WO2017166091A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2017166091A1
WO2017166091A1 PCT/CN2016/077807 CN2016077807W WO2017166091A1 WO 2017166091 A1 WO2017166091 A1 WO 2017166091A1 CN 2016077807 W CN2016077807 W CN 2016077807W WO 2017166091 A1 WO2017166091 A1 WO 2017166091A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
downlink
uplink
channel
bidirectional
Prior art date
Application number
PCT/CN2016/077807
Other languages
English (en)
French (fr)
Inventor
曾元清
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to PCT/CN2016/077807 priority Critical patent/WO2017166091A1/zh
Priority to CN201680076578.2A priority patent/CN108476492B/zh
Priority to EP16895872.6A priority patent/EP3386257B1/en
Priority to US16/070,471 priority patent/US20190028188A1/en
Priority to KR1020187020428A priority patent/KR20180125445A/ko
Priority to JP2018535868A priority patent/JP6789298B2/ja
Priority to TW106110669A priority patent/TWI706655B/zh
Publication of WO2017166091A1 publication Critical patent/WO2017166091A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and, more particularly, to a wireless communication method and apparatus.
  • the Long Term Evolution (LTE) Time Division Duplexing (TDD) system usually has seven uplink and downlink subframe ratios, as shown in Table 1.
  • each subframe is 1 ms
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • FIG. 1 is a schematic structural diagram of a special subframe.
  • subframe 1 is a special subframe, and the special subframe includes a Downlink Pilot Time Slot (DwPTS), a GP, and an Uplink Pilot Time Slot (UpPTS).
  • DwPTS can transmit downlink data.
  • the GP is a guard interval and is used for downlink to uplink switching.
  • UpPTS generally includes 1 to 2 uplink symbols, which can be used to transmit an uplink sounding reference signal (SRS) or an uplink control channel.
  • SRS uplink sounding reference signal
  • the present application provides a wireless communication method and apparatus to solve the problem that the information transmission mode of the communication system is limited.
  • a communication method comprising: in a wireless communication system, a communication device communicates with other communication devices through a subframe, wherein a subframe in the wireless communication network includes a downlink priority subframe and an uplink priority subframe At least one of a frame and a bidirectional sub-frame; wherein the downlink priority sub-frame includes a downlink control channel, a downlink channel, a guard interval, and an uplink control channel in a time domain direction; the uplink priority subframes are sequentially in a time domain direction The downlink control channel, the guard interval, the uplink channel, and the uplink control channel are included; the bidirectional subframe frame includes a downlink control channel, a guard interval, an uplink channel, a downlink channel, a guard interval, and an uplink control channel, respectively, in a time domain direction; The downlink control channel is configured to transmit downlink control information, the uplink control channel is used to transmit uplink control information, the downlink channel is used to transmit downlink data and
  • a communication device which may be a base station or a terminal, the communication device comprising a module capable of implementing the method of the first aspect.
  • a third aspect provides a communication device including a memory, a processor, and a transceiver, the memory being for storing a program, the processor for executing a program, when the program is executed, the processor is based on the The transceiver performs the method of the first aspect.
  • a computer readable medium storing program code for execution by a communication device, the program code comprising instructions for performing the method of the first aspect.
  • the communication system introduces at least one of a downlink priority subframe, an uplink priority subframe, and a bidirectional subframe, which increases the type of information that can be carried in the subframe, so that the information transmission manner of the communication system is more flexible.
  • FIG. 1 is a schematic structural diagram of a special subframe.
  • FIG. 2 is a schematic diagram of a basic subframe structure according to an embodiment of the present invention.
  • FIG. 3 is a timing chart of ACK/NACK feedback according to an embodiment of the present invention.
  • FIG. 4 is a timing chart of ACK/NACK feedback according to an embodiment of the present invention.
  • FIG. 5 is a timing chart of ACK/NACK feedback according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a transition subframe according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a basic subframe and a transition subframe combination manner according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a basic subframe and a transition subframe combination manner according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of a basic subframe and a transition subframe combination manner according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA wideband code division Multiple access
  • Wideband Code Division Multiple Access system Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the 5G system is mainly deployed in the high frequency band, so the coverage of the cell will be greatly reduced compared with the 4G and 3G systems.
  • the TDD of the 5G system needs to have the ability to quickly and flexibly configure uplink and downlink channel resources.
  • TDD time division duplex
  • the ratio of uplink and downlink traffic can be more accurately defined by defining more TDD configurations, but this leads to more complex timing design issues for acknowledgment signals.
  • the acknowledgment signal (ACK/NACK) in the LTE system is in a fixed chronological order: for a particular configuration, The acknowledgment signal on a certain subframe will be transmitted on a subsequent preset subframe.
  • N*N different timing relationships need to be considered. This is a constraint on the future 5G system design.
  • FIG. 2 is a schematic structural diagram of a subframe according to an embodiment of the present invention.
  • the subframe in the wireless communication system includes at least one of a downlink priority subframe, an uplink priority subframe, and a bidirectional subframe.
  • the downlink priority subframe includes a downlink control channel in the time domain direction. a downlink channel, a guard interval, and an uplink control channel;
  • the uplink priority subframe includes a downlink control channel, a guard interval, an uplink channel, and an uplink control channel in the time domain direction;
  • the bidirectional subframe frame includes a downlink control channel and a guard interval in the time domain direction.
  • an uplink channel a downlink channel, a guard interval, and an uplink control channel
  • the downlink control channel is used for transmitting downlink control information
  • the uplink control channel is used for transmitting uplink control information
  • the downlink channel is used for transmitting downlink data and/or downlink control information
  • the uplink channel is used to transmit uplink data and/or uplink control information.
  • a subframe including a channel refers to a subframe including a time domain resource or a time-frequency resource corresponding to a channel.
  • the subframe structure in the embodiment of the present invention can be more flexibly adapted to the change of uplink and downlink data traffic than the existing seven configurations.
  • the direction along the time domain may refer to a direction that increases in the time domain; in some embodiments, the direction along the time domain may also refer to a direction that decreases in the time domain.
  • the foremost segment of the subframe in the wireless communication system can be a fixed downlink control channel for transmitting downlink control information.
  • the downlink control channel may also be used to transmit the type information of the subframe.
  • the terminal After receiving the downlink control channel, the terminal may determine, according to the type information of the subframe, that the subframe is a downlink priority subframe and an uplink priority subframe. Which of the two-way subframes.
  • the last segment of the subframe in the wireless communication system is a fixed uplink control channel for transmitting uplink control information.
  • the uplink control information may be, for example, a Scheduling Request (SR), a Channel Quality Indicator (CQI), A/N information (ie, ACK/NACK information), and a sounding reference signal (Sounding).
  • SR Scheduling Request
  • CQI Channel Quality Indicator
  • A/N information ie, ACK/NACK information
  • Sounding Sounding reference signal
  • SRS Reference Signal
  • PRCH Primary Random Channel
  • each subframe is equipped with a downlink and uplink control channel, important downlink and uplink control information can be transmitted in each subframe in time.
  • the ratio information of the uplink and downlink channels of the bidirectional subframe (the uplink and downlink channels are in time)
  • the ratio in the width between the bases can be configured by the base station.
  • this ratio information may be transmitted in the downlink control channel in the previous segment of the subframe.
  • the subframe structure of the existing LTE TDD system is described above with reference to Table 1 and FIG. 1. If the TDD in the 5G system also adopts the above frame structure configuration, a serious delay problem may occur. Specifically, in the current TDD frame structure, most of the subframes are either uplink subframes or downlink subframes. For uplink/downlink data transmission, ACK/NACK information needs to be transmitted in other lower/uplink subframes (corresponding relationship predetermined). When the ACK/NACK signal cannot be transmitted in time due to the limitation of the TDD structure, a delay occurs. This delay is due to the TDD frame structure setting itself in LTE.
  • the embodiment of the present invention further introduces the ACK/NACK of the uplink/downlink data in the subframes based on the introduction of the uplink priority subframe, the downlink priority subframe, and the bidirectional subframe. Feedback timing.
  • the uplink control channel of the downlink priority subframe is used to transmit ACK/NACK information of downlink data in the downlink channel of the downlink priority subframe, as shown in FIG. 3.
  • the embodiment of the invention provides a simple A/N signal transmission timing, which can shorten the delay of the TDD system due to the transmission of the A/N signal.
  • the downlink control channel of the uplink priority subframe is used to transmit ACK/NACK information of the uplink data in the previous subframe of the uplink priority subframe, see FIG.
  • the embodiment of the invention provides a simple A/N signal transmission timing, which can shorten the delay of the TDD system due to the transmission of the A/N signal.
  • the downlink channel of the bidirectional subframe is used to transmit ACK/NACK information of uplink data in the uplink channel of the bidirectional subframe, see FIG.
  • the embodiment of the invention provides a simple A/N signal transmission timing, which can shorten the delay of the TDD system due to the transmission of the A/N signal.
  • the uplink control channel of the bidirectional subframe is used to transmit ACK/NACK information of downlink data in the downlink channel of the bidirectional subframe, see FIG.
  • the embodiment of the invention provides a simple A/N signal transmission timing, which can shorten the delay of the TDD system due to the transmission of the A/N signal.
  • three types of transition subframes may be introduced: a downlink transition subframe, an uplink transition subframe, and a bidirectional transition subframe.
  • the downlink transition subframe includes a downlink control channel, a guard interval, a downlink channel, a guard interval, and an uplink control channel in the time domain direction.
  • the uplink transition subframe includes a downlink control channel, a guard interval, and an uplink channel in the time domain direction.
  • the guard interval and the uplink control channel; the bidirectional transition subframe includes a downlink control channel, a guard interval, and an uplink control channel in the time domain direction.
  • the type of transition subframe may be indicated in the downlink control channel at the beginning of the subframe.
  • the wireless communication system includes a first downlink priority subframe and a first bidirectional subframe, wherein, in the time domain direction, the first downlink priority subframe is the same as the time domain location of the first bidirectional subframe; In the frequency domain direction, a downlink transition subframe is set between the first downlink priority subframe and the first bidirectional subframe, and the guard interval of the downlink transition subframe takes the uplink channel of the first bidirectional subframe and the first downlink priority.
  • the downlink channels of the subframe are separated, see Figure 7.
  • the two subframes can be inserted into the downlink transition subframe in the frequency domain, and are separated by the protection slot in the downlink transition subframe.
  • the downlink channel in the downlink priority subframe and the uplink channel in the bidirectional subframe avoid collision between the two in the adjacent frequency domain.
  • the wireless communication system includes a first uplink priority subframe and a second bidirectional subframe, wherein, in the time domain direction, the first uplink priority subframe is the same as the time domain location of the second bidirectional subframe; In the domain direction, an uplink transition subframe is set between the first uplink priority subframe and the second bidirectional subframe, and the guard interval of the uplink transition subframe is the uplink of the second bidirectional subframe and the uplink of the first uplink priority subframe.
  • the channels are separated, see Figure 8.
  • the two subframes can be inserted into the uplink transition subframe in the frequency domain, and are separated by the protection slots in the uplink transition subframe.
  • the uplink channel in the uplink priority subframe and the downlink channel in the bidirectional subframe avoid collision between the two in the adjacent frequency domain.
  • the wireless communication system includes a second uplink priority subframe and a second downlink priority subframe, wherein, in the time domain direction, the second uplink priority subframe and the second downlink priority subframe have the same time domain location;
  • a bidirectional transition subframe is set between the second uplink priority subframe and the second downlink priority subframe, and the guard interval of the bidirectional transition subframe takes the uplink channel and the second downlink priority of the second uplink priority subframe.
  • the downlink channels of the subframe are separated, see Figure 9.
  • the two subframes can insert a bidirectional transition subframe in the frequency domain, and use the protection slot in the bidirectional transition subframe.
  • the downlink channel in the uplink priority subframe and the downlink priority subframe subframe are isolated to avoid collision between the two in the adjacent frequency domain.
  • the three basic subframe structures can be combined more flexibly in frequency.
  • the wireless communication method according to an embodiment of the present invention is described in detail above with reference to FIGS. 1 through 9.
  • a communication device according to an embodiment of the present invention will be described in detail. It should be understood that the communication device may be a base station or a terminal.
  • the communication device side corresponds to the method side description, and is not detailed here to avoid repetition.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1000 of Figure 10 includes:
  • the communication unit 1010 is configured to communicate with another communication device by using a subframe in the wireless communication system, where the subframe in the wireless communication network includes at least one of a downlink priority subframe, an uplink priority subframe, and a bidirectional subframe.
  • the downlink priority subframe includes a downlink control channel, a downlink channel, a guard interval, and an uplink control channel in the time domain direction;
  • the uplink priority subframe includes a downlink control channel, a guard interval, and an uplink channel in the time domain direction.
  • the uplink control channel sequentially includes a downlink control channel, a guard interval, an uplink channel, a downlink channel, a guard interval, and an uplink control channel, where the downlink control channel is configured to transmit downlink control information.
  • the uplink control channel is used to transmit uplink control information
  • the downlink channel is used to transmit downlink data and/or downlink control information
  • the uplink channel is used to transmit uplink data and/or uplink control information.
  • the communication system introduces at least one of a downlink priority subframe, an uplink priority subframe, and a bidirectional subframe, which increases the type of information that can be carried in the subframe, so that the information transmission manner of the communication system is more flexible.
  • an uplink control channel of the downlink priority subframe is used to transmit ACK/NACK information of downlink data in a downlink channel of the downlink priority subframe.
  • the downlink control channel of the uplink priority subframe is used to transmit ACK/NACK information of uplink data in a previous subframe of the uplink priority subframe.
  • the downlink channel of the bidirectional subframe is used to transmit ACK/NACK information of uplink data in an uplink channel of the bidirectional subframe.
  • an uplink control channel of the bidirectional subframe is used to transmit the ACK/NACK information of downlink data in the downlink channel of the bidirectional subframe.
  • the subframe of the wireless communication network further includes at least one of a downlink transition subframe, an uplink transition subframe, and a bidirectional transition subframe; wherein the downlink transition subframe is along a time domain.
  • the direction includes a downlink control channel, a guard interval, a downlink channel, a guard interval, and an uplink control channel.
  • the uplink transition subframe includes a downlink control channel, a guard interval, an uplink channel, a guard interval, and an uplink control channel in the time domain direction.
  • the bidirectional transition subframe includes a downlink control channel, a guard interval, and an uplink control channel in sequence in the time domain direction.
  • the wireless communication system includes a first downlink priority subframe and a first bidirectional subframe, wherein, in a time domain direction, the first downlink priority subframe and the first The time domain location of the bidirectional subframe is the same; in the frequency domain direction, a downlink transition subframe is set between the first downlink priority subframe and the first bidirectional subframe, and a guard interval of the downlink transition subframe And separating an uplink channel of the first bidirectional subframe from a downlink channel of the first downlink priority subframe.
  • the wireless communication system includes a first uplink priority subframe and a second bidirectional subframe, wherein, in a time domain direction, the first uplink priority subframe and the second bidirectional subframe The time domain of the frame is the same; in the frequency domain, an uplink transition subframe is set between the first uplink priority subframe and the second bidirectional subframe, and the guard interval of the uplink transition subframe is The downlink channel of the second bidirectional subframe is separated from the uplink channel of the first uplink priority subframe.
  • the wireless communication system includes a second uplink priority subframe and a second downlink priority subframe, where, in the time domain direction, the second uplink priority subframe and the second downlink The time domain of the priority subframe is the same; in the frequency domain, a bidirectional transition subframe is set between the second uplink priority subframe and the second downlink priority subframe, and the guard interval of the bidirectional transition subframe is And separating an uplink channel of the second uplink priority subframe from a downlink channel of the second downlink priority subframe.
  • the downlink control channel of the bidirectional subframe includes the ratio information of the uplink channel and the downlink channel of the bidirectional subframe.
  • the downlink control channel of the subframe in the wireless communication network includes information indicating a subframe type.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1100 of FIG. 11 includes:
  • a memory 1110 configured to store a program
  • the processor 1120 configured to execute a program in the memory 1110, when the program is executed
  • the processor 1120 communicates with other communication devices through a subframe in a wireless communication system, where the subframe in the wireless communication network includes at least one of a downlink priority subframe, an uplink priority subframe, and a bidirectional subframe.
  • the downlink priority subframe includes a downlink control channel, a downlink channel, a guard interval, and an uplink control channel in the time domain direction;
  • the uplink priority subframe includes a downlink control channel, a guard interval, and an uplink in the time domain direction.
  • the bidirectional subframe frame includes a downlink control channel, a guard interval, an uplink channel, a downlink channel, a guard interval, and an uplink control channel in a time domain direction; wherein the downlink control channel is used for transmitting downlink control
  • the uplink control channel is used to transmit uplink control information
  • the downlink channel is used to transmit downlink data and/or downlink control information
  • the uplink channel is used to transmit uplink data and/or uplink control information.
  • the communication system introduces at least one of a downlink priority subframe, an uplink priority subframe, and a bidirectional subframe, which increases the type of information that can be carried in the subframe, so that the information transmission manner of the communication system is more flexible.
  • an uplink control channel of the downlink priority subframe is used to transmit ACK/NACK information of downlink data in a downlink channel of the downlink priority subframe.
  • the downlink control channel of the uplink priority subframe is used to transmit ACK/NACK information of uplink data in a previous subframe of the uplink priority subframe.
  • the downlink channel of the bidirectional subframe is used to transmit ACK/NACK information of uplink data in an uplink channel of the bidirectional subframe.
  • the uplink control channel of the bidirectional subframe is used to transmit ACK/NACK information of downlink data in a downlink channel of the bidirectional subframe.
  • the subframe of the wireless communication network further includes at least one of a downlink transition subframe, an uplink transition subframe, and a bidirectional transition subframe; wherein the downlink transition subframe is along a time domain.
  • the direction includes a downlink control channel, a guard interval, a downlink channel, a guard interval, and an uplink control channel.
  • the uplink transition subframe includes a downlink control channel, a guard interval, an uplink channel, a guard interval, and an uplink control channel in the time domain direction.
  • the bidirectional transition subframe includes a downlink control channel, a guard interval, and an uplink control channel in sequence in the time domain direction.
  • the wireless communication system includes a first downlink priority subframe and a first bidirectional subframe, wherein, in a time domain direction, the first downlink priority subframe and the first The time domain location of the bidirectional subframe is the same; in the frequency domain direction, a downlink transition subframe is set between the first downlink priority subframe and the first bidirectional subframe, and a guard interval of the downlink transition subframe And separating an uplink channel of the first bidirectional subframe from a downlink channel of the first downlink priority subframe.
  • the wireless communication system includes a first uplink priority subframe and a second bidirectional subframe, wherein, in a time domain direction, the first uplink priority subframe and the second bidirectional subframe The time domain of the frame is the same; in the frequency domain, an uplink transition subframe is set between the first uplink priority subframe and the second bidirectional subframe, and the guard interval of the uplink transition subframe is The downlink channel of the second bidirectional subframe is separated from the uplink channel of the first uplink priority subframe.
  • the wireless communication system includes a second uplink priority subframe and a second downlink priority subframe, where, in the time domain direction, the second uplink priority subframe and the second downlink The time domain of the priority subframe is the same; in the frequency domain, a bidirectional transition subframe is set between the second uplink priority subframe and the second downlink priority subframe, and the guard interval of the bidirectional transition subframe is And separating an uplink channel of the second uplink priority subframe from a downlink channel of the second downlink priority subframe.
  • the downlink control channel of the bidirectional subframe includes the ratio information of the uplink channel and the downlink channel of the bidirectional subframe.
  • the downlink control channel of the subframe in the wireless communication network includes information indicating a subframe type.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例引入下行优先子帧、上行优先子帧以及双向子帧,增加了子帧中能够承载的信息类型,使得通信系统的信息传输方式更加灵活。

