WO2017164625A2 - Non-aqueous electrolyte additive, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery - Google Patents

Non-aqueous electrolyte additive, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
WO2017164625A2
WO2017164625A2 PCT/KR2017/003032 KR2017003032W WO2017164625A2 WO 2017164625 A2 WO2017164625 A2 WO 2017164625A2 KR 2017003032 W KR2017003032 W KR 2017003032W WO 2017164625 A2 WO2017164625 A2 WO 2017164625A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
carbon atoms
aqueous electrolyte
substituted
Prior art date
Application number
PCT/KR2017/003032
Other languages
French (fr)
Korean (ko)
Other versions
WO2017164625A3 (en
Inventor
유성훈
이경미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170034826A external-priority patent/KR102000100B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780002362.6A priority Critical patent/CN108886166B/en
Priority to PL17770595T priority patent/PL3300157T3/en
Priority to EP17770595.1A priority patent/EP3300157B1/en
Priority to US15/737,503 priority patent/US10601069B2/en
Publication of WO2017164625A2 publication Critical patent/WO2017164625A2/en
Publication of WO2017164625A3 publication Critical patent/WO2017164625A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte additive, a non-aqueous electrolyte and a lithium secondary battery for a lithium secondary battery comprising the same, a non-aqueous electrolyte additive that can improve the capacity characteristics and cycle life characteristics at high temperature storage, a non-aqueous electrolyte for lithium secondary batteries comprising the same and It relates to a lithium secondary battery.
  • Lithium batteries specifically lithium ion batteries (LIBs) are batteries that can best meet these needs, and have been adopted as power sources for many portable devices due to their high energy density and easy design.
  • LIBs lithium ion batteries
  • lithium secondary batteries are required to maintain excellent performance not only at room temperature but also in more severe external environments such as high or low temperature environments. have.
  • the lithium ion secondary battery is composed of a carbon material negative electrode capable of storing and releasing lithium ions, a positive electrode made of a lithium-containing transition metal oxide and a non-aqueous electrolyte, and lithium ions derived from the positive electrode active material by the first charge are negative electrode active materials, such as Charge and discharge are possible because it plays a role of transferring energy while reciprocating both electrodes such as being inserted into the carbon particles and detached again during discharge.
  • the cathode active material is structurally collapsed, resulting in a decrease in the performance of the anode.
  • metal ions eluted from the surface of the anode deteriorate the cathode while electro-deposition to the cathode. Such deterioration of battery performance tends to be accelerated when the potential of the positive electrode is increased or when the battery is exposed to high temperature.
  • a first object of the present invention is to provide a nonaqueous electrolyte additive excellent in the adsorption effect on the metal ions eluted from the anode.
  • Another object of the present invention is to provide a nonaqueous electrolyte solution for a lithium secondary battery including the nonaqueous electrolyte additive.
  • Another object of the present invention is to provide a lithium secondary battery having improved overall performance by including the nonaqueous electrolyte for lithium secondary batteries.
  • non-aqueous electrolyte additive comprising at least one compound selected from the group consisting of compounds represented by formulas (I) and (II):
  • R 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, or an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group,
  • R 2 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group, or substituted or unsubstituted with at least one nitrile group
  • R 4 is an alkylene group having 1 to 3 carbon atoms or -R 10 -C (O)-, R 10 is an alkylene group having 1 to 3 carbon atoms,
  • n and m are each independently an integer of 0 or 1.
  • R 5 is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group,
  • R 6 to R 8 are each independently a linear or nonlinear alkylene group having 1 to 5 carbon atoms.
  • Ionizable lithium salts Organic solvents; And it provides a non-aqueous electrolyte for lithium secondary battery comprising the non-aqueous electrolyte additive of the present invention.
  • the nonaqueous electrolyte additive may be included in an amount of 0.5 wt% to 5 wt%, specifically 1 wt% to 5 wt%, based on the total amount of the nonaqueous electrolyte.
  • a negative electrode a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a lithium secondary battery having a nonaqueous electrolyte of the present invention.
  • the metal ions eluted from the anode during charge and discharge and a non-aqueous electrolyte additive capable of forming a complex with the metal foreign matters mixed in the manufacturing process, thereby preventing the metal ions from being deposited on the surface of the cathode It is possible to produce a nonaqueous electrolytic solution which can suppress and form a more stable ionic conductive film on the cathode and anode surfaces. Furthermore, by including the nonaqueous electrolyte, a lithium secondary battery having improved overall performance such as capacity characteristics and cycle life characteristics at high temperature storage may be manufactured.
  • lithium secondary battery forms a passivation film by electrochemical oxidative decomposition reaction of electrolyte at the surface of the battery's positive electrode, especially in the presence of surface bond or activation position. Increase impedance to co-intercalation.
  • lithium ions are excessively released from the positive electrode during overcharging or high temperature storage, structural disintegration of the positive electrode active material or a chemical dissolution reaction occurs by the electrolyte solution, and ions such as Co, Mn, and Ni are eluted from the positive electrode active material. These reactions lead to deterioration of the performance of the positive electrode itself, and also cause side reactions of the electrolyte as well as collapse of the negative electrode structure, thereby degrading overall performance of the secondary battery.
  • the present invention by including at least one nitrile group and propargyl group having a metal ion adsorption performance in the structure, to provide a non-aqueous electrolyte additive that can suppress the generation of metal ions in the battery.
  • the present invention provides a nonaqueous electrolyte solution for a lithium secondary battery in which side reactions are reduced by including the nonaqueous electrolyte additive.
  • the present invention includes a non-aqueous electrolyte solution for a lithium secondary battery, thereby providing a lithium secondary battery having improved overall performance of a battery, such as capacity characteristics and cycle life characteristics at high temperature storage.
  • non-aqueous electrolyte additive comprising at least one compound selected from the group consisting of compounds represented by the following formula (I) and formula (II).
  • R 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, or an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group,
  • R 2 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group, or substituted or unsubstituted with at least one nitrile group
  • R 4 is an alkylene group having 1 to 3 carbon atoms or -R 10 -C (O)-, R 10 is an alkylene group having 1 to 3 carbon atoms,
  • n and m are each independently an integer of 0 or 1.
  • R 5 is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group,
  • R 6 to R 8 are each independently a linear or nonlinear alkylene group having 1 to 5 carbon atoms.
  • Specific examples of the compound represented by Formula I include at least one compound selected from the group consisting of compounds represented by Formulas I-1 to I-39.
  • the compound represented by Chemical Formula II may include at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas II-1 to II-4.
  • the polar nitrile group (ie cyano group) having a high dipole moment contained in the compounds represented by the above formulas I or II is Co, Mn eluted from the positive electrode by the chemical dissolution reaction of the electrolyte in the charge and discharge repeating process of the battery
  • the tendency to adsorb metal ions such as, or Ni, or to adsorb metallic foreign substances mixed in raw materials or manufacturing processes is very high.
  • the nitrile group in addition to the adsorption of metal ions, the non-covalent electrons of N stabilize the anion of the salt, thereby inhibiting HF generation due to salt decomposition, and form a complex structure or ligand by forming a stronger bond with the surface of the anode, especially at high temperature, A stable ion conductive film can be formed on the surface of the anode. Therefore, not only a part of the transition metal is eluted and deposited on the cathode during high temperature storage, but also a safe film is formed on the surface of the anode to suppress various side reactions and gas generation between the electrolyte and the anode, thereby swelling the battery.
  • the ring can be prevented to further improve high temperature storage characteristics such as remaining capacity and recovery capacity during high temperature storage.
  • the triple bond propazyl group contained in the compounds represented by the formula (I) or (II) is known to have a metal ion adsorption performance, and further complexes with other metal foreign substances that do not form a complex with the nitrile group. can do. Furthermore, since the propazyl group can be reduced on the surface of the negative electrode to form a stable ion conductive film on the negative electrode surface, smooth storage and release of lithium ions from the negative electrode even during high temperature storage can improve the life characteristics of the secondary battery. have.
  • one end of the triple bond is represented by the formulas (I-24), (I-37 to I-39) in which long functional groups are symmetrically bonded to both sides of the triple bond as compared to compounds containing hydrogen or short substituents.
  • the resulting polymerized film is relatively thick and the resistance is large, so that the cycle capacity retention ratio is relatively slightly decreased, whereas the adsorption effect with the metal foreign material is better, so that the voltage after high temperature storage may be relatively high. .
  • At least one or more of the compounds represented by the formula (I) or (II) having two functional groups such as nitrile group and propazyl group is used as a non-aqueous electrolyte additive, thereby eluting from the positive electrode during charge and discharge.
  • the formation of complexes with metal ions and / or metal foreign matters incorporated in the manufacturing process can suppress the electrodeposition of metal ions on the surface of the cathode, and can form a more stable ion conductive film on the electrode surface, resulting in high temperature storage. It is possible to manufacture a secondary battery having improved performance such as time capacity characteristics and cycle life characteristics.
  • nonaqueous electrolyte for a lithium secondary battery comprising the nonaqueous electrolyte additive.
  • the nonaqueous electrolyte additive may be included in an amount of about 0.5 wt% to 5 wt%, specifically 1 wt% to 5 wt%, based on the total weight of the nonaqueous electrolyte. If the content of the additive is less than 0.5% by weight, the effect of inhibiting dissolution of the metal ions described below and the improvement of capacity characteristics at high temperature storage may be insignificant. If the content of the additive is more than 5% by weight, the side reaction of the surplus nonaqueous electrolyte additive Due to the decrease in the capacity of the battery, the increase in the viscosity of the electrolyte, thereby increasing the resistance and the decrease in the ionic conductivity may cause a decrease in overall performance of the secondary battery.
  • the lithium salt contained in the non-aqueous electrolyte of the present invention may be used without limitation those conventionally used in the lithium secondary battery electrolyte, for example, the lithium salt includes Li + as a cation, anion include F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (F 2 SO 2) 2 N -, CF 3 CF 3
  • the said lithium salt can also be used 1 type or in mixture of 2 or more types as needed.
  • the lithium salt may be appropriately changed within a range generally available, but may be included in an electrolyte solution at a concentration of 0.8 M to 1.5 M in order to obtain an effect of forming an anti-corrosion coating on the surface of the electrode.
  • the organic solvent included in the nonaqueous electrolyte of the present invention can be used without limitation those conventionally used in the electrolyte for lithium secondary batteries, for example, ether compounds, ester compounds, amide compounds, linear carbonate compounds, or cyclic carbonate compounds Etc. can be used individually or in mixture of 2 or more types, respectively. Representatively, it may include a cyclic carbonate compound, a linear carbonate compound, or a mixture thereof.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included.
  • cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC) are any one selected from the group consisting of or mixtures of two or more thereof.
  • linear carbonate compound examples include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate Any one selected from, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in the electrolyte well.
  • an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
  • the ether in the organic solvent may be any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more thereof. It is not limited to this.
  • esters in the organic solvent include linear esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate; And cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, or ⁇ -caprolactone, or mixtures of two or more thereof. It may be, but is not limited thereto.
  • the nonaqueous electrolyte of the present invention may further include an additive for forming an SEI film, if necessary.
  • an additive for forming SEI film which can be used in the present invention, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, vinyl ethylene carbonate, cyclic sulfite, saturated sultone, unsaturated sultone, acyclic sulfone, etc. may be used alone or in combination. It can mix and use the above.
  • the cyclic sulfites include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5-dimethyl Propylene sulfite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, 1,3-butylene glycol sulfite, and the like. Examples thereof include 1,3-propane sultone and 1,4-butane sultone.
  • unsaturated sultone examples include ethene sultone, 1,3-propene sultone, 1,4-butene sultone, 1-methyl-1,3 -Propene sulfone, and the like, and acyclic sulfones include divinyl sulfone, dimethyl sulfone, diethyl sulfone, methylethyl sulfone, and methyl vinyl sulfone.
  • the secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and a non-aqueous electrolyte
  • a lithium secondary battery comprising the non-aqueous electrolyte of the present invention as the non-aqueous electrolyte.
  • the lithium secondary battery of the present invention may be prepared by injecting the nonaqueous electrolyte of the present invention into an electrode structure consisting of a cathode, a cathode, and a separator interposed between the cathode and the anode.
  • the positive electrode, the negative electrode, and the separator constituting the electrode structure may be used all those conventionally used in the manufacture of a lithium secondary battery.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on the positive electrode current collector.
  • the cathode mixture layer may be formed by coating a cathode slurry including a cathode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide may be lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxides (eg, LiCoO 2, etc.), lithium-nickel oxides, and the like.
  • the lithium composite metal oxide may be lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxides (eg, LiCoO 2, etc.), lithium-nickel oxides, and the like.
  • lithium-nickel-manganese-based oxide for example, LiNi 1-Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( here, 0 ⁇ Z ⁇ 2) and the like
  • lithium-nickel-cobalt oxide e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1) and the like
  • lithium-manganese-cobalt oxide e.
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides may be improved in capacity and stability of the battery.
  • the lithium composite metal oxide is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 in consideration of the remarkable improvement effect according to the type and content ratio control of the element forming the lithium composite metal oxide.
  • Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 , and the like, and any one or a mixture of two or more thereof may be used. have.
  • the cathode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the cathode slurry.
  • the conductive material is typically added at 1 to 30% by weight based on the total weight of the positive electrode slurry.
  • Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • Specific examples of commercially available conductive materials include Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, and EC, which are acetylene black series. (Armak Company), Vulcan XC-72 (manufactured by Cabot Company), and Super P (manufactured by Timcal).
  • the binder is a component that assists in bonding the active material and the conductive material and bonding to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the positive electrode active material and optionally a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the solids in the positive electrode active material and, optionally, the slurry including the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • the negative electrode may be prepared by forming a negative electrode mixture layer on the negative electrode current collector.
  • the negative electrode mixture layer may be formed by coating a slurry including a negative electrode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the above metals; And one or two or more negative electrode active materials selected from the group consisting of the above metals and a composite of carbon.
  • Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe
  • Alloys composed of the metals (Me) Oxides of the above metals
  • one or two or more negative electrode active materials selected from the group consisting of the above metals and a composite of carbon.
  • the negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the negative electrode slurry.
  • the binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluor Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of the negative electrode slurry.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include an organic solvent such as water or NMP, alcohol, etc., and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material and optionally a binder and a conductive material.
  • concentration of the solids in the slurry including the negative electrode active material, and optionally the binder and the conductive material may be 50% to 95% by weight, preferably 70% to 90% by weight.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • a positive active material slurry was prepared by adding pyrrolidone (NMP) in a ratio of 100: 40 parts by weight.
  • the positive electrode active material slurry was applied to a positive electrode current collector (Al thin film) having a thickness of 100 ⁇ m, dried, and roll pressed to prepare a positive electrode.
  • Natural graphite as a negative electrode active material PVDF as a binder and carbon black as a conductive material were added to NMP as a solvent at a ratio of 100: 100 parts by weight to prepare a negative electrode active material slurry.
  • the negative electrode active material slurry was applied to a negative electrode current collector (Cu thin film) having a thickness of 90 ⁇ m, dried, and roll pressed to prepare a negative electrode.
  • the positive electrode and the negative electrode prepared by the above-described method were laminated together with a polyethylene porous film to prepare an electrode assembly. Then, the prepared nonaqueous electrolyte was poured into the battery case, and the lithium secondary battery was prepared by sealing.
  • Example 1 In the preparation of the non-aqueous electrolyte of Example 1, except that each of the additives in the amount shown in Table 1, the same method as in Example 1 to the non-aqueous electrolyte of Examples 2 to 28 and a secondary battery comprising the same Were prepared respectively.
  • a positive active material slurry was prepared by adding pyrrolidone (NMP) in a ratio of 100: 40 parts by weight.
  • the positive electrode active material slurry was applied to a positive electrode current collector (Al thin film) having a thickness of 100 ⁇ m, dried, and roll pressed to prepare a positive electrode.
  • the prepared positive electrode was punched out for a coin-type battery, and then fixed with three Fe powders having an average particle diameter (D50) of about 200 ⁇ m on the surface of the positive electrode, and then the non-aqueous electrolyte was injected to prepare a coin-type half battery.
  • D50 average particle diameter
  • Example 29 In the preparation of the non-aqueous electrolyte of Example 29, except that each of the additives in the amounts shown in Table 2, the same method as in Example 29, the non-aqueous electrolyte of Examples 30 to 56 and a secondary battery comprising the same Were prepared respectively.
  • a nonaqueous electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that no additive was included in the preparation of the nonaqueous electrolyte of Example 1.
  • the non-aqueous electrolyte was prepared in the same manner as in Example 1, except that 0.3 g of the compound of Formula a was included instead of the compound of Formula I-1 when preparing the non-aqueous electrolyte of Example 1. And a secondary battery comprising the same was prepared.
  • a nonaqueous electrolyte and a coin-type half-cell including the same were prepared in the same manner as in Example 29, except that no additive was included in the preparation of the nonaqueous electrolyte of Example 29.
  • Each of the secondary batteries prepared in Examples 1 to 28 and Comparative Examples 1 to 9 was subjected to constant current / constant voltage condition charging and 0.05C cut off charging to 4.35V at 0.8C rate, and discharged to 0.5C 3.0V (initial) Discharge capacity). Then, constant current / constant voltage condition charging and 0.05C cut off charging were performed up to 4.35V at 0.8C rate and stored at 60 ° C. for 2 weeks. Thereafter, the battery was discharged at 0.5C 3.0V at room temperature, and the discharge amount thereof was measured (remaining discharge amount). The discharge amount was measured again by charging the constant current / constant voltage condition up to 0.8C rate, 4.35V, 0.05C cut off charging, and 0.5C 3.0V (recovery discharge amount).
  • the remaining discharge amount and the recovery discharge amount are expressed in% relative to the initial discharge amount, and are shown in Table 1 below.
  • Each of the secondary batteries prepared in Examples 1 to 28 and Comparative Examples 1 to 9 was subjected to constant current / constant voltage condition charging and 0.05C cut off charging to 0.85C at 4.35V, and discharged at 0.5C to 3.0V. Then, the cycle capacity retention after 200 cycles was performed by performing constant current / constant voltage condition charging and 0.05C cut-off charging up to 4.35V at 0.8C rate, and discharging at 0.5C 3.0V at room temperature as one cycle. It is shown in Table 1, expressed as a percentage of one cycle capacity.
  • the amount of residual discharge at high temperature storage was about It can be seen that the recovery discharge amount is 80% or more, about 92% or more, and the cycle capacity retention rate is about 87% or more.
  • the secondary battery of Comparative Example 1 which does not use an additive, has a residual discharge amount of about 64%, a recovery discharge amount of about 80%, and a cycle capacity retention rate of about 60% at high temperature storage. It can be seen that the degradation compared to the secondary battery of 28 to.
  • the residual discharge amount at the high temperature storage of the secondary batteries of Comparative Examples 2 to 9 including the compound of Formulas a to d as an additive as a non-aqueous electrolyte additive is 80% or less, recovery discharge amount is 87% or less, and the capacity retention ratio is 70 It can be confirmed that all of the secondary batteries of Examples 1 to 28 are lowered to less than or equal to%.
  • Each coin-type secondary battery manufactured in Examples 29 to 56 and Comparative Examples 10 to 18 was subjected to constant current / constant voltage condition charging and 0.05C cut off charging to 4.35V at 0.8C rate, and discharged to 0.5C 3.0V. It was.
  • Each battery is made of five batteries, and the number of batteries capable of charging and discharging is shown in Table 2 below.
  • the battery capable of charging and discharging was charged under constant current / constant voltage conditions up to 4.35 V at 0.8 C rate and stored at 45 ° C. for 6 days.
  • the voltage at 45 ° C. after storage was measured and the results are shown in Table 2 below.
  • the secondary batteries of Examples 29 to 56 since the compounds containing the nitrile group and the propazyl group included as additives form a complex with Fe foreign material to suppress metal elution, most of the batteries It can be seen that charging and discharging are possible and the voltage is maintained at about 4.01V or higher even after high temperature storage.
  • the secondary batteries of Comparative Examples 11, 12, 14, 15, 16, and 18 including the compounds of Formulas (a) to (d) as non-aqueous electrolyte additives were able to be charged and discharged in some cells, but the voltage was weak after high temperature storage. It can be seen that the drop below 3.7V.

Abstract

The present invention relates to a non-aqueous electrolyte additive, a non-aqueous electrolyte containing the same for a lithium secondary battery, and a lithium secondary battery. Specifically, the present invention relates to a non-aqueous electrolyte additive having a nitrile group and a propargyl group, to a non-aqueous electrolyte for a lithium secondary battery, the non-aqueous electrolyte being capable of improving high-temperature capacity characteristics and cycle life characteristics by containing the non-aqueous electrolyte additive, and to a lithium secondary battery.

Description

비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지Non-aqueous electrolyte additive, Non-aqueous electrolyte and lithium secondary battery for lithium secondary battery comprising the same
관련 출원(들)과의 상호 인용Cross Citation with Related Application (s)
본 출원은 2016년 03월 23일자 한국 특허 출원 제10-2016-0034809호, 2016년 4월 25일자 한국 특허 출원 제10-2016-0049963호 및 2017년 03월 20일자 한국 특허 출원 제10-2017-0034826호 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application is filed with Korean Patent Application No. 10-2016-0034809 filed March 23, 2016, Korean Patent Application No. 10-2016-0049963 filed April 25, 2016, and Korean Patent Application No. 10-2017 dated March 20, 2017. Claiming the benefit of priority based on -0034826, all contents disclosed in the literature of the relevant Korean patent application are incorporated as part of this specification.
기술분야Technical Field
본 발명은 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지에 관한 것으로, 고온 저장 시 용량 특성 및 사이클 수명 특성을 향상시킬 수 있는 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지에 관한 것이다.The present invention relates to a non-aqueous electrolyte additive, a non-aqueous electrolyte and a lithium secondary battery for a lithium secondary battery comprising the same, a non-aqueous electrolyte additive that can improve the capacity characteristics and cycle life characteristics at high temperature storage, a non-aqueous electrolyte for lithium secondary batteries comprising the same and It relates to a lithium secondary battery.
정보 통신 산업의 발전에 따라 전자 기기가 소형화, 경량화, 박형화 및 휴대화됨에 따라, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. As electronic devices become smaller, lighter, thinner, and portable in accordance with the development of the information and communication industry, the demand for high energy density of batteries used as power sources for such electronic devices is increasing.
리튬 전지, 구체적으로 리튬 이온 전지(lithium ion battery: LIB)는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 에너지 밀도가 높고 설계가 용이하여 많은 휴대용 기기의 전원으로 채택되어 왔다. Lithium batteries, specifically lithium ion batteries (LIBs), are batteries that can best meet these needs, and have been adopted as power sources for many portable devices due to their high energy density and easy design.
최근 리튬 이차전지의 사용 범위가 종래 소형 전자 기기에서 대형 전자 기기, 자동차, 스마트 그리드 등으로 확대되면서 상온에서뿐만 아니라 고온이나 저온 환경 등 보다 가혹한 외부 환경에서도 우수한 성능을 유지할 수 있는 리튬 이차전지가 요구되고 있다.Recently, as the range of use of lithium secondary batteries has been expanded from small electronic devices to large electronic devices, automobiles, and smart grids, lithium secondary batteries are required to maintain excellent performance not only at room temperature but also in more severe external environments such as high or low temperature environments. have.
상기 리튬 이온 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재 음극과, 리튬 함유 전이금속 산화물로 이루어진 양극 및 비수전해액으로 구성되며, 첫번째 충전에 의해 양극 활물질로부터 나온 리튬 이온이 음극활물질, 예컨대 카본 입자 내에 삽입되고 방전시 다시 탈리되는 등 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.The lithium ion secondary battery is composed of a carbon material negative electrode capable of storing and releasing lithium ions, a positive electrode made of a lithium-containing transition metal oxide and a non-aqueous electrolyte, and lithium ions derived from the positive electrode active material by the first charge are negative electrode active materials, such as Charge and discharge are possible because it plays a role of transferring energy while reciprocating both electrodes such as being inserted into the carbon particles and detached again during discharge.
그러나 충방전이 진행됨에 따라 양극활물질이 구조적으로 붕괴되면서 양극의 성능저하가 발생한다. 또한, 양극 구조 붕괴시 양극 표면으로부터 용출된 금속이온이 음극에 전착(electro-deposition)하면서 음극을 열화 시키게 된다. 이러한 전지 성능 열화 현상은 양극의 전위가 높아지거나, 전지의 고온 노출 시 더욱 가속화되는 경향을 보인다.However, as the charge and discharge proceeds, the cathode active material is structurally collapsed, resulting in a decrease in the performance of the anode. In addition, when the anode structure collapses, metal ions eluted from the surface of the anode deteriorate the cathode while electro-deposition to the cathode. Such deterioration of battery performance tends to be accelerated when the potential of the positive electrode is increased or when the battery is exposed to high temperature.
이에, 이러한 문제를 해결할 수 있는 새로운 구성의 양극, 또는 전해액 등의 개발이 필요한 실정이다.Therefore, the situation is required to develop a new configuration of the positive electrode, the electrolyte or the like that can solve this problem.
선행기술문헌Prior art literature
한국 특허등록공보 제10-1278692호Korean Patent Registration Publication No. 10-1278692
한국 특허공개번호 제10-2014-0127741호Korean Patent Publication No. 10-2014-0127741
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 양극으로부터 용출된 금속 이온에 대한 흡착 효과가 우수한 비수전해액 첨가제를 제공하는 것을 목적으로 한다.In order to solve the above problems, a first object of the present invention is to provide a nonaqueous electrolyte additive excellent in the adsorption effect on the metal ions eluted from the anode.
또한, 본 발명의 제2 기술적 과제는 상기 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a nonaqueous electrolyte solution for a lithium secondary battery including the nonaqueous electrolyte additive.
또한, 본 발명의 제3 기술적 과제는 상기 리튬 이차전지용 비수전해액을 포함함으로써 제반 성능이 향상된 리튬 이차전지를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a lithium secondary battery having improved overall performance by including the nonaqueous electrolyte for lithium secondary batteries.
상기의 목적을 달성하기 위하여, 본 발명의 일실시예에서는 In order to achieve the above object, in one embodiment of the present invention
하기 화학식 I 및 화학식 II로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함하는 비수전해액 첨가제를 제공한다:There is provided a non-aqueous electrolyte additive comprising at least one compound selected from the group consisting of compounds represented by formulas (I) and (II):
[화학식 1][Formula 1]
Figure PCTKR2017003032-appb-I000001
Figure PCTKR2017003032-appb-I000001
상기 화학식 I 에서,In Chemical Formula I,
R1은 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기, 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 방향족기이고,R 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, or an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group,
R2는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기, 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 방향족기, 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 헤테로 방향족기, 탄소수 2 내지 5의 선형 또는 비선형 알케닐기, 또는 -C(O)-R9-이고, R9는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 3의 선형 또는 비선형 알킬렌기이고,R 2 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group, or substituted or unsubstituted with at least one nitrile group A substituted heteroaromatic group having 6 to 8 carbon atoms, a linear or nonlinear alkenyl group having 2 to 5 carbon atoms, or -C (O) -R 9- , wherein R 9 is substituted or substituted with at least one nitrile group and having 1 to 1 carbon atoms 3 is a linear or nonlinear alkylene group,
R3 m=0인 경우에는 수소 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬기이며, m=1인 경우에는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고, R 3 is when m = 0 it is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group, when m = 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms,
R4는 탄소수 1 내지 3의 알킬렌기 또는 -R10-C(O)-이고, R10은 탄소수 1 내지 3의 알킬렌기이고,R 4 is an alkylene group having 1 to 3 carbon atoms or -R 10 -C (O)-, R 10 is an alkylene group having 1 to 3 carbon atoms,
n 및 m은 각각 독립적으로 0 또는 1의 정수이다.n and m are each independently an integer of 0 or 1.
[화학식 II][Formula II]
Figure PCTKR2017003032-appb-I000002
Figure PCTKR2017003032-appb-I000002
상기 화학식 II에서,In Chemical Formula II,
R5는 수소 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬기이고,R 5 is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group,
R6 내지 R8은 각각 독립적으로 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이다.R 6 to R 8 are each independently a linear or nonlinear alkylene group having 1 to 5 carbon atoms.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
이온화 가능한 리튬염; 유기용매; 및 상기 본 발명의 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공한다.Ionizable lithium salts; Organic solvents; And it provides a non-aqueous electrolyte for lithium secondary battery comprising the non-aqueous electrolyte additive of the present invention.
상기 비수전해액 첨가제는 비수전해액 전체 함량을 기준으로 0.5 중량% 내지 5 중량%, 구체적으로 1 중량% 내지 5 중량%로 포함될 수 있다.The nonaqueous electrolyte additive may be included in an amount of 0.5 wt% to 5 wt%, specifically 1 wt% to 5 wt%, based on the total amount of the nonaqueous electrolyte.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및 본 발명의 비수 전해액을 구비한 리튬 이차전지를 제공한다.Provided is a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a lithium secondary battery having a nonaqueous electrolyte of the present invention.
본 발명의 일 실시예에 따르면, 충방전시 양극으로부터 용출된 금속 이온 및 제조 공정 시 혼입된 금속 이물들과 착물을 형성할 수 있는 비수전해액 첨가제를 포함함으로써, 금속 이온이 음극 표면에 전착하는 것을 억제하고, 음극 및 양극 표면 상에 보다 안정적인 이온전도성 (ionic conductive) 피막을 형성할 수 있는 비수전해액을 제조할 수 있다. 나아가, 상기 비수전해액을 포함함으로써 고온 저장 시 용량 특성 및 사이클 수명 특성 등의 제반 성능이 향상된 리튬 이차전지를 제조할 수 있다.According to an embodiment of the present invention, the metal ions eluted from the anode during charge and discharge and a non-aqueous electrolyte additive capable of forming a complex with the metal foreign matters mixed in the manufacturing process, thereby preventing the metal ions from being deposited on the surface of the cathode It is possible to produce a nonaqueous electrolytic solution which can suppress and form a more stable ionic conductive film on the cathode and anode surfaces. Furthermore, by including the nonaqueous electrolyte, a lithium secondary battery having improved overall performance such as capacity characteristics and cycle life characteristics at high temperature storage may be manufactured.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
전기화학소자 중 리튬 이차전지는 전지의 양극에서 특히 표면의 결합이 존재하는 곳이나 활성화 위치에서 전해액의 전기화학적 산화 분해 반응에 의하여 일종의 부동태 막을 형성하게 되는데, 이 부동태 막은 양극활물질로의 리튬이온의 삽입(co-intercalation)에 대한 임피던스를 증가시킨다. 또한, 과충전 또는 고온 저장 시에 양극으로부터 리튬 이온이 과량으로 방출되면서 양극활물질의 구조적 붕괴 내지는 전해액에 의한 화학적 용해 반응이 발생하여 양극 활물질로부터 Co, Mn, Ni 등의 이온이 용출된다. 이러한 반응들은 양극 자체의 성능 저하로 이어짐을 물론이며, 전해액 부반응뿐만 아니라, 음극 구조의 붕괴 등을 야기하여 이차전지의 제반 성능을 저하시킨다. Among the electrochemical devices, lithium secondary battery forms a passivation film by electrochemical oxidative decomposition reaction of electrolyte at the surface of the battery's positive electrode, especially in the presence of surface bond or activation position. Increase impedance to co-intercalation. In addition, as lithium ions are excessively released from the positive electrode during overcharging or high temperature storage, structural disintegration of the positive electrode active material or a chemical dissolution reaction occurs by the electrolyte solution, and ions such as Co, Mn, and Ni are eluted from the positive electrode active material. These reactions lead to deterioration of the performance of the positive electrode itself, and also cause side reactions of the electrolyte as well as collapse of the negative electrode structure, thereby degrading overall performance of the secondary battery.
본 발명에서는 구조 내에 금속 이온 흡착 성능을 가지는 적어도 하나 이상의 니트릴기 및 프로파질(propargyl)기를 포함함으로써, 전지 내부에서 금속 이온 발생을 억제할 수 있는 비수전해액 첨가제를 제공하고자 한다.In the present invention, by including at least one nitrile group and propargyl group having a metal ion adsorption performance in the structure, to provide a non-aqueous electrolyte additive that can suppress the generation of metal ions in the battery.
또한, 본 발명에서는 상기 비수전해액 첨가제를 포함함으로써, 부반응이 저감된 리튬 이차전지용 비수 전해액을 제공한다.In addition, the present invention provides a nonaqueous electrolyte solution for a lithium secondary battery in which side reactions are reduced by including the nonaqueous electrolyte additive.
또한, 본 발명에서는 상기 리튬 이차전지용 비수 전해액을 포함함으로써, 고온 저장 시 용량 특성 및 사이클 수명 특성 등 전지의 제반 성능이 향상된 리튬 이차전지를 제공한다. In addition, the present invention includes a non-aqueous electrolyte solution for a lithium secondary battery, thereby providing a lithium secondary battery having improved overall performance of a battery, such as capacity characteristics and cycle life characteristics at high temperature storage.
구체적으로, 본 발명의 일 실시예에서는Specifically, in one embodiment of the present invention
하기 화학식 I 및 화학식 II로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함하는 비수전해액 첨가제를 제공한다.It provides a non-aqueous electrolyte additive comprising at least one compound selected from the group consisting of compounds represented by the following formula (I) and formula (II).
[화학식 1][Formula 1]
Figure PCTKR2017003032-appb-I000003
Figure PCTKR2017003032-appb-I000003
상기 화학식 I 에서,In Chemical Formula I,
R1은 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기, 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 방향족기이고,R 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, or an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group,
R2는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기, 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 방향족기, 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 헤테로 방향족기, 탄소수 2 내지 5의 선형 또는 비선형 알케닐기, 또는 -C(O)-R9-이고, R9는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 3의 선형 또는 비선형 알킬렌기이고,R 2 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group, or substituted or unsubstituted with at least one nitrile group A substituted heteroaromatic group having 6 to 8 carbon atoms, a linear or nonlinear alkenyl group having 2 to 5 carbon atoms, or -C (O) -R 9- , wherein R 9 is substituted or substituted with at least one nitrile group and having 1 to 1 carbon atoms 3 is a linear or nonlinear alkylene group,
R3 m=0인 경우에는 수소 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬기이며, m=1인 경우에는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고, R 3 is when m = 0 it is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group, when m = 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms,
R4는 탄소수 1 내지 3의 알킬렌기 또는 -R10-C(O)-이고, R10은 탄소수 1 내지 3의 알킬렌기이고,R 4 is an alkylene group having 1 to 3 carbon atoms or -R 10 -C (O)-, R 10 is an alkylene group having 1 to 3 carbon atoms,
n 및 m은 각각 독립적으로 0 또는 1의 정수이다.n and m are each independently an integer of 0 or 1.
[화학식 II][Formula II]
Figure PCTKR2017003032-appb-I000004
Figure PCTKR2017003032-appb-I000004
상기 화학식 II에서,In Chemical Formula II,
R5는 수소 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬기이고,R 5 is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group,
R6 내지 R8은 각각 독립적으로 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이다.R 6 to R 8 are each independently a linear or nonlinear alkylene group having 1 to 5 carbon atoms.
상기 화학식 I로 표시되는 화합물의 구체적인 예시로는 하기 화학식 I-1 내지 I-39로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 하나 이상의 화합물을 들 수 있다.Specific examples of the compound represented by Formula I include at least one compound selected from the group consisting of compounds represented by Formulas I-1 to I-39.
(화학식 I-1)Formula I-1
Figure PCTKR2017003032-appb-I000005
Figure PCTKR2017003032-appb-I000005
(화학식 I-2)Formula I-2
Figure PCTKR2017003032-appb-I000006
Figure PCTKR2017003032-appb-I000006
(화학식 I-3)Formula I-3
Figure PCTKR2017003032-appb-I000007
Figure PCTKR2017003032-appb-I000007
(화학식 I-4)Formula I-4
Figure PCTKR2017003032-appb-I000008
Figure PCTKR2017003032-appb-I000008
(화학식 I-5)Formula I-5
Figure PCTKR2017003032-appb-I000009
Figure PCTKR2017003032-appb-I000009
(화학식 I-6)Formula I-6
Figure PCTKR2017003032-appb-I000010
Figure PCTKR2017003032-appb-I000010
(화학식 I-7)Formula I-7
Figure PCTKR2017003032-appb-I000011
Figure PCTKR2017003032-appb-I000011
(화학식 I-8)Formula I-8
Figure PCTKR2017003032-appb-I000012
Figure PCTKR2017003032-appb-I000012
(화학식 I-9)Formula I-9
Figure PCTKR2017003032-appb-I000013
Figure PCTKR2017003032-appb-I000013
(화학식 I-10)Formula I-10
Figure PCTKR2017003032-appb-I000014
Figure PCTKR2017003032-appb-I000014
(화학식 I-11)Formula I-11
Figure PCTKR2017003032-appb-I000015
Figure PCTKR2017003032-appb-I000015
(화학식 I-12)Formula I-12
Figure PCTKR2017003032-appb-I000016
Figure PCTKR2017003032-appb-I000016
(화학식 I-13)Formula I-13
Figure PCTKR2017003032-appb-I000017
Figure PCTKR2017003032-appb-I000017
(화학식 I-14)Formula I-14
Figure PCTKR2017003032-appb-I000018
Figure PCTKR2017003032-appb-I000018
(화학식 I-15)Formula I-15
Figure PCTKR2017003032-appb-I000019
Figure PCTKR2017003032-appb-I000019
(화학식 I-16)Formula I-16
Figure PCTKR2017003032-appb-I000020
Figure PCTKR2017003032-appb-I000020
(화학식 I-17)Formula I-17
Figure PCTKR2017003032-appb-I000021
Figure PCTKR2017003032-appb-I000021
(화학식 I-18)Formula I-18
Figure PCTKR2017003032-appb-I000022
Figure PCTKR2017003032-appb-I000022
(화학식 I-19)Formula I-19
Figure PCTKR2017003032-appb-I000023
Figure PCTKR2017003032-appb-I000023
(화학식 I-20)Formula I-20
Figure PCTKR2017003032-appb-I000024
Figure PCTKR2017003032-appb-I000024
(화학식 I-21)Formula I-21
Figure PCTKR2017003032-appb-I000025
Figure PCTKR2017003032-appb-I000025
(화학식 I-22)Formula I-22
(화학식 I-23)Formula I-23
Figure PCTKR2017003032-appb-I000027
Figure PCTKR2017003032-appb-I000027
(화학식 I-24)Formula I-24
Figure PCTKR2017003032-appb-I000028
Figure PCTKR2017003032-appb-I000028
(화학식 I-25)Formula I-25
Figure PCTKR2017003032-appb-I000029
Figure PCTKR2017003032-appb-I000029
(화학식 I-26)Formula I-26
Figure PCTKR2017003032-appb-I000030
Figure PCTKR2017003032-appb-I000030
(화학식 I-27)Formula I-27
Figure PCTKR2017003032-appb-I000031
Figure PCTKR2017003032-appb-I000031
(화학식 I-28)Formula I-28
Figure PCTKR2017003032-appb-I000032
Figure PCTKR2017003032-appb-I000032
(화학식 I-29)Formula I-29
Figure PCTKR2017003032-appb-I000033
Figure PCTKR2017003032-appb-I000033
(화학식 I-30)Formula I-30
Figure PCTKR2017003032-appb-I000034
Figure PCTKR2017003032-appb-I000034
(화학식 I-31)Formula I-31
Figure PCTKR2017003032-appb-I000035
Figure PCTKR2017003032-appb-I000035
(화학식 I-32)Formula I-32
Figure PCTKR2017003032-appb-I000036
Figure PCTKR2017003032-appb-I000036
(화학식 I-33)Formula I-33
Figure PCTKR2017003032-appb-I000037
Figure PCTKR2017003032-appb-I000037
(화학식 I-34)Formula I-34
Figure PCTKR2017003032-appb-I000038
Figure PCTKR2017003032-appb-I000038
(화학식 I-35)Formula I-35
Figure PCTKR2017003032-appb-I000039
Figure PCTKR2017003032-appb-I000039
(화학식 I-36)Formula I-36
Figure PCTKR2017003032-appb-I000040
Figure PCTKR2017003032-appb-I000040
(화학식 I-37)Formula I-37
Figure PCTKR2017003032-appb-I000041
Figure PCTKR2017003032-appb-I000041
(화학식 I-38)Formula I-38
Figure PCTKR2017003032-appb-I000042
Figure PCTKR2017003032-appb-I000042
(화학식 I-39) Formula I-39
Figure PCTKR2017003032-appb-I000043
Figure PCTKR2017003032-appb-I000043
또한, 상기 화학식 II로 나타내는 화합물은 하기 화학식 II-1 내지 II-4로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 하나 이상의 화합물을 포함할 들 수 있다.In addition, the compound represented by Chemical Formula II may include at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas II-1 to II-4.
(화학식 II-1) Formula II-1
Figure PCTKR2017003032-appb-I000044
Figure PCTKR2017003032-appb-I000044
(화학식 II-2)Formula II-2
Figure PCTKR2017003032-appb-I000045
Figure PCTKR2017003032-appb-I000045
(화학식 II-3)Formula II-3
Figure PCTKR2017003032-appb-I000046
Figure PCTKR2017003032-appb-I000046
(화학식 II-4)Formula II-4
Figure PCTKR2017003032-appb-I000047
Figure PCTKR2017003032-appb-I000047
상기 화학식 I 또는 II로 표시되는 화합물들에 함유된 높은 쌍극자 모멘트를 가지는 극성의 니트릴기(즉, 시아노기)는 전지의 충방전 반복 과정에서 전해액의 화학적 용해 반응에 의해 양극으로부터 용출되는 Co, Mn, 또는 Ni 등의 금속 이온을 흡착하거나, 원재료나 제조 공정 시 혼입된 금속 이물질들을 흡착하려는 경향이 현저히 높다. 더욱이, 상기 니트릴기는 금속 이온 흡착 외에도 N의 비공유 전자가 염의 음이온을 안정화시켜, 염 분해로 인한 HF 발생을 억제하고, 특히 고온에서 양극 표면과 더욱 강한 결합을 형성하여 착체 구조 또는 리간드를 형성하므로, 양극 표면 상에 안정한 이온전도성 피막을 형성할 수 있다. 따라서, 고온 저장 시에 전이금속의 일부가 용출되어 음극에 석출되는 것을 방지할 뿐만 아니라, 양극 표면에 안전한 피막을 형성하여 전해액과 양극의 여러 가지 부반응 및 가스발생을 억제하고, 이에 따라 전지의 스웰링을 방지하여 고온 저장 시에 잔존 용량 및 회복 용량과 같은 고온 저장 특성을 보다 개선할 수 있다.The polar nitrile group (ie cyano group) having a high dipole moment contained in the compounds represented by the above formulas I or II is Co, Mn eluted from the positive electrode by the chemical dissolution reaction of the electrolyte in the charge and discharge repeating process of the battery The tendency to adsorb metal ions such as, or Ni, or to adsorb metallic foreign substances mixed in raw materials or manufacturing processes is very high. Furthermore, the nitrile group, in addition to the adsorption of metal ions, the non-covalent electrons of N stabilize the anion of the salt, thereby inhibiting HF generation due to salt decomposition, and form a complex structure or ligand by forming a stronger bond with the surface of the anode, especially at high temperature, A stable ion conductive film can be formed on the surface of the anode. Therefore, not only a part of the transition metal is eluted and deposited on the cathode during high temperature storage, but also a safe film is formed on the surface of the anode to suppress various side reactions and gas generation between the electrolyte and the anode, thereby swelling the battery. The ring can be prevented to further improve high temperature storage characteristics such as remaining capacity and recovery capacity during high temperature storage.
또한, 상기 화학식 I 또는 II 로 표시되는 화합물들에 함유된 삼중 결합의 프로파질기는 금속 이온 흡착 성능을 가지는 것으로 알려져 있어, 상기 니트릴기와 착물을 형성하지 않는 그 외 금속 이물과 추가로 착물을 형성할 수 있다. 더욱이, 상기 프로파질기는 음극 표면에서 환원되어 음극 표면에 안정한 이온전도성 피막을 형성할 수 있으므로, 고온 저장 시에도 음극으로부터 리튬 이온의 흡장 및 방출을 원활하게 하여 이차전지의 수명 특성을 개선시킬 수 있다.In addition, the triple bond propazyl group contained in the compounds represented by the formula (I) or (II) is known to have a metal ion adsorption performance, and further complexes with other metal foreign substances that do not form a complex with the nitrile group. can do. Furthermore, since the propazyl group can be reduced on the surface of the negative electrode to form a stable ion conductive film on the negative electrode surface, smooth storage and release of lithium ions from the negative electrode even during high temperature storage can improve the life characteristics of the secondary battery. have.
한편, 상기 삼중 결합의 한쪽 말단이 수소, 또는 짧은 치환기들을 포함하는 화합물들에 비하여, 대칭적으로 삼중 결합의 양쪽에 긴 작용기들이 결합된 화학식 I-24, I-37 내지 I-39로 표시되는 화합물들의 경우, 생성되는 중합 피막이 상대적으로 두껍고 저항이 커서 사이클 용량 유지율(%)은 상대적으로 약간 저하되는 반면에, 금속 이물과의 흡착 효과가 보다 우수하여 고온 저장 후 전압은 상대적으로 높게 나타날 수 있다.On the other hand, one end of the triple bond is represented by the formulas (I-24), (I-37 to I-39) in which long functional groups are symmetrically bonded to both sides of the triple bond as compared to compounds containing hydrogen or short substituents. In the case of the compounds, the resulting polymerized film is relatively thick and the resistance is large, so that the cycle capacity retention ratio is relatively slightly decreased, whereas the adsorption effect with the metal foreign material is better, so that the voltage after high temperature storage may be relatively high. .
상술한 바와 같이, 본 발명에서는 니트릴기 및 프로파질기와 같은 두 작용기를 구비한 화학식 I 또는 II 로 표시되는 화합물들 중 적어도 하나 이상의 화합물을 비수전해액 첨가제로 사용함으로써, 충방전시 양극으로부터 용출된 금속 이온 및/또는 제조 공정 시 혼입된 금속 이물들과 착물을 형성하여, 금속 이온이 음극 표면에 전착되는 것을 억제할 수 있고, 전극 표면 상에 보다 안정적인 이온전도성 피막을 형성할 수 있으므로, 고온 저장 시 용량 특성과 사이클 수명 특성 등의 제반 성능이 개선된 이차전지를 제조할 수 있다.As described above, in the present invention, at least one or more of the compounds represented by the formula (I) or (II) having two functional groups such as nitrile group and propazyl group is used as a non-aqueous electrolyte additive, thereby eluting from the positive electrode during charge and discharge. The formation of complexes with metal ions and / or metal foreign matters incorporated in the manufacturing process can suppress the electrodeposition of metal ions on the surface of the cathode, and can form a more stable ion conductive film on the electrode surface, resulting in high temperature storage. It is possible to manufacture a secondary battery having improved performance such as time capacity characteristics and cycle life characteristics.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
이온화 가능한 리튬염; 유기용매; 및Ionizable lithium salts; Organic solvents; And
상기 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공한다.It provides a nonaqueous electrolyte for a lithium secondary battery comprising the nonaqueous electrolyte additive.
상기 비수전해액 첨가제는 비수전해액 전체 중량을 기준으로 약 0.5 중량% 내지 5 중량%, 구체적으로 1 중량% 내지 5 중량%로 포함될 수 있다. 만약, 상기 첨가제의 함량이 0.5 중량% 미만이면 후술한 금속 이온 용출 억제 효과 및 고온 저장 시 용량 특성 향상 효과가 미미할 수 있고, 첨가제의 함량이 5 중량%를 초과하면 잉여의 비수전해액 첨가제의 부반응에 의한 전지의 용량 감소, 전해액의 점도 증가, 이에 다른 저항 증가 및 이온전도도 감소 등으로 인하여 이차전지의 제반 성능 저하가 발생할 수 있다. The nonaqueous electrolyte additive may be included in an amount of about 0.5 wt% to 5 wt%, specifically 1 wt% to 5 wt%, based on the total weight of the nonaqueous electrolyte. If the content of the additive is less than 0.5% by weight, the effect of inhibiting dissolution of the metal ions described below and the improvement of capacity characteristics at high temperature storage may be insignificant. If the content of the additive is more than 5% by weight, the side reaction of the surplus nonaqueous electrolyte additive Due to the decrease in the capacity of the battery, the increase in the viscosity of the electrolyte, thereby increasing the resistance and the decrease in the ionic conductivity may cause a decrease in overall performance of the secondary battery.
일 구현예에 있어서, 상기 본 발명의 비수전해액에 포함되는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염은 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다. 상기 리튬염은 1종 또는 필요에 따라서 2종 이상을 혼합하여 사용할 수도 있다. 상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 1.5M의 농도로 포함할 수 있다. In one embodiment, the lithium salt contained in the non-aqueous electrolyte of the present invention may be used without limitation those conventionally used in the lithium secondary battery electrolyte, for example, the lithium salt includes Li + as a cation, anion include F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (F 2 SO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - and (CF 3 CF 2 SO 2 ) 2 N It may include at least one selected from the group consisting of. The said lithium salt can also be used 1 type or in mixture of 2 or more types as needed. The lithium salt may be appropriately changed within a range generally available, but may be included in an electrolyte solution at a concentration of 0.8 M to 1.5 M in order to obtain an effect of forming an anti-corrosion coating on the surface of the electrode.
또한, 본 발명의 비수전해액에 포함되는 유기용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르 화합물, 에스테르 화합물, 아미드 화합물, 선형 카보네이트 화합물, 또는 환형 카보네이트 화합물 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트 화합물, 선형 카보네이트 화합물, 또는 이들의 혼합물을 포함할 수 있다. In addition, the organic solvent included in the nonaqueous electrolyte of the present invention can be used without limitation those conventionally used in the electrolyte for lithium secondary batteries, for example, ether compounds, ester compounds, amide compounds, linear carbonate compounds, or cyclic carbonate compounds Etc. can be used individually or in mixture of 2 or more types, respectively. Representatively, it may include a cyclic carbonate compound, a linear carbonate compound, or a mixture thereof.
그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다. 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다. Among them, carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included. Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC) are any one selected from the group consisting of or mixtures of two or more thereof. In addition, specific examples of the linear carbonate compound include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate Any one selected from, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in the electrolyte well. When the same low viscosity, low dielectric constant linear carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
또한, 상기 유기용매 중 에테르로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, the ether in the organic solvent may be any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more thereof. It is not limited to this.
그리고 상기 유기용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 부틸 프로피오네이트와 같은 선형 에스테르; 및 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, 또는 ε-카프로락톤과 같은 환형 에스테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.And esters in the organic solvent include linear esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate; And cyclic esters such as γ-butyrolactone, γ-valerolactone, γ-caprolactone, σ-valerolactone, or ε-caprolactone, or mixtures of two or more thereof. It may be, but is not limited thereto.
본 발명의 비수전해액은 필요에 따라서 SEI막 형성용 첨가제를 더 포함할 수 있다. 본 발명에서 사용 가능한 SEI막 형성용 첨가제로는 비닐렌 카보네이트, 비닐에틸렌카보네이트, 플루오로에틸렌 카보네이트, 비닐에틸렌 카보네이트, 환형 설파이트, 포화 설톤, 불포화 설톤, 비환형 설폰 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.The nonaqueous electrolyte of the present invention may further include an additive for forming an SEI film, if necessary. As the additive for forming SEI film which can be used in the present invention, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, vinyl ethylene carbonate, cyclic sulfite, saturated sultone, unsaturated sultone, acyclic sulfone, etc. may be used alone or in combination. It can mix and use the above.
이때, 상기 환형 설파이트로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 포화 설톤으로는 1,3-프로판 설톤, 1,4-부탄 설톤 등을 들 수 있으며, 불포화 설톤으로는 에텐설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 등을 들 수 있으며, 비환형 설폰으로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 메틸비닐 설폰 등을 들 수 있다.At this time, the cyclic sulfites include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5-dimethyl Propylene sulfite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, 1,3-butylene glycol sulfite, and the like. Examples thereof include 1,3-propane sultone and 1,4-butane sultone. Examples of unsaturated sultone include ethene sultone, 1,3-propene sultone, 1,4-butene sultone, 1-methyl-1,3 -Propene sulfone, and the like, and acyclic sulfones include divinyl sulfone, dimethyl sulfone, diethyl sulfone, methylethyl sulfone, and methyl vinyl sulfone.
또한, 본 발명의 일 실시예에서는, In addition, in one embodiment of the present invention,
양극, 음극, 상기 양극 및 음극 사이에 개재된 분리막 및 비수전해액을 포함하는 이차전지에 있어서, 상기 비수전해액으로 본 발명의 비수전해액을 포함하는 리튬 이차전지를 제공한다. In the secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode and a non-aqueous electrolyte, it provides a lithium secondary battery comprising the non-aqueous electrolyte of the present invention as the non-aqueous electrolyte.
구체적으로, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 본 발명의 비수전해액을 주입하여 제조할 수 있다. 이때, 전극 구조체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.Specifically, the lithium secondary battery of the present invention may be prepared by injecting the nonaqueous electrolyte of the present invention into an electrode structure consisting of a cathode, a cathode, and a separator interposed between the cathode and the anode. At this time, the positive electrode, the negative electrode, and the separator constituting the electrode structure may be used all those conventionally used in the manufacture of a lithium secondary battery.
이때, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다.In this case, the positive electrode may be manufactured by forming a positive electrode mixture layer on the positive electrode current collector.
상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.The cathode mixture layer may be formed by coating a cathode slurry including a cathode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2 - z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r21=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, LiNi0 . 8Co0 . 15Al0 . 05O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.The positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide may be lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxides (eg, LiCoO 2, etc.), lithium-nickel oxides, and the like. (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y Mn Y O 2 (where, 0 <Y <1), LiMn 2-z Ni z O 4 ( here, 0 <Z <2) and the like), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 <Y1 <1) and the like), lithium-manganese-cobalt oxide (e. g., LiCo 1-Y2 Mn Y2 O 2 (here, 0 <Y2 <1), LiMn 2 - z1 Co z1 O 4 ( here, 0 <z1 <2) and the like), lithium-nickel Manganese-cobalt-based oxides (e.g., Li (Ni p Co q Mn r1 ) O 2 , where 0 <p <1, 0 <q <1, 0 <r1 <1, p + q + r1 = 1) or Li (Ni p1 Co q1 Mn r2 ) O 4 (where 0 <p1 <2, 0 <q1 <2, 0 <r2 <2, p1 + q1 + r21 = 2, etc.), or lithium- nickel-cobalt-transition metal (M) oxide (e.g., Li (Ni Co p2 q2 Mn r3 M S2) O 2 (W Where M is selected from the group consisting of Al, Fe, V, Cr, Ti, Ta, Mg and Mo, and p2, q2, r3 and s2 are atomic fractions of the independent elements, respectively, 0 <p2 <1, 0 <Q2 <1, 0 <r3 <1, 0 <s2 <1, p2 + q2 + r3 + s2 = 1), etc.), and any one or two or more of these compounds may be included. Among the lithium composite metal oxides, LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides (eg, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 may be improved in capacity and stability of the battery. , Li (Ni 0.5 Mn 0.3 Co 0.2) O 2 or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 ), or lithium nickel cobalt aluminum oxide (for example, LiNi 0. 8 Co 0. 15 Al 0. 05 O 2, etc.), and the lithium composite metal oxide is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 in consideration of the remarkable improvement effect according to the type and content ratio control of the element forming the lithium composite metal oxide. , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2, or Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 , and the like, and any one or a mixture of two or more thereof may be used. have.
상기 양극 활물질은 양극 슬러리의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다. The cathode active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the cathode slurry.
상기 도전재는 통상적으로 양극 슬러리의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. The conductive material is typically added at 1 to 30% by weight based on the total weight of the positive electrode slurry.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케첸 블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. Specific examples of commercially available conductive materials include Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, and EC, which are acetylene black series. (Armak Company), Vulcan XC-72 (manufactured by Cabot Company), and Super P (manufactured by Timcal).
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding the active material and the conductive material and bonding to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the positive electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the positive electrode active material and optionally a binder and a conductive material. For example, the concentration of the solids in the positive electrode active material and, optionally, the slurry including the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다.In addition, the negative electrode may be prepared by forming a negative electrode mixture layer on the negative electrode current collector.
상기 음극 합제층은 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.The negative electrode mixture layer may be formed by coating a slurry including a negative electrode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector generally has a thickness of 3 to 500 μm. Such a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류의 산화물; 및 상기 금속류와 탄소의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다.As the negative electrode active material, natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the above metals; And one or two or more negative electrode active materials selected from the group consisting of the above metals and a composite of carbon.
상기 음극 활물질은 음극 슬러리의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.The negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of the negative electrode slurry.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of the negative electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluor Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of the negative electrode slurry. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as water or NMP, alcohol, etc., and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material and optionally a binder and a conductive material. For example, the concentration of the solids in the slurry including the negative electrode active material, and optionally the binder and the conductive material may be 50% to 95% by weight, preferably 70% to 90% by weight.
또한, 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, as the separator, conventional porous polymer films conventionally used as separators, for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc. The porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예Example
실시예 1Example 1
(비수전해액 제조)(Non-aqueous electrolyte preparation)
에틸렌 카보네이트 (EC), 프로필렌 카보네이트 (PC) 및 에틸렌카보네이트(EMC) (20:10:70 vol%)의 혼합 유기 용매에 1M LiPF6을 용해시킨 후, 하기 표 1에 나타낸 함량으로 화학식 I-1의 화합물을 첨가하여 비수전해액을 제조하였다.After dissolving 1M LiPF 6 in a mixed organic solvent of ethylene carbonate (EC), propylene carbonate (PC) and ethylene carbonate (EMC) (20:10:70 vol%), the following formula (I-1) Was added to prepare a non-aqueous electrolyte.
(양극 제조)(Anode manufacturing)
양극 활물질 입자로 리튬 코발트 복합산화물 (LiCO2), 도전재로 카본 블랙 및 바인더로 폴리비닐리덴플루오라이드 (PVDF)를 90 : 5 : 5 (wt%)의 비율로 용제인 N-메틸-2-피롤리돈 (NMP)에 100 : 40 중량부의 비율로 첨가하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 100㎛인 양극 집전체 (Al 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하고, 양극을 제조하였다.Lithium cobalt composite oxide (LiCO 2 ) as a positive electrode active material particle, carbon black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder in a ratio of 90: 5: 5 (wt%) as a solvent N-methyl-2- A positive active material slurry was prepared by adding pyrrolidone (NMP) in a ratio of 100: 40 parts by weight. The positive electrode active material slurry was applied to a positive electrode current collector (Al thin film) having a thickness of 100 μm, dried, and roll pressed to prepare a positive electrode.
(음극 제조) (Cathode production)
음극 활물질로 천연 흑연, 바인더로 PVDF, 도전재로 카본 블랙을 95 : 2 : 3 (wt%)의 비율로 용제인 NMP에 100 : 100 중량부의 비율로 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 90㎛인 음극 집전체 (Cu 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 음극을 제조하였다.Natural graphite as a negative electrode active material, PVDF as a binder and carbon black as a conductive material were added to NMP as a solvent at a ratio of 100: 100 parts by weight to prepare a negative electrode active material slurry. The negative electrode active material slurry was applied to a negative electrode current collector (Cu thin film) having a thickness of 90 μm, dried, and roll pressed to prepare a negative electrode.
(이차전지 제조)(Secondary Battery Manufacturing)
전술한 방법으로 제조한 양극과 음극을 폴리에틸렌 다공성 필름과 함께 적층하여 전극조립체를 제조한 다음, 이를 전지 케이스에 넣고 상기 제조된 비수전해액을 각각 주액하고, 밀봉하여 리튬 이차전지를 제조하였다.The positive electrode and the negative electrode prepared by the above-described method were laminated together with a polyethylene porous film to prepare an electrode assembly. Then, the prepared nonaqueous electrolyte was poured into the battery case, and the lithium secondary battery was prepared by sealing.
실시예 2 내지 28Examples 2 to 28
상기 실시예 1의 비수전해액 제조 시에, 하기 표 1과 같은 함량으로 첨가제를 각각 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시예 2 내지 28의 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.In the preparation of the non-aqueous electrolyte of Example 1, except that each of the additives in the amount shown in Table 1, the same method as in Example 1 to the non-aqueous electrolyte of Examples 2 to 28 and a secondary battery comprising the same Were prepared respectively.
실시예 29Example 29
(비수전해액 제조)(Non-aqueous electrolyte preparation)
에틸렌 카보네이트 (EC), 프로필렌 카보네이트 (PC) 및 에틸렌카보네이트(EMC) (20:10:70 vol%)의 혼합 유기 용매에 1M LiPF6을 용해시킨 후, 하기 표 2에 나타낸 함량으로 화학식 I-1의 화합물을 첨가하여 비수전해액을 제조하였다.After dissolving 1M LiPF 6 in a mixed organic solvent of ethylene carbonate (EC), propylene carbonate (PC) and ethylene carbonate (EMC) (20:10:70 vol%), the following formula (I-1) was used. Was added to prepare a non-aqueous electrolyte.
(양극 제조)(Anode manufacturing)
양극 활물질 입자로 리튬 코발트 복합산화물 (LiCO2), 도전재로 카본 블랙 및 바인더로 폴리비닐리덴플루오라이드 (PVDF)를 90 : 5 : 5 (wt%)의 비율로 용제인 N-메틸-2-피롤리돈 (NMP)에 100 : 40 중량부의 비율로 첨가하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 100㎛인 양극 집전체 (Al 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하고, 양극을 제조하였다.Lithium cobalt composite oxide (LiCO 2 ) as a positive electrode active material particle, carbon black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder in a ratio of 90: 5: 5 (wt%) as a solvent N-methyl-2- A positive active material slurry was prepared by adding pyrrolidone (NMP) in a ratio of 100: 40 parts by weight. The positive electrode active material slurry was applied to a positive electrode current collector (Al thin film) having a thickness of 100 μm, dried, and roll pressed to prepare a positive electrode.
(이차전지 제조)(Secondary Battery Manufacturing)
상기 제조된 양극을 코인형 전지용으로 타발한 다음, 평균입경(D50)이 약 200㎛ 인 Fe powder를 3개씩 양극 표면에 고정 시킨 후 상기 비수전해액을 주액하여 코인형 반쪽 이차전지를 제조하였다. The prepared positive electrode was punched out for a coin-type battery, and then fixed with three Fe powders having an average particle diameter (D50) of about 200 μm on the surface of the positive electrode, and then the non-aqueous electrolyte was injected to prepare a coin-type half battery.
실시예 30 내지 56Examples 30-56
상기 실시예 29의 비수전해액 제조 시에, 하기 표 2와 같은 함량으로 첨가제를 각각 포함하는 것을 제외하고는, 상기 실시예 29와 동일한 방법으로 실시예 30 내지 56의 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.In the preparation of the non-aqueous electrolyte of Example 29, except that each of the additives in the amounts shown in Table 2, the same method as in Example 29, the non-aqueous electrolyte of Examples 30 to 56 and a secondary battery comprising the same Were prepared respectively.
비교예 1Comparative Example 1
상기 실시예 1의 비수전해액 제조 시에 첨가제를 포함하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.A nonaqueous electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that no additive was included in the preparation of the nonaqueous electrolyte of Example 1.
비교예 2Comparative Example 2
하기 표 1에 나타낸 바와 같이, 상기 실시예 1의 비수전해액 제조 시에 화학식 I-1의 화합물 대신 하기 화학식 a의 화합물 0.3g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1, the non-aqueous electrolyte was prepared in the same manner as in Example 1, except that 0.3 g of the compound of Formula a was included instead of the compound of Formula I-1 when preparing the non-aqueous electrolyte of Example 1. And a secondary battery comprising the same was prepared.
[화학식 a][Formula a]
Figure PCTKR2017003032-appb-I000048
Figure PCTKR2017003032-appb-I000048
비교예 3Comparative Example 3
하기 표 1에 나타낸 바와 같이, 상기 비교예 2의 비수전해액 제조 시에 상기 화학식 a의 화합물 0.5g을 포함하는 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1 below, except for containing 0.5 g of the compound of Formula a when preparing the non-aqueous electrolyte of Comparative Example 2, the non-aqueous electrolyte and a secondary battery comprising the same in the same manner as in Comparative Example 2 Prepared.
비교예 4Comparative Example 4
하기 표 1에 나타낸 바와 같이, 상기 비교예 2의 비수전해액 제조 시에 상기 화학식 a의 화합물 7g을 포함하는 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1, except for including the compound of Formula a 7g when preparing the non-aqueous electrolyte of Comparative Example 2, a non-aqueous electrolyte and a secondary battery comprising the same in the same manner as in Comparative Example 2 It was.
비교예 5Comparative Example 5
하기 표 1에 나타낸 바와 같이, 상기 비교예 2의 비수전해액 제조 시에 화학식 b의 화합물 0.5g을 포함하는 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1 below, except that 0.5g of the compound of Formula b was included in the preparation of the nonaqueous electrolyte of Comparative Example 2, a nonaqueous electrolyte and a secondary battery including the same were prepared in the same manner as in Comparative Example 2. It was.
[화학식 b] [Formula b]
Figure PCTKR2017003032-appb-I000049
Figure PCTKR2017003032-appb-I000049
비교예 6Comparative Example 6
하기 표 1에 나타낸 바와 같이, 상기 비교예 2의 비수전해액 제조 시에 하기 화학식 c의 화합물 0.3g을 포함하는 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1 below, except that 0.3g of the compound of Chemical Formula c is included in the preparation of the nonaqueous electrolyte solution of Comparative Example 2, the nonaqueous electrolyte solution and the secondary battery including the same in the same manner as in Comparative Example 2 Prepared.
[화학식 c][Formula c]
Figure PCTKR2017003032-appb-I000050
Figure PCTKR2017003032-appb-I000050
비교예 7Comparative Example 7
하기 표 1에 나타낸 바와 같이, 상기 비교예 2의 비수전해액 제조 시에 상기 화학식 c의 화합물 0.5 g을 포함하는 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1 below, except that 0.5 g of the compound of Formula c was included in the preparation of the non-aqueous electrolyte of Comparative Example 2, the non-aqueous electrolyte and the secondary battery comprising the same in the same manner as in Comparative Example 2 Prepared.
비교예 8Comparative Example 8
하기 표 1에 나타낸 바와 같이, 상기 비교예 2의 비수전해액 제조 시에 상기 화학식 c의 화합물 7g을 포함하는 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1 below, except for including the compound of Formula c 7g when preparing the non-aqueous electrolyte of Comparative Example 2, a non-aqueous electrolyte and a secondary battery comprising the same by the same method as in Comparative Example 2 It was.
비교예 9Comparative Example 9
하기 표 1에 나타낸 바와 같이, 상기 비교예 2의 비수전해액 제조 시에 하기 화학식 d의 화합물 0.5g을 포함하는 것을 제외하고는, 상기 비교예 2와 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1 below, except that 0.5g of the compound of the formula d is included in the preparation of the non-aqueous electrolyte of Comparative Example 2, the non-aqueous electrolyte and the secondary battery including the same in the same manner as in Comparative Example 2 Prepared.
[화학식 d][Formula d]
Figure PCTKR2017003032-appb-I000051
Figure PCTKR2017003032-appb-I000051
비교예 10Comparative Example 10
상기 실시예 29의 비수전해액 제조 시에 첨가제를 포함하지 않는 것을 제외하고는, 상기 실시예 29과 동일한 방법으로 비수전해액 및 이를 포함하는 코인형 반쪽 이차전지를 제조하였다.A nonaqueous electrolyte and a coin-type half-cell including the same were prepared in the same manner as in Example 29, except that no additive was included in the preparation of the nonaqueous electrolyte of Example 29.
비교예 11Comparative Example 11
하기 표 1에 나타낸 바와 같이, 상기 비교예 10의 비수전해액 제조 시에 상기 화학식 a의 화합물 0.3g을 포함하는 것을 제외하고는, 상기 비교예 10과 동일한 방법으로 비수전해액 및 이를 포함하는 코인형 반쪽 이차전지를 제조하였다.As shown in Table 1, the non-aqueous electrolyte and coin-type halves containing the same in the same manner as in Comparative Example 10, except that 0.3g of the compound of Formula a was included in the preparation of the non-aqueous electrolyte of Comparative Example 10 A secondary battery was prepared.
비교예 12Comparative Example 12
하기 표 1에 나타낸 바와 같이, 상기 비교예 10의 비수전해액 제조 시에 상기 화학식 a의 화합물 0.5g을 포함하는 것을 제외하고는, 상기 비교예 10과 동일한 방법으로 비수전해액 및 이를 포함하는 코인형 반쪽 이차전지를 제조하였다.As shown in Table 1 below, except that 0.5g of the compound of Formula a was included in the preparation of the nonaqueous electrolyte of Comparative Example 10, the non-aqueous electrolyte and the coin-type half containing the same in the same manner as in Comparative Example 10 A secondary battery was prepared.
비교예 13Comparative Example 13
하기 표 1에 나타낸 바와 같이, 상기 비교예 10의 비수전해액 제조 시에 화학식 a의 화합물 7g을 포함하는 것을 제외하고는, 상기 비교예 10과 동일한 방법으로 비수전해액 및 이를 포함하는 코인형 반쪽 이차전지를 제조하였다.As shown in Table 1 below, except that the compound 7g of Formula a was included in the preparation of the non-aqueous electrolyte of Comparative Example 10, the non-aqueous electrolyte and the coin-type half-cell including the same in the same manner as in Comparative Example 10 Was prepared.
비교예 14Comparative Example 14
하기 표 1에 나타낸 바와 같이, 상기 비교예 10의 비수전해액 제조 시에 상기 화학식 b의 화합물 0.5g을 포함하는 것을 제외하고는, 상기 비교예 10과 동일한 방법으로 비수전해액 및 이를 포함하는 코인형 반쪽 이차전지를 제조하였다.As shown in Table 1 below, except that 0.5g of the compound of Formula b was included in the preparation of the nonaqueous electrolyte of Comparative Example 10, the nonaqueous electrolyte and the coin-type halves including the same in the same manner as in Comparative Example 10 A secondary battery was prepared.
비교예 15Comparative Example 15
하기 표 1에 나타낸 바와 같이, 상기 비교예 10의 비수전해액 제조 시에 상기 화학식 c의 화합물 0.3g을 포함하는 것을 제외하고는, 상기 비교예 10과 동일한 방법으로 비수전해액 및 이를 포함하는 코인형 반쪽 이차전지를 제조하였다.As shown in Table 1 below, except that 0.3g of the compound of Chemical Formula c was included in the preparation of the nonaqueous electrolyte of Comparative Example 10, the nonaqueous electrolyte and the coin-type halves including the same in the same manner as in Comparative Example 10 A secondary battery was prepared.
비교예 16Comparative Example 16
하기 표 1에 나타낸 바와 같이, 상기 비교예 10의 비수전해액 제조 시에 상기 화학식 c의 화합물 0.5g을 포함하는 것을 제외하고는, 상기 비교예 10과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1 below, except that 0.5g of the compound of Formula c was included in the preparation of the non-aqueous electrolyte of Comparative Example 10, the non-aqueous electrolyte and the secondary battery including the same in the same manner as in Comparative Example 10 Prepared.
비교예 17Comparative Example 17
하기 표 1에 나타낸 바와 같이, 상기 화학식 c의 화합물 7g을 포함하는 것을 제외하고는, 상기 비교예 10과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1, except for including the compound 7g of Formula c, a non-aqueous electrolyte and a secondary battery comprising the same was prepared in the same manner as in Comparative Example 10.
비교예 18Comparative Example 18
하기 표 1에 나타낸 바와 같이, 상기 화학식 d의 화합물 0.5g을 포함하는 것을 제외하고는, 상기 비교예 10과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다.As shown in Table 1, except for containing 0.5 g of the compound of Formula d, a non-aqueous electrolyte and a secondary battery comprising the same was prepared in the same manner as in Comparative Example 10.
실험예 Experimental Example
실험예 1. Experimental Example 1.
실시예 1 내지 28 및 비교예 1 내지 9에서 제조된 각각의 이차전지를 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 0.5C 3.0V로 방전하였다(초기방전 용량). 이어서 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 60℃에서 2주간 보관하였다. 이후 상온에서 0.5C 3.0V로 방전하여 그 방전량을 측정하였다(잔존 방전량). 다시 0.8C rate, 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전, 0.5C 3.0V 방전하여 방전량을 측정하였다(회복 방전량). Each of the secondary batteries prepared in Examples 1 to 28 and Comparative Examples 1 to 9 was subjected to constant current / constant voltage condition charging and 0.05C cut off charging to 4.35V at 0.8C rate, and discharged to 0.5C 3.0V (initial) Discharge capacity). Then, constant current / constant voltage condition charging and 0.05C cut off charging were performed up to 4.35V at 0.8C rate and stored at 60 ° C. for 2 weeks. Thereafter, the battery was discharged at 0.5C 3.0V at room temperature, and the discharge amount thereof was measured (remaining discharge amount). The discharge amount was measured again by charging the constant current / constant voltage condition up to 0.8C rate, 4.35V, 0.05C cut off charging, and 0.5C 3.0V (recovery discharge amount).
잔존 방전량과 회복 방전량을 초기 방전량 대비 %로 나타내어 하기 표 1에 기재하였다.The remaining discharge amount and the recovery discharge amount are expressed in% relative to the initial discharge amount, and are shown in Table 1 below.
실험예 2.Experimental Example 2.
실시예 1 내지 28 및 비교예 1 내지 9에서 제조된 각각의 이차전지를 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 0.5C 3.0V로 방전하였다. 이어서 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut-off 충전을 실시하고, 상온에서 0.5C 3.0V로 방전하는 것을 1회 cycle로 하여 200회 cycle 실시 후의 사이클 용량 유지율(retention)을 1회 cycle 용량에 대비 %로 나타내어 하기 표 1에 기재하였다.Each of the secondary batteries prepared in Examples 1 to 28 and Comparative Examples 1 to 9 was subjected to constant current / constant voltage condition charging and 0.05C cut off charging to 0.85C at 4.35V, and discharged at 0.5C to 3.0V. Then, the cycle capacity retention after 200 cycles was performed by performing constant current / constant voltage condition charging and 0.05C cut-off charging up to 4.35V at 0.8C rate, and discharging at 0.5C 3.0V at room temperature as one cycle. It is shown in Table 1, expressed as a percentage of one cycle capacity.
Figure PCTKR2017003032-appb-T000001
Figure PCTKR2017003032-appb-T000001
상기 표 1에 나타낸 바와 같이, 본원발명의 니트릴기 및 프로파질기를 함유하는 화합물을 첨가제로 포함하는 비수전해액을 구비한 실시예 1 내지 28의 이차전지의 경우, 고온 저장 시에 잔존 방전량이 약 80% 이상, 회복 방전량이 약 92% 이상이고, 사이클 용량 유지율이 약 87% 이상으로 모두 우수한 것을 알 수 있다.As shown in Table 1, in the case of the secondary batteries of Examples 1 to 28 having a non-aqueous electrolyte solution containing a compound containing a nitrile group and a propazyl group of the present invention as an additive, the amount of residual discharge at high temperature storage was about It can be seen that the recovery discharge amount is 80% or more, about 92% or more, and the cycle capacity retention rate is about 87% or more.
반면에, 첨가제를 사용하지 않은 비교예 1의 이차전지는 고온 저장 시 잔존 방전량은 약 64%이고, 회복 방전량은 약 80% 이며, 사이클 용량 유지율은 약 60%로 제반 성능이 실시예 1 내지 28의 이차전지 대비 저하된 것을 확인할 수 있다.On the other hand, the secondary battery of Comparative Example 1, which does not use an additive, has a residual discharge amount of about 64%, a recovery discharge amount of about 80%, and a cycle capacity retention rate of about 60% at high temperature storage. It can be seen that the degradation compared to the secondary battery of 28 to.
또한, 비수전해액 첨가제로 화학식 a 내지 d의 화합물을 첨가제로 포함하는 비교예 2 내지 9의 이차전지의 고온 저장 시 잔존 방전량은 80% 이하, 회복 방전량은 87% 이하이고, 용량 유지율 또한 70% 이하로 실시예 1 내지 28의 이차전지 대비 모두 저하된 것을 확인할 수 있다.In addition, the residual discharge amount at the high temperature storage of the secondary batteries of Comparative Examples 2 to 9 including the compound of Formulas a to d as an additive as a non-aqueous electrolyte additive is 80% or less, recovery discharge amount is 87% or less, and the capacity retention ratio is 70 It can be confirmed that all of the secondary batteries of Examples 1 to 28 are lowered to less than or equal to%.
실험예 3.Experimental Example 3.
실시예 29 내지 56 및 비교예 10 내지 18에서 제조된 각각의 코인형 반쪽 이차전지를 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 0.5C 3.0V로 방전하였다. 각 실시예 마다 5개의 전지를 만들어 충방전이 가능한 전지의 개수를 하기 표 2에 기재하였다. Each coin-type secondary battery manufactured in Examples 29 to 56 and Comparative Examples 10 to 18 was subjected to constant current / constant voltage condition charging and 0.05C cut off charging to 4.35V at 0.8C rate, and discharged to 0.5C 3.0V. It was. Each battery is made of five batteries, and the number of batteries capable of charging and discharging is shown in Table 2 below.
또한, 충방전이 가능한 전지는 0.8C rate 로 4.35V까지 정전류/정전압 조건 충전하고 45℃에서 6일간 저장하였다. 저장 후 45℃에서의 전압을 측정하고, 그 결과를 하기 표 2에 기재하였다.In addition, the battery capable of charging and discharging was charged under constant current / constant voltage conditions up to 4.35 V at 0.8 C rate and stored at 45 ° C. for 6 days. The voltage at 45 ° C. after storage was measured and the results are shown in Table 2 below.
Figure PCTKR2017003032-appb-T000002
Figure PCTKR2017003032-appb-T000002
상기 표 2에 나타낸 바와 같이, 실시예 29 내지 56의 이차전지는 첨가제로 포함된 니트릴기 및 프로파질기를 함유하는 화합물이 Fe 이물과 착물을 형성하여 금속 용출을 억제하기 때문에, 대부분의 전지가 충방전이 가능하고, 고온 저장 후에도 약 4.01V 이상의 전압을 유지하는 것을 알 수 있다.As shown in Table 2, the secondary batteries of Examples 29 to 56, since the compounds containing the nitrile group and the propazyl group included as additives form a complex with Fe foreign material to suppress metal elution, most of the batteries It can be seen that charging and discharging are possible and the voltage is maintained at about 4.01V or higher even after high temperature storage.
반면에, 첨가제를 사용하지 않은 비교예 10의 이차전지는 대부분 충방전이 이루어지지 않을 뿐만 아니라, 고온 저장 후 전압이 2.65V로 저하되는 것을 알 수 있다.On the other hand, the secondary battery of Comparative Example 10 that does not use an additive is mostly not charged and discharged, it can be seen that the voltage is reduced to 2.65V after high temperature storage.
또한, 비수전해액 첨가제로 화학식 a 내지 d의 화합물을 첨가제로 포함하는 비교예 11, 12, 14, 15, 16, 및 18의 이차전지는 일부 전지에서 충방전이 가능했으나, 고온 저장 후 전압이 약 3.7V 미만으로 저하되는 것을 확인할 수 있다.In addition, the secondary batteries of Comparative Examples 11, 12, 14, 15, 16, and 18 including the compounds of Formulas (a) to (d) as non-aqueous electrolyte additives were able to be charged and discharged in some cells, but the voltage was weak after high temperature storage. It can be seen that the drop below 3.7V.
한편, 비교예 13 및 17의 이차전지의 경우, 금속 용출을 억제할 수 있는 첨가제가 과량 포함되면서 비교예 11, 12, 14, 15, 16, 및 18의 이차전지 대비 충방전 가능 전지 수 및 고온 저장 후 전압은 증가하였다. 하지만, 이차전지 내에서의 저항 증가로 인하여 실시예 29 내지 실시예 56의 이차전지 대비 고온 저장 후 전압이 오히려 저하되는 것을 확인할 수 있다.On the other hand, in the secondary batteries of Comparative Examples 13 and 17, the number of chargeable and dischargeable batteries and the high temperature compared to the secondary batteries of Comparative Examples 11, 12, 14, 15, 16, and 18 while containing an excessive amount of additives that can suppress metal elution After storage the voltage increased. However, it can be seen that the voltage decreases after high temperature storage rather than the secondary batteries of Examples 29 to 56 due to the increased resistance in the secondary batteries.

Claims (9)

  1. 하기 화학식 I 및 화학식 II로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함하는 비수전해액 첨가제:A non-aqueous electrolyte additive comprising at least one compound selected from the group consisting of compounds represented by formula (I) and formula (II):
    [화학식 1][Formula 1]
    Figure PCTKR2017003032-appb-I000052
    Figure PCTKR2017003032-appb-I000052
    상기 화학식 I 에서,In Chemical Formula I,
    R1은 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기, 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 방향족기이고,R 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, or an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group,
    R2는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기, 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 방향족기, 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 헤테로 방향족기, 탄소수 2 내지 5의 선형 또는 비선형 알케닐기, 또는 -C(O)-R9-이고, R9는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 3의 선형 또는 비선형 알킬렌기이고,R 2 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group, or substituted or unsubstituted with at least one nitrile group A substituted heteroaromatic group having 6 to 8 carbon atoms, a linear or nonlinear alkenyl group having 2 to 5 carbon atoms, or -C (O) -R 9- , wherein R 9 is substituted or substituted with at least one nitrile group and having 1 to 1 carbon atoms 3 is a linear or nonlinear alkylene group,
    R3 m=0인 경우에는 수소 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬기이며, m=1인 경우에는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고, R 3 is when m = 0 it is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group, when m = 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms,
    R4는 탄소수 1 내지 3의 알킬렌기 또는 -R10-C(O)-이고, R10은 탄소수 1 내지 3의 알킬렌기이고,R 4 is an alkylene group having 1 to 3 carbon atoms or -R 10 -C (O)-, R 10 is an alkylene group having 1 to 3 carbon atoms,
    n 및 m은 각각 독립적으로 0 또는 1의 정수이다.n and m are each independently an integer of 0 or 1.
    [화학식 II][Formula II]
    Figure PCTKR2017003032-appb-I000053
    Figure PCTKR2017003032-appb-I000053
    상기 화학식 II에서,In Chemical Formula II,
    R5는 수소 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬기이고,R 5 is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group,
    R6 내지 R8은 각각 독립적으로 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이다.R 6 to R 8 are each independently a linear or nonlinear alkylene group having 1 to 5 carbon atoms.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 비수전해액 첨가제는 하기 화학식 I-1 내지 화학식 I-39로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 하나 이상의 화합물을 포함하는 것인 비수전해액 첨가제:The non-aqueous electrolyte additive comprises a non-aqueous electrolyte additive comprising at least one compound selected from the group consisting of compounds represented by the following formulas (I-1) to (I-39):
    (화학식 I-1)Formula I-1
    Figure PCTKR2017003032-appb-I000054
    Figure PCTKR2017003032-appb-I000054
    (화학식 I-2)Formula I-2
    Figure PCTKR2017003032-appb-I000055
    Figure PCTKR2017003032-appb-I000055
    (화학식 I-3)Formula I-3
    Figure PCTKR2017003032-appb-I000056
    Figure PCTKR2017003032-appb-I000056
    (화학식 I-4)Formula I-4
    Figure PCTKR2017003032-appb-I000057
    Figure PCTKR2017003032-appb-I000057
    (화학식 I-5)Formula I-5
    Figure PCTKR2017003032-appb-I000058
    Figure PCTKR2017003032-appb-I000058
    (화학식 I-6)Formula I-6
    Figure PCTKR2017003032-appb-I000059
    Figure PCTKR2017003032-appb-I000059
    (화학식 I-7)Formula I-7
    Figure PCTKR2017003032-appb-I000060
    Figure PCTKR2017003032-appb-I000060
    (화학식 I-8)Formula I-8
    Figure PCTKR2017003032-appb-I000061
    Figure PCTKR2017003032-appb-I000061
    (화학식 I-9)Formula I-9
    Figure PCTKR2017003032-appb-I000062
    Figure PCTKR2017003032-appb-I000062
    (화학식 I-10)Formula I-10
    Figure PCTKR2017003032-appb-I000063
    Figure PCTKR2017003032-appb-I000063
    (화학식 I-11)Formula I-11
    Figure PCTKR2017003032-appb-I000064
    Figure PCTKR2017003032-appb-I000064
    (화학식 I-12)Formula I-12
    Figure PCTKR2017003032-appb-I000065
    Figure PCTKR2017003032-appb-I000065
    (화학식 I-13)Formula I-13
    Figure PCTKR2017003032-appb-I000066
    Figure PCTKR2017003032-appb-I000066
    (화학식 I-14)Formula I-14
    Figure PCTKR2017003032-appb-I000067
    Figure PCTKR2017003032-appb-I000067
    (화학식 I-15)Formula I-15
    Figure PCTKR2017003032-appb-I000068
    Figure PCTKR2017003032-appb-I000068
    (화학식 I-16)Formula I-16
    Figure PCTKR2017003032-appb-I000069
    Figure PCTKR2017003032-appb-I000069
    (화학식 I-17)Formula I-17
    Figure PCTKR2017003032-appb-I000070
    Figure PCTKR2017003032-appb-I000070
    (화학식 I-18)Formula I-18
    Figure PCTKR2017003032-appb-I000071
    Figure PCTKR2017003032-appb-I000071
    (화학식 I-19)Formula I-19
    Figure PCTKR2017003032-appb-I000072
    Figure PCTKR2017003032-appb-I000072
    (화학식 I-20)Formula I-20
    Figure PCTKR2017003032-appb-I000073
    Figure PCTKR2017003032-appb-I000073
    (화학식 I-21)Formula I-21
    Figure PCTKR2017003032-appb-I000074
    Figure PCTKR2017003032-appb-I000074
    (화학식 I-22)Formula I-22
    Figure PCTKR2017003032-appb-I000075
    Figure PCTKR2017003032-appb-I000075
    (화학식 I-23)Formula I-23
    Figure PCTKR2017003032-appb-I000076
    Figure PCTKR2017003032-appb-I000076
    (화학식 I-24)Formula I-24
    Figure PCTKR2017003032-appb-I000077
    Figure PCTKR2017003032-appb-I000077
    (화학식 I-25)Formula I-25
    Figure PCTKR2017003032-appb-I000078
    Figure PCTKR2017003032-appb-I000078
    (화학식 I-26)Formula I-26
    Figure PCTKR2017003032-appb-I000079
    Figure PCTKR2017003032-appb-I000079
    (화학식 I-27)Formula I-27
    Figure PCTKR2017003032-appb-I000080
    Figure PCTKR2017003032-appb-I000080
    (화학식 I-28)Formula I-28
    Figure PCTKR2017003032-appb-I000081
    Figure PCTKR2017003032-appb-I000081
    (화학식 I-29)Formula I-29
    Figure PCTKR2017003032-appb-I000082
    Figure PCTKR2017003032-appb-I000082
    (화학식 I-30)Formula I-30
    Figure PCTKR2017003032-appb-I000083
    Figure PCTKR2017003032-appb-I000083
    (화학식 I-31)Formula I-31
    Figure PCTKR2017003032-appb-I000084
    Figure PCTKR2017003032-appb-I000084
    (화학식 I-32)Formula I-32
    Figure PCTKR2017003032-appb-I000085
    Figure PCTKR2017003032-appb-I000085
    (화학식 I-33)Formula I-33
    Figure PCTKR2017003032-appb-I000086
    Figure PCTKR2017003032-appb-I000086
    (화학식 I-34)Formula I-34
    Figure PCTKR2017003032-appb-I000087
    Figure PCTKR2017003032-appb-I000087
    (화학식 I-35)Formula I-35
    Figure PCTKR2017003032-appb-I000088
    Figure PCTKR2017003032-appb-I000088
    (화학식 I-36)Formula I-36
    Figure PCTKR2017003032-appb-I000089
    Figure PCTKR2017003032-appb-I000089
    (화학식 I-37)Formula I-37
    Figure PCTKR2017003032-appb-I000090
    Figure PCTKR2017003032-appb-I000090
    (화학식 I-38)Formula I-38
    Figure PCTKR2017003032-appb-I000091
    Figure PCTKR2017003032-appb-I000091
    (화학식 I-39) Formula I-39
    Figure PCTKR2017003032-appb-I000092
    Figure PCTKR2017003032-appb-I000092
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 비수전해액 첨가제는 하기 화학식 II-1 내지 II-4로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 하나 이상의 화합물을 포함하는 것인 비수전해액 첨가제:The non-aqueous electrolyte additive is a non-aqueous electrolyte additive comprising at least one compound selected from the group consisting of compounds represented by the following formulas II-1 to II-4:
    (화학식 II-1)Formula II-1
    Figure PCTKR2017003032-appb-I000093
    Figure PCTKR2017003032-appb-I000093
    (화학식 II-2)Formula II-2
    Figure PCTKR2017003032-appb-I000094
    Figure PCTKR2017003032-appb-I000094
    (화학식 II-3)Formula II-3
    Figure PCTKR2017003032-appb-I000095
    Figure PCTKR2017003032-appb-I000095
    (화학식 II-4)Formula II-4
    Figure PCTKR2017003032-appb-I000096
    Figure PCTKR2017003032-appb-I000096
  4. 이온화 가능한 리튬염; 유기용매; 및 비수전해액 첨가제를 포함하는 리튬 이차전지용 비수전해액으로서,Ionizable lithium salts; Organic solvents; And a non-aqueous electrolyte for lithium secondary battery comprising a non-aqueous electrolyte additive,
    상기 비수전해액 첨가제는 하기 화학식 I 및 화학식 II로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 하나 이상의 화합물을 포함하는 것인 리튬 이차전지용 비수전해액:The non-aqueous electrolyte additive is a non-aqueous electrolyte lithium secondary battery comprising at least one compound selected from the group consisting of compounds represented by the formula (I) and formula (II):
    [화학식 I][Formula I]
    Figure PCTKR2017003032-appb-I000097
    Figure PCTKR2017003032-appb-I000097
    상기 화학식 I 에서,In Chemical Formula I,
    R1은 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기, 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 방향족기이고,R 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, or an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group,
    R2는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기, 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 방향족기, 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 6 내지 8의 헤테로 방향족기, 탄소수 2 내지 5의 선형 또는 비선형 알케닐기, 또는 -C(O)-R9-이고, R9는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 3의 선형 또는 비선형 알킬렌기이고,R 2 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with at least one nitrile group, an aromatic group having 6 to 8 carbon atoms unsubstituted or substituted with at least one nitrile group, or substituted or unsubstituted with at least one nitrile group A substituted heteroaromatic group having 6 to 8 carbon atoms, a linear or nonlinear alkenyl group having 2 to 5 carbon atoms, or -C (O) -R 9- , wherein R 9 is substituted or substituted with at least one nitrile group and having 1 to 1 carbon atoms 3 is a linear or nonlinear alkylene group,
    R3 m=0인 경우에는 수소 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬기이며, m=1인 경우에는 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이고, R 3 is when m = 0 it is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group, when m = 1 is a linear or nonlinear alkylene group having 1 to 5 carbon atoms,
    R4는 탄소수 1 내지 3의 알킬렌기 또는 -R10-C(O)-이고, R10은 탄소수 1 내지 3의 알킬렌기이고,R 4 is an alkylene group having 1 to 3 carbon atoms or -R 10 -C (O)-, R 10 is an alkylene group having 1 to 3 carbon atoms,
    n 및 m은 각각 독립적으로 0 또는 1의 정수이다.n and m are each independently an integer of 0 or 1.
    [화학식 II][Formula II]
    Figure PCTKR2017003032-appb-I000098
    Figure PCTKR2017003032-appb-I000098
    상기 화학식 II에서,In Chemical Formula II,
    R5는 수소 또는 적어도 하나의 니트릴기로 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 비선형 알킬기이고,R 5 is a linear or nonlinear alkyl group having 1 to 5 carbon atoms unsubstituted or substituted with hydrogen or at least one nitrile group,
    R6 내지 R8은 각각 독립적으로 탄소수 1 내지 5의 선형 또는 비선형 알킬렌기이다.R 6 to R 8 are each independently a linear or nonlinear alkylene group having 1 to 5 carbon atoms.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 비수전해액 첨가제는 비수전해액 전체 함량을 기준으로 0.5 중량% 내지 5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.The non-aqueous electrolyte additive is a non-aqueous electrolyte lithium secondary battery that will be contained in 0.5% by weight to 5% by weight based on the total amount of the non-aqueous electrolyte.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 비수전해액 첨가제는 비수전해액 전체 함량을 기준으로 1 중량% 내지 5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.The non-aqueous electrolyte additive is a non-aqueous electrolyte lithium secondary battery that will be included in 1 to 5% by weight based on the total content of the non-aqueous electrolyte.
  7. 청구항 4에 있어서,The method according to claim 4,
    상기 리튬염은 양이온으로 Li+를 포함하고, The lithium salt includes Li + as a cation,
    음이온으로 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 어느 하나를 포함하는 것인 리튬 이차전지용 비수전해액.Anion F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (F 2 SO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - and (CF 3 CF 2 SO 2) 2 N - is the non-aqueous electrolyte lithium secondary battery comprises any one selected from the group consisting of.
  8. 청구항 4에 있어서,The method according to claim 4,
    상기 유기용매는 에테르, 에스테르, 아미드, 선형 카보네이트 및 환형 카보네이트로 이루어진 군으로부터 선택된 적어도 하나 이상의 혼합물을 포함하는 것인 리튬 이차전지용 비수전해액.The organic solvent comprises at least one mixture selected from the group consisting of ethers, esters, amides, linear carbonates and cyclic carbonates.
  9. 음극, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및 비수 전해액을 구비하는 리튬 이차전지에 있어서,In a lithium secondary battery having a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and a nonaqueous electrolyte,
    상기 비수 전해액은 청구항 4 내지 청구항 8 중 어느 한 항의 리튬 이차전지용 비수 전해액을 포함하는 것인 리튬 이차전지.The nonaqueous electrolyte is a lithium secondary battery comprising a nonaqueous electrolyte for lithium secondary battery of any one of claims 4 to 8.
PCT/KR2017/003032 2016-03-23 2017-03-21 Non-aqueous electrolyte additive, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery WO2017164625A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780002362.6A CN108886166B (en) 2016-03-23 2017-03-21 Nonaqueous electrolyte additive, and nonaqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
PL17770595T PL3300157T3 (en) 2016-03-23 2017-03-21 Non-aqueous electrolyte additive, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery
EP17770595.1A EP3300157B1 (en) 2016-03-23 2017-03-21 Non-aqueous electrolyte additive, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery
US15/737,503 US10601069B2 (en) 2016-03-23 2017-03-21 Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery comprising the same and lithium secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0034809 2016-03-23
KR20160034809 2016-03-23
KR10-2016-0049963 2016-04-25
KR20160049963 2016-04-25
KR10-2017-0034826 2017-03-20
KR1020170034826A KR102000100B1 (en) 2016-03-23 2017-03-20 Additive for non-aqueous electrolyte, non aqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
WO2017164625A2 true WO2017164625A2 (en) 2017-09-28
WO2017164625A3 WO2017164625A3 (en) 2018-09-07

Family

ID=59900435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003032 WO2017164625A2 (en) 2016-03-23 2017-03-21 Non-aqueous electrolyte additive, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2017164625A2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278692B1 (en) 2011-03-31 2013-06-24 주식회사 엘지화학 Nitrile-based compound, non-aqueous electrolyte and lithium secondary battery using the same
KR20140127741A (en) 2013-04-25 2014-11-04 삼성에스디아이 주식회사 Additive for electrolyte of lithium battery, organic electrolytic solution comprising the same and Lithium battery using the solution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034067A1 (en) * 2009-09-15 2011-03-24 宇部興産株式会社 Nonaqueous electrolyte solution and electrochemical element using same
KR101516854B1 (en) * 2012-05-22 2015-05-04 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP5978787B2 (en) * 2012-06-11 2016-08-24 ソニー株式会社 Non-aqueous secondary battery electrolyte, non-aqueous secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2014007026A1 (en) * 2012-07-02 2014-01-09 日本電気株式会社 Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278692B1 (en) 2011-03-31 2013-06-24 주식회사 엘지화학 Nitrile-based compound, non-aqueous electrolyte and lithium secondary battery using the same
KR20140127741A (en) 2013-04-25 2014-11-04 삼성에스디아이 주식회사 Additive for electrolyte of lithium battery, organic electrolytic solution comprising the same and Lithium battery using the solution

Non-Patent Citations (43)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 106814-29-3
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1092299-10-9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1092299-14-3
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1142329-71-2
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1152602-85-1
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1187569-59-0
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 119088-71-1
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1226870-15-0
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1231244-87.3
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1250037-76-3
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 130575-28-9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 130772584-3
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1340327-98-1
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1341985-74-7
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 135180-11-9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 135180-12-0
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1403752-26-0
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 14918-21-9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 15496-08-9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1566708-82-4
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 15956-07-7
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 181016-27-3
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 18719-29-4
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1904-22-9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 19754-82-6
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 237748-26-4
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 30764-61-5
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 30908-62-4
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 37056-54-5
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 477776-32-2
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 552335-84-9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 60838-53-1
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 6095-08-5
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 65211-56-5
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 6926-20-1
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 70013-05-7
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 77858-71-0
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 78790-62-2
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 874488-13-8
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 875231-41-7
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 90918-31-3
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 93604-63-8
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 99276-98-9

Also Published As

Publication number Publication date
WO2017164625A3 (en) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2021034141A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019013501A1 (en) Non-aqueous electrolyte solution additive, non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery, comprising non-aqueous electrolyte solution additive
WO2021141376A1 (en) Pre-dispersing agent composition, and electrode and secondary battery comprising same
WO2019203622A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2012169843A2 (en) Non-aqueous electrolyte and lithium secondary battery using same
WO2018135822A1 (en) Additive for non-aqueous electrolyte, lithium secondary battery non-aqueous electrolyte comprising same, and lithium secondary battery
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020009436A1 (en) Lithium secondary battery with improved high temperature characteristics
WO2019135624A1 (en) Gel polymer electrolyte composition, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising same
WO2020060295A1 (en) Composition for gel polymer electrolyte, and lithium secondary battery including gel polymer electrolyte formed therefrom
WO2020036336A1 (en) Electrolyte for lithium secondary battery
WO2019039903A2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020060293A1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising gel polymer electrolyte formed therefrom
WO2019093853A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2022092831A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021015535A1 (en) Lithium secondary battery
WO2020036444A1 (en) Method for preparing negative electrode for lithium secondary battery, and negative electrode for lithium secondary battery, prepared using same
WO2018080259A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2019088733A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2022055307A1 (en) Precursor composition for polymer electrolyte, and gel polymer electrolyte formed therefrom
WO2019009594A1 (en) Polymeric electrolyte for secondary battery and lithium secondary battery comprising same
WO2022010281A1 (en) Nonaqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2019107855A1 (en) Polymer electrolyte for secondary battery and secondary battery comprising same
WO2017164625A2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery
WO2019103496A1 (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017770595

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE