at least one basic resource unit included in the PRACH resource may be located in up to six groups.
  • the six groups are sequentially referred to as group #1, group #2, group #3, group #4, group #5, and group #6, each of which includes 6 RBs.
  • the PRACH resource used by the UE for the first transmission of the random access preamble sequence occupies one of the groups (ie, group #1) in the frequency domain, more specifically, the six RBs of the group #1. If the first transmission fails, the UE occupies two of the groups (ie, group #2 and group #6) at the second transmission, and more specifically, accounts for Use 3 RBs in each group. If the transmission of the second random access preamble sequence also fails, the UE initiates transmission of the third random access preamble sequence to the base station.
  • the PRACH resource used by the UE occupies three groups of the plurality of frequency domain unit groups in the frequency domain (ie, group #2, group #4, and group #6) ), more specifically, occupy 2 RBs in each group.
  • the PRACH resources used by the UE occupy the frequency domain in the plurality of frequency domain unit groups. 4 groups (ie, group #2, group #3, group #5, and group #6), more specifically, occupy one of group #2 and group #6, respectively, and occupy 2 of group #3 2 RBs of RB and group #5.
  • each frequency domain unit group shown in FIG. 5 only includes 6 RBs as an example.
  • each frequency domain unit group may include any number of RBs. The embodiment of the present invention does not limit this.
  • the frequency of the random access preamble sequence will be transmitted during the retransmission process, in consideration of the limitation of the maximum transmission power density.
  • the domain resources are distributed into different groups, and the transmission power of the random access preamble sequence can be increased.
  • At least one of the following conditions is met between the first PRACH resource and the second PRACH resource:
  • the first PRACH resource and the second PRACH resource do not overlap in the time domain
  • the first PRACH resource and the second PRACH resource do not overlap in the frequency domain.
  • the user equipment of the mth transmission random access preamble sequence and the nth transmission random access preamble sequence may exist simultaneously in the system, m ⁇ n.
  • the base station needs to combine and demodulate according to the resources occupied by the preamble sequence transmission. Since the time-frequency resources occupied by the m-th transmission and the nth transmission random access preamble sequence are different, the base station transmits the m-th transmission and the n-th transmission.
  • the processing of the random access preamble sequence is also different, and the base station should be able to distinguish the time-frequency resources corresponding to the random access preamble sequence transmitted each time.
  • the time-frequency resources of the mth transmission random access preamble sequence and the nth transmission random access preamble sequence are separated in the time domain. Therefore, the base station can determine the basic resource unit included in the time domain resource according to different time domain resource locations, and then combine the random access preamble sequences carried on the time domain resource.
  • the first PRACH resource and the second PRACH resource respectively correspond to different UEs.
  • the UE that performs the nth random access (for the sake of distinction, it is recorded as The UE#1) and the PRACH resources used by the UE performing the mth random access (referred to as UE#2 for convenience of distinction) may not overlap at all in the time domain or the frequency domain (for the case where they can overlap, Introduced below).
  • FIG. 6 shows another schematic diagram of PRACH resources used by the UE.
  • UE#1 is the first to send a random access preamble sequence
  • UE#2 is the second to send a random access preamble sequence
  • UE#3 It is the third time that the random access preamble sequence is transmitted
  • UE#4 is the fourth time to transmit the random access preamble sequence.
  • the PRACH resources used by the four UEs in the random access procedure are differentiated in the time domain (or the PRACH resources used by the two UEs with different transmission times have no overlapping part in the time domain).
  • FIG. 7 shows another schematic diagram of PRACH resources used by the UE.
  • four UEs in the system perform random access simultaneously, where UE#1 is the first to send a random access preamble sequence, and UE#2 is the second to send a random access preamble sequence, UE# 3 is the third transmission random access preamble sequence, and UE#4 is the fourth transmission random access preamble sequence.
  • the PRACH resources used by the four UEs in the random access process are differentiated in the frequency domain (or the PRACH resources used by the two UEs with different transmission times do not overlap in the frequency domain).
  • At least one of the following conditions is met between the first PRACH resource group and the second PRACH resource group:
  • the first PRACH resource group and the second PRACH resource group do not overlap in the time domain
  • the first PRACH resource group and the second PRACH resource group do not overlap in the frequency domain.
  • the method when the access network device receives the first random access preamble sequence transmitted by the first terminal device on the first PRACH resource, the method further includes:
  • the access network device receives, on the third PRACH resource, a third random access preamble sequence transmitted by the second terminal device, where the third PRACH resource is determined by the second terminal device from the second PRACH resource group.
  • the resources occupied by the third PRACH resource in the time domain include at least resources occupied by the first PRACH resource in the time domain;
  • the resources occupied by the third PRACH resource in the frequency domain include at least resources occupied by the first PRACH resource in the frequency domain.
  • the PRACH resource used by the UE for the n+1th random access (referred to as UE#1 for convenience of distinction) (referred to as PRACH resource #1 for convenience of distinction) may be The PRACH resource used for the UE including the nth random access (referred to as UE#2 for convenience of distinction) (referred to as PRACH resource #2 for convenience of distinction). More specifically, PRACH resource #1 may include resources occupied by PRACH resource #2 in the time domain or the frequency domain.
  • PRACH resource #1 may include resources occupied by PRACH resource #2 in the time domain or the frequency domain.
  • FIG. 8 shows a schematic diagram of PRACH resources used by a plurality of terminal devices.
  • a plurality of terminal devices transmit the random access preamble sequence in the same frequency band (in other words, each time the random access preamble sequence uses the same frequency domain resource),
  • the access point at which the terminal device starts transmitting is different. For example, if it is the terminal device that transmits the random access preamble sequence for the first time (referred to as terminal device #1 for convenience of distinction), the terminal device #1 can start transmission from symbol 0, symbol 3, symbol 7, and symbol 10.
  • the terminal device #2 can start transmission from symbol 0 and symbol 7. If it is the terminal device that transmits the random access preamble sequence for the third time (referred to as terminal device #3 for convenience of distinction), the terminal device #3 can start transmission from symbol 0 and symbol 7. If it is the terminal device that transmits the random access preamble sequence for the fourth time (referred to as terminal device #4 for convenience of distinction), the terminal device #4 can start transmission from symbol 0.
  • the access network device starts demodulating the received random access preamble sequence according to the possible multiple merged initial access points.
  • the distributed form of the first PRACH resource and the second PRACH resource in the frequency domain includes at least one of the following situations:
  • the frequency domain interval between the first RB and the last RB occupied by the first PRACH resource in the frequency domain is greater than or equal to a preset frequency domain interval
  • the frequency domain interval between the first RB and the last RB occupied by the second PRACH resource in the frequency domain is greater than or equal to a preset frequency domain interval.
  • the PRACH resource used for transmitting the random access preamble sequence occupies six consecutive RBs in the frequency domain, and the ratio of the occupied signal to the system bandwidth may not meet the requirement. Therefore, in the embodiment of the present invention, the PRACH resource allocated by the base station to the UE for transmitting the random access preamble sequence, the frequency domain interval between the first RB and the last RB in the frequency domain is greater than or equal to the preset. Frequency domain interval.
  • the embodiment of the present invention does not make any specific value of the preset frequency domain interval.
  • the value of the preset frequency domain interval may be determined according to the ratio requirement of the signal occupation system bandwidth of different countries or regions or other rules.
  • FIG. 9 is a schematic diagram showing a manner of distribution of PRACH resources used in a random access procedure on a system bandwidth.
  • the PRACH resource used in the nth transmission includes at least one basic resource unit, and a plurality of RBs are occupied. The requirement can be met by distributing the first RB and the last RB allocated by the PRACH resource in the frequency domain on both sides of the system bandwidth, spanning 80% of the system bandwidth (see FIG. 9).
  • the PRACH resource used by the UE includes one basic resource unit, and the first basic resource unit includes a plurality of RBs that are discrete in the frequency domain, where the multiple RBs are included in the frequency domain.
  • the first RB in the middle occupies 80% of the system bandwidth between the last RB.
  • the terminal device transmits the transmit power used by the second random access preamble sequence on the second PRACH resource, and is greater than the transmit that is used by the terminal device to transmit the first random access preamble sequence on the first PRACH resource. power.
  • the terminal device may first increase the transmit power of the random access preamble sequence in the process of retransmitting the random access preamble sequence, and when the power spectrum density of the terminal device reaches the power spectral density specified by the regulation, the terminal The device then initiates a random access procedure by adding a time-frequency resource that sends a random access preamble sequence.
  • the terminal device can also initiate a random access procedure to the access network device by increasing the time-frequency resource mode for transmitting the random access preamble sequence when the power spectral density is not limited.
  • This embodiment of the invention is not particularly limited.
  • the second random access preamble sequence is a first random access preamble sequence.
  • the UE when the UE initiates the random access procedure to the base station for the first time, it first needs to determine a random access preamble sequence from among the available multiple random access preamble sequences (for random distinction, it is recorded as the random access preamble sequence #1). Next, the UE transmits a random access preamble sequence #1 to the base station. If the first random access is not successful, the UE will initiate a second random access procedure (or retransmission random access preamble sequence) to the base station. Generally, the UE continues to transmit the random access preamble sequence determined in the previous random access procedure during the retransmission process, that is, the second random access preamble sequence is the first random access preamble sequence.
  • the UE may also re-determine a new random access preamble sequence during retransmission (for randomization, it is recorded as a random access preamble sequence). #2), where the random access preamble sequence #1 is different from the random access preamble sequence #2.
  • the terminal device sends the second random access preamble sequence on the second PRACH resource.
  • step 106 may also be included.
  • the access network device When the access network device detects the second random access preamble sequence on the second PRACH resource, the access network device calculates the second PRACH resource corresponding according to the time domain or the frequency domain location included in the second PRACH resource. And randomly accessing the wireless network temporary identifier, and sending a random access response to the first terminal device according to the random access wireless network temporary identifier.
  • the second PRACH resource includes at least one basic resource unit.
  • the access network device selects a time domain or a frequency domain location of the first RB occupied by the basic resource unit. And calculating a random access wireless network temporary identifier corresponding to the second PRACH resource.
  • the access network device may calculate the random connection corresponding to the second PRACH resource according to the time domain or the frequency domain location of the part of the basic resource unit included in the second PRACH resource. Enter the temporary identifier of the wireless network. For example, the access network device calculates the temporary access wireless network temporary identifier corresponding to the second PRACH resource according to the time domain or the frequency domain location of the first RB occupied by the first basic resource unit included in the second PRACH resource; or The access network device calculates the random access wireless network temporary identifier corresponding to the second PRACH resource according to the time domain or the frequency domain location of the first RB occupied by the last basic resource unit included in the second PRACH resource.
  • the method for transmitting a random access preamble sequence when a terminal device transmits a random access preamble sequence on an unlicensed spectrum resource, in a case where the maximum transmission power is limited, by adding in the retransmission process
  • the transmission of the time domain resource or the frequency domain resource of the access preamble sequence can improve the demodulation performance of the random access preamble sequence.
  • a method of transmitting a random access preamble sequence according to an embodiment of the present invention is described in detail above with reference to FIGS. 1 through 9.
  • a terminal device and an access network device that transmit a random access preamble sequence according to an embodiment of the present invention are described below with reference to FIG. 10 and FIG.
  • FIG. 10 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present invention.
  • the terminal device 300 includes a determining unit 310 and a transmitting unit 320, where
  • the processing unit 310 is configured to determine a first random access preamble sequence, and determine a first PRACH resource from the first physical random access channel PRACH resource group, where the first PRACH resource group is included for performing the nth random access At least one PRACH resource, the first PRACH resource
  • the source includes at least one basic resource unit capable of carrying all information of the random access preamble sequence transmitted by the terminal device to the access network device in a random access procedure, where n ⁇ 1;
  • the sending unit 320 is configured to transmit the first random access preamble sequence on the first PRACH resource
  • the processing unit 310 is further configured to: when the random access procedure using the first random access preamble sequence fails, determine a second random access preamble sequence, and determine a second PRACH resource from the second PRACH resource group, the second The PRACH resource group includes at least one PRACH resource for performing the (n+1)th random access, where the second PRACH resource includes at least one basic resource unit, where the number of basic resource units included in the second PRACH resource is greater than or equal to The number of basic resource units included in the first PRACH resource;
  • the sending unit 320 is further configured to transmit the second random access preamble sequence on the second PRACH resource.
  • the number of basic resource units included in the second PRACH resource is greater than the number of basic resource units included in the first PRACH resource, including at least one of the following:
  • the number of basic resource units included in the time domain of the second PRACH resource is greater than the number of basic resource units included in the time domain of the first PRACH resource;
  • the number of basic resource units included in the frequency domain of the second PRACH resource is greater than the number of basic resource units included in the frequency domain of the first PRACH resource.
  • the number of basic resource units included in the second PRACH resource is equal to the number of basic resource units included in the first PRACH resource, and the at least one basic resource unit included in the first PRACH resource is located.
  • P frequency domain unit groups, the at least one basic resource unit included in the second PRACH resource is located in the Q frequency domain unit groups, wherein each frequency domain unit group includes R consecutive resource blocks RB, P ⁇ 1, Q> P, R ⁇ 1.
  • At least one of the following conditions is met between the first PRACH resource and the second PRACH resource:
  • the first PRACH resource and the second PRACH resource do not overlap in the time domain
  • the first PRACH resource and the second PRACH resource do not overlap in the frequency domain.
  • At least one of the following conditions is met between the first PRACH resource group and the second PRACH resource group:
  • the first PRACH resource group and the second PRACH resource group do not overlap in the time domain
  • the first PRACH resource group and the second PRACH resource group do not overlap in the frequency domain.
  • the basic resource unit includes N RBs in the frequency domain, N ⁇ 2, and the location relationship of the N RBs includes at least one of the following situations:
  • the N RBs are continuous in the frequency domain
  • At least two of the N RBs are discontinuous
  • the frequency domain intervals between any two adjacent RBs of the N RBs are equal.
  • the distribution manner of the first PRACH resource and the second PRACH resource in the frequency domain includes at least one of the following situations:
  • the frequency domain interval between the first RB and the last RB occupied by the first PRACH resource in the frequency domain is greater than or equal to a preset frequency domain interval
  • the frequency domain interval between the first RB and the last RB occupied by the second PRACH resource in the frequency domain is greater than or equal to a preset frequency domain interval.
  • the transmitting power used by the terminal device to transmit the second random access preamble sequence on the second PRACH resource is greater than the terminal device transmitting the first random access preamble on the first PRACH resource.
  • the transmit power used by the sequence is greater than the terminal device transmitting the first random access preamble on the first PRACH resource.
  • the determining unit 310 is specifically configured to determine the first random access preamble sequence from the first random access preamble sequence group, where the first random access preamble sequence group is included for At least one random access preamble sequence of the nth random access;
  • the processing unit 310 is further configured to determine the second random access preamble sequence from the second random access preamble sequence group, where the second random access preamble sequence group is used for the (n+1)th random access At least one random access preamble sequence, the first random access preamble sequence group is different from the random access preamble sequence included in the second random access preamble sequence group.
  • the second random access preamble sequence is the same as the first random access preamble sequence.
  • the method further includes:
  • the terminal device Determining, by the terminal device, the temporary identifier of the random access wireless network corresponding to the second PRACH resource according to the time domain or the frequency domain location of the basic resource unit included in the second PRACH resource;
  • the terminal device receives the random access response sent by the access network device according to the random access wireless network temporary identifier.
  • the terminal device 300 for transmitting a random access preamble sequence according to an embodiment of the present invention may correspond to a root A terminal device in a method for transmitting a random access preamble sequence according to an embodiment of the present invention. Also, each unit in the terminal device 300 and the above-described other operations and/or functions are respectively configured to implement the respective steps performed by the terminal device in FIG. For the sake of brevity, it will not be repeated here.
  • the method for transmitting a random access preamble sequence when a terminal device transmits a random access preamble sequence on an unlicensed spectrum resource, in a case where the maximum transmission power is limited, by adding in the retransmission process
  • the transmission of the time domain resource or the frequency domain resource of the access preamble sequence can improve the demodulation performance of the random access preamble sequence.
  • FIG. 11 shows a schematic block diagram of an access network device 400 in accordance with an embodiment of the present invention.
  • the access network device 400 includes a processing unit 410 and a receiving unit 420, where
  • the processing unit 410 is configured to configure a plurality of physical random access channel PRACH resource groups, where the first PRACH resource group of the multiple PRACH resource groups includes at least one PRACH resource for performing the nth random access, where the The second PRACH resource group in the PRACH resource group includes at least one PRACH resource for performing the (n+1)th random access, and each of the first PRACH resource group and the second PRACH resource group includes At least one basic resource unit, the basic resource unit capable of carrying at least all information of a random access preamble sequence transmitted by the terminal device terminal device to the access network device in a random access procedure, and the basic resource included in the second PRACH resource
  • the number of units is greater than or equal to the number of basic resource units included in the first PRACH resource, where n ⁇ 1;
  • the receiving unit 420 is configured to receive, in the first time period, a first random access preamble sequence that is transmitted by the first terminal device terminal device on the first PRACH resource, where the first PRACH resource is the first terminal device from the first PRACH resource Determined in the group;
  • the receiving unit 420 is further configured to: after the first terminal device fails to use the random access procedure of the first random access preamble sequence, receive a second random access preamble sequence that is transmitted by the first terminal device on the second PRACH resource.
  • the second PRACH resource is determined by the first terminal device from the second PRACH resource group.
  • the number of basic resource units included in the second PRACH resource is greater than or equal to the number of basic resource units included in the first PRACH resource, and includes at least one of the following:
  • the number of basic resource units included in the time domain of the second PRACH resource is greater than the number of basic resource units included in the time domain of the first PRACH resource;
  • the second PRACH resource includes a greater number of basic resource units in the frequency domain than the first The number of basic resource units included in the frequency domain of the PRACH resource.
  • the number of basic resource units included in the second PRACH resource is equal to the number of basic resource units included in the first PRACH resource, and the at least one basic resource unit included in the first PRACH resource is located.
  • P frequency domain unit groups, the at least one basic resource unit included in the second PRACH resource is located in the Q frequency domain unit groups, wherein each frequency domain unit group includes R consecutive resource blocks RB, P ⁇ 1, Q> P, R ⁇ 1.
  • At least one of the following conditions is met between the first PRACH resource and the second PRACH resource:
  • the first PRACH resource and the second PRACH resource do not overlap in the time domain
  • the first PRACH resource and the second PRACH resource do not overlap in the frequency domain.
  • At least one of the following conditions is met between the first PRACH resource group and the second PRACH resource group:
  • the first PRACH resource group and the second PRACH resource group do not overlap in the time domain
  • the first PRACH resource group and the second PRACH resource group do not overlap in the frequency domain.
  • the receiving unit is further configured to:
  • the third PRACH resource And receiving, by the third PRACH resource, a third random access preamble sequence transmitted by the second terminal device, where the third PRACH resource is determined by the second terminal device from the second PRACH resource group to perform the n+1th a randomly accessed PRACH resource, wherein the third PRACH resource satisfies at least one of the following conditions:
  • the resources occupied by the third PRACH resource in the time domain include at least resources occupied by the first PRACH resource in the time domain;
  • the resources occupied by the third PRACH resource in the frequency domain include at least resources occupied by the first PRACH resource in the frequency domain.
  • the basic resource unit includes N RBs in the frequency domain, N ⁇ 2, and the location relationship of the N RBs includes at least one of the following situations:
  • the N RBs are continuous in the frequency domain
  • At least two of the N RBs are discontinuous
  • the frequency domain intervals between any two adjacent RBs of the N RBs are equal.
  • the distribution manner of the first PRACH resource and the second PRACH resource in the frequency domain includes at least one of the following situations:
  • the access network device allocates the first RB and the last of the first PRACH resource in the frequency domain.
  • the frequency domain interval between one RB is greater than or equal to a preset frequency domain interval;
  • the frequency domain interval between the first RB and the last RB allocated by the access network device in the frequency domain to the second PRACH resource is greater than or equal to a preset frequency domain interval.
  • the first terminal device transmits the second random access preamble sequence on the second PRACH resource, and the first terminal device transmits the first on the first PRACH resource.
  • the transmit power used by a random access preamble sequence is used by the first terminal device.
  • processing unit 410 is further configured to:
  • the random access preamble sequences included in any two random access preamble sequences are different, and the first random access preamble sequence group in the multiple random access preamble sequence groups is included At least one sequence for performing the nth random access, where the second random access preamble sequence group of the plurality of random access preamble sequence groups includes at least one sequence for performing the n+1th random access The first random access preamble sequence group is different from the second random access preamble sequence group.
  • the second random access preamble sequence is the first random access preamble sequence.
  • the processing unit is specifically configured to: when detecting the second random access preamble sequence on the second PRACH resource, according to a time domain or a frequency domain of a basic resource unit included in the second PRACH resource Position determining a temporary access wireless network temporary identifier corresponding to the second PRACH resource;
  • the sending unit is specifically configured to send a random access response to the first terminal device.
  • the access network device 400 for transmitting a random access preamble sequence according to an embodiment of the present invention may correspond to an access network device in a method for transmitting a random access preamble sequence according to an embodiment of the present invention.
  • the various units in the access network device 400 and the other operations and/or functions described above are respectively implemented to implement the various steps performed by the access network device device of FIG. For the sake of brevity, it will not be repeated here.
  • the method for transmitting a random access preamble sequence when a terminal device transmits a random access preamble sequence on an unlicensed spectrum resource, in a case where the maximum transmission power is limited, by adding in the retransmission process
  • the transmission of the time domain resource or the frequency domain resource of the access preamble sequence can improve the demodulation performance of the random access preamble sequence.
  • the terminal device and the access network device for transmitting a random access preamble sequence according to an embodiment of the present invention are described in detail above with reference to FIG. 10 and FIG.
  • An apparatus for transmitting a random access preamble sequence according to an embodiment of the present invention will be described below with reference to FIGS. 12 and 13.
  • FIG. 12 shows a schematic structural block diagram of a terminal device 500 according to an embodiment of the present invention.
  • the terminal device 500 includes a processor 510, a transceiver 520, and a memory 530.
  • the device 500 further includes a bus system 540, wherein the processor 510, the transceiver 520, and the memory 530 can be connected by a bus system 540.
  • the memory 530 can be used to store instructions, and the processor 510 is configured to execute instructions stored in the memory 530.
  • the first random access preamble sequence determines, by the first random access preamble sequence, a first PRACH resource from the first physical random access channel PRACH resource group, where the first PRACH resource group includes at least one for performing the nth random access a PRACH resource, the first PRACH resource includes at least one basic resource unit, and the basic resource unit is capable of carrying all information of a random access preamble sequence transmitted by the terminal device to the access network device in a random access procedure, where N ⁇ 1;
  • the transceiver 520 is configured to transmit the first random access preamble sequence on the first PRACH resource.
  • the processor 510 is further configured to: when the random access procedure using the first random access preamble sequence fails, determine a second random access preamble sequence, and determine a second PRACH resource from the second PRACH resource group, where the The second PRACH resource group includes at least one PRACH resource configured by the access network device for performing the (n+1)th random access, where the second PRACH resource includes at least one basic resource unit, and the second PRACH resource includes a basic The number of resource units is greater than or equal to the number of basic resource units included in the first PRACH resource;
  • the transceiver 520 is further configured to transmit the second random access preamble sequence on the second PRACH resource.
  • the number of basic resource units included in the second PRACH resource is greater than the number of basic resource units included in the first PRACH resource, including at least one of the following:
  • the number of basic resource units included in the time domain of the second PRACH resource is greater than the number of basic resource units included in the time domain of the first PRACH resource;
  • the number of basic resource units included in the frequency domain of the second PRACH resource is greater than the number of basic resource units included in the frequency domain of the first PRACH resource.
  • the number of basic resource units included in the second PRACH resource is equal to the number of basic resource units included in the first PRACH resource, and the at least one basic resource unit included in the first PRACH resource is located.
  • P frequency domain unit groups, the at least one basic resource unit included in the second PRACH resource is located in the Q frequency domain unit group, where each frequency domain unit The group includes R consecutive resource blocks RB, P ⁇ 1, Q>P, and R ⁇ 1.
  • At least one of the following conditions is met between the first PRACH resource and the second PRACH resource:
  • the first PRACH resource and the second PRACH resource do not overlap in the time domain
  • the first PRACH resource and the second PRACH resource do not overlap in the frequency domain.
  • At least one of the following conditions is met between the first PRACH resource group and the second PRACH resource group:
  • the first PRACH resource group and the second PRACH resource group do not overlap in the time domain
  • the first PRACH resource group and the second PRACH resource group do not overlap in the frequency domain.
  • the basic resource unit includes N RBs in the frequency domain, N ⁇ 2, and the location relationship of the N RBs includes at least one of the following situations:
  • the N RBs are continuous in the frequency domain
  • At least two of the N RBs are discontinuous
  • the frequency domain intervals between any two adjacent RBs of the N RBs are equal.
  • the distribution manner of the first PRACH resource and the second PRACH resource in the frequency domain includes at least one of the following situations:
  • the frequency domain interval between the first RB and the last RB occupied by the first PRACH resource in the frequency domain is greater than or equal to a preset frequency domain interval
  • the frequency domain interval between the first RB and the last RB occupied by the second PRACH resource in the frequency domain is greater than or equal to a preset frequency domain interval.
  • the device uses the second random access preamble sequence to transmit the second random access preamble sequence to transmit the first random access preamble sequence on the first PRACH resource.
  • the processor 510 is specifically configured to determine, according to the first random access preamble sequence group, the first random access preamble sequence, where the first random access preamble sequence group is included in the first random access preamble sequence group. At least one random access preamble sequence of the nth random access;
  • the processor 510 is further configured to determine the second random access preamble sequence from the second random access preamble sequence group, where the second random access preamble sequence group is included for the (n+1)th random connection And at least one random access preamble sequence, the first random access preamble sequence group being different from the random access preamble sequence included in the second random access preamble sequence group.
  • the second random access preamble sequence and the first random access The leader sequence is the same.
  • the processor 510 is specifically configured to determine, according to a time domain or a frequency domain location of the basic resource unit included in the second PRACH resource, a temporary identifier of the random access wireless network corresponding to the second PRACH resource;
  • the transceiver 520 is specifically configured to receive, according to the random access wireless network temporary identifier, a random access response sent by the access network device.
  • the processor 510 may be a central processing unit (CPU), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 530 can include read only memory and random access memory and provides instructions and data to processor 510.
  • a portion of processor 510 may also include a non-volatile random access memory.
  • processor 510 can also store information of the type of device.
  • the bus system 540 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 540 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the steps of the method for transmitting a random access preamble sequence disclosed in the embodiment of the present invention may be directly implemented as a hardware processor execution completion, or may be performed by using a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 530, and processor 510 reads the information in memory 530 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 500 for transmitting a random access preamble sequence according to an embodiment of the present invention may correspond to a terminal device in a method for transmitting a random access preamble sequence according to an embodiment of the present invention.
  • the various units in device 500 and the other operations and/or functions described above are respectively implemented to implement the various steps performed by the terminal device in FIG. For the sake of brevity, it will not be repeated here.
  • the terminal device when the terminal device transmits a random access preamble sequence on the unlicensed spectrum resource, when the maximum transmit power is limited,
  • the demodulation performance of the random access preamble sequence can be improved by adding a time domain resource or a frequency domain resource for transmitting the access preamble sequence in the retransmission process.
  • FIG. 13 is a block diagram showing a schematic structure of an access network device according to another embodiment of the present invention.
  • the access network device 600 includes a processor 610, a transceiver 620, and a memory 630.
  • the device 600 further includes a bus system 640, wherein the processor 610, the transceiver 620, and the memory 630 can be connected by a bus system 640, the memory 630 can be used to store instructions, and the processor 610 is configured to execute the memory 630 storage. instruction,
  • the transceiver 620 is configured to receive a second random access preamble sequence that is sent by the first terminal device on the second PRACH resource, where the second random access preamble sequence is that the first terminal device accesses the first PRACH resource And sending, by the network device, the first random access preamble sequence to the access network device, where the first PRACH resource is determined by the first terminal device from the first PRACH resource group, the first PRACH resource group Included in the second PRACH resource group, the first PRACH resource includes at least one basic resource unit, where the second PRACH resource is determined by the first terminal device from the second PRACH resource group,
  • the second PRACH resource group includes at least one PRACH resource for performing the (n+1)th random access, where the second PRACH resource includes at least one basic resource unit, and the number of basic resource units included in the second PRACH resource The number of basic resource units included in the first PRACH resource is greater than or equal to.
  • the number of basic resource units included in the second PRACH resource is greater than the number of basic resource units included in the first PRACH resource, including at least one of the following:
  • the number of basic resource units included in the time domain of the second PRACH resource is greater than the number of basic resource units included in the time domain of the first PRACH resource;
  • the number of basic resource units included in the frequency domain of the second PRACH resource is greater than the number of basic resource units included in the frequency domain of the first PRACH resource.
  • the number of basic resource units included in the second PRACH resource is equal to the number of basic resource units included in the first PRACH resource, and the at least one basic resource unit included in the first PRACH resource is located.
  • P frequency domain unit groups, the at least one basic resource unit included in the second PRACH resource is located in the Q frequency domain unit groups, wherein each frequency domain unit group includes R consecutive resource blocks RB, P ⁇ 1, Q> P, R ⁇ 1.
  • the first PRACH resource and the second PRACH resource At least one of the following conditions is met:
  • the first PRACH resource and the second PRACH resource do not overlap in the time domain
  • the first PRACH resource and the second PRACH resource do not overlap in the frequency domain.
  • At least one of the following conditions is met between the first PRACH resource group and the second PRACH resource group:
  • the first PRACH resource group and the second PRACH resource group do not overlap in the time domain
  • the first PRACH resource group and the second PRACH resource group do not overlap in the frequency domain.
  • the transceiver 620 is further configured to:
  • the third PRACH resource is The PRACH resource used by the second terminal device to perform the (n+1)th random access from the second PRACH resource group, where the third PRACH resource satisfies at least one of the following conditions:
  • the resources occupied by the third PRACH resource in the time domain include at least resources occupied by the first PRACH resource in the time domain;
  • the resources occupied by the third PRACH resource in the frequency domain include at least resources occupied by the first PRACH resource in the frequency domain.
  • the basic resource unit includes N RBs in the frequency domain, N ⁇ 2, and the location relationship of the N RBs includes at least one of the following situations:
  • the N RBs are continuous in the frequency domain
  • At least two of the N RBs are discontinuous
  • the frequency domain intervals between any two adjacent RBs of the N RBs are equal.
  • the distribution manner of the first PRACH resource and the second PRACH resource in the frequency domain includes at least one of the following situations:
  • the frequency domain interval between the first RB and the last RB allocated by the device to the first PRACH resource in the frequency domain is greater than or equal to a preset frequency domain interval
  • the frequency domain interval between the first RB and the last RB allocated by the device to the second PRACH resource in the frequency domain is greater than or equal to a preset frequency domain interval.
  • the first terminal device transmits the second random access preamble sequence on the second PRACH resource, and the first terminal device transmits the first on the first PRACH resource.
  • the transmit power used by a random access preamble sequence is used by the first terminal device.
  • the processor 610 is configured to:
  • the random access preamble sequences included in any two random access preamble sequences are different, and the first random access preamble sequence group in the multiple random access preamble sequence groups is included At least one sequence for performing the nth random access, where the second random access preamble sequence group of the plurality of random access preamble sequence groups includes at least one sequence for performing the n+1th random access .
  • the second random access preamble sequence is the same as the first random access preamble sequence.
  • the transceiver 620 is specifically configured to determine, according to a time domain or a frequency domain location of the basic resource unit included in the second PRACH resource, a temporary access wireless network temporary identifier corresponding to the second PRACH resource;
  • the processor 610 is specifically configured to send a random access response to the first terminal device.
  • the method for transmitting a random access preamble sequence when a terminal device transmits a random access preamble sequence on an unlicensed spectrum resource, in a case where the maximum transmission power is limited, by adding in the retransmission process
  • the transmission of the time domain resource or the frequency domain resource of the access preamble sequence can improve the demodulation performance of the random access preamble sequence.
  • the processor 610 may be a central processing unit (CPU), and the processor 610 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 630 can include read only memory and random access memory and provides instructions and data to processor 610.
  • a portion of processor 610 may also include a non-volatile random access memory.
  • the processor 610 can also store information of the device type.
  • the bus system 640 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 640 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method for transmitting a random access preamble sequence disclosed in the embodiment of the present invention may be directly implemented as a hardware processor execution completion, or may be performed by using a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash Memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers and the like are well-known storage media in the field.
  • the storage medium is located in the memory 630, and the processor 610 reads the information in the memory 630 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the apparatus 600 for transmitting a random access preamble sequence according to an embodiment of the present invention may correspond to an access network apparatus in a method of transmitting a random access preamble sequence according to an embodiment of the present invention.
  • each unit in the device 600 and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes performed by the access network device in FIG. 2, and are not described herein again for brevity.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种发送随机接入前导序列的方法,该方法包括:终端设备确定第一随机接入前导序列,并从第一物理随机接入信道PRACH资源组中确定第一PRACH资源,第一PRACH资源包括至少一个基本资源单元,所述基本资源单元能够承载终端设备在一次随机接入过程中传输给接入网设备的随机接入前导序列的全部信息,n≥1;终端设备在第一PRACH资源上传输第一随机接入前导序列;当使用第一随机接入前导序列的随机接入过程失败时,终端设备确定第二随机接入前导序列,并从第二PRACH资源组中确定第二PRACH资源,第二PRACH资源包括的基本资源单元的个数大于或等于第一PRACH资源包括的基本资源单元的个数;终端设备在第二PRACH资源上传输第二随机接入前导序列。

Description

发送随机接入前导序列的方法、终端设备和接入网设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种发送随机接入前导序列的方法、终端设备和接入网设备。
背景技术
在无线通信领域,频谱资源主要分为许可频谱资源和免许可频谱资源,在现有的长期演进(Long Term Evolution,LTE)系统及其演进系统中,运营商所使用的频谱资源主要为许可频谱资源。随着移动通信网络终端设备数量的增加,以及用户对通信速率、服务质量的要求的提高,现有的许可频谱资源已经难以满足运营商的现有业务的需求。考虑到新的许可频谱价格高昂、资源紧缺,运营商开始将目光投向免许可频谱资源上,期望能够通过利用免许可频谱资源以达到网络容量分流、提高服务质量的目的。
在现有LTE系统中,用户设备在随机接入基站时,随机接入前导序列(也可称为随机接入前导码)的发送采用功率爬坡的方法。即,在第一次接入基站时,终端设备会确定发送随机接入前导序列的初始功率、功率偏移、功率递增因子和最大发送次数N。第一次传输随机接入前导序列时,终端设备使用的功率为初始功率+功率偏移,如果第一次随机接入失败,在第二次随机接入时,终端设备使用的功率为初始功率+功率偏移+功率递增因子,假设前(N-1)次随机接入都失败,第N次随机接入时,终端设备使用的功率为初始功率+功率偏移+(N-1)乘以功率递增因子。可见,在终端设备随机接入基站的过程中,如果一直没有成功接入,终端设备在发送随机接入前导码时使用的发射功率是逐渐增大的。
但是,为了避免给其它系统造成的干扰,很多国家或地区都对使用免许可频谱资源的设备所能使用的最大发射功率进行了限制。因此,在免许可频谱资源上传输随机接入前导序列时,如果继续使用现有的功率爬坡的发送方式,可能会由于法规的限制,使得用户设备在发起随机接入过程中所使用的发射功率受到限制。
发明内容
本申请提供一种发送随机接入前导序列的方法、终端设备和接入网设备,能够使终端设备在免许可频谱资源上发送随机接入前导序列时,在最大发射功率受到限制的情况下提高随机接入前导序列的解调性能。
第一方面,本申请提供一种发送随机接入前导序列的方法,该方法包括:终端设备确定第一随机接入前导序列,并从第一物理随机接入信道PRACH资源组中确定第一PRACH资源,该第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,该第一PRACH资源包括至少一个基本资源单元,该基本资源单元能够承载该终端设备在一次随机接入过程中传输给接入网设备的随机接入前导序列的全部信息,其中,n≥1;该终端设备在该第一PRACH资源上传输该第一随机接入前导序列;当使用该第一随机接入前导序列的随机接入过程失败时,该终端设备确定第二随机接入前导序列,并从第二PRACH资源组中确定第二PRACH资源,该第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,该第二PRACH资源包括至少一个基本资源单元,该第二PRACH资源包括的基本资源单元的个数大于或等于该第一PRACH资源包括的基本资源单元的个数;该终端设备在该第二PRACH资源上传输该第二随机接入前导序列。
现有的LTE系统中,许可频谱资源上物理随机接入信道(Physical Random Access Channel,PRACH)过程中随机接入前导序列(Preamble)的发送采用功率爬坡的方式,终端设备在成功接入之前,每失败一次,下一次发送随机接入前导序列时的功率就会增加。随着通信网络的的发展,许可频谱资源越来越紧缺,越来越多的运营商将目光投向免许可频谱资源,期望通过免许可频谱资源达到网络容量分流的目的。根据法规规定,应用免许可频谱资源的通信设备只需要满足发射功率、以及功率谱密度等地规定,就可以免费使用免许可频谱资源。因此,如果继续使用现有技术中功率爬坡的方式在免许可频谱资源上发送随机接入前导序列,那么,由于法规对与发射功率的限制,终端设备的最大发射功率会受到限制。
根据本发明实施例的发送随机接入前导序列的方法,终端设备在免许可频谱资源上发送随机接入前导序列时,在最大发射功率受到限制的情况下,通过在重传过程中增加用于传输随接入前导序列的时域资源或频域资源,能够提高随机接入前导序列的解调性能。
可选地,在第一方面的第一种可能的实现方式中,该终端设备确定第一 随机接入前导序列,包括:该终端设备从第一随机接入前导序列组中确定该第一随机接入前导序列,其中,该第一随机接入前导序列组中包括用于进行第n次随机接入的至少一个随机接入前导序列;以及,该终端设备确定第二随机接入前导序列,包括:该终端设备从第二随机接入前导序列组中确定该第二随机接入前导序列,其中,该第二随机接入前导序列组中包括用于进行第n+1次随机接入的至少一个随机接入前导序列,该第一随机接入前导序列组与该第二随机接入前导序列组中包括的随机接入前导序列相异。
可选地,在第一方面的第二种可能的实现方式中,该方法还包括:
所述终端设备根据所述第二PRACH资源包括的基本资源单元的时域或频域位置,确定第二PRACH资源对应的随机接入无线网络临时标识;
所述终端设备根据所述随机接入无线网络临时标识接收所述接入网设备发送的随机接入响应。
第二方面,本申请提供一种发送随机接入前导序列的方法,该方法包括:
接入网设备接收第一终端设备在第二PRACH资源上发送的第二随机接入前导序列,所述第二随机接入前导序列是所述第一终端设备在第一PRACH资源上向所述接入网设备发送第一随机接入前导序列失败后发送给所述接入网设备的,其中,所述第一PRACH资源是所述第一终端设备从第一PRACH资源组中确定的,所述第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,所述第一PRACH资源包括至少一个基本资源单元,所述第二PRACH资源是所述第一终端设备从第二PRACH资源组中确定的,所述第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,所述第二PRACH资源包括至少一个基本资源单元,所述第二PRACH资源包括的基本资源单元的个数大于或等于所述第一PRACH资源包括的基本资源单元的个数。
可选地,在第二方面的第一种可能的实现方式中,当该接入网设备在第一PRACH资源上接收该第一终端发送的第一随机接入前导序列时,该方法还包括:该接入网设备在第三PRACH资源上接收第二终端设备传输的第三随机接入前导序列,该第三PRACH资源是该第二终端设备从该第二PRACH资源组中确定的用于进行第n+1次随机接入的PRACH资源,其中,该第三PRACH资源满足以下情况中的至少一个:该第三PRACH资源在时域上占用的资源至少包括该第一PRACH资源在时域上占用的资源;该第三PRACH 资源在频域上占用的资源至少包括该第一PRACH资源在频域上占用的资源。
可选地,在第二方面的第二种可能的实现方式中,该方法还包括:该接入网设备配置多个随机接入前导序列组,任意两个随机接入前导序列组中包括的随机接入前导序列相异,该多个随机接入前导序列组与多个序列检测格式一一对应,每个序列检测格式用于检测对应的随机接入前导序列组中的随机接入前导序列,该多个随机接入前导序列组中的第一随机接入前导序列组中包括用于进行第n次随机接入的至少一个序列,该多个随机接入前导序列组中的第二随机接入前导序列组中包括用于进行第n+1次随机接入的至少一个序列。
在本发明实施例中,接入网设备可以将可用的随机接入前导序列分成多个组,为每个预设一种检测格式。这样,基站在检测随机接入前导序列时,属于同一个组的随机接入前导序列使用同一个检测格式,可以提高接入网设备的检测效率。
可选地,在第二方面的第三种可能的实现方式中,该方法还包括:当该接入网设备在该二PRACH资源上检测到该第二随机接入前导序列时,该接入网设备根据该第二PRACH资源包括的基本资源单元的时域或频域位置确定第二PRACH资源对应的随机接入无线网络临时标识;
该接入网设备向该第一终端设备发送随机接入响应。
可选地,在某些实现方式中,该第二PRACH资源包括的基本资源单元的个数大于该第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:该第二PRACH资源在时域上包括的基本资源单元的个数大于该第一PRACH资源在时域上包括的基本资源单元的个数;该第二PRACH资源在频域上包括的基本资源单元的个数大于该第一PRACH资源在频域上包括的基本资源单元的个数。
可选地,在某些实现方式中,该第二PRACH资源包括的基本资源单元的个数等于该第一PRACH资源包括的基本资源单元的个数,该第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,该第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
可选地,在某些实现方式中,该第一PRACH资源与该第二PRACH资 源之间满足以下情况中的至少一个:该第一PRACH资源与该第二PRACH资源在时域上不重叠;该第一PRACH资源与该第二PRACH资源在频域上不重叠。
可选地,在某些实现方式中,该第一PRACH资源组与该第二PRACH资源组之间满足以下情况中的至少一个:该第一PRACH资源组与该第二PRACH资源组在时域上不重叠;该第一PRACH资源组与该第二PRACH资源组在频域上不重叠。
可选地,在某些实现方式中,该基本资源单元在频域上包括N个RB,N≥2,该N个RB的位置关系包括以下情况中的至少一种:该N个RB在频域上连续;该N个RB中至少有两个RB不连续;该N个RB中任意两个相邻的RB之间的频域间隔相等。
可选地,在某些实现方式中,该第一PRACH资源与该第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:该第一PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;该第二PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
可选地,在某些实现方式中,该方法还包括:该终端设备在该第二PRACH资源上传输该第二随机接入前导序列使用的发射功率大于该终端设备在该第一PRACH资源上传输该第一随机接入前导序列使用的发射功率。
可选地,在某些实现方式中,该第二随机接入前导序列与该第一随机接入前导序列相同。
第三方面,本申请提供一种终端设备,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请提供一种接入网设备,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该接入网设备包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,本申请提供一种终端设备,该终端设备包括:处理器、收发器和存储器。可选地,该设备还包括总线系统,其中,收发器、存储器和处理器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制收发器接收或发送信号,并且当处理器执行存储器存储的指 令时,执行使得处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,本申请提供一种接入网设备,该接入网设备包括:处理器、收发器和存储器。可选地,该设备还包括总线系统,其中,接收器、收发器、存储器和处理器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制收发器接收或发送信号,并且当处理器执行存储器存储的指令时,执行使得处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
图1是适用本发明实施例的发送随机接入前导序列的方法的应用场景。
图2示出了根据本发明实施例的发送随机接入前导序列的方法的示意性交互图。
图3示出了随机接入过程中UE使用的PRACH资源的示意图。
图4示出了随机接入过程中UE使用的PRACH资源的另一示意图。
图5示出了随机接入过程中UE使用的PRACH资源的又一示意图。
图6示出了UE使用的PRACH资源的又一示意图。
图7示出了UE使用的PRACH资源的又一示意图。
图8示出了多个UE使用的PRACH资源的示意图。
图9示出了随机接入过程中UE使用的PRACH资源在系统带宽上的一种分布方式的示意图。
图10示出了根据本发明实施例的终端设备的示意性框图。
图11示出了根据本发明另一实施例的接入网设备的示意性框图。
图12示出了根据本发明实施例的终端设备的示意性结构框图。
图13示出了根据本发明实施例的接入网设备的示意性结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例的技术方案,可以应用于无线蜂窝网络的各种通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,LTE系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),未来的5G通信系统等,本发明实施例对此不作不限定。
本发明实施例的技术方案主要应用于长期演进(Long Term Evolution,LTE)系统及其演进系统,特别是许可辅助接入LTE(LAA-LTE,Licensed-Assisted Access Using LTE)系统。本发明实施例应用的通信系统中,涉及的网元是接入网设备(也称网络设备)和终端设备(也称用户设备)。
本发明结合终端设备描述了各个实施例,终端设备可称之为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信。例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置以及未来5G网络中的终端设备,它们与无线接入网交换语音或数据。
另外,本发明结合接入网设备描述了各个实施例。接入网设备可以是长期演进(Long Term Evolution,LTE)系统或者授权辅助接入长期演进(Authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(Evolutional Node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(Access Point,AP)或传输站点(Transmission Point,TP)等。
图1示出了适用于本发明实施例的发送随机接入前导序列的方法的应用场景。如图1所示,场景中包括小区基站101、与小区基站101邻近的小区基站102和用户设备103。其中,用户设备103处于小于基站101的覆盖范围内并与小区基站101进行通信。小区基站101和用户设备103为支持在免 许可频谱资源上进行通信的通信设备。小区基站102支持的频段可以与小区基站101相同,小区基站102可以是与小区基站101相同类型的通信设备,也可以是与小区基站101不同类型的通信设备。例如,小区基站101可以为LTE系统的基站,对应地,用户设备103为LTE系统的用户设备,小区基站102可以为LTE系统的基站,也可以为无线保真(Wireless Fidelity,Wi-Fi)系统的无线路由器、无线中继器、用户设备。在具体的通信过程中,用户设备103在通过免许可频谱的信道向小区基站102传输信号时,用户设备103需要获取免许可频谱的信道使用权,并遵循免许可频谱上资源使用对发射功率和带宽的限制要求。
下文结合图2至图9,对根据本发明实施例的发送随机接入前导序列的方法进行详细说明。
图2示出了根据本发明实施例的发送随机接入前导序列的方法的示意性交互图100。
可选地,在本发明实施例中可以包括步骤101。
101、基站配置多个物理随机接入信道物理随机接入信道PRACH资源组,该多个PRACH资源组中的第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,该多个PRACH资源组中的第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,该第一PRACH资源组和该第二PRACH资源组中的每一个PRACH资源包括至少一个基本资源单元,该基本资源单元能够承载终端设备在一次随机接入过程中传输给接入网设备的随机接入前导序列的全部信息,该第二PRACH资源包括的基本资源单元的个数大于或等于该第一PRACH资源包括的基本资源单元的个数,其中,n≥1。
需要说明的是,在本发明实施例中,基本资源单元是指在一次随机接入过程中,能够承载终端设备传输给接入网设备的随机接入前导序列的全部信息的最小时频资源单位。一个基本资源单元可以包括1个RB,也可以包括多个RB。可选地,一个基本资源单元包括6个RB。可选地,一个基本资源单元包括1个RB。
通常情况下,PRACH资源包括时域资源、频域资源和序列资源。在本发明实施例中,主要涉及PRACH资源的时域资源和频域资源。
应理解,上述多个物理随机接入信道(Physical Random Access Channel, PRACH)资源组仅是一种逻辑上的组的概念,即,实际中,基站可以只配置一个PRACH资源组,该PRACH资源中包括用于随机接入的多个PRACH资源。这样,可以理解的是,上述多个PRACH资源组与多次随机接入过程一一对应,每个PRACH资源组对应某一次随机接入。换句话说,终端设备在向接入网设备发起随机接入过程时,根据随机接入失败的次数,选择当前随机接入时要使用的PRACH资源组,并从该选择的PRACH资源组中选择一个PRACH资源进行随机接入。
需要说明的是,终端设备可以是基于接入网设备(例如,基站)的调度选择接入网设备指定的PRACH资源(也或者说,基于非竞争)。终端设备也可以自己从对应的PRACH资源组中随机选择一个PRACH资源(即,基于竞争)。即,对于终端设备选择PRACH资源的方式,本发明实施例并未特别限定。
例如,PRACH资源组#1中的PRACH资源用于第2次随机接入,PRACH资源组#2中的PRACH资源用于第4次随机接入等。假设,UE#1(即,UE的一例)的第1次随机接入失败,在发起第2次随机接入过程时,UE#1可以从PRACH资源组#1中的多个PRACH资源中确定一个PRACH资源,用于第2次的随机接入。如果UE#1的前3次随机接入都失败,那么,UE#1向基站发起第4次随机接入时,可以从PRACH资源组#2中确定一个PRACH资源,用于第4次的随机接入。
还应理解,上述编号“第一”、“第二”仅仅为了区分不同的对象,例如为了区分不同的PRACH资源或不同的随机接入前导序列,不应对根据本发明实施例的随机接入过程构成任何限定。
可选地,作为一个实施例,该方法还包括:
接入网设备配置多个随机接入前导序列组,该多个随机接入前导序列组与多个序列检测格式一一对应,每个序列检测格式用于检测对应的随机接入前导序列组中的随机接入前导序列,该多个随机接入前导序列组中的第一随机接入前导序列组中包括用于进行第n次随机接入的至少一个序列,该多个随机接入前导序列组中的第二随机接入前导序列组中包括用于进行第n+1次随机接入的至少一个序列,该第一随机接入前导序列组与该第二随机接入前导序列组中包括的随机接入前导序列相异。
需要说明的是,序列检测格式和随机接入前导序列占用的时域资源和频 域资源的数量或位置一一对应。如果两个随机接入前导序列占用的时域资源的数量不同,或者占用的频域资源的数量不同,那么可以认为这两个随机接入前导序列对应不同的序列检测格式。
在本发明实施例中,基站可以将可用的随机接入前导序列分成多个组,其中,第m次传输使用的随机接入前导序列和第n次传输使用的随机接入前导序列属于不同的组。同时,多个随机接入前导序列组与多个序列检测格式一一对应。这样,基站在进行接收侧的序列检测时,只需要根据不同的格式检测该格式对应的组内的随机接入前导序列即可。可以提高基站的检测效率。
102、终端设备确定第一随机接入前导序列,并从第一物理随机接入信道PRACH资源组中确定第一PRACH资源,该第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,该第一PRACH资源包括至少一个基本资源单元,该基本资源单元能够承载该终端设备在一次随机接入过程中传输给接入网设备的随机接入前导序列的全部信息,其中,n≥1。
具体地,终端设备在确定第一随机接入前导序列时,可以有多种方式。例如,基站向UE发送指示信令,该指示信令中携带第一随机接入前导序列的标识ID,UE根据该第一随机接入前导序列的标识ID,从可用的随机接入前导序列集合中确定该第一随机接入前导序列。又例如,基站通过信令触发UE发送随机接入前导序列但不通知随机接入前导序列的ID,UE从可用的随机接入前导序列集合中随机选择一个作为确定的随机接入前导序列(即,可对应第一随机接入前导序列)。再例如,UE也可以自发地从可用的随机接入前导序列集合中随机确定一个随机接入前导序列(即,可对应第一随机接入前导序列)。
类似地,UE在确定第一PRACH资源时,也可以有多种方式。例如,系统可以预先定义UE进行第n次随机接入时能够使用的PRACH资源。UE向基站发起第n次随机接入过程时,就从系统预先定义的用于第n次随机接入的PRACH资源中确定一个PRACH资源(为了便于描述,记作PRACH资源#1),并在该PRACH资源#1上向基站发起第n次随机接入过程。又例如,UE向基站发起第n次随机接入过程时使用的PRACH资源是基站通过信令通知给UE的。UE使用基站的信令所指示的进行第n次随机接入的PRACH资源向基站发起第n次随机接入过程,n≥1。
需要说明的是,在本发明实施例中,基本资源单元是指在一次随机接入过程中,能够承载终端设备传输给接入网设备的随机接入前导序列的全部信息的最小时频资源单位。一个基本资源单元可以包括1个RB,也可以包括多个RB。可选地,一个基本资源单元包括6个RB。可选地,一个基本资源单元包括1个RB。
可选地,作为一个实施例,该基本资源单元在频域上包括N个RB,N≥2,该N个RB的位置关系包括以下情况中的至少一种:
该N个RB在频域上连续;
该N个RB中至少有两个RB不连续;
该N个RB中任意两个相邻的RB之间的频域间隔相等。
103、终端设备在第一PRACH资源上传输第一随机接入前导序列。
104、当使用第一随机接入前导序列的随机接入过程失败时,终端设备确定第二随机接入前导序列,并从第二PRACH资源组中确定第二PRACH资源,该第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,该第二PRACH资源包括至少一个基本资源单元,该第二PRACH资源包括的基本资源单元的个数大于或等于该第一PRACH资源包括的基本资源单元的个数。
应理解,第n次随机接入过程失败时,UE需要向基站发起第n+1次随机接入过程。与进行第n次随机接入过程类似,UE进行第n+1次随机接入前,需要确定用于进行第n+1次随机接入的随机接入前导序列(即,可对应第二随机接入前导序列)和承载该随机接入前导序列的PRACH资源(即,可对应第二PRACH资源)。确定用于进行第n+1次随机接入的第二随机接入前导序列的过程,与前文所述的确定用于第n次随机接入的第一随机接入前导序列和确定承载该第一随机接入前导序列的过程类似,确定第二PRACH资源的过程,与前文所述的确定第一PRACH资源的过程类似,为了简洁,此处不再赘述。
在本发明实施例中,第一PRACH资源与第二PRACH资源都至少包括一个基本资源单元,其中第二PRACH资源所包括的基本资源单元的个数大于或等于第一PRACH资源所包括的基本资源单元的个数。
可选地,作为一个实施例,第二PRACH资源包括的基本资源单元的个数大于第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至 少一个:
第二PRACH资源在时域上包括的基本资源单元的个数大于第一PRACH资源在时域上包括的基本资源单元的个数;
第二PRACH资源在频域上包括的基本资源单元的个数大于第一PRACH资源在频域上包括的基本资源单元的个数。
需要说明的是,若第一PRACH资源在时域上包括的基本资源单元的个数大于第二PRACH资源在时域上包括的基本资源单元的个数时,在频域上,第一PRACH资源包括的基本资源单元的个数与第二PRACH资源在频域上包括的基本资源单元的个数之间包括以下几种可能:
(1)第一PRACH资源在频域上包括的基本资源单元的个数等于第二PRACH资源在频域上包括的基本资源单元的个数。
(2)第一PRACH资源在频域上包括的基本资源单元的个数大于第二PRACH资源在频域上包括的基本资源单元的个数。
(3)第一PRACH资源在频域上包括的基本资源单元的个数小于第二PRACH资源在频域上包括的基本资源单元的个数,且,第一PRACH资源在时域和频域上包括的基本资源单元的个数的总和大于,第二PRACH资源在时域和频域上包括的基本资源单元的个数的总和。
若第一PRACH资源在频域上包括的基本资源单元的个数大于第二PRACH资源在频域上包括的基本资源单元的个数时,在时域上,第一PRACH资源包括的基本资源单元的个数与第二PRACH资源在时域上包括的基本资源单元的个数之间包括以下几种可能:
(1)第一PRACH资源在时域上包括的基本资源单元的个数等于第二PRACH资源在时域上包括的基本资源单元的个数。
(2)第一PRACH资源在时域上包括的基本资源单元的个数大于第二PRACH资源在时域上包括的基本资源单元的个数。
(3)第一PRACH资源在时域上包括的基本资源单元的个数小于第二PRACH资源在时域上包括的基本资源单元的个数,且,第一PRACH资源在时域和频域上包括的基本资源单元的个数的总和大于,第二PRACH资源在时域和频域上包括的基本资源单元的个数的总和。
具体地说,第二PRACH资源包括的基本资源单元的个数大于第一PRACH资源包括的基本资源单元的个数,可以包括两种方式:
方式1
时域上,第二PRACH资源包括的基本资源单元的个数大于第一PRACH资源包括的基本资源单元的个数。
具体地说,第n次传输随机接入前导序列(或者说,第n次随机接入过程)使用的PRACH资源包括P个时域资源单元,第n+1次传输随机接入前导序列(或者说,第n+1次随机接入过程)使用的PRACH资源包括(P+Q)个时域资源单元。也就是说,每增加一次传输次数,传输时使用的PRACH资源增加Q个时域资源单元。
应理解,上述描述中以每增加一次重传过程,增加的时域资源单元的个数相同作为示例。可选地,每次重传时,增加的时域资源单元的个数可以不同。
例如,第2次随机接入使用的时域资源包括(P+Q)个时域资源单元,第3次随机接入使用的时域资源包括(P+2Q)个时域资源单元,…,第k次随机接入使用的时域资源包括(P+(k-1)·Q)个时域资源单元。
图3示出了随机接入过程中UE使用的PRACH资源的示意图。如图3所示,第1次随机接入使用1个时域资源单元,第2次随机接入使用2个时域资源单元,….,第4次随机接入使用4个时域资源单元。
另外,由于UE在免许可频谱资源上传输信号时要遵循先检测后发送(Listen Before Talk,LBT)的规则,一旦传输的信号中断,UE就需要重新作侦听。因此,优选地,任何一次随机接入过程使用的PRACH资源包括的多个时域资源单元在时域上连续。
可选地,每个时域资源单元还用于传输随机接入前导序列的循环前缀(Cyclic Prefix,CP)。
可选地,第n次随机接入和第m次随机接入使用的PRACH信道的格式不同。
可选地,当n和m不相等时,由于第n次随机接入和第m次随机接入使用的PRACH资源在时域上包括的基本资源单元的个数不同,可以认为,第n次随机接入和第m次随机接入使用随机接入前导序列对应的传输格式不同。
方式2
频域上,第二PRACH资源包括的基本资源单元的个数大于第一PRACH 资源包括的基本资源单元的个数。
具体地说,第n次传输随机接入前导序列(或者说,第n次随机接入过程)使用的PRACH资源包括R个频域资源单元,第n+1次传输随机接入前导序列(或者说,第n+1次随机接入过程)使用的PRACH资源包括(R+S)个频域资源单元。也就是说,每增加一次传输次数,传输时使用的PRACH资源增加S个频域资源单元。
例如,系统带宽对应的频域资源被划分为多个频域资源单元,每个频域资源单元包括多个连续的资源块(Resource Block,RB)。UE第2次随机接入使用的PRACH资源占用(R+S)个频域资源单元,第3次随机接入使用的PRACH资源占用(R+2S)个频域资源单元,…,第k次随机接入使用的PRACH资源占用(R+(k-1)·S)个频域资源单元。
优选地,一个频域资源单元包括6个RB。
优选地,一个频域资源单元包括1个RB。
类似地,上述描述中以每增加一次重传过程,增加的频域资源单元的个数相同作为示例。可选地,每次重传时,增加的频域资源单元的个数也可以不同。
图4示出了随机接入过程中UE使用的PRACH资源的示意图。如图4所示,系统带宽被划分为多个频域单元,其中,图4中所示的4个UE(即,UE1、UE2、UE3和UE4)占用了其中的16个频域单元(即,标号0至标号15所对应的频域单元)。以下以UE1作为示例,对UE1在一次随机接入过程中的4次随机接入前导序列的发送过程中使用的PRACH资源进行说明。UE1在第1次随机接入前导序列的发送过程中使用标号0对应的频域单元,如果第1次随机接入失败,UE1在第2次随机接入前导序列的发送过程中使用标号0和标号4对应的频域单元,……,以此类推,如果前3次随机接入前导序列的发送都没有成功,UE1在第4次随机接入前导序列的发送过程中使用标号0、标号4、标号8和标号12对应的频域单元。可见,传输次数每增加一次,UE就在前面一次传输时占用的频域单元的基础上,新增一个频域单元。
可选地,当n和m不相等时,由于第n次随机接入和第m次随机接入使用的PRACH资源在频域上包括的基本资源单元的个数不同,可以认为,第n次随机接入和第m次随机接入使用随机接入前导序列对应的传输格式不 同。
如上文方式1和方式2所述,根据本发明实施例的发送随机接入前导序列的方法,在随机接入前导序列传输失败后,用户设备通过在重传过程中增加用于传输随接入前导序列的时域资源或频域资源,可以使用户设备在最大发射功率谱密度受限的情况下,通过在重传随机接入前导序列的过程中增加传输随接入前导序列的时域资源或频域资源来增加随机接入前导序列的副本,基站将重传过程中随机接入前导序列的多个副本进行合并解调处理,可以提高随机接入前导序列的检测性能。
需要说明的是,相对于使用一个基本资源单元传输一个随机接入前导序列而言,用户设备通过在重传过程中增加用于传输随机接入前导序列的时域资源单元或频域资源单元,在增加的时域资源单元或增加的频域资源单元上传输的随机接入前导序列称之为随机接入前导序列的副本。
以图4为例,UE1第1次随机接入前导序列的发送过程中,在标号0对应的频域资源单元上传输一个随机接入前导序列。如果第1次随机接入失败,第2次随机接入前导序列的发送过程中,在标号0和标号4对应的频域资源单元上分别传输一个随机接入前导序列(即,包括一个随机接入前导序列的副本)。类似地,第3次随机接入包括两个随机接入前导序列的副本,第4次包括三个随机接入前导序列的副本。
可选地,作为一个实施例,第二PRACH资源包括的基本资源单元的个数等于第一PRACH资源包括的所述基本资源单元的个数,该第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,该第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
图5示出了随机接入过程中UE使用的PRACH资源的另一示意图。如图5所示,系统带宽对应的频域资源被划分为多个频域单元组,每个频域单元组包括多个连续的RB(例如,6个)。假设PRACH资源中包括的至少一个基本资源单元最多可以位于6个组。为了便于描述,依次将该6个组记作组#1、组#2、组#3、组#4、组#5和组#6,其中的每个组都包括6个RB。UE第1次传输随机接入前导序列时使用的PRACH资源在频域上占用其中的1个组(即,组#1)更具体地说,占用组#1的6个RB。如果第1次传输失败,第2次传输时,UE占用其中的2个组(即,组#2和组#6),更具体地,占 用每个组中的3个RB。如果第2次随机接入前导序列的发送也失败,UE向基站发起第3次随机接入前导序列的发送。在第3次随机接入前导序列的发送过程中,UE使用的PRACH资源在频域上占用上述多个频域单元组中的3个组(即,组#2、组#4和组#6),更具体地,占用每个组中的2个RB。类似地,如果第3次随机接入前导序列的发送继续失败,在第4次随机接入前导序列的发送过程中,UE使用的PRACH资源在频域上占用上述多个频域单元组中的4个组(即,组#2、组#3、组#5和组#6),更具体地说,分别占用组#2和组#6中的一个RB,同时占用组#3的2个RB和组#5的2个RB。
需要说明的是,图5中所示的每个频域单元组仅以包括6个RB作为实例,在本发明实施例中,每个频域单元组都可以包括任意多个RB。本发明实施例对此不作任何限定。
考虑到免许可频谱资源上有最大发射功率密度的限制,在本发明实施例中,当随机接入前导序列第一次传输失败以后,通过在重传过程中将传输随机接入前导序列的频域资源分布到不同的组内,可以增大随机接入前导序列的发射功率。
可选地,作为一个实施例,第一PRACH资源与第二PRACH资源之间满足以下情况中的至少一个:
第一PRACH资源与第二PRACH资源在时域上不重叠;
第一PRACH资源与第二PRACH资源在频域上不重叠。
具体地说,系统中可能同时存在第m次传输随机接入前导序列和第n次传输随机接入前导序列的用户设备,m≠n。基站需要根据前导序列传输占用的资源进行合并解调,由于第m次传输和第n次传输随机接入前导序列占用的时频资源不同,因此,基站对于第m次传输和第n次传输的随机接入前导序列的处理也不同,基站应能区分每次传输的随机接入前导序列对应的时频资源。
第m次传输随机接入前导序列和第n次传输随机接入前导序列的时频资源在时域上是分开的。因此,基站根据不同的时域资源位置可以确定该时域资源包括的基本资源单元,进而对该时域资源上承载的随机接入前导序列进行合并。
应理解,在该实施例中,第一PRACH资源和第二PRACH资源分别对应不同的UE。换句话说,进行第n次随机接入的UE(为了便于区分,记作 UE#1)和进行第m次随机接入的UE(为了便于区分,记作UE#2)使用的PRACH资源在时域上或频域上是可以完全不重叠的(对于可以重叠的情况,下文进行介绍)。
图6示出了UE使用的PRACH资源的另一示意图。如图6所示,系统中有4个UE进行随机接入,其中,UE#1是第1次发送随机接入前导序列,UE#2是第2次发送随机接入前导序列,UE#3是第3次发送随机接入前导序列,UE#4是第4次发送随机接入前导序列。可见,4个UE在随机接入过程中使用的PRACH资源在时域上是区分开的(或者说,传输次数不同的两个UE使用的PRACH资源在时域上是没有重叠部分的)。
图7示出了UE使用的PRACH资源的另一示意图。如图7所示,系统中有4个UE同时进行随机接入,其中,UE#1是第1次发送随机接入前导序列,UE#2是第2次发送随机接入前导序列,UE#3是第3次发送随机接入前导序列,UE#4是第4次发送随机接入前导序列。可见,4个UE在随机接入过程中使用的PRACH资源在频域上是区分开的(或者说,传输次数不同的两个UE使用的PRACH资源在频域上是不重叠的)。
可选地,作为一个实施例,该第一PRACH资源组与该第二PRACH资源组之间满足以下情况中的至少一个:
该第一PRACH资源组与该第二PRACH资源组在时域上不重叠;
该第一PRACH资源组与该第二PRACH资源组在频域上不重叠。
可选地,作为一个实施例,接入网设备在第一PRACH资源上接收第一终端设备传输的第一随机接入前导序列时,该方法还包括:
接入网设备在第三PRACH资源上接收第二终端设备传输的第三随机接入前导序列,该第三PRACH资源是该第二终端设备从该第二PRACH资源组中确定的用于进行第n+1次随机接入的PRACH资源,其中,该第三PRACH资源满足以下情况中的至少一个:
该第三PRACH资源在时域上占用的资源至少包括该第一PRACH资源在时域上占用的资源;
该第三PRACH资源在频域上占用的资源至少包括该第一PRACH资源在频域上占用的资源。
在本发明实施例中,进行第n+1次随机接入的UE(为了便于区分,记作UE#1)使用的PRACH资源(为了便于区分,记作PRACH资源#1),可 以包括进行第n次随机接入的UE(为了便于区分,记作UE#2)使用的PRACH资源(为了便于区分,记作PRACH资源#2)。更具体地说,PRACH资源#1可以包括PRACH资源#2在时域或频域上占用的资源。以下,结合图8对本实施例进行详细说明。
图8示出了多个终端设备使用的PRACH资源的示意图。如图8所示,假设有多个终端设备发送随机接入前导序列的过程中都对应相同的频段(换句话说,每次传输随机接入前导序列都使用相同的频域资源),在第n次传输随机接入前导序列时,终端设备开始传输的接入点不同。例如,如果是第1次传输随机接入前导序列的终端设备(为了便于区分,记作终端设备#1),终端设备#1可以从符号0、符号3、符号7和符号10开始传输。如果是第2次传输随机接入前导序列的终端设备(为了便于区分,记作终端设备#2),终端设备#2可以从符号0和符号7开始传输。如果是第3次传输随机接入前导序列的终端设备(为了便于区分,记作终端设备#3),终端设备#3可以从符号0和符号7开始传输。如果是第4次传输随机接入前导序列的终端设备(为了便于区分,记作终端设备#4),终端设备#4可以从符号0开始传输。相应地,接入网设备根据可能的多次合并的起始接入点开始对接收到的随机接入前导序列进行解调。
可选地,作为一个实施例,第一PRACH资源与第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
该第一PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;
该第二PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
应理解,某些国家或地区规定了通信设备(例如,UE)在使用免许可频谱资源时,传输的信号占用系统带宽的比例需要达到一定的阈值(例如,80%)。而现有技术中,传输随机接入前导序列使用的PRACH资源在频域上占用连续的6个RB,可能会出现传输的信号占用系统带宽的比例不满足要求的情况。因此,在本发明实施例中,基站分配给UE的用于传输随机接入前导序列的PRACH资源,在频域上的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
需要说明的是,本发明实施例对上述预设频域间隔的具体数值不作任何 限定,预设频域间隔的取值可以根据不同国家或地区对于信号占用系统带宽的比例要求或其它规则而确定。
图9示出了随机接入过程中使用的PRACH资源在系统带宽上的一种分布方式的示意图。如图9所示,以上述传输的信号需要占用系统带宽80%的要求为例,在本发明实施例中,第n次传输使用的PRACH资源包括至少一个基本资源单元,共占用多个RB,可以通过使PRACH资源在频域上分配的第一个RB与最后一个RB分布于系统带宽的两侧,中间横跨80%系统带宽的方式而满足要求(参见图9)。又例如,第1次随机接入时,假设UE使用的PRACH资源包括一个基本资源单元,为了满足带宽占用需求,该1个基本资源单元包括频域离散的多个RB,其中,该多个RB中第一个RB与最后一个RB之间占用系统带宽的80%。
可选地,作为一个实施例,终端设备在第二PRACH资源上传输第二随机接入前导序列使用的发射功率,大于终端设备在第一PRACH资源上传输第一随机接入前导序列使用的发射功率。
在本发明实施例中,终端设备在重传随机接入前导序列的过程中,可以先增加随机接入前导序列的发射功率,当终端设备的功率谱密度达到法规规定的功率谱密度时,终端设备再通过增加发送随机接入前导序列的时频资源方式发起随机接入过程。
可以理解的是,终端设备当然也可以在未达到限制的功率谱密度时,采用增加发送随机接入前导序列的时频资源方式向接入网设备发起随机接入过程。本发明实施例对此不作特别限定。
可选地,作为一个实施例,第二随机接入前导序列为第一随机接入前导序列。
应理解,UE向基站首次发起随机接入过程时,首先需要从可用的多个随机接入前导序列中确定一个随机接入前导序列(为了便于区分,记作随机接入前导序列#1)。接下来,UE向基站传输随机接入前导序列#1。如果第1次随机接入没有成功,UE将向基站发起第2次随机接入过程(或者说,重传随机接入前导序列)。一般来说,UE在重传过程中会继续传输前面一次随机接入过程中确定的随机接入前导序列,即,第二随机接入前导序列为第一随机接入前导序列。但是,在本发明实施例中,UE在重传过程中也可以重新确定一个新的随机接入前导序列(为了便于区分,记作随机接入前导序列 #2),其中,随机接入前导序列#1与随机接入前导序列#2相异。
105、终端设备在该第二PRACH资源上发送该第二随机接入前导序列。
可选地,在本发明实施例中,还可以包括步骤106。
106、当接入网设备在该第二PRACH资源上检测到该第二随机接入前导序列时,接入网设备根据该第二PRACH资源包括的时域或频域位置计算第二PRACH资源对应的随机接入无线网临时标识,并根据该随机接入无线网络临时标识向第一终端设备发送随机接入响应。
由于第二PRACH资源包括至少一个基本资源单元,当第二PRACH资源包括一个基本资源单元时,可选地,接入网设备根据该基本资源单元占用的第一个RB的时域或频域位置来计算第二PRACH资源对应的随机接入无线网络临时标识。
当第二PRACH资源包括大于一个基本资源单元时,可选地,接入网设备根据该第二PRACH资源包括的部分基本资源单元的时域或频域位置来计算第二PRACH资源对应的随机接入无线网络临时标识。例如,接入网设备根据该第二PRACH资源包括的第一个基本资源单元占用的第一个RB的时域或频域位置来计算第二PRACH资源对应的随机接入无线网络临时标识;或者,接入网设备根据该第二PRACH资源包括的最后一个基本资源单元占用的第一个RB的时域或频域位置来计算第二PRACH资源对应的随机接入无线网络临时标识。
根据本发明实施例的发送随机接入前导序列的方法,终端设备在免许可频谱资源上发送随机接入前导序列时,在最大发射功率受到限制的情况下,通过在重传过程中增加用于传输随接入前导序列的时域资源或频域资源,能够提高随机接入前导序列的解调性能。
上文结合图1至图9,详细说明了根据本发明实施例的发送随机接入前导序列的方法。以下结合图10和图11说明根据本发明实施例的发送随机接入前导序列的终端设备和接入网设备。
图10示出了根据本发明实施例的终端设备300的示意性框图。如图10所示,该终端设备300包括确定单元310和传输单元320,其中,
处理单元310,用于确定第一随机接入前导序列,并从第一物理随机接入信道PRACH资源组中确定第一PRACH资源,该第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,该第一PRACH资 源包括至少一个基本资源单元,该基本资源单元能够承载该终端设备在一次随机接入过程中传输给接入网设备的随机接入前导序列的全部信息,其中,n≥1;
发送单元320,用于在该第一PRACH资源上传输该第一随机接入前导序列;
处理单元310还用于当使用该第一随机接入前导序列的随机接入过程失败时,确定第二随机接入前导序列,并从第二PRACH资源组中确定第二PRACH资源,该第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,该第二PRACH资源包括至少一个基本资源单元,该第二PRACH资源包括的基本资源单元的个数大于或等于该第一PRACH资源包括的基本资源单元的个数;
发送单元320还用于在该第二PRACH资源上传输该第二随机接入前导序列。
可选地,作为一个实施例,该第二PRACH资源包括的基本资源单元的个数大于该第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:
该第二PRACH资源在时域上包括的基本资源单元的个数大于第一PRACH资源在时域上包括的基本资源单元的个数;
该第二PRACH资源在频域上包括的基本资源单元的个数大于该第一PRACH资源在频域上包括的基本资源单元的个数。
可选地,作为一个实施例,该第二PRACH资源包括的基本资源单元的个数等于该第一PRACH资源包括的基本资源单元的个数,该第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,该第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
可选地,作为一个实施例,该第一PRACH资源与该第二PRACH资源之间满足以下情况中的至少一个:
该第一PRACH资源与该第二PRACH资源在时域上不重叠;
该第一PRACH资源与该第二PRACH资源在频域上不重叠。
可选地,作为一个实施例,该第一PRACH资源组与该第二PRACH资源组之间满足以下情况中的至少一个:
该第一PRACH资源组与该第二PRACH资源组在时域上不重叠;
该第一PRACH资源组与该第二PRACH资源组在频域上不重叠。
可选地,作为一个实施例,该基本资源单元在频域上包括N个RB,N≥2,该N个RB的位置关系包括以下情况中的至少一种:
该N个RB在频域上连续;
该N个RB中至少有两个RB不连续;
该N个RB中任意两个相邻的RB之间的频域间隔相等。
可选地,作为一个实施例,该第一PRACH资源与该第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
该第一PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;
该第二PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
可选地,作为一个实施例,终端设备在该第二PRACH资源上传输该第二随机接入前导序列使用的发射功率大于该终端设备在该第一PRACH资源上传输该第一随机接入前导序列使用的发射功率。
可选地,作为一个实施例,确定单元310具体用于从第一随机接入前导序列组中确定该第一随机接入前导序列,其中,该第一随机接入前导序列组中包括用于第n次随机接入的至少一个随机接入前导序列;
处理单元310具体还用于从第二随机接入前导序列组中确定该第二随机接入前导序列,其中,该第二随机接入前导序列组中包括用于第n+1次随机接入的至少一个随机接入前导序列,该第一随机接入前导序列组与该第二随机接入前导序列组中包括的随机接入前导序列相异。
可选地,作为一个实施例,该第二随机接入前导序列与该第一随机接入前导序列相同。
可选地,作为一个实施例,所述方法还包括:
该终端设备根据该第二PRACH资源包括的基本资源单元的时域或频域位置,确定第二PRACH资源对应的随机接入无线网络临时标识;
该终端设备根据该随机接入无线网络临时标识接收该接入网设备发送的随机接入响应。
根据本发明实施例的传输随机接入前导序列的终端设备300可对应于根 据本发明实施例的发送随机接入前导序列的方法中的终端设备。并且,终端设备300中的各单元和上述其它操作和/或功能分别为了实现图2中由终端设备执行的各个步骤。为了简洁,此处不再赘述。
根据本发明实施例的发送随机接入前导序列的方法,终端设备在免许可频谱资源上发送随机接入前导序列时,在最大发射功率受到限制的情况下,通过在重传过程中增加用于传输随接入前导序列的时域资源或频域资源,能够提高随机接入前导序列的解调性能。
图11示出了根据本发明实施例的接入网设备400的示意性框图。如图11所示,该接入网设备400包括处理单元410和接收单元420,其中,
处理单元410,用于配置多个物理随机接入信道PRACH资源组,该多个PRACH资源组中的第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,该多个PRACH资源组中的第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,该第一PRACH资源组和该第二PRACH资源组中的每一个PRACH资源包括至少一个基本资源单元,该基本资源单元至少能够承载终端设备终端设备在一次随机接入过程中传输给该接入网设备的随机接入前导序列的全部信息,该第二PRACH资源包括的基本资源单元的个数大于或等于该第一PRACH资源包括的基本资源单元的个数,其中,n≥1;
接收单元420,用于在第一时段接收第一终端设备终端设备在第一PRACH资源上传输的第一随机接入前导序列,该第一PRACH资源是该第一终端设备从该第一PRACH资源组中确定的;
接收单元420还用于当该第一终端设备使用该第一随机接入前导序列的随机接入过程失败后,接收该第一终端设备在第二PRACH资源上传输的第二随机接入前导序列,该第二PRACH资源是该第一终端设备从该第二PRACH资源组中确定的。
可选地,作为一个实施例,该第二PRACH资源包括的基本资源单元的个数大于或等于该第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:
该第二PRACH资源在时域上包括的基本资源单元的个数大于该第一PRACH资源在时域上包括的基本资源单元的个数;
该第二PRACH资源在频域上包括的基本资源单元的个数大于该第一 PRACH资源在频域上包括的基本资源单元的个数。
可选地,作为一个实施例,该第二PRACH资源包括的基本资源单元的个数等于该第一PRACH资源包括的基本资源单元的个数,该第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,该第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
可选地,作为一个实施例,该第一PRACH资源与该第二PRACH资源之间满足以下情况中的至少一个:
该第一PRACH资源与该第二PRACH资源在时域上不重叠;
该第一PRACH资源与该第二PRACH资源在频域上不重叠。
可选地,作为一个实施例,该第一PRACH资源组与该第二PRACH资源组之间满足以下情况中的至少一个:
该第一PRACH资源组与该第二PRACH资源组在时域上不重叠;
该第一PRACH资源组与该第二PRACH资源组在频域上不重叠。
可选地,作为一个实施例,该接收单元还用于:
在第三PRACH资源上接收第二终端设备传输的第三随机接入前导序列,该第三PRACH资源是该第二终端设备从该第二PRACH资源组中确定的用于进行第n+1次随机接入的PRACH资源,其中,该第三PRACH资源满足以下情况中的至少一个:
该第三PRACH资源在时域上占用的资源至少包括该第一PRACH资源在时域上占用的资源;
该第三PRACH资源在频域上占用的资源至少包括该第一PRACH资源在频域上占用的资源。
可选地,作为一个实施例,该基本资源单元在频域上包括N个RB,N≥2,该N个RB的位置关系包括以下情况中的至少一种:
该N个RB在频域上连续;
该N个RB中至少有两个RB不连续;
该N个RB中任意两个相邻的RB之间的频域间隔相等。
可选地,作为一个实施例,该第一PRACH资源与该第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
该接入网设备在频域上分配给该第一PRACH资源的第一个RB与最后 一个RB之间的频域间隔大于或等于预设频域间隔;
该接入网设备在频域上分配给该第二PRACH资源的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
可选地,作为一个实施例,该第一终端设备在该第二PRACH资源上传输该第二随机接入前导序列使用的发射功率大于该第一终端设备在该第一PRACH资源上传输该第一随机接入前导序列使用的发射功率。
可选地,作为一个实施例,该处理单元410还用于,
配置多个随机接入前导序列组,任意两个随机接入前导序列中包括的随机接入前导序列相异,该多个随机接入前导序列组中的第一随机接入前导序列组中包括用于进行第n次随机接入的至少一个序列,该多个随机接入前导序列组中的第二随机接入前导序列组中包括用于进行第n+1次随机接入的至少一个序列,该第一随机接入前导序列组与该第二随机接入前导序列组相异。
可选地,作为一个实施例,该第二随机接入前导序列为该第一随机接入前导序列。
可选地,作为一个实施例,该处理单元具体用于在该二PRACH资源上检测到该第二随机接入前导序列时,根据该第二PRACH资源包括的基本资源单元的时域或频域位置确定第二PRACH资源对应的随机接入无线网络临时标识;
该发送单元具体用于向该第一终端设备发送随机接入响应。
根据本发明实施例的传输随机接入前导序列的接入网设备400可对应根据本发明实施例的发送随机接入前导序列的方法中的接入网设备。并且,接入网设备400中的各个单元和上述其它操作和/或功能分别为了实现图2中由接入网设备设备执行的各个步骤。为了简洁,此处不再赘述。
根据本发明实施例的发送随机接入前导序列的方法,终端设备在免许可频谱资源上发送随机接入前导序列时,在最大发射功率受到限制的情况下,通过在重传过程中增加用于传输随接入前导序列的时域资源或频域资源,能够提高随机接入前导序列的解调性能。
上文结合图10和图11,详细说明了根据本发明实施例的传输随机接入前导序列的终端设备和接入网设备。以下结合图12和图13说明根据本发明实施例的传输随机接入前导序列的设备。
图12示出了根据本发明实施例的终端设备500的示意性结构框图。如图12所示,该终端设备500包括处理器510、收发器520和存储器530。可选地,该设备500还包括总线系统540,其中,处理器510、收发器520和存储器530可以通过总线系统540相连。存储器530可以用于存储指令,处理器510用于执行存储器530存储的指令,
用于确定第一随机接入前导序列,并从第一物理随机接入信道PRACH资源组中确定第一PRACH资源,该第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,该第一PRACH资源包括至少一个基本资源单元,该基本资源单元能够承载该终端设备在一次随机接入过程中传输给该接入网设备的随机接入前导序列的全部信息,其中,n≥1;
收发器520用于在该第一PRACH资源上传输该第一随机接入前导序列;
处理器510还用于,当使用该第一随机接入前导序列的随机接入过程失败时,确定第二随机接入前导序列,并从第二PRACH资源组中确定第二PRACH资源,该第二PRACH资源组中包括该接入网设备配置的用于进行第n+1次随机接入的至少一个PRACH资源,该第二PRACH资源包括至少一个基本资源单元,该第二PRACH资源包括的基本资源单元的个数大于或等于该第一PRACH资源包括的基本资源单元的个数;
收发器520还用于在该第二PRACH资源上传输该第二随机接入前导序列。
可选地,作为一个实施例,该第二PRACH资源包括的基本资源单元的个数大于该第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:
该第二PRACH资源在时域上包括的基本资源单元的个数大于该第一PRACH资源在时域上包括的基本资源单元的个数;
该第二PRACH资源在频域上包括的基本资源单元的个数大于该第一PRACH资源在频域上包括的基本资源单元的个数。
可选地,作为一个实施例,该第二PRACH资源包括的基本资源单元的个数等于该第一PRACH资源包括的基本资源单元的个数,该第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,该第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元 组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
可选地,作为一个实施例,该第一PRACH资源与该第二PRACH资源之间满足以下情况中的至少一个:
该第一PRACH资源与该第二PRACH资源在时域上不重叠;
该第一PRACH资源与该第二PRACH资源在频域上不重叠。
可选地,作为一个实施例,该第一PRACH资源组与该第二PRACH资源组之间满足以下情况中的至少一个:
该第一PRACH资源组与该第二PRACH资源组在时域上不重叠;
该第一PRACH资源组与该第二PRACH资源组在频域上不重叠。
可选地,作为一个实施例,该基本资源单元在频域上包括N个RB,N≥2,该N个RB的位置关系包括以下情况中的至少一种:
该N个RB在频域上连续;
该N个RB中至少有两个RB不连续;
该N个RB中任意两个相邻的RB之间的频域间隔相等。
可选地,作为一个实施例,该第一PRACH资源与该第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
该第一PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;
该第二PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
可选地,作为一个实施例,该设备在该第二PRACH资源上传输该第二随机接入前导序列使用的发射功率大于该设备在该第一PRACH资源上传输该第一随机接入前导序列使用的发射功率。
可选地,作为一个实施例,处理器510具体用于,从第一随机接入前导序列组中确定该第一随机接入前导序列,其中,该第一随机接入前导序列组中包括用于第n次随机接入的至少一个随机接入前导序列;
处理器510具体还用于,从第二随机接入前导序列组中确定该第二随机接入前导序列,其中,该第二随机接入前导序列组中包括用于第n+1次随机接入的至少一个随机接入前导序列,该第一随机接入前导序列组与该第二随机接入前导序列组中包括的随机接入前导序列相异。
可选地,作为一个实施例,该第二随机接入前导序列与该第一随机接入 前导序列相同。
可选地,作为一个实施例,该处理器510具体用于根据该第二PRACH资源包括的基本资源单元的时域或频域位置,确定第二PRACH资源对应的随机接入无线网络临时标识;
该收发器520具体用于根据该随机接入无线网络临时标识接收该接入网设备发送的随机接入响应。
应理解,在本发明实施例中,处理器510可以是中央处理单元(central processing unit,CPU),处理器510还可以是其它通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器530可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。处理器510的一部分还可以包括非易失性随机存取存储器。例如,处理器510还可以存储设备类型的信息。
总线系统540除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统540。
在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的发送随机接入前导序列的方法的步骤,可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器530,处理器510读取存储器530中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输随机接入前导序列的设备500,可对应根据本发明实施例的发送随机接入前导序列的方法中的终端设备。并且,设备500中的各个单元和上述其它操作和/或功能分别为了实现图2中由终端设备执行的各个步骤。为了简洁,此处不再赘述。
根据本发明实施例的发送随机接入前导序列的方法,终端设备在免许可频谱资源上发送随机接入前导序列时,在最大发射功率受到限制的情况下, 通过在重传过程中增加用于传输随接入前导序列的时域资源或频域资源,能够提高随机接入前导序列的解调性能。
图13示出了根据本发明另一实施例的接入网设备的示意性结构框图。如图13所示,该接入网设备600包括处理器610、收发器620和存储器630。可选地,该设备600还包括总线系统640,其中,处理器610、收发器620和存储器630可以通过总线系统640相连,存储器630可以用于存储指令,处理器610用于执行存储器630存储的指令,
收发器620用于接收第一终端设备在第二PRACH资源上发送的第二随机接入前导序列,该第二随机接入前导序列是该第一终端设备在第一PRACH资源上向该接入网设备发送第一随机接入前导序列失败后发送给该接入网设备的,其中,该第一PRACH资源是该第一终端设备从第一PRACH资源组中确定的,该第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,该第一PRACH资源包括至少一个基本资源单元,该第二PRACH资源是该第一终端设备从第二PRACH资源组中确定的,该第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,该第二PRACH资源包括至少一个基本资源单元,该第二PRACH资源包括的基本资源单元的个数大于或等于该第一PRACH资源包括的基本资源单元的个数。
可选地,作为一个实施例,该第二PRACH资源包括的基本资源单元的个数大于该第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:
该第二PRACH资源在时域上包括的基本资源单元的个数大于该第一PRACH资源在时域上包括的基本资源单元的个数;
该第二PRACH资源在频域上包括的基本资源单元的个数大于该第一PRACH资源在频域上包括的基本资源单元的个数。
可选地,作为一个实施例,该第二PRACH资源包括的基本资源单元的个数等于该第一PRACH资源包括的基本资源单元的个数,该第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,该第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
可选地,作为一个实施例,该第一PRACH资源与该第二PRACH资源 之间满足以下情况中的至少一个:
该第一PRACH资源与该第二PRACH资源在时域上不重叠;
该第一PRACH资源与该第二PRACH资源在频域上不重叠。
可选地,作为一个实施例,该第一PRACH资源组与该第二PRACH资源组之间满足以下情况中的至少一个:
该第一PRACH资源组与该第二PRACH资源组在时域上不重叠;
该第一PRACH资源组与该第二PRACH资源组在频域上不重叠。
可选地,作为一个实施例,收发器620还用于,
在接收第一终端设备在第一PRACH资源上传输的第一随机接入前导序列时,在第三PRACH资源上接收第二终端设备传输的第三随机接入前导序列,该第三PRACH资源是该第二终端设备从该第二PRACH资源组中确定的用于进行第n+1次随机接入的PRACH资源,其中,该第三PRACH资源满足以下情况中的至少一个:
该第三PRACH资源在时域上占用的资源至少包括该第一PRACH资源在时域上占用的资源;
该第三PRACH资源在频域上占用的资源至少包括该第一PRACH资源在频域上占用的资源。
可选地,作为一个实施例,该基本资源单元在频域上包括N个RB,N≥2,该N个RB的位置关系包括以下情况中的至少一种:
该N个RB在频域上连续;
该N个RB中至少有两个RB不连续;
该N个RB中任意两个相邻的RB之间的频域间隔相等。
可选地,作为一个实施例,该第一PRACH资源与该第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
该设备在频域上分配给该第一PRACH资源的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;
该设备在频域上分配给该第二PRACH资源的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
可选地,作为一个实施例,该第一终端设备在该第二PRACH资源上传输该第二随机接入前导序列使用的发射功率大于该第一终端设备在该第一PRACH资源上传输该第一随机接入前导序列使用的发射功率。
可选地,作为一个实施例,处理器610用于,
配置多个随机接入前导序列组,任意两个随机接入前导序列中包括的随机接入前导序列相异,该多个随机接入前导序列组中的第一随机接入前导序列组中包括用于进行第n次随机接入的至少一个序列,该多个随机接入前导序列组中的第二随机接入前导序列组中包括用于进行第n+1次随机接入的至少一个序列。
可选地,作为一个实施例,该第二随机接入前导序列与该第一随机接入前导序列相同。
可选地,作为一个实施例,收发器620具体用于,根据该第二PRACH资源包括的基本资源单元的时域或频域位置确定第二PRACH资源对应的随机接入无线网络临时标识;
该处理器610具体用于向该第一终端设备发送随机接入响应。
根据本发明实施例的发送随机接入前导序列的方法,终端设备在免许可频谱资源上发送随机接入前导序列时,在最大发射功率受到限制的情况下,通过在重传过程中增加用于传输随接入前导序列的时域资源或频域资源,能够提高随机接入前导序列的解调性能。
应理解,在本发明实施例中,处理器610可以是中央处理单元(central processing unit,CPU),处理器610还可以是其它通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器630可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。处理器610的一部分还可以包括非易失性随机存取存储器。例如,处理器610还可以存储设备类型的信息。
总线系统640除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统640。
在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的发送随机接入前导序列的方法的步骤,可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪 存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器630,处理器610读取存储器630中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的用于传输随机接入前导序列的设备600可对应于根据本发明实施例的发送随机接入前导序列的方法中的接入网设备。并且,设备600中的各单元和上述其它操作和/或功能分别为了实现图2中由接入网设备执行的相应流程,为了简洁,在此不再赘述。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
需要说明的是,附图中虚线框中所示的步骤表示可选步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种发送随机接入前导序列的方法,其特征在于,所述方法包括:
    终端设备确定第一随机接入前导序列,并从第一物理随机接入信道PRACH资源组中确定第一PRACH资源,所述第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,所述第一PRACH资源包括至少一个基本资源单元,所述基本资源单元能够承载所述终端设备在一次随机接入过程中传输给接入网设备的随机接入前导序列的全部信息,其中,n≥1;
    所述终端设备在所述第一PRACH资源上发送所述第一随机接入前导序列;
    当使用所述第一随机接入前导序列的随机接入过程失败时,所述终端设备确定第二随机接入前导序列,并从第二PRACH资源组中确定第二PRACH资源,所述第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,所述第二PRACH资源包括至少一个基本资源单元,所述第二PRACH资源包括的基本资源单元的个数大于或等于所述第一PRACH资源包括的基本资源单元的个数;
    所述终端设备在所述第二PRACH资源上发送所述第二随机接入前导序列。
  2. 根据权利要求1所述的方法,其特征在于,所述第二PRACH资源包括的基本资源单元的个数大于所述第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:
    所述第二PRACH资源在时域上包括的所述基本资源单元的个数大于所述第一PRACH资源在时域上包括的所述基本资源单元的个数;
    所述第二PRACH资源在频域上包括的所述基本资源单元的个数大于所述第一PRACH资源在频域上包括的所述基本资源单元的个数。
  3. 根据权利要求1所述的方法,其特征在于,所述第二PRACH资源包括的基本资源单元的个数等于所述第一PRACH资源包括的基本资源单元的个数,所述第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,所述第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一PRACH资源与所述第二PRACH资源之间满足以下情况中的至少一个:
    所述第一PRACH资源与所述第二PRACH资源在时域上不重叠;
    所述第一PRACH资源与所述第二PRACH资源在频域上不重叠。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述基本资源单元在频域上包括N个RB,N≥2,所述N个RB的位置关系包括以下情况中的至少一种:
    所述N个RB在频域上连续;
    所述N个RB中至少有两个RB不连续;
    所述N个RB中任意两个相邻的RB之间的频域间隔相等。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一PRACH资源与所述第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
    所述第一PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;
    所述第二PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述终端设备确定第一随机接入前导序列,包括:
    所述终端设备从接入网设备配置的多个随机接入前导序列组中的第一随机接入前导序列组中确定所述第一随机接入前导序列,任意两个随机接入前导序列组中包括的随机接入前导序列相异,所述多个随机接入前导序列组与多个序列检测格式一一对应,每个序列检测格式用于检测对应的随机接入前导序列组中的随机接入前导序列,其中,所述第一随机接入前导序列组中包括用于所述终端设备第n次随机接入的至少一个随机接入前导序列;
    以及,所述终端设备确定第二随机接入前导序列,包括:
    所述终端设备从接入网设备配置的多个随机接入前导序列组中的第二随机接入前导序列组中确定所述第二随机接入前导序列,其中,所述第二随机接入前导序列组中包括用于所述终端设备第n+1次随机接入的至少一个随机接入前导序列。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第二 随机接入前导序列与所述第一随机接入前导序列相同。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第二PRACH资源包括的基本资源单元的时域或频域位置,确定第二PRACH资源对应的随机接入无线网络临时标识;
    所述终端设备根据所述随机接入无线网络临时标识接收所述接入网设备发送的随机接入响应。
  10. 一种接收随机接入前导序列的方法,其特征在于,所述方法包括:
    所述接入网设备接收第一终端设备在第二PRACH资源上发送的第二随机接入前导序列,所述第二随机接入前导序列是所述第一终端设备在第一PRACH资源上向所述接入网设备发送第一随机接入前导序列失败后发送给所述接入网设备的,其中,所述第一PRACH资源是所述第一终端设备从第一PRACH资源组中确定的,所述第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,所述第一PRACH资源包括至少一个基本资源单元,所述第二PRACH资源是所述第一终端设备从第二PRACH资源组中确定的,所述第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,所述第二PRACH资源包括至少一个基本资源单元,所述第二PRACH资源包括的基本资源单元的个数大于或等于所述第一PRACH资源包括的基本资源单元的个数。
  11. 根据权利要求10所述的方法,其特征在于,所述第二PRACH资源包括的基本资源单元的个数大于所述第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:
    所述第二PRACH资源在时域上包括的基本资源单元的个数大于所述第一PRACH资源在时域上包括的基本资源单元的个数;
    所述第二PRACH资源在频域上包括的基本资源单元的个数大于所述第一PRACH资源在频域上包括的基本资源单元的个数。
  12. 根据权利要求10所述的方法,其特征在于,所述第二PRACH资源包括的基本资源单元的个数等于所述第一PRACH资源包括的基本资源单元的个数,所述第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,所述第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P, R≥1。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第一PRACH资源与所述第二PRACH资源之间满足以下情况中的至少一个:
    所述第一PRACH资源与所述第二PRACH资源在时域上不重叠;
    所述第一PRACH资源与所述第二PRACH资源在频域上不重叠。
  14. 根据权利要求10至12中任一项所述的方法,其特征在于,当所述接入网设备在第一PRACH资源上接收所述第一终端发送的第一随机接入前导序列时,所述方法还包括:
    所述接入网设备在第三PRACH资源上接收第二终端设备传输的第三随机接入前导序列,所述第三PRACH资源是所述第二终端设备从所述第二PRACH资源组中确定的用于进行第n+1次随机接入的PRACH资源,其中,所述第三PRACH资源满足以下情况中的至少一个:
    所述第三PRACH资源在时域上占用的资源至少包括所述第一PRACH资源在时域上占用的资源;
    所述第三PRACH资源在频域上占用的资源至少包括所述第一PRACH资源在频域上占用的资源。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述基本资源单元在频域上包括N个RB,N≥2,所述N个RB的位置关系包括以下情况中的至少一种:
    所述N个RB在频域上连续;
    所述N个RB中至少有两个RB不连续;
    所述N个RB中任意两个相邻的RB之间的频域间隔相等。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述第一PRACH资源与所述第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
    所述接入网设备在频域上分配给所述第一PRACH资源的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;
    所述接入网设备在频域上分配给所述第二PRACH资源的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备配置多个随机接入前导序列组,任意两个随机接入前导序列组中包括的随机接入前导序列相异,所述多个随机接入前导序列组与多个序列检测格式一一对应,每个序列检测格式用于检测对应的随机接入前导序列组中的随机接入前导序列,所述多个随机接入前导序列组中的第一随机接入前导序列组中包括用于进行第n次随机接入的至少一个序列,所述多个随机接入前导序列组中的第二随机接入前导序列组中包括用于进行第n+1次随机接入的至少一个序列。
  18. 根据权利10至16中任一项所述的方法,其特征在于,所述第二随机接入前导序列与所述第一随机接入前导序列相同。
  19. 根据权利要求10至18中任一项所述的方法,其特征在于,所述方法还包括:
    当所述接入网设备在所述二PRACH资源上检测到所述第二随机接入前导序列时,所述接入网设备根据所述第二PRACH资源包括的基本资源单元的时域或频域位置确定第二PRACH资源对应的随机接入无线网络临时标识;
    所述接入网设备向所述第一终端设备发送随机接入响应。
  20. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于确定第一随机接入前导序列,并从第一物理随机接入信道PRACH资源组中确定第一PRACH资源,所述第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,所述第一PRACH资源包括至少一个基本资源单元,所述基本资源单元能够承载所述终端设备在一次随机接入过程中传输给接入网设备的随机接入前导序列的全部信息,其中,n≥1;
    发送单元,用于在所述第一PRACH资源上发送所述第一随机接入前导序列;
    所述处理单元还用于当使用所述第一随机接入前导序列的随机接入过程失败时,确定第二随机接入前导序列,并从第二PRACH资源组中确定第二PRACH资源,所述第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,所述第二PRACH资源包括至少一个基本资源单元,所述第二PRACH资源包括的基本资源单元的个数大于或等于所述第一PRACH资源包括的基本资源单元的个数;
    所述发送单元还用于在所述第二PRACH资源上发送所述第二随机接入前导序列。
  21. 根据权利要求20所述的终端设备,其特征在于,所述第二PRACH资源包括的基本资源单元的个数大于所述第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:
    所述第二PRACH资源在时域上包括的基本资源单元的个数大于所述第一PRACH资源在时域上包括的基本资源单元的个数;
    所述第二PRACH资源在频域上包括的基本资源单元的个数大于所述第一PRACH资源在频域上包括的基本资源单元的个数。
  22. 根据权利要求20所述的终端设备,其特征在于,所述第二PRACH资源包括的基本资源单元的个数等于所述第一PRACH资源包括的基本资源单元的个数,所述第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,所述第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
  23. 根据权利要求20至22中任一项所述的终端设备,其特征在于,所述第一PRACH资源与所述第二PRACH资源之间满足以下情况中的至少一个:
    所述第一PRACH资源与所述第二PRACH资源在时域上不重叠;
    所述第一PRACH资源与所述第二PRACH资源在频域上不重叠。
  24. 根据权利要求20至23中任一项所述的装置,其特征在于,所述基本资源单元在频域上包括N个RB,N≥2,所述N个RB的位置关系包括以下情况中的至少一种:
    所述N个RB在频域上连续;
    所述N个RB中至少有两个RB不连续;
    所述N个RB中任意两个相邻的RB之间的频域间隔相等。
  25. 根据权利要求20至24中任一项所述的终端设备,其特征在于,所述第一PRACH资源与所述第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
    所述第一PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;
    所述第二PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
  26. 根据权利要求20至25中任一项所述的终端设备,其特征在于,所述处理单元具体用于从第一随机接入前导序列组中确定所述第一随机接入前导序列,其中,所述第一随机接入前导序列组中包括用于所述终端设备第n次随机接入的至少一个随机接入前导序列;
    所述处理单元具体还用于从第二随机接入前导序列组中确定所述第二随机接入前导序列,其中,所述第二随机接入前导序列组中包括用于所述终端设备第n+1次随机接入的至少一个随机接入前导序列,所述第一随机接入前导序列组与所述第二随机接入前导序列组中包括的随机接入前导序列相异。
  27. 根据权利要求20至25中任一项所述的终端设备,其特征在于,所述第二随机接入前导序列与所述第一随机接入前导序列相同。
  28. 根据权利要求20至27中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    所述处理单元具体用于根据所述第二PRACH资源中包括的基本资源单元的时域或频域位置,确定第二PRACH资源对应的无线网络临时标识,所述第二随机接入是所述接入网设备在所述第二PRACH资源上检测到所述第二随机接入序列时发送给所述终端设备的;
    接收单元,用于根据所述随机接入无线网络临时标识接收所述接入网设备发送的所述随机接入响应。
  29. 一种接入网设备,其特征在于,所述接入网设备包括:
    接收单元,用于接收第一终端设备在第二PRACH资源上发送的第二随机接入前导序列,所述第二随机接入前导序列是所述第一终端设备在第一PRACH资源上向所述接入网设备发送第一随机接入前导序列失败后发送给所述接入网设备的,其中,所述第一PRACH资源是所述第一终端设备从第一PRACH资源组中确定的,所述第一PRACH资源组中包括用于进行第n次随机接入的至少一个PRACH资源,所述第一PRACH资源包括至少一个基本资源单元,所述第二PRACH资源是所述第一终端设备从第二PRACH资源组中确定的,所述第二PRACH资源组中包括用于进行第n+1次随机接入的至少一个PRACH资源,所述第二PRACH资源包括至少一个基本资源 单元,所述第二PRACH资源包括的基本资源单元的个数大于或等于所述第一PRACH资源包括的基本资源单元的个数。
  30. 根据权利要求29所述的接入网设备,其特征在于,所述第二PRACH资源包括的基本资源单元的个数大于所述第一PRACH资源包括的基本资源单元的个数,包括以下情况中的至少一个:
    所述第二PRACH资源在时域上包括的基本资源单元的个数大于所述第一PRACH资源在时域上包括的基本资源单元的个数;
    所述第二PRACH资源在频域上包括的基本资源单元的个数大于所述第一PRACH资源在频域上包括的基本资源单元的个数。
  31. 根据权利要求29所述的接入网设备,其特征在于,所述第二PRACH资源包括的基本资源单元的个数等于所述第一PRACH资源包括的基本资源单元的个数,所述第一PRACH资源包括的至少一个基本资源单元位于P个频域单元组,所述第二PRACH资源包括的至少一个基本资源单元位于Q个频域单元组,其中,每个频域单元组包括R个连续的资源块RB,P≥1,Q>P,R≥1。
  32. 根据权利要求29至31中任一项所述的接入网设备,其特征在于,所述第一PRACH资源与所述第二PRACH资源之间满足以下情况中的至少一个:
    所述第一PRACH资源与所述第二PRACH资源在时域上不重叠;
    所述第一PRACH资源与所述第二PRACH资源在频域上不重叠。
  33. 根据权利要求29至32中任一项所述的接入网设备,其特征在于,所述接收单元还用于:
    在所述第一时段在第三PRACH资源上接收第二终端设备发送的第三随机接入前导序列,所述第三PRACH资源是所述第二终端设备从所述第二PRACH资源组中确定的用于进行第n+1次随机接入的PRACH资源,其中,所述第三PRACH资源满足以下情况中的至少一个:
    所述第三PRACH资源在时域上占用的资源至少包括所述第一PRACH资源在时域上占用的资源;
    所述第三PRACH资源在频域上占用的资源至少包括所述第一PRACH资源在频域上占用的资源。
  34. 根据权利要求29至33中任一项所述的接入网设备,其特征在于, 所述基本资源单元在频域上包括N个RB,N≥2,所述N个RB的位置关系包括以下情况中的至少一种:
    所述N个RB在频域上连续;
    所述N个RB中至少有两个RB不连续;
    所述N个RB中任意两个相邻的RB之间的频域间隔相等。
  35. 根据权利要求29至34中任一项所述的接入网设备,其特征在于,所述第一PRACH资源与所述第二PRACH资源在频域上的分布形式包括以下情况中的至少一种:
    所述第一PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔;
    所述第二PRACH资源在频域上占用的第一个RB与最后一个RB之间的频域间隔大于或等于预设频域间隔。
  36. 根据权利要求29至35中任一项所述的接入网设备,其特征在于,所述处理单元还用于:
    配置多个随机接入前导序列组,所述多个随机接入前导序列组中的第一随机接入前导序列组中包括用于进行第n次随机接入的至少一个序列,所述多个随机接入前导序列组中的第二随机接入前导序列组中包括用于进行第n+1次随机接入的至少一个序列,所述第一随机接入前导序列组与所述第二随机接入前导序列组相异。
  37. 根据权利29至35中任一项所述的接入网设备,其特征在于,所述第二随机接入前导序列为所述第一随机接入前导序列。
  38. 根据权利29至37中任一项所述的接入网设备,其特征在于,所述处理单元还用于:
    在所述第二PRACH资源上检测到所述第二随机接入前导序列时,根据所述第二PRACH资源包括的基本资源单元的时域位置或频域位置确定第二PRACH资源对应的随机接入无线网络临时标识;
    所述发送单元具体还用于向所述第一终端设备发送随机接入响应。
PCT/CN2016/078221 2016-03-31 2016-03-31 发送随机接入前导序列的方法、终端设备和接入网设备 WO2017166253A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680084048.2A CN108886812B (zh) 2016-03-31 2016-03-31 发送随机接入前导序列的方法、终端设备和接入网设备
PCT/CN2016/078221 WO2017166253A1 (zh) 2016-03-31 2016-03-31 发送随机接入前导序列的方法、终端设备和接入网设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078221 WO2017166253A1 (zh) 2016-03-31 2016-03-31 发送随机接入前导序列的方法、终端设备和接入网设备

Publications (1)

Publication Number Publication Date
WO2017166253A1 true WO2017166253A1 (zh) 2017-10-05

Family

ID=59962384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078221 WO2017166253A1 (zh) 2016-03-31 2016-03-31 发送随机接入前导序列的方法、终端设备和接入网设备

Country Status (2)

Country Link
CN (1) CN108886812B (zh)
WO (1) WO2017166253A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545586A (zh) * 2018-05-28 2019-12-06 中兴通讯股份有限公司 一种随机接入序列资源的分配方法、相关装置及存储介质
CN112425213A (zh) * 2018-10-22 2021-02-26 Oppo广东移动通信有限公司 确定前导序列发射功率的方法和通信设备
CN112673704A (zh) * 2019-04-09 2021-04-16 Oppo广东移动通信有限公司 信息传输方法及相关设备
CN113498212A (zh) * 2020-04-03 2021-10-12 中国移动通信有限公司研究院 随机接入方法、终端及网络侧设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757541B (zh) * 2019-03-29 2022-07-12 华为技术有限公司 一种随机接入方法和终端设备
CN115250539A (zh) * 2021-04-28 2022-10-28 大唐移动通信设备有限公司 接入方法及装置
WO2022266822A1 (en) * 2021-06-22 2022-12-29 Nokia Shanghai Bell Co., Ltd. Methods, apparatuses, and computer readable media for random access in case of congestion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478792A (zh) * 2008-01-03 2009-07-08 大唐移动通信设备有限公司 一种专用随机接入资源预留方法和基站
CN103718636A (zh) * 2011-06-17 2014-04-09 瑞典爱立信有限公司 用于随机接入的方法和节点
WO2015046781A1 (en) * 2013-09-24 2015-04-02 Lg Electronics Inc. Communication between mac and phy for parallel random access procedures of dual connectivity
CN104919885A (zh) * 2013-01-17 2015-09-16 瑞典爱立信有限公司 动态随机接入资源大小配置和选择

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2905362T3 (es) * 2009-04-23 2022-04-08 Interdigital Patent Holdings Inc Método y aparato para acceso aleatorio en comunicaciones inalámbricas multiportadoras
US8914017B2 (en) * 2011-12-01 2014-12-16 Acer Incorporated Mobile communication devices, cellular stations, multi-carrier systems, and methods for handling random access failures
CN102573101A (zh) * 2012-02-13 2012-07-11 中国科学院计算技术研究所 Lte系统用户设备随机接入的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478792A (zh) * 2008-01-03 2009-07-08 大唐移动通信设备有限公司 一种专用随机接入资源预留方法和基站
CN103718636A (zh) * 2011-06-17 2014-04-09 瑞典爱立信有限公司 用于随机接入的方法和节点
CN104919885A (zh) * 2013-01-17 2015-09-16 瑞典爱立信有限公司 动态随机接入资源大小配置和选择
WO2015046781A1 (en) * 2013-09-24 2015-04-02 Lg Electronics Inc. Communication between mac and phy for parallel random access procedures of dual connectivity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545586A (zh) * 2018-05-28 2019-12-06 中兴通讯股份有限公司 一种随机接入序列资源的分配方法、相关装置及存储介质
CN110545586B (zh) * 2018-05-28 2023-03-24 中兴通讯股份有限公司 一种随机接入序列资源的分配方法、相关装置及存储介质
CN112425213A (zh) * 2018-10-22 2021-02-26 Oppo广东移动通信有限公司 确定前导序列发射功率的方法和通信设备
CN112673704A (zh) * 2019-04-09 2021-04-16 Oppo广东移动通信有限公司 信息传输方法及相关设备
CN112673704B (zh) * 2019-04-09 2023-07-25 Oppo广东移动通信有限公司 信息传输方法及相关设备
CN113498212A (zh) * 2020-04-03 2021-10-12 中国移动通信有限公司研究院 随机接入方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN108886812A (zh) 2018-11-23
CN108886812B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2017166253A1 (zh) 发送随机接入前导序列的方法、终端设备和接入网设备
JP6075464B2 (ja) ランダムアクセス方法、装置及びシステム
CN109644466B (zh) 上行信号的发送方法和终端设备
CN108886811B (zh) 发送物理随机接入信道prach的方法、设备及系统
EP3413676B1 (en) Method and device for transmitting prach signals in unauthorized spectrum
WO2019028759A1 (zh) 设备对设备通信的方法和终端设备
KR101982662B1 (ko) 전송을 수행하기 위한 방법 및 장치
US11622383B2 (en) Method and device for channel sensing and signal transmission
CN113661760B (zh) 数据传输方法及相关设备
WO2017194003A1 (zh) 一种数据传输方法、网络设备及用户设备
WO2017166212A1 (zh) 信号传输方法、终端设备、接入网设备以及信号传输系统
WO2020063910A1 (zh) 控制信道检测方法、装置及设备
US11997658B2 (en) Method and device for information transmission, and non-transitory computer readable storage medium
EP3432529A1 (en) Method for sending signal, terminal device and network device
JP2021501546A (ja) リソース割り当て方法及び装置、並びにシステム
WO2016119219A1 (zh) 通信方法、基站和用户设备
WO2019157634A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
CN109155686B (zh) 一种非周期srs的传输方法及装置
KR20160019953A (ko) 디바이스-대-디바이스 근접성 서비스에서 신호를 송신하기 위한 방법, 기지국 및 사용자 장비
WO2019153358A1 (zh) 一种信道传输方法及装置、计算机存储介质
JP7113908B2 (ja) 情報伝送方法、ネットワーク機器および端末機器
WO2019157639A1 (zh) 一种harq信息的传输方法及装置、计算机存储介质
CN107113293B (zh) 一种终端、基站,以及资源分配方法
CN111034311B (zh) 一种未授权频谱上的数据传输方法及设备
CN108282867B (zh) 一种数据传输方法、装置及系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896033

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896033

Country of ref document: EP

Kind code of ref document: A1