Description

无线通信方法和设备 技术领域
本发明实施例涉及无线通信领域,并且更具体地,涉及一种无线通信方法和设备。
背景技术
长期演进(Long Term Evolution,LTE)的时分双工(Time Division Duplexing,TDD)系统通常具有7种上下行子帧配比,如表1所示。
表1 TDD系统的上下行子帧配比
Figure PCTCN2016077807-appb-000001
在表1中,每个子帧的持续时间为1ms,D表示下行子帧,U表示上行子帧,S表示特殊子帧。
图1为特殊子帧的示意性结构图。在图1中,子帧1为特殊子帧,特殊子帧包括下行导频时隙(Downlink Pilot Time Slot,DwPTS)、GP和上行导频时隙(Uplink Pilot Time Slot,UpPTS)。DwPTS可以传输下行数据。GP是保护间隔,用于下行到上行的切换。UpPTS一般包括1到2个上行符号(symbol),可以用来传输上行探测参考信号(Sounding Reference Signal,SRS)或上行控制信道。
由上文可以看出,现有TDD系统中的子帧内部结构固定,在一个子帧内传输的信息类型有限,使得通信系统的信息传输方式受限,可能无法满足后续通信系统(如5G)的要求。
发明内容
本申请提供一种无线通信方法和设备,以解决通信系统的信息传输方式受限的问题。
第一方面,提供一种通信方法,该方法包括:在无线通信系统中,通信设备通过子帧与其他通信设备进行通信,所述无线通信网络中的子帧包括下行优先子帧、上行优先子帧和双向子帧中的至少一种;其中,所述下行优先子帧沿时域方向依次包括下行控制信道、下行信道、保护间隔和上行控制信道;所述上行优先子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道和上行控制信道;所述双向子帧帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、下行信道、保护间隔和上行控制信道;其中,所述下行控制信道用于传输下行控制信息,所述上行控制信道用于传输上行控制信息,所述下行信道用于传输下行数据和/或下行控制信息,所述上行信道用于传输上行数据和/或上行控制信息。
第二方面,提供一种通信设备,该通信设备可以是基站,也可以是终端,该通信设备包括能够实现第一方面中的方法的模块。
第三方面,提供一种通信设备,包括存储器、处理器和收发器,所述存储器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述处理器基于所述收发器执行所述第一方面中的方法。
第四方面,提供一种计算机可读介质,所述计算机可读介质存储用于通信设备执行的程序代码,所述程序代码包括用于执行第一方面中的方法的指令。
本申请中,通信系统引入了下行优先子帧、上行优先子帧和双向子帧中的至少一种子帧,增加了子帧中能够承载的信息类型,使得通信系统的信息传输方式更加灵活。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为特殊子帧的示意性结构图。
图2是本发明实施例的基本子帧结构示意图。
图3是本发明实施例的ACK/NACK反馈时序图。
图4是本发明实施例的ACK/NACK反馈时序图。
图5是本发明实施例的ACK/NACK反馈时序图。
图6是本发明实施例的过渡子帧结构示意图。
图7是本发明实施例的基本子帧和过渡子帧组合方式示例图。
图8是本发明实施例的基本子帧和过渡子帧组合方式示例图。
图9是本发明实施例的基本子帧和过渡子帧组合方式示例图。
图10是本发明实施例的通信设备的示意性结构图。
图11是本发明实施例的通信设备的示意性结构图。
具体实施方式
应理解,本发明实施例可以应用于各种通信系统,例如:GSM(全球移动通讯,Global System of Mobile communication)系统、CDMA(码分多址,Code Division Multiple Access)系统、WCDMA(宽带码分多址,Wideband Code Division Multiple Access)系统、GPRS(通用分组无线业务,General Packet Radio Service)、LTE(长期演进,Long Term Evolution)系统、LTE-A(先进的长期演进,Advanced long term evolution)系统、UMTS(通用移动通信系统,Universal Mobile Telecommunication System)、5G等,下文仅是以5G的需求为例。
5G系统主要部署在高频段,这样小区的覆盖范围与4G和3G系统相比会大大缩小。当小区范围变小时,每小区的用户数也会对应变小,这样小区的数据流量的变化可能也会比较快。为了更好的适应小区数据流量的快速变化,5G系统的TDD要有快速而灵活配置上下行信道资源的能力。对TDD系统来说,可以通过在7种TDD配置中切换来适应上下行数据流量的变化。由于目前TDD的配置是以帧(frame)为单位定义的,目前系统中最快的切换速度也就是10ms,可能并不能满足5G系统流量动态变化的需求。
可以通过定义更多的TDD配置来更精确的实现上下行流量的配比,但是这样又带来更复杂的确认信号的时序设计问题。目前LTE系统中的传输确认信号(ACK/NACK)是采取固定的时间顺序的:对于某一种特定的配置而言, 对于某个子帧上的确认信号会在其后一个预先设定的子帧上传输。假设系统中有N种TDD配置,按照现有LTE系统时序设计原则,需要考虑N*N种不同的时序关系。这对未来的5G系统设计是一个制约。
因此,亟需提出一种新的子帧结构,能够比现有7种配置更灵活的适应上下行数据流量的变化。
图2是本发明实施例的子帧结构示意图。从图2可以看出,无线通信系统中的子帧包括下行优先子帧、上行优先子帧和双向子帧中的至少一种;其中,下行优先子帧沿时域方向依次包括下行控制信道、下行信道、保护间隔和上行控制信道;上行优先子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道和上行控制信道;双向子帧帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、下行信道、保护间隔和上行控制信道;其中,下行控制信道用于传输下行控制信息,上行控制信道用于传输上行控制信息,下行信道用于传输下行数据和/或下行控制信息,上行信道用于传输上行数据和/或上行控制信息。
应理解,子帧包括信道是指子帧包括信道对应的时域资源或时频资源。
本发明实施例中的子帧结构能够比现有7种配置更灵活的适应上下行数据流量的变化。
在一些实施例中,沿时域方向可以指沿时域递增的方向;在一些实施例中,沿时域方向可以也指沿时域递减的方向。
在一些实施例中,无线通信系统中的子帧的最前段可以是固定的下行控制信道,用于传输下行控制信息。在一些实施例中,下行控制信道还可以用于传输子帧的类型信息,终端接收到该下行控制信道之后,可以根据子帧的类型信息判断该子帧是下行优先子帧、上行优先子帧、双向子帧中的哪一种。
在一些实施例中,无线通信系统中的子帧的最后段是固定的上行控制信道,用于传输上行控制信息。在一些实施例中,该上行控制信息例如可以是调度请求(Scheduling Request,SR),信道质量指示(Channel Quality Indicator,CQI),A/N信息(即ACK/NACK信息),探测参考信号(Sounding Reference Signal,SRS)和随机接入信道(Primary Random Channel,PRCH)等。
在以上实施例中,由于每个子帧都配有下行和上行控制信道,使得重要的下行和上行控制信息能及时的在每个子帧内得到传输。
在一些实施例中,双向子帧的上下行信道的比例信息(上下行信道在时 间宽度上的比例)可以由基站配置。在一些实施例中,此比例信息可以在子帧前段的下行控制信道里传输。
上文结合表1和图1介绍了现有的LTE的TDD系统的子帧结构,如果5G系统中的TDD也采取上述帧结构配置,会产生较严重的延时问题。具体地,由于目前TDD帧结构中,多数子帧要么是上行子帧,要么是下行子帧。而上/下行数据传输,需要在其他下/上行子帧(对应关系预先确定)中传递ACK/NACK信息。当由于TDD结构的限制,无法及时的传输ACK/NACK信号时,延时就产生了。这种延时是由于LTE中TDD帧结构设置本身产生的。5G系统中对延时提出了较高的要求,希望在无线接入层的延时能缩小到1ms(1个子帧)以下。如果还沿用目前的LTE系统对TDD的帧结构的配置,很难保证5G系统的延时要求。为了解决由于TDD配置带来的延时问题,本发明实施例在引入上行优先子帧、下行优先子帧、双向子帧的基础上,进一步引入这些子帧中的上/下行数据的ACK/NACK反馈时序。
在一个实施例中,下行优先子帧的上行控制信道用于传输下行优先子帧的下行信道中的下行数据的ACK/NACK信息,参见图3。
本发明实施例提供了简单的A/N信号传输时序,能够缩短TDD系统的由于传输A/N信号产生的延时。
在一个实施例中,上行优先子帧的下行控制信道用于传输上行优先子帧的前一子帧中的上行数据的ACK/NACK信息,参见图4。
本发明实施例提供了简单的A/N信号传输时序,能够缩短TDD系统的由于传输A/N信号产生的延时。
在一个实施例中,双向子帧的下行信道用于传输双向子帧的上行信道中的上行数据的ACK/NACK信息,参见图5。
本发明实施例提供了简单的A/N信号传输时序,能够缩短TDD系统的由于传输A/N信号产生的延时。
在一个实施例中,双向子帧的上行控制信道用于传输双向子帧的下行信道中的下行数据的ACK/NACK信息,参见图5。
本发明实施例提供了简单的A/N信号传输时序,能够缩短TDD系统的由于传输A/N信号产生的延时。
在上述三种类型的子帧的基础上,可以引入三种过渡子帧:下行过渡子帧、上行过渡子帧和双向过渡子帧。
参见图6,下行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、下行信道、保护间隔、上行控制信道;上行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、保护间隔和上行控制信道;双向过渡子帧沿时域方向依次包括下行控制信道、保护间隔和上行控制信道。
在一些实施例中,过渡子帧的类型可以在子帧最开始的下行控制信道中指示。
下面介绍如何结合上文中的三种基本类型的子帧和过渡类型的子帧,实现更加灵活的系统频谱配置。
在一些实施例中,无线通信系统包括第一下行优先子帧和第一双向子帧,其中,在时域方向,第一下行优先子帧与第一双向子帧的时域位置相同;在频域方向,第一下行优先子帧与第一双向子帧之间设置有下行过渡子帧,且下行过渡子帧的保护间隔将第一双向子帧的上行信道与第一下行优先子帧的下行信道相隔,参见图7。
具体地,当下行优先子帧和双向子帧要在同一时间(子帧内)部署时,两种子帧在频率域上可以插入下行过渡子帧,利用下行过渡子帧中的保护时隙来隔离下行优先子帧中的下行信道和双向子帧中的上行信道,避免二者在相邻频率域发生冲突。
在一些实施例中,无线通信系统包括第一上行优先子帧和第二双向子帧,其中,在时域方向,第一上行优先子帧与第二双向子帧的时域位置相同;在频域方向,第一上行优先子帧与第二双向子帧之间设置有上行过渡子帧,且上行过渡子帧的保护间隔将第二双向子帧的下行信道与第一上行优先子帧的上行信道相隔,参见图8。
具体地,当上行优先子帧和双向子帧要在同一时间(子帧内)部署时,两种子帧在频率域上可以插入上行过渡子帧,利用上行过渡子帧中的保护时隙来隔离上行优先子帧中的上行信道和双向子帧中的下行信道,避免二者在相邻频率域发生冲突。
在一些实施例中,无线通信系统包括第二上行优先子帧和第二下行优先子帧,其中,在时域方向,第二上行优先子帧与第二下行优先子帧的时域位置相同;在频域方向,第二上行优先子帧与第二下行优先子帧之间设置有双向过渡子帧,且双向过渡子帧的保护间隔将第二上行优先子帧的上行信道与第二下行优先子帧的下行信道相隔,参见图9。
具体地,当上行优先子帧和下行优先子帧要在同一时间(子帧内)部署时,两种子帧在频率域上可以插入双向过渡子帧,利用双向过渡子帧中的保护时隙来隔离上行优先子帧中的上行信道和下行优先子帧子帧中的下行信道,避免二者在相邻频率域发生冲突。
通过引入3种过渡子帧,使得3种基本子帧结构能在频率上更灵活的组合。
上文结合图1至图9,详细描述了根据本发明实施例的无线通信方法,先问结合图10至图11,详细描述根据本发明实施例的通信设备。应理解,所述通信设备可以是基站,也可以是终端。所述通信设备侧与方法侧描述对应,为避免重复,此处不再详述。
图10是本发明实施例的通信设备的示意性结构图。图10的通信设备1000包括:
通信单元1010,用于在无线通信系统中,通过子帧与其他通信设备进行通信,所述无线通信网络中的子帧包括下行优先子帧、上行优先子帧和双向子帧中的至少一种;其中,所述下行优先子帧沿时域方向依次包括下行控制信道、下行信道、保护间隔和上行控制信道;所述上行优先子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道和上行控制信道;所述双向子帧帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、下行信道、保护间隔和上行控制信道;其中,所述下行控制信道用于传输下行控制信息,所述上行控制信道用于传输上行控制信息,所述下行信道用于传输下行数据和/或下行控制信息,所述上行信道用于传输上行数据和/或上行控制信息。
本发明实施例中,通信系统引入了下行优先子帧、上行优先子帧和双向子帧中的至少一种子帧,增加了子帧中能够承载的信息类型,使得通信系统的信息传输方式更加灵活。
可选地,作为一个实施例,所述下行优先子帧的上行控制信道用于传输所述下行优先子帧的下行信道中的下行数据的ACK/NACK信息。
可选地,作为一个实施例,所述上行优先子帧的下行控制信道用于传输所述上行优先子帧的前一子帧中的上行数据的ACK/NACK信息。
可选地,作为一个实施例,所述双向子帧的下行信道用于传输所述双向子帧的上行信道中的上行数据的ACK/NACK信息。
可选地,作为一个实施例,所述双向子帧的上行控制信道用于传输所述 双向子帧的下行信道中的下行数据的ACK/NACK信息。
可选地,作为一个实施例,所述无线通信网络的子帧还包括下行过渡子帧、上行过渡子帧和双向过渡子帧中的至少一种;其中,所述下行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、下行信道、保护间隔、上行控制信道;所述上行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、保护间隔和上行控制信道;所述双向过渡子帧沿时域方向依次包括下行控制信道、保护间隔和上行控制信道。
可选地,作为一个实施例,所述无线通信系统包括第一下行优先子帧和第一双向子帧,其中,在时域方向,所述第一下行优先子帧与所述第一双向子帧的时域位置相同;在频域方向,所述第一下行优先子帧与所述第一双向子帧之间设置有下行过渡子帧,且所述下行过渡子帧的保护间隔将所述第一双向子帧的上行信道与所述第一下行优先子帧的下行信道相隔。
可选地,作为一个实施例,所述无线通信系统包括第一上行优先子帧和第二双向子帧,其中,在时域方向,所述第一上行优先子帧与所述第二双向子帧的时域位置相同;在频域方向,所述第一上行优先子帧与所述第二双向子帧之间设置有上行过渡子帧,且所述上行过渡子帧的保护间隔将所述第二双向子帧的下行信道与所述第一上行优先子帧的上行信道相隔。
可选地,作为一个实施例,所述无线通信系统包括第二上行优先子帧和第二下行优先子帧,其中,在时域方向,所述第二上行优先子帧与所述第二下行优先子帧的时域位置相同;在频域方向,所述第二上行优先子帧与所述第二下行优先子帧之间设置有双向过渡子帧,且所述双向过渡子帧的保护间隔将所述第二上行优先子帧的上行信道与所述第二下行优先子帧的下行信道相隔。
可选地,作为一个实施例,所述双向子帧的下行控制信道包含所述双向子帧的上行信道与下行信道的比例信息。
可选地,作为一个实施例,所述无线通信网络中的子帧的下行控制信道包含用于指示子帧类型的信息。
图11是本发明实施例的通信设备的示意性结构图。图11的通信设备1100包括:
存储器1110,用于存储程序;
处理器1120,用于执行所述存储器1110中的程序,当所述程序被执行 时,所述处理器1120在无线通信系统中,通过子帧与其他通信设备进行通信,所述无线通信网络中的子帧包括下行优先子帧、上行优先子帧和双向子帧中的至少一种;其中,所述下行优先子帧沿时域方向依次包括下行控制信道、下行信道、保护间隔和上行控制信道;所述上行优先子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道和上行控制信道;所述双向子帧帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、下行信道、保护间隔和上行控制信道;其中,所述下行控制信道用于传输下行控制信息,所述上行控制信道用于传输上行控制信息,所述下行信道用于传输下行数据和/或下行控制信息,所述上行信道用于传输上行数据和/或上行控制信息。
本发明实施例中,通信系统引入了下行优先子帧、上行优先子帧和双向子帧中的至少一种子帧,增加了子帧中能够承载的信息类型,使得通信系统的信息传输方式更加灵活。
可选地,作为一个实施例,所述下行优先子帧的上行控制信道用于传输所述下行优先子帧的下行信道中的下行数据的ACK/NACK信息。
可选地,作为一个实施例,所述上行优先子帧的下行控制信道用于传输所述上行优先子帧的前一子帧中的上行数据的ACK/NACK信息。
可选地,作为一个实施例,所述双向子帧的下行信道用于传输所述双向子帧的上行信道中的上行数据的ACK/NACK信息。
可选地,作为一个实施例,所述双向子帧的上行控制信道用于传输所述双向子帧的下行信道中的下行数据的ACK/NACK信息。
可选地,作为一个实施例,所述无线通信网络的子帧还包括下行过渡子帧、上行过渡子帧和双向过渡子帧中的至少一种;其中,所述下行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、下行信道、保护间隔、上行控制信道;所述上行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、保护间隔和上行控制信道;所述双向过渡子帧沿时域方向依次包括下行控制信道、保护间隔和上行控制信道。
可选地,作为一个实施例,所述无线通信系统包括第一下行优先子帧和第一双向子帧,其中,在时域方向,所述第一下行优先子帧与所述第一双向子帧的时域位置相同;在频域方向,所述第一下行优先子帧与所述第一双向子帧之间设置有下行过渡子帧,且所述下行过渡子帧的保护间隔将所述第一双向子帧的上行信道与所述第一下行优先子帧的下行信道相隔。
可选地,作为一个实施例,所述无线通信系统包括第一上行优先子帧和第二双向子帧,其中,在时域方向,所述第一上行优先子帧与所述第二双向子帧的时域位置相同;在频域方向,所述第一上行优先子帧与所述第二双向子帧之间设置有上行过渡子帧,且所述上行过渡子帧的保护间隔将所述第二双向子帧的下行信道与所述第一上行优先子帧的上行信道相隔。
可选地,作为一个实施例,所述无线通信系统包括第二上行优先子帧和第二下行优先子帧,其中,在时域方向,所述第二上行优先子帧与所述第二下行优先子帧的时域位置相同;在频域方向,所述第二上行优先子帧与所述第二下行优先子帧之间设置有双向过渡子帧,且所述双向过渡子帧的保护间隔将所述第二上行优先子帧的上行信道与所述第二下行优先子帧的下行信道相隔。
可选地,作为一个实施例,所述双向子帧的下行控制信道包含所述双向子帧的上行信道与下行信道的比例信息。
可选地,作为一个实施例,所述无线通信网络中的子帧的下行控制信道包含用于指示子帧类型的信息。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (22)

  1. 一种无线通信方法,其特征在于,包括:
    在无线通信系统中,通信设备通过子帧与其他通信设备进行通信,所述无线通信网络中的子帧包括下行优先子帧、上行优先子帧和双向子帧中的至少一种;其中,
    所述下行优先子帧沿时域方向依次包括下行控制信道、下行信道、保护间隔和上行控制信道;
    所述上行优先子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道和上行控制信道;
    所述双向子帧帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、下行信道、保护间隔和上行控制信道;其中,
    所述下行控制信道用于传输下行控制信息,所述上行控制信道用于传输上行控制信息,所述下行信道用于传输下行数据和/或下行控制信息,所述上行信道用于传输上行数据和/或上行控制信息。
  2. 如权利要求1所述的方法,其特征在于,所述下行优先子帧的上行控制信道用于传输所述下行优先子帧的下行信道中的下行数据的ACK/NACK信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述上行优先子帧的下行控制信道用于传输所述上行优先子帧的前一子帧中的上行数据的ACK/NACK信息。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述双向子帧的下行信道用于传输所述双向子帧的上行信道中的上行数据的ACK/NACK信息。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述双向子帧的上行控制信道用于传输所述双向子帧的下行信道中的下行数据的ACK/NACK信息。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述无线通信网络的子帧还包括下行过渡子帧、上行过渡子帧和双向过渡子帧中的至少一种;其中,
    所述下行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、下行信道、保护间隔、上行控制信道;
    所述上行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、保护间隔和上行控制信道;
    所述双向过渡子帧沿时域方向依次包括下行控制信道、保护间隔和上行控制信道。
  7. 如权利要求6所述的方法,其特征在于,所述无线通信系统包括第一下行优先子帧和第一双向子帧,其中,在时域方向,所述第一下行优先子帧与所述第一双向子帧的时域位置相同;在频域方向,所述第一下行优先子帧与所述第一双向子帧之间设置有下行过渡子帧,且所述下行过渡子帧的保护间隔将所述第一双向子帧的上行信道与所述第一下行优先子帧的下行信道相隔。
  8. 如权利要求6或7所述的方法,其特征在于,所述无线通信系统包括第一上行优先子帧和第二双向子帧,其中,在时域方向,所述第一上行优先子帧与所述第二双向子帧的时域位置相同;在频域方向,所述第一上行优先子帧与所述第二双向子帧之间设置有上行过渡子帧,且所述上行过渡子帧的保护间隔将所述第二双向子帧的下行信道与所述第一上行优先子帧的上行信道相隔。
  9. 如权利要求6-8中任一项所述的方法,其特征在于,所述无线通信系统包括第二上行优先子帧和第二下行优先子帧,其中,在时域方向,所述第二上行优先子帧与所述第二下行优先子帧的时域位置相同;在频域方向,所述第二上行优先子帧与所述第二下行优先子帧之间设置有双向过渡子帧,且所述双向过渡子帧的保护间隔将所述第二上行优先子帧的上行信道与所述第二下行优先子帧的下行信道相隔。
  10. 如权利要求1-9中任一项所述的方法,其特征在于,所述双向子帧的下行控制信道包含所述双向子帧的上行信道与下行信道的比例信息。
  11. 如权利要求1-10中任一项所述的方法,其特征在于,所述无线通信网络中的子帧的下行控制信道包含用于指示子帧类型的信息。
  12. 一种通信设备,其特征在于,包括:
    通信单元,用于在无线通信系统中,通过子帧与其他通信设备进行通信,所述无线通信网络中的子帧包括下行优先子帧、上行优先子帧和双向子帧中的至少一种;其中,
    所述下行优先子帧沿时域方向依次包括下行控制信道、下行信道、保护 间隔和上行控制信道;
    所述上行优先子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道和上行控制信道;
    所述双向子帧帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、下行信道、保护间隔和上行控制信道;其中,
    所述下行控制信道用于传输下行控制信息,所述上行控制信道用于传输上行控制信息,所述下行信道用于传输下行数据和/或下行控制信息,所述上行信道用于传输上行数据和/或上行控制信息。
  13. 如权利要求12所述的通信设备,其特征在于,所述下行优先子帧的上行控制信道用于传输所述下行优先子帧的下行信道中的下行数据的ACK/NACK信息。
  14. 如权利要求12或13所述的通信设备,其特征在于,所述上行优先子帧的下行控制信道用于传输所述上行优先子帧的前一子帧中的上行数据的ACK/NACK信息。
  15. 如权利要求12-14中任一项所述的通信设备,其特征在于,所述双向子帧的下行信道用于传输所述双向子帧的上行信道中的上行数据的ACK/NACK信息。
  16. 如权利要求12-15中任一项所述的通信设备,其特征在于,所述双向子帧的上行控制信道用于传输所述双向子帧的下行信道中的下行数据的ACK/NACK信息。
  17. 如权利要求12-16中任一项所述的通信设备,其特征在于,所述无线通信网络的子帧还包括下行过渡子帧、上行过渡子帧和双向过渡子帧中的至少一种;其中,
    所述下行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、下行信道、保护间隔、上行控制信道;
    所述上行过渡子帧沿时域方向依次包括下行控制信道、保护间隔、上行信道、保护间隔和上行控制信道;
    所述双向过渡子帧沿时域方向依次包括下行控制信道、保护间隔和上行控制信道。
  18. 如权利要求17所述的通信设备,其特征在于,所述无线通信系统包括第一下行优先子帧和第一双向子帧,其中,在时域方向,所述第一下行 优先子帧与所述第一双向子帧的时域位置相同;在频域方向,所述第一下行优先子帧与所述第一双向子帧之间设置有下行过渡子帧,且所述下行过渡子帧的保护间隔将所述第一双向子帧的上行信道与所述第一下行优先子帧的下行信道相隔。
  19. 如权利要求17或18所述的通信设备,其特征在于,所述无线通信系统包括第一上行优先子帧和第二双向子帧,其中,在时域方向,所述第一上行优先子帧与所述第二双向子帧的时域位置相同;在频域方向,所述第一上行优先子帧与所述第二双向子帧之间设置有上行过渡子帧,且所述上行过渡子帧的保护间隔将所述第二双向子帧的下行信道与所述第一上行优先子帧的上行信道相隔。
  20. 如权利要求17-19中任一项所述的通信设备,其特征在于,所述无线通信系统包括第二上行优先子帧和第二下行优先子帧,其中,在时域方向,所述第二上行优先子帧与所述第二下行优先子帧的时域位置相同;在频域方向,所述第二上行优先子帧与所述第二下行优先子帧之间设置有双向过渡子帧,且所述双向过渡子帧的保护间隔将所述第二上行优先子帧的上行信道与所述第二下行优先子帧的下行信道相隔。
  21. 如权利要求12-20中任一项所述的通信设备,其特征在于,所述双向子帧的下行控制信道包含所述双向子帧的上行信道与下行信道的比例信息。
  22. 如权利要求12-21中任一项所述的通信设备,其特征在于,所述无线通信网络中的子帧的下行控制信道包含用于指示子帧类型的信息。
PCT/CN2016/077807 2016-03-30 2016-03-30 无线通信方法和设备 WO2017166091A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2016/077807 WO2017166091A1 (zh) 2016-03-30 2016-03-30 无线通信方法和设备
CN201680076578.2A CN108476492B (zh) 2016-03-30 2016-03-30 无线通信方法和设备
EP16895872.6A EP3386257B1 (en) 2016-03-30 2016-03-30 Radio communication method and equipment
US16/070,471 US20190028188A1 (en) 2016-03-30 2016-03-30 Radio communication method and equipment
KR1020187020428A KR20180125445A (ko) 2016-03-30 2016-03-30 무선 통신 방법 및 기기
JP2018535868A JP6789298B2 (ja) 2016-03-30 2016-03-30 無線通信方法及びデバイス
TW106110669A TWI706655B (zh) 2016-03-30 2017-03-30 無線通信方法和設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/077807 WO2017166091A1 (zh) 2016-03-30 2016-03-30 无线通信方法和设备

Publications (1)

Publication Number Publication Date
WO2017166091A1 true WO2017166091A1 (zh) 2017-10-05

Family

ID=59962457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077807 WO2017166091A1 (zh) 2016-03-30 2016-03-30 无线通信方法和设备

Country Status (7)

Country Link
US (1) US20190028188A1 (zh)
EP (1) EP3386257B1 (zh)
JP (1) JP6789298B2 (zh)
KR (1) KR20180125445A (zh)
CN (1) CN108476492B (zh)
TW (1) TWI706655B (zh)
WO (1) WO2017166091A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632978B (zh) * 2017-03-24 2023-09-29 中兴通讯股份有限公司 信息传输的处理方法及装置、节点

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007053954A1 (en) * 2005-11-10 2007-05-18 Nortel Networks Limited Zones for wireless networks with relays
CN102064879A (zh) * 2010-11-30 2011-05-18 大唐移动通信设备有限公司 一种时分双工通信的方法、系统和设备
CN103124207A (zh) * 2011-03-25 2013-05-29 北京新岸线移动多媒体技术有限公司 无线通信系统与设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116790A2 (en) * 2008-03-17 2009-09-24 Lg Electronics Inc. Method of performing harq in wireless communication system
WO2012108720A2 (ko) * 2011-02-10 2012-08-16 엘지전자 주식회사 무선통신 시스템에서 수신확인 전송 방법 및 장치
US9113494B2 (en) * 2011-09-29 2015-08-18 Industrial Technology Research Institute Method and wireless communication system for providing downlink control signalling for communication apparatus
US10153867B2 (en) * 2014-01-30 2018-12-11 Qualcomm Incorporated Carrier aggregation with dynamic TDD DL/UL subframe configuration
WO2015152629A1 (ko) * 2014-04-02 2015-10-08 엘지전자(주) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
US10432386B2 (en) * 2015-10-19 2019-10-01 Qualcomm Incorporated Flexible time division duplexing (TDD) subframe structure with latency reduction
CN113328836A (zh) * 2015-11-13 2021-08-31 北京三星通信技术研究有限公司 一种双工通信方法、基站及终端
US10631323B2 (en) * 2015-12-08 2020-04-21 Qualcomm Incorporated Delayed control feedback in a time division duplex carrier utilizing common bursts
US11831584B2 (en) * 2015-12-15 2023-11-28 Qualcomm Incorporated Techniques for indicating a dynamic subframe type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007053954A1 (en) * 2005-11-10 2007-05-18 Nortel Networks Limited Zones for wireless networks with relays
CN102064879A (zh) * 2010-11-30 2011-05-18 大唐移动通信设备有限公司 一种时分双工通信的方法、系统和设备
CN103124207A (zh) * 2011-03-25 2013-05-29 北京新岸线移动多媒体技术有限公司 无线通信系统与设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3386257A4 *

Also Published As

Publication number Publication date
JP2019517163A (ja) 2019-06-20
JP6789298B2 (ja) 2020-11-25
TWI706655B (zh) 2020-10-01
TW201735603A (zh) 2017-10-01
KR20180125445A (ko) 2018-11-23
CN108476492B (zh) 2021-01-26
US20190028188A1 (en) 2019-01-24
EP3386257B1 (en) 2021-03-17
EP3386257A1 (en) 2018-10-10
CN108476492A (zh) 2018-08-31
EP3386257A4 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
US11201700B2 (en) Method and apparatus for determining HARQ timing in communication systems
CN113287359B (zh) 用于传输高优先级上行链路传输的方法和装置
US9788319B2 (en) Information transmission method, user equipment, and base station
EP2875605B1 (en) Method and apparatus for transmitting harq-ack feedback information by a user equipment in a wireless communication system
EP3694132B1 (en) Data reception and feedback method and device
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
KR20190056429A (ko) 업 링크 제어 정보(uci)의 전송 방법 및 장치
EP3614771B1 (en) Method for transmitting information and terminal device
WO2017008747A1 (zh) 一种下行数据的反馈信息的发送及接收处理方法、装置
WO2017166091A1 (zh) 无线通信方法和设备
WO2016154922A1 (zh) 一种时分双工系统中的通信方法及基站、用户设备
JP2016515781A (ja) 通信を行う方法及び装置
EP3518608A1 (en) Signal transmission method and apparatus
JP6662480B2 (ja) 基地局による方法、基地局及びue
WO2022236535A1 (en) Uplink control information (uci) multiplexing for semi-persistent scheduling (sps) hybrid automatic repeat request (harq) skipping
JP6493597B2 (ja) 基地局による方法、基地局及びue
CN108604925B (zh) 传输数据的方法和装置
WO2019100365A1 (zh) 一种无线通信的方法和设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016895872

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018535868

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016895872

Country of ref document: EP

Effective date: 20180702

ENP Entry into the national phase

Ref document number: 20187020428

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE